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ABSTRACT 

Following the approach outlined in the Watson-Lamprey and Abrahamson [2006] conditional 
model for Arias intensity, we use the NGA-West2 database to derive a new scaling model for 
Arias intensity given peak ground acceleration (PGA), T = 1 sec spectral acceleration (SAT1), 
shear-wave velocity in the top 30 m (VS30), and magnitude. By combining this conditional model 
with each of five NGA-West2 ground-motion models for PGA and SAT1, we derived five new 
ground motion prediction equations (GMPEs) for the median and standard deviation of Arias 
intensity. These five GMPEs for Arias intensity capture the more complex ground-motion 
scaling effects found in some of the NGA-West2 GMPEs, such as hanging-wall effects, 
sediment-depth effects, soil nonlinearity effects, and regionalization effects. This allows for 
Arias intensity values to be estimated that are consistent with the NGA-West2 GMPEs. 
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1 Introduction 

1.1 TRADITIONAL MODELS FOR ARIAS INTENSITY 

Arias intensity (Ia) has been recognized as a useful indicator of damage potential for earth dams 
in seismic analysis [Travasarou et al. 2003]. There have been several empirical models 
developed for Ia in the past decade (e.g., Travasarou et al. [2003] (TBA03); Stafford et al. [2009] 
(SBP09); Foulser-Piggott and Stafford [2012] (FPS12); and Campbell and Bozorgnia [2012] 
(CB12). These Ia models have used a relatively simple parameterization to fit the Arias intensity 
with the exception of the CB12 model. This creates a potential inconsistency with the pseudo-
spectral acceleration (PSA) values developed using ground-motion prediction equations 
(GMPEs) with more complex parameterization. For example, if the site is located over the 
hanging wall, then the PSA values at short periods may be increased by a factor of 2 to 3 
compared to footwall sites at the same distance; but if the Ia model does not include hanging-wall 
effects, then the Ia computed for the site may be too small and may not be consistent with the Ia 
expected for the given PSA. Similarly, if there are strong nonlinear site effects, then the PSA 
values based on GMPEs that include nonlinearity will be inconsistent with the Ia values based on 
Ia models that do not include these effects. 

1.2 CONDITIONAL GROUND-MOTION MODELS 

Watson-Lamprey and Abrahamson [2006] developed a conditional model for Ia that included the 
observed peak ground acceleration (PGA) and 1-sec spectral acceleration (SAT1) as predictive 
parameters in addition to the earthquake magnitude, distance, and time-averaged shear-wave 
velocity over the top 30 m (VS30). The Ia model is called conditional because it estimates the Ia 
given the observed PGA and SAT1 values. 

This report uses the conditional ground-motion model approach to develop an updated 
conditional model for Ia that is consistent with the NGA-West2 ground-motion models. The 
advantage of the conditional ground-motion model approach for predicting the Ia is that the more 
complicated scaling that are included in the NGA-West2 GMPEs—such as short-distance 
saturation, hanging-wall effects, soil-depth effects, soil nonlinearity effects, and regionalization 
effects—are accommodated by estimating the median and standard deviations of the PGA and 
SAT1 using the NGA-West2 GMPEs [Abrahamson et al. 2014 (ASK14); Boore et al. 2014 
(BSSA14); Campbell and Bozorgnia 2014 (CB14); Chiou and Youngs 2014 (CY14); and Idriss, 
2014 (I14)]. This allows for estimation of Ia values that are consistent with the estimated PSA 
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values from more recent GMPEs to include more complex scaling, such as the NGA-West2 
GMPEs. 
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2 Dataset 

2.1 DATASET SELECTION 

This study used the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 
database [Ancheta et al. 2014], which includes earthquakes that occurred through 2011 and 
contains over 21,000 three-component recordings from California and worldwide, with moment 
magnitudes, M, ranging from M3.0–M7.9. We use the same subset of this dataset as the ASK14 
model, which consists of 15,730 recordings (distances between 0 and 400 km from 326 
earthquakes with magnitudes between 3 and 7.9). There were five recordings with missing Ia 
values [Record Serial Number (RSN) 4236, 8164, 8165, 8166, 8169)]. The initial regression 
studies also found that there were ten recordings that were significant outliers in terms of only 
their Ia values (RSN 9048, 13483, 14046, 14727, 15374, 17041, 17206, 17305, 17800, and 
20407). We did not correct these ten records and simply removed them from our dataset. 

The resulting magnitude and distance distribution of the 15,715 recordings in the selected 
dataset is shown in Figure 2.1. Of this dataset, 506 recordings have a minimum useable 
frequency greater than 1 Hz, indicating that their SAT1 values are unusable. Removing these 506 
recordings leads to our final dataset of 15,209 recordings. 
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Figure 2.1  Magnitude and distance distribution of the selected Ia dataset. 
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3 Conditional Arias Intensity Model 

3.1 FUNCTIONAL FORM 

The Arias intensity is defined as 

2 ( )
2

aI a t d t
g


   (3.1) 

where ( )a t  is the acceleration in m/sec2, g is the acceleration of gravity, and Ia is the Arias 
intensity in m/sec [Arias 1970]. Following Watson-Lamprey and Abrahamson [2006], we 
develop a conditional model for Arias intensity that includes the observed PGA and SAT1 as 
predictor variables. Watson-Lamprey and Abrahamson [2006] used the following functional 
form for their conditional Ia model: 

       

   
1 2 30 3 4 5 1

2

6 RUP 7 RUP

ln m sec ln ln PGA ln

ln ln

a S TI c c V c M c c SA

c R c R

      

    
 (3.2) 

An initial exploratory analysis using the NGA-West2 database showed that the 
coefficients for the distance terms (c6 and c7) were not significantly different from zero. (c6 and 
c7 are highly correlated so both terms cannot be determined. The t-ratio for c6 is -0.16.) 
Therefore, the distance terms were removed and the form listed in Equation (3.3) was used for 
developing the conditional Ia model. 

       1 2 30 3 4 5 1ln m sec ln ln PGA lna S TI c c V c M c c SA        (3.3) 

where  is in m/sec, and PGA and SAT1 are in g. 

It is common to use a random-effects regression model for developing GMPEs to account 
for the correlation in the data through the event terms (e.g., Abrahamson and Youngs [1992]); 
however, because we developed a conditional model that includes the recorded PGA and SAT1 as 
input parameters, some of the correlation within an event is already captured through the 
observed PGA and SAT1 terms. We used the random-effects regression in the statistics program 
JMP (SAS Institute) to estimate the coefficients for the conditional Ia model. The resulting 
coefficients are listed in Table 3.1 along with the standard errors of the estimates. Table 3.1 
shows that the Ia scales more strongly with PGA than SAT1 because the Ia is a high-frequency 

VS 30
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parameter; however, the SAT1 term is also statistically significant, shown by the large t-ratio of 
44. 

This conditional model for Ia has a total standard deviation of 0.38 natural log units 
(intra-event standard deviation  = 0.35, inter-event standard deviation  = 0.15). This standard 
deviation is much smaller than the standard deviations for traditional Ia models (not conditioned 
on observed PGA and SAT1) that are about 1.0 natural log units, indicating that the Ia can be 
computed with much smaller aleatory variability if PGA and SAT1 are known, due to strong 
correlation of the Ia with the PGA and SAT1. 

Table 3.1 Parameter estimates, standard errors, and t-ratios for scaling model. 

Term Estimate Standard Error t-ratio 

c1 0.47 0.069 7 

c2 -0.28 0.0085 –33 

c3 0.50 0.011 45 

c4 1.52 0.0038 399 

c5 0.21 0.0047 44 

 

3.2 EVALUATION OF RESIDUALS 

The residuals for the conditional Ia model are shown in Figures 3.1 and 3.2 as a function of the 
four model input parameters: PGA, SAT1, M, and VS30. Figure 3.1 shows the inter-event residuals 
as a function of magnitude. Figure 3.2 shows the intra-event residuals as a function of PGA, 
SAT11, and VS30. The lack of trends in the residuals shows that the simple scaling in Equation 
(3.3) adequately captures the dependence of the Ia on these four parameters. 

We also checked the residuals for other parameters that are used in GMPEs for PSA but 
were not used in our conditional Ia model. The lower frame of Figure 3.1 shows the inter-event 
residuals as a function of depth to top of rupture (ZTOR). Figure 3.3 shows the intra-event results 
as a function of rupture distance (RRUP), soil depth to VS = 1 km/sec (Z1.0), and rock PGA 
(PGA1100) for soil sites with VS30 < 270 m/sec. There is no trend in the residuals as a function of 
these parameters, indicating that the Ia scaling with these parameters, including the effects of 
nonlinear site response on the Ia, is captured in the conditional model through the use of the 
observed PGA and SAT1 values. To check the magnitude dependence of the distance scaling, 
Figure 3.4 shows the intra-event residuals versus distance separated by magnitude. There are no 
systematic trends in the residuals, indicating that the magnitude dependence of the distance 
scaling for Ia is also captured through the use of the observed PGA and SAT1 values. 

Finally, we checked the residuals for sites that are expected to show hanging-wall (HW) 
effects. The intra-event residuals for sites on the HW side of the rupture (Rx > 0) and located over 
or near the hanging-wall (Joyner-Boore distance, RJB < 5 km) from earthquakes with M > 6 and 
dip < 60 show a small under-prediction of the Ia. The trend in the residuals is nearly constant 
with RJB, magnitude, and dip. The average amplitude of the offset in the HW residuals (0.11 ln 
units) is small compared to the size of the HW effects in the GMPEs (e.g., about 0.7 ln units in 
the ASK14 model for sites over the HW), indicating that the simple conditional model accounts 
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for most of the HW effect. Because sites located over the HW are an important factor in building 
design, an additional term is added to the conditional Ia model to improve the model for HW 
sites. Although the residuals show a constant shift, this needs to be tapered for sites at larger 
distances, smaller magnitudes, and steeper dips. Therefore, we applied the form of the dip, 
magnitude, and distance tapers for the HW term from the ASK14 model [Equations (3.5), (3.6), 
and (3.7)]. The HW term is given by: 

     resid 8 1 2 5dipHW JBHW c F T T M T R  (3.4) 

where HWF  is a flag that is 1 for sites located on the hanging-wall side of the rupture and 0 for 
sites located on the footwall side of the rupture: 

1

(90 dip) / 45 for dip 30
(dip)

60 / 45 for dip 30
T

 
  

 (3.5) 

  2
2

1 for 6.5

( ) 1 0.2 6.5 0.8 ( 6.5) for 5.5 6.5

0 for 5.5

M

T M M M M

M


      
 

 (3.6) 

5

1 for 0

( ) 1 for 15
15

0 for 15

jb

jb
jb jb

jb

R

R
T R R

R


  




 (3.7) 

The estimate of 8c  is 0.09 with a standard error of 0.03. 

3.3 EVALUATION OF ALEATORY VARIABILITY 

The regression analysis assumes that the ln( )aI  residuals have a normal distribution. This 
assumption is evaluated using normal probability plots. Figure 3.8 shows the normal probability 
plots of the inter-event and intra-event residuals. The distribution of inter-event residuals is 
consistent with a normal distribution except for the lower tail, which is not important for 
engineering applications because we are concerned with large damaging ground motions. The 
distribution of the intra-event residuals is generally consistent with the normal distribution, with 
the exception of the upper and lower tails, starting at about the 1% and 99% levels (e.g., about 
±2.3 standard deviations). Figure 3.8 shows that the Ia intra-event residuals have fat tails 
compared to the normal distribution. Similar fat tails have been observed for the intra-event 
response spectral values using the NGA-West2 dataset [Geopentech 2015 Chapter 11]. 

The fat tails for the intra-event residuals can be described using a mixture model, given 
by the weighted average of two normal distributions: one has a mean of 0, standard deviation of 
0.40 and weight of 0.56; the other has a mean of 0, standard deviation of 0.27 and weight of 
0.44. The normal probability plot using the mixture model is shown in Figure 3.9. The mixture 
model adequately captures the fat tails in the upper range. 
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The intra-event residual distribution deviates from a normal distribution at around 2.3 
standard deviations, but it is consistent with the mixture model distribution up to 4 standard 
deviations. If the Ia model is used to compute probabilistic hazard at low probability levels, then 
the mixture model should be used to compute the conditional probability of exceedance as shown 
below, where Φ(x) is the cumulative standard normal distribution. 

 1 30

2 2 2 2
1 2

PGA, , ,

ln( ) ln( ) ln( ) ln( )
0.56 1 0.44 1

a T S

a a

P I z SA M V

z I z I

   



                   
             

 (3.8) 

where 1 and 2 are the intra-event standard deviations from the mixture model (1 = 0.40 and 2 

= 0.27), and  is inter-event standard deviation (= 0.15). 

The regression also assumes that the Ia residuals are homoscedastic. This assumption is 
evaluated by visual inspection of the scatter of residuals shown against the predictive parameters 
in Figures 3.1, 3.2, 3.3, and 3.4. The amplitude of the scatter of residuals does not appear to have 
any trends with the predicted parameters (magnitude, PGA, SAT1, and VS30). For PSA GMPEs, 
the standard deviation is often modeled with a dependence on the earthquake magnitude (e.g., 
ASK14, BSSA14, CB14, CY14, and I14). The magnitude dependence of the standard deviation 
for the conditional Ia model is evaluated by computing the intra-event and inter-event standard 
deviations for different magnitude ranges (Table 3.2). There is no systematic increase or 
decrease in the inter-event and intra-event standard deviations (  and ) with magnitude. 

Table 3.2 Standard deviation of the conditional Ia residuals by magnitude bin. 

Magnitude 
Range 

Number of 
Earthquakes 

Number of 
Recordings 

 
(LN units) 

 
(LN units) 

 
(LN units) 

2.5–3.5 25 821 0.38 0.11 0.40 

3.5–4.5 169 7713 0.36 0.14 0.39 

4.5–5.5 54 2235 0.33 0.17 0.37 

5.5–6.5 49 1785 0.29 0.16 0.33 

6.5–7.5 25 2622 0.37 0.14 0.40 

7.5–8.5 4 539 0.35 too few eqk  

3.4 COMPARISON OF CONDITIONAL Ia MODELS 

The conditional Ia model developed in this section is compared to the WLA06 conditional Ia 
model in Figures 3.10 and 3.11. The coefficients for the magnitude scaling and VS30 scaling in 
the current model are similar to the coefficients in the WLA06. This leads to similar magnitude 
and VS30 scaling between the two models; see Figure 3.10. 

The coefficient for the ln(PGA) term is much larger in the current model (1.52) than in 
the WLA06 model (1.30), suggesting that the current model leads to stronger scaling with PGA 
than the WLA06 model; however, the ln(PGA) is correlated with the ln[PSA(T=1)], and the 

 

  
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coefficient for the ln[PSA(T=1)] term is much smaller in the current model (0.21) than in the 
WLA06 model (0.33). This difference in the PSA(T=1) scaling offsets much of the difference in 
the PGA scaling between the two models. 

Because the relative values of the PGA and PSA(T=1) depend on the spectral shape, 
Figure 3.11 shows the scaling with ln(PGA) for magnitudes of 5.0, 6.5, and 8.0. The largest 
differences in the ln(PGA) scaling is at the M5 range. This reflects the large increase in the 
number of recordings from moderate magnitude earthquakes in the NGA-West2 dataset used in 
this study compared to the NGA-West1 dataset used by WLA06. Similarly, the scaling with 
ln[PSA(T=1)] is shown in the right-hand frame of Figure 3.11 for magnitudes 5.0, 6.5, and 8.0. 
As with the ln(PGA) scaling, the correlation of the ln(PGA) and the ln[PSA(T=1)] values 
reduces the differences in the predicted Ia from the two models. 

The predicted Ia values using the current conditional Ia model and using the WA06 
conditional Ia model are very similar even though the current model uses a much larger database. 
In contrast, the predicted Ia values using the traditional (non-conditional) approach show a 
stronger dependence on the dataset used to develop the model (see Chapter 4). Therefore, using 
the conditional Ia model approach leads to more robust ground-motion models for Ia than using 
the traditional approach. 
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Figure 3.1 Inter-event residuals of the conditional Ia model as a function of 
magnitude (top) and ZTOR (bottom). 
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(a) 

 
(b) 

 
(c) 

Figure 3.2 Intra-event residuals of conditional Ia model as a function of (a) PGA, (b) 
SAT1, and (c) VS30. 
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(a) 

 
(b) 

 
(c) 

Figure 3.3 Intra-event residuals of the conditional Ia model as a function of 
parameters not included in the conditional model.   
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Figure 3.4 Intra-event residuals of the conditional Ia model as a function of rupture 
distance separated by magnitude bin. 
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Figure 3.5 Intra-event residuals of conditional Ia model for sites with expected 
hanging-wall effects (M ≥ 6, dip ≤ 60, RJB ≤ 5 km, RX > 0) as a function of 
RJB. The red curve shows the mean residual. 
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(a) 

 
(b) 

Figure 3.6 Intra-event residuals of conditional Ia model for sites with expected 
hanging-wall effects (M ≥ 6, dip ≤ 60, RJB ≤ 5 km, RX > 0) as a function of (a) 
magnitude and (b) dip. The red curve shows the mean residual. 
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Figure 3.7 Intra-event residuals of conditional Ia model for sites with expected 
hanging-wall effects (M ≥ 6, dip ≤ 60, RX > 0) after including the HW term in 
Equation (3.4). The red curves shows the mean residual for distance bins 
and the red dashed curves show the plus and minus one standard error 
of the mean residual. 
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(a) 

 
(b) 

Figure 3.8 Normal probability plot for the (a) inter-event residuals and the (b) intra-
event residuals for the conditional Ia model. 
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Figure 3.9 Normal probability plot for the intra-event residuals (in ln units) using the 
mixture model for the conditional Ia model. 
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Figure 3.10 Comparison of the scaling for the WLA06 conditional Ia model with the 
results of this study. 
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Figure 3.11 Comparison of the scaling for the WLA06 conditional Ia model with the 
results of this study. Because the PSA (T=1) is correlated with PGA, the 
scaling with PGA or PSA is shown for fixed magnitudes (fixed spectral 
shape). 
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4 Arias Intensity Ground Motion Prediction 
Equations 

4.1 MOVING FROM CONDITIONAL MODELS TO TRADITIONAL MODELS 

For a given earthquake scenario and site location, we use the median PGA and median SAT1 
values from the individual NGA-West2 ground motion models combined with the conditional Ia 
model in Equations (3.3) and (3.4) to develop a median Ia for each NGA-West2 model, as shown 
in Equation (4.1). 

       1 2 30 3 4 5 1med

8

ln m sec ln ln PGA ln

1
if 5 km

5
1 if 5 10 km

5
if 10 km

0

a S T

JB

JB
HW JB

JB

I c c V c M c c SA

R
R

c F R

R

      
     
 

 (4.1) 

This median Ia depends on the median PGA and SAT1 from the NGA-West2 GMPEs and is no 
longer conditioned on the observed PGA and SAT1. 

The variance for the Ia GMPE can be calculated using propagation of errors [Bevington 
and Robinson 1969] as follows: 

 

11

2 2
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 (4.2) 

where 

       111 ln(PGA) ln( )ln PGA lnCOV ln(PGA), ln( ) , ,
TTT SASASA          (4.3) 

and  is the correlation coefficient, and  is the normalized residual from the NGA-West2 

GMPE. The partial derivatives were calculated from Equation (4.1). The 1ln(PGA) ln( ),
TSA   term is 

the standard deviation for the conditional Ia in Equation (3.3). We used the correlation 

 
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coefficient,    1ln PGA ln[ , ]
TSA   , from the Baker and Jayaram [2008] model. Although this 

correlation model was derived from the NGA-West1 dataset, Carlton and Abrahamson [2014] 
showed that correlations are stable for different datasets. The values of the partial derivatives, 
correlation coefficient, and standard deviation of the conditional Ia model in Equations (4.2) and 
(4.3) are listed in Table 4.1. 

Table 4.1 Parameter Values for Computing the Standard Deviation. 

1ln( ) ln(PGA),ln( )a TI SA     1ln PGA ln,
TSA      

ln( )

ln(PGA)

aI


 

1

ln( )

ln( )

a

T

I

SA




 

0.38 0.52 1.53 0.20 

 

Using the values in Table 4.1, the total standard deviation (combined intra-event and 
inter-event) for the Ia GMPEs is given by Equation (4.4). 

1 1

2 2
ln( ) ln( ) ln( ) ln( ) ln( )0.144 2.34 0.04 0.318

a T TI PGA Sa PGA Sa          (4.4) 

where  and  are the standard deviations given by the NGA-West2 models. The 

intra-event and inter-event standard deviations can also be estimated. The correlation for the 
intra-event and inter-event residuals are very similar [Carlton and Abrahamson 2014]. Assuming 
the correlations from Baker and Jayaram [2008] are valid for both the intra-event and inter-event 
residuals, the intra-event and inter-event standard deviations for the Ia are shown in Equations 
(4.5) and (4.6). 

ln(Ia )  0.1442.34ln(PGA)
2  0.04ln(SaT 1)

2 0.318ln(PGA)ln(SaT 1 )  (4.5)  

1 1

2 2
ln( ) ln( ) ln( ) ln( ) ln( )0.144 2.34 0.04 0.318

a T TI PGA Sa PGA Sa          (4.6) 

As a check, the Ia values are computed using the median PGA and SAT1 from the ASK14 
GMPE, i.e., it is no longer a conditional model. Using these estimated Ia values, the inter-event 
and intra-event residuals of the Ia are computed using a random-effects regression with only a 
constant term. The estimated constant term is small: 0.02 natural log units. The inter-event 
residuals and the intra-event residuals do not show a trend with magnitude or distance. The small 
constant term and the lack of trends in these residuals indicate that Ia based on the conditional Ia 
model combined with the ASK14 GMPE for the median PGA and SAT1 is consistent with the 
scaling of the observed Ia values. 

4.2 MODEL RESULTS 

The resulting Ia models using the five NGA-West2 GMPEs are compared to previously 
published Ia models. Figures 4.1(a-d) compare the distance scaling of the Ia models for vertically 
dipping strike–slip earthquakes for VS30 of 520 m/sec for magnitude 5, 6, 7, and 8, respectively. 
Default values are used for the focal depth and depth to top of rupture terms. The default values 

 ln(PGA)  ln(SaT 1 )
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for Z1.0 and Z2.5 are 0.22 km and 0.94 km for VS30 = 520 m/sec, respectively, based on the scaling 
in ASK14 for Z1.0 and the scaling in CB14 for Z2.5. For VS30 = 270 m/sec, the Z1.0 and Z2.5 values 
are 0.47 km and 1.98 km, respectively. At large distances, the Ia models have a steeper slope than 
the previously published models because they scale with the NGA-West2 GMPE’s, which are 
better constrained at large distances. The resulting models are also more tightly grouped than the 
other models are, comparatively. This shows that the resulting models are more robust than 
models based on the common approach of conducting an independent regression for the Ia 
model, which generally does not have the physical constraints built into how the model 
extrapolates as in the case of the PSA GMPEs. 

Figures 4.2 and 4.3 compare the magnitude scaling for the Ia models for vertically 
dipping strike–slip earthquakes for a rupture distance of 10 km and two VS30 values: 270 m/sec 
and 520 m/sec. In the M6–M7 range, the NGA-West2 Ia models are similar to prior models, but 
they differ at M5 and M8 magnitudes where the previous models have fewer data and are 
extrapolated. Here, the CB14 model is similar to the CB12 model because of similar complex 
forms but mainly differ at M8 magnitudes with lower values in the CB12 model. 

Figure 4.4 compares the short-distance scaling for the Ia models for dipping faults for 
M7. This shows a larger difference between the NGA-West2 Ia model and prior models that did 
not include hanging-wall effects (all except CB12) for sites located over the hanging wall due to 
the simple forms used in prior models. 

Figure 4.5 compares the standard deviations for the Ia models developed herein with the 
standard deviations from previously published models. The standard deviations for the new 
models are generally consistent with the FPS12 empirical model but are significantly larger than 
the TBA03, SBP09 and CB12 empirical models. Both the FPS12 and CB12 use the NGA-West1 
dataset and use a direct regression on the Ia data, but the selected subsets are different. As a 
result, the FPS12 standard deviation is much larger than the CB12 standard deviation. 

To understand the cause of the difference in the standard deviations, Figure 4.5 includes a 
comparison with the standard deviation computed from the CB12 dataset from NGA-West1 and 
the ASK14 dataset from NGA-West2. The intra-event and inter-event standard deviations for 
ln(Ia) computed using these two subsets are listed in Table 4.2. Applying the results of the 
conditional Ia model to the CB08 equation for PGA and SAT1 and corresponding dataset for 
computing residuals leads to  of 0.78 and τ of 0.36, which are similar to the standard deviation 
terms from CB12 ( = 0.77, τ = 0.31). In contrast, applying the conditional Ia model to the 
ASK14 model for PGA and SAT1 and corresponding dataset leads to much larger  and τ values 
( = 0.89, τ = 0.61 for M > 5.5), which are consistent with the standard deviations for the five 
new models based on the NGA-West2 equations. They are also consistent with the standard 
deviation of the FPS12 empirical model. This shows that the increase in the standard deviations 
for the new Ia models compared to several of the previous empirical models, shown in Figure 
4.5, is not an artifact of the use of a conditional Ia model. Instead, it is related to the selected 
dataset. 
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Table 4.2 Inter-event, intra-event, and total standard deviations for two different 
datasets and reference GMPEs. 

Dataset and 
reference GMPE 

Magnitude range  
(LN units) 

 
(LN units) 


(LN units) 

 

ASK14 

(RRUP < 80 km) 

3.0 < M < 4.0 1.23 0.72 1.43 

4.0 < M < 5.5 1.16 0.72 1.37 

M > 5.5 0.89 0.61 1.08 

CB08 M > 4.3 0.78 0.36 0.86 

 

  

 
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Figure 4.1 Comparison of the distance scaling of the median Ia models for strike–slip 
faults for VS30 = 520 m/sec (TBA03 class C, SBP09 class B). (a) M = 5, (b) M 
= 6, (c) M = 7, and (d) M = 8. 
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Figure 4.2 Comparison of the magnitude scaling of the median Ia models for strike-
slip faults for a rupture distance of 10 km and VS30 = 520 m/sec (TBA03 
class C, SBP09 class B). 

 

Figure 4.3 Comparison of the magnitude scaling of the median Ia models for strike-
slip faults for a rupture distance of 10 km and VS30=270 m/sec (TBA03 
class D, SBP09 class D). 
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Figure 4.4 Comparison of the median Ia for dipping faults for M = 7 and VS30 = 520 
m/sec (TBA03 class D, SBP09 class D). 
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Figure 4.5 Comparison of the standard deviations for the Ia models based on the 
NGA West2 GMPEs using Equation (4.4) with the standard deviations 
from previously published Ia models. Also shown are the standard 
deviation estimated from the NGA-West2 data within 80 km using the 
ASK14 Ia model and the standard deviation estimated from the NGA-
West1 data used by CB12 with the Campbell and Bozorgnia [2008] GMPE 
(CB08). 
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5 Conclusions 

It is common to develop estimates of the Ia in addition to the PSA values for defining the design 
ground motion. If the Ia is estimated using an Ia GMPE based on a simple functional form but the 
PSA is estimated using GMPEs that considers more complex effects, such as hanging-wall 
effects and nonlinear site effects, then there may be inconsistencies between the estimated Ia 
value and the estimated PSA. This inconsistency can be avoided by using conditional Ia models 
combined with the GMPEs for PGA and SAT1. A key advantage of the approach used in this 
paper is that the extrapolation and more complex scaling in the GMPEs can be captured in the Ia 
model. Also, because the conditional Ia model has a small standard deviation, it is more robust 
than traditional Ia models, leading to a suite of Ia models that have a much smaller range of 
median Ia than the traditional models. The derived models have a larger standard deviation than 
many of the previous models, which we attribute to dataset differences. 

The conditional Ia model [Equation (3.3)] can be used directly (without the NGA-West2 
GMPEs) to develop design Ia values that are consistent with the design spectrum by using the 
PGA and SAT1 of the design spectrum as inputs to the conditional Ia model. The full Ia model 
[Equations (4.1) and (4.4)] combines the conditional Ia with a PSA GMPE-producing Ia models 
that include complex features of the PSA GMPE, such as hanging-wall effects, nonlinear site 
effects, directivity effects, magnitude, and/or distance dependent standard deviations. This paper 
combined the conditional Ia model with the five NGA-West2 GMPEs, but the conditional Ia 
model, with its small variability and simple form, can be combined with other crustal GMPEs. In 
addition, as new PSA GMPEs are developed in the future, the conditional Ia model developed 
herein can be combined with new PSA GMPEs to rapidly develop new Ia GMPEs consistent 
with new PSA GMPEs because the standard deviation of the conditional Ia model is very small 
relative to the other aleatory terms in GMPEs. 
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