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ABSTRACT

This research presents a novel methodology that uses Temporal Convolutional Networks (TCNs),
a state-of-the-art deep learning architecture, for predicting the time history of structural responses
to seismic events. By leveraging accelerometer data from instrumented buildings, the proposed
approach complements traditional structural analysis models, offering a computationally efficient
alternative to nonlinear time history analysis.

The methodology is validated across a broad spectrum of structural scenarios, including buildings
with pronounced higher-mode effects and those exhibiting both linear and nonlinear dynamic be-
haviors. Applications demonstrate high prediction accuracy across diverse building types, using
datasets from the California Strong Motion Instrumentation Program (CSMIP). Training dataset
development is grounded in core principles of structural dynamics, with results interpreted through
the lens of earthquake engineering. Additionally, a pilot study is presented to reconstruct ground
motions using the measured responses of a building.

Despite recognizing limitations such as dataset size and model generalizability, the study highlights
the transformative potential of advanced Artificial Intelligence (AI) techniques in seismic response
prediction. Future research will investigate complementary strategies, including physics-informed
AI, transformer architectures, and neural operators, to further enhance prediction accuracy. These
advancements pave the way for improved Structural Health Monitoring (SHM) and support the
evolution of Performance-Based Earthquake Engineering (PBEE) methodologies.

Keywords: Deep Learning; Ground Motion Reconstruction; Structural Health Monitoring; Struc-
tural Response Prediction; Temporal Convolutional Networks.
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1 Introduction

Earthquakes pose a significant risk to the built environment, making accurate prediction of struc-
tural responses an essential aspect of earthquake engineering. Over the years, researchers and
engineers have developed various methodologies to assess the seismic performance of structures,
ranging from physical experimentation to computational modeling. These methods aim to un-
derstand how structures respond to seismic loads, detect potential vulnerabilities, and ultimately
enhance the resilience of the built environment. However, traditional approaches often face limita-
tions related to cost, scalability, or computational intensity, necessitating innovative solutions.

This study introduces a novel approach that combines advanced deep learning techniques
with principles of structural dynamics to address these challenges. Specifically, it leverages Tem-
poral Convolutional Networks (TCNs), a state-of-the-art deep learning architecture, to predict the
time history of structural responses caused by earthquakes. By integrating data-driven method-
ologies with engineering knowledge, the study aims to enhance predictive accuracy and provide
practical tools for seismic performance assessment. The following sections of this chapter out-
line the motivation for the research, define its objectives, and describe the scope of the study. A
summary of the organization of the report is also provided.

1.1 MOTIVATION

Structural response prediction is a cornerstone of earthquake engineering. It allows engineers to
evaluate how structures will perform under seismic loads, enabling safety and reliability. Histori-
cally, three primary methods have been used to determine the dynamic structural responses:

1. Field Instrumentation: Installing sensors on real structures provides direct and realistic
measurements of their behavior. However, this approach is limited by the relatively small
number of instrumented buildings worldwide.

2. Laboratory Testing: Physical models, such as those tested on shaking tables or in quasi-
static setups, offer detailed insights into the dynamic response. While valuable, these tests
are often constrained by high cost, time requirements, and limited scalability.

3. Numerical Modeling: Computational simulations are widely accessible and flexible, mak-
ing them the most common approach. However, they rely heavily on assumptions about
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material behavior, boundary conditions, and loading, which can reduce their accuracy com-
pared to real-world observations.

Recent advancements in Artificial Intelligence (AI) and deep learning offer an opportunity
to address these limitations. TCNs are particularly promising, as they can analyze sequential data
to learn temporal patterns, providing a computationally efficient alternative to traditional nonlin-
ear time history analysis. This study builds on these developments, applying TCN to predict the
structural responses across a variety of scenarios, including both linear and nonlinear behavior.

1.2 OBJECTIVES

This research aims to bridge the gap between data-driven methodologies and structural engineering
principles, improving the accuracy and applicability of AI techniques in earthquake engineering.
The specific objectives are:

1. Develop a Methodology: Create a robust framework for predicting the time history of struc-
tural responses during seismic events using TCNs.

2. Test Across Diverse Scenarios: Apply the methodology to a wide range of cases, including
buildings with higher mode effects and both linear and nonlinear responses, to evaluate the
accuracy of TCN predictions.

3. Solve an Inverse Problem: Investigate the potential of TCNs to address the inverse problem
of predicting ground motion from structural response data.

4. Integrate Structural Dynamics: Combine AI techniques with fundamental principles of
structural dynamics and earthquake engineering to enhance the interpretability and physical
validity of predictions.

By achieving these objectives, this research seeks to provide a computationally efficient comple-
ment –or even alternative– to traditional nonlinear time history analysis.

1.3 SCOPE

There has been limited research on using deep learning techniques to predict the complete time
history of structural responses. While some studies focus on predicting peak response [24], the
entire response history offers a more comprehensive understanding of the structural behavior. This
is particularly important for applications like Structural Health Monitoring (SHM), where the peak
response is often insufficient for identifying the existence, severity, and location of damage [17,
18, 19].

Existing studies have explored machine learning approaches to predict the structural re-
sponses [4, 23, 12, 14]. However, they typically focus on specific structural components or indi-
vidual instrumented buildings or bridges. These studies often lack detailed physical interpretations
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of the predictions. This research addresses these gaps by applying TCNs to predict the time history
of the structural responses across a variety of systems. The characteristics of these systems, out-
lined in Table 1.1, include elastic and inelastic behaviors, single-mode and higher-modes effects,
and varying damping ratios. Inverse problem solutions are also explored to predict ground motions
from structural response data.

Table 1.1: Features characterizing the earthquake response of different structural systems.

Response System Feature 1 Feature 2 Feature 3

Linear elastic

SDOF Natural period Damping ratio

Ground motion
Low- & Mid-rise

Buildings
First mode period

Varying first mode
damping ratios

Tall Buildings
Periods for

multiple modes
Damping ratios of

multiple modes

Inelastic
SDOF

Natural period
damping ratio

Force capacity
Ground motion

Low & Mid-rise
Buildings

Elongation of
first mode period

Varying first mode
damping ratio

1.4 ORGANIZATION OF THE REPORT

The report structure ensures a logical flow, guiding the reader through the methodology, applica-
tions, and implications of the research. It is organized into seven chapters:

1. Chapter 1 introduces the motivation, objectives, and scope of the study, providing the foun-
dation for the research.

2. Chapter 2 details the development of the TCN methodology, including its theoretical frame-
work and architecture. It also discusses related foundational architectures like Recurrent
Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, and Convolutional
Neural Networks (CNNs).

3. Chapters 3, 4 & 5 focus on specific applications of the TCN method, addressing linear
elastic response predictions, inelastic response modeling, and ground motion predictions,
respectively.

4. Chapter 6 provides a comprehensive summary of the results, draws conclusions, and dis-
cusses their significance.

5. Chapter 7 concludes the report by highlighting limitations and suggesting potential direc-
tions for future research.
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2 Methodology

Analyzing structural responses as time series at various locations is crucial for understanding the
impacts of severe earthquakes. Traditionally, nonlinear structural responses under seismic events
have been evaluated using computational models such as the Finite Element Method (FEM) based
on mechanics and physics principles. However, these methods are computationally intensive, re-
quiring step-by-step time integration using numerical techniques (e.g., via the Newmark β method)
and nonlinear iterative solutions (e.g., the Newton-Raphson method) at each time step. This com-
putational demand becomes particularly challenging when dealing with large-scale analyses, such
as regional seismic damage assessments, or when rapid results are needed for critical decision-
making. Consequently, there is a pressing need for faster, more efficient approaches to predict
structural responses at key locations.

In recent years, Long Short-Term Memory (LSTM) networks have gained significant at-
tention for their ability to predict structural responses [23]. Most studies have relied on standard
or “vanilla” LSTM networks configured to handle sequential data. However, recent advancements
have explored integrating LSTM networks with additional components, such as convolution layers
and attention mechanisms, to improve task-specific performance and prediction accuracy. These
enhanced architectures provide better modeling of nonlinear and complex dependencies in time-
series data.

Another promising approach is the transformer architecture, which has demonstrated ex-
ceptional performance in modeling global dependencies across sequential data in domains like
Natural Language Processing (NLP) [22]. Despite its success in other fields, the application of
transformers to structural dynamics remains limited. The quadratic computational complexity
of Transformers with respect to sequence length poses a significant challenge, particularly for
high-resolution ground motion and corresponding structural response data, which is common in
earthquake engineering. This complexity can lead to prohibitive computational costs, making
transformers less practical for real-time decision-making or large-scale analyses where efficiency
is paramount.

For this study, we have adopted the Temporal Convolutional Network (TCN) as the primary
model for predicting structural responses. TCNs have shown superior accuracy and computational
efficiency compared to other models, particularly for time-series data. They are well-suited for
capturing long-term dependencies and offer significant advantages in training and prediction speed.
These features make TCN an ideal choice for the objectives of the study.

To provide a comprehensive understanding of the TCN model, this chapter also reviews
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the following foundational methods traditionally used for sequential data processing:

1. Recurrent Neural Networks (RNN): Introduced as one of the earliest neural network ar-
chitectures for sequential data, RNNs are designed to process sequences by maintaining a
hidden state that evolves with each time step. However, RNNs suffer from vanishing gradi-
ent problems, which limit their effectiveness for long sequences.

2. Long Short-Term Memory (LSTM) Networks: LSTMs address the limitations of RNNs
by introducing memory cells and gating mechanisms that enable better handling of long-term
dependencies in data. These features made LSTMs a popular choice for structural response
prediction.

3. Convolutional Neural Networks (CNNs): Originally developed for image processing [16],
CNNs have been adapted for temporal data. By applying convolutional operations, CNNs
efficiently capture local patterns in data, but they struggle with long-term dependencies with-
out significant adaptation.

TCN builds upon the principles of CNNs, adapting them for temporal data using causal and
dilated convolutions1. These adaptations allow TCN to model sequential dependencies effectively,
offering faster computation and scalability compared to RNNs and transformers. By leveraging
the strengths of TCN, this study aims to advance predictive capabilities for structural response
analysis, providing an efficient and scalable alternative to traditional computational methods.

2.1 DEEP LEARNING IN STRUCTURAL RESPONSE PREDICTION

Deep Learning (DL) has become a powerful tool for predicting structural response to dynamic
loading, such as earthquakes. By leveraging its capacity to model complex, nonlinear relationships,
DL provides a robust framework to establish the connection between input ground motion data
and output structural responses. This section outlines the theoretical framework and mathematical
foundations of using DL in this context.

2.1.1 Problem Formulation

Predicting the structural responses involves mapping the input ground motion data:

X = {x1,x2, . . . ,xi, . . . ,xN}
1 A causal convolution ensures that the output at a given time step depends only on the current and previous input

time steps, preventing any “future” information from influencing the prediction. This is crucial for time-series
tasks where the prediction at a specific time must not have access to future values in the sequence. A dilated
convolution is also known as “atrous convolution”, where the word atrous is derived from Latin and French to
mean hole. It is a convolutional operation where the filter is applied to the input with gaps (dilations) between
the sampled input points. This allows the convolution to capture a larger receptive (i.e., more context) without
increasing the number of parameters or computational cost significantly.
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to the output structural response data:

Y = {y1,y2, . . . ,yi, . . . ,yN},

where N denotes the total number of time steps. The input features may include ground motion
acceleration or velocity at a specific point in time, and the structural responses, may represent
quantities such as floor accelerations or displacements, or story drifts. It is to be noted that the
index i represents the component of the vector.

The goal is to find a function fθ that minimizes the discrepancy between the predicted
responses Ŷ = fθ(X) and the actual responses Y. This is formulated as an optimization problem:

θ∗ = argmin
θ

L (fθ(X),Y) , (2.1)

where L is a loss function that quantifies prediction errors. Common loss functions include:

• Mean Squared Error (MSE):

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2, (2.2)

• Mean Absolute Error (MAE):

LMAE =
1

N

N∑
i=1

|yi − ŷi|. (2.3)

2.1.2 Deep Learning Framework

DL models are composed of multiple layers that sequentially transform the input data into predic-
tions. The relationship between inputs and outputs is expressed as2:

ŷi = fθ (xi) = f (L)
(
f (L−1)

(
. . . f (1) (xi)

))
, (2.4)

where f (l) represents the operation of the l-th layer, such as a linear transformation or an activation
function, where l ∈ {1, 2, . . . , L− 1}.

2.1.3 Key Components of Deep Learning Models

1. Linear Transformation where each layer computes a weighted sum of its inputs as follows:

z(l) = W(l)a(l−1) + b(l), (2.5)

where W(l) and b(l) are the weights and biases of the l-th layer, and a(l−1) represents the outputs
of the previous layer. This equation is a general description applicable to all intermediate layers of
the network.

2 Eq. 2.4 is a general representation of the deep learning framework. The time-dependence nature of some specific
deep learning architecture is explained in a Section 2.5.
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2. Nonlinear Activation Function where nonlinearity is introduced through activation func-
tions, enabling the model to capture complex relationships:

a(l) = ϕ(z(l)), (2.6)

where ϕ is the activation function, e.g., ReLU(z) = max(0, z), or other nonlinear functions.

3. Output Layer where the final layer L is distinct from the preceding layers in its purpose—it
produces the model’s predictions. For a regression task, the prediction is computed as:

ŷi = W(L)a(L−1) + b(L), (2.7)

where W(L) and b(L) are the weights and biases of the output layer, and a(L−1) represents the
outputs of the last hidden layer. Unlike earlier layers, which primarily extract and transform fea-
tures, the output layer is specifically tailored to generate task-specific outputs, such as predictions
in regression or probabilities in classification.

2.1.4 Training and Optimization

Training a DL model involves optimizing its parameters, θ = {W(l),b(l)}Ll=1, to minimize the loss
L. This is typically performed through gradient-based methods such as stochastic gradient descent
(SGD):

θ(l+1) = θ(l) − α∇θL, (2.8)

where α is the learning rate, and ∇θL represents the gradient of the loss function with respect to
the model parameters.

2.1.5 Evaluation Metrics

To assess the performance of the trained model, several quantitative and qualitative metrics are
used. These metrics are discussed in the following paragraphs:

1. Correlation Coefficient: Measures the linear correlation between predicted and actual re-
sponses:

R =

∑N
i=1(yi − y)(ŷi − ŷ)√∑N

i=1(yi − y)2
∑N

i=1(ŷi − ŷ)2
, (2.9)

where y and ŷ are the mean values of yi and ŷi, respectively. It is to be noted that the index
i represents the component of yi.

2. Error Distribution: The relative error at each time step is calculated as:

ei =
yi − ŷi

maxi (yi)
, (2.10)

where the normalization with maxi(yi) ensures comparability across different response types
and levels.
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3. Visualization: To ensure the model’s practical utility and interpretability, its predictions,
i.e., how well the model reproduces the underlying patterns and structural behavior, are also
evaluated using visual overlays. This is conducted for:

• Time Domain: The predicted responses are plotted against the actual responses over
time to check for alignment and consistency in capturing dynamic trends.

• Frequency Domain: The Fourier amplitude spectra of the predicted and actual re-
sponses are compared to ensure that the model captures key frequency components,
such as the natural frequencies.

2.1.6 Summary

By combining DL’s capacity to model complex relationships with comprehensive evaluation meth-
ods, e.g., quantitative metrics with qualitative visualizations, this approach offers a computation-
ally efficient alternative to traditional methods. It allows for accurate prediction of structural re-
sponses under dynamic loads, paving the way for advancements in Structural Health Monitoring
(SHM) and Earthquake Engineering.

2.2 RECURRENT NEURAL NETWORK

A Recurrent Neural Network (RNN) is a DL architecture designed for modeling sequential data.
Unlike standard neural networks, RNN incorporates not only the current input but also information
from previous steps, making it ideal for capturing temporal dependencies within data sequences.
The core component of an RNN is the hidden state vector ht, which maintains information about
all prior steps. This state enables RNN to understand context over time, such as words in a sentence
or trends in time-series data.

The architecture of a basic RNN is depicted in Figure 2.1, where xt, ht, and yt represent
the input vector, hidden state vector, and output vector at time step t, respectively. The relationships
governing RNN computations are:

ht = f(Whhht−1 +Whxxt + bh), (2.11)
yt = f(Wyhht + by), (2.12)

where f is the activation function, Whh, Whx, and Wyh are weight matrices, and bh and by are
bias vectors.

While RNN is powerful, it suffers from a critical limitation: the vanishing gradient prob-
lem. This issue arises during training when backpropagated gradients diminish exponentially
through time, making it challenging for the model to learn long-term dependencies. To address
this, specialized RNN architectures such as Long Short-Term Memory (LSTM) were developed.
These architectures use gating mechanisms to regulate the flow of information, enabling them to
retain long-term dependencies effectively.
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Figure 2.1: Simple RNN architecture.

RNN is designed to handle sequential data by maintaining a hidden state that evolves over
time. The output at the final time step n can be expressed recursively, showcasing the dependency
on all previous hidden states and inputs:

yn = g(Wyhf(Whh . . . f(Whhh1 +Whxx2 + bh) · · ·+Whxxn + bh) + by). (2.13)

The RNN is trained by minimizing a loss function L, which measures the discrepancy
between the predicted outputs Ŷ = {ŷ1, ŷ2, . . . , ŷN} and the ground truth Y = {y1,y2, . . . ,yN}.
Gradients are computed using Backpropagation Through Time (BPTT). The gradient of the loss
with respect to the weights W is:

∂L

∂W
=

∂L

∂yn

· ∂yn

∂hn

n∏
t=2

∂ht

∂ht−1

· ∂h1

∂W
. (2.14)

A key challenge in training RNN is the vanishing gradient problem. The derivative of the
hidden state at time t with respect to the previous hidden state ht−1 is:

∂ht

∂ht−1

= f ′(Whhht−1 +Whxxt + bh) ·Whh. (2.15)

When the eigenvalues of Whh or the derivative of the activation function f ′ are small, repeated
multiplication causes the gradients to diminish exponentially. Conversely, large eigenvalues can
lead to the exploding gradient problem. The mathematical model of RNN highlights their ability
to capture temporal dependencies via recursive hidden state updates. However, challenges like
vanishing and exploding gradients motivate the development of advanced architectures such as
LSTM.

2.3 LONG SHORT TERM MEMORY

LSTM [10], Figure 2.2, is a type of RNN designed to address the vanishing gradient problem.
By incorporating a memory cell and gating mechanisms, LSTM is capable of learning long-term
dependencies in sequential data. The architecture of an LSTM includes three primary gates: the
forget gate, which determines what information to discard; the input gate, which decides what new
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Figure 2.2: A typical LSTM cell configuration.

information to add; and the output gate, which controls what information is passed as the hidden
state.

The defining feature of an LSTM is its cell state, denoted as ct, which acts as a conveyor
belt to preserve information across time steps. The gating mechanisms ensure selective reten-
tion or forgetting of information, enabling the model to overcome the gradient vanishing problem
effectively. The LSTM cell operations at time step t are described by the following equations.
The forget gate, responsible for deciding which information from the previous cell state should be
discarded, is given by:

ft = σ(Wfxxt +Wfhht−1 + bf ). (2.16)

The input gate, which determines what new information to add to the cell state, is computed as:

it = σ(Wixxt +Wihht−1 + bi), (2.17)

The candidate cell state is:

c̃t = tanh(Wcxxt +Wchht−1 + bc). (2.18)

The cell state is updated by combining the previous cell state ct−1, modulated by the forget gate,
and the candidate cell state, scaled by the input gate:

ct = ft ⊙ ct−1 + it ⊙ c̃t, (2.19)

where ⊙ denotes element-wise multiplication.

The output gate determines which part of the cell state contributes to the hidden state:

ot = σ(Woxxt +Wohht−1 + bo), (2.20)

The hidden state is calculated as:
ht = ot ⊙ tanh(ct). (2.21)

Here, ft, it, ot, and c̃t represent the forget gate, input gate, output gate, and candidate cell state,
respectively. The terms Wfx,Wfh,Wix,Wih,Wcx,Wch,Wox,Woh are weight matrices, and
bf ,bi,bc,bo are bias vectors. The activation functions σ (sigmoid) and tanh (hyperbolic tangent)
provide nonlinearity.
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LSTMs excel in capturing long-term dependencies in sequential data while mitigating the
vanishing and exploding gradient problems. The memory cell allows information to flow un-
changed across many time steps unless explicitly modified, making LSTMs particularly effective
for tasks involving long sequences. LSTMs are widely used in various domains, including time
series forecasting, anomaly detection, natural language processing (e.g., machine translation, text
generation), speech recognition, and video analysis. These applications benefit from the LSTM’s
ability to model temporal and sequential dependencies effectively. By introducing memory cells
and gating mechanisms, LSTMs provide a robust framework for handling sequential data. Their
ability to selectively retain relevant information and mitigate the vanishing gradient problem makes
them a foundational tool in modern deep learning. However, one significant drawback of LSTMs
is their slow training process, which led us to adopt TCN as an alternative in this project. Since
TCN is primarily built upon the principles of CNN, it is important to first introduce CNN.

2.4 CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network (CNN) is a class of deep learning models designed to process data
with spatial or sequential structure. While CNNs are widely known for their application in com-
puter vision, their underlying principles —particularly convolutional operations (Figure 2.3)—
make them highly versatile and applicable to other domains, including structural response predic-
tion. In structural applications, sequential data such as ground motion time histories or vibration
signals can be represented as one-dimensional arrays. CNNs can process this data by applying
filters to capture local and global patterns, making them a powerful tool for time-series modeling.

The convolutional layers in CNN apply learnable filters to input data, extracting hierarchi-
cal features that progressively capture more complex patterns. For structural response prediction,
this hierarchical feature extraction can be used to identify critical temporal patterns in seismic in-
put data and structural responses, such as acceleration, velocity, or displacement. Additionally,
CNN’s ability to handle multi-channel input, such as data from multiple accelerometers, makes it
particularly suitable for analyzing structural systems with multiple degrees of freedom.

Although CNNs were originally designed for spatial data, their principles have been ex-
tended to sequential data processing, as demonstrated in Temporal Convolutional Networks (TCN).
TCN leverages CNN’s convolutional capabilities while introducing causal and dilated convolutions
to handle long-term dependencies and maintain temporal fidelity. These adaptations make CNN
a foundational component in the development of TCN and its application to structural response
prediction.

CNN introduces key improvements over traditional fully connected neural networks:

• Local Connections: Units in a CNN layer are connected to local patches of the previous
layer through a set of weights called a filter or kernel. This contrasts with fully connected
layers, where every neuron is connected to every neuron in the previous layer.

• Shared Weights: Filters are shared across all spatial locations in a layer, making CNNs
computationally efficient and invariant to local translations in the input.
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Figure 2.3: A typical convolutional operation [16].

• Pooling: Pooling layers downsample feature maps by summarizing the presence of features
in a local patch. Max-pooling, for instance, retains the maximum value in a patch, reducing
spatial dimensions and increasing robustness to small translations and distortions.

• Multi-Layer Feature Extraction: Lower layers in CNNs capture basic features like edges,
while higher layers learn complex features like shapes and objects. This hierarchical feature
extraction allows CNNs to identify patterns across multiple levels of abstraction.

The operation of a CNN layer involves a convolution between the input feature map and a
filter, followed by the application of a non-linear activation function. Mathematically, the convo-
lution operation for a single output feature map can be expressed as:

yi,j = f

(
M∑

m=1

N∑
n=1

xi+m,j+n · wm,n + b

)
, (2.22)

where yi,j is the output feature map at position (i, j), xi+m,j+n is the input value at position (i +
m, j + n), wm,n is the filter weight at position (m,n), b is the bias term, and f is the activation
function (e.g., ReLU).

Pooling layers further reduce the spatial dimensions of the feature map. For max-pooling,
the output is given by:

pi,j = max
(m,n)∈patch

xi+m,j+n, (2.23)

where patch refers to the local region over which pooling is applied.

13



Despite its success in vision-based tasks, the use of CNN for time-series modeling in SHM
remains limited. However, the underlying principles of convolution and pooling make CNN a
valuable component for sequential data analysis, which is further extended in models like the
Temporal Convolutional Network (TCN).

2.5 TEMPORAL CONVOLUTIONAL NETWORK

The TCN [13] is a deep learning architecture designed for sequence modeling and time-series
prediction. By leveraging convolutional layers, TCN provides an efficient alternative to recurrent
architectures such as Long Short-Term Memory (LSTM) networks, while maintaining the capa-
bility to model long-term dependencies. TCN is closely related to Convolutional Neural Network
(CNN), adapting its convolutional principles to sequential data.

Temporal Convolutional Network (TCN) combines the strengths of convolutional and re-
current architectures by introducing several key characteristics. It employs causal convolutions,
which ensure that predictions at time t depend only on data from time t and earlier, thereby pre-
serving the temporal order of the sequence. Additionally, TCN utilizes dilated convolutions to
extend the receptive field exponentially without increasing the depth of the network, enabling the
efficient capture of long-term dependencies in the data. Unlike LSTM networks, TCN processes
the entire input sequence in parallel, significantly improving training and inference times.

The core operation in TCN is the convolution applied to sequential data. For a 1D convo-
lution, the output at time t for a single filter is:

yt =
K−1∑
k=0

wk · xt−k + b, (2.24)

where yt is the output at time t, xt−k is the input at time t−k, wk is the weight for the k-th position
of the filter, K is the filter size (kernel size), and b is the bias term.

In TCN, this basic convolution is extended with dilations to capture dependencies across
larger temporal ranges. Causal convolutions ensure that no future information is used when pre-
dicting the output at time t. This is achieved by zero-padding the input such that the convolutional
operation respects the temporal order. The causality constraint is crucial for time-series tasks where
predictions must depend only on past data.

TCN is built upon the principles of CNN by utilizing convolutional layers to extract hierar-
chical features. However, while CNN is typically used for spatial data like images, TCN modifies it
for sequential data using causal and dilated convolutions. This makes TCN an efficient alternative
to recurrent architectures like LSTM. Unlike LSTM, which processes data sequentially through
time, TCN processes the entire input sequence in parallel, leveraging convolutional operations.
This parallelism results in faster training and inference times. Additionally, while LSTM uses
gates to control information flow, TCN employs the receptive field and stacked dilated convolu-
tions to achieve similar capabilities.

Temporal Convolutional Network combines the strengths of CNN and LSTM, providing a
powerful framework for sequential data modeling. By leveraging causal and dilated convolutions,
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Figure 2.4: Schematic of TCN architecture applied to a two-story frame.

TCN achieves efficient parallel processing and robust long-term dependency modeling, making it
a strong candidate for time-series prediction and other sequential tasks.

The architecture of Temporal Convolutional Networks (TCN) (Figure 2.4) makes it par-
ticularly well-suited for predicting structural responses under seismic events. Given input ground
motion data, TCN predicts time-history responses such as acceleration, velocity, or displacement.
For example, a TCN maps the input ground motion x(t) to the structural response y(t) as:

y(t) = F(x(t)), (2.25)

where F represents the learned mapping function.

In TCN, the input is processed to generate predictions for the structural response as output.
The input and output structures are defined as:

Input = (nevents, nsteps, featuresx) & Output = (nevents, nsteps, featuresy) , (2.26)

where nevents represents the number of earthquake events, and nsteps is the maximum number of
time steps across all events. Zero padding is applied to events with fewer time steps than nsteps

to ensure consistency in input size. The terms featuresx and featuresy denote the input features
(e.g., accelerometer data) and the predicted variables (e.g., acceleration, velocity, displacement),
respectively. The timestep size is consistent across all events.

The fundamental operation of TCN is the causal convolution, which ensures that the output
at time t depends only on inputs from the current and previous time steps, preserving temporal
causality. The causal convolution is mathematically defined as:

y
(l)
t =

k−1∑
i=0

w
(l)
i · xt−i·d, (2.27)
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where K is the kernel size, defining the number of input values considered, d is the dilation fac-
tor that spaces the kernel elements to cover long-range dependencies, w(l)

i are the weights of the
convolutional filter at layer l, and xt−i·d is the input at time t− i · d.

The dilation factor d is adjusted to exponentially expand the receptive field with each layer,
enabling TCN to efficiently capture dependencies over extended sequences without excessive com-
putational cost. After the convolutional layers, the temporal information is aggregated through a
fully connected layer to generate the final output. This operation is expressed as:

ŷ = W · ynsteps + b, (2.28)

where ŷ is the final output prediction (a vector), W is the weight matrix of the fully connected
layer, b is the bias vector, and ynsteps is the output of the last timestep from the TCN. In this study,
the configuration settings for the TCN are as follows:

• Kernel size: : 10

• Number of filters: 20

• Number of epochs: 200

• Minimum learning rate: 10−5

• Maximum dilation factor: 512

TCNs offer several advantages for structural response prediction. One key advantage is
their temporal fidelity, as causal convolutions preserve temporal causality, ensuring that predictions
rely solely on past information. Additionally, dilated convolutions allow TCNs to efficiently model
long-range dependencies without significantly increasing computational complexity, making the
architecture computationally efficient. Furthermore, TCNs are highly scalable, capable of handling
large-scale datasets effectively, which is essential for practical applications in structural response
prediction.

TCNs face several challenges. A major limitation is their dependency on extensive labeled
datasets, which are often required for accurate training and generalization across diverse scenarios.
Another challenge lies in their interpretability; purely data-driven models such as TCNs may lack
physical interpretability, which is critical for applications in structural engineering. This limitation
can be addressed by integrating physics-informed neural networks (PINNs) to enhance the model’s
ability to incorporate domain knowledge and improve its physical consistency. Despite these lim-
itations, TCNs provide a powerful framework for modeling complex temporal relationships in
structural response prediction. Their unique combination of efficiency, scalability, and temporal
accuracy makes them a promising tool for advancing Performance-Based Earthquake Engineering
(PBEE) and SHM.

In the following chapters, we will leverage TCN to predict both linear and nonlinear struc-
tural responses, explore ground recovery dynamics, and address other critical tasks in structural
response modeling. By applying TCN to these diverse challenges, we aim to demonstrate its ver-
satility and effectiveness in solving real-world engineering problems. The used source codes will
be made publicly available on GitHub at: https://github.com/STAIRlab/dyntrace.
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3 Linear Elastic Response Prediction

Linear elastic response of systems with various characteristics, namely a Single-Degree-of-Freedom
(SDOF) numerical model, instrumented low-rise buildings and instrumented tall buildings, are pre-
sented in this chapter. As shown in Table 1.1, the features that define the responses of these systems
depend on different and varying number of dynamic characteristics (features), therefore the accu-
racy of the predictions are discussed and interpreted in relation to these features.

3.1 SINGLE-DEGREE-OF-FREEDOM (SDOF) SYSTEMS

Single-Degree-of-Freedom (SDOF) systems form the foundation of structural dynamics, represent-
ing the most basic concept of dynamic response analysis. A linear elastic SDOF system consists
of a mass, spring, and damper, and its dynamic behavior is governed by the equation of motion:

mü(t) + cu̇(t) + ku(t) = f(t), (3.1)

where m is the mass of the system, c is the damping coefficient, k is the stiffness of the system,
u(t) is the displacement response, u̇(t) is the velocity response, ü(t) is the acceleration response,
and f(t) is the external force. In an earthquake excitation, f(t) is equal to −müg(t), where üg(t)
is the ground acceleration.

For an elastic SDOF system, the response depends on three key features: (1) the natural
period, (2) the damping ratio, and (3) the ground motion. These features characterize the system’s
dynamic response under seismic loading.

3.1.1 Verification of TCN for SDOF Systems

To verify the Temporal Convolutional Network (TCN) and its implementation for structural re-
sponse prediction, the first step was to apply TCN to the numerical model of an SDOF system
(Figure 3.1) with a natural period of 0.41 seconds and a damping ratio of 2.35%. This configu-
ration matches the dynamic characteristics of San Bernardino 6-story hotel in the NS direction,
which is discussed in later sections. A dataset consisting of 10 motions for training1 and 7 motions

1 The validation of the training set is a fundamental step in machine learning applications. The training sets used in
this study are validated using the discussed metrics, including correlation coefficient, probability distribution of
normalized prediction errors and others, refer to Table 3.2 for validation of the used training set for E-W direction
response of the San Bernardino 6-story building.
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for testing was used, with both recorded ground and total response accelerations (total response
acceleration is the sum of ground acceleration and relative response acceleration) of the same
building.

Figure 3.1: Numerical model of an SDOF system.

The TCN predictions showed high accuracy, with a correlation coefficient of 99.99% for
the tested motions. The predicted acceleration and displacement time histories matched the com-
puted results with very high accuracy. The predicted and computed (referred to as real) acceleration
results are shown in (Figure 3.2) for one of the test motions, the Fontana Earthquake of 25 July
2015. The accuracy of the results are clearly visible in the frequency contents as well.

Figure 3.2: Comparison of (a) predicted and recorded acceleration time history and (b) the
corresponding frequency contents of the linear elastic SDOF system in Fontana
Earthquake of 25 July 2015.

The response of an elastic SDOF system subjected to ground motions is determined solely
by its natural period, damping ratio, and the applied ground motion (Table 1.1). The high accuracy
of the TCN predictions indicates that the model effectively learned these features. Moreover,
these results demonstrate that the training dataset contained sufficient diversity in ground motion
characteristics, enabling the TCN to generalize its predictions across various excitations.

The results underline the ability of the TCN model to serve as a reliable and compu-
tationally efficient alternative to conventional numerical simulations for predicting linear elastic
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responses. This basic application developed confidence about the application of TCN on instru-
mented buildings, experimentally tested structures, and numerical models with more complicated
behavior, discussed in the later sections.

3.2 LOW-RISE AND MID-RISE BUILDINGS

Low-rise and mid-rise buildings constitute a significant portion of the built environment and typi-
cally exhibit dynamic responses dominated by their fundamental modes of vibration. These struc-
tures are well-suited for response prediction using TCN, as their dynamic behavior can be effi-
ciently captured with minimal computational complexity. This section discusses the application of
the TCN model to predict linear elastic responses in these building types.

3.2.1 San Bernardino 6-Story RC Hotel Building

Predictions are performed for the linear elastic response of two instrumented CSMIP buildings.
The first of these buildings is the 6-story RC Shear Wall (RCSW) hotel building in San Bernardino,
California, designed in 1970 (Figure 3.3). This building is instrumented with 9 accelerometers,
three on each of the 1st, 3rd, and 6th (roof) floors, and has recorded multiple seismic events from
1987 to 2018. The EW and NS direction responses of this building are studied respectively in
this section for the linear response and in a later section for the inelastic response. In the EW
direction, Channel 1 on the 1st floor is used as input, and Channels 4 and 7, on the 3rd floor and
roof, respectively, are used as outputs. It is noted that the 1st floor boundary conditions are fixed.
Therefore, Channel 1 directly represents the ground motion input to the structure. There are a total
of 26 events recorded by this station, and 11 and 7 of these records (Table 3.1) are respectively
used for training and testing. As shown in Figure 3.5, the motions used in the training set cover
the entire range of shaking levels recorded on this building. It is possible to use another Intensity
Measure (IM) to define the horizontal axis of this figure. However, the Peak Ground Acceleration
(PGA) is used for simplicity as the objective is not to use the IM for quantitative damage detection,
but it is rather used to graphically characterize the training and testing set motions as a function of
the experienced shaking levels. Eleven motions were sufficient for predicting accurate results for
the linear elastic response in the EW direction, and a larger number of motions were utilized for
capturing the nonlinear response in the NS direction.

It is noted that unprocessed accelerations are used for all studied instrumented buildings.
This is because the processed output is not necessarily the direct result of the processed ground
motion input. Therefore, the relationship between the input and output deviates slightly from the
true behavior when processed data is used for input and output. This explanation was also sup-
ported by the slightly higher accuracy of predictions with unprocessed accelerations as compared
to processed accelerations (91% versus 88% in Table 3.2). It is noted that the training accuracy of
0.97 for both the unprocessed and processed data in this table shows that there are no outliers in
the set. This high accuracy indicated by the correlation coefficient is also supported by the nar-
row probability distribution of the normalized error (Equation 2.10) with the mean close to zero
(Figure 3.4).
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Table 3.1: San Bernardino 6-story hotel training and testing records.

# Earthquake Name PGA NS (g) PFA NS (g) PGA EW (g) PFA EW (g)
1 Borrego Springs Area Earthquake of 07 Jul 2010 0.053 0.200 0.024 0.045
2 Devore Earthquake of 29 Dec 2015 0.049 0.106 0.054 0.121
3 Fontana Earthquake of 15 Jan 2014 0.040 0.089 0.034 0.044
4 Inglewood Area Earthquake of 17 May 2009 0.008 0.027 0.008 0.016
5 Ocotillo Area Earthquake of 14 Jun 2010 0.006 0.022 0.006 0.014
6 San Bernardino Earthquake of 08 Jan 2009 0.058 0.168 0.094 0.219
7 Beaumont Earthquake of 14 Sep 2011 0.020 0.041 0.027 0.064
8 La Habra Earthquake of 28 Mar 2014 0.021 0.033 0.024 0.077
9 Loma Linda Earthquake of 13 Mar 2017 0.022 0.050 0.025 0.038

10 Ontario Earthquake of 20 Dec 2011 0.004 0.009 0.004 0.014
11 Yorba Linda Earthquake of 07 Aug 2012 0.009 0.016 0.003 0.010
12 Beaumont Area Earthquake of 16 Jan 2010 0.006 0.013 0.005 0.013
13 Big Bear Lake Earthquake of 05 Jul 2014 0.010 0.030 0.011 0.029
14 Fontana Earthquake of 25 Jul 2015 0.011 0.025 0.010 0.021
15 Loma Linda Earthquake of 08 Oct 2016 0.010 0.017 0.008 0.012
16 Devore Earthquake of 28 Apr 2012 0.017 0.043 0.010 0.029
17 Loma Linda Earthquake of 04 Mar 2013 0.007 0.017 0.012 0.032
18 Chino Hills Earthquake of 29 Jul 2008 0.050 0.113 0.036 0.117

Figure 3.3: (a) Sensor locations and (b) photograph of the 6-story building in San
Bernardino.

The predicted acceleration time histories at the 3rd and 6th (roof) floors are compared with
the recorded time histories for one of the test motions (Chino Hills Earthquake of 29 July 2008)
in Figure 3.6. This is presented along with the comparison of the frequency contents, showing a
close match at both floors in the time and frequency domains.

From a structural dynamics perspective, the linear elastic response of a Multi-Degree of
Freedom (MDOF) system depends on the natural periods, damping ratios, and mode shapes. The
response of low and mid-rise buildings is generally governed by the first mode, which is also the
case for San Bernardino 6-story hotel building. Therefore, similar to the previously discussed
SDOF system, the response features are the period and damping ratio of the first mode as well as
the ground motion (Table 1.1). The response also depends on the mode shape. However, the first
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Table 3.2: Accuracy of San Bernardino 6-story building acceleration predictions in E-W di-
rection.

Data
Correlation Coefficient

Training Set Testing Set

Unprocessed 0.97 0.91

Processed 0.97 0.88

Figure 3.4: Narrow probability distributions of the normalized prediction errors in the EW
direction at the 3rd and 6th (roof) floors of the San Bernardino 6-story building.

Figure 3.5: The training and testing sets used for San Bernardino 6-story building EW direc-
tion.

mode shape amplitude and modal participation factor can be considered as a constant scale factor
for all motions. Therefore, the mode shape is not listed as a feature in Table 1.1 for this system.

Although all motions are in the linear elastic range as observed by the natural periods (iden-
tified as the period that corresponds to the peak value of the Fourier Amplitude spectra), damping
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Figure 3.6: Comparison of predicted and recorded acceleration time history and the cor-
responding frequency contents in the EW direction of San Bernardino 6-story
building at (a, b) 3rd floor, (c, d) 6th floor (Chino Hills Earthquake of 29 July
2008).

ratios (identified using the Half-power bandwidth method [5]) vary because of the contribution
and complexity of different mechanisms to damping at different intensities (Figure 3.7). The phe-
nomenon of varying damping levels in the linear elastic response is well-known [5, 7]. Even for
the same motion in forced vibrations or ambient conditions, the damping ratio varies from segment
to segment of the motion [3].

For proper training, the number of motions in the training set should be sufficient and
the motions should include a range of intensities to capture different levels of damping ratios.
Therefore, a few motions are not sufficient for learning the damping ratio feature as opposed to the
case for the period feature, and more motions are needed in the training set to accurately predict
the damping. The results of this case study indicated that 10 ground motions were sufficient to
learn the period and damping features for consequent accurate predictions.

The success of these predictions highlights the effectiveness of the TCN model in learning
key structural features, such as the first mode period and damping ratio, which govern the linear

22



elastic response of low- and mid-rise buildings. This capability underscores the potential of the
TCN as a computationally efficient alternative to traditional dynamic analysis methods.

Figure 3.7: Identified features (natural periods and damping ratios) for San Bernardino 6-
story building.

Performance-based Earthquake Engineering (PBEE) and Damage Assessment

The TCN predictions can be interpreted from the following three perspectives related to their use
in PBEE and damage assessment.

1. Epistemic uncertainty is due to errors in mathematical modeling, where the errors due to
the TCN model is an example. Due to the presence of epistemic and aleatory uncertainties,
the results of a single ground motion are not used in design and assessment of buildings.
For example, [1] requires 11 motions for nonlinear dynamic analysis and a varying number
of motions (e.g., 20) is essential for probabilistic PBEE [9]. Accordingly, in addition to
the individual motion results, comparison of the probability distributions of the true and
predicted responses are helpful for evaluating the accuracy of the predictions. The Peak Floor
Acceleration (PFA) at the 3rd and 6th floors are assumed to follow a lognormal probability
distribution2 , which are computed using the peak values of all test motions. The resulting
probability distributions of true and predicted PFA are plotted in Figure 3.8. It is observed
that the resulting probability distributions are close to each other at both floors, illustrating
the accuracy of the predictions from this perspective.

2. One of the ways to quantify damage is the use of Engineering Demand Parameter (EDP)
based fragility functions, which commonly provide the relationship between peak response

2 The lognormal probability distribution is developed as a smooth function using its parameters, median and the
coefficient of variation. Both parameters for the predicted and real cases are obtained from the peak values in the
test motions.
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and the probability of damage. The accuracy of TCN predictions can be evaluated using
fragility functions and the corresponding damage estimations. As an example, the fragility
function of a cooling tower (representing damage to the cooling tower and attached piping),
assumed to be located at the roof of San Bernardino 6-story hotel building, is shown in
Figure 3.9. This fragility function is defined by a mean of 0.5g and a dispersion of 0.4. The
Probability Of Exceedance (POE) of this damage state, using the predicted and true 6th floor
PFA for the Chino Hills Earthquake of 07 Aug. 2012, are 5.9% and 6.8%, respectively. In
addition to the damage prediction for this single event, the POE in the fragility function,
POE(DM |PFA), Figure 3.9, can be integrated with the probability of true and predicted
PFA, p(PFA), Figure 3.8b, using the total probability theorem, resulting in the POE of
the damage state considering all the test motions, POE(DM), Equation 3.2. It is noted that
the probability of the damage state is equal to POE because only one damage state is used
herein. Therefore, the resulting probability of damage to a cooling tower located at the roof
of the 6-story San Bernardino hotel building, considering all 7 test motions, is 0.33% and
0.30%, respectively, when the true and predicted peaks are used.

3. The above two points discuss the results from a probabilistic PBEE perspective based on
peak predictions. However using only the peak response in performance and damage as-
sessment has limitations and the entire response history is important to characterize the full
structural behavior. In this context, the Cumulative Absolute Velocity (CAV , Equation 3.3)
is a parameter that is closely related to damage and is a suitable metric to evaluate the damage
estimation potential of the TCN predictions. Figure 3.10 shows the CAV of the predicted
and true accelerations for one of the test motions (Chino Hills Earthquake of 07 Aug. 2012).
It is observed from this figure that the CAV time histories of the predicted and true floor
accelerations are very close to each other, showing that the predicted response can be used
reliably to characterize damage.

Figure 3.8: Identified features (natural periods and damping ratios) for San Bernardino 6-
story building.
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Figure 3.9: Fragility function for a cooling tower assumed to be located at the 6th floor (roof)
of San Bernardino 6-story building.

Figure 3.10: CAV of the true and predicted PFA at the (a) 3rd and (b) 6th floors of San
Bernardino 6-story building (Chino Hills Earthquake of 07 Aug. 2012).

POE(DM) =
∑
PFA

POE(DM |PFA)p(PFA). (3.2)

CAV (T ) =

∫ T

t=0

|ü(t)| dt, (3.3)

where T is the current time at which CAV is computed and ü(t) is the response acceleration at a
given time t.

25



Table 3.3: Hemet 4-story building training and testing earthquake records.

# Earthquake Name PGA NS (g) PFA NS (g) PGA EW (g) PFA EW (g)
1 Aguanga Earthquake of 14 Aug 2018 0.012 0.031 0.018 0.057
2 Aguanga Earthquake of 19 May 2018 0.007 0.012 0.009 0.024
3 Anza Earthquake of 11 mar 2013 0.011 0.021 0.009 0.013
4 Borrego Springs Earthquake of 10 Jun 2016 0.031 0.071 0.028 0.033
5 Calexico Earthquake of 04 Apr 2010 0.027 0.066 0.037 0.043
6 Valle Vista Earthquake of 10 Feb 2019 0.038 0.049 0.016 0.019
7 Aguanga Earthquake of 20 Dec 2018 0.007 0.018 0.012 0.042
8 Anza Earthquake of 03 Apr 2020 0.017 0.027 0.018 0.042
9 Palomar Observatory Earthquake of 31 Mar 2023 0.009 0.024 0.007 0.010

10 Idyllwild Earthquake of 28 oct 2012 0.045 0.040 0.020 0.025
11 Banning Earthquake of 06 Jan 2016 0.017 0.029 0.015 0.034
12 Cabazon Earthquake of 08 May 2018 0.023 0.058 0.010 0.031
13 San Jacinto Earthquake of 17 Oct 2018 0.017 0.028 0.014 0.023

3.2.2 Hemet 4-Story RC Hospital Building

To demonstrate that accurate predictions are obtained for similar buildings with similar number of
records in the training set, a 4-story hospital building with RCSW structural system (similar to San
Bernadino Hotel) is tested using the TCN model. This building was designed and constructed in
1965 and instrumented with 10 accelerometers on three levels in 1976 (Figure 3.11). Channel 1 at
the basement and Channels 9 (2nd floor) & 6 (4th floor, i.e., roof) are respectively used as input
and output in the EW direction. In the NS direction, Channel 3 at the basement and Channels 8
(2nd floor) & 5 (4th floor, i.e., roof) are respectively used as input and output. All these sensors
are at the floor centers. From the recorded 13 events, refer to Figure 3.12, 10 are used for training
(same number as San Bernardino 6-story building linear elastic response in the EW direction) and
3 are used for testing (Table 3.3). As observed in Figure 3.12, the motions used in the training set
cover the entire range of shaking levels recorded on this building and the 3 tested motions are those
that lie at the middle of this range.

Figure 3.11: (a) Sensor locations and (b) photograph of the 4-story building in Hemet.
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Figure 3.12: The training and testing sets used for Hemet 4-story building (a) EW, (b) NS
directions.

Table 3.4: Accuracy of the Hemet 4-story building acceleration predictions.

Data Training Set EW Testing Set EW Training Set NS Testing Set NS
Unprocessed 97.0% 91.0% 97.0% 90.0%
Processed 97.5% 90.0% 97.5% 90.0%

Similar to San Bernardino building, high correlation coefficients (Table 3.4) and the narrow
probability distribution of the normalized error (Figure 3.13)( are obtained for the training and
testing sets and unprocessed data provided slightly more accurate predictions. Sample predictions
are shown for one of the motions in Figure 3.14, showing the accuracy of the predictions in the NS
and EW directions. Similar to San Bernardino building, the TCN model was successful in learning
the entire time history of the response of the building, including its natural period and the varying
damping ratios, using 10 motions in the training set.

3.3 TALL BUILDINGS WITH HIGHER MODES

Different from low-rise and mid-rise buildings, a tall building seismic response includes higher
mode effects. The response of tall buildings involves multiple natural periods, mode shapes, and
damping ratios. TCN provides a suitable framework for modeling such systems due to their ability
to capture intricate temporal dependencies across multiple modes.

From a structural dynamics perspective, the features that should be accurately character-
ized for a tall building are the periods and the damping ratios of several modes contributing to
the response (Table 1.1). The response also depends on the mode shapes, however, as discussed
earlier, the mode shape and the modal participation factor can be considered as a constant scale
factor in the linear elastic dynamic response of each mode for each motion and accordingly is not
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Figure 3.13: Narrow probability distributions of the normalized prediction errors at the 3rd
and roof floors of the Helmet 4-story building: (a) EW, and (b) NS directions.

considered as an explicit factor that the response depends on. Considering the increased number
of features, the presence of multiple modes in the response may introduce additional challenges
to the process of learning, impacting the accuracy of the predictions. Therefore, a 54-story in-
strumented building is selected to explore the TCN predictions for a case where higher modes are
clearly present in the response. This 54-story building is a Steel Moment Resisting Frame (SMRF)
building with composite slabs of 2.5 inches thick concrete over 3 inches steel deck located in Los
Angeles (LA), Figure 3.15. From this figure, it is observed that the building is instrumented with
20 accelerometers at the basement (4 levels below ground), ground level, and the 20th, 36th, 46th
and the penthouse floors. There are Vierendeel trusses and 48-inch-deep transfer girders at the
36th and 46th floors where vertical setbacks occur. Because there is a sudden change of stiffness
at these locations, increased accelerations are expected, and sensors are placed at these floors for
monitoring this expected increase of accelerations.

In this case study building, which has 11 recorded motions, 10 motions are used for train-
ing and the remaining one motion is used for testing (Figure 3.16). The testing motion in the EW
direction is particularly interesting as the Peak Floor Acceleration (PFA) is smaller than the corre-
sponding PGA. This is attributed to: (a) the shape of the response spectrum for this motion, where
the response acceleration at the first mode period of the building is smaller than the PGA, and (b)
multiple modes counteracting and reducing the accelerations. The successful predictions in the
EW and NS3 directions at the 46th floor for the considered test motion are shown in Figure 3.17.
This figure demonstrates that the trained TCN model is successful in learning more complex re-
sponses obtained as a superposition of multiple modes and the 10-motion training set results in

3 As observed in the floor plans and building photograph, Figure 3.15, this building is fairly symmetric about its
orthogonal axes. Coupling between these two orthogonal directions could be due to mass center eccentricity,
which is also expected to be minimal given the floor plans without area expansions. Therefore, the coupling
between the responses in the two horizontal directions is expected to be minimal and the EW and NS responses
are governed by the respective motions in these directions. However, there are instrumented buildings in the
CSMIP database, such as buildings with L-shaped plans, where the response in one horizontal direction would
depend not only on the ground motion component in that direction, but also on the one in the orthogonal direction,
through coupling from the stiffness matrix. Such response requires adapting the TCN for multiple input vectors.
This is also true for multi-support excitation as in long-span bridges. This is a planned topic for future studies.
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accurate responses as in the cases of San Bernardino and Hemet buildings.

The TCN predictions showed high accuracy, as demonstrated by the time-history and
frequency-domain comparisons for the test motion. The model successfully captured the com-
plex response resulting from (i) the superposition of multiple modes, (ii) sudden stiffness change,
validating its capability to handle higher mode effects.

The response of a tall building is influenced by contributions from multiple modes, how-
ever the contribution of these modes to the response varies from motion to motion. To enable the
TCN model to learn about the contributions of higher modes effectively, it is needed to include
motions in the training set that sufficiently excite these modes. Figure 3.18 shows the normalized
amplification function in the EW and NS directions for the training and testing motions. Amplifica-
tion function is computed as the Fourier amplitude of the 46th story response acceleration divided
by the Fourier amplitude of the input ground acceleration. The resulting amplification function is
normalized by the maximum value of this amplification function. It is observed from Figure 3.18
that the second and third modes of vibration are excited to varying levels in the training motions,
with amplification function values at these modes approaching and exceeding that of the first mode
in several motions. The presence of these higher modes in that training set enables the TCN model
to learn the contributions of these modes, resulting in accurate predictions. The presence of the
2nd mode contribution in the NS direction of the test motion is clearly visible, and the accurate
predictions in this direction highlight that the TCN model with the motions in the training set was
successful in capturing the contribution of this mode.

The accurate predictions for tall buildings highlight the potential of TCN to model complex
dynamic responses involving higher modes. Unlike conventional dynamic analysis methods, which
often require a detailed structural analysis model, TCN provides a more efficient alternative while
maintaining high accuracy. This efficiency makes TCN particularly valuable for applications such
as performance-based earthquake engineering and structural health monitoring of tall buildings.
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Figure 3.14: Comparison of predicted and recorded acceleration time history and the corre-
sponding frequency contents in the (a, b) EW and (c, d) NS directions of Hemet
4-story building (Banning Earthquake of 06 Jan 2016).
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Figure 3.15: (a) Sensor locations and (b) photograph of the 54-story building in Los Angeles.

Figure 3.16: Training and testing sets used for LA 54 story building (a) EW, and (b) NS
directions.
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Figure 3.17: The 46th story acceleration predictions for the 56-story building in LA: (a) EW,
and (b) NS directions (Chino Hills Earthquake of 29 July 2008).

Figure 3.18: Normalized amplification functions for the 56-story building in LA: (a) EW, and
(b) NS directions.
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4 Inelastic Response Prediction

Instrumented structures provide valuable data for understanding the inelastic behavior of buildings
under seismic loading. The nonlinear response involves phenomena such as cracking, yielding,
buckling, fracture, and period elongation, the modeling of which introduces challenges to the nu-
merical integration methods used to solve the equations of motions in nonlinear dynamic analysis.
This section discusses the inelastic response predictions conducted using TCN for three case stud-
ies: a mid-rise building subjected to real earthquakes, a low-rise structure tested in a laboratory
setting, and an inelastic SDOF numerical model.

4.1 SAN BERNARDINO 6-STORY RC HOTEL BUILDING (NS DIRECTION)

The identified periods of this building in the EW direction are almost constant in the tight range of
0.21 to 0.24 sec, independent of the level of shaking, which is indicative of linear elastic response
(Figure 4.1). On the other hand, the periods in the NS direction clearly increase with the level of
shaking, indicating inelastic response (Figure 4.1). Although it is not entirely clear why this period
elongation occurred since the set of training ground motions include low-level motions, possible
reasons can be minor cracking, foundation rocking, disengagement of partition walls providing
stiffness, or loss of contributions from other nonstructural components.

Although the inelastic response of this case study is not extensive, it presents a more chal-
lenging case for prediction compared to the linear elastic response. To predict the inelastic response
in the NS direction, the same 10 motions used in the EW direction were not sufficient. As observed
in Table 1.1, the features that need to be characterized for predicting the linear elastic and inelastic
responses of a low- or mid-rise building is the first mode period and the first mode period elon-
gation, respectively. The accurate characterization of period elongation requires not only a larger
number of motions, but also the use of motions that span the entire range of period elongation. As
mentioned earlier, the total number of events recorded for this building is 32 (Table 4.1.) Out of
these 32 motions, 29 covering the entire range of shaking levels were used for training as shown
in Figure 4.2 and three events in the middle of the intensity range of these motions are used for
testing. The results show the increased accuracy of the predictions as demonstrated in Figures 4.3,
4.4, and 4.5 for the motions in the testing set. Particularly, the time history, the peaks, and the fre-
quency contents are well matched, indicating that increasing the number of motions in the training
set from 11 to 23 led to successful characterization of the increase of the period elongation with
increased shaking intensity.
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Table 4.1: Training and testing earthquake records with PGA and PFA values.

# Earthquake Name PGA (g) PFA (g)
1 Big Bear Lake Earthquake of 05 Jul 2014 0.010 0.030
2 Inglewood Area Earthquake of 17 May 2009 0.008 0.027
3 Fontana Earthquake of 25 Jul 2015 0.011 0.025
4 La Verne Earthquake of 28 Aug 2018 0.008 0.025
5 Anza Earthquake of 03 Apr 2020 0.007 0.023
6 Ocotillo Area Earthquake of 14 Jun 2010 0.006 0.022
7 Little Lake Earthquake of 05 Jul 2019 0.004 0.021
8 Loma Linda Earthquake of 30 Jan 2019 0.008 0.019
9 Trabuco Canyon Earthquake of 25 Jan 2018 0.010 0.019

10 Searles Valley Earthquake of 03 Jun 2020 0.004 0.018
11 Loma Linda Earthquake of 04 Mar 2013 0.007 0.017
12 Loma Linda Earthquake of 08 Oct 2016 0.010 0.017
13 Yorba Linda Earthquake of 07 Aug 2012 0.009 0.016
14 Loma Linda Earthquake of 23 Jun 2008 0.013 0.016
15 Beaumont Area Earthquake of 16 Jan 2010 0.013 0.013
16 Banning Area Earthquake of 11 Jan 2010 0.005 0.011
17 Ontario Earthquake of 20 Dec 2011 0.004 0.009
18 Borrego Springs Area Earthquake of 07 Jul 2010 0.053 0.200
19 Borrego Springs Earthquake of 10 Jun 2016 0.042 0.188
20 San Bernardino Earthquake of 08 Jan 2009 0.058 0.168
21 Ridgecrest Earthquake of 05 Jul 2019 0.029 0.120
22 Chino Hills Earthquake of 29 Jul 2008 0.050 0.113
23 Devore Earthquake of 29 Dec 2015 0.049 0.106
24 Calexico Earthquake of 04 Apr 2010 0.019 0.105
25 Fontana Earthquake of 15 Jan 2014 0.040 0.089
26 Loma Linda Earthquake of 13 Mar 2017 0.022 0.050
27 Devore Earthquake of 28 Apr 2012 0.017 0.043
28 Beaumont Earthquake of 14 Sep 2011 0.020 0.041
29 La Habra Earthquake of 28 Mar 2014 0.024 0.038
30 Cabazon Earthquake of 08 May 2018 0.027 0.048
31 Redlands Area Earthquake of 13 Feb 2010 0.082 0.074
32 Banning Earthquake of 06 Jan 2016 0.021 0.069

These successful predictions highlight an important and unique characteristic of obtaining
the response using a deep learning approach. Several reasons cause the observed period elongation
with increased intensity of shaking (e.g., concrete cracking, foundation rocking, and disengage-
ment of partition walls, or loss of contributions from other nonstructural components). In common
practice, none of these aspects are considered explicitly in the computational models developed
for structural dynamic analysis. Even if they are modeled, there are many sources of increased
epistemic uncertainties associated with this type of modeling. Therefore, the obtained data-driven
TCN results show that the adopted deep learning approach fills this gap and results in accurate
structural response prediction that would not be possible using conventional dynamic analysis.
This case study also highlights two important aspects worthy of future investigation, namely, the
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Figure 4.1: Identified periods of San Bernardino 6-story hotel building in (a) EW, and (b) NS
directions in different earthquakes.

effect of increased size of the training dataset (justifying need for more instrumented systems) and
a hybrid use of physics-based and data-driven models where the data-driven model improves the
predictions in cases where the physics-based modeling capabilities are insufficient.

4.2 LABORATORY TESTING OF A 3-STORY REPEAT FRAME

Some instrumented buildings exist in the Center for Engineering Strong Motion Data (CESMD)
database which experienced damage in previous earthquakes, e.g., the 7-story hotel in Van Nuys
damaged in the 1994 Northridge earthquake. However, the number of earthquakes with inelastic
response in these buildings is limited for meaningful training. Therefore, the results from a shaking
table test are used as another system to predict its inelastic response.

The tested structure is a 3-story SMRF and was tested on the 6 Degree-of-Freedom (DOF)
PEER (Pacific Earthquake Engineering Research) Center shaking table at UC-Berkeley. The pho-
tographs of the tested structure are shown in Figure 4.6. The frame is assembled using steel beam-
column elements, cross-joints, and clevises. The beams and columns are 65 in long, 5 in × 5 in
× 3/8 in Hollow Square Section (HSS) members. There are 1 in thick plates at each end of the
members to attach them to the beam-column connections. The cross-joints at the connections are
composed of the same HSS profile and plates.

The structure is tested along the Y-direction only by applying ground motions to the ta-
ble. Along this direction, beams are connected to the cross-joints using clevises and coupons
(Figure 4.6c), resulting in semi-rigid connections. The flexural stiffness of these connections is
provided by a couple moment developed by the coupons. Following the principles of capacity de-
sign, the sizes and number of coupons are selected such that the capacity of this couple moment is
smaller than the yield moment of the beam HSS section to protect the beams from yielding. Thus,
the damage occurs only at the coupons (Figure 4.6d), which can be easily replaced, and the frame
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Figure 4.2: Training and testing sets for San Bernardino 6-story building NS direction.

reconstructed conveniently each time after destructive testing (thus, the name REPEAT stands for
REconfigurable Platform for EArthquake Testing). The columns are directly connected to the
cross-joints resulting in rigid connections. Following principles of earthquake design, columns
are designed to be stronger than beams, preventing the yielding of columns. There are two 3/4 in
diameter threaded bars on the outside of each column clevis at the base (Figure 4.6b). Each beam-
column joint has four of these threaded bars, two on each side of the clevis (Figure 4.6c).

The test matrix is shown in Table 4.2. Three ground motions are applied incrementally
leading to linear elastic and inelastic response of the structure. Two of these motions are the ground
motions recorded during the 1989 Loma Prieta earthquake. The third is a simulated ground motion
obtained from physics-based simulations of San Francisco Bay Area. In such simulations, a nu-
merical model of the geologic and local soil layers is developed in a large area (e.g., the entire San
Francisco Bay Area) and the ground motions at the earth’s surface and subsurface are computed at
closely spaced grid points. This is obtained from the numerical solution of the viscoelastic wave
equation in both space and time initiated by a fault rupture model [15]. These simulated ground
motions are validated against recorded ground motions in real earthquakes, and they are part of
the PEER Center effort to develop a Simulated Ground Motion Database (SGMD), to be publicly
available during Fall of 2025.

Table 4.2: Test matrix used in the shaking table tests.

Run # Ground Motion Scale Factor Run # Ground Motion Scale Factor
1 Simulated motion 0.25 10 Simulated motion 1.00
2 Loma Prieta Sunnyvale Station 0.25 11 Loma Prieta Sunnyvale Station 1.00
3 Loma Prieta Palo Alto Station 0.25 12 Loma Prieta Palo Alto Station 1.00
4 Simulated motion 0.50 13 Simulated motion 1.25
5 Loma Prieta Sunnyvale Station 0.50 14 Loma Prieta Sunnyvale Station 1.25
6 Loma Prieta Palo Alto Station 0.50 15 Loma Prieta Palo Alto Station 1.25
7 Simulated motion 0.75 16 Loma Prieta Palo Alto Station 1.50
8 Loma Prieta Sunnyvale Station 0.75 17 Loma Prieta Palo Alto Station 1.75
9 Loma Prieta Palo Alto Station 0.75
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In all tests, the applied ground motions were recorded on the table, along with the response
accelerations at the center of each of the three floors. Inelastic response was experienced in runs
10-17 as observed by the period elongation in Figure 4.7, and the buckled coupons in Figure 4.6d.
Predictions were conducted using two training sets. First training set included runs 1-13, with
a mix of linear elastic and inelastic responses and predicted the inelastic responses in runs 14-
17. The predicted acceleration response at the third floor in run 17 is compared with the recorded
response in Figure 4.8. The prediction is reasonable in the time domain; however, it fails to capture
the period elongation in the frequency domain. Although the training set covers the entire range
of response, this is an indication that the number of motions in the training set is not sufficient.
Accordingly, the number of motions in the second training set was increased to 16 (runs 1-16),
while only run 17 was used for testing. Figure 4.9 shows the improved predictions, where the
time history of the predicted acceleration response is close to the true acceleration response and
the period elongation is captured. It is also observed that the predicted acceleration response
includes the 2nd and 3rd mode natural frequencies in the frequency content, similar to the recorded
response.

The fragility functions for the three damage states of a suspended ceiling is shown in
Figure 4.10. The considered suspended ceiling is a Suspended Lay-in Acoustic Tile Ceiling, with
supports comprising vertical hanging wire, diagonal wires, and compression posts. The damage
states are defined as 5% (DS1), 30% (DS2), and 50% (DS3) of ceiling grid and tile damage. The
fragility functions for these damage states are cumulative lognormal and are defined as a function
of PFA. The median PFA for DS1, DS2, and DS3 are 1.92g, 2.34g, and 2.48g, with a Coefficient
of Variation (COV) of 0.3 in all damage states. It is assumed that such suspended ceiling is placed
at the 3rd floor of the tested structure and the probabilities of the three damage states are computed
using the predicted and recorded accelerations. Probabilities of DS1, DS2,and DS3 are 5%, 3%,
and 91% using the predicted PFA of 3.32g, while they are 9%, 4%, and 84% using the recorded
PFA of 3.69g. Similar to the good match between computed and measured accelerations, there is
a good match between the corresponding probabilities of nonstructural damage.

4.3 SDOF INELASTIC NUMERICAL MODEL

The characteristics of the SDOF system used for prediction of inelastic response is shown in Fig-
ure 4.11a. This SDOF system is developed to be representative of low- and mid-rise buildings and
has a period of 0.5 s and damping ratio of 5%. Considering a location with design acceleration of
1.0g, Response Modification Factor (R) of 8, and overstrength of 1.6, the yield base shear (Fy) is
20% of the weight W. The force-deformation relationship is bilinear with a strain hardening ratio of
1.0% of initial stiffness. Ninety-three motions with varying intensity levels were selected from the
PEER Ground Motion (GM) database, and nonlinear time history analyses were conducted using
these 93 motions. From these input – output (i.e., ground motion – computed response accelera-
tion), 83 and 10 time-histories (Tables 4.3 and 4.4) were used for training and testing, respectively.
Note that in Tables 4.3 and 4.4, Mw and RSN indicate moment magnitude and Record Sequence
Number, respectively. To predict the inelastic response, the training set covers the entire range of
linear elastic and inelastic responses, while the testing set includes the analyses with moderate to
very high levels of inelastic response, i.e., ductility demands between 6 and 14. (Figure 4.11b).
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Table 4.3: Training ground motions for the inelastic SDOF system.

# RSN
Earthquake

Station Component PGA (g)
Name Year Mw

1 120 Oroville-03 1975 4.7 Up & Down Cafe (OR1) 000 0.11
2 195 Imperial Valley-07 1979 5.0 Calexico Fire Station 225 0.09
3 197 Imperial Valley-07 1979 5.0 El Centro Array #1 140 0.06
4 199 Imperial Valley-07 1979 5.0 El Centro Array #11 140 0.19
5 200 Imperial Valley-07 1979 5.0 El Centro Array #2 140 0.13
6 201 Imperial Valley-07 1979 5.0 El Centro Array #3 140 0.13
7 193 Imperial Valley-07 1979 5.0 Bonds Corner 140 0.10
8 194 Imperial Valley-07 1979 5.0 Brawley Airport 225 0.05
9 195 Imperial Valley-07 1979 5.0 Calexico Fire Station 225 0.09
10 101 Northern Calif-07 1975 5.2 Cape Mendocino 030 0.16
11 103 Northern Calif-07 1975 5.2 Petrolia, General Store 075 0.15
12 42 Lytle Creek 1970 5.3 Cedar Springs Pumphouse 126 0.07
13 45 Lytle Creek 1970 5.3 Devil’s Canyon 090 0.17
14 50 Lytle Creek 1970 5.3 Wrightwood - 6074 Park Dr 115 0.17
15 21 Imperial Valley-05 1955 5.4 El Centro Array #9 000 0.04
16 217 Livermore-02 1980 5.4 APEEL 3E Hayward CSUH 146 0.04
17 218 Livermore-02 1980 5.4 Antioch - 510 G St 270 0.08
18 219 Livermore-02 1980 5.4 Del Valle Dam (Toe) 156 0.04
19 223 Livermore-02 1980 5.4 San Ramon - Eastman Kodak 180 0.20
20 27 Hollister-02 1961 5.5 Hollister City Hall 181 0.06
21 125 Friuli, Italy-01 1976 6.5 Tolmezzo 000 0.32
22 161 Imperial Valley-06 1979 6.5 Brawley Airport 225 0.18
23 162 Imperial Valley-06 1979 6.5 Calexico Fire Station 225 0.24
24 165 Imperial Valley-06 1979 6.5 Chihuahua 012 0.27
25 167 Imperial Valley-06 1979 6.5 Compuertas 015 0.15
26 170 Imperial Valley-06 1979 6.5 EC County Center FF 002 0.22
27 173 Imperial Valley-06 1979 6.5 El Centro Array #10 050 0.20
28 174 Imperial Valley-06 1979 6.5 El Centro Array #11 140 0.37
29 178 Imperial Valley-06 1979 6.5 El Centro Array #3 140 0.26
30 184 Imperial Valley-06 1979 6.5 El Centro Differential Array 270 0.44
31 185 Imperial Valley-06 1979 6.5 Holtville Post Office 225 0.24
32 187 Imperial Valley-06 1979 6.5 Parachute Test Site 225 0.17
33 192 Imperial Valley-06 1979 6.5 Westmorland Fire Sta 090 0.08
34 71 San Fernando 1971 6.6 Lake Hughes #12 021 0.32
35 952 Northridge-01 1994 6.7 Beverly Hills - 12520 Mulhol 035 0.54
36 960 Northridge-01 1994 6.7 Canyon Country - W Lost Cany 000 0.40
37 986 Northridge-01 1994 6.7 LA - Brentwood VA Hospital 285 0.18
38 989 Northridge-01 1994 6.7 LA - Chalon Rd 160 0.20
39 996 Northridge-01 1994 6.7 LA - N Faring Rd 090 0.27
40 1006 Northridge-01 1994 6.7 LA - UCLA Grounds 360 0.39
41 1012 Northridge-01 1994 6.7 LA 00 270 0.34
42 1042 Northridge-01 1994 6.7 N Hollywood - Coldwater Can 270 0.27
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Table 4.3: Training ground motions for the inelastic SDOF system, continued.

# RSN
Earthquake

Station Component PGA (g)
Name Year Mw

43 1049 Northridge-01 1994 6.7 Pacific Palisades - Sunset 280 0.34
44 1052 Northridge-01 1994 6.7 Pacoima Kagel Canyon 360 0.37
45 1054 Northridge-01 1994 6.7 Pardee - SCE –T 0.42
46 1082 Northridge-01 1994 6.7 Sun Valley - Roscoe Blvd 090 0.35
47 1083 Northridge-01 1994 6.7 Sunland - Mt Gleason Ave 260 0.15
48 1089 Northridge-01 1994 6.7 Topanga - Fire Sta 270 0.26
49 1111 Kobe, Japan 1995 6.9 Nishi-Akashi 090 0.47
50 763 Loma Prieta 1989 6.9 Gilroy - Gavilan Coll. 067 0.34
51 764 Loma Prieta 1989 6.9 Gilroy - Historic Bldg. 160 0.28
52 767 Loma Prieta 1989 6.9 Gilroy Array #3 000 0.50
53 768 Loma Prieta 1989 6.9 Gilroy Array #4 000 0.31
54 803 Loma Prieta 1989 6.9 Saratoga - W Valley Coll. 000 0.30
55 809 Loma Prieta 1989 6.9 UCSC 000 0.37
56 810 Loma Prieta 1989 6.9 UCSC Lick Observatory 000 0.46
57 6 Imperial Valley-02 1940 7.0 El Centro Array #9 180 0.23
58 864 Landers 1992 7.3 Joshua Tree 000 0.27
59 1148 Kocaeli, Turkey 1999 7.5 Arcelik 090 0.17
60 1161 Kocaeli, Turkey 1999 7.5 Gebze 270 0.19
61 1193 Chi-Chi, Taiwan 1999 7.6 CHY024 000 0.23
62 1198 Chi-Chi, Taiwan 1999 7.6 CHY029 000 0.27
63 1201 Chi-Chi, Taiwan 1999 7.6 CHY034 270 0.30
64 1202 Chi-Chi, Taiwan 1999 7.6 CHY035 000 0.26
65 1244 Chi-Chi, Taiwan 1999 7.6 CHY101 000 0.38
66 1488 Chi-Chi, Taiwan 1999 7.6 TCU048 000 0.13
67 1490 Chi-Chi, Taiwan 1999 7.6 TCU050 000 0.14
68 1491 Chi-Chi, Taiwan 1999 7.6 TCU051 000 0.19
69 1493 Chi-Chi, Taiwan 1999 7.6 TCU053 000 0.19
70 1494 Chi-Chi, Taiwan 1999 7.6 TCU054 000 0.17
71 1495 Chi-Chi, Taiwan 1999 7.6 TCU055 000 0.22
72 1496 Chi-Chi, Taiwan 1999 7.6 TCU056 000 0.16
73 1497 Chi-Chi, Taiwan 1999 7.6 TCU057 000 0.11
74 1499 Chi-Chi, Taiwan 1999 7.6 TCU060 000 0.15
75 1501 Chi-Chi, Taiwan 1999 7.6 TCU063 000 0.16
76 1515 Chi-Chi, Taiwan 1999 7.6 TCU082 000 0.20
77 1519 Chi-Chi, Taiwan 1999 7.6 TCU087 000 0.12
78 1527 Chi-Chi, Taiwan 1999 7.6 TCU100 000 0.11
79 1530 Chi-Chi, Taiwan 1999 7.6 TCU103 000 0.16
80 1531 Chi-Chi, Taiwan 1999 7.6 TCU104 000 0.10
81 1533 Chi-Chi, Taiwan 1999 7.6 TCU106 000 0.15
82 1535 Chi-Chi, Taiwan 1999 7.6 TCU109 000 0.16
83 1536 Chi-Chi, Taiwan 1999 7.6 TCU110 000 0.18
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Table 4.4: Testing ground motions for the inelastic SDOF system.

# RSN
Earthquake

Station Component PGA (g)
Name Year Mw

84 752 Loma Prieta 1989 6.9 Capitola 000 0.47
85 765 Loma Prieta 1989 6.9 Gilroy Array #1 000 0.43
86 766 Loma Prieta 1989 6.9 Gilroy Array #2 000 0.36
87 801 Loma Prieta 1989 6.9 San Jose - Santa Teresa Hills 225 0.28
88 802 Loma Prieta 1989 6.9 Saratoga - Aloha Ave 000 0.37
89 811 Loma Prieta 1989 6.9 WAHO 000 0.54
90 953 Northridge-01 1994 6.7 Beverly Hills - 14145 Mulhol 009 0.44
91 1101 Kobe, Japan 1995 6.9 Amagasaki 090 0.31
92 1158 Kocaeli, Turkey 1999 7.5 Duzce 270 0.32
93 1182 Chi-Chi, Taiwan 1999 7.6 CHY006 6-W 0.36

The prediction results from ground motion GM93 (Figure 4.12) are shown in Figure 4.12.
The force-displacement relationship in Figure 4.12e represents a highly inelastic response. The
pattern of the predicted acceleration matches the true response well, both in the linear elastic and
inelastic response ranges. The frequency content and the period elongation are well-captured. The
main issue is the overestimated accelerations in the inelastic response range, where the computed
acceleration response was capped around 0.25g, which is explained using the following equation
of motion of an inelastic SDOF system:

mü+ cu̇+ fr = 0, (4.1)

where m is the mass, c is the damping coefficient, and fr is the restoring force of the SDOF system.
Because ζ = 5%, the damping force can be ignored, and the maximum acceleration that the SDOF
can experience (amax) is expressed as follows:

amax =
fr,max

m
, (4.2)

where fr,max is the maximum restoring force. For the highest experienced ductility of 14 (Fig-
ure 4.12) and strain hardening of 1%,

fr,max = Fy +
Fy

δy
× 0.01× (14δy − δy) = 1.13Fy = 0.23W, (4.3)

resulting in amax = 0.23g, which may further slightly increase because of the damping force.

The TCN model was not able to capture this cap with 83 motions in the training set. Instead
of increasing the number of motions in the training set, e.g., by an order of magnitude, one possible
solution to overcome this limitation is the use of Physics-informed Neural Networks (PINNs) [20,
8], which received increased attention in recent years. A PINN-based architecture can be thought
of as a hybrid modeling approach, which combines the advantages of physics-based and data-
driven approaches. The main advantage of a PINN is the ability to use physics-based information
to complement the data-driven Artificial Intelligence (AI) model. This information is generally an
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important local information, e.g., the acceleration cap of the SDOF system, that requires a much
larger number of training data compared to that needed for the AI model to learn global underlying
physics. Using PINN, this acceleration cap can be introduced to the TCN model as a constraint,
instead of expecting the TCN to learn the presence of this cap using a very large training data set.
The integration of PINN into the TCN model is especially important considering that the amount of
data with inelastic behavior from instrumented structures is limited. The incorporation of PINNs
to the TCN model for overcoming the issue of the acceleration cap is worth exploring in future
studies.

In terms of damage assessment, CAV of response, particularly the changes in the slope of
CAV time history, is one of the good indicators of damage, as discussed earlier. Because of the
differences in the predicted and computed response, predicted and computed CAV time history
did not match, however there is an almost perfect match between the predicted and computed
CAV histories normalized by the maximum CAV for four of the test motions with high ductility
(Figure 4.13). This is consistent with the observations that the pattern of the predicted acceleration
matches the true response and the predicted acceleration captures the elongated period due to
inelastic response.
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Figure 4.3: Comparison of predicted and recorded acceleration time history and the corre-
sponding frequency contents in the NS direction of San Bernardino 6-story build-
ing at (a, b) 3rd floor, (c, d) 6th floor (Cabazon Earthquake of 08 May 2018).
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Figure 4.4: Comparison of predicted and recorded acceleration time history and the corre-
sponding frequency contents in the NS direction of San Bernardino 6-story build-
ing at (a, b) 3rd floor, (c, d) 6th floor (Redlands Area Earthquake of 13 Feb. 2010).
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Figure 4.5: Comparison of predicted and recorded acceleration time history and the corre-
sponding frequency contents in the NS direction of San Bernardino 6-story build-
ing at (a, b) 3rd floor, (c, d) 6th floor (Banning Earthquake of 06 Jan. 2016).
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Figure 4.6: Structure tested on the shaking table: (a) overall setup, (b) two views of a column
base, (c) end beam connection, and (d) inelastic response in the form of coupon
buckling.

Figure 4.7: (a) First and (b) second training and testing sets used to predict the acceleration
responses of the structure tested on the shaking table.
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Figure 4.8: Comparison of (a) time history, (b) frequency content of predicted and recorded
accelerations at 3rd floor of tested REPEAT frame (Run 17) [training set with 13
motions].

Figure 4.9: Comparison of (a) time history, (b) frequency content of predicted and recorded
accelerations at 3rd floor of tested REPEAT frame (Run 17) [training set with 16
motions].
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Figure 4.10: Fragility functions for the three damage states of a suspended ceiling.

Figure 4.11: (a) Inelastic SDOF, (b) ductility demands of the motions in training and testing
sets.
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Figure 4.12: Comparison of predicted and computed accelerations of the inelastic SDOF for
GM93: (a) entire response, (b) elastic response, (c) inelastic response, (d) fre-
quency domain, (e) computed force-displacement relationship.
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Figure 4.13: Normalized CAV time histories of four test motions with high ductility.
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5 Ground Motion Reconstruction

The successful response predictions discussed in the earlier sections show that the TCN model
can effectively capture the amplification function between the input ground motion and the output
acceleration response. Because the ground motion can be calculated using the output acceleration
response and the inverse of the amplification function, the TCN model is expected to perform well
in reverse predictions using the inverse of the amplification function, given the accurate predictions
in the forward case. With this expectation, ground motions are reconstructed from the recorded re-
sponse accelerations using the TCN model in this section. The computation of the ground motion
from the response is valuable in scenarios where ground motions are unavailable. It can facili-
tate the use of measured responses to obtain the ground motion and characterize the intensity of
shaking in regions with scarce ground motion recording stations. In such locations, the number of
conventionally instrumented buildings (e.g., those instrumented as part of CSMIP) is even lower.
However, alternative instrumentation, such as the Community Seismic Network (CSN) [6] or apps
like MyShake [11], which employ smartphone accelerometers and crowdsourcing, can be used.
These alternative instruments at floor levels can predict ground motions at locations where ground
motions are otherwise unavailable. Predicting ground motions also enables other benefits, such as
facilitating the use of input-output methods for system identification, which are superior to output-
only methods. Ground motions are reconstructed for the mid-rise and tall buildings discussed in
earlier sections, and these predictions are detailed below.

5.1 6-STORY RC HOTEL BUILDING IN SAN BERNARDINO EW DIRECTION

In the earlier section focused on the prediction of floor accelerations of San Bernardino building
in the EW direction, Channel 1 on the 1st floor was used as input, and Channel 4 on the 3rd
floor was output. In the reverse case, to predict the ground motion, Channels 4 and 1 are used
as input and output, respectively. The same 10 motions used for response predictions are used in
the training set for ground motion predictions. Figure 5.1 compares the predicted and recorded
ground motion acceleration history and the corresponding acceleration response spectra for two
events in the testing set. It is observed that the time history and response spectra of the predicted
accelerations match those of the recorded ones very well.

Ground motions are commonly characterized with several intensity measures (IMs) for
various purposes, such as the development of ShakeMaps [21] and formulating the IM-based
fragility functions for use in Performance-Based Earthquake Engineering (PBEE) [9]. Therefore,
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Figure 5.1: Identified periods of San Bernardino 6-story hotel building in (a) EW, and (b) NS
directions in different earthquakes.

the various IMs of predicted and recorded ground motions, including Peak Ground Acceleration
(PGA), spectral acceleration (Sa) at the 1st mode period, Arias Intensity (Ia), Peak Ground Veloc-
ity (PGV ), and Cumulative Absolute Velocity (CAV ), are compared for all motions in the testing
set (Figure 5.2). The predicted values are very close to the recorded ones, showing that the de-
veloped TCN model is capable of predicting ground motions using the response accelerations of a
mid-rise building.

5.2 TALL BUILDING WITH HIGHER MODES

The difficulty of predicting responses that include higher modes also applies to the ground motion
reconstruction. Therefore, ground motions are predicted for the tall building in this section to
evaluate the accuracy of the predictions. The same training and testing sets used for the response
predictions are utilized for reconstructing the ground motions by changing the input and output
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Figure 5.2: Identified periods of San Bernardino 6-story hotel building in (a) EW, and (b) NS
directions in different earthquakes.

data. Three different ground motion predictions were performed using three training sets, where
in all the sets, the output is the motion at the ground level, while the input in sets 1, 2, and 3 are
the response accelerations at levels 46, 36, and 20, respectively. The presence of higher modes
was expected in all three sets, but with different levels because of the mode shapes and the varying
contribution of higher modes at different floors. As observed in Figure 5.3, the predicted ground
motion time histories are close to the recorded ones, but not as close as the predictions for San
Bernardino building with the first mode-dominated building response. These differences between
the predictions and recorded ground motions are more clearly observed in the acceleration response
spectra. Using observations from San Bernardino building and the tall building, it is concluded
that ground motion predictions are accurate when the response is governed by the first mode, and
more training data is needed for successful predictions involving higher modes or inelastic effects.
However, it was not possible to explore how many more motions are needed in the training set
for accurate predictions, because all the events recorded for this building are already used, and no
additional data is available. This highlights the need for increased instrumentation of buildings and
bridges.
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Figure 5.3: Comparison of predicted and recorded ground motion (a, b, c) acceleration time
histories, (d) PGA, (e) 5% damped acceleration response spectra for the event in
the testing set.
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6 Results and Discussion

This chapter provides a summary of the results and conclusions and discusses them from different
perspectives. To guide this discussion, Table 6.1 lists a summary of the TCN predictions for the
studied structural systems.

Table 6.1: Features characterizing the earthquake response of different structural systems.

Prediction Type System NMtraining
⋆ Quality of Predictions

Linear elastic response
SDOF 10 Successful

Low- & Mid-rise buildings 10 Successful

Tall building 10 Successful

Inelastic response

Bilinear SDOF 83 Partially successful†

Tested 3-story SMRF 13 Needs improvement

Tested 3-story SMRF 16 Successful

Mid-rise building 10 Needs improvement

Mid-rise building 23 Successful

Ground motion
Mid-rise building 10 Successful

Tall building 10 Successful‡

⋆ NMtraining = # of motions in the training set
† PINNs is needed to improve peak response.
‡ More data improves predictions.

6.1 INTERPRETATION OF RESULTS IN EARTHQUAKE ENGINEERING CONTEXT

The results of this study, achieved through the application of TCN, offer significant insights into
structural response prediction and ground motion modeling in the context of earthquake engineer-
ing. The ability to predict both linear-elastic and inelastic responses with high accuracy provides
a robust foundation for advancing performance-based earthquake engineering (PBEE) methodolo-
gies and enhancing structural health monitoring (SHM) practices.
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6.1.1 Linear Elastic Response

The successful prediction of linear elastic responses across various building types highlights the
effectiveness of TCN in capturing fundamental structural dynamics. For low-rise and mid-rise
buildings, the TCN demonstrated its ability to model responses dominated by the first mode of
vibration, accurately capturing the natural period and the varying damping ratio. Similarly, for
tall buildings with higher modes, the TCN captured the influence of multiple modal frequencies
and stiffness irregularities, such as those caused by transfer girders. Therefore, the TCN model
was successful for systems that are characterized by not only relatively simple features, such as a
numerical SDOF system characterized by a single natural period and damping ratio, but also those
with more complex response such as a tall building with multiple modes of vibration contributing
to the overall response. For these different systems, a training set size of 10 motions was sufficient
for predicting the response. These results demonstrate the effectiveness of the TCN model even for
structures with limited amount of data and underscore the potential of TCNs as a computationally
efficient alternative to conventional numerical methods, reducing the reliance on time-intensive
simulations while maintaining accuracy.

The predicted and true responses from multiple test motions, along with relevant fragility
functions, were used to compute the probability of damage of a cooling tower assumed to be
located at the roof of the 6 story San Bernardino building. The resulting probability of damage was
very close using the true and precited responses. This preliminary exercise provided confidence in
the model predicted responses to detect nonstructural (and structural) damage. To demonstrate the
importance of predicting the entire time history, Cumulative Absolute Velocity (CAV), a parameter
closely correlated to damage, was computed using the predicted and true responses of the same
building and the resulting CAV time histories were very close to each other.

6.1.2 Nonlinear Response and Inelastic Behavior

The inelastic response predictions demonstrated that accurate predictions of inelastic response are
possible with increased number of data in the training data set. The predictions in the NS direction
of the 6-story building in San Bernardino demonstrated that the TCN model can capture response
that cannot be conveniently obtained using state of the practice numerical models and dynamic
analyses. Results of the 3-story structure tested on the shaking table highlighted that the developed
TCN model can successfully predict the inelastic response beyond the inelastic response range
employed in the training data set. For these two cases, the number of motions in the training set
for accurate predictions was greater than those needed for the linear elastic response, however it
was still a manageable number and less than 25 in both cases. The TCN model was successful in
capturing the pattern of highly inelastic response in the case of the inelastic SDOF system, as well
as the frequency contents of the response and the period elongation, however it could not capture
the peak acceleration limited by the force capacity despite the use of a large number of motions in
the training set. This highlighted the need to incorporate physical constrains in the methodology
to increase accuracy and effectiveness. Overall, these three case studies demonstrated the efficacy
and unique benefits of the TCN model in predicting different levels of inelastic response.
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6.1.3 Ground Motion Predictions

In regions with sparse ground motion recording stations but structural response data widely avail-
able with alternative instrumentation, the ability of TCN to predict ground motions using structural
response has significant implications for seismic hazard assessment. This capability enhances the
accuracy of regional hazard maps and supports the development of site-specific ground motion
models, particularly in the near-fault regions, where ground motion data from large magnitude
earthquakes are lacking .

6.1.4 Implications for Earthquake Engineering Practice

The interpretation of results in the context of earthquake engineering highlights the transformative
potential of TCN. A major broader impact of the developed TCN model is the ability to facilitate
the prediction of the response of an instrumented building in future earthquakes without a structural
analysis model. This ability provides a major advantage that maximizes accuracy and efficiency,
compared to a conventional seismic assessment and performance prediction that is based on (i)
developing the structural analysis model, and (ii) obtaining the structural response from either
detailed but computationally extensive and demanding nonlinear time history analysis or compu-
tationally manageable but approximate linear dynamic or nonlinear static methods, as described in
standards like [2].

As another impact, the accuracy and efficiency of TCN-based predictions can reduce un-
certainties associated with traditional modeling approaches and improve the reliability of structural
performance evaluations. The ability to model both elastic and inelastic responses across diverse
structures provides engineers with a versatile tool for assessing seismic risk and designing resilient
structures. Finally, the integration of ground motion and structural response predictions within a
unified TCN framework streamlines the workflow for seismic hazard analysis and performance-
based design.

Despite these advancements, the study also reveals the importance of comprehensive train-
ing datasets and the need for integrating physical constraints into data-driven models. Future re-
search should focus on hybrid approaches, such as combining TCN with Physics-Informed Neural
Networks (PINNs), to achieve accurate predictions with reasonable training data sizes and further
enhance model interpretability and generalizability. By addressing these challenges, the applica-
tion of TCN in earthquake engineering can be expanded.

6.2 COMPARATIVE ANALYSIS ACROSS CASE STUDIES

The application of TCN to various structural systems and scenarios in this study demonstrates their
versatility and accuracy in predicting both linear and nonlinear responses. This section provides a
comparative analysis of key findings across the case studies, highlighting the model’s performance
and limitations in different contexts.
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6.2.1 Low-Rise and Mid-Rise Buildings

For low-rise and mid-rise buildings, such as San Bernardino 6-story RC hotel and Hemet 4-story
RC hospital, the TCN successfully captured the dominant first-mode behavior of these structures.
In the east-west (EW) direction of San Bernardino building, where the response remained lin-
ear elastic, the TCN achieved high correlation coefficients (0.91) between predicted and recorded
responses. Similarly, for Hemet hospital building, predictions were accurate across a range of
motions, demonstrating the model’s ability to generalize within this building category.

The consistent accuracy in these cases indicates that TCN is well-suited for predicting re-
sponses dominated by single-mode behavior, with minimal complexity introduced by higher modes
or inelastic effects. This makes the TCN a computationally efficient alternative to conventional
methods for low- to mid-rise structures.

6.2.2 Tall Buildings with Higher Modes

The prediction of responses in tall buildings, such as the 54-story SMRF in Los Angeles, high-
lighted the TCN’s ability to handle higher-mode effects and stiffness irregularities. For motions
recorded in the north-south (NS) direction, the TCN successfully replicated the localized accelera-
tion peaks observed at floors with transfer girders. While the model demonstrated strong agreement
with recorded responses in both time and frequency domains, the complexity introduced by higher
modes generally requires a more extensive training dataset to achieve comparable accuracy.

The comparison with low- and mid-rise buildings reveals that while TCNs perform ro-
bustly in these cases, the presence of higher modes in tall buildings necessitates careful dataset
preparation. This includes ensuring sufficient representation of motions that excite multiple modes
and any additional response introduced by structural irregularities.

6.2.3 Nonlinear Responses and Inelastic Behavior

In nonlinear response scenarios, such as San Bernardino building’s north-south (NS) direction and
the laboratory-tested REPEAT frame, the TCN captured critical phenomena like period elongation.
For San Bernardino building, the TCN accurately predicted progressive period elongation due
to stiffness degradation, aligning with physical observations of cracking and foundation rocking.
Similarly, for the REPEAT frame, the model replicated both time-history responses and frequency-
domain effects for tests with moderate inelasticity.

When compared to linear elastic cases, the nonlinear response predictions highlight the
importance of diverse and representative training datasets. Inelastic responses are more challeng-
ing to predict due to their dependence on damage mechanisms and material properties, requiring
comprehensive data to train the model effectively.
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6.2.4 Observations and Insights

The comparative analysis across these case studies provides several key insights. The TCN frame-
work consistently demonstrates high accuracy for linear elastic responses across various building
types, particularly for low-rise and mid-rise structures. For tall buildings and nonlinear responses,
the model’s accuracy is significantly influenced by the diversity and representativeness of the train-
ing dataset, underscoring the importance of comprehensive data preparation. Additionally, the
ability of the TCN to predict ground motions in sparsely instrumented regions highlights its po-
tential to extend beyond structural response analysis, offering a valuable tool for seismic hazard
assessment.

These findings highlight the flexibility and precision of the TCN framework across a range
of applications. They also underscore areas for improvement, such as integrating hybrid modeling
approaches and expanding datasets, to further enhance its performance. The adaptability of TCNs
positions them as a promising tool for advancing earthquake engineering practices and strengthen-
ing the resilience of the built environment.
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7 Conclusions, Limitations, and Future Work

The advancements presented in this study demonstrate the transformative potential of Temporal
Convolutional Networks (TCNs) in efficiently and accurately predicting structural responses and
ground motions. However, like any emerging methodology, the TCN framework has its constraints
and areas for further enhancement. A critical assessment of the challenges encountered during the
development and application of TCNs provides a roadmap for future research and underscores op-
portunities for integrating complementary approaches, such as Physics-Informed Neural Networks
(PINNs), to address these limitations.

This chapter highlights the conclusions, primary limitations encountered, focusing on data
constraints, model generalizability, and computational challenges. It also explores potential av-
enues for advancing the presented framework using PINNS, emphasizing interdisciplinary strate-
gies to expand its applicability in earthquake engineering and beyond.

7.1 CONCLUSIONS

This study demonstrated the efficacy of TCN in predicting structural responses and ground mo-
tions, offering a robust and computationally efficient alternative to traditional modeling techniques.
The TCN framework successfully captured both linear elastic and nonlinear inelastic behaviors
across a diverse set of case studies, including low-rise, mid-rise, and tall buildings, as well as
laboratory-tested frames. Additionally, the model effectively reconstructed ground motions in
sparsely instrumented regions, addressing key challenges in seismic hazard assessment. Key con-
tributions of this work include:

• A validated methodology for using TCN to predict time-history responses with high accu-
racy.

• Demonstration of the model’s capability to handle complex phenomena, such as period elon-
gation and higher-mode effects.

• Expansion of ground motion prediction techniques to under-instrumented areas, leveraging
data from structural response.

While the results underscore the strengths of TCN, they also highlight limitations such as
data constraints and the need for improved interpretability. Addressing these challenges through
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the integration of PINNs and enhanced training datasets could further advance the model’s appli-
cability.

In summary, the TCN framework represents a significant step forward in the application
of machine learning to earthquake engineering. By combining computational efficiency with pre-
dictive accuracy, TCN holds the potential to transform performance-based earthquake engineering
and structural health monitoring practices, ultimately contributing to safer and more resilient in-
frastructure in seismic regions.

7.2 LIMITATIONS: DATA CONSTRAINTS

The performance of TCN in predicting structural responses and ground motions is inherently tied
to the quality and quantity of data used for training and validation. Despite the promising results
demonstrated in this study, several data-related constraints were encountered, which highlight lim-
itations in the current methodology and opportunities for improvement.

7.2.1 Scarcity of Inelastic Response Data

A significant constraint was the limited availability of inelastic response data from instrumented
structures. Most existing datasets, such as those from CSMIP, primarily capture linear elastic re-
sponses during moderate seismic events. High-quality data for nonlinear responses, which involve
phenomena such as period elongation, cracking, and stiffness degradation, are sparse due to the
rarity of severe ground motions and the limited number of instrumented structures that experience
such events.

To address this limitation, synthetic datasets generated from numerical simulations and
laboratory tests were used to supplement real-world data. However, synthetic data often lack the
complexity and variability of real-world conditions, which can introduce biases and reduce the
generalizability of the TCN model.

7.2.2 Imbalance in Dataset Representation

Another key constraint was the imbalance in the dataset, with a disproportionate number of mo-
tions resulting in linear elastic response compared to those with nonlinear response. This imbal-
ance affects the model’s ability to generalize across different seismic intensity levels and structural
behaviors. Although the TCN performed well for linear responses, its performance for nonlin-
ear responses depended heavily on the inclusion of representative inelastic events in the training
dataset.

7.2.3 Sparse Instrumentation in Key Regions

Sparse seismic instrumentation in certain geographic regions poses an additional challenge, par-
ticularly for ground motion prediction. While densely instrumented areas like urban California

62



provide rich datasets, rural and underdeveloped regions often lack sufficient sensor coverage. This
spatial disparity limits the applicability of the TCN model to regions with adequate data and high-
lights the need for extrapolation techniques to predict ground motions in sparsely instrumented
areas.

7.2.4 Implications and Future Directions

Addressing these data constraints is critical for advancing the application of TCN in earthquake
engineering. Future work should focus on expanding the availability of high-quality inelastic re-
sponse data through enhanced instrumentation of structures in seismically active regions and the
development of advanced numerical models that better replicate real-world conditions. Addition-
ally, balancing datasets to include a wider range of seismic intensities and structural behaviors will
improve the generalizability of the TCN framework. Integrating physics-informed constraints into
the model could also help mitigate the impact of limited data by embedding domain knowledge
directly into the learning process.

7.3 FUTURE WORK: PINNS

PINNs are an emerging class of machine learning models that integrate physical principles directly
into the training process, ensuring that predictions adhere to established governing equations. By
embedding domain knowledge, such as the equations of motion, into the loss function, PINNs
can bridge the gap between purely data-driven models like TCN and traditional physics-based
approaches. This integration offers a promising pathway to address some of the key limitations
identified in this study.

7.3.1 Advantages of PINNs in Structural Response Prediction

The integration of PINNs into structural response prediction frameworks offers significant advan-
tages over purely data-driven models. These advantages can be summarized as follows:

Reduced Data Dependency where PINNs utilize embedded physical constraints to guide the
learning process, which reduces their reliance on extensive labeled datasets. This feature is par-
ticularly advantageous in situations where high-quality inelastic response data is limited, enabling
PINNs to perform effectively even with constrained datasets.

Improved Generalization by integrating physical principles into the learning process where
PINNs can generalize better to previously unseen scenarios, such as extreme ground motions or
novel structural configurations. This ability to extrapolate beyond the training data makes PINNs
more robust than purely data-driven models in handling diverse and challenging cases.
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7.3.2 Potential Applications in Earthquake Engineering

The integration of PINNs into the TCN framework opens several avenues for advancing structural
response and ground motion predictions:

Modeling Nonlinear Dynamics where PINNs can improve the modeling of inelastic responses
by directly incorporating damage mechanics and material nonlinearities into the loss function.
This capability allows for more accurate predictions of structural behaviors under extreme seismic
events.

Ground Motion Prediction where in regions with sparse instrumentation, PINNs can combine
physical models of wave propagation with limited observed data to enhance the accuracy of ground
motion extrapolations. This approach provides a viable solution for seismic hazard assessment in
under-monitored areas.

Multi-Scale Modeling where PINNs offer a unified framework for integrating both local phe-
nomena, such as site-specific soil behavior, and global phenomena, such as structural responses.
This multi-scale capability allows for comprehensive predictions that account for the complex in-
teractions between soil-structure systems.

7.3.3 Challenges and Future Directions

Despite their advantages, the adoption of PINNs in earthquake engineering faces several chal-
lenges. Training PINNs often requires solving complex partial differential equations (PDEs),
which can significantly increase computational costs compared to traditional neural networks.
Additionally, ensuring numerical stability and convergence during training can be challenging,
particularly for highly nonlinear systems.

Future research should explore hybrid models that combine the strengths of TCNs and
PINNs. For example, a TCN could first predict an approximate response, which a PINN could
refine by enforcing physical constraints. Developing efficient training algorithms for PINNs and
integrating them into existing seismic analysis workflows will also be crucial for their widespread
adoption.

7.3.4 Implications for Earthquake Engineering

The integration of PINNs into structural response prediction frameworks has the potential to rev-
olutionize earthquake engineering. By combining the strengths of data-driven and physics-based
approaches, PINNs offer a robust and interpretable solution for modeling complex nonlinear phe-
nomena. This hybrid methodology aligns with the goals of performance-based earthquake engi-
neering (PBEE) by improving the accuracy and reliability of structural assessments, even in data-

64



scarce environments. As the field progresses, PINNs are likely to play a central role in advancing
computational tools for seismic hazard analysis and structural health monitoring.

7.3.5 Application to Lifeline Infrastructure

The TCN framework can be adapted for critical lifeline systems such as bridges, pipelines, and
electrical grids, which exhibit complex dynamic behavior during earthquakes. Predicting the re-
sponse of these systems requires modeling interactions between multiple components and materi-
als, an area where TCN can excel due to their ability to capture temporal dependencies.

7.3.6 Global Applications in Data-Scarce Regions

While this study focused on buildings in California, the TCN methodology can be extended to
data-scarce regions worldwide. By leveraging global datasets and transfer learning techniques,
TCNs can provide valuable predictions for regions with limited instrumentation, contributing to
improved seismic resilience in underserved areas.

7.3.7 Beyond Earthquake Engineering

Beyond structural dynamics, TCN has potential applications in other domains where time-series
analysis is critical. For example, they could be employed in wind engineering to predict aerody-
namic responses of tall structures or in hydrology to model the dynamic effects of flooding on
dams and levees. These extensions could benefit from the foundational developments made in this
study.
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