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ABSTRACT 

Earthquakes, being both unpredictable and potentially destructive, pose great risks to critical 

infrastructure systems like transportation. It becomes crucial, therefore, to have both a fine-grained 

and holistic understanding of how the current state of a transportation system would fare during 

hypothetical hazard scenarios. This paper introduces a synthesis approach to assessing the impacts 

of earthquakes by coupling an image-based structure-and-site-specific bridge fragility generation 

methodology with regional-scale traffic simulations and economic loss prediction models. The 

proposed approach’s use of context-rich data such as OpenStreetMap and Google Street View 

enables incorporating information that is abstracted in standard loss analysis tools like HAZUS in 

order to construct nonlinear bridge models and corresponding fragility functions. The framework 

uses a semi-dynamic traffic assignment model run on a regional traffic network that includes all 

freeways and local roads (1,444,790 edges) and outputs traffic volume on roads before and after 

bridge closures due to an earthquake as well as impacts to individual trips (42,056,426 trips). The 

combination of these models enables granularity, facilitating a bottom-up approach to estimating 

costs incurred solely due to physical damage to the transportation network. As a case study, the 

proposed framework is applied to the road network surrounding the Port of Los Angeles---an 

infrastructure of crucial importance---for assessing resilience and losses at a high resolution. It is 

found that the port area is disproportionately impacted in the hypothetical earthquake scenario, 

and delays in bridge repair can lead to a 50% increase in costs. 

Keywords: Earthquake, recovery, economic, infrastructure, resilience, transportation, bridge 
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 INTRODUCTION 

Natural hazards pose a significant risk to an area's critical infrastructure, and different areas may 

be more prone to certain hazards than others. For example, places like California are more prone 

to earthquakes and wildfires due to their geographic location, while states in the US Southeast and 

Midwest are more prone to hurricanes and flooding. Some hazards are easier to forecast and, 

consequentially, to prepare for, while others are more unpredictable and, therefore, can cause more 

damage and losses. Earthquakes are a good example of the latter. FEMA estimates that the US 

incurs a minimum Annual Earthquake Loss (AEL) of $6.1 billion per year, not yet including losses 

due to damage to lifeline infrastructure and indirect economic losses, 61% of which ($3.7 billion) 

is concentrated in California (Jaiswal et al., 2017). The report further indicates that 55 metropolitan 

areas account for 85% of this AEL, with Los Angeles accounting for 22% of it ($1.35 billion). 

With urbanization continuing to concentrate population and infrastructure in cities, areas with high 

seismic hazard and high building exposure—such as the Los Angeles and San Francisco Bay—

rank high on AEL at over $100 per capita (Jaiswal et al., 2017). 

The US Cybersecurity and Infrastructure Security Agency (CISA) defines critical infrastructure 

sectors as systems that are key to society's daily operations and any impairment, disruption, or 

destruction of which can have significant to devastating impacts on physical or economic security, 

public health, or safety1. Transportation infrastructure is an example of this. Transportation 

systems provide mobility to people, goods, and services that are vital to society's daily operations, 

which makes them even more important in times of crisis (Mattson and Jenelius, 2015) for 

scenarios like evacuation and emergency response. These infrastructure systems are built based on 

standards established at the time of construction that ensure a level of quality for a set amount of 

time. However, the average age of bridges in the US is 43 years old, very close to the typical 50-

year design life (ASCE, 2021), and the American Society of Civil Engineers (ASCE) estimates 

that $123 billion (2017 values) are needed to rehabilitate all US bridges. With this context, 

discussions on transportation systems' vulnerability and resilience become crucial.  

Resilience and vulnerability have been defined across different disciplines. Here, we interpret the 

former to mean the capacity of a system to retain functionality after experiencing an extreme event 

and to recover quickly from it. Goldberg (1975) defined resilience in socioecological systems as 

“the size of the perturbation that the system can withstand and still retain its essential 

characteristics”. This definition transfers well into civil systems as Berdica (2002)'s landmark 

study more than a decade ago, prior to the establishment of resilience as a key term in engineering, 

 

 

1 US Cybersecurity & Infrastructure Security Agency, 2022. Infrastructure security. 

https://www.cisa.gov/infrastructure-security. 
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closely defines reliability in road transportation systems as the complement of vulnerability, 

defined as ``a susceptibility to incidents that can result in considerable reductions in road network 

serviceability''. Reductions in road network serviceability is the most direct impact of a lack of 

resilience in the transportation infrastructure; however, this can have further reaching implications 

than just a longer travel time. As defined by CISA, damage to critical infrastructure can impact 

economic security. Disruptions to the transport network's connectivity can result in economic 

losses for a variety of sectors (Cho et al., 2001). Given the unpredictability and potentially 

devastating impacts of a large earthquake in certain areas, it is important to adopt a holistic 

definition of resilience that encompasses direct and indirect impacts of seismic hazards to the 

transportation network and to the economy at large. 

The next chapter lists the objectives of the study based on identified gaps to be addressed, provides 

the observations from a literature review conducted for this purpose and describes the organization 

of the report.  
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 LITERATURE REVIEW 

2.1 BRIDGE MODELING FOR PREDICTING SEISMIC DAMAGE 

Assessing the seismic vulnerability of bridges consists of two main tasks. The first is the hazard 

characterization (e.g., the magnitude and epicenter of an earthquake, as well as the intensity or 

ground motion that characterize the severity of the probabilistic hazard at a location). McGuire 

(2001) identifies two different approaches: deterministic versus probabilistic, and also identifies 

which approach is appropriate to use based on the ultimate decision trying to be made. The second 

task is the development of models or relationships that establish a connection between the hazard 

characteristics (e.g., an earthquake intensity measure) and the severity of bridge damage. Previous 

work on resilience assessment has used different approaches in modeling the effects of seismic 

hazards on bridges. Some focus on analyzing past earthquake scenarios and therefore use collected 

historical data of bridge damage to aid in quantifying costs and resilience (Chang and Nojima, 

2001). For those more concerned with predicting the effects of future or hypothetical scenarios, a 

popular way to model bridges' behavior under seismic hazards is through the use of fragility curves 

that take into account different types of bridge material and composition and their historical 

behavior under earthquake scenarios (Nojima and Sugito, 2000). HAZUS developed by FEMA 

has a database, including those from the National Bridge Inventory (NBI), of such curves that have 

been used extensively by prior studies (Frangopol and Bocchini, 2011). NBI has a comprehensive 

database of bridges, including information like year built, year reconstructed, material type, 

functional classifications, etc. Works like Padgett et al. (2010), which sought to model 375 bridges 

for South Carolina, simplified classifications using two characteristics: span configuration and 

girder material type, leading to 11 bridge types. However, a common method employed by some 

studies is to assume that bridges in an area have the same structural type, mostly modeled as multi-

span simply supported (MSSS) reinforced concrete or steel bridges to simplify bridge modeling 

and analysis (Nielson, 2005; Feng et al., 2020; Chang et al., 2012). Recently, new data sources 

have been explored to inform the development of more detailed and granular structural models for 

bridges: Google Street View and satellite images are just a few of these new data sources that are 

also openly available. Their use cases have been demonstrated2 in Cetiner (2022) where highly 

accurate models for individual bridges are constructed in a semi-automated image-based process. 

 

 

2 Cetiner, B., Wang, C., McKenna, F., Hornauer, S., Guo, Y., Yu, S., Taciroglu, E., Law, K., 2022. 

Nheri-simcenter/brails: Release v3.0.0. URL: https://zenodo.org/record/7132010, 

doi:10.5281/zenodo.7132010.  
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2.2 TRAFFIC MODELING UNDER EARTHQUAKE SCENARIOS 

Similar to the bridge vulnerability research, some previous traffic modeling work focuses on 

analyzing past earthquake scenarios and used collected historical data of transportation network 

performance to understand resilience (Chang and Nojima, 2001). Others like Frangopol and 

Bocchini (2011) focused more on bridge rehabilitation strategies, with the aim to minimize cost 

and maximize resilience. But many of such studies use transportation network characteristics such 

as capacity and connectivity to generate a priority list without considering the changing traffic 

flow characteristics after a natural hazard using traffic simulations. 

For those that focus on future and hypothetical scenarios, however, using traffic simulation models 

is a popular approach, which generally includes two categories. The first one is macroscopic 

modeling, wherein the traffic flow is represented in terms of aggregate measures like flow, space-

mean speed, and traffic density. Payne (1979) states that these models sacrifice detail for efficiency 

and the ability to analyze problems of much larger scope. Microscopic models, on the other hand, 

are on the level of the individual movement of vehicles (Payne, 1979). The main drawback of 

microscopic models is the high computational demands required to run simulation models, 

especially for large networks. Wu et al. (2021) utilized microscopic models to simulate traffic 

flows of a very small transportation network with only around 30 links and 20 nodes.  

Some studies have tried to find the middle ground between macroscopic and microscopic models 

to find a good balance between granularity and simplicity. Static traffic models, which include the 

all-or-nothing method, is the most basic form of trip assignment as it assumes no congestion and 

that all traffic simply chooses their respective shortest paths (Modarres and Zarei, 2002; Nakanishi 

et al., 2013; Cho et al., 2001). This allows for the analysis of slightly larger networks with 

Modarres and Zarei (2002) analyzing 534 links and Cho et al. (2001) analyzing as many as 20,000 

links. Alipour and Shafei (2016) used static traffic assignment but operated on the traffic analysis 

zone (TAZ) level with 1,527 TAZs representing Los Angeles and Orange Counties—an approach 

that sacrifices a considerable amount of resolution as each TAZ covers 4 square miles on average. 

Zhou et al. (2010) used traffic assignment on the node level but condensed the origin-destination 

(OD) pairs to only 148 representative nodes in the network. 

Contrary to static assignment models, dynamic traffic assignment models have a notion of time 

and allow taking temporal changes, such as vehicle rerouting, into account (Chang et al., 2012; 

Nojima and Sugito, 2000). They are more realistic, but take more time to execute compared to 

static traffic models. Chang et al. (2012) for example only analyzes 25 nodes and 75 links while 

Nojima and Sugito (2000) analyzed 100 links and 30 nodes. There is currently a gap in extending 

the benefit of dynamic traffic analysis to large spatial-scale networks while retaining results on not 

only the highways but also the local roads for a complete assessment of the mobility situation. This 

is particularly a problem for post-hazard traffic assessment, where the impact of infrastructure 

damage may propagate to a whole region. In such cases, the local roads serve as important links 

to ensure the basic level of mobility required after a hazard. 
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2.3 RESILIENCE AND PERFORMANCE ASSESSMENT 

Measuring a transportation network's performance under seismic hazards can generally be divided 

into two types: those pertaining directly to transportation effects and those that pertain to external 

and indirect impacts. The first type includes metrics such as the total number of fulfilled trips 

(which indicates the connectivity of the post-earthquake network), changes in travel times, changes 

in trip length, and overall resilience and recovery speed of the network (Suarez et al., 2005; Wu et 

al., 2021; Chang et al., 2012; Nojima and Sugito, 2000; Feng et al., 2020). Almost all prior studies 

include consideration of these performance metrics. As mentioned in the previous section, impacts 

on transportation spill over to other sectors due to the interdependency of these critical 

infrastructures. Examples of this indirect performance metric include measures of safety (Wu et 

al., 2021), accessibility of hospitals (Feng et al., 2020) and businesses, and economic losses (Cho 

et al., 2001). 

As both time and money are limited but crucial resources in mitigating earthquake impacts, it is 

important to deeply examine the potential economic impacts of hypothetical earthquakes on the 

transportation network and make adjustments accordingly. Many studies focus on rehabilitation 

strategies or prioritization of bridge retrofitting based on importance (Bhattacharjee and Baker, 

2021; Wu et al., 2021; Frangopol and Bocchini, 2011; Dong et al., 2014) without explicitly 

considering economic impacts or the time and financial constraints. Estimating economic impacts 

aids in understanding the current resilience of the network with a more concrete figure. This, in 

turn, informs the formulation of more realistic policy recommendations, such as bridge repair 

prioritization or instead reallocating resources to tasks like building retrofits or enhancing hospital 

and emergency response capacities, based on the resilience assessment results. Alternatively, these 

results can also help in understanding the risks associated with delaying highway and bridge 

restoration or maintenance in the event of an earthquake. 

Other studies have examined the economic impact of seismic hazards on different levels. The most 

common of these studies is through the use of input-output (I-O) analysis as popularized by 

Leontief (1986). This method uses an input-output table that summarizes all interactions between 

each pair of sectors in a given region. This can then be used to show how any change in economic 

activity in one sector can result in ripple effects to others (Brookshire et al., 1997). Another method 

of quantification is to measure the overall economic impacts using integrated transport networks 

and multiregional trade models (Ham et al., 2005). This entails collecting commodity flow data to 

and from each zone of analysis. While the US Bureau of the Census and the Bureau of 

Transportation Statistics collects this data between the 50 states and smaller regional economic 

units, the granularity may not be fine enough if the objective is to assess the local economic impacts 

of an earthquake. Computable General Equilibrium (CGE) models are another popular way of 

measuring economic impact as they incorporate the behavior of producers and consumers to price 

signals, on top of allowing nonlinearities as opposed to I-O models. However, the same data 

availability issues hinder the use of CGE models as employed in Tatano and Tsuchiya (2008). 

While these methods offer comprehensive analyses, it is difficult to develop an understanding of 

more specific effects to individual sectors like transportation. Furthermore, the granularity of 
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results from impact analyses at this overall regional level of abstraction is not fine enough to make 

specific conclusions, actionable items, and strategies at the transportation sector level. 

Of the three mentioned components of resilience analysis of transportation networks to seismic 

hazards (bridge modeling, traffic modeling, and performance/resilience metrics, including 

economic losses), different studies have not applied all three consistently. Cho et al. (2001) is the 

best example of applying all these steps, but each step, particularly that of the transportation 

network model and economic model, is still wanting in terms of granularity. Therefore, a 

considerable gap also exists in calculating the economic impact on the transportation sector on a 

more granular level of analysis, both on the bridge and traffic modeling sides. 

2.4 GAPS TO BE ADDRESSED 

The preceding literature review uncovers four main gaps: First, previous bridge modeling studies 

under seismic hazards have largely used assumptions to group bridges into classes to simplify 

analysis and have not utilized satellite images and other newer sources of data to make more 

individualized models. Second, previous traffic models have largely had to make a choice between 

(a) macrosimulation/static models or microsimulation/dynamic models, and relatedly, (b) large 

networks or small networks. This has led to studies that either focus on a regional perspective 

without much insight on local effects or a local perspective without much insight on regional 

effects. Third, while there have been a few studies that looked into the socio-economic impact of 

earthquakes to the transportation system and its users, they largely also suffer from the choice 

between regional or local impacts and are at times proprietary and inaccessible. Lastly, there is a 

gap in studies that address all the aforementioned issues in a singular framework. 

The goal of this report therefore is to provide a synthesis approach that: (1) factors in the different 

structural and seismic characteristics of individual bridges across the regional scale using an 

efficient image-based structure-and-site-specific fragility generation method, combined with (2) a 

large-scale/ regional, agent-based semi-dynamic traffic simulation that can then lead to (3) 

disaggregate cost, resilience, and economic impact assessments attributable to individual system 

components/aspects (e.g., local roads vs highways; reroutes, delays vs trip cancellations), all in all, 

to extract highly granular information that can guide the formulation of resilience assessments and 

preparation plans with both local and regional perspectives taken into account. 

The remainder of this report is organized as follows. Section 3 introduces the proposed framework 

and the methodologies in detail. In Section 4, a case study of the framework applied to the Los 

Angeles region is presented. In Section 5, the results from the regional simulation case study are 

discussed, including the direct transportation interruption metrics as well as the economic impacts. 

Section 6 provides a summary of the study and suggestions for future studies. 
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 METHODOLOGY FRAMEWORK 

A four-step framework is adopted to facilitate the inclusion of highly granular infrastructure 

seismic performance in this study. Compared to existing methods as reviewed in the literature, the 

adopted framework components have the advantages of being efficient and scalable, which 

facilitates the inclusion of detailed bridge- or road link-level results for nonetheless large-scale 

system-level analysis. A detailed flowchart of this framework is shown in Figure 3.1. In this 

section, the focus is given to the latter three steps (bridge assessment, transportation network 

analysis, and economic impact analysis), highlighting their granularity and applicability to regional 

analysis. The hazard characterization method follows Koc et al. (2020) and Cetiner (2020) where 

for seismic hazards, first, a scenario earthquake is identified, followed by the use of ground motion 

prediction equations (GMPEs) to get Intensity Measure (IM) outputs, such as peak ground 

acceleration (PGA), peak ground velocity (PGV), and peak ground displacement (PGD) which are 

then used as inputs to the subsequent bridge modeling methods. 

3.1 BRIDGE MODEL GENERATION AND DAMAGE ASSESSMENT 

For this study, bridges are considered the only vulnerable components of the transportation 

network, given their higher likelihood of sustaining damage requiring extended time frames for 

full recovery, as evidenced by historical major seismic events (Cooper et al., 1994; Kawashima 

and Buckle, 2013), and the limited disruption potential of the other transportation components, at 

least using HAZUS fragility functions (FEMA, 2003). In order to establish a detailed 

representation of the structural and seismic characteristics for individual bridges in a large 

geographical area, the image-based model generation methodology proposed by Cetiner (2020) is 

used. This approach consists of five high-level steps:  

1. Identifying tentative bridge locations for a region from National Bridge Inventory and 

refining this location information using an OpenStreetMap and routing APIs,  

2. Downloading all street-level imagery associated with each detected bridge,  

3. Reconstructing 3-D bridge geometry for each bridge using the downloaded imagery,  

4. Populating these geometric shells with structural information using class statistics to 

develop nonlinear bridge models, 

5. Calculating bridge fragility functions using component damage thresholds available in the 

existing literature.  

The first step, identifying bridge locations and centerline geometry, begins with extracting 

approximate coordinate information available in the National Bridge Inventory (NBI) (FHWA, 

1995). Once these coordinate values are obtained, all bridge centerlines that are within a mile 
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radius of NBI coordinates are detected using OpenStreetMap (OSM)'s Overpass API3, and the 

bridge geometries that match the route information stated in NBI are retained. Subsequently, to 

narrow down the query to a single unique matching centerline, a navigation query from the 

beginning and end vertices of each centerline curve is generated using Google Directions API4, 

and the route/direction information for a bridge centerline that match NBI route and direction 

information is selected.  

Benefiting from the unique strengths of each data source, this process results in accurate centerline 

extractions. NBI contains precise location and route information for every bridge in the US but 

lacks the centerline information captured in OSM. OSM, on the other hand, has accurate centerline 

polygon and route information5 but lacks the direction information needed, e.g., northbound or 

southbound, to match these polygons to NBI bridges. Google Directions API provides detailed 

routing information between two points but is somewhat limited in the accuracy of the path 

connecting these points. By combining these three sources, the centerline geometry of a bridge 

and the facility it carries is easily identified. 

To download the street-level images for each bridge, two curves offset from the bridge centerline 

by a distance proportional to the NBI length of the bridge are computed. Next, all the Google Street 

View imagery on or near these curves is harvested, keeping track of the camera locations of images 

as they are obtained. 

The street-level imagery for each bridge is semantically segmented using a deep learning model 

utilizing DeepLabV3 architecture (Chen et al., 2018) to identify all image regions containing 

bridge bent and deck elements. Then, the unique columns in each image and their locations are 

determined based on their order of occurrence and their linear distance along or offset from the 

bridge centerline. At this step, images for each unique column are grouped separately to determine 

column dimensions. By running the end-to-end wireframe parsing model by Zhou et al. (2019) on 

column masks of segmented images, the vertical column lines are identified; counting the number 

of these vertical edges, column shapes are determined (e.g., two edges if circular, three edges if 

rectangular). Camera parameters at each column location are extracted using the multi-view 

automatic calibration pipeline developed by Vasconcelos et al. (2018). Subsequently, the heights 

and widths of each column are sampled at numerous intervals to determine the column dimensions. 

Superstructure depth is measured as the normal distance between the bottom and top faces of the 

 

 

3 OpenStreetMap, 2022. OpenStreetMap. https://www.openstreetmap.org. 

4 Google, 2022. Google Directions API. 

https://developers.google.com/maps/documentation/directions. 

5 US Census Bureau, 2021. Tiger/line shapefiles. URL: 

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html. 
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superstructure. The top width of the bridge deck is read from the relevant NBI field, and the bottom 

is extracted from auto-calibrated images. 

By the end of this step, a three-dimensional geometric model for each bridge is established. To 

convert these geometric models into structural models, the class statistics by Mangalathu (2017) 

are utilized. For bridge columns, the longitudinal and transverse rebar locations, as well as concrete 

and steel strength properties, are computed based on the era-specific rebar ratios and strength 

distributions (where the construction year of a bridge is obtained from NBI). Then, using this cross-

sectional information and era-specific standard connection details, columns are modeled using 

force-based formulation as discussed by Neuenhofer and Filippou (1997). Spread of plasticity 

across column cross-section and length due to flexure are computed using a beam-column element 

with fiber sections where moment-curvature and axial force-deformation characteristics and their 

interaction are explicitly considered. Column shear behavior is considered by combining this 

beam-column element in series with the limit state uniaxial material suggested by Elwood (2004).  

Abutments are modeled as zero-length elements that are assembled differently based on the 

abutments' construction type. The longitudinal behavior of integral abutments is modeled using 

springs with a tri-linear force-deformation relationship for the contribution of abutment piles, as 

presented by Mangalathu (2017), and a Generalized Hyperbolic Force–Displacement (GHFD) 

backbone curve for the passive resistance of the abutment backfill, as proposed and described by 

Khalili-Tehrani et al. (2016). In seat-type abutments, the lateral resistances of the abutment back 

wall and elastomeric bearings are also factored into the longitudinal resistance of the abutment. 

The seat back wall is modeled using the simplified impact model proposed by Muthukumar (2003), 

and the bearing pads are assumed to follow the elastic-perfectly plastic behavior suggested by 

Caltrans (2019). The transverse behavior of a diaphragm abutment is assumed to comprise the 

lateral resistance of abutment piles alone, with the pile behavior defined as identical to the 

longitudinal behavior. In defining the abutment resistance in the transverse direction for seat-type 

abutments, however, the resistances of elastomeric bearings and shear keys are also considered. 

Bearings are assumed to follow the elastic-perfectly plastic force-deformation relationship 

identical to that prescribed in the longitudinal direction. The transverse resistance of each shear 

key is defined as the shear resistance from the shear key reinforcing steel and concrete combined 

in parallel as per Silva (2009) and connected in series to an elastic no-tension material to account 

for the gap between the deck and shear keys. Similar to the application for bridge columns, the 

statistical properties of all the lateral pile, elastomeric bearing, and soil resistances required to 

define the described abutment models were obtained from Mangalathu (2017). 

The superstructure is assumed to remain elastic under earthquake shaking. Hence, elastic 

properties based on the gross area of the superstructure are assigned to line elements representing 

the superstructure. For scalability of this nonlinear modeling approach, all bridge models are 

generated using OpenSees (McKenna, 2011) through custom-built automation scripts. 

The relationship between the probability of each bridge reaching or exceeding different damage 

states for an earthquake intensity measure (IM) is defined using fragility functions. In certain 

situations, to account for different seismic conditions, multiple sets of fragility functions may be 
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derived for different IMs (e.g., to account for ground shaking and ground failure-induced damages 

to bridges, two sets of fragility functions may be defined in terms of the IM's of 1-second spectral 

acceleration and peak ground deformation, respectively). Following performance-based 

earthquake engineering (PBEE) methodology (Moehle and Deierlein, 2004a), fragility functions 

are prescribed as lognormally distributed functions and are generated for four distinct damage 

states: slight (ds1), moderate (ds2), extensive (ds3), and complete (ds4). Each fragility function is 

characterized by a median value IM (M), and a lognormal standard deviation value (β). The general 

form of a fragility function according to Baker et al. (2021) is 

Pr(𝐷𝑘 ≥ 𝑑𝑠𝑗|IM = 𝑥𝑘) = Φ𝑗
𝑘(

ln(𝑥𝑘 𝑀⁄ )

𝛽
)           (3.1) 

where k is the index of the IM for which the fragility function is established (e.g., for the case study 

discussed in the following section, only one IM is utilized; hence, the superscript k can be ignored 

in defining fragility functions), j is the PBEE damage state index, Dk is the damage state of a 

network component due the kth IM being equal to xk, xk is the value of the kth IM at the site of the 

network component, and Ф is the normal cumulative distribution function with parameters M and 

. Here, the no damage state is denoted as ds0. The component threshold values required to develop 

these fragility curves were defined as outlined by Ramanathan et al. (2015). The fragility functions 

were computed via multiple-stripe analysis (Jalayer and Cornell, 2009) using the ground motion 

record sets developed for the Pacific Earthquake Engineering Research Center, Transportation 

Research Program (Baker et al., 2011). 

To calculate the total functionality level of a network component, it is necessary to determine the 

probabilities of this component being in each of the five damage states for a set of IMs (P j
k) as 

below.  

𝑃𝑗
𝑘 = {

Pr(𝐷𝑘 ≥ 𝑑𝑠𝑗) − Pr(𝐷𝑘 ≥ 𝑑𝑠𝑗+1), 𝑗 = 0,1,2,3

Pr(𝐷𝑘 ≥ 𝑑𝑠𝑗), 𝑗 = 4
          (3.2) 

where Pr(Dk ≥ ds0) = 1. 

Once these Pj
k values are combined with the restoration functions suggested by FEMA (2003) for 

each damage state RCj as follows, the total functionality level FL of a network component due to 

the kth IM can be computed.  

𝐹𝐿𝑘 = ∑ 𝑃𝑗
𝑘 ∙ 𝑅𝐶𝑗

4
𝑗=0   (3.3) 

3.2 TRANSPORTATION NETWORK ANALYSIS 

To capture the effects of bridge damage on the traffic network performance at a large geographic 

scale, an open-source agent-based semi-dynamic traffic assignment model developed at UC 

Berkeley (https://github.com/cb-cities/residual_demand) is adopted (Zhao et al., 2019; Chan et al., 

2021). The traffic model takes in two types of inputs: as the first input, on the road network supply 
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side, the base road network information is downloaded from OSMnx (Boeing, 2017). The network 

structure is represented by the nodes (i.e., road intersections) and links (i.e., stretches of road 

between two intersections). Various traffic-related attributes are attached to the road links, such as 

the length, speed limit, and capacity. On the travel demand side, a list of time-stamped OD pairs 

is taken as the input, which can usually be obtained or extracted from the local travel demand 

surveys or models. 

Given the network supply and travel demand inputs, the traffic assignment module is then 

initialized: the simulation starts at 12 AM when there is relatively light traffic on the road network. 

With a time step of 15 minutes, vehicles (time-stamped OD pairs) with a departure time between 

12 - 12:15 AM are incrementally assigned (100,000 ODs at a time) the initial fastest paths based 

on free-flow traffic conditions. The incremental assignment here increases the stability of the 

results by avoiding all vehicles getting assigned to the same routes. After each increment, the 

traffic congestion status is updated for the network, and a new travel time is calculated for each 

link using the Bureau of Public Roads (BPR) volume-delay curves (USBPR, 1964) as shown in 

Equation 3.4, modified to take into account traffic signal and crossing delays: 

𝑡𝑖 = 𝑡0𝑖 ∗ (1 + 𝛼 ∗ (
𝑣𝑖

𝑐𝑖
)
𝛽
) + trafficsignaldelay + crossingdelay   (3.4) 

where ti is the travel time on link i, t0i is the free-flow travel time on link i, vi is the flow on link i, 

ci is the capacity of link i, and α and β are calibration parameters set to the commonly used value 

of 0.6 and 4, respectively (Colak et al., 2016). Traffic signals and crossing delays are also taken 

into account as this information is also provided by OSMnx. 

An intermediate stopping location is determined for each vehicle that cannot finish the journey 

within the 15-minute interval. The intermediate stopping locations will then be set as the new 

origin to allow vehicles to reroute (e.g., choosing a more optimal path) based on an updated traffic 

congestion status and finish the journey in the subsequent time steps. Such incremental assignment 

and residual demand calculation procedures are repeated for each 15-minute interval until 12 AM 

the next day. The outputs include both vehicle-level information (travel time) and link-level 

information (traffic volume per 15-minute interval). Many summary statistics, such as the Vehicle 

Miles Traveled (VMT) and Vehicle Hours Traveled (VHT) can thus be derived from this output. 

Each agent is assumed to be selfish, i.e., choosing the path that would minimize their individual 

travel time, and having perfect information on the traffic conditions, which includes the changes 

in travel time on each link in the network due to congestion. This is possible due to the incremental 

loading (100,000 ODs at a time) of the network and the iterative calculation and link travel time 

and route choice every 15-minute interval. As such, user equilibrium is approximated in this 

model. While there are arguments that post-earthquake scenarios are not necessarily in equilibrium 

due to the uncertainty and the damage (Nikoo et al., 2018), it is adopted in this model as a 

conservative estimate of loss (i.e., assessing the impacts to trips that could normally have been 

fulfilled). 
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The traffic model has been adapted here to capture the effects of bridge damage. Specifically, for 

damaged bridges (and surrounding or underlying roads that cannot be accessed), the traffic model 

will label them as “closed links”. For these closed links, they are assigned extremely small speed 

limits and capacity, which effectively leads to extremely high travel times (e.g., over 10 hours) for 

vehicles using them. In the simulation code, a supplementary logic is implemented to check the 

travel time of each assigned route. If the route travel time is over a certain threshold, the route 

must have gone through one of the closed links, and no faster path exists. The trip is then labeled 

as “unfulfilled”. It is expected that more trips will be unfulfilled with increasing bridge damage 

severity. 

If additional information, such as different trip activities and different vehicle types, are available, 

each agent can be labeled and restricted accordingly in the simulation for a richer analysis later on. 

3.3 ECONOMIC IMPACT ESTIMATION 

The economic cost of damages in a transportation network is estimated by splitting it into two 

components: direct costs and indirect costs, as shown in Equation 3.5 (Moehle and Deierlein, 

2004b). 

𝐶 = 𝐶𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡  (3.5) 

Direct costs associated with bridge b are computed based on the amount of resources needed to 

repair the damaged road components in the network as shown in Equations 3.6 and 3.7, where 

RCR is the repair cost ratio and Ab is the area of the bridge b (Bhattacharjee and Baker, 2021). The 

unit replacement cost is $3,154 per square meter (Federal Highway Administration, 1995).  

𝐶𝑑𝑖𝑟𝑒𝑐𝑡 = ∑ 𝐶𝑑𝑖𝑟𝑒𝑐𝑡
(𝑏)𝐵

𝑏=1   (3.6) 

𝐶𝑑𝑖𝑟𝑒𝑐𝑡
(𝑏)

= 1(𝑏) ∗ RCR ∗ 𝐴𝑏 ∗ unitreplacementcost           (3.7) 

On the other hand, indirect costs incurred over the time period when road components are damaged 

can be further split into two components: costs due to delays to the travelers, and costs due to lost 

demand or unfulfilled trips as shown in Equations 3.8 and 3.9 (Bhattacharjee and Baker, 2021).  

𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝐶𝑑𝑒𝑙𝑎𝑦𝑠 + 𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦   (3.8) 

𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝛼Δ𝑇 + 𝛾𝑈  (3.9) 

 where α is the value of travel time and γ is the value of productivity. ΔT is the change in total 

travel time, and U is the number of unfulfilled trips, both relative to the base pre-earthquake 

scenario. α and γ vary for each region and can be computed using Equations 3.10 and 3.11 

(Bhattacharjee and Baker, 2021). 

𝛼 =
Medianhouseholdincome,USD

2080hworkedperyear
  (3.10) 
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𝛾 =
Annualgrossregionalproduct

Annuallaborhours
  (3.11) 

 Once cost estimates are obtained, they can be compared with other economic and financial 

measures such as the gross domestic product (GDP) of the area to get a sense of its scale compared 

to the economy at large, or the allocated budgets for bridge repair and restoration or seismic 

retrofitting by the Department of Transportation on the state or federal level.  
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CHAPTER 3: FIGURES 

 

Figure 3.1 Flowchart of the developed methodology. 
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 CASE STUDY: SOUTHERN CALIFORNIA 

(PORTS OF LOS ANGELES AND LONG 

BEACH) 

To more clearly highlight the contributions of our framework, we apply it to a case study in and 

around the Los Angeles port area. 

4.1 HAZARD CHARACTERIZATION AND INFRASTRUCTURE 

DAMAGE ASSESSMENT 

Nonlinear structural models were developed for 1,000 bridges around the Ports of Los Angeles 

and Long Beach (POLA/POLB) using the automated image-based approach introduced in Section 

3.1. The expected 1-second spectral accelerations at each bridge site were obtained using the 

physics-based approach proposed by Southern California Earthquake Center (Small et al., 2017) 

for a Mw 7.4 Palos Verdes Fault scenario event, two miles off the port islands as shown in Figure 

4.1. Spectral acceleration at 1.0 s is selected as the IM of use in this study due to its high sufficiency 

and proficiency ratings determined by Shafieezadeh et al. (2012) and its ease of use over vector-

valued or fractional order IM definitions for representing ground shaking effects (ground shaking 

is the expected primary driver of seismic damage for the study area). Expected damage 

probabilities and functionality levels, together with the required recovery time of the bridges, were 

determined for the computed 1-second spectral accelerations. Figure 4.2 shows the fragility 

functions computed for two of the bridges modeled for this study. Figure 4.3 shows the road 

closure map using the proposed method. For the purposes of this study any bridge with a 

functionality less than 75% was deemed fully closed for traffic, as defined in Gordon et al. (2004) 

(no partial bridge closure condition was considered). Furthermore, once a bridge is closed, all road 

segments feeding traffic into, or underlying, this bridge will also be closed for traffic. In this road 

closure map, 59 miles of roadway were predicted to be closed the day after the scenario earthquake, 

44 miles of roadway remained closed 3 days post-earthquake, 14 miles of roadway remained 

closed 7 days post-earthquake, 10 miles of roadway remained closed 14 days post-earthquake, and 

6 miles of roadway remained closed 30 days post-earthquake. This road closure map is used as the 

input to the subsequent transportation network analysis. 

4.2 TRANSPORTATION NETWORK ANALYSIS 

4.2.1 Road network data 

Road network data for six counties in Southern California represented by the Southern California 

Association of Governments (SCAG) has been gathered from OSMnx. The network is converted 
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into a directed graph representation consisting of 1,444,790 edges and 615,174 nodes where each 

edge represents a directed road segment and each node represents a road connection or intersection. 

4.2.2 Travel demand data 

Inter-traffic analysis zone (TAZ) origin-destination data in normal situations (i.e., without 

earthquake damage) was also obtained from SCAG. Processing this data led to a total of 

42,056,426 trips in the whole SCAG region for a typical day composed of 40,814,733 car trips and 

1,241,693 truck trips. Table 4.1 shows the travel demand summary for each time of day, while 

Figures 4.4a and 4.4b show visualization of the overall travel demand and the port travel demand. 

While Khademi et al. (2015) suggested that travel demand substantially changes post-earthquake 

and thus employed hundreds of person-hours of experts to determine the new travel demand, it is 

difficult to do this for most scenarios. In this paper, we use the same travel demand pre- and post-

earthquake, but we anticipate that a number of trips will not be completed in the post-earthquake 

simulation scenarios due to a lack of connectivity in the network. This uncompleted/unfulfilled 

trip metric will be reported in the results in Section 5. 

Sampling. Due to the computationally intensive requirements of this kind of traffic simulation, 

we decided to sample the origin-destination data such that 1 agent represents 5 vehicle trips. The 

final simulation input is composed of 8,158,000 car agents and 246,218 truck agents for a total of 

8,404,218 agents. The output figures are also adjusted accordingly with a factor of 5. 

4.2.3 Traffic simulation 

The agent-based semi-dynamic traffic assignment model introduced in Section 3.2 is used to 

compute the sub-hourly changes in road usage. Each trip is assigned an initial route based on the 

computed shortest path using contraction hierarchies from origin to destination (Foti et al., 2012). 

Each edge's volume is updated every 15 minutes and each trip's shortest path is recomputed based 

on the new network congestion status. Trucks were restricted from traveling on residential roads. 

Six scenarios were simulated: (1) a base scenario with no road closures, (2) a scenario 1 day post-

earthquake, (3) a scenario 3 days post-earthquake, (4) a scenario 7 days post-earthquake, (5) a 

scenario 14 days post-earthquake, and (6) a scenario 30-days post-earthquake. Each post-

earthquake scenario includes road closures from the bridge damage analysis in Section 4.1. Each 

simulated scenario yields three main outputs: the traffic volume at each link for every 15 minutes 

of the simulation, the total travel time of each agent, and the total trip distance of each agent. 

Due to the bridge modeling output being a deterministic set of bridges for each scenario, the 

simulations are not expected to produce vastly different results for each run with the same input 

and scenario parameters. However, each scenario was run 10 times to rule out the impact of 

possible random variations in each run (e.g., sequence in which shortest path is calculated for each 

agent, selection among multiple shortest paths). For each scenario, the average of metrics such as 

travel time and travel distance over 10 runs was taken and used these averages as the main results 
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for analysis. The variations, or lack thereof, in the results generated from these random repetitions 

are reported in Section 5.2. 
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CHAPTER 4: TABLES 

Table 4.1 Travel demand summary. 

Time of day # of car trips # of truck trips Total trips 

6am - 9am 7,396,597 201,815 7,598,412 

9am – 3pm 15,146,975 504,754 15,651,729 

3pm – 7pm 12,036,376 219,119 12,255,495 

7pm – 9pm 3,117,935 69,886 3,187,821 

9pm – 6am 3,116,850 246,119 3,362,969 
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CHAPTER 4: FIGURES 

 

Figure 4.1 Sample earthquake visualization from Cetiner (2020). 
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Figure 4.2 Fragility functions computed for two of the modeled bridges. 

 

Figure 4.3 Road closure map. 
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(a) Overall travel demand 

 

(b) Port travel demand 

Figure 4.4 Travel demand data. 
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 RESULTS AND DISCUSSION 

5.1 INITIAL VERIFICATION COMPARED WITH REAL-LIFE 

METRICS 

To assess the performance of our model framework, some metrics in the Southern California 

Association of Governments (SCAG, 2020) Transportation Plan, that are comparable to our model 

outputs, were utilized. Some of these key metrics are: 

• Mean commute time: SCAG lists the mean commute time—defined as the average travel 

time to work—as 32.1 minutes. Our input data on travel demand (in Section 4.2.2) does 

not have activity labels (work/non-work) but the average travel time computed for the base 

scenario from our simulation for all trips is 29.4 minutes. 

• Average distance traveled: SCAG lists the average distance traveled as 17.9 miles for 

work trips and 5.8 miles for non-work trips. The base scenario leads to an overall average 

travel distance of 15.1 miles, which is within the SCAG range. 

• Percent of trips less than 3 miles: SCAG states that 14.0% of work trips are less than 3 

miles while 40.5% of non-work trips are less than 3 miles. The base scenario computes 

26.1% of all trips being less than 3 miles, which is also well within the SCAG range.  

From these key metrics, it was concluded that the traffic model resembles the real-life 

transportation scene in general despite the lack of activity labels on existing data. The availability 

of activity/trip purpose labels in travel demand inputs can greatly enrich model assessment in 

future studies. 

5.2 ROBUSTNESS TO RANDOM VARIATIONS 

Average travel time variation across random seeds (base scenario) varies between 29.32 to 29.37 

minutes (around 0.05 minutes or 3 seconds as shown in Figure 5.1), which is much smaller than 

the increase from the base to Day 1 scenario that can be seen in Figure 5.3c. We, therefore, do not 

expect randomness across simulations to be significant enough to impact our overall results. 

5.3 PORT AREA ANALYSIS 

Focusing on the port area, we aggregate these trip time and distance outputs for each agent to get 

the overall vehicle hours traveled (VHT), average travel time, and the number of fulfilled & 

unfulfilled trips for each post-earthquake scenario relative to the base scenario, as shown in Table 

5.1. A trip is labeled as unfulfilled if the vehicle is unable to travel from its origin to its destination 

due to damage to the road network.  
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Figure 5.2 shows the general steps taken to interpret the results obtained for the port area to 

understand the changes in travel-related metrics at different stages of the earthquake recovery. The 

primary indicator used to assess the level of impact to the transportation network is the overall 

vehicle-hours traveled (VHT). Figure 5.3a shows the trend in total VHT for the port area trips. In 

the base scenario, the VHT is 199,592 vehicle-hours. After the hypothetical earthquake, there is a 

10% decrease from Day 0 to Day 1, coinciding with the worst bridge damage and road closure 

scenario. Despite 14 miles of roadway reopening immediately after Day 1, a small but unexpected 

2.5% decrease in VHT happened from Day 1 to Day 3, which makes the VHT to be at the lowest 

point on Day 3 at 175,272 vehicle-hours, or 12.5% reduction compared to the baseline. From Day 

3 on, the VHT starts to recover: a relatively big increase in VHT is observed from Day 3 to Day 

7. From Day 7 to Day 30, the VHT plateaus at around 192,843 vehicle-hours, a 4% decrease 

relative to the base scenario. 

To understand the trends in VHT, two components that are influential to VHT are examined: the 

change in the number of fulfilled trips (completed trips) and the change in the average travel time. 

The former indicates changes in the connectivity of the road network, as a more severely damaged 

network would lead to more trips being unable to finish. Figure 5.3b shows the trend in the number 

of fulfilled trips starting or ending in the port area. There is a steep drop from Day 0 to Day 1 with 

15% of port trips unable to be completed; this minimum coincides with the worst bridge damage 

scenario right after the earthquake, in particular, attributable to 39 bridges and 59 miles of roadway 

being closed on key access ways within 15 miles of the port. A small recovery in the trip fulfillment 

rate is observed on Day 3, due to the recovery of 16 bridges that are mostly external to the port 

area. The biggest recovery of the trip fulfillment rate happened on Day 7. This large increase in 

fulfilled trips on Day 7 is due to the reopening of the western portion of the Seaside Freeway bridge 

that connects the western and eastern sides of the Port of Long Beach and the Port of Long Beach 

island to the mainland (see Fig. 4.3). Slow but steady recovery of the trip fulfillment rate is 

observed throughout to Day 30 when the number of unfulfilled trips is still about 4% of total port 

trips a month after the earthquake with 10 bridges and 5.5 miles of roads predicted to be still closed.  

On the other hand, changes in the average travel time (calculated only for fulfilled trips) indicate 

a vehicle's need to detour due to closed roads. Figure 5.3c shows the trend of the average travel 

time of trips starting or ending in the port area. The average travel time increases by 6% from Day 

0 to Day 1, indicating that trips still able to be completed took a longer time to do so, also 

coinciding again with the worst damage scenario as expected. Average travel time decreases much 

closer to baseline on Day 3 (with an increase of only 1.7% relative to baseline) when 16 out of 39 

damaged bridges are reopened. The average travel time steadily decreases through Day 30 as more 

bridges are reopened and it is almost similar to that of the base scenario. 

These trends are mostly intuitive except for the slight drop in the overall VHT from Day 1 to Day 

3. Figures 5.3c and 5.3b respectively show that the average travel time decreases on Day 3, but the 

number of fulfilled trips only increases incrementally. This slight drop in overall VHT, therefore, 

shows that the change in the travel time component (averaged over 210,335 trips) dominates over 

the change in fulfilled trips (37,230 unfulfilled trips). This can be attributed to the opening of a 

road local to the port area that helps the vehicles avoid detours (thus reducing the travel times of 
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trips which can be fulfilled), while roads connecting the port area to the outside area are still closed 

and only start to open on Day 7. This kind of insight is one that can be made because of the 

resolution of the traffic simulation and its agent-based nature. 

Another observation that stands out is that the increase in average travel time, at worst, is only 3 

minutes. While this may seem small, it is important to note that this only takes into account delays 

due to the road closures because of the earthquake. Any congestion delays already present in the 

baseline scenario are not separated in this report, and therefore, the actual delays will be larger 

than 3 minutes. Regardless, these results demonstrate the resilience of the transportation network 

in the studied area. Furthermore, the averaging of the changes in travel time hides a slightly 

disproportionate impact on certain trips. Figure 5.4 shows the distribution of travel times of 

vehicles starting or ending their trips in the port area for Day 0 and Day 1. The shape of the 

distributions is mostly similar, which indicates that most trip travel times stay the same. To be 

specific, 75% of Day 1 trips stay within 10% of their Day 0 travel time. However, over 5% (around 

5000) of trips have increases of 50% of their Day 0 travel time with some even increasing by a 

factor of 4 or more. Again, this kind of insight can be made because of the resolution of the traffic 

simulation and its agent-based nature. 

5.3.1 Minimal changes in overall VHT but sizeable decreases in port VHT 

Suarez et al. (2005) posits that the effect of hazards on VHT and VMT can be ambiguous. VHT, 

for example, can increase due to vehicles taking less straightforward trips on congested routes due 

to road closures, but can also reasonably decrease due to the reduced number of trips after a hazard. 

Figure 5.5 shows the changes in total VHT for the overall study area (orange line) and trips 

origin/end in the Port of Los Angeles area specifically (blue line). They show that, for this case 

study in particular, VHT changes negligibly for the overall study area over all of the post-

earthquake scenarios. However, port VHT decreases by as much as 12%, indicating a sizeable 

decrease in productivity in the area. These big differences are attributed to the concentration of 

bridge damage in the port area, as 31 of the 39 damaged bridges (just under 80%) are within 3 

miles of the port boundaries. These findings align with the above findings on changes in travel 

time. 

5.4 ECONOMIC IMPACT ESTIMATION 

Using the damage maps and simulation outputs from the previous step as inputs to Equations 3.5 

through 3.11, the direct and indirect costs related to the transportation system in this hypothetical 

earthquake scenario are estimated. For direct cost calculations (costs to repair damaged 

infrastructures), it is assumed that the roads still closed on Day 30 will be repaired by Day 60, and 
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the repair cost ratio in Equation 3.7 is set at 0.686. For the indirect cost calculations (economic 

losses due to delays or trip cancellations), the parameters are estimated from the regional economic 

statistics. For example, for the SCAG area, the median household income in 2018 was $64,989, 

which translates to an α of around $31 per hour of delay7 in Equation 3.10. On the other hand, the 

gross regional product of California was $1,955,856 million in 2020 dollars and the number of 

labor hours was 25,101 million, which leads to a γ of $78 per hour per lost trip (Pabilonia et al., 

2019) in Equation 3.11. The resulting value from Equation 3.5 indicates the estimated economic 

impact of the earthquake. The direct cost is calculated to be $1.56 billion while the indirect cost is 

calculated to be $768 million (only $121,000 of which is due to traffic delays due to very sparse 

closure throughout the overall LA region) for a total cost of $2.33 billion. For trips that start or 

end at the port area, the cost of lost demand dominates and is estimated to be at $476 million, while 

the delays cost $57,000. 

5.4.1 Spatially disproportionate impacts 

During hazards such as floods and earthquakes, the number of trips that are able to be completed 

is always expected to decrease (Suarez et al., 2005). This is true for our case study with there being 

as many as 73,845 trips (albeit less than 1% of the total trips) that are unfulfilled in the overall 

SCAG area one day after the earthquake, 37,230 (or 50% of all unfulfilled trips) of which start or 

end in the port area. As much as 62% of the total indirect cost is from the port area, showing the 

spatially disproportionate impact of the earthquake. This aligns with the finding that unfulfilled 

trips in the port area account for as much as 15% of all trips in the port area and is very evident in 

a spatial visualization of the area as shown in Figure 5.6. 

5.4.2 Lost demand over delays 

Additionally, the economic cost estimation shows that the impact of delays are dwarfed by that of 

lost demand (i.e., from the unfulfilled trips), as lost demand accounts for 99.98% of the computed 

indirect cost. Supporting this observation, Figure 5.7 shows that the economic recovery in the port 

area and the road restoration trend very similarly with time. Since the lost demand is a proxy 

indicator for the degradation of road network connectivity, this result shows that road network 

connectivity is the biggest issue post-earthquake in terms of the economic losses, while economic 

losses due to delays are relatively negligible. 

 

 

6 Federal Highway Administration, 2022. Bridge replacement unit costs 2020. 

https://www.fhwa.dot.gov/bridge/nbi/sd2020.cfm. Accessed: 2022-11-16. 

7 Southern California Association of Governments, 2019. Profile of the City of Anaheim. 

http://www.anaheim.net/DocumentCenter/View/13049/SCAG-Demographic-Profile-for-

Anaheim?bidId=. Accessed: 2022-06-29. 
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5.4.3 Bridge closure costs versus bridge repair budgets 

This study focused only on losses due to disruption to the transportation network, excluding 

seismic damage impacts to other port structures or buildings. This study also does not look into 

chain effects due to other sectors outside of transportation also being impacted. Because of this 

focus on transportation, the computed impacts cannot be directly compared to GDP which is based 

on a more comprehensive and general perspective of the regional economy. Instead, it is more 

appropriate to compare the results to budgets, both federal and state level, allocated for bridge 

repair.  

For 2022, the federal government's Bipartisan Infrastructure Law granted California $574,785,473 

under its Bridge Formula Program intended for bridge replacement, rehabilitation, preservation, 

protection, and construction. This is the first tranche under a five-year program with a budget of 

$4.2 billion8. However, the American Road and Transportation Builders Association (ARTBA) 

computes the total repair cost to be at $11.7 billion (American Road and Transportation Builders 

Association, 2022), more than half of which is not in the budget for the next five years. The 

computed costs of this hypothetical earthquake are a direct cost (due to repair/replacement of 

bridges) of $1.56 billion and an indirect cost (due to loss of demand and delay) of $768 million for 

a total of $2.33 billion. In the aftermath of an earthquake, this indirect cost can be taken as the 

amount of costs incurred by the individuals on top of federal/state bridge repair budgets brought 

about by a lack of pre-disaster mitigation. In other words, instead of only spending the direct cost 

of $1.56 billion to preventatively repair bridges before an earthquake, the cost increases by almost 

50% post-earthquake which will largely be taken from each individual's personal income on top 

of taxes paid for the federal and state budgets. 

It should be noted carefully, however, that the present study did not consider the direct seismic 

damage to port structures (wharves, cranes, container yards, etc.) due to ground shaking, or more 

importantly, the tsunami and inundation hazard, which could potentially close the entire port 

indefinitely. Impacts to the ports' productivity can also lead to cascading economic impacts that 

are more challenging to quantify. In the past years, the COVID-19 pandemic and a subsequent 

 

 

8 Caltrans, 2022. California to receive nearly $850 million in initial funding for bridge repair under 

federal bipartisan infrastructure law. https://dot.ca.gov/news-releases/news-release-2022-

001#:~:text=California%20will%20receive%20%24849.4%20million,to%20address%20highwa

y%20bridge%20needs. Accessed: 2022-11-16. 
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change in consumer behavior led to congestion in the ports and supply chain shortages9,10,11—the 

full impacts of which are yet to be studied. In effect, the estimates in this study are still conservative 

and would likely compound once other factors are considered. 

5.5 IMPLICATIONS OF CASE STUDY 

Figure 5.8 shows a representation of disaggregated cost based on our results. Due to the finer 

resolution of the methods used, the presented framework is able to come up with hierarchies of 

cost, as well as numerical estimates, that can be broken down between direct cost to repair or 

replace roads as opposed to socio-economic cost to the transportation system and its users. This 

can further be broken down spatially, for example between the port area and non-port areas, to 

focus on areas of interest. This can also be further broken down into car trips and truck trips 

because of the agent-based nature of our traffic model. With access to more data, these costs can 

be further broken down based on trip activity, demographics (such as age, sex, race), and more to 

analyze whether certain areas, groups, or sectors are affected differently compared to others or 

compared to the whole, and by extension, decision-makers are able to make more informed policy 

choices. This model can only improve with more granular information for bridges, roads, and trips. 

 

 

 

 

  

 

 
9 Dean, S., 2021. Is the ports logjam really getting better? the numbers don’t tell the whole story. 

URL: https://www.latimes.com/business/story/2021-12-03/officials-say-the-ports-logjam-is-

easing-but-numbers-dont-tell-the-whole-story. 

10 Isidore, C., 2021. Everything you’re waiting for is in these containers. URL: 

https://www.cnn.com/2021/10/20/business/la-long-beach-port-congestion-problem-national-

impact/index.html. 

11 The White House, 2021. Recent progress and actions on port congestion. URL: 

https://www.whitehouse.gov/briefing-room/blog/2021/11/10/recent-progress-and-actions-on-

port-congestion/. 
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CHAPTER 5: TABLES 

Table 5.1 Port area measures. 

Scenario [1] Total VHT = 

[2] * [3] 

[2] Average 

travel time 

[3] # of fulfilled 

trips 

[4] # of 

unfulfilled trips 

Baseline (Day 0) 199.59k veh-hrs 48.37 mins 247,565 NA 

Day 1 179.75k veh-hrs 51.27 mins 210,335 37,230 

Day 3 175.27k veh-hrs 49.19 mins 213,810 33,755 

Day 7 191.49k veh-hrs 49.14 mins 233,785 13,780 

Day 14 192.21k veh-hrs 48.98 mins 235,455 12,110 

Day 30 192.84k veh-hrs 48.45 mins 238,795 8,770 
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CHAPTER 5: FIGURES 

 

Figure 5.1 Travel time variation over 10 runs. 

 

 

Figure 5.2 Assessing impacts to transportation networks. 
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(a) Change in total VHT 

 

(b) Change in fulfilled trips 
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(c) Change in average travel time 

Figure 5.3 Simulation results. 
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Figure 5.4 Travel time distribution of port area trips. 

 

Figure 5.5 Change in VHT (overall area vs. port area). 
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(a) Direct cost 

 

(b) Indirect cost from unfulfilled trips 

 

(c) Indirect cost from delays 
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(d) Total cost 

Figure 5.6 Cost per origin TAZ. 

 

 

Figure 5.7 Indirect cost and road closures. 
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Figure 5.8 Cost estimate visualization. 
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 SUMMARY, CONCLUSIONS, AND 

SUGGESTED FUTURE WORK 

This report presented a highly granular synthesis framework to quantify the resilience of 

transportation networks to hazards such as earthquakes, including seismic loss and recovery. The 

framework starts with the characterization of the hazard and determining the probable seismic 

demands. The second step is the assessment of damage to the bridge infrastructure, which is carried 

out by individually modeling the bridges and simulating their responses in order to obtain 

individual bridge-level seismic fragility curves. These seismic fragility curves can then be used to 

rapidly estimate damage under hypothetical scenarios (which is the approach taken here) or real-

life events. The resulting estimated damage (i.e., functionality losses) are then used as inputs to a 

transportation network analysis, which runs an agent-based semi-dynamic traffic assignment on 

the network over a 24-hour period under the base scenario pre-earthquake and the modified 

networks post-earthquake. The output road usage and individual agent travel times are then used 

for estimating the economic impact of the earthquake on the transportation network through direct 

costs (repair) and indirect costs (delays, loss of connectivity). The resolution offered by this 

framework on a regional level allows for a holistic and detailed assessment of seismic impacts to 

transportation systems. 

The case study on two neighboring Southern California ports (Los Angeles and Long Beach) 

produced results on predicted bridge damage and closures, delays, and road network 

disconnections for a hypothetical Magnitude 7.4 earthquake for a network with 1,444,790 edges 

and 615,174 nodes and 8,404,218 agents, a scale not commonly seen in research of this nature. 

The simulation results were verified to have similar values compared to real-life travel time and 

travel distance metrics. The granularity of results allowed for trend analysis and a deeper spatial 

analysis of commonly aggregated metrics like vehicle hours traveled (VHT) in the system and of 

each agent. Furthermore, an economic impact estimation indicated that the port area, which is 

closest to the epicenter of the earthquake, is disproportionately affected, with the overall losses 

consisting largely of direct losses (repairing or replacing the damaged bridges) followed by lost 

demand. Losses due to congestion/delay were found to be minimal as traffic was still able to flow 

in and out of the ports (albeit at a significantly diminished level initially) and because not all of 

the connecting bridges would collapse or otherwise lose their functionality. 

To improve this resilience assessment and recovery prediction framework, considering different 

modes of transport and having more information on a vehicles’ activity (e.g., work, leisure, etc.) 

or more information on freight payload and its corresponding value can help in better quantifying 

the economic cost of each trip and the overall economic impact to the transportation network. One 

important outcome of the transportation-centric loss analysis used in this study is the ability to 

compare it with current budget allocations for disaster prevention, such as seismic retrofitting and 
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bridge repairs, and understanding the impact of delaying these tasks, which in the case study led 

to a 50% increase in indirect costs to individuals on top of repair costs. 
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