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ABSTRACT

Tall, multistory, buildings are becoming increasingly popular in large cities as a result of growing
urbanization trends (United Nations Department of Economic and Social Affairs 2018). As cities
continue to grow, many of them along the coasts of continents which are prone to natural hazards,
the performance of tall, flexible buildings when subjected to natural hazards is a pressing issue
with engineering relevance. The performance of structures when subjected to dynamic loads can
be enhanced with various response modification strategies which have been traditionally achieved
with added stiffness, flexibility, damping and strength (Kelly et al. 1972; Skinner et al. 1973, 1974;
Clough and Penzien 1975; Zhang et al. 1989; Aiken 1990; Whittaker et al. 1991; Makris et al.
1993a,b; Skinner et al. 1993; Inaudi and Makris 1996; Kelly 1997; Soong and Dargush 1997;
Constantinou et al. 1998; Makris and Chang 2000a; Chang and Makris 2000; Black et al. 2002,
2003; Symans et al. 2008; Sarlis et al. 2013; Tena-Colunga 1997).

Together with the elastic spring that produces a force proportional to the relative displacement of
its end-nodes and the viscous dashpot that produces a force proportional to the relative velocity of
its end-nodes; the inerter produces a force proportional to the relative acceleration of its end-nodes
and emerges as the third elementary mechanical element (in addition to the spring and dashpot)
capable for modifying structural response. Accordingly, in this report we examine the seismic
performance of multistory and seismically isolated structures when equipped with inerters.

In view that the inerter emerges as the third elementary mechanical element for the synthesis of
mechanical networks, in Chapter 2 we derive the basic frequency- and time-response functions
of the inerter together with these of the two-parameter inertoelastic and inertoviscous mechanical
networks.

Chapter 3 examines the response of a two-degree-of-freedom (2DOF) structure where the first
story is equipped with inerters. Both cases of a stiff and a compliant support of the inerters are
examined. The case of two parallel clutching inerters is investigated and the study concludes that
as the compliance of the frame that supports the inerters increases, the use of a single inerter offers
more favorable response other than increasing the force transferred to the support frame.

Chapter 4 examines the seismic response analysis of the classical two-degree-of-freedom isolated
structure with supplemental rotational inertia (inerter) in its isolation system. The analysis shows
that for the “critical” amount of rotational inertia which eliminates the participation of the second
mode, the effect of this elimination is marginal on the structural response since the participation
of the second mode is invariably small even when isolation systems without inerters are used. Our
study, upon showing that the reaction force at the support of the inerter is appreciable, proceeds
with a non-linear response analysis that implements a state-space formulation which accounts for
the bilinear behavior of practical isolation system (single concave sliding bearings or lead-rubber
bearings) in association with the compliance of the support of the inerter. Our study concludes
that supplemental rotational inertia aggravates the displacement and acceleration response of the
elastic superstructure and as a result, for larger isolation periods (Tb > 2.5s) the use of inerters in
isolation systems is not recommended.

Chapter 5 first examines the response analysis of a SDOF elastoplastic and bilinear structure and
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reveals that when the yielding structure is equipped with supplemental rotational inertia, the equal-
displacement rule is valid starting from lower values of the pre-yielding period given that the
presence of inerters lengthens the apparent pre-yielding period. The analysis concludes that sup-
plemental rotational inertia emerges as an attractive response modification strategy for elastoplastic
and bilinear SDOF structures with pre-yielding periods up to T1 = 1.5sec. For larger pre-yielding
periods (say T1 > 2.0sec), the effectiveness of inerters to suppress the inelastic response of 2DOF
yielding structures reduces; and for very flexible first stories; as in the case of isolated structures
examined in chapter 4, the use of inerter at the first level (isolation system) is not recommended.

Finally, chapter 6 shows that, in spite of the reduced role of inerters when placed at floor levels
other than the first level (they no-longer suppress the induced ground acceleration nor they can
eliminate the participation of higher modes), they still manifest a unique role since it is not possible
to replace a structure with solitary inerters at higher levels with an equivalent traditional structure
without inerters.

Keywords: Supplemental rotational inertia, Response modification, Inerter, Nonlinear analysis,
Seismic protection, Earthquake Engineering.
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1 Introduction

Response modification of civil structures has been traditionally achieved with added stiffness, flex-
ibility damping and strength (Kelly et al. 1972; Skinner et al. 1974; Clough and Penzien 1975;
Skinner et al. 1993; Kelly 1997; Soong and Dargush 1997; Constantinou et al. 1998; Makris and
Chang 2000a; Whittaker et al. 1991; Black et al. 2003; Symans et al. 2008; Sarlis et al. 2013 and
references reported therein). Nevertheless, together with the elastic spring that produces a force
proportional to the relative displacement of its end-nodes and the viscous dashpot that produces a
force proportional to the relative velocity of its end nodes, the inerter produces a force proportional
to the relative acceleration of its end-nodes and emerges as the third elementary mechanical ele-
ment (in addition to the spring and dashpot) for the synthesis of mechanical networks (Smith 2002;
Makris 2017, 2018; Makris and Efthymiou 2020). While a driving spinning top, as the one shown
in Figure 1.1 which is a physical realization of the inerter, has been familiar to several generations;
inerters were apparently first proposed for the response modification of buildings in the mid-1980s
by Kawamata (1986) and subsequently by Ishimaru (1994) and Arakaki et al. (1999a,b) in the mid
to late 1990s in Japan.

Following the pioneering work in Japan and the subsequent theoretical and experimental studies
by Smith and coworkers (Smith 2002; Papageorgiou and Smith 2005; Papageorgiou et al. 2009;

Figure 1.1: A physical realization of the inerter in which the force output is proportional only
to the relative acceleration between nodes 1 and 2.
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Chen et al. 2009; Kuznetsov et al. 2011) who established, within the context of linear networks,
the analogy of the inerter to the electric capacitor; a growing number of publications have pro-
posed the use of inerters for the response modification of buildings by installing them at all floor
levels (Furuhashi and Ishimaru 2008; Ikago et al. 2012a,b; Takewaki et al. 2012); at selected levels
(Sugimura et al. 2012; Ogino and Sumiyama 2014; Lazar et al. 2014; Marian and Giaralis 2014;
Taflanidis et al. 2019) or at the ground level, either within the context of protecting a first soft-story
(Makris and Kampas 2016; Makris and Moghimi 2019; Moghimi and Makris 2021), or within the
context of enhancing a seismic isolation system (Saitoh 2007, 2012; De Domenico and Ricciardi
2018b; Ye et al. 2019; Makris and Moghimi 2022).

Supplemental rotational inertia can be achieved either with a rack-and-pinion- flywheel arrange-
ment schematically shown in Figure 1.2, a ball-screw assembly as shown in Figure 1.1 (Arakaki
et al. 1999a,b; Papageorgiou and Smith 2005; Hwang et al. 2007; Ikago et al. 2012a; Takewaki
et al. 2012; Watanabe et al. 2012; Ishii et al. 2014) or fluid inerters (Swift et al. 2013; Wang et al.
2011; Liu et al. 2018; De Domenico et al. 2019). The mechanical system shown in Figure 1.2 is
a mechanical analogue of the electrical capacitor in a force-current/velocity-voltage analogy be-
tween mechanical and electrical networks. This missing analogy was first recognized by Smith
(2002) who coined the term inerter for any mechanical arrangement where the output force is pro-
portional only to the relative acceleration between its end-nodes. The constant of proportionality
of the inerter is coined the inertance = MR (Smith 2002) and has units of mass [M]. Accordingly,
if F1, u1 and F2, u2 are the forces and displacements at the end-nodes of the inerter with inertance,
MR, its constitutive relation is (Saitoh 2007; Makris 2018; Makris and Moghimi 2019){

F1(t)
F2(t)

}
=

[
MR −MR

−MR MR

]{
ü1(t)
ü2(t)

}
(1.1)

The basic frequency and time-response functions of the mechanical element defined by equation
(1.1) have been derived by Makris (2017, 2018) and are summarized in Chapter 2 together with

Figure 1.2: A rack-and-pinion-flywheel realization of the inerter, which is the mechanical
analogue of the capacitor in a force–current/velocity–voltage analogy.
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those of simple inertoelastic and inertoviscous elements. The unique characteristic of the inerter is
that it has an appreciable inertia mass as opposed to a small gravitational mass.

The potential unfavorable situation when the rotational inertia stored in the inerter may drive the
structure was first recognized by Makris and Kampas (2016) who introduced the implementation
of two parallel inerters together with the use of a clutch (pair of clutching inerters), so that the
rotating flywheels only resist the motion of the structure without inducing any deformations. The
benefits of using a pair of counter-rotating clutching inerters were subsequently examined on a
2DOF elastic structure (Makris and Moghimi 2019). About the same time, De Domenico and
Ricciardi (2018b) examined the response of a multi-degree-of-freedom seismic isolated elastic
structure where the isolation system was enhanced with a tuned mass damper inerter. In that study
the nonlinear behavior of the isolator is accounted for, and subsequently, the study proceeds with
a stochastic linearization technique.

A seminal contribution among the aforementioned studies is the work of Furuhashi and Ishimaru
(2008) who showed that when inerters are installed without being interrupted, starting from the
first level, then the inertance of the inerters can be adjusted to eliminate the participation of higher
modes. At the same time, the unique ability of the inerters to eliminate the contribution of higher
modes vanishes when they are placed at a higher level without having inerters at all the floors down
below to the first level. Following Furuhashi and Ishimaru’s (2008) seminal contribution, Takewaki
et al. (2012) explained that for inerters to suppress the induced ground acceleration they need to be
installed without being interrupted, starting from the ground level; otherwise, the inerters which are
installed above the “interrupted” level can no-longer suppress the ground induced acceleration. In
spite of Takewaki et al. (2012) important finding-that solitary inerters when placed at higher levels
do not suppress the ground induced acceleration, several subsequent publications investigated the
response of structures equipped with a solitary inerter at a floor level other than the first level
(Sugimura et al. 2012; Ogino and Sumiyama 2014; Lazar et al. 2014; Marian and Giaralis 2014;
Taflanidis et al. 2019) within the context of proposing an enhanced tuned mass damper. Soon after
Takewaki et al. (2012) publication, Lazar et al. (2014) examined in detail the role of a tuned inerter
damper (TID)—which is essentially an inerter supported on a compliant support (a spring-dashpot
parallel connection), as an alternative tuned mass damper (TMD) and they correctly concluded that
the TID is more effective when placed at the ground level, reaffirming the findings of Takewaki
et al. (2012).

In view of the appreciable number of publications that examine the response of tall buildings when
equipped at a higher level with a solitary mechanical network that involves inerters (Marian and
Giaralis 2014; Giaralis and Taflanidis 2018; Taflanidis et al. 2019), in association that this concept
has enjoyed full-scale implementations (Sugimura et al. 2012; Ogino and Sumiyama 2014), this
report reviews, the dynamics of structures equipped with inerters and how inerters modify elastic
and inelastic structural response.

1.1 SUPPRESSION OF THE INDUCED GROUND ACCELERATION

Figure 1.3 depicts a single-degree-of-freedom undamped structure with stiffness k and mass m.
A stiff chevron frame supports a flywheel with radius R and mass mW that can rotate about an
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axis O. In the interest of simplicity, we consider the case of a non-compliant chevron frame whose
deformation is negligible to the translational displacement, u(t), of the SDOF structure. The case
of a compliant chevron frame has been examined in depth in past publications (Makris and Kampas
2016; Makris and Moghimi 2019; Moghimi and Makris 2021). Concentric to the flywheel, there is
an attached pinion with radius ρ engaged to a linear rack connected to the bottom of the vibrating
mass m of the SDOF. With this arrangement when the mass m undergoes a positive displacement,
u(t), the flywheel is subjected to a clockwise rotation, θ(t). Given that there is no slipping between
the rack and the pinion, u(t) = ρθ(t), the internal force FI(t) that develops along the rack-pinion
interface satisfies dynamic moment equilibrium

FI(t)ρ = IW θ̈(t) (1.2)

where IW (t) = (1/2)mWR
2 = moment of inertia of the flywheel about point O. With reference

to Figure 1.3, for a positive displacement, u(t), to the right, the internal force, FI(t) given by
equation (1.2) opposes the motion of the mass, m (to the left). Accordingly, dynamic equilibrium
of the vibrating mass when subjected to a ground acceleration, üg, gives (Makris and Kampas
2016)

ü(t) +
ω0

1 + 1
2
mW

m
R2

ρ2

u(t) = − 1

1 + 1
2
mW

m
R2

ρ2

üg(t) (1.3)

where ω0 =
√
k/m =natural frequency of the structure when the pinion-flywheel is disengaged

and mW is the mass of the flywheel.

Equation (1.3) indicates that the engagement of the flywheel lengthens the vibration period of the
structure (Chen et al. 2014); yet, most importantly, it suppresses the level of ground shaking given
that the denominator in the right-hand side is always larger than unity (Makris and Kampas 2016).
The quantity MR = (1/2)MW (R2/ρ2) is defined as the inertance of the inerter with units of mass
[M ], whereas the ratio σ =MR/m appearing in the denominators of equation (1.3) is the inertance
ratio.

Figure 1.3: Single-degree-of-freedom structure with mass m and stiffness k with supplemen-
tal rotational inertia from a flywheel with radiusR supported on a chevron frame
with stiffness kf that is much larger than k.
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2 Basic Response Functions of Simple
Inertoelastic and Inertoviscous Models

Given that the inerter emerges as the third elementary mechanical element for the synthesis of me-
chanical networks (Smith 2002; Makris 2017, 2018; Makris and Efthymiou 2020), in this chapter
we derive the basic frequency- and time-response functions of the inerter and these of the two-
parameter inertoelastic and inertoviscous mechanical networks.

When a mechanical network with a fixed end-node (one terminal fixed), consists of springs, dash-
pots and inerters, the constitutive equation of the mechanical network is of the form[

M∑
m=0

am
dm

dtm

]
F (t) =

[
N∑
n=0

bn
dn

dtn

]
u (t) (2.1)

where F (t) and u(t) are the force and displacement acting on the end-node that is free to move. In
equation (2.1) the coefficients am and bn are restricted to real numbers and the order of differenti-
ation m and n is restricted to integers. The linearity of equation (2.1) permits its transformation in
the frequency domain by applying the Fourier transform

F (ω) = [K1 (ω) + iK2 (ω)]u (ω) (2.2)

where F (ω) =
∫∞
−∞ F (t) e−iωtdt and u (ω) =

∫∞
−∞ u (t) e−iωtdt are the Fourier transforms of

the force and displacement histories respectively; and K (ω) = K1 (ω) + iK2 (ω) is the dynamic
stiffness of the model

K (ω) =
F (ω)

u(ω)
= K1 (ω) + iK2 (ω) =

[∑N
n=0 bn (iω)

n
]

[∑M
m=0 am (iω)m

] (2.3)

The dynamic stiffness, K(ω), expressed by equation (2.3), is a transfer function that relates a
displacement input to a force output and is the ratio of two polynomials where the numerator is
of degree n and the denominator of degree m. Accordingly, K(ω) has m poles and n zeros. A
transfer function that has more poles than zeros (m > n) is called “strictly proper” and results in a
“strictly causal” time-response function. A strictly proper transfer function means that the output
of the model is finite and follows the input modulations.
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The force output F (t) in equation (2.1) can be computed in the time domain with the convolution
integral

F (t) =

∫ t

−∞
q (t− τ)u (τ) dτ (2.4)

where q(t) is the “memory function” of the model defined as the resulting force at present time t
due to an impulsive displacement input at time τ(τ < t); and is the inverse Fourier transform of
the dynamic stiffness

q (t) =
1

2π

∫ ∞

−∞
K (ω) eiωtdω (2.5)

The notation q(t) used for the memory function is the same as the notation used by Veletsos
and Verbic (1974). The inverse Fourier transform given by equation (2.5) converges only when∫∞
−∞ |K (ω)| dω <∞; therefore, q(t) exists in the classical sense only when K(ω) is a strictly

proper transfer function (m > n). When the number of poles is equal to the number of zeros (m =
n), the transfer function of the model is “simply proper” and results to a time-response function,
q(t), that has a singularity at the time origin because of the finite limiting value of the associated
transfer function at high frequencies. This means that the model instantaneously produces an
output at a given input.

The inverse of the dynamic stiffness is the dynamic flexibility

H (ω) = H1 (ω) + iH2 (ω) =
1

K1 (ω) + iK2 (ω)
(2.6)

which is the transfer function that relates a force input to a displacement output. From equations.
(2.3) and (2.6) it is clear that when a mechanical network has a strictly proper dynamic flexibility it
has an improper dynamic stiffness and vice versa. Consequently, when the causality of a proposed
mechanical model (network) is a concern, it is most important to specify what is the input and what
is the output. When the dynamic flexibility H(ω) is a proper transfer function, the displacement,
u(t), in equation (2.1) can be computed in the time domain via the convolution integral

u (t) =

∫ t

−∞
h (t− τ)F (τ) dτ (2.7)

where h(t) is the “impulse response function” defined as the resulting displacement at time t for
an impulsive force input at time τ(τ < t) and is the inverse Fourier transform of the dynamic
flexibility

h (t) =
1

2π

∫ ∞

−∞
H (ω) eiωtdω (2.8)

The notation h(t) for the impulse response function used by Veletsos and Verbic (1974) and Clough
and Penzien (1975) is adopted in this study.

An equally useful transfer function of a phenomenological model is the impedance, Z(ω) =
Z1(ω) + iZ2(ω); which relates a velocity input to a force output

F (ω) = [Z1 (ω) + iZ2 (ω)] v (ω) (2.9)
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where v(ω) = iωu(ω) is the Fourier transform of the velocity time history. For the linear inerto-
viscoelastic model given by equation (2.1), the impedance of the model is

Z (ω) = Z1 (ω) + iZ2 (ω) =

[∑N
n=0 bn (iω)

n
]

[∑M
m=0 am (iω)m+1

] (2.10)

The force output F (t) appearing in equation (2.1) can be computed in the time domain with an
alternative convolution integral

F (t) =

∫ t

−∞
k (t− τ) u̇ (τ) dτ (2.11)

where k is the relaxation stiffness of the model (Ferry 1980; Giesekus 1995; Tschoegl 2012) de-
fined as the resulting force at the present time, t, due to a unit step displacement input at time
τ(τ < t) and is the inverse Fourier transform of the impedance

k (t) =
1

2π

∫ ∞

−∞
Z (ω) eiωtdω (2.12)

Equation (2.12) indicates that if the dynamic stiffness of a phenomenological model is a simple
proper transfer function, then the impedance is a strictly proper transfer function; therefore, the
relaxation stiffness, k(t), of the model is finite; whereas, the memory function, q(t), has a singu-
larity at the time origin. The inverse of the impedance is called in structural mechanics “mobility”;
while, in the electrical engineering literature the term “admittance” is used (Bode et al. 1945; Smith
2002).

Y (ω) = Y1 (ω) + iY2 (ω) =
1

Z1 (ω) + iZ2 (ω)
(2.13)

The mobility (admittance) is a transfer function that relates a force input to a velocity output. When
the mobility is a proper transfer function, the velocity history of the node that is free to move can
be computed in the time domain via the convolution

v (t) =

∫ t

−∞
y (t− τ)F (τ) dτ (2.14)

where y(t) is the “impulse velocity response function” defined as the resulting velocity at time t
for an impulsive force input at time τ(τ < t) and is the inverse Fourier transform of the mobility
(admittance).

y (t) =
1

2π

∫ ∞

−∞
Y (ω) eiωtdω (2.15)

At negative times (t < 0), all four time-response functions given by equations (2.5), (2.8), (2.12)
and (2.15) need to be zero in order for the phenomenological model (mechanical network) to be
causal. The requirement for a time-response function to be causal in the time domain implies
that its corresponding frequency response function, Z(ω) = Z1(ω) + iZ2(ω), is analytic on the
bottom-half complex plane (Bendat and Piersol 1986; Papoulis 1987; Makris 1997a,b, 2020a). The
analyticity condition on a complex function, Z(ω) = Z1(ω) + iZ2(ω), relates the real part Z1(ω)
and the imaginary part Z2(ω) with the Hilbert transform (Morse and Feshbach 1953; Papoulis
1987).

Z1 (ω) = − 1

π

∫ ∞

−∞

Z2 (x)

x− ω
dx, Z2 (ω) =

1

π

∫ ∞

−∞

Z1 (x)

x− ω
dx (2.16)
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2.1 BASIC RESPONSE FUNCTIONS OF THE LINEAR SPRING

For the linear elastic spring with spring-constant k, equation (2.1) reduces to

F (t) = ku (t) (2.17)

therefore, its dynamic stiffness k(ω) = k and its dynamic flexibility H(ω) = 1/k are real-valued
constants. Accordingly, both these transfer functions are simply proper (m = n = 0); and their
corresponding time response functions exhibit a singularity at the time origin:

q (t) = kδ (t− 0) (2.18)

and
h (t) =

1

k
δ (t− 0) (2.19)

where δ(t− 0) is the Dirac delta function at the time origin (Lighthill 1958; Papoulis 1987).

The Fourier transform of equation (2.17) is merely F (ω) = ku(ω) and by using that v(ω) =
iωu(ω), the impedance of the linear spring as defined by equation (2.9) assumes the form

Z (ω) =
k

iω
= −ki 1

ω
(2.20)

The inverse Fourier transform of −i/ω is (1/2)sgn(t) (Morse and Feshbach 1953); where, sgn(t),
is the signum function. Accordingly, by using the expression of the impedance of the linear spring
as given by equation (2.20), the resulting relaxation stiffness as defined by equation (2.12) is k(t) =
(k/2)sgn(t); which is clearly a non-causal function. In fact the signum function, sgn(t), indicates
that there is as much response before the induced step displacement as the response upon the
excitation is induced. 1/4 century ago, Makris (1997a) resolved this impasse by extending the
relation between the analyticity of a transfer function and the causality of the corresponding time-
response function to the case where generalized functions are involved. Given that the Hilbert pair
of the reciprocal function 1/ω is −πδ(ω−0), Makris (1997a) explained that a Dirac delta function
needs to be appended as a real part in equation (2.21) and the correct expression of the impedance
of the linear spring is

Z (ω) = k

[
πδ (ω − 0)− i

1

ω

]
(2.21)

By “manually” appending the real part, πδ(ω− 0), in equation (2.20), the Fourier transform of the
correct impedance of the linear spring given by equation (2.21) gives

k (t) =
1

2π

∫ ∞

−∞
Z (ω) eiωtdω =

k

2π

∫ ∞

−∞

[
πδ (ω − 0)− i

1

ω

]
eiωtdω (2.22)

By recalling that the Fourier transform of −i/ω is (1/2)sgn(t), equation (2.21), gives

k (t) = k

[
1

2

∫ ∞

−∞
δ (ω − 0) eiωtdω +

1

2
sgn (t)

]
= k

[
1

2
+

1

2
sgn (t)

]
= kU (t− 0) (2.23)
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where U(t− 0) is the Heaviside unit-step function at the time origin; and therefore, the relaxation
stiffness, k(t) = kU(t − 0), is causal. The notation U(t − 0) for the Heaviside unit-step function
used by Papoulis (1987) is adopted in this study.

The mobility (admittance) of the linear spring is the inverse of its impedance,

Y (ω) = i
ω

k
(2.24)

and is an improper transfer function. Accordingly, its inverse Fourier transform, that is the impulse
velocity response function y(t), as defined by equation (2.15) does not exist in the classical sense.
Nevertheless, it can be constructed mathematically with the calculus of generalized functions and
more specifically with the property of the derivative of the Dirac delta function (Lighthill 1958)∫ ∞

−∞

dδ (t− 0)

dt
f (t) dt = −

∫ ∞

−∞
δ (t− 0)

df (t)

dt
dt = −df (0)

dt
(2.25)

By employing equation (2.25), the Fourier transform of dδ(t− 0)/dt is∫ ∞

−∞

dδ (t− 0)

dt
e−iωtdt = −

∫ ∞

−∞
δ (t− 0) (−iω) e−iωtdt = iω (2.26)

Consequently, based on equation (2.26), the inverse Fourier transform of the mobility given by
equation (2.24) is

y (t) =
1

k

dδ (t− 0)

dt
(2.27)

Equation (2.27) shows that the impulse velocity response function of the linear spring exhibits a
strong singularity at the time origin given that its mobility increases linearly with frequency. Table
2.1summarizes the basic frequency and time-response functions of the linear spring computed in
this section. In the interest of completeness, next to these functions, Table 2.1 summarizes the
corresponding functions of the linear dashpot which have been computed by following the same
reasoning (Makris 1997a; Makris and Kampas 2009).

2.2 BASIC RESPONSE FUNCTIONS OF THE INERTER

With reference to Figure 1.1, when node 2 is fixed (u2 = 0), equation (2.1) reduces to

F (t) =MR
d2u (t)

dt2
(2.28)

The Fourier transform of equation (2.29) is

F (ω) = −MRω
2u (ω) (2.29)

therefore, the dynamic stiffness of the inerter, k(ω) = −MRω
2, is improper to the second degree.

Accordingly, the memory function q(t), as defined by equation (2.9) does not exist in the classical
sense. The reader needs to recall that q(t) is the resulting force due to an induced impulsive
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displacement. Clearly an impulsive displacement is not physically realizable on the inerter given
that it is not possible to rotate instantaneously a flywheel with finite rotational inertia—the only
thing that may be achieved is to buckle the supports of the flywheel or to fail the gears along the
rack-pinion interface. Nevertheless, a mathematical expression for q(t) can be reached by using
the properties of the higher-order derivatives of the Dirac delta function (Lighthill 1958),∫ ∞

−∞

dnδ (t− 0)

dtn
f (t) dt = (−1)n

dnf (0)

dtn
(2.30)

By employing equation (2.30), the Fourier transform of d2δ(t− 0)/dt2 is∫ ∞

−∞

d2δ (t− 0)

dt2
e−iωtdt = (−1)2 (−iω)2 = −ω2 (2.31)

Consequently, based on equation (2.31), the inverse Fourier transform of the dynamic stiffness of
the inerter, k(ω) = −MRω

2, is

q (t) =MR
d2δ (t− 0)

dt2
(2.32)

Equation (2.32) shows that the memory function of the inerter exhibits a strong singularity at the
time origin given that its dynamic stiffness increases quadratically with frequency.

While the dynamic stiffness of the inerter, k(ω) = −MRω
2, is an improper transfer function, its

inverse, that is the dynamic flexibility as defined by equation (2.6) is a proper transfer function

H (ω) = − 1

MR

1

ω2
(2.33)

Nevertheless, while the dynamic flexibility of the inerter as expressed by equation (2.33) is a
proper transfer function, the inverse Fourier transform of −1/ω2 is (t/2)sgn(t), where sgn(t) is the
signum function. Accordingly, the expression given by equation (2.33) faces similar challenges as
those faced by the expression of the impedance of the linear spring given by equation (2.20), since
the appearance of the signum function alone renders the corresponding time-response function,
h(t), non-causal. Given that the dynamic flexibility of the inerter, as expressed by equation (2.33),
is a purely real quantity, we are in search of the imaginary Hilbert pair of −1/ω2.

The Hilbert pair of −1/ω2 is constructed by employing the first of equations (2.16), together with
the help of (2.25) By letting H2 (ω) = π dδ(ω−0)

dω
, its Hilbert transform gives:

H1 (ω) = − 1

π

∫ ∞

−∞
π
dδ (x− 0)

dx

1

x− ω
dx (2.34)

and with the change of variables ξ = x− ω, dξ = dx, equation (2.34) becomes

H1 (ω) =

∫ ∞

−∞

dδ (ξ − (−ω))
dξ

1

ξ
dξ =

∫ ∞

−∞
δ (ξ − (−ω))

(
− 1

ξ2

)
dξ = − 1

ω2
(2.35)

The result of equation (2.35) indicates that the right-hand side of (2.33) cannot stand alone and
has to be accompanied by its imaginary Hilbert pair, πdδ(ω − 0)/dω. Consequently, the correct
expression of the dynamic flexibility of the inerter is

H (ω) =
1

MR

[
− 1

ω2
+ iπ

dδ (ω − 0)

dω

]
(2.36)
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By comparing Equations (2.21) and (2.36), the reader recognizes that the stronger is the singular-
ity of the frequency term (1/ω or 1/ω2), the stronger is the singularity of its Hilbert companion
(πδ(ω − 0) or πdδ(ω − 0)/dω). By “manually” appending the imaginary part, πdδ(ω − 0)/dω, in
equation (2.33), the inverse Fourier transform of the correct dynamic flexibility of the inerter given
by Equation (2.36) gives

h (t) =
1

2π

∫ ∞

−∞
H (ω) eiωtdω =

1

MR

1

2π

∫ ∞

−∞

[
− 1

ω2
+ iπ

dδ (ω − 9)

dω

]
eiωtdω (2.37)

By recalling that the Fourier transform of −1/ω2 is (t/2)sgn(t), equation (2.37) gives

h (t) =
1

MR

[
t

2
sgn (t) +

i

2

∫ ∞

−∞

dδ (ω − 0)

dω
eiωtdω

]
(2.38)

and after employing equation (2.25), the second term in the right-hand-side of equation (2.38)
gives

i

2

∫ ∞

−∞

dδ (ω − 0)

dω
eiωtdω = − i

2

∫ ∞

−∞
δ (ω − 0) iteiωtdω =

t

2
(2.39)

Substitution of the result of equation (2.39) into equation (2.38)), gives the causal expression for
the impulse response function of the inerter

h (t) =
1

MR

[
t

2
sgn (t) +

t

2

]
=

1

MR

U (t− 0) t (2.40)

where U(t − 0) is again the Heaviside unit-step function at the time origin. Equation (2.40))
indicates that an impulse force on the inerter creates a causal response that grows linearly with
time and is inverse proportional to the inertance, MR.

The impedance of the inerter derives directly from equation (2.28)) by using that v(ω) = iωu(ω);
therefore, it is given by

Z (ω) = iωMR (2.41)

which is an improper transfer function and is of the same form as the mobility (admittance) of the
linear spring given by equation (2.24)) . By following the same operations described by equation
(2.26)) , the inverse Fourier transform of the impedance of the inerter is

k (t) =MR
dδ (t− 0)

dt
(2.42)

Equation (2.42)) indicates that the relaxation stiffness of the inerter exhibits a strong singularity
(not as strong as the memory function, q(t)) at the time origin given that it is not physically realiz-
able to impose a step displacement to the inerter.

The mobility (admittance) of the inerter is the inverse of its impedance given by equation (2.41))

Y (ω) =
1

MRiω
= − 1

MR

i
1

ω
(2.43)

The mobility of the inerter given by equation (2.43)), while a strictly proper transfer function,
faces the same challenges as the impedance of the linear spring given by equation (2.20)); since
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the inverse Fourier transform of −i/ω is (1/2)sgn(t)—a non-causal function. By following the
same reasoning described to construct the correct impedance of the linear spring given by equa-
tion (2.21)), a Dirac delta function is appended as a real part in equation (2.43)), and the correct
expression of mobility of the inerter is

Y (ω) =
1

MR

[
πδ (ω − 0)− i

1

ω

]
(2.44)

By “manually” appending the real part, πδ(ω−0), in equation (2.43)), the inverse Fourier transform
of the correct mobility of the inerter given by equation (2.44)) is

y (t) =
1

MR

[
1

2
+

1

2
sgn (t)

]
=

1

MR

U (t− 0) (2.45)

which is a causal function since U(t− 0) is the Heaviside unit-step function at the time origin.

The eight basic response functions of the inerter computed in this section are summarized in Table
2.1 next to the basic response functions of the linear spring and the viscous dashpot.

2.3 BASIC RESPONSE FUNCTIONS OF THE TWO-PARAMETER INERTOELASTIC
“SOLID”

Upon we have derived and established the correct basic frequency-response functions of the linear
spring and the inerter that result to the corresponding causal time-response functions, we now
proceed with the derivation of the basic time-response functions of the two-parameter inertoelastic
“solid” element—that is a spring and an inerter connected in parallel as shown in Figure 2.1(left).
The term “solid” is used to express252 that this network sustains a finite displacement under a
static load. The constitutive equation of the mechanical network shown in Figure 2.1(left) is

F (t) = ku (t) +MR
d2u (t)

dt2
(2.46)

and its Fourier transform gives

F (ω) =
[
k −MRω

2
]
u (ω) (2.47)

Equation (2.47)) indicates that the dynamic stiffness, K(ω) = k − MRω
2 of the inertoelastic

solid element is improper to the second degree because of the inerter that is connected in parallel
with the elastic spring. Clearly, given this parallel arrangement, the memory function, q(t), of the
inertoelastic solid element is the summation of the memory functions of the elastic spring given by
equation (2.18)) and that of the inerter given by equation (2.32))

q (t) = kδ (t− 0) +MR
d2δ (t− 0)

dt2
(2.48)

Equation (2.48)) shows that the memory function (inverse Fourier transform of the dynamic stiff-
ness) of the inertoelastic solid element exhibits a strong singularity (second order) at the time ori-
gin because of the inerter (d2δ(t− 0)/dt2) and a weak singularity (δ(t− 0)) because of the linear
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Figure 2.1: Left: The two-parameter inertoelastic “solid”. Right: The two-parameter iner-
toelastic “fluid”.

spring. While the dynamic stiffness of the two-parameter inertoelastic solid, k (ω) = k−MRω
2 =

MR [ω2
R − ω2] is an improper transfer function, its inverse, that is the dynamic flexibility is a proper

transfer function,

H (ω) = − 1

MR (ω2 − ω2
R)

(2.49)

in which ω2
R = k/MR, is the natural frequency of the systems shown in Figure 2.1. The poles of

the dynamic flexibility given by equation (2.49) are ω = ±ωR; and partial fraction expansion gives

H (ω) = − 1

2MR

1

ωR

[
1

ω − ωR
− 1

ω + ωR

]
(2.50)

The transfer function given by equation (2.50)) is a purely real quantity with singularities at
ω = ωR and ω = −ωR; therefore, it faces similar challenges as those faced by the expression
of the impedance of the linear spring given by equation (2.20)) which has a singularity at ω = 0.
Given that the dynamic flexibility of the two-parameter inertoelastic solid as expressed by equation
(2.50)) is a purely real quantity, we are in search of the imaginary Hilbert pairs of 1/(ω − ωR) and
1/(ω + ωR).

We first set Ω = ω− ωR and we let H2(Ω) = πδ(Ω− 0). Its Hilbert transform as expressed by the
first of equation (2.16)) gives

H1 (ω) = − 1

π

∫ ∞

−∞

πδ (x− 0)

x− Ω
dx (2.51)

and with the change of variables ξ = x− Ω, dξ = dx, equation (2.51) becomes

H1 (ω) = −
∫ ∞

−∞

δ (ξ − (−Ω))

ξ
dξ = − 1

−Ω
=

1

ω − ωR
(2.52)

Equation (2.52) indicates that the imaginary Hilbert pair of 1/(ω − ωR) is πδ(ω − ωR). Following
the same reasoning one can show that the imaginary Hilbert pair of 1/(ω + ωR) is πδ(ω + ωR);
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and the correct expression of the dynamic flexibility of the two-parameter inertoelastic solid is

H (ω) =
1

2MR

1

ωR

[
1

ω + ωR
− 1

ω − ωR
+ iπ (δ (ω + ωR)− δ (ω − ωR))

]
(2.53)

By “manually” appending the imaginary part π(δ(ω − ωR) − δ(ω + ωR)) within the brackets of
equation (2.50), the inverse Fourier transform of the dynamic flexibility of the network shown in
Figure 2.1(left) is evaluated by rearranging equation (2.54) as

H (ω) =
1

2MR

i

ωR

[
πδ (ω + ωR)−

i

ω + ωR
−
(
πδ (ω − ωR)−

i

ω − ωR

)]
(2.54)

The inverse Fourier transform of the first two terms in the bracket of equation (2.54) is

F1 (t) =
1

2π

∫ ∞

−∞

[
πδ (ω + ωR)−

i

ω + ωR

]
eiωtdω (2.55)

and with the change of variables, Ω = ω + ωR, dΩ = dω, equation (2.55) gives

F1 (t) = e−iωRt
1

2π

∫ ∞

−∞

[
πδ (Ω− 0)− i

Ω

]
eiΩtdΩ = U (t− 0) e−iωRt (2.56)

where again U(t− 0) is the Heaviside unit-step function at the time origin.

The Fourier integral in equation (2.56) is computed by following the steps outlined in equations
(2.22) and (2.23). Similarly, the inverse Fourier transform of the last two terms in the brackets of
equation (2.54) is

F2 (t) =
1

2π

∫ ∞

−∞

[
πδ (ω − ωR)−

i

ω − ωR

]
eiωtdω = U (t− 0) eiωRt (2.57)

Substitution of the results of equations (2.56) and (2.57) into equation (2.54) gives

h (t) =
1

2MR

i

ωR
U (t− 0)

(
e−iωRt − eiωRt

)
=

1

MRωR
U (t− 0) sin(ωRt) (2.58)

Equation (2.58) indicates that the impulse response function, h(t), of the two-parameter inertoelas-
tic solid shown in Figure 2.1(left), is a causal sinusoidal function (oscillatory response that initiates
upon the application ofthe input impulse force) with frequency, ωR =

√
k/MR; where the elastic

spring and the inerter exchange continuously their strain and kinetic energies. Most importantly,
equation (2.58) indicates that when an impulsive force is exerted on a spring that is connected in
parallel with an inerter, the impulse response function is a finite oscillatory response; therefore, the
presence of the inerter “absorbs” the weak singularity, δ(t− 0), that exists in the impulse response
function of the solitary spring given by equation (2.19). This observation indicates the potential
benefits of the inerter as a response modification device.

In the limiting case of a very soft spring (ωR → 0), the limiting expression for the impulse response
function given by equation (2.58) is

lim
ωR→∞

h (t) =
1

MRωR
U (t− 0)ωRt =

1

MR

U (t− 0) t (2.59)
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and the impulse response function of the solitary inerter given by equation (2.40) is recovered.

The impedance of the two-parameter inertoelastic solid derives directly from equation (2.46) by
using that v(ω) = iωu(ω); and it is given by

Z (ω) = −k i
ω
+ iωMR (2.60)

The first term in equation (2.60) is merely the impedance of the linear spring given by equation
(2.20), while its second improper term is the impedance of the inerter given by equation (2.41)
. The imaginary reciprocal function, i/ω, is enhanced with its Hilbert pair according to equation
(2.21) and the correct expression for the impedance of the two-parameter inertoelastic solid is

Z (ω) = k

[
πδ (ω − 0)− i

1

ω

]
+ iωMR (2.61)

By following the same mathematical operations described by equation (2.22), (2.23) and (2.26),
the inverse Fourier transform of the impedance of the two-parameter inertoelastic solid is

k (t) = kU (t− 0) +MR
dδ (t− 0)

dt
(2.62)

The mobility (admittance) of the two-parameter inertoelastic solid shown in Figure 2.1(left) is the
inverse of its impedance expressed by equation (2.60),

Y (ω) = − 1

MR

iω

ω2 − ω2
R

(2.63)

in which ω2
R = k/MR, is the natural frequency of the system. The poles of the mobility given by

equation (2.63) are ω = ±ωR and partial fraction expansion gives

Y (ω) = − i

2MR

(
1

ω − ωR
+

1

ω + ωR

)
(2.64)

The transfer function given by equation (2.64) is a purely imaginary quantity with singularities at
ω = ωR and ω = −ωR; therefore, it faces similar challenges as those faced by the expression of the
impedance of the linear spring given by equation (2.20), which has a singularity at ω = 0. Given
that the mobility (admittance) of the two parameter inertoelastic solid, as expressed by equation
(2.64), is a purely imaginary quantity, we are in search of the real Hilbert pairs of 1/(ω − ωR) and
1/(ω + ωR). We first set Ω = ω − ωR and we let Y1(Ω) = πδ(Ω − 0). Its Hilbert transform as
expressed by the second of equations (2.16) gives (see also equations (2.51) and (2.52)):

Y2 (ω) =
1

π

∫ ∞

−∞
π
δ (x− 0)

x− Ω
dx = − 1

ω − ωR
(2.65)

Equation (2.65) indicates that the real Hilbert pair of −1/(ω − ωR) is πδ(Ω − ωR). Following
the same reasoning one can show that the real Hilbert pair of −1/(ω − ωR) is πδ(Ω − ωR) and
the correct expression for the mobility of the two-parameter inertoelastic solid given by equation
(2.64) is

Y (ω) =
1

2MR

[
πδ (ω − ωR)− i

1

ω − ωR
+ πδ (ω + ωR)− i

1

ω + ωR

]
(2.66)
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The inverse Fourier transform of equation (2.66) is computed in a similar way as we computed the
inverse Fourier transform of equation (2.54) and it gives:

y (t) =
1

MR

U (t− 0) cos (ωRt) (2.67)

where U(t − 0) is again the Heaviside unit-step function at the time origin. Equation (2.67) in-
dicates that the impulse velocity response function, y(t), of the two-parameter inertoelastic solid
shown in Figure 2.1(left) is acausal cosine function with frequency ωR =

√
k/MR. Similar to

equation (2.58), equation (2.67) indicates that when an impulsive force is exerted on a spring that
is connected in parallel with an inerter, the impulse velocity response function is a finite oscillatory
response; therefore, the presence of the inerter “absorbs” the singularity, dδ(t − 0)/dt, that exists
in the impulse velocity response function of the solitary spring given by equation (2.27).

In the limiting case of a very soft spring (ωR → 0), the limiting expression for the impulse velocity
response function given by equation (2.67). is

lim
ωR→∞

y (t) =
1

MR

U (t− 0) (2.68)

and the impulse velocity response function of the solitary inerter given by equation (2.45) is recov-
ered. The eight basic response functions of the two-parameter viscoelastic solid computed in this
section are also summarized in Table 2.1 next to the basic response functions of the linear spring,
the viscous dashpot and the inerter.

2.4 BASIC RESPONSE FUNCTIONS OF THE TWO-PARAMETER INERTOELASTIC
“FLUID”

We are now interested in deriving the basic time-response functions of the two-parameter iner-
toelastic “fluid” element—that is a spring and an inerter connected in series as shown in Figure
2.1(right). The term “fluid” is used to express that this network undergoes an infinite displacement
under a static loading. Given that the force, F (t), is common at the spring and the inerter

F (t) = k (u (t)− u3 (t)) (2.69)

while at the same time,

F (t) =MR
d2u3 (t)

dt2
(2.70)

where u3(t) is the nodal displacement of the internal node, 3, where the spring and the inerter con-
nect. Upon differentiating equation (2.69) two times and substituting d2u3(t)/dt2 from equation
(2.70), the constitutive equation of the mechanical network shown in Figure 2.1(right) is expressed
by

F (t) +
1

ω2
R

d2F (t)

dt2
=MR

d2u (t)

dt2
(2.71)

The Fourier transform of (2.71) gives

F (ω) = ω2
RMR

ω2

ω2 − ω2
R

u (ω) (2.72)
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and by recalling that k = ω2
RMR, the dynamic stiffness of the mechanical network as results from

equation (2.72) is K(ω) = kω2/(ω2 − ω2
R), which is a simple proper transfer function, reaching

the constant value, k, at the high-frequency limit. By separating the high-frequency limiting value,
k, the dynamic stiffness of the two parameter inertoelastic “fluid” as results from equation (2.72)
is expressed as

K (ω) = k

[
1 +

ω2
R

ω2 − ω2
R

]
(2.73)

The second term within the bracket in equation (2.73), ω2
R/(ω

2 − ω2
R), is of the same form as the

dynamic flexibility of the two-parameter inertoelastic “solid” given by equation (2.49). Accord-
ingly, the purely real term, ω2

R/(ω
2 − ω2

R), is equation (2.73) which has poles at ω ± ωR needs to
be enhanced with its corresponding imaginary delta functions. By following a procedure similar
to the one outlined by equations (2.51) to equation (2.54), the correct expression of the dynamic
stiffness of the two-parameter viscoelastic fluid described by equation (2.71) is

K (ω) = k +
kωR
2

[
1

ω − ωR
− 1

ω + ωR
+ iπ (δ (ω − ωR)− δ (ω + ωR))

]
(2.74)

By “manually” appending the imaginary part π(δ(ω − ωR) − δ(ω + ωR)) in equation (2.73), the
inverse Fourier transform of the dynamic stiffness of the two-parameter viscoelastic fluid shown
in Figure 2.1(right) is evaluated by following a procedure similar to the one outlined in equations
(2.54) to (2.57); and the resulting memory function is

q (t) = k [δ (t− 0)− ωRU (t− 0) sinωRt] (2.75)

Under an impulsive displacement input the two-parameter viscoelastic fluid shown in Figure 2.1
(right), initially behaves like the linear spring; given that the inerter provides “infinite” resistance
at the initiation of motion. Accordingly, at the time origin, the memory function given by equation
(2.75) is singular, exactly as is the memory function of the solitary elastic spring given by equation
(2.18); and subsequently the inerterengages in motion and follows a causal sinusoidal response
with frequency ωR =

√
k/MR.

Equation (2.72) also indicates that the dynamic flexibilityH(ω) = u(ω)/F (ω) of the two-parameter
inertoelastic fluid is a simply proper transfer function

H (ω) =
1

k
− ω2

R

k

1

ω2
=

1

k
− 1

MR

1

ω2
(2.76)

The constant term 1/k in equation (2.76) results to a weak singularity in the time domain; while,
the second term is precisely the dynamic flexibility of the solitary inerter given by equation (2.33).
By following the same procedure as the one presented by equations (2.34) to (2.36), the correct
expression for the dynamic flexibility of the two-parameter inertoelastic fluid is

H (ω) =
1

k
+

1

MR

[
− 1

ω2
+ iπ

dδ (ω − 0)

dω

]
(2.77)

By “manually” appending the imaginary part πdδ(ω−0)/dω in equation (2.76), the inverse Fourier
transform of the correct dynamic flexibility of the two-parameter inertoelastic fluid given by equa-
tion (2.77) is computed by following the steps outlined in equations (2.37) to (2.40) and gives

h (t) =
1

k
δ (t− 0) +

1

MR

U (t− 0) t (2.78)
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where U(t − 0) is again the Heaviside unit-step function at the time origin. Equation (2.78) indi-
cates that when an impulsive force is exerted on the two-parameter inertoelastic fluid, the impulse
is initially taken entirely by the elastic spring, δ(t − 0)/k, and subsequently the inerter enters a
causal response that grows linearly with time during which the “idle” spring is carried along.

The impedance of the two-parameter viscoelastic fluid shown in Figure 2.1(right) derives directly
from equation (2.72) by using that v(ω) = iωu(ω); therefore, is given by

Z (ω) = −k iω

ω2 − ω2
R

(2.79)

Equation (2.79) is of the same form as the mobility (admittance) of the two-parameter inertoelastic
solid given by equation (2.63); so by following the steps outlined by equations (2.64) to equation
(2.66), the correct expression of the impedance of the two-parameter inertoelastic fluid is

Z (ω) =
k

2

[
πδ (ω − ωR)−

i

ω − ωR
+ πδ (ω + ωR)−

i

ω + ωR

]
(2.80)

The inverse Fourier transform of equation (2.80) is computed in a similar way as we computed the
inverse Fourier transform of equation (2.54) and it gives

K (t) = kU (t− 0) cos (ωRt) (2.81)

where U(t − 0) is again the Heaviside unit-step function at the time origin. Equation (2.81) in-
dicates that the imposed unit-step displacement is initially accommodated entirely by the elastic
spring which subsequently sets the inerter in motion with the elastic and kinetic energies being
continuously interchanged between the elastic spring and the inerter.

The mobility (admittance) of the two-parameter inertoelastic fluid shown in Figure 2.1(right) is the
inverse of389 its impedance expressed by equation (2.79)

Y (ω) =
1

k
iω − ω2

R

k

i

ω
=

1

k
iω − 1

MR

i

ω
(2.82)

Equation (2.82) is of the same form as the impedance of the two-parameter inertoelastic solid
given by equation (2.60). It includes an improper term, iω/k, which results from the mobility
of the solitary linear spring given by equation (2.24) together with the reciprocal function, 1/ω,
which results from the mobility of the solitary inerter given by equation (2.43). Accordingly, the
imaginary reciprocal function, i/ω, is enhanced with its Hilbert pair according to equation (2.21)
and the correct expression for the mobility of the two-parameter inertoelastic fluid is

Y (ω) =
1

k
iω +

1

MR

[
πδ (ω − 0)− i

1

ω

]
(2.83)

By following the same mathematical operations described by Equations (2.22), (2.23) and (2.26),
the inverse Fourier transform of the mobility of the two-parameter inertoelastic fluid given by
equation (2.83) is

y (t) =
1

k

dδ (t− 0)

dt
+

1

MR

U (t− 0) (2.84)

The eight basic response functions of the two-parameter viscoelastic fluid computed in this sec-
tion are also summarized in Table 2.1 next to the basic response functions of the two-parameter
viscoelastic solid.
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2.5 BASIC RESPONSE FUNCTIONS OF THE “ROTATIONAL INERTIA DAMPER”
(DASHPOT AND INERTER IN PARALLEL)

About a decade ago, Hwang et al. (2007) proposed a rotational inertia damper which consists of
a cylindrical mass that is driven by a ball screw and rotates within a chamber that contains some
viscous fluid. In this way the resistance to the driving force originates partly from the difficulty
to mobilize the rotational inertia of the rotating mass and partly from the viscous stresses that
develop on the circumference of the rotating mass as it shears the viscous fluid. Consequently, the
mechanical analogue of the rotational inertia damper proposed by Hwang et al. (2007) and later by
Ikago et al. (2012a) is essentially a dashpot and an inerter connected in parallel as shown in Figure
2.2(left). The constitutive equation of the mechanical network shown in Figure 2.2(left) is

F (t) = C
du (t)

dt
+MR

d2u (t)

dt2
(2.85)

and its Fourier transform gives

F (ω) =
[
Ciω −MRω

2
]
u (ω) (2.86)

Equation (2.86) indicates that the dynamic stiffness k(ω) = Ciω−MRω
2 of the rotational inertia

damper is an improper transfer function of the first degree because of the dashpot and of the second
degree because of the inerter. Clearly, given this parallel arrangement, the memory function, q(t),
of the rotational inertia damper shown in Figure 2.2(left) is the summation of the memory function
of the dashpot (see Makris 1997a, Table 2.1 and the Fourier transform of equation (2.24) given by
equation (2.27)) and that of the inerter given by equation (2.32).

q (t) = C
dδ (t− 0)

dt
+MR

d2δ (t− 0)

dt2
(2.87)

Figure 2.2: Left: The rotational inertia damper which is an inertoviscous model in parallel.
Right: The inertoviscous model in series.
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The improper dynamic stiffness appearing in equation (2.86) indicates that it is not physically
realizable to impose an impulse displacement on a rotational inertia damper. Nevertheless, a math-
ematical expression of its memory functions can be reached via the use of the derivatives of the
Dirac delta function as shown by equation (2.87).

While the dynamic stiffness of the rotational inertia damper, k(ω) = Ciω−MRω
2, is an improper

transfer function, its inverse, that is the dynamic flexibility is a proper function,

H (ω) =
1

iωC − ω2MR

=
1

C

1

ω
(
−ωMR

C
+ i
) (2.88)

where the ratio MR/C is the retardation time of the network and has units of time [T].

The poles of the dynamic flexibility given by equation (2.88) are ω = 0 and ω = iC/MR; therefore,
partial fraction426 expansion of the right-hand side of equation (2.88) gives

H (ω) =
1

C

[
−i 1
ω
− MR

C

1

1 + iωMR

C

]
(2.89)

The first term within the brackets in equation (2.89) is the imaginary reciprocal function, i/ω,
which faces the same challenges as the impedance of the linear spring given by equation (2.20);
therefore, it is enhanced with its Hilbert pair according to equation (2.21). The second term with
the brackets in equation (2.89) is a strictly proper transfer function; therefore, its inverse Fourier
transform converges in the classical sense. Consequently, the correct expression for the dynamic
flexibility of the rotational inertia damper is

H (ω) =
1

C

[[
πδ (ω − 0)− i

1

ω

]
− MR

C

1

1 + iωMR

C

]
(2.90)

The inverse Fourier transform of equation (2.90) is evaluated by following the same mathematical
operations described by equations (2.22) and (2.23) for the term πδ(ω − 0) − i/ω; while, the last
term is integrated by employing the method of residues (Morse and Feshbach 1953). Accordingly,

h (t) =
1

C

[
U (t− 0)− e

− C
MR

t
]

(2.91)

where again, U(t − 0) is the Heaviside unit-step function at the time origin. Equation (2.91)
indicates that the impulse response function of the rotational inertia damper assumes the value of
1/C at the time origin and subsequently decays exponentially to zero.

The impedance of the rotational inertia damper shown in Figure 2.2(left) derives directly from
equation (2.86), by using that v(ω) = iωu(ω) and is given by

Z (ω) =
Ciω −MRω

2

iω
= C + iωMR (2.92)

where to constant C is the impedance of the viscous dashpot and iωMR is the impedance of the
inerter given by equation (2.41). With this parallel arrangement, the inverse Fourier transform of
the impedance of the rotational inertia damper is

k (t) = Cδ (t− 0) +MR
dδ (t− 0)

dt
(2.93)
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The mobility of the rotational inertia damper is the inverse of its impedance given by equation
(2.92)

Y (ω) =
1

C + iωMR

=
1

C

1

1 + iωMR

C

(2.94)

The transfer function given by equation (2.94) is a strictly proper transfer function and its inverse
Fourier transform is evaluated with the method of residues.

y (t) =
1

MR

e
− C

MR
t (2.95)

The eight basic response functions of the rotational inertia damper (dashpot and inerter connected
in parallel) are summarized in Table 2.1 next to the inertoelastic elements examined in this study.

2.6 BASIC RESPONSE FUNCTIONS OF A DASHPOT AND INERTER CONNECTED
IN SERIES

We are now interested in deriving the basic time-response function of a dashpot and an inerter in
series as shown in Figure 2.2(right). Given that the force, F (t), is common at the dashpot and the
inerter

F (t) = C

(
du (t)

dt
− du3 (t)

dt

)
(2.96)

while at the same time, F (t) satisfies equation (2.70). In equation (2.96), u3(t) is the nodal dis-
placement of the internal node, 3, where the dashpot and the inerter connect. Upon differentiating
equation (2.96) and substituting d2u3(t)/dt2 from equation (2.70), the constitutive equation of the
mechanical network shown in Figure 2.2(right) is expressed by

F (t) +
MR

C

dF (t)

dt
=MR

d2u (t)

dt2
(2.97)

The Fourier transform of equation (2.97) gives

F (ω) = −MR
ω2

1 + iωMR

C

u (ω) (2.98)

Equation (2.98) indicates that the dynamic stiffness of a dashpot and an inerter connected in se-
ries is −MRω

2
R/(1 + iωMR/C) ; therefore, it is an improper transfer function. By first sep-

arating the improper high-frequency limit, iωC, and subsequently separating the simple-proper
high-frequency limit −C2/MR, the dynamic stiffness of the mechanical network shown in Figure
2.2(right) as results from equation (2.98) is expressed as

K (ω) = iωC − C2

MR

+
C2

MR

1

1 + iωMR

C

(2.99)

The inverse Fourier transform of the first term which is the dynamic stiffness of the linear dashpot
(Makris 1997a) is evaluated by employing equation (2.26); while, the inverse Fourier transform
of the constant C2/MR results to a week singularity (C2/MR)δ(t − 0). The last term in equation
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(2.99) is a strictly proper transfer function; therefore, its inverse Fourier transform converges in the
classical sense and is evaluated with the method of residues. Accordingly, the memory function of
a dashpot and an inerter connected in series is given by

q (t) = C

[
dδ (t− 0)

dt
− C

MR

δ (t− 0) +
C2

M2
R

e
− C

MR
t

]
(2.100)

The dynamic flexibility of a dashpot and an inerter connected in series is the inverse of the dynamic
stiffness given by equation (2.98)

H (ω) = − 1

MR

1 + iωMR

C

ω2
= − 1

MR

1

ω2
− 1

C
i
1

ω
(2.101)

The first term in the right-hand side of equation (2.101) is the dynamic flexibility of the inerter
as expressed by equation (2.33); while; the second term is the dynamic flexibility of the linear
dashpot (Makris 1997a). Consequently both terms are enhanced with their Hilbert pairs as shown
by equations (2.21) and (2.36), and the correct expression of the dynamic flexibility given by
equation (2.101) is

H (ω) =
1

MR

[
− 1

ω2
+ iπ

dδ (ω − 0)

dω

]
+

1

C

[
πδ (ω − 0)− i

1

ω

]
(2.102)

By “manually” appending the Hilbert pair singularities πdδ(ω−0)/dω for the inerter and πδ(ω−0)
for the dashpot, the inverse Fourier transform of the dynamic flexibility given by equation (2.102)
is

h (t) =
1

C

[
1 +

C

MR

t

]
U (t− 0) (2.103)

where U(t − 0) is the Heaviside unit-step function at the time origin. Equation (2.103) indicates
that the causal impulse response function of a dashpot and an inerter in series assumes a constant
value, 1/C, at the time origin and subsequently grows linearly with time.

The impedance of a dashpot and an inerter connected in series derives directly from equation (2.98)
by using that v(ω) = iωu(ω) and is given by

Z (ω) =MR
iω

1 + iωMR

C

(2.104)

The transfer function given by equation (2.104) is a simple proper transfer function, reaching the
constant value, C, at the high-frequency limit. By separating the high-frequency limit, C, the
impedance of the mechanical network shown in Figure 2.2(right) as results from Equation (2.104)
is expressed as

Z (ω) = C

[
1− 1

1 + iωMR

C

]
(2.105)

The inverse Fourier transform of a constant is the Dirac delta function; while the inverse Fourier
transform of the strictly proper second term within the brackets of equation (2.105) is evaluated
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with the method of residues. Accordingly, the relaxation stiffness of a dashpot and an inerter
connected in series is given by

k (t) = C

[
δ (t− 0)− C

MR

e
− C

MR
t

]
(2.106)

The mobility (admittance) of a dashpot and an inerter connected in series is the inverse of the
impedances as expressed by equation (2.104)

Y (ω) =
1

MR

1 + iωMR

C

iω
=

1

C
− 1

MR

i
1

ω
(2.107)

The first constant term, 1/C, in the right hand side of equation (2.107) is the mobility of the linear
dashpot (Makris 1997a); and yields in the time domain a weak singularity; while the second term is
the mobility of the inerter given by equation (2.43). Consequently, the imaginary reciprocal func-
tion, i/ω, is enhanced with its Hilbert pair according to equation (2.44), and the correct expression
for the mobility of the mechanical network shown in Figure 2.2(right) is

Y (ω) =
1

C
+

1

MR

[
πδ (ω − 0)− i

1

ω

]
(2.108)

By following the same mathematical operations described by equations (2.22) and (2.23), the in-
verse Fourier transform of the mobility given by equation (2.108) is

Y (t) =
1

C
δ (t− 0)− 1

MR

U (t− 0) (2.109)

To this end, the eight basic response functions of a dashpot and an inerter connected in series are
summarized in Table 2.1 next to the basic response functions of the rotational inertia damper.

Recently, the concept of the inerter and its associated time response functions have been used to
model the fluctuation component of the perpetual fluctuation-dissipation process that characterizes
Brownian motion and has been essential in deriving a fundamental viscous-viscoelastic correspon-
dence principle for Brownian motion (Makris 2020b). This correspondence principle led to the
definition of the impulsive response function for Brownian motion (Makris 2021a) and allowed
for the construction of a rheological analogue for Brownian motion when hydrodynamic memory
effects need to be accounted for (Makris 2021b).

2.7 CONCLUSIONS

This chapter examines and constructs the basic frequency-response functions and subsequently de-
rives the corresponding causal time-response functions of elementary mechanical networks which
involve the inerter—a two-node element in which the force-output is proportional to the relative
acceleration of its end-nodes. This is achieved by extending the relation between the causality of
a time-response function with the analyticity of its corresponding frequency response function to
the case of generalized functions.
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The chapter shows that when the frequency-response function has as singularity the reciprocal
function, 1/(ω − ωR) (with ωR = constant or zero), the complex frequency-response function
needs to be enhanced with the addition of a Dirac delta function, δ(ω − ωR), so that the real and
imaginary parts of the correct frequency-response function are Hilbert pairs; therefore, yielding a
causal time-response function in the time domain. Similarly, when the singularity of the frequency-
response function is 1/ω2, the complex frequency-response function needs to be enhanced with the
addition of dδ(ω − 0)/dω, so that the real and imaginary parts of the correct frequency-response
function are Hilbert pairs.

Because of the participation of the inerter, some basic time-response functions of the examined
mechanical networks exhibit a causal oscillatory response and this behavior complements the
decaying-exponential response due to the participation of the dashpot. Most importantly, the chap-
ter shows that the inerter emerges as an attractive response-modification element given that in some
cases it “absorbs” the impulsive response of the solitary spring or dashpot.

Finally, the basic response-functions derived in this chapter and summarized in Table 2.1 in associ-
ation with the mathematical operations outlined in this work extends the well-established theory of
linear viscoelasticity to the inertoelastic and inertoviscoelastic behavior (combination of inerters,
dashpots and springs) and introduce the subject of inertoviscoelasticity.
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3 Displacements and Forces in Structures
with Inerters when Subjected to
Earthquakes

In view of the effectiveness of supplemental rotational inertia to suppress the seismic displacements
of a SDOF system as shown by equation (1.3) (see also Makris and Kampas 2016), this chapter
investigates the seismic response of the two-degree-of-freedom (2DOF) structure shown in Figure
3.1(a). This 2DOF system can be viewed as the idealization of a structure supported on solitary
columns, known in modern architecture as a structure on pilotis. In this configuration, only the first
story (pilotis) is engaged to a rotational flywheel system in an effort to investigate to what extent
the use of supplemental rotational inertia (use of inerters as a retrofit strategy) can limit large
displacements versus the use of large values of supplemental damping. The chapter compares
the computed response quantities of the 2DOF system shown in Figure 3.1(a) with those when
the pilotis is retrofitted with large values of supplemental damping [Figure 3.1(b)] and with those
from the “classical” two-degree-of-freedom system shown in Figure 3.1(c) that has been used to
introduce the linear theory of seismic isolation (Kelly 1997; Kelly and Konstantinidis 2011).

3.1 OPEN SOFT FIRST STORY: FROM AESTHETICS, FUNCTIONALITY AND
SEISMIC ISOLATION TO A LATERAL FAILURE MECHANISM

The concept of lifting the bulk of the structure above the ground level and supporting it merely on
solitary columns was introduced by Le Corbusier (1925; 1986) who developed a set of architectural
principles that marked the architecture of the 20th century. Le Corbusier’s five points of New
Architecture (in French: cinq points de l’architecture moderne) are: (1) pilotis–a grid of solitary
columns either from reinforced concrete or steel that support the gravity loads of the structure
above without any bearing or shear walls at the ground floor on the basis of the new aesthetics;
(2) the open floor plan which is free of supporting walls, therefore the internal use of the floor
plan is unrestricted; (3) the free facade were the exterior of the building is separated from its
structural function, allowing for more natural light to enter the building; (4) the strip windows
which in addition of allowing for more natural light give the impression of a floating structure–an
impression that is also accentuated from point (1) = the pilotis; and (5) roof gardens–which make
buildings cooler in the summer and warmer in the winter–a pioneering vision for sustainable cities
that is receiving growing acceptance only a century later.
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Figure 3.1: (a) 2DOF structure engaged with a rotational flywheel system;(b) 2DOF struc-
ture retrofitted with supplemental damper at firstsoft story; and (c) classical two-
degree-of-freedom seismic isolationsystem.

The unique aesthetics of the ”floating” structure atop the pilotis in association with the functionality
advantages of an open ground floor in urban design which creates continuity between the ground
floor and the surrounding open space, had such a major impact in modern architecture that the open
ground floor has been enthusiastically adopted in the design of major buildings world-wide. As an
example, the emblematic Ministry of Education and Health Building (Palácio Gustavo Capanema)
in Rio de Janeiro Brazil completed in 1943 is supported by a pilotis. Its mid 1930s design was
drastically influenced by Le Corbusier (1925) concepts of modern architecture.
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About the same time that Le Corbusier (1925; 1986) was developing his new architecture in France,
structural engineers at the California Institute of Technology (Martel 1929) and at Stanford Uni-
versity (Jacobsen 1938) viewed the flexible first story–that is Le Corbusier’s pilotis–as a way to
lengthen the period of the structure and reduce the shear forces at the base of the structure. Because
of the low lateral stiffness of the solitary columns of the ”soft” first story, the deformation demands
would be concentrated in these first-story columns which essentially isolate the superstructure from
the ground shaking. This early concept of seismic isolation (Martel 1929; Green 1935; Jacobsen
1938) assumed that the solitary columns would remain elastic during the earthquake shaking. In
the late 1960s, Fintel and Khan (1969) after examining first-story failures from several earthquakes,
further advanced the concept of the soft first-story seismic isolation by indicating that the solitary
columns will deform inelastically; therefore, offering some energy dissipation. In their remarkable
paper, Fintel and Khan (1969) recognized that the yielding columns of the soft, first-story will con-
vert the first-story into a mechanism; therefore, they suggested the construction of core stabilizing
walls that will support the weight of the structure via elastomeric (polychloroprene= neoprene)
bearings with low lateral stiffness. Accordingly, the Fintel and Khan (1969) paper suggested an
early concept of seismic isolation with bilinear behavior where recentering is offered by the neo-
prene bearings and dissipation is offered by the yielding first-story columns. Soon after the Fintel
and Khan paper and immediately after the devastating 1971 San Fernando California earthquake,
extensive numerical studies at the University of California, Berkley (Chopra et al. 1972) showed
that the displacement demands due to a ”soft” first story may be exceedingly large, to the extent
that the effect of the gravity loads from the upper levels during this sideways deformation lead to
collapse of the entire structure. This lateral failure mechanism was responsible for the spectacular
failure of the Olive View Hospital during the 1971 San Fernando, California earthquake shown in
Figure 3.2 (Bertero et al. 1978). By the end of the 1970, it became clear to the civil engineering
profession that the pilotis, while an architectural concept with several aesthetic and functionality
advantages, has poor seismic performance (Bertero et al. 1978; Arnold 1984; Bertero et al. 1991;
Repapis et al. 2006; Antonopoulos and Anagnostopoulos 2017). Despite its poor seismic perfor-
mance, the pilotis is widely used by architects around the world (Arnold 1984); therefore, the
chapter examines to what extent supplemental rotational inertia can control the displacements of
the two-story structure shown in Figure 3.2(a). In other words, the chapter explores the effective-
ness of supplemental rotational inertia on enhancing the response of a structure with a soft first
story.

Figure 3.2: Iconic soft-story failure of Olive View Hospital during 1971 San Fernando, Cali-
fornia earthquake. (Image courtesy of the USGS).
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3.2 INERTIA FORCES FROM THE FLYWHEEL SUPPORTED ON A STIFF
CHEVRON FRAME

Figure 3.1(a) depicts a 2DOF structure where the mass, m1, of the first story is engaged to a
flywheel with radius R1 and mass Mw1 that can rotate about an axis O. We first consider the case
of a very stiff chevron frame whose deformation is negligible to the translational displacements,
u1 (t) and u2 (t), of the 2DOF structure. Concentric to the flywheel, there is an attached pinion
with radius ρ1 engaged to a linear rack connected to the bottom of the vibrating mass m1 of the
2DOF. With this arrangement when the mass m1 undergoes a positive displacement, u1 (t), the
flywheel is subjected to a clockwise rotation, θ1 (t). Given that, there is no slipping between the
rack and the pinion

θ1 (t) =
u1 (t)

ρ1
(3.1)

With reference to Figure 3.1(a) for a positive displacement, u1 (t), to the right, the internal force,
FI (t) at the rack-pinion interface opposes the motion (to the left). Moment equilibrium of the
flywheel about point O, gives

IW1θ̈1 (t) = FI (t) ρ1 (3.2)

In equation (3.2), IW1 = (1/2)mW1R
2
1 = moment of inertia of the flywheel about point O. Sub-

stituting of equation (3.1) into equation (3.2) gives:

FI (t) =
1

2
mW1

R2
1

ρ21
ü1 (t) =MRü1 (t) (3.3)

Equation (3.3) offers the inertial force, FI (t), at the rack-pinion inerter face—that is the force
transferred to the stiff chevron frame. The constant of proportionality, MR = (1/2)mW1(R1

2/ρ21)
is the inertance of the supplemental rotational inertia system and it has units of mass [M]. The
inertance,MR, can be amplified by adding two (or more) flywheels in series, where the first fly-
wheel is a gearwheel (Smith 2002; Makris and Kampas 2016).

3.3 EQUATIONS OF MOTION OF A 2DOF STRUCTURE SUPPORTED ON A STIFF
CHEVRON FRAME

With reference to Figure 3.1(a), dynamic equilibrium of the entire structure above the chevron
frame gives

m2 [ü1 (t) + ü2 (t) + üg (t)] + m1 [ü1 (t) + üg (t)] = −k1u1 (t)− c1u̇1 (t)− FI (t) (3.4)

where FI (t) is the internal force from the flywheel given by equation (3.3). Dynamic equilibrium
of the second story gives

m2 [ü1 (t) + ü2 (t) + üg (t)] = −k2u2 (t)− c2u̇2 (t) (3.5)

Following the notation introduced by Kelly (1997), the nominal frequencies and nominal damping
ratios are

ω2
1 =

k1
m1 +m2

, ω2
2 =

k2
m2

(3.6)
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2ξ1ω1 =
c1

m1 +m2

, 2ξ2ω2 =
c2
m2

(3.7)

Furthermore, the mass ratio, γ, and the inertance ratio, σ, are defined as:

γ =
m2

m1 +m2

, σ =
MR

m1 +m2

(3.8)

Equations (3.4) and (3.7) can be expressed in matrix form in terms of the parameters defined in
equations (3.6), (3.7) and (3.8).[

1 + σ γ
1 1

]{
ü1 (t)
ü2 (t)

}
+

[
2ξ1ω1 0
0 2ξ2ω2

]{
u̇1 (t)
u̇2 (t)

}
+

[
ω2
1 0
0 ω2

2

]{
u1 (t)
u2 (t)

}
= −

{
1
1

}
üg (t) (3.9)

When σ = 0, equation (3.9) is identical to the matrix equation of a two-degree-of-freedom seismic
isolated structure (Kelly 1997; Kelly and Konstantinidis 2011).

By multiplying equation (3.9) from the left with the inverse of the normalized mass matrix:[
1 + σ γ
1 1

]−1

=

[ 1
1+σ−γ − γ

1+σ−γ
− 1

1+σ−γ
1+σ

1+σ−γ

]
(3.10)

the relative accelerations, ü1 (t) and ü2 (t), of each story become explicit expressions of the relative
displacements, and velocities of the two stories

ü1 (t) = −1− γ

µ
üg (t)−

2ξ1ω1

µ
u̇1 (t) +

2 γξ2ω2

µ
u̇2 (t)−

ω2
1

µ
u1 (t) +

γω2
2

µ
u2 (t) (3.11)

and

ü2 (t) = −σ
µ
üg (t)+

2ξ1ω1

µ
u̇1 (t)−

2 (1 + σ) ξ2ω2

µ
u̇2 (t)+

ω2
1

µ
u1 (t)−

(1 + σ)ω2
2

µ
u2 (t) (3.12)

The solution of the system of equations given by equations (3.11) and (3.12) is computed numer-
ically via a state-space formulation(Konstantinidis and Makris 2005; Pitilakis and Makris 2010;
Vassiliou and Makris 2012; Aghagholizadeh and Makris 2018 among the others). The state vector
of the system is

{y (t)} =


y1(t)
y2(t)
y3(t)
y4(t)

 =


u1 (t)
u̇1 (t)
u2 (t)
u̇2 (t)

 (3.13)

and the time-derivative state-vector, {ẏ (t)} is expressed solely in terms of the state variables ap-
pearing in the state vector given by equation (3.13).

{ẏ (t)} =


u̇1 (t)
ü1 (t)
u̇2 (t)
ü2 (t)

 =


y2 (t)

1
µ
[− (1− γ) üg (t)− 2ξ1ω1y2 (t) + 2γξ2ω2y4 (t)− ω2

1y1 (t) + γω2
2y3 (t)]

y4 (t)
1
µ
[−σ üg (t) + 2ξ1ω1 y2 (t)− 2 (1 + σ) ξ2ω2 y4 (t) + ω2

1 y1 (t)− (1 + σ)ω2
2 y3 (t)]

 (3.14)

where µ = 1 + σ − γ = 1 + (MR −m2) / (m1 +m2) > 0.
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With reference to Figure 3.1, the entire base-shear of the structure is

V1 (t) = k1u1 (t) + c1u̇1 (t) +MRü1 (t) = m2ü2 (t) + (m1 +m2) (ü1 (t) + üg (t)) (3.15)

Equation (3.15) brings forward the role of the inerter in association with the framing action of the
first story since the base shear of the structure is proportional to the relative displacement, velocity
and acceleration of the first story multiplied with the corresponding lateral stiffness, k1, damping
constant, c1, and inertance, MR.

3.4 TWO PARALLEL ROTATIONAL INERTIA SYSTEMS

The previous sections introduced the concept of supplemental rotational inertia for the seismic
protection or retrofit of a 2DOF framing systems and it was shown that the proposed concept is
physically realizable with the arrangement of one or more flywheels in series.

Equation (3.3) describes an undamped force-acceleration relation according to which part of the
ground-induced energy is transferred in to the flywheels. Figure 3.3(a) plots the relative displace-
ment, u1 (t), velocity, u̇1 (t), force transferred to the first floor by the pinion (opposite of force
transferred to the chevron frame given by equation (3.3),) and absolute acceleration of the first
story show in Figure 3.1(a) with T1 = 1.0s, T2 = 0.3s, when subjected to a one-sine acceleration
pulse with acceleration amplitude ap = 0.5g and pulse duration Tp = 0.5s. In the interest of
simplicity in this analysis, zero damping is assumed (ξ1 = ξ2 = 0). The shaded stripes in Figure
3.3 correspond to the time-segments where the magnitude of the relative velocity of the first story,
u̇1 (t), reduces on its way to reach a peak displacement. During this interval, the flywheels have
built angular momentum and now, as the translating mass tends to move slower, the flywheels
may drive the mass, therefore inducing deformations–a situation that is not desirable. One chal-
lenge with the proposed concept is that the rotating flywheels should only resist the motion of the
structure without inducing any deformations. This is feasible with the use of a clutch so that the
pinion of the first gearwheel that is engaged to the rack is unable to drive the rack and only the
motion of the translating rack can drive the pinion-gearwheel (Makris and Kampas (2016)). This
is similar to the motion of a bicycle, where the cyclist can drive the wheel through the pedals; yet,
when the bicycle is rolling, the pedals may remain idle. Without loss of generality, assume that
upon initiation of motion, the structure moves to the left; therefore, the front gearwheel rotates
counterclockwise and the force on m1 from the gearwheel is to the right (positive). As the mass,
m1, keeps moving to the left, it will slow down and at the instant where the gearwheel will tend to
drive m1 due to its angular momentum, the force transmission needs to become idle. With the pro-
posed arrangement, upon m1 reaching its first maximum displacement, to the left [u̇1(t)] < 0; the
front gearwheel keeps rotating freely counterclockwise without inducing any force to the structure.
When the motion reverses and the structure starts moving to the right [u̇1(t)] > 0, a second, parallel
rotational inertia system (back flywheels) is needed to oppose the motion, and during the course
of this motion, the first gearwheel of the back system engaged to the rack and rotates clockwise.
The sequential engagement of the two parallel rotational inertial systems that can only resist the
motion is expressed mathematically as

FI (t)

m1 +m2

= σü1 (t) when sgn

[
ü1 (t)

u̇1 (t)

]
> 0 (3.16a)
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Figure 3.3: Response of a 2DOF structure that is engaged to an inerter at the first story
supported on an infinite stiff chevron frame: (a) single inerter which may induce
deformation; (b) pair of inerters that can only resist the motion as described by
equations (3.14) and (3.16a); force from the inerter only opposes the motion.
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and

FI (t)

m1 +m2

= 0 when sgn

[
ü1 (t)

u̇1 (t)

]
< 0 (3.16b)

Accordingly, for the two parallel rotational inertia systems that only resist the motion of the struc-
ture, the equation of motion given in equation (3.9) is modified to[

1 + δσ γ
1 1

]{
ü1 (t)
ü2 (t)

}
+

[
2ξ1ω1 0
0 2ξ2ω2

]{
u̇1 (t)
u̇2 (t)

}
+

[
ω2
1 0
0 ω2

2

]{
u1 (t)
u2 (t)

}
= −

{
1
1

}
üg (t) (3.17)

in which

δ =


1, when sgn

[
ü1(t)
u̇1(t)

]
> 0

0, when sgn
[
ü1(t)
u̇1(t)

]
< 0

(3.18)

Clearly, with the two parallel front and back rotational inertia systems, the flywheels only resist the
motion of the structure and do not give back any energy to the structure. During the time-period
when one of the flywheel systems is rotating idle, its rotation needs to decelerate appreciably
so that when it is again engaged into motion, it will be capable of resisting the motion through
its rotational inertia. This can be achieved by appending an induction generator to the axis of
the flywheel, therefore the opportunity for energy harvesting. With this arrangement, part of the
earthquake-induced energy is converted into electricity.

3.5 RESPONSE SPECTRA OF THE 2DOF STRUCTURE WITH A STIFF CHEVRON
FRAME

The seismic response of the 2DOF structure equipped with an inerter at the first story as described
by equation (3.9) or equations (3.17) and (3.18) is compared with the seismic response of the same
2DOF structure where the inerter is replaced with a supplemental viscous damper. In this case the
value of the damping coefficient C1 = Cc+Cd, where Cc is the damping originating from the first-
story columns and Cd is the damping originating from the supplemental viscous damper. Together
with the drift responses u1 and u2 (relative displacements), of interest are the total acceleration of
the first story, ü1+üg, the total acceleration of second story, ü1+ü2+üg = V2/m2, which is the nor-
malized shear force just above the first story, the total base shear of the structure given by equation
(3.15) and the normalized force transferred to the mounting of the flywheel, FI (t) / (m1 +m2) g,
or to the mounting of the supplemental damper, cdu̇1/ (m1 +m2) g = 2ξdω1u̇1/g.

Figure 3.4 shows the recorded acceleration time-histories used for the response spectrum analysis
presented in this study: (a) The Gilroy Array 6/230 ground motion recorded during the 1979
Coyote Lake, USA earthquake and (b) The Takarazuka/000 ground motion recorded during the
1995 Kobe, Japan earthquake.

The response spectra shown in Figures 3.5, and 3.6 are the results of the solution of equation
(3.9) for a single inerter (left plots) or equations (3.17) and (3.18) when a pair of inerters is used
(right plots). When σ = 0 (thin line), the solution offers the response of the structural systems
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shown in Figures 3.1(b) and 3.1(c). For the structural system shown in Figures 3.1(a) values of the
normalized inertance σ = 0.5 and σ = 1.0 are used. For the structural system shown in Figure
3.1(b) values of ξc = 2% and ξd = 23% are used so that ξ1 = ξc + ξd = 0.02 + 0.23 = 0.25. In all
spectra, the period of the superstructure is T2 = 0.2 sec, with viscous damping ratio ξ2 = 0.02, and
mass ratio, γ = 0.5. Figure 3.5 presents response spectra for the three configurations of the 2DOF
structure shown in Figure 3.1(a), (b) and (c) when subjected to the GilroyArray 6/230 ground
motion recorded during the 1979 Coyote Lake, USA earthquake. Across the spectra we indicate
two shaded strips. The first strip is for 0.5s ≤ T1 ≤ 1.0s and it represents the period range of T1
for a 2DOF structure with the first story being a pilotis. The second shaded strip in the long period
range, T1 ≥ 2.0s, corresponds to seismic isolated structures.

The first observation in Figure 3.5 is that supplemental rotational inertia is most effective in sup-
pressing the displacement of the first story, u1, in particular for long period structures. When two
parallel rotational inertia systems (pair of inerters, right plots) are used, the effectiveness of sup-
plemental rotational inertia (Figure 3.1(a)) in suppressing u1 outperforms the effectiveness of large
values of supplemental damping (ξ1 = 25%) along the entire frequency range. At the same time,
in the period range 0.5s ≤ T1 ≤ 1.0s the base shear of the entire structure, V1, is lower when sup-
plemental rotational inertia is used. This situation reverses in the neighborhood of T1 = 1.5s upon
which supplemental damping results in lower base shears. At the same time the forces transferred
at the support of the flywheels (chevron frame) are appreciable; however, when a pair of inerters is
used these forces are comparable to the case where large values of supplemental damping is used
(see bottom plots of Figure 3.5).

In view of the results presented in Figure 3.5, supplemental rotational inertia (0.5 ≤ σ ≤ 1.0),
emerges as an attractive alternative to suppress both displacements and base shears of structures
supported on pilotis—that is 0.5s ≤ T1 ≤ 1.0s. Among the three configurations examined, seis-

Figure 3.4: Acceleration time histories recorded during (a) 1979 Coyote Lake, California
earthquake; and (b) 1995 Kobe, Japan earthquake.
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Figure 3.5: Response spectra of a two-degree-of-freedom (2DOF) structure equipped with
supplemental rotational inertia (heavy solid lines) or supplemental damping
(dashed lines) supported on a stiff frame when excited by the Gilroy Array 6/230
ground motion recorded during the 1979 Coyote Lake, USA earthquake.
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Figure 3.6: Response spectra of a two-degree-of-freedom (2DOF) structure equipped with
supplemental rotational inertia (heavy solid lines) or supplemental damping
(dashed lines) supported on a stiff frame when excited by Takarazuka /000
ground motion recorded during the 1995 Kobe, Japan earthquake.
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mic isolation (T1 ≥ 2.0s) is most effective in reducing floors accelerations and base shears at the
expense of producing the largest displacements, u1. However, isolation systems are designed to ac-
commodate these high displacements above isolators. Figure 3.6 presents response spectra for the
three configurations of the 2DOF structure shown in Figure 3.1(a), (b) and (c) when subjected to
the Takarazuka/000 ground motion recorded during the 1995, Kobe Japan earthquake and reveals
similar trends as those observed from the response spectra shown in Figure 3.5.

3.6 EQUATIONS OF MOTION OF A 2DOF STRUCTURE WITH A COMPLIANT
CHEVRON FRAME WITH FINITE STIFFNESS AND DAMPING

Now the case where the chevron frame that supports the rotational inertia system shown in Figure
3.1(a) has a finite stiffness, kf , and damping constant, cf , is considered. Because of its compliance,
under the force transferred by the mounting of the flywheel, the chevron frame deforms and this
deformation, influences the resisting force, FI (t), from the flywheel. Accordingly, FI (t), is no
longer expressed with equation (3.3)—that is for a rigid chevron frame, but from (Makris and
Kampas 2016; Makris 2018).

FI (t) +
cf
kf

dF I (t)

dt
+
MR

kf

d2F I (t)

dt2
=MR

(
d2u1 (t)

dt2
+
cf
kf

d3u1 (t)

dt3

)
(3.19)

Equation (3.19) is the constitutive law of a spring-dashpot parallel connection (kf , cf ) that is con-
nected in series with an inerter (MR). This mechanical network is also known as the tuned inerter
damper (TID) (Lazar et al. 2014), and was coined recently as the inertoviscoelastic fluid A (Makris
and Kampas 2016). The term fluid expresses that the network undergoes infinite displacement un-
der a static loading. By defining the relaxation time, λ = cf/kf and the rotational frequency
ωR =

√
kf/MR (Makris 2017, 2018), equation (3.19) assumes the form.

FI (t) + λ
dF I (t)

dt
+

1

ω2
R

d2F I (t)

dt2
=MR

(
d2u1 (t)

dt2
+ λ

d3u1 (t)

dt3

)
(3.20)

Clearly the product λωR is dimensionless. The mechanical system described by equation (3.20)
becomes critically damped when λωR = 2 (Makris 2018). In the special case where the damping
within the chevron frame is neglected, cf = 0, equation (3.20) reduces to

FI (t) +
1

ω2
R

d2F I (t)

dt2
=MR

d2u1 (t)

dt2
(3.21)

which is the constitutive equation of the inertoelastic fluid (Makris 2017).

The equations of motion of the 2DOF structure shown in Figure 3.1 are given by equations (3.4)
and (3.5); however, now for the case of a chevron frame with finite stiffness, kf , and damping, cf ,
the force from the flywheel, FI (t) appearing in equation (3.3) is described by equation (3.20).

By using the frequencies, damping, mass and inertance ratios defined by equations (3.6) to (3.8),
the equations of motion of the 2DOF structure shown in Figure 3.1(a) with a compliant chevron
frame with finite stiffness, kf , and damping, cf = λkf can be expressed in matrix form.[

1 γ
1 1

]{
ü1 (t)
ü2 (t)

}
+

[
2ξ1ω1 0
0 2ξ2ω2

]{
u̇1 (t)
u̇2 (t)

}
+

[
ω2
1 0
0 ω2

2

]{
u1 (t)
u2 (t)

}
= −

[
1 1
0 1

]{
FI(t)
m1+m2

üg (t)

}
(3.22)
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in which FI (t) is solution of equation (3.20).

By multiplying equation (23) from the left with the inverse of the normalized mass matrix[
1 γ
1 1

]−1

=

[ 1
1−γ − γ

1−γ
− 1

1−γ
1

1−γ

]
(3.23)

the relative accelerations, ü1 (t) andü2 (t) are expressed as

ü1 (t) = − 1
1−γ fI (t)− üg (t)− 2ξ1ω1

1−γ u̇1 (t) +
2 γξ2ω2

1−γ u̇2 (t)− ω2
1

1−γ u1 (t) +
γω2

2

1−γ u2 (t) (3.24)

and

ü2 (t) =
1

1− γ
fI (t) +

2ξ1ω1

1− γ
u̇1 (t)−

2 ξ2ω2

1− γ
u̇2 (t) +

ω2
1

1− γ
u1 (t)−

ω2
2

1− γ
u2 (t) (3.25)

where fI (t) = FI (t) / (m1 +m2) has units of acceleration.

In this case, the state vector of the system is

{y (t)} =



y1 (t)
y2 (t)
y3 (t)
y4 (t)
y5 (t)
y6 (t)


=



u1 (t)
u̇1 (t)
u2 (t)
u̇2 (t)
fI (t)

ḟI (t)


(3.26)

From equation (3.20) it is evident that the time-derivative of y6 (t), that is ẏ6 (t) = f̈I (t), involves
the third derivative of u1 (t) which is given by

...
u 1 (t) = − 1

1−γ ḟI (t)−
...
u g (t)− 2ξ1ω1

1−γ ü1 (t) +
2 γξ2ω2

1−γ ü2 (t)− ω2
1

1−γ u̇1 (t) +
γω2

2

1−γ u̇2 (t) (3.27)

In terms of the state variables given by equation (27), equation (28) assumes the form

...
u 1 (t) = −

(
1

1− γ
y6 (t) +

...
u g (t)

)
− 2ξ1ω1

1− γ

(
− 1

1− γ
y5 (t)− üg (t)−

2ξ1ω1

1− γ
y2 (t) +

2 γξ2ω2

1− γ
y4 (t)−

ω2
1

1− γ
y1 (t) +

γω2
2

1− γ
y3 (t)

)
+

2 γξ2ω2

1− γ

(
1

1− γ
y5 (t) +

2ξ1ω1

1− γ
y2 (t)−

2ξ2ω2

1− γ
y4 (t) +

ω2
1

1− γ
y1 (t)−

ω2
2

1− γ
y3 (t)

)
− ω2

1

1− γ
y2 (t) +

γω2
2

1− γ
y4 (t) (3.28)

The solution of the system of differential equations given by equations (3.20), (3.24) and (3.25) is
computed by integrating the time-derivative of the state vector given by equation (3.26)

{ẏ (t)} =



u̇1 (t)
ü1 (t)
u̇2 (t)
ü2 (t)

ḟI (t)

f̈I (t)


=



y2 (t)

− 1
1−γy5 (t)− üg (t)− 2ξ1ω1

1−γ y2 (t) +
2 γξ2ω2

1−γ y4 (t)− ω2
1

1−γ y1 (t) +
γω2

2

1−γ y3 (t)

y4 (t)
1

1−γy5 (t) +
2ξ1ω1

1−γ y2 (t)−
2 ξ2ω2

1−γ y4 (t) +
ω2
1

1−γ y1 (t)−
ω2
2

1−γ y3 (t)

y6 (t)
ω2
Rσ (ü1 (t) + λ

...
u 1 (t))− ω2

R y5 (t)− ω2
Rλ y6 (t)


(3.29)
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In the last row of equation (3.29), the acceleration of the first story, ü1 (t), is given by the second
row of equation (3.29) and the derivative of the acceleration, ...

u 1 (t), is given by equation (3.28).
The numerical integration of equation (3.29) is performed with standard ordinary differential equa-
tion (ODE) solvers available in MATLAB1.

Alternatively, given that equations (3.24), (3.25) and (3.20) are linear differential equations, the
response history of the 2DOF structure shown in Figure 3.1 can be computed with frequency
domain analysis. The Fourier transform of equation (3.20) gives

fI (ω) =
FI (ω)

m1 +m2

=
−σω2 (1 + iωλ)

1 + iωλ− ω2

ω2
R

u1 (ω) (3.30)

whereas the Fourier transform of equations (3.24) and (3.25) giveω2 − 2ξ1iω1ω
1−γ − ω2

1

1−γ −
−σω2(1+iωλ)

1−γ
(
1+iωλ− ω2

ω2
R

)
u1 (ω) + [2γξ2iω2ω

1−γ +
γω2

2

1−γ

]
u2 (ω)−

[
1

1−γ

]
fI (ω) = üg (ω) (3.31)

and[
2ξ1iω1ω
1−γ +

ω2
1

1−γ +
−σω2(1+iωλ)

1+iωλ− ω2

ω2
R

]
u1 (ω) +

[
ω2 − 2ξ2iω2ω

1−γ − ω2
2

1−γ

]
u2 (ω) +

[
1

1−γ

]
fI (ω) = 0 (3.32)

Substitution of the expression for fI (ω) given by equation (3.30) into equations (3.31) and (3.32)
the solution of the system of equations (3.31) and (3.32) gives

u1 (ω) =
B2 (ω)

A1 (ω)B2 (ω)− A2 (ω)B1 (ω)
üg (ω) (3.33)

u2 (ω) =
B1 (ω)

A2 (ω)B1 (ω)− A1 (ω)B2 (ω)
üg (ω) (3.34)

where

A1 (ω) = ω2−2ξ1iω1ω

1− γ
− ω2

1

1− γ
− −σω2 (1 + iωλ)

1− γ
(
1 + iωλ− ω2

ω2
R

) (3.35a)

A2 (ω) =
2γξ2iω2ω

1− γ
+

γω2
2

1− γ
(3.35b)

B1 (ω) =
2ξ1iω1ω

1− γ
+

ω2
1

1− γ
+

−σω2 (1 + iωλ)

1 + iωλ− ω2

ω2
R

(3.36a)

1 MATLAB. (2021). High performance numerical computation and visualization software. The Math works,
Natick,Mass.
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B2 (ω) = ω2 − 2ξ2iω2ω

1− γ
− ω2

2

1− γ
(3.36b)

and the time-domain solution for the responses of stories 1 and 2 is given by the inverse Fourier
transform

uj (t) =
1

2π

∫ ∞

−∞
uj (ω) e

iωtdω, j ϵ {1, 2} (3.37)

When a single rotational inertia system is used, the frequency domain solution given by equation
(3.37) is attractive since it does not involve the numerical differentiation of the ground acceleration
which in most cases is only available in digital form (i.e. acceleration recordings). The agreement
between the time–domain solution by integrating the derivative of the state-vector given by equa-
tion (3.29) and the frequency domain solution given by equation (3.37) has been confirmed during
the course of this study.

When the two parallel rotational inertia system (pair of inerters) is employed that can only resist
the motion of the structure without inducing any deformation (the pinion of the gearwheel that
is engaged in the rack of the first story is unable to drive the rack and only the motion of the
translating rack can drive the pinion), the normalized force, f1 (t) = FI (t) / (m1 +m2) appearing
in equations (3.24) and (3.25) is given by equation (3.20) when sgn [ü1 (t) /u̇1 (t)] ≥ 0 and by

f1 (t) =
FI (t)

m1 +m2

= 0 when sgn

[
ü1 (t)

u̇1 (t)

]
< 0 (3.38)

In the case when fI (t) = 0, the equations of motion of our 2DOF structure become piecewise
linear and only a time–domain solution is feasible. The state vector of the system is given by
equation (3.29) when sgn [ü1 (t) /u̇1 (t)] > 0 and by

{ẏ (t)} =


u̇1 (t)
ü1 (t)
u̇2 (t)
ü2 (t)

 =


y2 (t)

−üg (t)− 2ξ1ω1

1−γ y2 (t) +
2 γξ2ω2

1−γ y4 (t)− ω2
1

1−γ y1 (t) +
γω2

2

1−γ y3 (t)

y4 (t)

−üg (t)− 2ξ1ω1

1−γ y2 (t) +
2 γξ2ω2

1−γ y4 (t)− ω2
1

1−γ y1 (t) +
γω2

2

1−γ y3 (t)

 (3.39)

when sgn [ü1 (t) /u̇1 (t)] < 0.

The response of the 2DOF structure with supplemental rotational inertia shown in Figure 3.1(a)
with a compliant chevron frame with finite stiffness, kf and damping cf is compared with the
response of a heavily damped 2DOF structure with supplemental viscous damping at the first
story with damping constant cd = 2ξdω1 (m1 +m2). The mechanical network of a spring-dashpot
parallel connection (kf , cf ) that is connected in series with a dashpot (cd) is known as the Jeffreys
fluid (Jeffreys 1929; Bird et al. 1987; Makris and Kampas 2016) and its constitutive law is

FI (t) +
cd + cf
kf

dF I (t)

dt
= cd

[
du1 (t)

dt
+
cf
kf

d2u1 (t)

dt2

]
(3.40)
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By defining the relaxation time λd = (cd + cf ) /kf and recognizing that cf/kf = λ, (3.40) assumes
the form

fI (t) + λd
df I (t)

dt
= 2ξdω1

[
du1 (t)

dt
+ λ

d2u1 (t)

dt2

]
(3.41)

where again fI (t) = FI (t) / (m1 +m2).

For the case of a 2DOF structure with supplemental damping supported by a compliant chevron
frame with finite stiffness shown in Figure 3.1(b), the state-vector of the system is

{y (t)} =


y1 (t)
y2 (t)
y3 (t)
y4 (t)
y5 (t)

 =


u1 (t)
u̇1 (t)
u2 (t)
u̇2 (t)
fI (t)

 (3.42)

The solution of the system of differential equations given by equations (3.24), (3.25) and (3.41) is
computed by integrating the time-derivative of the state-vector given by equation (3.42)

{ẏ (t)} =


u̇1 (t)
ü1 (t)
u̇2 (t)
ü2 (t)

ḟI (t)

 =



y2 (t)

− 1
1−γy5 (t)− üg (t)− 2ξ1ω1

1−γ y2 (t) +
2 γξ2ω2

1−γ y4 (t)− ω2
1

1−γ y1 (t) +
γω2

2

1−γ y3 (t)

y4 (t)
1

1−γy5 (t) +
2ξ1ω1

1−γ y2 (t)−
2 ξ2ω2

1−γ y4 (t) +
ω2
1

1−γ y1 (t)−
ω2
2

1−γ y3 (t)
1
λd

[−y5 (t) + 2ξdω1 (y2 (t) + λ (ü1 (t)))]


(3.43)

3.7 RESPONSE SPECTRA OF THE 2DOF STRUCTURE WITH A COMPLIANT
CHEVRON FRAME WITH FINITE STIFFNESS AND DAMPING

The response spectrum shown in Figure 3.7 are the results of the solution of equation (3.29) (single
inerter with a time-domain formulation) or equation (3.37) (single inerter with a frequency domain
formulation) and equations (3.29) and (3.39) when a pair of inerters is used. Again, when σ = 0
(thin line), the solution offers the response of the structural systems shown in Figures 3.1(b) and
(c). For the structural system shown in Figure 3.1(a), values of the normalized inertance, σ = 0.5
and σ = 1.0 are used. The compliance of the chevron frame is expressed with the relaxation
time, λ = cf/kf = 0.05, while the stiffness of the chevron frame compared to the supplemental
inertance MR, is expressed with the dimensionless product λωR = 0.5. For the structural system
shown in Figure 3.1(b), values of ξc = 2% and ξd = 23% are used so that ξ1 = ξc + ξd = 0.02 +
0.23 = 0.25. When supplemental damping cd, is used, the compliance of the chevron frame is
λd = (cd + cf ) /kf = 0.5. In all spectra, the period of the superstructure is T2 = 0.2s with viscous
damping ratio ξ2 = 0.02 and mass ratio γ = 0.5. Figure 3.7 presents response spectra for the three
configuration of the 2DOF structure shown in Figure 3.1 when the chevron frame has finite stiffness
kf and damping cf and is subjected to the Gilroy Array 6/230 ground motion recorded during the
1979 Coyote Lake, USA earthquake. Across the spectra we indicate the same two shaded strips
as explained when discussing the spectra shown in Figure 3.5. The first observation in Figure 3.7
is that even when a compliant chevron frame is used, supplemental rotational inertia remains on
effective strategy in suppressing displacements of the first story, u1 (t), along the entire frequency
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Figure 3.7: Response spectra of a two-degree-of-freedom (2DOF) structure equipped
with supplemental rotational inertia (heavy solid lines) or supple-
mental damping (dashed lines) supported on a compliant frame
(λ = 0.05s, λd = 0.5s, λωR = 0.5) when excited by the Gilroy Array 6/230
ground motion recorded during the 1979 Coyote Lake, USA earthquake.
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range. Interestingly, Figure 3.7 reveals, that the compliance of the chevron frame reduces the
effectiveness of the pair of inerters (right plots) when compared to the case of a single inerter (left
plots) which produces the most favorable response other than increasing the forces transferred to
the chevron frame (bottom plots). In summary, the results presented in Figure 3.7 in association
with the results presented in Figures 3.5 and 3.6 (for a stiff chevron frame) reveal that supplemental
rotational inertia is an effective response modification strategy for controlling the response of a
structure with a soft first-story at the expense of transferring appreciable forces at the support
of the inerter. Accordingly, assuming that the chevron frame is properly designed, supplemental
rotational inertia is a competitive alternative to the use of supplemental damping, in particular for
cases with large relative displacement demands.

3.8 CONCLUSIONS

This chapter investigates the potential advantages of using supplemental rotational inertia for the
seismic protection of moment-resisting frames. The chapter examines the response of a 2DOF
structure where the first story employs a rack-pinion-flywheel system whose resisting force is pro-
portional to the relative acceleration between the vibrating mass and the support of the flywheels.
Both cases of a stiff and a compliant support of the inerter are examined and the corresponding
equations of motion have been derived. The chapter shows that the supplemental rotational in-
ertia controls effectively the displacements of the first story along a wide range of the response
spectrum. Furthermore, the proposed seismic protection strategy can accommodate large relative
displacements without suffering from the issue of viscous heating (Makris 1998; Makris et al.
1998; Black and Makris 2007) and potential leaking that challenges the implementation of fluid
dampers under prolonged cyclic loading.

The chapter also examines the dynamic response of the 2DOF structure when two parallel rota-
tional inertia systems are installed so that they can only resist the motion of the structure without
inducing any deformation. This can be achieved with a pair of inerters and the use of a simple
clutch (Makris and Kampas 2016). When the chevron frame that supports the rotational inertia
system is stiff, the use of two parallel rotational inertia systems offers improved results for the
response of the 2DOF structure. However, as the compliance of the chevron frame that supports
the inerters increases, the use of a single rotational inertia system offers more favorable response
other than increasing the forces transferred to the chevron frame.
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4 Response of Seismically Isolated Structures
with Supplemental Rotational Inertia

This chapter was partly motivated from the ability of inerters to control the response of flexible and
yielding structures as shown in chapter 3 and chapter 5 of this report (see also Makris and Moghimi
2019; Makris and Kampas 2016; Moghimi and Makris 2021) and partly from their known property
to eliminate the participation of higher modes (Furuhashi and Ishimaru 2008; Ye et al. 2019). Our
study shows that while a small amount of supplemental rotational inertia is needed to eliminate the
participation of the second mode of the two-degree-of-freedom isolated structure shown in Figure
4.1, the effect of this elimination is marginal on the structural response, since the participation of
the second mode is invariably small even when isolation systems without inerters are used (Kelly
1990, 1997). Our study also brings forward and corrects issues regarding the orthogonality of
eigenmodes in a recent study (Ye et al. 2019); and revisits how supplemental rotational inertia
at the isolation level influences the modal frequencies, mode shapes and participation factors of
the classical two-degree-of-freedom (2DOF) linear seismic isolated, structure shown in Figure 4.1
(Kelly 1990, 1997). Our study upon showing that the reaction force at the support of the inerter is
appreciable; proceeds with the nonlinear response analysis of the same 2DOF isolated structure by
adopting a bilinear behavior for the isolation system (either lead rubber bearings (LRB) or single
concave sliding bearings (SCSB)) in association with a formulation that accounts for the com-
pliance of the support of the inerters and discusses advantages and challenges that emerge when
supplemental rotational inertia is used in the isolation system. Our study concludes that the pres-
ence of inerters aggravates both the displacement and acceleration response of the superstructure
and as a result for larger isolation periods (Tb > 2.5 sec) the use of inerters is not recommended.

4.1 LINEAR THEORY OF SEISMIC ISOLATION WITH SUPPLEMENTAL
ROTATIONAL INERTIA

Our analysis starts with the eigenvalue analysis of the 2DOF isolated structure shown in Figure
4.1 where the isolation system has elastic stiffness kb and damping constant cb, whereas the super-
structure has elastic stiffness ks and damping constant cs. In this section we adopt the notation and
the degrees of freedom used by Kelly (1990, 1997) where ub is the relative to the ground displace-
ment of mb and us is the relative displacement of ms to mb as shown in Figure 4.1. At the base
level a non-compliant (rigid) pedestal supports a flywheel with radius R and mass mw that can
rotate about point O. Concentric to the flywheel, there is an attached pinion with radius ρ engaged
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Figure 4.1: Classical two-degree-of-freedom seismic isolation structure (Kelly 1990, 1997)
with supplemental rotational inertia at the isolation system.

to a linear rack connecting to the bottom of mass mb. With this arrangement, when the mass mb

undergoes a displacement, ub (t) to the left, the flywheel is subjected to a clockwise rotation θ (t).
Given that there is no slipping between the rack and the pinion, ub (t) = ρθ (t); whereas, the in-
ternal force FI (t), that develops along the rack-pinion interface needs to satisfy dynamic moment
equilibrium given by equation (1.2).

With reference to Figure 4.1, for a displacement ub (t) to the right, the internal force

FI (t) =
Iwθ̈ (t)

ρ
=

1

2
mw

R2

ρ2
üb (t) =MRüb (t) (4.1)

oppose the motion of the mass mb (to the left). In equation (4.1), MR = (1/2)mw (R
2/ρ2) is the

inertance of the inerter with units of mass Smith (2002). Accordingly, dynamic equilibrium of the
entire structure above isolators gives

(mb +ms +MR) üb +msüs + cbu̇b + kbub = − (mb +ms) üg (4.2)

and dynamic equilibrium of mass ms gives

msüb +msüs + csu̇s + ksus = −msüg (4.3)

Following the notation introduced by Kelly (1990, 1997), the nominal frequencies and nominal
damping ratios are

ω2
b =

kb
mb +ms

, ω2
s =

ks
ms

, 2ξbωb =
cb

mb +ms

, 2ξsωs =
cs
ms

(4.4)
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whereas, the mass ratio, γ, and inertance ratio, σ, are defined as

γ =
ms

mb +ms

=
ms

M
σ =

MR

mb +ms

=
MR

M
(4.5)

where M = mb +ms (Kelly 1990, 1997). Equations (4.2) and (4.3) can be expressed in a matrix
form in terms of the parameters defined in equations (4.4) and (4.5).[

M +MR ms

ms ms

]{
üb(t)
üs(t)

}[
2ξbMωb 0

0 2ξsmsωs

]{
u̇b(t)
u̇s(t)

}[
Mω2

b 0
0 msω

2
s

]{
ub(t)
us(t)

}
= −

{
M
ms

}
üg(t) (4.6)

When MR = 0, equation (4.6) is identical to the matrix equation of the two-degree-of-freedom
seismically isolated, elastic structure (Kelly 1990, 1997). The earthquake response of the two-
degree-of-freedom isolated structure shown in Figure 4.1 can be evaluated directly with modal
analysis (Kelly 1997; Clough and Penzien 1975; Chopra 2000). In addition to the response time-
histories, a modal analysis provides insight into the dynamics of the isolated structure and the
conceptual results may be applicable to more elaborate structures.

4.1.1 Eigenvalue Analysis

Upon dropping the damping matrix in equation (4.6) its homogeneous version (free vibrations)
yields [

ω2
b − ω2(1 + σ) −ω2γ

−ω2 ω2
s − ω2

]{
Φb

Φs

}
=

{
0
0

}
(4.7)

where ω are the eigenvalues and <ϕb ϕs>T are the eigenvectors. The characteristic equation of
the homogeneous equation (4.7) gives

(1 + σ − γ)ω4 −
(
ω2
b + (1 + σ)ω2

s

)
ω2 + ω2

bω
2
s = 0 (4.8)

which has also been presented by (Ye et al. 2019). The lower of the two roots, ω1, of equation
(4.8) represents the shifted isolation frequency due to the flexibility of the isolation bearings and
the presence of the inerter; whereas, the higher root, ω2, represents the modified superstructure
frequency due to the presence of the isolation bearings and the inerter

ω2
1

ω2
2

=
1

2 (1 + σ − γ)

{
ω2
b + (1 + σ)ω2

s ∓
[(
ω2
b + (1 + σ)ω2

s

)2 − 4 (1 + σ − γ)ω2
bω

2
s

] 1
2

}
(4.9)

The radical in the right-hand side of equation (4.9) can be expressed as

[
(ω2

b + (1 + σ)ω2
s)

2 − 4 (1 + σ − γ)ω2
bω

2
s

] 1
2
= ((1 + σ)ω2

s − ω2
b )

[
1 + 4γ

ω2
bω

2
s

((1+σ)ω2
s−ω2

b)
2

] 1
2

(4.10)

We now follow the same approach presented by Kelly (1990, 1997) by expanding the radical ap-
pearing in the right-hand side of equation (4.10) in Taylor series after recognizing that for isolated
structures with well-separated frequencies, ω2

b ≪ ω2
s . By defining ϵ = ω2

b/ω
2
s ≪ 1 and after using

47



that ω2
b = ϵω2

s , the Taylor series expansion of the radical in the right-hand side of Equation (4.10)
gives [

1 + 4γ
ϵ

(1 + σ − ϵ)2

] 1
2

= 1 + 2γ
ϵ

(1 + σ − ϵ)2
− 2γ2

ϵ2

(1 + σ − ϵ)4
+ . . . (4.11)

Substitution of the right-hand side of equation (4.11) into the first equation (4.9) gives

ω2
1 =

ω2
b

1 + σ − γ

[
1− γ

(1 + σ)
(
1− ϵ

1+σ

) (1− γ
ϵ

(1 + σ)2
(
1− ϵ

1+σ

)2
)]

(4.12)

Upon expanding 1/ (1− ϵ/ (1 + σ)) = 1 + ϵ/ (1 + σ) + . . . and 1/ (1− ϵ/ (1 + σ))2 = 1 +
2ϵ/ (1 + σ) + . . . and after retaining terms of order ϵ, equation (4.12) yields the following result

ω2
1 =

ω2
b

1 + σ

(
1− γϵ

(1 + σ)2

)
(4.13)

For the classical case where there is no inerter in the isolation system (σ =MR/ (mb +ms) = 0),
equation (4.13) offers the known result, ω2

1 = ω2
b (1− γϵ) (Kelly 1990, 1997) . The first modal

frequency ω2
1 of the isolated structure shown in Figure 4.1 has also been derived by Ye et al. 2019,

however the term (1 + σ)2 in the denominator of γϵ appearing in Equation (4.13) is missing. This
is a minor omission since the γϵ term has a negligible influence on ω1 when the frequencies ωs and
ωb =

√
ϵωs are well separated.

Equation (4.13) indicates that the presence of the inerter with inertance ratio σ =MR/ (mb +ms)
reduces the isolation frequency, ωb; therefore, the first modal period is lengthen by

√
1 + σ show-

ing that the presence the inerter in the isolation system of the 2DOF structure depicted in Figure
4.1 produces the same period lengthening that happens in the single-degree-of-freedom structure
equipped with an inerter as shown in (Furuhashi and Ishimaru 2008; Makris and Kampas 2016;
Moghimi and Makris 2021). Substitution of the right-hand side of equation (4.11) into the second
equation (4.9) gives

ω2
2 =

ω2
s

1 + σ − γ

[
1 + σ + γ

ϵ

1 + σ − ϵ

(
1− γ

ϵ

(1 + σ − ϵ)2

)]
(4.14)

By performing the same Taylor expansions as in equation (4.12) and after retaining terms of order
ϵ, equation (4.14) yields the following result

ω2
2 =

ω2
s

1 + σ − γ

[
1 + σ +

γϵ

1 + σ

]
(4.15)

The second modal frequency ω2 given by equation (4.15) has also been derived correctly in (Ye
et al. 2019).

For the classical case where there is no inerter in the isolation system (σ =MR/ (mb +ms) = 0),
equation (4.15) offers the known result ω2

2 = ω2
s (1 + γϵ) / (1− γ)(Kelly 1990, 1997). The first

mode shape {ϕ1} is extracted from equation (4.7) by setting ω2 = ω2
1 which is given by equation

(4.13). Upon setting ϕ1
b = 1 and after retaining terms of order ϵ, the first eigenmode is{

ϕ1
}
=

{
ϕ1
b

ϕ1
s

}
=

{
1
ϵ

1+σ

}
(4.16)
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Equation (4.16) indicates that the presence of an inerter with inertance ratio σ =MR/ (mb +ms) =
MR/M in the isolation system further suppresses the superstructure drift = ϵ/ (1 + σ) when com-
pared to the drift= ϵ that results from the classical linear isolation system without inerter. The first
mode shape {ϕ1} has also been presented in (Ye et al. 2019), however the term (1 + σ) appears
incorrectly in the numerator of ϕ1

s rather than in the denominator as shown by equation (4.16) and
leads to flawed, unfavorable conclusion. This inadvertent error is also brought forward because it
violates the orthogonality conditions of normal modes.

By setting ω2 = ω2
2 , which is given by equation (4.15) and after retaining terms of order ϵ in

equation (4.9), the second eigenmode is

{
ϕ2
}
=

{
ϕ2
b

ϕ2
s

}
=

{
1

− 1
γ

[
1 + σ − (1− γ

1+σ
)ϵ
]} (4.17)

which has been also presented in (Ye et al. 2019) correctly. Figure 4.1 plots the eigenmode ϕ1

and ϕ2 next to schematic of the 2DOF isolated linear structure that is equipped with supplemental
rotational inertia at the isolation level. Because of the linearity of the structure shown in Figure
4.1, the eigenmodes {ϕ1} and {ϕ2} given by equations (4.16) and (4.17) shall be orthogonal to the
mass and stiffness matrices appearing in Equation (4.6) . Accordingly,

[Φ]T [m] [Φ] =M

[
1 ϵ

1+σ

1 ϕ2
s

] [
1 + σ γ
γ γ

] [
1 1
ϵ

1+σ
ϕ2
s

]

=M

1 + σ + 2γϵ
1+σ+ ϵ

2

(1+σ)2
ϵ2 1+σ−γ

(1+σ)2

ϵ2 1+σ−γ
(1+σ)2

1+σ−γ
γ(1+σ)2

[
(1 + σ) (1 + σ − ϵ)2 + 2γϵ

(
1 + σ − ϵ

2

)]
 (4.18)

where ϕ2
s = − 1

γ

[
1 + σ −

(
1− γ

1+σ

)
ϵ
]

appears in equation (4.17). The off-diagonal terms are
identical and of order ϵ2; therefore zero, given that in our entire analysis we retain terms up to
order ϵ. The diagonal terms are the modal masses, which upon retaining terms up to order ϵ
simplify to

M1 =M

(
1 + σ + 2

γϵ

1 + σ

)
and M2 =M

(1 + σ − γ) (1 + σ)

γ

(
1− 2ϵ

1 + σ − γ

(1 + σ)2

)
(4.19)

In the absence of rotational inertia (σ = 0) the expressions of M1 and M2 given by equation (4.19)
reduce to the modal masses reported by Kelly (1990, 1997). The modal stiffnesses are given by

[Φ]T [k] [Φ] =Mω2
s [Φ]

T

[
ϵ 0
0 γ

]
[Φ] =Mω2

s


ϵ+ γϵ2

(1+σ)2
ϵ2 1+σ−γ

(1+σ)2

ϵ2 1+σ−γ
(1+σ)2

ϵ+
[(1+σ)2−ϵ(1+σ−γ)]

2

γ(1+σ)2

 (4.20)

where again the off-diagonal terms are of order ϵ2, confirming the orthogonality of the eigenmodes
on the stiffness matrix. The ratios Kj/Mj = ω2

j , j ∈ 1, 2 return the modal frequencies ω2
1 and ω2

2

given by equations (4.13) and (4.15). For instance, with reference to equations (4.20) and (4.19)
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when j = 1

K1

M1

=
ω2
b

(
1 + γϵ

(1+σ)2

)
1 + σ + 2 γϵ

1+σ

=
ω2
b

1 + σ

1 + γϵ

(1+σ)2

1 + 2 γϵ

(1+σ)2
≈ ω2

b

1 + σ

(
1− γϵ

(1 + σ)2

)
= ω2

1 (4.21)

and equation (4.13) is recovered. While the eigenmodes {Φ1} and {Φ2} given by equations (4.16)
and (4.17) are orthogonal to the mass and stiffness matrices as shown by equations (4.18) and
(4.20), the product

[Φ]T [c] [Φ] = 2Mωs

[
1 ϵ

1+σ

1 ϕ2
s

] [√
ϵξb 0
0 γξs

] [
1 1
ϵ

1+σ
ϕ2
s

]

= 2Mωs


√
ϵξb + ϵ2 γ

(1+σ)2
ξs

√
ϵξb − ϵξs + ϵ2 1+σ−γ

(1+σ)2

√
ϵξb − ϵξs + ϵ2 1+σ−γ

(1+σ)2

√
ϵξb +

[1+σ+ϵ( γ
1+σ

−1)]
2

γ
ξs

 (4.22)

yields off-diagonal terms that couple the equations of motion when expressed in terms of the modal
coordinates qj . However, it is worth nothing that the presence of the inerter does not contribute to
this coupling which is entirely due to the damping of the isolation system ξb and of the superstruc-
ture, ξs. This result was anticipated since the inertance of the inerter, σ, appears only in the mass
matrix (see equation (4.6)) on which the eigenmodes are orthogonal as shown by equation (4.18).

In view of the simplicity of modal analysis, this mild coupling due to the term
√
ϵ ξb − ϵξs, is

neglected as is adopted in the works by Kelly Kelly (1990, 1997), and one can merely proceed
with the modal damping offered by the diagonal terms of equation (4.22)

2ξ1ω1 =
2Mωs

√
ϵ ξb

M1

, 2ξ2ω2 =

2Mωs

[
√
ϵξb +

[1+σ+ϵ( γ
1+σ

−1)]
2

γ
ξs

]
M2

(4.23)

where ξ1 and ξ2 are the modal damping ratios, ω1 and ω2 are the modal frequencies given by
equations (4.13) and (4.15) and M1 and M2 are the modal masses given by equation (4.19). Upon
substitution of these expression into equation (4.23), and after retaining terms up to order ϵ, (we
have also neglected terms of the order of ϵ3/2) one obtains

ξ1 =
ξb√
1 + σ

(
1− 3

2

γϵ

(1 + σ)2

)
, and ξ2 =

ξbγ
√
ϵ+ ξs

[
(1 + σ)2 − 1

2
γϵ
]

(1 + σ)3/2
√
1 + σ − γ

(4.24)

The modal damping ratios presented by equation (4.24) have also been presented in (Ye et al. 2019)
where the result for ξ2 is correct and also contains term of the order of ϵ3/2; whereas, the result for
ξ1 has a minor error since the term (1 + σ)2 in the denominator of the γϵ term in ξ1 is missing.
Equation (4.24) reveals that supplemental rotational inertia (σ > 0) suppress both modal damping
ratios ξ1 and ξ2 which become nearly independent of ϵ = ω2

b/ω
2
s as σ increases (see Figure 4.2).

50



Figure 4.2: Reduction of the first and second modal damping ratios ξ1 and ξ2 due to supple-
mental rotational inertia with inertance MR = σM = σ (mb +ms). The graphs
also compare the modal damping ratio values offered by equation (4.24) (where
only terms up to order ϵ have been retained) against the corresponding values
before taking the Taylor expansions offered by equation (4.23).

4.2 MODAL RESPONSE CONTRIBUTIONS AND SEISMIC RESPONSE ANALYSIS

With the two eigenmodes of the 2DOF structure shown in Figure 4.1 being offered by equations
(4.16) and (4.17), its linear response history can be expressed with modal superposition{

ub (t)
us (t)

}
= {ϕ}

{
q1 (t)
q2 (t)

}
=

[
1 1
ϵ

1+σ
− 1
γ

[
1 + σ −

(
1− γ

1+σ

)
ϵ
]]{q1 (t)

q2 (t)

}
(4.25)

where [ϕ] is the modal matrix and q1 (t), q2 (t) are the modal coordinates (Clough and Penzien
1975; Chopra 2000) which are scalar, time dependent participation functions.

Substitution of the displacement vector given by equation (4.25) into the matrix equation of motion
given by equation (4.6) and upon multiplying from the left with the transpose of the modal matrix
[ϕ]T , the coupled equations of motion decouple due to the orthogonality of modes on the mass and
stiffness matrices (see equations (4.18) and (4.20)); after neglecting the small coupling due to the
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off-diagonal damping terms (see equation (4.22)).

q̈1 (t) + 2ξ1ω1q̇1 (t) + ω2
1q1 (t) = −M

M1

(
1 +

γϵ

1 + σ

)
üg (t) = −L1üg (t) (4.26)

q̈2 (t) + 2ξ2ω2q̇2 (t) + ω2
2q2 (t) = −M

M2

[
−σ +

(
1− γ

1 + σ

)
ϵ

]
üg (t) = −L2üg (t) (4.27)

In the decoupled equations (4.26) and (4.27) ω1 and ω2 are the eigenvalues of the 2DOF structure
given by equations (4.13) and (4.15), ξ1 and ξ2 are its modal damping ratios given by equation
(4.24) and M1 and M2 are the modal masses given by equation (4.19).

By virtue of the results presented by equation (4.19), the modal response contributions (participa-
tion factors) L1 and L2 appearing on the right of equations (4.26) and (4.26) after retaining terms
up to order ϵ are given by

L1 =
1

1 + σ
− γϵ

(1 + σ)2

(
2

1 + σ
− 1

)
and L2 =

γ

1 + σ

[
− σ

1 + σ − γ
+ ϵ

1− σ

(1 + σ)2

]
(4.28)

In the absence of supplemental rotational inertia in the isolation system (σ = 0), the participation
factors reduce to L1 = 1− γϵ and L2 = γϵ reported by Kelly Kelly (1990, 1997).

In his insightful publications, Kelly (1990, 1997) explains that the classical result for the participa-
tion factor of the second mode (the mode that involves structural deformations L2 = γϵ)-that is of
order ϵ further contributes to the effectiveness of seismic isolation since the frequency separation
(ω2

b = ϵω2
s , withϵ ≪ 1) suppresses the participation of the second mode {ϕ2}. In the case where

the isolation system is enhanced with supplemental rotational inertia, the participation factor L2 is
no-longer a function of ϵ alone since it involves the negative quantity, −σ/ (1 + σ − γ), which ap-
pears due to the presence of the inertance σ =MR/M . Nevertheless, because of the negative sign
there is a critical value of the inertance, σ, for which the participation of the second mode, vanishes
(L2 = 0) as was initially uncovered by Furuhashi and Ishimaru (2008) and recently reiterated by
Ye et al. (2019).

By setting the bracket in the right-hand side of L2 given by the second equation (4.28) equal to
zero, one obtains a cubic equation for σ as was suggested in (Ye et al. 2019). However, we recall
that the expressions appearing in equation (4.28) are approximate expressions that involve addi-
tional fictitious roots for σ that result from the Taylor expansions of the modal masses M1 and
M2 appearing in the denominators of the right-hand sides of equations (4.26) and (4.27). Accord-
ingly, the correct critical value of σ for which the participation factor L2 vanishes is obtained by
setting the quantity in the brackets in the right-hand side of equation (4.27) equal to zero; and the
following quadratic (not cubic) equation is obtained

σ2 + (1− ϵ)σ − ϵ (1− γ) = 0 (4.29)

Upon performing Taylor series expansions similar to the one offered by equation (4.11) and after
retaining terms of order ϵ, the roots of equation (4.29) are

σ1 = ϵ (1− γ) and σ2 = −1 + γϵ (4.30)
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The only physically admissible root for σ > 0 is the first of equation (4.30) which offers the intrigu-
ing result, that a small amount of inertance σ = ϵ (1− γ) is sufficient to vanish the participation of
the second mode {Φ2} which is responsible for most of the deformation of the superstructure (see
Figure 4.1-left).

Figure 4.3 plots the dependance of the participation factors L1 and L2 on the values of the inertance
σ for various values of the frequency ratio ϵ = ω2

b/ω
2
s . The graphs also compare the approximate

values of L1 and L2 offered by equation (4.28) (where only terms up to order ϵ have been re-
tained) against the corresponding exact values offered by the right-hand sides of equations (4.26)
and (4.27). The graphs of L2 cross the zero axis at values of σ = ϵ (1− γ). For the modal seismic
response analysis we follow the formulation presented by Chopra (2000) where the modal coor-
dinate functions q1 (t) and q2 (t) appearing in equation (4.26) and (4.27) are expressed in terms of
the response of solitary single-degree-of-freedom (SDOF) structures.

D̈j (t) + 2ξjωjḊj (t) + ω2
jDj (t) = −üg (t) j ∈ {1, 2} (4.31)

Figure 4.3: Participation factors, L1 and L2 of the first and second modes respectively
as a function of supplemental rotational inertia σ =MR/M . For values of
σ = ϵ (1− γ), the participation factor L2 = 0 and the contribution of the sec-
ond vibration mode in the seismic response of the 2DOF structure vanishes. The
graphs also compare the approximate values of L1 and L2 as offered by equation
(4.28) with the exact expressions appearing in the right-hand-side of equations
(4.26) and (4.27).
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By comparing equation (4.31) with equations (4.26) and (4.27) with j ∈ {1, 2}, then qj (t) =
LjDj (t), and equation (4.25) assumes the form{

ub (t)
us (t)

}
=

2∑
j=1

LjDj (t)

{
ϕjb
ϕjs

}
(4.32)

Figure 4.4 plots the base, ub (t) and the superstructure, us (t) displacement histories of the 2DOF
isolated structure shown in Figure 4.1 with ωb = π rad/sec (Tb = 2sec), ωs = 1/

√
ϵωb = 5π

rad/sec (Ts = 0.4sec), ϵ = ω2
b/ω

2
s = 0.04, γ = ms/M = 0.75, ξb = 15%andξs = 3% when sub-

jected to the C02, N65E ground motion recorded during the 1966 Parkfield, California earthquake.
Plots (a) and (b) are for the case where there is no supplemental rotational inertia (σ = 0) in the
isolation system; whereas plots (c) and (d) are for the critical value of σ = ϵ (1− γ). While for
the case where σ = ϵ (1− γ) = 0.01, the participation of the second mode vanishes, this math-
ematical intriguing property of supplemental rotational inertia is of marginal engineering interest
since the participation of the second mode in the classical isolated structure (no inerters) is anyhow
marginal-that is of order ϵ (L2 = γϵ, Kelly 1990, 1997).

The displacement histories ub (t) and us (t) computed in Figure 4.4 with the approximate modal
analysis procedure presented in this study (we have only retained terms of order ϵ and we have
neglected the mild coupling of the equations of motion due to damping) are compared with the
rigorous numerical results after integrating the coupled equations of motion of the matrix equa-
tion (4.6) by employing a state-space formulation (Makris and Chang 2000b; Makris and Kam-
pas 2016; Makris and Moghimi 2019; Moghimi and Makris 2021; Moghimi 2022) that is out-
lined in the next section which presents the nonlinear response analysis. The excellent com-
parison of the response histories shown in in Figure 4.4 confirms the practical value of the ap-
proximate modal analysis procedure given its simplicity. Figure 4.5(left) plots the base, umaxb ,
and the superstructure, umaxs peak displacements of the 2DOF isolated structure shown in Figure
4.1 for a wide range of isolation periods (1.5 sec≤Tb = 2π/ωb ≤ 3.5 sec) for a constant value
ϵ = ω2

b/ω
2
s = 0.04, γ = 0.75, ξb = 15%, ξs = 3% and various values of supplemental rotational

inertia, σ = 0, ϵ (1− γ) = 0.01, 0.2 and 0.4 when subjected to the C02, N65E ground motion
recorded during the 1966 Parkfield, California earthquake. Figure 4.5(left) reveals that the ap-
proximate modal analysis summarized in the first part of this chapter (solid lines) predicts very
well the peak base displacement, umaxb for the entire range of isolation periods; whereas, for the
peak structural displacement, umaxs minor differences are observed between the approximate modal
analysis (solid lines) and the rigorous state-space formulation (dashed lines) at larger isolation pe-
riods. More specifically, the differences between the superstructure response without supplemental
rotational inertia (σ = 0) and with the critical value of σ = ϵ (1− γ) is marginal and within the
error due to the approximations inherent to the approximate modal analysis (we have only re-
tained terms of order ϵ and neglected the coupling due to the off-diagonal damping terms). Figure
4.5(left) reveals that larger values of supplemental rotational inertia (σ = 0.2 or 0.4) are effec-
tive in suppressing the large peak base displacements due to the flexibility of the isolation system.
However, for larger isolation periods (Tb > 2.5 sec) this happens at the expense of increasing the
superstructure displacements, umaxs to drift levels that the superstructure may enter the nonlinear
range (drifts> 1%). Figure 4.5(right) shows that supplemental rotational inertia also aggravates
the superstructure accelerations at larger isolation periods (Tb > 2.5 sec).
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Figure 4.6 plots the base, umaxb , and the superstructure, umaxs peak displacements of the 2DOF iso-
lated structure shown in Figure 4.1 for a wide range of isolation periods (1.5 sec≤Tb = 2π/ωb ≤
3.5 sec) for a constant value ϵ = ω2

b/ω
2
s = 0.04, γ = ms/M = 0.75, ξb = 15%, ξs = 3% and

various values of supplemental rotational inertia, σ = 0, ϵ (1− γ) = 0.01, 0.2 and 0.4 when sub-
jected to the Pacoima Dam/164 ground motion recorded during the 1971 San Fernando, California
earthquake. Trends similar to those discussed in Figure 4.5 are observed where at larger isolation

Figure 4.4: Response of the 2DOF isolated structure shown in Figure 4.1 with isolation period
Tb = 2π/ωb = 2 sec, superstructure period Ts = 2π/ωs = 0.4 sec (ϵ = 0.04) , γ =
ms/M = 0.75, ξb = 15%and ξs = 3% when subjected to the C02, N65E ground
motion recorded during the 1966 Parkfield, California earthquake. Plots (a) and
(b) are without supplemental rotational inertia (σ = 0); whereas plots (c) and (d)
are for the critical value σ = ϵ (1− γ) = 0.01 that vanishes the participation of
the second mode.
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Figure 4.5: Left: Peak base umaxb , and superstructure, umaxs displacements of the 2DOF
isolated structure shown in Figure 4.1 for a wide range of isolation periods
(1.5 sec ≤ Tb = 2π/ωb ≤ 3.5 sec) and a constant value ϵ = ω2

b/ω
2
s = 0.04, γ =

ms/M = 0.75, ξb = 15%, ξs = 3% for various values of supplemental rotational
inertia, σ = 0, ϵ (1− γ) = 0.01, 0.2 and 0.4 when subjected to the C02, N65E
ground motion recorded during the 1966 Parkfield, California earthquake shown
in Figure 4.4. The differences between the superstructure response when σ = 0
and when σ = ϵ (1− γ) are marginal and within the error due to the approxima-
tions inherent to the approximate modal analysis procedure. Top-Right: Total su-
perstructure accelerations. Bottom-Right: Force transferred to a non-compliant
inerter-support.

periods (Tb > 2.5 sec) both superstructure displacements and accelerations are increased.

The bottom-right subplots in Figures 4.5 and 4.6 show the reaction force at the non-compliant
support of the inerter, FI , given by equation(4.1). Clearly, the reaction force at the support of the
inerter is an appreciable fraction of the weight of the entire structure, therefore a formulation that
accounts for the deformation of the support of the inerter will offer superior results. This formu-
lation is presented in the following section of the chapter which presents the response analysis of
the 2DOF structure when the behavior of the isolation system is bilinear.

Our response analysis employs the C02, N65E ground motions from the 1966 Parkfield, California
earthquake and the Pacoima Dam/164 ground motion from the 1971 San Fernando, California
earthquake. Both these ground motions are characterized as pulse-like ground motions (Vassiliou
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and Makris 2011; Efthymiou and Makris 2022); which are known to be responsible for appreciable
displacement demands on flexible seismic isolated structures. In addition to their distinguishable
long-duration pulse (Tp = 0.6 sec for the 1966 Parkfield motion and Tp = 1.35 sec for the San
Fernando motion), both motions have a rich frequency content that is pertinent to the potential
engagement of higher vibration modes.

Figure 4.6: Left: Peak base umaxb , and superstructure, umaxs displacements of the 2DOF
isolated structure shown in Figure 4.1 for a wide range of isolation periods
(1.5 sec ≤ Tb = 2π/ωb ≤ 3.5 sec) and a constant value ϵ = ω2

b/ω
2
s = 0.04, γ =

ms/M = 0.75, ξb = 15%, ξs = 3% for various values of supplemental rotational
inertia, σ = 0, ϵ(1 − γ) = 0.01, 0.2 and 0.4 when subjected to the Pacoima
Dam/164 ground motion recorded during the 1971 San Fernando, California
earthquake shown at the bottom. The differences between the superstructure
response when σ = 0 and when σ = ϵ(1 − γ) are marginal and within the error
due to the approximations inherent to the approximate modal analysis procedure.
Top-Right: Total superstructure accelerations. Bottom-Right: Force transferred
to a non-compliant inerter-support.
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4.3 SEISMIC RESPONSE OF A 2DOF STRUCTURE SUPPORTED ON A BILINEAR
ISOLATION SYSTEM WITH SUPPLEMENTAL ROTATIONAL INERTIA

The linear theory of seismic isolation presented in the previous section offers insights on the ad-
vantages and challenges of supplemental rotational inertia when implemented in parallel with the
isolation bearings. In an effort to better understand the role of supplemental rotational inertia in
practical isolation systems, our study proceeds with the nonlinear time-history response analysis of
the 2DOF structure shown in Figure 4.1, where now the isolation bearings exhibit bilinear behavior
in association with some viscous damping ratio, cb, that is relevant in the case where lead-rubber
bearings (LRB) are used (Warburton and Soni 1977; Kelly 1997; Skinner et al. 1993; Makris and
Kampas 2013; Wang et al. 2010).

With reference to Figure 4.7, the bilinear idealization which approximates satisfactorily the be-
havior of isolation bearings, including lead rubber bearings (LRB) and single concave sliding
bearings (SCSB) (Mokha et al. 1990; Skinner et al. 1993; Al-Hussaini et al. 1994; Kelly 1997;
Makris and Vassiliou 2011; Makris and Kampas 2013) is described with a preyielding stiffness k1,
a postyielding stiffness αk1 = kb (0 ≤ α < 1), a yield displacement uy, a yield force Fy = k1uy
and a strength Q = kbuy ((1/α)− 1). With these parameters, the restoring force from a bilinear
isolation system can be described with the Bouc-Wen model (Wen 1976; Baber and Noori 1985;
Constantinou and Adnane 1987).

F = kbub (t) + (1− α) k1uyz (t) = kbu (t) + (1− α)Fyz (t) (4.33)

where z (t) is a dimensionless internal variable given by

dz (t)

dt
= ż (t) =

1

uy

[
u̇b (t)− βzu̇b (t) |z (t)|n − γz |u̇b (t)| z (t) |z (t)|n−1] (4.34)

Figure 4.7: Bilinear idealization. From the five control parameters, k1, kb = αk1,
uy, F = k1uy and Q =

(
1
α
− 1
)
kbuy only there parameters are needed to define

the bilinear behavior.
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In equation (4.34), constants βz, γz and n are model parameters. Parameter n controls the tran-
sition from the preyielding to the postyielding range; whereas parameters βz and γz control the
shape of the hysteretic loop. When βz + γz = 1, then the dimensionless variable z (t) is bounded
by ±1 (−1 ≤ z (t) ≤ 1) (Constantinou and Adnane 1987).

4.3.1 Response of Isolated Structure with Inerters Supported on a Non-Compliant
Support

By virtue of equation (4.33), the dynamic equilibrium of the entire structure above the bilinear
isolators in parallel with an inerter gives

(M +MR) üb +msüs + cbu̇b + kbub + (1− α)Fyz = −Müg (4.35)

Equations (4.35) and (4.3) can be expressed in a matrix form in terms of the parameters defined in
equations (4.4) and (4.5) after noting that (1− α)Fy = Qandthat Q

M
=
(
1
a
− 1
)
ω2
buy[

1 + σ γ
1 1

]{
üb
üs

}
+

[
2ξbωb 0
0 2ξsωs

]{
u̇b
u̇s

}
+

[
ω2
b 0
0 ω2

s

]{
ub
us

}
+
Q

M

{
z
0

}
= −

{
1
1

}
üg (4.36)

By multiplying equation (4.36) from the left with the inverse of the dimensionless mass matrix[
1 + σ γ
1 1

]−1

=
1

1 + σ − γ

[
1 −γ

−1 1 + σ

]
(4.37)

The relative accelerations üb (t) andüs (t) of each degree-of-freedom become explicit expressions
of the relative displacements and velocities of the degrees-of-freedom.

üb (t) =
1

1+σ−γ

[
(−1 + γ) üg (t)− 2ξbωbu̇b (t) + 2γξsωsu̇s (t)− ω2

bub (t) + γω2
sus (t)−

Q
M
z (t)

]
(4.38)

üs (t) =
1

1+σ−γ

[
−σüg (t) + 2ξbωbu̇b (t)− 2 (1 + σ) ξsωsu̇s (t) + ω2

bub (t)− (1 + σ)ω2
sus (t) +

Q
M
z (t)

]
(4.39)

The state vector of the system is {y (t)} =< y1 (t) , y2 (t) , y3 (t) , y4 (t) , y5 (t) >
T=< ub (t) , u̇b (t)

, us (t) , u̇s (t) , z (t) >
T . The solution of the system of nonlinear differential equations given by

equations (4.38), (4.39) and (4.34) is computed by integrating the time-derivative of the state-vector

{ẏ (t)} =


u̇b (t)
üb (t)
u̇s (t)
üs (t)
ż (t)

 =



y2 (t)
1

1+σ−γ

[
(−1 + γ) üg − 2ξbωby2 (t) + 2γξsωsy4 (t)− ω2

by1 (t) + γω2
sy3 (t)−

Q
M
y5 (t)

]
y4 (t)

1
1+σ−γ

[
−σüg + 2ξbωby2 (t)− 2 (1 + σ) ξsωsy4 (t) + ω2

by1 (t)− (1 + σ)ω2
sy3 (t) +

Q
M
y5 (t)

]
1
uy

[
y2 (t)− βzy2 (t) |y5 (t)|n − γz |y2 (t)| y5 (t) |y5 (t)|n−1]


(4.40)

For the case of single concave sliding bearings (SCSB) with coefficient of friction, µ, the strength
Q = µMg so Q/M = µg. For the case of lead rubber bearings (LRB) with strength Q = βyMg,
so the ratio Q/M = βyg where βyg is the yield acceleration of the lead plugs. In order to compare
the response of the 2DOF isolated structure supported on bilinear isolators with the response of the
2DOF linear isolated structure (elastic isolators with stiffness kb) calculated with the approximate
modal analysis procedure presented in the earlier sections, the hysteretic damping originating from
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sliding or yielding of the lead plugs needs to be equivalent with the viscous damping of the linear
isolation system, cb. With reference to Figure 4.4 it is evident that during strong shaking the
isolation system undergoes cyclic motion with period Tb = 2π/ωb and amplitude ub. Accordingly,
the energy dissipated during each of the dominant cycles shown in Figure 4.4 is

WD ≈ πωbu
2
bcb = πω2

bu
2
b2ξbM (4.41)

On the other hand, the energy dissipated per cycle from a bilinear isolation system (sliding or
yielding) is

WD ≈ 4Qub (4.42)

By equating the right-hand-sides of equations (4.41) and (4.42), the equivalent yield acceleration
of the bilinear isolation system is

Q

M
=
π

2
ω2
bubξb = µg or = βyg (4.43)

In the interest of simplicity, we focus on single-concave sliding spherical bearings with coefficient
of friction µ and radius of curvature Rb. In this case ω2

b = g/Rb and equation (4.43) yields that the
equivalent value of friction coefficient is

µ =
2π3

g

ub
T 2
b

ξb =
π

2

ub
Rb

ξb for (SCSB) (4.44)

Figure 4.8(left) plots the base, umaxb , and the superstructure, umaxs peak displacements of the 2DOF
isolated structure, shown in Figure 4.1 when supported on bilinear isolation bearings for a wide
range of isolation periods (1.5 sec≤Tb = 2π/ωb ≤ 3.5 sec) for a constant value ϵ = ω2

b/ω
2
s =

0.04, γ = ms/M = 0.75, ξb = 0, ξs = 3%, coefficient of friction µ as offered by equation (4.44)
for ξb = 15%, uy = 0.25 mm (Constantinou et al. 1990) and various values of supplemental ro-
tational inertia, σ = 0, ϵ (1− γ) = 0.01, 0.2 and 0.4, when subjected to the C02, N65E ground
motion recorded during the 1966 Parkfield, California earthquake. The bottom-right plot offers
the equivalent value of the friction coefficient µ as results from equation (4.44) for every isolation
period value after reading the values of umaxb that result from the linear modal analysis proce-
dure (solid lines). Figure 4.8 reveals that when the response of the isolation bearings is bilinear,
the approximate modal analysis captures satisfactorily the elastic response of the superstructure;
however, noticeable differences are observed in the base displacements when computed with the
rigorous state-space formulation of the nonlinear equation of motion and the approximate modal
analysis. Figure 4.8 also reveals that supplemental rotational inertia aggravates both superstructure
displacements and accelerations at larger isolation periods (Tb > 2.5 sec). Figure 4.9 plots the
same response quantities shown in Figure 4.8 when the 2DOF isolated structure shown in Figure
4.1 is subjected to the Pacoima Dam/164 ground motion recorded during the 1971 San Fernando,
California earthquake. Trends similar to those discussed in Figure 4.8 are observed confirming that
supplemental rotational inertia aggravates both superstructure displacements and accelerations at
larger isolation periods (Tb > 2.5 sec).

4.3.2 Response of Isolated Structure with Inerter Supported on a Compliant Support

Given the appreciable reaction forces that develop at the support of the inerter as the inertance
σ = MR/M increases (see Figures 4.5 and 4.6), we now examine, the dynamic response of the
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2DOF isolated structure shown in Figure 4.1, yet now the support of the inerter has finite stiffness
kf . Because of the compliance of the support, the force from the inerter is no-longer expressed
with equation (4.1) which is for a non-compliant support, rather it is expressed from

FI (t) +
MR

kf

d2FI (t)

dt2
=MR

d2ub (t)

dt2
(4.45)

Equation (4.45) is the constitutive law of a spring-inerter in-series connection (Makris and Kam-
pas 2016; Makris 2017, 2018) that was coined recently the inertoelastic fluid (Makris 2017). By
defining the rotational frequency ωR =

√
kf/MR (Makris 2017, 2018), the matrix equation (4.36)

is replaced by[
1 γ
1 1

]{
üb
üs

}
+

[
2ξbωb 0
0 2ξsωs

]{
u̇b
u̇s

}
+

[
ω2
b 0
0 ω2

s

]{
ub
us

}
+ Q

M

{
z
0

}
= −

[
1 1
0 1

]{
FI(t)
M

üg (t)

}
(4.46)

Figure 4.8: Left: Peak base umaxb , and superstructure, umaxs displacements of the 2DOF
isolated structure shown in Figure 4.1 for a wide range of isolation periods
(1.5 sec ≤ Tb = 2π/ωb ≤ 3.5 sec) for a constant value ϵ = ω2

b/ω
2
s = 0.04, γ =

ms/M = 0.75, ξb = 0, ξs = 3%, coefficient of friction µ as shown in bottom-right
subplot, uy = 0.25 mm and various values of supplemental rotational inertia,
σ = 0, ϵ (1− γ) = 0.01, 0.2 and 0.4 when subjected to the C02, N65E ground
motion recorded during the 1966 Parkfield, California earthquake. The bottom-
right plot offers the equivalent value of the friction coefficient µ as results from
equation (4.44) for ξb = 15% (which is the isolation damping used in the approxi-
mate model analysis) for every isolation period value; whereas the top-right plot
offers the total superstructure accelerations.
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Figure 4.9: Left: Peak base umaxb , and superstructure, umaxs displacements of the 2DOF
isolated structure shown in Figure 4.1 for a wide range of isolation periods
(1.5 sec ≤ Tb = 2π/ωb ≤ 3.5 sec) for a constant value ϵ = ω2

b/ω
2
s = 0.04, γ =

ms/M = 0.75, ξb = 0, ξs = 3%, coefficient of friction µ as shown in bottom-right
subplot, uy = 0.25 mm and various values of supplemental rotational inertia,
σ = 0, ϵ(1 − γ) = 0.01, 0.2 and 0.4 when subjected to the Pacoima Dam/164
ground motion recorded during the 1971 San Fernando, California earthquake.
The bottom-right plot offers the equivalent value of the friction coefficient µ as
results from equation (4.44) for ξb = 15% (which is the isolation damping used
in the approximate model analysis) for every isolation period value; whereas the
top-right plot offers the total superstructure accelerations at a non-compliant
support of the inerter.

By multiplying equation (4.46) from the left with the inverse of the dimensionless mass matrix[
1 γ
1 1

]−1

=
1

1− γ

[
1 −γ

−1 1

]
(4.47)

The relative accelerations üb (t) and üs (t) of each degree-of-freedom become explicit expressions
of the relative displacements and velocities of the degrees-of-freedom.

üb (t) = −üg (t) + 1
1−γ

[
−fI (t)− 2ξbωbu̇b (t) + 2γξsωsu̇s (t)− ω2

bub (t) + γω2
sus (t)−

Q
M
z
]

(4.48)

üs (t) =
1

1− γ

[
fI (t) + 2ξbωbu̇b (t)− 2ξsωsu̇s (t) + ω2

bub (t)− ω2
sus +

Q

M
z

]
(4.49)

where fI (t) = FI (t) / M has units of acceleration. The state vector of the system is {y (t)} = <
y1 (t) , y2 (t) , y3 (t) , y4 (t) , y5 (t) , y6 (t) , y7 (t) >

T=< ub (t) , u̇b (t) , us (t) , u̇s (t) , fI (t) , ḟI (t),
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z (t) >T . The solution of the system of nonlinear differential equations given by equations (4.48),
(4.49) and (4.45) is computed by integrating the time-derivative of the state-vector

{ẏ (t)} =



u̇b (t)
üb (t)
u̇s (t)
üs (t)

ḟI (t)

f̈I (t)
ż (t)


=



y2 (t)

−üg (t) + 1
1−γ

[
−y5 (t)− 2ξbωby2 (t) + 2γξsωsy4 (t)− ω2

by1 (t) + γω2
sy3 (t)−

Q
M
y7 (t)

]
y4 (t)

1
1−γ

[
y5 (t) + 2ξbωby2 (t)− 2ξsωsy4 (t) + ω2

by1 (t)− ω2
sy3 (t) +

Q
M
y7 (t)

]
y6 (t)

ω2
R (σüb (t)− y5 (t))

1
uy

[
y2 (t)− βzy2 (t) |y7 (t)|n − γz |y2 (t)| y7 (t) |y7 (t)|n−1]


(4.50)

Figure 4.10(left) plots the base, umaxb , and superstructure, umaxs , peak displacements of the 2DOF
isolated structure shown in Figure 4.1 when supported on bilinear isolation bearings for a wide
range of isolation periods (1.5 sec≤Tb ≤ 3.5 sec) for a constant value of ϵ = ω2

b/ω
2
s = 0.04, γ =

0.75, ξb = 0%, ξs = 3%, coefficient of friction µ as offered by equation (4.44) for ξb = 15%, uy =
0.25 mm and various values of supplemental rotational inertia, σ = 0, ϵ (1− γ) = 0.01, 0.2

Figure 4.10: Left: Peak base umaxb , and superstructure, umaxs displacements of the 2DOF
isolated structure shown in Figure 4.1 for a wide range of isolation periods
(1.5 sec ≤ Tb = 2π/ωb ≤ 3.5 sec) for a constant value ϵ = ω2

b/ω
2
s = 0.04, γ =

ms/M = 0.75, ξb = 0, ξs = 3%, coefficient of friction µ as shown in bottom-right
subplot, uy = 0.25 mm and various values of supplemental rotational inertia,
σ = 0, ϵ(1− γ) = 0.01, 0.2 and 0.4 on a compliant support (ωb/ωR = ϵ/4) when
subjected to the C02, N65E ground motion recorded during the 1966 Parkfield,
California earthquake. The bottom-left plot offers the equivalent value of the
friction coefficient µ as results from equation (4.44) for ξb = 15% for every iso-
lation period value; whereas the top-right plot offers the total superstructure
accelerations.
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Figure 4.11: Left: Peak base umaxb , and superstructure, umaxs displacements of the 2DOF
isolated structure shown in Figure 4.1 for a wide range of isolation periods
(1.5 sec ≤ Tb = 2π/ωb ≤ 3.5 sec) for a constant value ϵ = ω2

b/ω
2
s = 0.04, γ =

ms/M = 0.75, ξb = 0, ξs = 3%, coefficient of friction µ as shown in bottom-right
subplot, uy = 0.25 mm and various values of supplemental rotational inertia,
σ = 0, ϵ(1− γ) = 0.01, 0.2 and 0.4 on a compliant support (ωb/ωR = ϵ/4) when
subjected to the Pacoima Dam/164 ground motion recorded during the 1971
San Fernando, California earthquake. The bottom-left plot offers the equivalent
value of the friction coefficient µ as results from equation (4.44) for ξb = 15%
for every isolation period value; whereas the top-right plot offers the total su-
perstructure accelerations.

and 0.4 supported on a compliant support (ω2
b/ω

2
R = ϵ/4), when subjected to the C02, N65E

ground motion recorded during the 1966 Parkfield, California earthquake. Figure 4.10 reveals that
when the support of the inerter is compliant, supplemental rotational inertia further aggravates
superstructure displacements and accelerations at larger isolation periods (Tb > 2.5 sec).

Similar trends are observed in Figure 4.11 which plots the nonlinear response of the 2DOF isolated
structure when subjected to the Pacoima Dam/164 ground motion recorded during the 1971 San
Fernando, California earthquake and the inerter in the isolation system is supported on a compliant
support (ω2

b/ω
2
R = ϵ/4).
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4.4 CONCLUSIONS

The study presented in this chapter was partly motivated from the known and occasionally over-
stated property of inerters to eliminate the participation of the second mode of the classical 2DOF
linear isolated structure and partly from the need to better understand the effect of supplemental
rotational inertia when acting in parallel with bilinear isolators. Our study first shows that while
a small amount of supplemental rotational inertia is needed to eliminate the participation of the
second mode of the 2DOF isolated structure; the effect of this elimination is marginal on the struc-
ture response, since the participation of the second mode is invariably small even when isolation
systems without inerters are used (Kelly 1990, 1997).

Within the context of linear analysis, our study brings forward inadvertent errors in a recent study
(Ye et al. 2019) that violate the orthogonality of eigenmodes; and revisits how supplemental rota-
tional inertia at the isolation level influences the modal frequencies, mode shapes and participation
factors of the classical 2DOF linear seismically isolated, structure (Kelly 1990, 1997). Finally, our
study proceeds with the nonlinear response analysis of the same 2DOF isolated structure by adopt-
ing a bilinear behavior for the isolation system in association with a formulation that accounts for
the compliance of the support of the inerter and shows that supplemental rotational inertia aggra-
vates superstructure displacements and accelerations at larger isolation periods (Tb > 2.5 sec). In
view of these findings in association with the small gains in reducing displacements above isola-
tors, the use of inerters in isolation systems is not recommended.
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5 Seismic Response of Yielding Structures
Equipped with Inerters

All the aforementioned studies referenced in the previous chapters other than the studies by De
Domenicoand Ricciardi (2018b) and Moghimi and Makris (2021) examined invariably the re-
sponse of elastic structures. In particular, chapter 3 and the study by Makris and Moghimi (2019)
concluded that while the use of inerters may reduce effectively the first-story displacements of a
2DOF elastic structure, under certain strong ground motions, the first-story displacements are large
enough, suggesting that an inelastic model for the structure is more appropriate. Furthermore, seis-
mic design according to modern building codes allow damage in design basis level earthquakes and
beyond, therefore it is needed to evaluate the efficacy of the inerters as a protective system in re-
ducing or eliminating damage. In view of this finding and given the increasing number of strong
acceleration records in urban areas, this chapter examines the inelastic response of a single degree
of freedom (SDOF) and a two degree of freedom (2DOF) yielding structure equipped with inert-
ers. Our interest in the inelastic response of a 2DOF yielding structure is primarily motivated from
the need to understand to what extent the engagement of an inerter at the first story aggravates the
inelastic deformation of the superstructure. In the 2DOF yielding structures, the inerter is placed
only at the first story given that inerters, while suppressing displacements, they transfer appreciable
shear forces which can be accommodated by the foundation.

5.1 INERTIA FORCES FROM AN INERTER SUPPORTED ON A STIFF CHEVRON
FRAME

Figure 5.1(a) depicts a SDOF structure in which the mass, m1 is engaged with a flywheel with
radius R1 and mass mw1 that can rotate about an axis O. Concentric to the flywheel; there is an
attached pinion with radius ρ1 engaged with a linear rack connected to the bottom of the vibrating
mass m1 of the SDOF structure. When the supporting chevron frame is stiff, the rotation, θ1 (t), of
the flywheel is proportional to the relative displacement, u1 (t), of the frame (Makris and Kampas
2016) as shown by equation (3.1).

For a positive displacement, u1 (t), to the right, the internal force, FI (t) at the rack-pinion interface
opposes the motion (to the left) [Figure 5.1(a)]. Moment equilibrium of the flywheel about point
O is given by equation (3.2). Substituting equation (3.1) into equation (3.2) gives equation (3.3).

Equation (3.3) gives the inertial force, FI (t), at the rack-pinion interface-that is, the force trans-
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Figure 5.1: (a) SDOF yielding structure engaged with a rotational flywheel system; (b) Bi-
linear idealization of the inelastic behavior of the yielding SDOF structure; (c)
SDOF yielding structure with supplemental damping; (d) 2DOF yielding struc-
ture engaged with a flywheel system; (e) Bilinear idealization of the inelastic be-
havior of each story of the 2DOF yielding structure;(f) 2DOF yielding structure
with supplemental damping at its first story.

ferred to the stiff chevron frame. The constant of proportionality, MR = (1/2) mw1(R
2
1/ρ

2
1) is the

inertance of the supplemental rotational inertia system and has units of mass [M]. The inertance,
MR, can be amplified by adding two (or more) flywheels in series, in which the first flywheel is a
gearwheel Smith 2002; Makris and Kampas 2016.

5.2 EQUATION OF MOTION OF A YIELDING SDOF STRUCTURE WITH
INERTERS SUPPORTED ON A STIFF CHEVRON FRAME

With reference to Figures 5.1(a) and (b), this chapter first examines the dynamic response of a
yielding SDOF structure with mass, m1, preyielding stiffness, k1, postyielding stiffness, αk1 (0 ≤
α < 1), and yielding displacement, uy1, that is engaged with an inerter with inertance, MR, sup-
ported on a stiff chevron frame. The dynamic equilibrium of the vibrating mass when subjected to
a ground excitation, üg (t), gives:

m1 [ü1 (t) + üg (t)] = −Fs1 (t)− c1u̇1 (t)− FI (t) (5.1)

where FI (t) = internal force from the inerter given by equation (3.3) andFs1 (t) = inelastic restor-
ing force of the structure that is described by the Bouc-Wen model (Wen 1976; Baber and Noori
1985).

Fs1 = α k1u1 (t) + (1− α) k1 uy1z1 (t) (5.2)
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where α = postyielding-to-preyielding stiffness ratio; and −1 ≤ z1 (t) ≤ 1 = dimensionless
internal variable described by

ż1 (t) =
1

uy1

[
u̇1 (t)− βz u̇1 (t) |z1 (t)|n − γz |u̇1 (t)| z1 (t) |z1 (t)|n−1] (5.3)

In equation (5.3), constants βz, γz and n = model parameters. In the entire study βz = γz = 0.5
and n = 10. Substitution of equations. (3.3) and (5.2) into equation (5.1) gives:

m1ü1 (t) +MRü1 (t) + c1u̇1 (t) + α k1u1 (t) + (1− α) k1uy1z1 (t) = −m1üg (t) (5.4)

By introducing the nominal frequency ω1, viscous damping ratio ξ1 and inertance ratio σ,

ω2
1 =

k1
m1

, 2ξ1ω1 =
c1
m1

, σ =
MR

m1

(5.5)

where c1 = cc + cd in witch cc = the damping from the framing action and cd = the damping
constant of a possible supplemental damper; equation (5.4) assumes the form

(1 + σ) ü1 (t) + 2ξ1ω1u̇1 (t) + αω2
1u1 (t) + (1− α) ω2

1 uy1 z1 (t) = −üg (t) (5.6)

Upon dividing with the acceleration coefficient, (1 + σ), equation (5.6) gives

ü1 (t) + 2
ξ1ω1

1 + σ
u̇1 (t) + α

ω2
1

1 + σ
u1 (t) + (1− α)

ω2
1

1 + σ
uy1 z1 (t) = − üg (t)

1 + σ
(5.7)

Equation (5.7) indicates that the engagement of SDOF yielding structure with the inerter lengthens
the preyielding period of the SDOF structure (ωapparent1 = ω1/

√
1 + σ), reduces the apparent vis-

cous damping,
(
ξapparent1 = ξ1/

√
1 + σ

)
; yet, most importantly, it suppresses the level of ground

shaking given that the denominator, 1+ σ, in the right-hand-side of equation (5.7) is always larger
than unity. The lengthening of the preyielding period of the structures implies that when a yield-
ing structure is equipped with an inerter the equal-displacement rule (Veletsos et al. 1965 ) is
established earlier in the response spectrum (at lower preyielding periods). It is recalled that the
inelastic deformation of relative flexible structures (say preyielding period, T1 > 0.6sec) is equal
to the displacement of the elastic structure with the same period.

The solution of the system of equations given by equations (5.6) and (5.3) is computed numeri-
cally via a state-space formulation (Makris and Kampas 2016; Aghagholizadeh and Makris 2018;
Makris and Moghimi 2019). The state-vector of the system is

{y (t)} = ⟨ y1 (t) , y2 (t) , y3 (t) ⟩T = ⟨ u1 (t) , u̇1 (t) , ż1 (t) ⟩T (5.8)

where the superscript, T , stands for the transpose of the line vector, < >, and the time-derivative
state-vector, {ẏ (t)}, is expressed solely in terms of the state variables appearing in the state-vector
given by equation (5.8)

{ẏ (t)} =


u̇1 (t)

ü1 (t)

ż1 (t)

 =



y2 (t)

1
1+σ

[
−üg (t)− 2ξ1ω1y2 (t)− αω2

1y1 (t)− (1− α) ω2
1uy1 y3 (t)

]
1
uy1

[
y2 (t)− βz y2 (t) |y3 (t)|n − γz |y2 (t)| y3 (t) |y3 (t)|n−1]


(5.9)
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The numerical integration of the time-derivative of the state-vector, {ẏ (t)}, given by equation (5.9)
is performed with standard ordinary differential equation (ODE) solvers available in MATLAB1.

From the five parameters that appear in the bilinear idealization shown in Figure 5.1(b) (k1 =
preyielding stiffness, αk1 = postyielding stiffness, uy1 = yield displacement, Q1 = strength and
Fy1 = yield force), only three parameters are needed to fully describe the bilinear behavior (see
for instance, Makris and Kampas 2013). In this work, we select the preyielding stiffness, k1 =
m1ω

2
1 = m1 4π2/T 2

1 , the postyielding stiffness, αk1, and the strength of the structure Q1. With
reference to Figure 5.1(b), Fy1 = k1uy1 = Q1 + αk1uy1. Accordingly,

uy1 =
Q1

k1 − αk1
=
Q1

m1

T 2
1

4π2 (1− α)
(5.10)

5.2.1 The use of a pair of clutching inerters

One challenge with the implementation of inerters is that the rotating flywheels should only resist
the motion of the structure, without inducing any deformations. This is feasible with the use of
a clutch so that the pinion of the first gearwheel that is engaged with the rack is unable to drive
the rack, and only the motion of the translating rack can drive the pinion-gearwheel (Makris and
Kampas 2016). The sequential engagement of the two parallel-rotational-inertial systems that can
only resist the motion is expressed mathematically as (Makris and Kampas 2016)

FI (t)

m1

= σü1 (t) when sgn

[
ü1 (t)

u̇1 (t)

]
> 0 (5.11a)

and

FI (t)

m1

= 0 when sgn

[
ü1 (t)

u̇1 (t)

]
≤ 0 (5.11b)

Accordingly, when a pair of clutching inerters is employed, the equation of motion given in equa-
tion (5.6) is modified to

(1 + δσ) ü1 (t) + 2ξ1ω1u̇1 (t) + αω2
1u1 (t) + (1− α) ω2

1 uy1 z1 (t) = −üg (t) (5.12)

in which

δ =


1, when sgn

[
ü1(t)
u̇1(t)

]
> 0

0, when sgn
[
ü1(t)
u̇1(t)

]
≤ 0

(5.13)

Response time histories for an elastic SDOF oscillator equipped with a single inerter and a pair of
clutching inerters have been presented in (Makris and Kampas 2016; Makris 2017). Clearly, when
a pair of clutching inerters is employed, the flywheels only resist the motion of the structure and
do not give back any energy to the structure.

1 MATLAB. (2021). High performance numerical computation and visualization software. The Math works,
Natick,Mass.
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Figure 5.2: The Cholame, Array 2/360 acceleration time history recorded during the 2004
Parkfield, California earthquake.

5.3 RESPONSE SPECTRA OF A YIELDING SDOF STRUCTURE WITH INERTERS
SUPPORTED ON A STIFF CHEVRON FRAME

The seismic response of a SDOF yielding structure equipped with an inerter as described by equa-
tion (5.6) or equation (5.12) and (5.13) is compared with the response of the same SDOF yielding
structure where the inerter is replaced with a supplemental viscous damper with damping constant
cd [Figure 5.1(c)]. In this case, the value of the damping coefficient, c1 = cc + cd, where cc is
the damping originating from the columns of the SDOF structure and cd is the damping constant
of the supplemental viscous damper. Together with the drift response, u1(relative displacement),
of interest are the normalized base shear at the columns of the inelastic frame, Vcolumns/(m1g),
the normalized base shear at the foundation of the inelastic structure, Vb/(m1g) = (ü1 + üg)/g,
which is the total acceleration of the first story normalized by g; and the normalized force trans-
ferred to the mounting of the inerter, FI/m1g or to the mounting of the supplemental damper
cdu̇1/m1g = 2ξdω1u̇1/g. From equation (5.6) or equations (5.12) and (5.13), the normalized base
shear at the columns is [2ξcω1u̇1 (t) + αω2

1u1 (t) + (1− α) ω2
1 uy1 z1 (t)] /g.

Figure 5.2 shows the recorded acceleration time history used for the response spectrum analysis
presented in this chapter, the Cholame Number 2/360 ground motion recorded during the 2004
Parkfield California earthquake, together with the Gilroy Array 6/230 ground motion recorded
during the 1979 Coyote Lake California earthquake shown in Figure 3.5(a). The response spectra
shown in Figure 5.3 are the results of the solution of equation (5.6) for a single inerter (left plots)
or equations (5.12) and (5.13) when a pair of clutching inerters is used (right plots) to modify the
response of an elastoplastic (α = 0) SDOF structure with normalized strength Q1/m1 = 0.1g and
ξc = 0 when subjected to the Gilroy Array 6/230 ground motion recorded during the 1979 Coyote
Lake earthquake (Figure 3.5(a)). When σ = 0 (thin black line), the solution offers the response of
the elastoplastic SDOF structure without any response modification device. The two heavier solid
black lines are for values of normalized inertance, σ = 0.5 and σ = 1.0. The dashed lines are when
the yielding SDOF structure is equipped with the supplemental damping ξd = ξ1 = 25% given that
the viscous damping of the yielding SDOF is taken to be equal to zero (ξc = 0). Together with
the response of the elastoplastic oscillator (black lines), the spectra shown in Figure 5.3 plot for
comparing the response of an elastic oscillator (red lines). When σ = 0, the thin red line meets the
thin black line (no inerter, σ = 0) at a value of the preyielding period T1 ∼= 1.4 sec, confirming
the equal-displacement rule (Veletsos et al. 1965). The equal-displacement rule also holds when
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Figure 5.3: Response spectra of an elastoplastic (α = 0) SDOF structure equipped with in-
erters (heavy solid black lines) or supplemental viscous damping (dashed lines)
supported on a stiff frame when excited by the Gilroy Array 6/230 ground motion
recorded during the 1979 Coyote Lake earthquake: (a) Single inerter; (b) Pair of
clutching inerters. Red lines are for the corresponding elastic structures without
(thin red lines) or with (heavier red lines) inerters.
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Figure 5.4: Response spectra of a bilinear (α = 0.05) SDOF structure equipped with inerters
(heavy solid black lines) or supplemental viscous damping (dashed lines) sup-
ported on a stiff frame when excited by the Gilroy Array 6/230 ground motion
recorded during the 1979 Coyote Lake earthquake: (a) Single inerter; (b) Pair of
clutching inerters. Red lines are for the corresponding elastic structures without
(thin red lines) or with (heavier red lines) inerters.

73



Figure 5.5: Response spectra of an elastoplastic (α = 0) SDOF structure equipped with in-
erters (heavy solid black lines) or supplemental viscous damping (dashed lines)
supported on a stiff frame when excited by the Cholame Number 2/360 ground
motion recorded during the 2004 Parkfield California earthquake: (a) Single in-
erter; (b) Pair of clutching inerters.Red lines are for the corresponding elastic
structures without (thin red lines) or with (heavier red lines) inerters.
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Figure 5.6: Response spectra of a bilinear (α = 0.05) SDOF structure equipped with in-
erters (heavy solid black lines) or supplemental viscous damping (dashed lines)
supported on a stiff frame when excited by the Cholame Number 2/360 ground
motion recorded during the 2004 Parkfield California earthquake: (a) Single in-
erter; (b) Pair of clutching inerters.Red lines are for the corresponding elastic
structures without (thin red lines) or with (heavier red lines) inerters.
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the inelastic and the corresponding elastic structure are engaged with an inerter (heavier black and
red lines). According to equation (5.7), when the yielding structure engages with an inerter, the
apparent preyilding period of the structure lengthens and in this case, the equal-displacement rule
is valid starting from lower preyielding periods (T1 ∼= 1.15 secforσ = 0.5andT1 ∼= 0.95 sec for
σ = 1.0 for the case of a single inerter). Figure 5.3 reveals that the use of inerters supported on a
stiff frame suppress effectively the displacements of SDOF yielding structures, while the resulting
base shears are systematically lower than when large values of supplemental damping (ξd = 0.25)
are used. Furthermore, the forces transferred to the mounting of the inerters are appreciably lower
than the corresponding forces originating from an elastic structure.

All these observations indicate that supplemental rotational inertia (use of inerters) emerges as an
attractive response modification strategy for elastoplastic structures with larger preyielding periods.
In the case of an elastoplastic structure, the use of a pair of clutching inerters (right plots) does not
offer any additional benefits when compared to the case where a single inerter is used. Pair of
clutching inerters have advantages when suppressing the response of elastic structures.

Figure 5.4 plots the same response quantities as Figure 5.3 for a bilinear structure with α = 0.05
and ξc = 0. Figure 5.4 reveals trends similar to those observed in Figure 5.3, supporting the finding
that the use of inerters emerge as the most attractive response modification strategy for yielding
structures with larger preyielding periods; while a pair of inerters does not offer any additional
benefits than when a single inerter is employed. The right plots in Figure 5.4 indicate that a pair of
inerters is attractive to reduce the columns shears and base shears of an elastic frame.

The response spectra shown in Figure 5.5 are for a single inerter (left plots) or when a pair of
clutching inerters (right plots) is used to modify the response of an elastoplastic (α = 0) SDOF
structure with normalized strength Q1/m1 = 0.1g and ξc = 0 when subjected to the Array 2/360
ground motion recorded during the 2004 Parkfield California earthquake. Figure 5.5 reveals trends
similar to those observed in Figure 5.4, supporting the finding that the use of inerters emerges
as the most attractive response modification strategy for yielding structure with larger preyielding
periods; while a pair of clutching inerters (right plots) does not offer any additional benefits than
when a single inerter is employed.

Figure 5.6 plots the same response quantities as Figure 5.5 for a bilinear structure with α = 0.05
and ξc = 0, and reveals the same trends as those discussed earlier.

5.4 EQUATION OF MOTION OF A YIELDING 2DOF STRUCTURE WITH INERTERS
SUPPORTED ON A COMPLIANT CHEVRON FRAME

With reference to Figure 5.1(d), this section examines the dynamic response of a yielding 2DOF
structure with floor masses m1 and m2, preyielding and postyielding stiffness at the first story k1
and αk1 (0 ≤ α < 1) respectively with a yield strength, Q1, and a yield displacement, uy1. The
preyielding and postyielding stiffness in the second story are k2 and αk2 respectively with a yield
strength, Q2, and a yield displacement uy2. Given that recent studies have shown that inerters in a
multi-degree-of-freedom (MDOF) structure achieve the best performance when engaged to the first
story of the MDOF structure (Lazar et al. 2014), this chapter examines the response of a yielding
2DOF structure when only the first floor is engaged to an inerter with inertance, MR, supported
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on a compliant chevron frame. Our interest in the inelastic response of a 2DOF yielding structure
is motivated from the need to understand to what extent the engagement of the inerter at the first
story aggravates the inelastic response of the second story. The dynamic equilibrium of the entire
structure above the chevron frame gives

m2 [ü1 (t) + ü2 (t) + üg (t)] + m1 [ü1 (t) + üg (t)] = −Fs1 (t)− c1u̇1 (t)− FI (t) (5.14)

where again FI (t) = the internal force from the inerter and Fs1 (t) = the inelastic restoring force
of the structure at the first story described by the Bouc-Wen model (Wen 1976) expressed by
equations (5.2) and (5.3). The dynamic equilibrium of the second story gives

m2 [ü1 (t) + ü2 (t) + üg (t)] = −Fs2 (t)− c2u̇2 (t) (5.15)

where Fs2 (t) = inelastic restoring force of the structure at the second story described by the Bouc-
Wen model.

Fs2 = α k2u2 (t) + (1− α) k2 uy2 z2 (t) (5.16)

where α = postyielding-to-preyielding stiffness ratio; and −1 ≤ z2 (t) ≤ 1 = dimensionless
internal variable described by

ż2 (t) =
1

uy2

[
u̇2 (t)− βz u̇2 (t) |z2 (t)|n − γz |u̇2 (t)| z2 (t) |z2 (t)|n−1] (5.17)

Following the notation introduced by Kelly (1997), the nominal frequencies and nominal damping
ratios are given by equations (3.6) and (3.7); while, the mass ratio, γ, and the inertance ratio, σ,
are defined by equation (3.8)

In this final section, we examine the dynamic response of the 2DOF structure shown in Figure
5.1(d), yet now the chevron frame that supports the inerter has finite stiffness, kf , and damping
constant, cf . Because of its compliance, under the force transferred at the mounting of the inerter,
the chevron frame deforms; therefore, the force from the inerter is no longer expressed with equa-
tion (3.3), which is for a rigid frame, but with equation (3.20) (Makris and Kampas 2016; Makris
2018).

Equation (3.20) is the constitutive law of a spring-dashpot parallel connection (kf , cf ) that is con-
nected in series with an inerter (MR). This mechanical network is also known as the tuned inerter
damper (TID) (Lazar et al. 2014), and was coined recently the inertoviscoelastic fluid A (Makris
2018). The term fluid expresses that the mechanical network undergoes infinite displacement under
static loading.

The mechanical system described by equation (3.21) becomes critically damped when λωR = 2
(Makris 2018). In the case of a stiff frame λ = cf/kf tends to zero, while ωR =

√
kf/MR tends

to infinity and equation (3.21) reduces to equation (3.3). Accordingly, the formulation presented
in this section is for the most general case, and specific cases can be examined by taking limiting
values of the parameters.

By using the frequencies, damping, mass, and inertance ratios defined by equations (3.6) to (3.8),
the equations of motion of a yielding 2DOF structure with a compliant chevron frame is expressed
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in a matrix form

[
1 γ
1 1

]{
ü1 (t)
ü2 (t)

}
+

[
2ξ1ω1 0
0 2ξ2ω2

]{
u̇1 (t)
u̇2 (t)

}
+

[
αω2

1 0
0 αω2

2

]{
u1 (t)
u2 (t)

}
+

[
(1− α)ω2

1uy1 0

0 (1− α)ω2
2uy2

]{
z1 (t)
z2 (t)

}
= −

[
1 1
0 1

]{
FI(t)
m1+m2

üg (t)

}
(5.18)

in which FI (t) is the solution of equation (3.21). By multiplying equation (5.18) from the left
with the inverse of the normalized mass matrix given by equation (3.23), the relative accelera-
tions ü1 (t) andü2 (t) of each story become explicit expressions of the relative displacements and
velocities of the stories.

ü1 (t) = −üg (t)−
1

1− γ
fI (t)−

2ξ1ω1

1− γ
u̇1 (t) +

2 γξ2ω2

1− γ
u̇2 (t)−

αω2
1

1− γ
u1 (t)

+
αγω2

2

1− γ
u2 (t)−

(1− α)ω2
1uy1

1− γ
z1 (t) +

(1− α) γω2
2uy2

1− γ
z2 (t) (5.19)

and

ü2 (t) =
1

1− γ
fI (t) +

2ξ1ω1

1− γ
u̇1 (t)−

2ξ2ω2

1− γ
u̇2 (t) +

αω2
1

1− γ
u1 (t)−

αω2
2

1− γ
u2 (t)

+
(1− α)ω2

1uy1
1− γ

z1 (t)−
(1− α)ω2

2uy2
1− γ

z2 (t) (5.20)

where fI (t) = FI (t) / (m1 +m2) has units of acceleration. The state-vector of the system is

{y (t)} = ⟨ y1 (t) , y2 (t) , y3 (t) , y4 (t) , y5 (t) , y6 (t) , y7 (t) , y8 (t) ⟩T

=
〈
u1 (t) , u̇1 (t) , u2 (t) , u̇2 (t) , fI (t) , ḟI (t) , z1 (t) , z2 (t)

〉T
(5.21)

From equation(3.21) it is evident that the time-derivative of y6 (t), that is ẏ6 (t) = f̈I (t), involves
the third derivative of u1 (t) which is given by

...
u 1 (t) = − ...

u g (t)−
1

1− γ
ḟI (t)−

2ξ1ω1

1− γ
ü1 (t) +

2 γξ2ω2

1− γ
ü2 (t)−

αω2
1

1− γ
u̇1 (t)

+
αγω2

2

1− γ
u̇2 (t)−

(1− α)ω2
1uy1

1− γ
ż1 (t) +

(1− α) γω2
2uy2

1− γ
ż2 (t) (5.22)
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In terms of the state variables given by equation (5.21), equation (5.22) assumes the form

...
u 1 (t) = −

(
1

1− γ
y6 (t) +

...
u g (t)

)
− 2ξ1ω1

1− γ

(
− 1

1− γ
y5 (t)− üg (t)−

2ξ1ω1

1− γ
y2 (t) +

2 γξ2ω2

1− γ
y4 (t)−

αω2
1

1− γ
y1 (t)

+
αγω2

2

1− γ
y3 (t) −

(1− α)ω
2
1uy1

1− γ
y7 (t) +

(1− α) γω
2
2uy2

1− γ
y8 (t)

)

+
2 γξ2ω2

1− γ

(
1

1− γ
y5 (t) +

2ξ1ω1

1− γ
y2 (t)−

2ξ2ω2

1− γ
y4 (t) +

αω2
1

1− γ
y1 (t)−

αω2
2

1− γ
y3 (t)

+
(1− α)ω

2
1uy1

1− γ
y7 (t)−

(1− α)ω
2
2uy2

1− γ
y8 (t)

)

− αω2
1

1− γ
y2 (t) +

αγω2
2

1− γ
y4 (t)−

(1− α)ω
2
1

1− γ

(
y2 (t)− βz y2 (t) |y7 (t)|n − γz |y2 (t)| y7 (t) |y7 (t)|n−1

)
+

(1− α) γω
2
2

1− γ

(
y4 (t)− βz y4 (t) |y8 (t)|n − γz |y4 (t)| y8 (t) |y8 (t)|n−1

)
(5.23)

The solution of the system of differential equations given by equations (5.19), (5.20), and (3.21) is
computed by integrating the time-derivative of the state-vector given by equation (5.21)

{ẏ (t)} =



u̇1 (t)
ü1 (t)
u̇2 (t)
ü2 (t)

ḟI (t)

f̈I (t)
ż1 (t)
ż2 (t)


=



y2 (t)

−üg (t)− 1
1−γ y5 (t)−

2ξ1ω1

1−γ y2 (t) +
2 γξ2ω2

1−γ y4 (t)− αω2
1

1−γ y1 (t)

+
αγω2

2

1−γ y3 (t)− (1−α)ω2
1uy1

1−γ y7 (t) +
(1−α)γω2

2uy2

1−γ y8 (t)

y4 (t)
1

1−γ y5 (t) +
2ξ1ω1

1−γ y2 (t)− 2ξ2ω2

1−γ y4 (t) +
αω2

1

1−γ y1 (t)

−αω2
2

1−γ y3 (t) +
(1−α)ω2

1uy1

1−γ y7 (t)− (1−α)ω2
2uy2

1−γ y8 (t)

y6 (t)
ω2
Rσ (ü1 (t) + λ

...
u 1 (t))− ω2

R y5 (t)− ω2
Rλ y6 (t)

1
uy1

[
y2 (t)− βz y2 (t) |y7 (t)|n − γz |y2 (t)| y7 (t) |y7 (t)|n−1]

1
uy2

[
y4 (t)− βz y4 (t) |y8 (t)|n − γz |y4 (t)| y8 (t) |y8 (t)|n−1]


(5.24)

When a pair of clutching inerters is employed that can only resist the motion of the structure
without inducing any deformation (the pinion of the gearwheel that is engaged in the rack of the
first story is unable to drive the rack and only the motion of the translating rack can drive the
pinion), the normalized force, fI (t) = FI (t) /(m1+m2) appearing in equations (5.19) and (5.20)
is given by equation (3.21) when sgn [FI (t) /u̇1(t)] ≥ 0 and by

fI (t) =
FI (t)

m1 +m2

= 0 when sgn

[
FI (t)

u̇1(t)

]
< 0 (5.25)

The time-derivative of the state-vector of the system is given by equation (5.24) when sgn [FI(t)/
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u̇1(t)] > 0 and by

{ẏ (t)} =



u̇1 (t)
ü1 (t)
u̇2 (t)
ü2 (t)
ż1 (t)
ż2 (t)


=



y2 (t)

−üg (t)− 2ξ1ω1

1−γ y2 (t) +
2 γξ2ω2

1−γ y4 (t)− αω2
1

1−γ y1 (t) +
αγω2

2

1−γ y3 (t)

− (1−α)ω2
1uy1

1−γ y5 (t) +
(1−α)γω2

2uy2
1−γ y6 (t)

y4 (t)
2ξ1ω1

1−γ y2 (t)− 2ξ2ω2

1−γ y4 (t) +
αω2

1

1−γ y1 (t)−
αω2

2

1−γ y3 (t)

+
(1−α)ω2

1uy1
1−γ y5 (t)− (1−α)ω2

2uy2
1−γ y6 (t)

1
uy1

[
y2 (t)− βz y2 (t) |y5 (t)|n − γz |y2 (t)| y5 (t) |y5 (t)|n−1]

1
uy2

[
y4 (t)− βz y4 (t) |y6 (t)|n − γz |y4 (t)| y6 (t) |y6 (t)|n−1]


(5.26)

when sgn [FI (t) /u̇1(t)] < 0.

The response of the 2DOF structure with supplemental rotational inertia shown in Figure 5.1(d)
with a compliant chevron frame with finite stiffness, kf and damping cf is compared with the
response of a heavily damped 2DOF structure with supplemental viscous damping at the first story
with damping constant cd = 2ξdω1 (m1 +m2) as shown in Figure 5.1(f). The constitutive equation
of the mechanical network of a spring-dashpot parallel connection (kf , cf ) that is connected in
series with a dashpot (cd) is given by (Makris and Kampas 2013; Makris and Moghimi 2019)

Fd (t) +
cd + cf
kf

dFd(t)

dt
= cd

(
du1(t)

dt
+
cf
kf

d2u1(t)

dt2

)
(5.27)

For the case of a 2DOF structure with supplemental damping supported by a compliant chevron
frame with finite stiffness shown in Figure 5.1(f), the state-vector of the system is

{y (t)} = ⟨ y1 (t) , y2 (t) , y3 (t) , y4 (t) , y5 (t) , y6 (t) , y7 (t) ⟩T

= ⟨ u1 (t) , u̇1 (t) , u2 (t) , u̇2 (t) , fd (t) , z1 (t) , z2 (t) ⟩T (5.28)

The solution of the system of differential equations given by euqations (5.19), (5.20) , and (5.27)
is computed by integrating the time-derivative of the state-vector given by equation (5.28)

{ẏ (t)} =



u̇1 (t)
ü1 (t)
u̇2 (t)
ü2 (t)

ḟd (t)
ż1 (t)
ż2 (t)


=



y2 (t)

− 1
1−γ y5 (t)− üg (t)− 2ξ1ω1

1−γ y2 (t) +
2 γξ2ω2

1−γ y4 (t)− αω2
1

1−γ y1 (t) +
αγω2

2

1−γ y3 (t)

− (1−α)ω2
1uy1

1−γ y6 (t) +
(1−α)γω2

2uy2

1−γ y7 (t)

y4 (t)
1

1−γ y5 (t) +
2ξ1ω1

1−γ y2 (t)− 2ξ2ω2

1−γ y4 (t) +
αω2

1

1−γ y1 (t)−
αω2

2

1−γ y3 (t)

+
(1−α)ω2

1uy1

1−γ y6 (t)− (1−α)ω2
2uy2

1−γ y7 (t)
1
λd

[−y5 (t) + 2ξdω1 (y2 (t) + λ (ü1 (t)))]
1
uy1

[
y2 (t)− βz y2 (t) |y6 (t)|n − γz |y2 (t)| y6 (t) |y6 (t)|n−1]

1
uy2

[
y4 (t)− βz y4 (t) |y7 (t)|n − γz |y4 (t)| y7 (t) |y7 (t)|n−1]



(5.29)

where fd (t) = Fd (t) /(m1 +m2) has units of acceleration.
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5.5 RESPONSE SPECTRA OF A YIELDING 2DOF STRUCTURE WITH INERTERS
SUPPORTED ON A COMPLIANT CHEVRON FRAME

The seismic response of the yielding 2DOF structure equipped with an inerter at the first story
[Figure 5.1(d)] as described by equation (5.24) or equations (5.24) and (5.26) is compared with
the seismic response of the same 2DOF structure where the inerter is replaced with a supplemen-
tal viscous damper with damping constant cd given by equation (5.29). Together with the drift
response u1 and u2 (relative displacements), of interest are the normalized shear above the first
story, V2/m2g, the total normalized base shear at the ground level, V1/(m1+m2)g which is essen-
tially the left-hand side or the right-hand side of equation (5.14) and the normalized inerter force,
FI/(m1 +m2)g transferred to the support of inerter.

The response spectra in Figures 5.7 and 5.8, which are for a 2DOF yielding structure with inerters
supported on a stiff chevron frame, are obtained by setting in equation (3.21) λ = 0 and 1/ω2

R = 0.
The thin solid lines in Figures 5.7 and 5.8 are for the yielding 2DOF structure without any response
modification device, whereas the heavier solid lines are for the cases where inerters with σ = 0.5
and σ = 1.0 are used. The dashed lines are for when supplemental damping, ξd, is used so
that ξ1 = ξc + ξd = 0.02 + 0.23 = 0.25. Figure 5.7 present the response spectra for the two
2DOF yielding structural configurations shown in Figures 5.1(d) and (f) when subjected to the
Gilroy Array 6/230 ground motion recorded during the 1979 Coyote Lake, California earthquake;
while, Figure 5.8 presents the response spectra of the same 2DOF yielding structural configurations
when subjected to the Array 2/360 ground motion recorded during the 2004 Parkfield, California
earthquake.

The first observation is that supplemental rotational inertia supported on a stiff frame is most
efficient in reducing displacements for structures with larger preyielding periods, T1; nevertheless,
the displacement reduction achieved is comparable to the reduction achieved with large values of
supplemental damping (ξd = 25%). However, the use of inerters does not amplify the inelastic
response of the second story, as happens when large values of supplemental damping are used.

The use of a pair of clutching inerters, where only the structure can drive the inerters, has a marginal
effect in further suppressing displacements and forces transferred at the support of the inerters.

The response spectra in Figures 5.9 and 5.10 are the results of the solution of the equation (5.24)
(single inerter supported on a compliant frame) and of equations (5.24) and (5.26) when a pair
of clutching inerters is used. Again, when σ = 0 (thin line), the solution offers the response of
the 2DOF yielding structure without any seismic protection devices. The heavier solid lines are
for the cases where inerters with σ = 0.5 and σ = 1.0 are used. The compliance of chevron
frame is expressed with the relaxation time, λ = cf/kf = 0.05; whereas the stiffness of the
chevron frame compared with the supplemental inertance,MR, is expressed with the dimensionless
product λωR = 0.5. For the structural system in Figure 5.1(f), values of ξc = 2% and ξd = 23%
are used so that ξ1 = ξc + ξd = 0.02 + 0.23 = 0.25. When supplemental damping, cd is used,
the compliance of the chevron frame is λd = (cd + cf ) /kf = 0.5. In all spectra Q1/(m1 +
m2) = 0.1g,Q2/m2 = 0.2g, uy2 = uy1/2andm1 = m2 so that γ = 1/2. Figure 5.9 present the
response spectra for the two 2DOF yielding structural configurations shown in Figures 5.1(d) and
(f) when subjected to the Gilroy Array 6/230 ground motion recorded during the 1979 Coyote Lake,
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Figure 5.7: Response spectra of a yielding 2DOF structure equipped with inerters (heavy
solid lines) or supplemental viscous damping (dashed lines) supported on a stiff
frame when excited by the Gilroy Array 6/230 ground motion recorded during
the 1979 Coyote Lake earthquake: (a) Single inerter; (b) Pair of clutching inert-
ers.
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Figure 5.8: Response spectra of a yielding 2DOF structure equipped with inerters (heavy
solid lines) or supplemental viscous damping (dashed lines) supported on a stiff
frame when excited by the Cholame Number 2/360 ground motion recorded dur-
ing the 2004 Parkfield California earthquake: (a) Single inerter; (b) Pair of
clutching inerters.
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Figure 5.9: Response spectra of a yielding 2DOF structure equipped with inerters (heavy
solid lines) or supplemental viscous damping (dashed lines) supported on a com-
pliant chevron frame when excited by the Gilroy Array 6/230 ground motion
recorded during the 1979 Coyote Lake earthquake: (a) Single inerter; (b) Pair of
clutching inerters.
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Figure 5.10: Response spectra of a yielding 2DOF structure equipped with inerters (heavy
solid lines) or supplemental viscous damping (dashed lines) supported on a com-
pliant chevron frame when excited by the Cholame Number 2/360 ground mo-
tion recorded during the 2004 Parkfield California earthquake: (a) Single in-
erter; (b) Pair of clutching inerters.
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California earthquake; while, Figure 5.10 presents the response spectra of the same 2DOF yielding
structural configurations when subjected to the Array 2/360 ground motion recorded during the
2004 Parkfield, California earthquake.

The main observation is that when the inerters are supported on a compliant frame they are much
more efficient in suppressing inelastic displacement response than when large values of supple-
mental damping are used.

5.6 CONCLUSIONS

This chapter investigated the nonlinear seismic response of a one- and two-degree-of- freedom
yielding structures equipped with inerters at the first story.

The response analysis of a SDOF elastoplastic and bilinear structure reveals that when the yield-
ing structure is equipped with supplemental rotational inertia (inerters), the equal-displacement
rule is valid starting from lower values of the preyielding period given that the presence of in-
erters lengthens the apparent preyielding period. Furthermore, inerters suppress effectively the
inelastic displacements of SDOF yielding structures; while the resulting base shears are systemat-
ically lower than when large values of supplemental damping (ξd = 0.25%) are used. The forces
transferred at the mounting of the inerters are appreciably lower than the corresponding forces
originating from an elastic structure analyzed in chapter 3. Consequently, the implementation of
inerters emerges as an attractive response modification strategy for elastoplastic and bilinear SDOF
structures with larger preyielding periods.

The use of a pair of clutching inerters does not offer any additional benefits compared to the case
where a single inerter is used. Pair of clutching inerters are found to be attractive when suppressing
the response of elastic structures.

Inerters are also most effective in suppressing the inelastic response of 2DOF yielding structures
with pre-yielding periods up to T1 = 1.5sec without aggravating the inelastic response of the
superstructure. The effectiveness of inerters to suppress the inelastic response of the 2DOF yielding
structure outperforms appreciably the effectiveness of large values of supplemental damping (ξd =
25%) when the support frame of the response modification device is compliant.

In view of these findings the use of inerters emerges as an attractive response modification strategy
is recommended for yielding structures. For larger pre-yielding periods (say T1 > 2.0sec), the
effectiveness of inerters to suppress the inelastic response of 2DOF yielding structures reduces;
and for very flexible first stories; as in the case of isolated structures examined in chapter 4, the
use of inerters at the first level (isolation system) is not recommended given that they aggravate the
response of the elastic superstructure.
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6 The role of inerters when placed at
floor-levels other than the first level

Following Furuhashi and Ishimaru’s (2008) seminal contribution, Takewaki et al. (2012) explained
that for inerters to suppress the induced ground acceleration they need to be installed without be-
ing interrupted, starting from the ground level; otherwise, the inerters which are installed above the
“interrupted” level can no-longer suppress the ground induced acceleration. In spite of Takewaki
et al. (2012) important finding-that solitary inerters when placed at higher levels do not suppress
the ground induced acceleration, several subsequent publications investigated the response of struc-
tures equipped with a solitary inerter at a floor level other than the first level (Sugimura et al. 2012;
Ogino and Sumiyama 2014; Lazar et al. 2014; Marian and Giaralis 2014; Taflanidis et al. 2019)
within the context of proposing an enhanced tuned mass damper. Soon after Takewaki et al. (2012)
publication, Lazar et al. (2014) examined in detail the role of a tuned inerter damper (TID)-which
is essentially an inerter supported on a compliant support (a spring-dashpot parallel connection),
as an alternative tuned mass damper (TMD) and they correctly concluded that the TID is more
effective when placed at the ground level, reaffirming the findings of Takewaki et al. (2012). In
view of the appreciable number of publications that examine the response of tall buildings when
equipped at a higher level with a solitary mechanical network that involves inerters (Marian and
Giaralis 2014; Giaralis and Taflanidis 2018; Taflanidis et al. 2019), in association that this concept
has enjoyed full-scale implementations (Sugimura et al. 2012; Ogino and Sumiyama 2014), in this
chapter we examine the role of inerters when placed at floor-levels other than the first level and we
show that; whereas, they assume a reduced role since they can no-longer eliminate the participation
of higher modes, nor they can suppress the ground induced acceleration, they maintain a distinct
role as response modification devices, since it is not possible to replace a structure with a solitary
inerter at a higher level with an equivalent traditional structure without inerters.

6.1 MULTI-STORY STRUCTURES

Our investigation on the role of inerters when placed at higher floor-levels commences with the
analysis of the multi-story elastic structure (NDOF ) shown in Figure 6.1. In this section the
displacements of the floors u1(t), u2(t), . . . , uN(t) are measured relative to the ground by following
the traditional formulation for the response analysis of multi-degree-of-freedom structures (Clough
and Penzien 1975; Chopra 2000).
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Figure 6.1: Multi-story structure with supplemental rotational inertia at its first level (left);
or at some higher level j without any inerters at the levels below (right).

When the NDOF structure is not equipped with inerters at any floor, the equation of motion
that governs its response when subjected to a ground induced acceleration, üg(t), is (Clough and
Penzien 1975; Chopra 2000)



m1 0 . . . . . 0
0 m2 .

.
. . . .

. mj−1 .

. mj .

.
. . . .

. mN−1 0
0 . . . . . 0 mN





ü1(t)
ü2(t)

...
üj−1(t)
üj(t)

...
üN−1(t)
üN(t)


+ [c]



u̇1(t)
u̇2(t)

...
u̇j−1(t)
u̇j(t)

...
u̇N−1(t)
u̇N(t)


+ [k]



u1(t)
u2(t)

...
uj−1(t)
uj(t)

...
uN−1(t)
uN(t)


= −



m1

m2
...

mj−1

mj
...

mN−1

mN


üg(t)

(6.1)
where [c] and [k] are the damping and stiffness matrices
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[c] =



c1 + c2 −c2 0 . . 0 . 0
−c2 c2 + c3 −c3 .

0
. . . . . . . . . .

. −cj−1 cj−1 + cj −cj .
0 0 −cj cj + cj+1 −cj+1 .

.
. . . . . . . . . 0

. −cN−1 cN−1 + cN −cN
0 . 0 . . 0 −cN cN


(6.2)

[c] =



k1 + k2 −k2 0 . . 0 . 0
−k2 k2 + k3 −k3 .

0
. . . . . . . . . .

. −kj−1 kj−1 + kj −kj .
0 0 −kj kj + kj+1 −kj+1 .

.
. . . . . . . . . 0

. −kN−1 kN−1 + kN −kN
0 . 0 . . 0 −kN kN


(6.3)

and m1, m2 ,. . ., mN , c1, c2 ,. . ., cN , k1, k2 ,. . ., kN , are the masses, damping constants and
stiffnesses of the N floors shown in Figure 6.1. Upon multiplying equation (6.1) from the left with
the inverse of the diagonal mass matrix [m], equation (6.1) assumes the form

ü1(t)
ü2(t)

...
üj−1(t)
üj(t)

...
üN−1(t)
üN(t)


+ [m]−1[c]



u̇1(t)
u̇2(t)

...
u̇j−1(t)
u̇j(t)

...
u̇N−1(t)
u̇N(t)


+ [m]−1[k]



u1(t)
u2(t)

...
uj−1(t)
uj(t)

...
uN−1(t)
uN(t)


= −



1
1
...
1
1
...
1
1


üg(t) (6.4)

which shows that all degrees of freedom uj(j ∈ {1, 2, . . . , N}) are loaded uniformly with the same
acceleration excitation,−üg(t).

When the NDOF structure is equipped with an inerter at the ground level that opposes the motion
of the first floor, the equation of motion for the NDOF structure shown in Figure 6.1(left), when
the inerter is supported by a non-compliant support frame, is

m1 +MR 0 . . . . . 0
0 m2 .

.
. . . .

. mj−1 .

. mj .

.
. . . .

. mN−1 0
0 . . . . . 0 mN





ü1(t)
ü2(t)

...
üj−1(t)
üj(t)

...
üN−1(t)
üN(t)


+ [c]



u̇1(t)
u̇2(t)

...
u̇j−1(t)
u̇j(t)

...
u̇N−1(t)
u̇N(t)


+ [k]



u1(t)
u2(t)

...
uj−1(t)
uj(t)

...
uN−1(t)
uN(t)


= −



m1

m2
...

mj−1

mj
...

mN−1

mN


üg(t)

(6.5)
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where the quantity MR = (1/2)MW (R2/ρ2) appearing in the mass matrix is the inertance of the
inerter with units of mass [M ] and [c] and [k] are the damping and stiffness matrices given by
equations (6.2) and (6.6).

Upon multiplying equation (6.5) from the left with the inverse of the diagonal mass matrix, [m]−1,
appearing on the left of equation (6.5), equation (6.5) assumes the form



ü1(t)
ü2(t)

...
üj−1(t)
üj(t)

...
üN−1(t)
üN(t)


+ [m]−1[c]



u̇1(t)
u̇2(t)

...
u̇j−1(t)
u̇j(t)

...
u̇N−1(t)
u̇N(t)


+ [m]−1[k]



u1(t)
u2(t)

...
uj−1(t)
uj(t)

...
uN−1(t)
uN(t)


= −



1

1+
MR
m1

1
...
1
1
...
1
1


üg(t) (6.6)

Equation (6.6) shows that when the inerter is installed at the first level of the NDOF structure
(see Figure 6.1(left)), the induced ground acceleration at DOF u1(t) (first level) is suppressed
by the factor 1/(1 + MR/m1), in the same way that it is suppressed when a single degree of
freedom structure is equipped with an inerter as shown by equation (1.3). Accordingly, when
an inerter with inertance, MR, is installed at the first level of a NDOF structure it manifests its
unique beneficial effect-that is it suppresses the ground induced acceleration at the first level by
1/(1 +MR/m1) = 1/(1 + σ1).

We now examine the response of theNDOF structure shown in Figure 6.1(right) where the inerter
is installed at thejth floor. Given that the force output of the inerter is proportional to the relative
acceleration of the second floor to the first floor

(
üj(t) − üj−1(t)

)
,the equation of motion of the

NDOF structure shown in Figure 6.1(right), when the inerter is supported by a non-compliant
frame, is



m1 0 . . . 0 . 0
0 m2 .

.
. . . .

0 0 mj−1 +MR −MR 0 0
0 0 −MR mj +MR 0 0

.
. . . .

. mN−1 0
0 . 0 . . . 0 mN





ü1(t)
ü2(t)

...
üj−1(t)
üj(t)

...
üN−1(t)
üN(t)


+ [c]



u̇1(t)
u̇2(t)

...
u̇j−1(t)
u̇j(t)

...
u̇N−1(t)
u̇N(t)


+ [k]



u1(t)
u2(t)

...
uj−1(t)
uj(t)

...
uN−1(t)
uN(t)


= −



m1

m2
...

mj−1

mj
...

mN−1

mN


üg(t)

(6.7)
where again MR = (1/2)mW (R2/ρ2) is the inertance of inerter and [c] and [k] are the damping
and stiffness matrices given by equations (6.5) and (6.6). Upon multiplying equation (6.7) from
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the left with the inverse of the non-diagonal mass matrix

[m]−1 =



m1 0 . . . 0 . 0
0 m2 .

.
. . . .

0 0 mj−1 +MR −MR 0 0
0 0 −MR mj +MR 0 0

.
. . . .

. mN−1 0
0 . 0 . . . 0 mN



−1

=



1
m1

0 . . . 0 . 0

0 1
m2

.

.
. . . .

0 0
mj+MR

mjMR+mj−1(mj+MR)
MR

mjMR+mj−1(mj+MR)
0 0

0 0 MR

mjMR+mj−1(mj+MR)

mj−1+MR

mjMR+mj−1(mj+MR)
0 0

.
. . . .

. 1
mN−1

0

0 . 0 . . . 0 1
mN


(6.8)

Equation(6.7) assumes the form

ü1(t)
ü2(t)

...
üj−1(t)
üj(t)

...
üN−1(t)
üN(t)


+ [m]−1[c]



u̇1(t)
u̇2(t)

...
u̇j−1(t)
u̇j(t)

...
u̇N−1(t)
u̇N(t)


+ [m]−1[k]



u1(t)
u2(t)

...
uj−1(t)
uj(t)

...
uN−1(t)
uN(t)


= −



1
1
...
1
1
...
1
1


üg(t) (6.9)

where [c] and [k] are the damping and stiffness matrices of the NDOF structure shown in Figure
6.1 and are given by equations (6.2) and (6.4).

The most interesting result of equation (6.9) is that its right-hand side is identical to the right-hand
side of equation (6.4), showing that when the inerter is placed at any level other than the ground
level all degrees of freedom uj(t)(j ∈ {1, 2, . . . , N}) are subjected uniformly to the same (non-
suppressed) acceleration excitation, −üg(t). The same result-that when inerters are placed at floor
levels other than the first level, all degrees of freedom are subjected uniformly to the same (non-
suppressed) excitation, −üg(t), is true when more than one floors-levels, other than the ground
level, are equipped with inerters. As an example, Figure 6.2 shows a 3-story structure where
inerters are placed at the second and third floor.

Dynamic equilibrium of either 3-story structure shown in Figure 6.2 when subjected to a ground
induced excitation, üg(t), gives

[m]


ü1(t)
ü2(t)
ü3(t)

+ [c]


u̇1(t)
u̇2(t)
u̇3(t)

+ [k]


u1(t)
u2(t)
u3(t)

 = −


m1

m2

m3

 üg(t) (6.10)

where

[m] =

m1 +MR2 −MR2 0
−MR2 MR2 +m2 −MR3

0 −MR3 m3 +MR3

 [c] =

c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3

 [k] =

k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3


(6.11)

are the mass, damping and stiffness matrices of the 3-story structure. The inverse of the mass
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Figure 6.2: Three degree-of-freedom (3DOF) structure with supplemental rotational inertia
at its 2nd and 3rd floors.

matrix of the 3-story structure shown in Figure 6.2, is

[m]−1 =


m3(m2+MR2)+(m2+m3+MR2)MR3

ψ
MR2(m3+MR3)

ψ
MR2MR3

ψ
MR2(m3+MR3)

ψ
(m1+MR2)(m3+MR3)

ψ
(m1+MR2)MR3

ψ
MR2MR3

ψ
(m1+MR2)MR3

ψ
MR2(m2+MR3)+m1(m2+MR2+MR3)

ψ


(6.12)

where ψ = m1[m3(m2+MR2)+(m2+m3+MR2)MR3]+MR2[m3MR3+m2(m3+MR3)]. Upon
multiplying equation (6.10) from the left with [m]−1 given by equation (6.12) it assumes the form

ü1(t)
ü2(t)
ü3(t)

+ [m]−1[c]


u̇1(t)
u̇2(t)
u̇3(t)

+ [m]−1[k]


u1(t)
u2(t)
u3(t)

 = −


1
1
1

 üg(t) (6.13)

Equation (6.13) yields the same result initially presented by Takewaki et al. (2012)-that when
the inerter is placed at the second and third floor of the 3-story structure shown in Figure 6.2,
all three degrees of freedom u1, u2 and u3 are subjected uniformly to the same (non-suppressed)
acceleration excitation, −üg(t).
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6.2 INERTERS MANIFESTS A UNIQUE ROLE EVEN WHEN PLACED AT
FLOOR-LEVELS OTHER THAN THE FIRST LEVEL

The equations of motion (6.9) and (6.13) which are for structures equipped with inerters at floor-
levels other than the first level are of the same form as equation (6.7)-that is the equation of motion
of the classical NDOF elastic structures without inerters. Accordingly, the natural question that
arises is whether is it possible to adjust the mass and stiffness matrices of an equivalent classical
NDOF structure without inerters so that its response to be identical to the response of a NDOF
structure that is equipped with an inerter at its jth level as is for instance, in the real-world appli-
cations reported by Sugimura et al. (2012) and Ogino and Sumiyama (2014).

With reference to equation (6.1) this equivalent NDOF structure has mass, damping and stiffness
matrices of the same form as the matrices appearing in equations (6.1)-(6.6) where them1,m2, . . . ,
mN , c1, c2, . . . , cN , k1, k2, . . . , kN , are replaced withme

1,m
e
2, . . . ,m

e
N , ce1, c

e
2, . . . , c

e
N , ke1, k

e
2, . . . , k

e
N .

Our analysis proceeds by assuming that such an equivalent structure exists and we examine the
outcome of this assumption (Reductio ad absurdum). Accordingly, in the event that equation
(6.9) is also the equation of motion of an equivalent NDOF classical structure without inerters,
multiplication of equation (6.9) from the left with the diagonal mass [me] gives

[me]



ü1(t)
ü2(t)

...
üj−1(t)
üj(t)

...
üN−1(t)
üN(t)


+ [me][m]−1[c]



u̇1(t)
u̇2(t)

...
u̇j−1(t)
u̇j(t)

...
u̇N−1(t)
u̇N(t)


+ [me][m]−1[k]



u1(t)
u2(t)

...
uj−1(t)
uj(t)

...
uN−1(t)
uN(t)


= −[me]



1
1
...
1
1
...
1
1


üg(t) (6.14)

where [m]−1 is given by equation (6.8), and [c] and [k] are given by equations (6.2) and (6.3). For
equation (6.14) to be the equation of motion of the equivalent NDOF structure without inerter, a
necessary condition is that

[me][m]−1[k] = [ke] (6.15)

where [ke] has the form of the stiffness matrix given by equation (6.3) where the entries k1, k2, . . . ,
kN are replaced with ke1, k

e
2, . . . , k

e
N . Upon performing the matrix products on the left-hand side of

equation (6.15), one obtains



(k1+k2)me
1

m1
−k2me

1

m1
0 . . 0 . 0

−k2me
2

m2

(k2+k3)me
2

m2
−k3me

2

m2
.

0
. . . . . . . . . .

0 − kj−1m
e
j−1(mj+MR)

mjMR+mj−1(mj+MR)

me
j−1[kjmj+kj−1(mj+MR)]

mjMR+mj−1(mj+MR)

me
j−1(−kjmj+kj+1MR)

mjMR+mj−1(mj+MR)
− kj+1m

e
j−1MR

mjMR+mj−1(mj+MR)
0

0 − kj−1m
e
jMR

mjMR+mj−1(mj+MR)

me
j [−kjmj−1+kjMR]

mjMR+mj−1(mj+MR)

me
j [kjmj−1+kj+1(mj−1+MR)]

mjMR+mj−1(mj+MR)
− kj+1m

e
j(mj−1+MR)

mjMR+mj−1(mj+MR)
0

.
. . . . . . . . . .

. −kN−1m
e
N−1

mN−1

(kN−1+kN )me
N−1

MN−1
−kNm

e
N−1

mN−1

0 . 0 . . 0 −kNM
e
N

MN

kNm
e
N

MN


= [ke]

(6.16)
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In the event that an equivalent NDOF structure without inerter exists, all corresponding entries
kij(ij ∈ 1, . . . , N) in the stiffness matrices appearing on the left-and right-hand side of equa-
tion(6.16) shall be equal. Accordingly, by equating the entries (j − 1) ∗ (j + 1) of both matrices

−kj+1m
e
j−1MR = 0 (6.17)

Since me
j−1 ̸= 0, and kj+1 ̸= 0, equation (6.17) can be satisfied if and only if MR = 0.

The above proof shows that the only way that equation (6.9) can be the equation of motion of
an equivalent NDOF structure without inerter, is thatMR = 0-that is the inertance of the inerter
needs to be zero. Accordingly, while when placing inerters at floor levels other than the first level,
the inerter is neither capable to suppress the ground induced acceleration (see right-hand side of
equations (6.9) and (6.13)) nor to eliminate the contribution of higher modes (see Moghimi and
Makris (2023) for the 2DOF structure), our analysis shows that inerters still have a unique distinct
role since it is not possible to replace a structure with inerters with an equivalent structure without
inerters. The above proof also contributes to support the merit of past investigations that examine
the use of inerters installed at higher floor-levels as alternative tuned mass dampers Takewaki et al.
(2012); Sugimura et al. (2012); Lazar et al. (2014); Marian and Giaralis (2014); Taflanidis et al.
(2019); Giaralis and Taflanidis (2018).

The same result-that it is not possible to replace a structure with inerters at floor-levels other than
the first level with an equivalent tradional structure without inerters, is true also for structures with
inerters in more than one floors above the first floor. As an example, we investigate the case of the
3-story structure shown in Figure 6.2 which is equipped with inerters at the second and third floors.
The equations of motion of this 3-story structure is offered by equation (6.13)) where matrices [c]
and [k] given by equations (6.11)) and [M ]−1 is given by equation (6.12)). If an equivalent 3-story
structure without inerters exists, this equivalent 3-story structure, will have mass, damping and
stiffness matrices

[me] =

me
1 0 0
0 me

2 0
0 0 me

3

 , [ce] =

ce1 + ce2 −ce2 0
−ce2 ce2 + ce3 −ce3
0 −ce3 ce3

 , [ke] =

ke1 + ke2 −ke2 0
−ke2 ke2 + ke3 −ke3
0 −ke3 ke3

 (6.18)

In the event that equation (6.13)) is also the equation of motion of an equivalent 3DOF classical
structure without inerters, multiplication of equation (6.13)) from the left with its mass [me] gives

me
1 0 0
0 me

2 0
0 0 me

3


ü1(t)
ü2(t)
ü3(t)

+

me
1 0 0
0 me

2 0
0 0 me

3

 [m]−1[c]


u̇1(t)
u̇2(t)
u̇3(t)

+

me
1 0 0
0 me

2 0
0 0 me

3

 [m]−1[k]


u1(t)
u2(t)
u3(t)

 = −

me
1 0 0
0 me

2 0
0 0 me

3


1
1
1

 üg(t)

(6.19)
where [m]−1 is given by equation (6.12)) and [c] and [k] are given by equation (6.11)). For equation
(6.19)) to be the equation of motion of the equivalent 3DOF structure without inerters, a necessary
condition is that me

1 0 0
0 me

2 0
0 0 me

3

 [m]−1[k] =

ke1 + ke2 −ke2 0
−ke2 ke2 + ke3 −ke3
0 −ke3 ke3

 = [ke] (6.20)
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Upon performing the matrix products on the left-hand side of equation (6.20), one obtains

me

1[m3(k2m2+k1(m2+MR2))+((k1+k2)(m2+m3)+k1MR2)MR3]

ψ

me
1[k3m3MR2−k2(m3MR3+m2(m3+MR3))]

ψ
−me

1k3m3MR2

ψ

−me
2(k2m−k1MR2)(m3+MR3)

ψ

me
2[k3m3(m1+MR2)+k2m1(m3+MR3)]

ψ
−me

2m3k3(m1+MR2)

ψ
me

3(−k2m1+k1MR2)MR3

ψ

me
3[−k3(m2MR2+m1(m2+MR2))+k2m1MR3]

ψ

me
3[m2MR2+m1(m2+MR2)]k3

ψ

 = [ke]

(6.21)
where ψ = m1[m3(m2 +MR2) + (m2 +m3 +MR2)MR3] +MR2[m3MR3 +m2(m3 +MR3)].

In the event that an equivalent 3DOF structure without inerters exists, all corresponding entries
kij(i, j ∈ {1, 2, 3}) in the stiffness matrices appearing on the left-and right-hand side of matrix
equation (6.21) shall be equal.

By equating the entries 1 ∗ 3 of both matrices

me
1k3m3MR2 = 0 (6.22)

Since me
1 ̸= 0, m3 ̸= 0 and k3 ̸= 0, equation (6.22) can be satisfied if and only if MR2 = 0.

By equating the entries 3 ∗ 1 of both matrices appearing in equation (6.21) in association with the
result of equation (6.22)-that MR2 = 0, one obtains

−me
3k2m1MR3 = 0 (6.23)

Since me
3 ̸= 0, m1 ̸= 0 and k2 ̸= 0, equation (6.23) can be satisfied if and only if MR3 = 0,

showing that it is not possible to replace a structure with inerters with an equivalent structure
without inerters.

Figure 6.3: Two-degree-of-freedom (2DOF) structure with inerter installed only at its 2nd
level
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To further understand the unique role of inerters when placed at floor-levels other than the first
level, our analysis examines the 2-story structure shown in Figure 6.3 that is equipped with the
rotational inertia at the second level. In the interest of simplicity we assume that γ = m2/m1 =
1(m1 = m2 = m) and α = k2/k1 = 1(k1 = k2 = k). For this special case, the equations for the
modal frequencies (Moghimi and Makris 2023) reduce to

ω2
1 = p2

3 + σ −
√

5 + σ(σ − 2)

2(1 + 2σ)
ω2
2 = p2

3 + σ +
√

5 + σ(σ − 2)

2(1 + 2σ)
(6.24)

where p =
√
k/m and σ = MR/m is the inertance ratio Makris and Kampas (2016); Moghimi

and Makris (2021).

Figure 6.4 plots with solid lines the ratios ω2
1/p

2 and ω2
2/p

2 as a function of the added inertance
ratio σ = MR/m and shows that the first modal frequency, ω1 decreases mildly with increasing
supplemental rotational inertia at the second level; whereas, the second modal frequency, ω2, drops
drastically with increasing supplemental rotational inertia up to values of σ ≈ 2 and subsequently
decreases mildly following the rate of decrease of ω1.

Figure 6.4: Comparison of modal frequencies ω1 and ω2 of the 2DOF structure as the rota-
tional inertia at the second level increases (additional inertia forces are propor-
tional to the relative acceleration of the second floor) with the modal frequencies
of the traditional 2DOF structure (no inerters) by increasing the mass m2 of the
second level (additional inertia D’Alembert forces are proportional to the total
acceleration of the second level).
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Now consider the case that in order to lengthen the natural periods of the 2-story structure, instead
of supplemental rotational inertia at the second level, we select to merely increase the mass m2 of
the second level. Accordingly, the mass of the second level is m2 = γm1 with γ ≥ 1.

By taking k1 = k2 = k and m2 = γm1 = γm, and σ = 0, equations for frequencies (Moghimi
and Makris 2023) reduce to

ω2
1 = p2

2γ + 1−
√

4γ2 + 1

2γ
ω2
2 = p2

2γ + 1 +
√

4γ2 + 1

2γ
(6.25)

where again p =
√
k/m. Figure 6.4 also plots with dashed lines the ratios ω2

1/p
2 and ω2

2/p
2 as

a function of γ = m2/m1. The four cases appearing in Figure 6.4 show the major differences by
merely adding mass at the second level (increasing γ), which in this case the additional developing
inertia forces (D’Alembert forces) are proportional to the total acceleration of the second floor;
and by adding rotational inertia (increasing σ); which in this case the additional developing inertia
forces are proportional to the relative acceleration of the second floor.

6.3 CONCLUSIONS

In view of the known distinct properties of inerters when installed without being interrupted, start-
ing from the first level, namely: (a) their ability to eliminate the participation of higher modes and
(b) their ability to suppress the ground induced excitation; in association with a growing number
of publications that examine the response of tall buildings when equipped at a higher level with
a solitary mechanical network that involves ineters, this chapter examines whether inerters have
indeed a unique role when placed at floor-levels other than the first level.

Our study shows that in spite of the reduced role of inerters when placed at floor levels other
than the first level, they still manifest a unique role since it is not possible to replace a structure
with solitary inerters at higher levels with an equivalent tradional structure without inerters. Our
proof contributes to support the merit of past investigations (Hoang and Warnitchai 2005; Miranda
2005; Papagiannopoulos and Beskos 2009; Sugimura et al. 2012; Garrido et al. 2013; Ogino and
Sumiyama 2014; Lazar et al. 2014; Marian and Giaralis 2014; Giaralis and Taflanidis 2015; Giar-
alis and Petrini 2017; Luo et al. 2017; Pietrosanti et al. 2017; Wen et al. 2017; De Domenico and
Ricciardi 2018a; Taflanidis et al. 2019) that examine the use of solitary inerters installed at higher
floor-levels as alternative tuned mass dampers.
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7 Conclusions

This report investigates the dynamics of single-story and multistory structures with supplemental
rotational inertia and how inerters modify their elastic or inelastic response. In view that the inerter
emerges as the third elementary mechanical element, Chapter 2 examines and constructs the basic
frequency-response functions and subsequently derives the corresponding causal time-response
functions of elementary mechanical networks which involve inerters. Because of the participation
of the inerter, some basic time-response functions of the examined mechanical networks exhibit a
causal oscillatory response and this behavior complements the decaying-exponential response due
to the participation of the dashpot. Most importantly, the chapter shows that the inerter emerges
as an attractive response-modification element given that in some cases it “absorbs” the impulsive
response of the solitary spring or dashpot present in the mechanical network.

The basic response-functions derived in Chapter 2 and summarized in Table 2.1 in association with
the mathematical operations outlined, extends the well-established theory of linear viscoelasticity
to the inertoelastic and inertoviscoelastic behavior (combination of inerters, dashpots and springs)
and introduces the subject of inertoviscoelasticity.

Chapter 3 shows that the supplemental rotational inertia controls effectively the displacements of
the first story of a 2DOF elastic structure along a wide range of the response spectrum. The pro-
posed seismic protection strategy can accommodate large relative displacements without suffering
from the issue of viscous heating (Makris 1998; Makris et al. 1998; Black and Makris 2007) and
potential leaking that challenges the implementation of fluid dampers under prolonged cyclic load-
ing. When the chevron frame that supports the rotational inertia system is stiff, the use of two
parallel rotational inertia systems offers improved results for the response of the 2DOF structure.
However, as the compliance of the chevron frame that supports the inerters increases, the use of
a single rotational inertia system offers more favorable response other than increasing the forces
transferred to the chevron frame.

Chapter 4 shows that while a small amount of supplemental rotational inertia is needed to elimi-
nate the participation of the second mode of the 2DOF linear isolated structure; the effect of this
elimination is marginal on the structure response, since the participation of the second mode is
invariably small even when isolation systems without inerters are used (Kelly 1990, 1997). The
nonlinear response analysis of the same 2DOF isolated structure is examined by adopting a bilinear
behavior for the isolation system in association with a formulation that accounts for the compli-
ance of the support of the inerter. Our study shows that supplemental rotational inertia aggravates
superstructure displacements and accelerations at larger isolation periods (Tb > 2.5sec). In view
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of these findings in association with the small gains in reducing displacements above isolators, the
use of inerters in isolation systems is not recommended.

The response analysis of a SDOF elastoplastic and bilinear structure in chapter 5 reveals that
when the yielding structure is equipped with supplemental rotational inertia (inerters), the equal-
displacement rule is valid starting from lower values of the preyielding period given that the pres-
ence of inerters lengthens the apparent preyielding period. Furthermore, inerters suppress effec-
tively the inelastic displacements of SDOF yielding structures; while the resulting base shears are
systematically lower than when large values of supplemental damping (ξd = 25%) are used. The
forces transferred at the mounting of the inerters are appreciably lower than the corresponding
forces originating from an elastic structure analyzed in Chapter 3. Consequently, the implementa-
tion of inerters emerges as an attractive response modification strategy for elastoplastic and bilinear
SDOF structures with larger preyielding periods.

The use of a pair of clutching inerters does not offer any additional benefits compared to the case
where a single inerter is used. Pair of clutching inerters are found to be attractive when suppressing
the response of elastic structures.

Inerters are also effective in suppressing the inelastic response of 2DOF yielding structures with
pre-yielding periods up to T1 = 1.5sec without aggravating the inelastic response of the superstruc-
ture. The effectiveness of inerters to suppress the inelastic response of the 2DOF yielding structure
outperforms appreciably the effectiveness of large values of supplemental damping (ξd = 25%)
when the support frame of the response modification device is compliant. In view of these findings
the use of inerters emerges as an attractive response modification strategy and is recommended for
yielding structures. For larger pre-yielding periods (say T1 > 2.0sec), the effectiveness of inerters
to suppress the inelastic response of 2DOF yielding structures reduces; and for very flexible first
stories; as in the case of isolated structures examined in Chapter 4, the use of inerters at the first
level (isolation system) is not recommended.

Motivated by the known distinct property of inerters when installed without being interrupted,
starting from the first level, to suppress the ground induced excitation; in association with a grow-
ing number of publications that examine the response of tall buildings when equipped at a higher
level with a solitary mechanical network that involves ineters in Chapter 6, we examine whether
inerters have indeed a unique role when placed at floor-levels other than the first level. Our study
shows that in spite of the reduced role of inerters when placed at floor levels other than the first
level, they still manifest a unique role since it is not possible to replace a structure with solitary
inerters at higher levels with an equivalent tradional structure without inerters. Our proof con-
tributes to support the merit of past investigations (Sugimura et al. 2012; Ogino and Sumiyama
2014; Lazar et al. 2014; Marian and Giaralis 2014; Taflanidis et al. 2019) that examine the use of
solitary inerters installed at higher floor-levels as alternative tuned mass dampers.
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