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ABSTRACT 

This document is a companion report to Expert Panel Recommendation for Ergodic Linear Site 

Amplification Models in central and eastern North America (PEER Report 2017/04, Stewart et 

al. 2017). This report describes the panel recommendations for ergodic median nonlinear site 

amplification models, which are meant to accompany linear models in the companion report. 

Nonlinear models for site amplification must represent the strength of the input ground motion in 

some manner, and peak acceleration for a reference condition (PGAr) is often used. The use of 

PGAr (and similar parameters) requires specification of a reference condition in the development 

of nonlinear models, and those provided here consider reference conditions of VS = 3000 m/sec 

and VS30 = 760 m/sec. One of the proposed models (the GWG-S nonlinear amplification model) 

is derived for a reference condition of VS = 3000 m/sec. A second is identical to the first except 

that PGAr is adjusted to a VS30 = 760 m/sec reference condition. 

Nonlinear amplification models in this report are produced as functions of VS30 and 

(PGAr). Other models evaluated in this report are the PEA nonlinear amplification model and the 

GWG-S model with an alternative approach to convert GWG-S nonlinear amplification model 

estimations to a VS30 = 760 m/sec reference condition. A recommended epistemic uncertainty 

model on the GWG-S recommended median nonlinear amplification models is provided in 

piecewise functional form to generate reasonable variation of Fnl across the period and VS30 

ranges of interest. Limitations on the recommended models are presented considering both the 

methodology of the recommended model derivation and limitations of nonlinear amplification 

models in general. 
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1 INTRODUCTION 

1.1 MOTIVATION FOR PROJECT AND RELATIONSHIP TO LINEAR MODEL 

The Next Generation Attenuation East (NGA-East) Project is multi-disciplinary research project 

coordinated by Pacific Earthquake Engineering Research Center (PEER) that generated a list of 

ground motion models (GMM’s) for central and eastern North America (CENA). Current 

GMM’s development for CENA during the NGA-East project are given namely, Boore [2015b], 

Darragh et al. [2015], Yenier and Atkinson [2015], Pezeshk et al. [2015], Frankel [2015], 

Shahjouei and Pezeshk [2015], Al Noman and Cramer [2015], Graizer [2015], Hassani and 

Atkinson [2015], and Hollenback et al. [2015]. Because of the lack of strong ground-motion 

recordings in CENA, nonlinear site effects included in the site terms have no effect on model 

development. 

A previous generation of GMM’s was reviewed by an international team of experts as a 

part of the global earthquake model project [Stewart et al. 2015]. Many of these models are used 

in the current versions of the USGS national hazard maps [Petersen et al. 2015] in the CENA 

region, namely Frankel et al. [1996], Toro et al. [1997],Somerville et al. [2001], Silva et al. 

[2002a], Campbell [2003], Tavakoli and Pezeshk [2005], Atkinson and Boore [2006] and 

Pezeshk et al. [2011]. In general, these models either lack model terms for nonlinear site effects 

or site effects in these GMM’s are not applicable for use in CENA [Stewart et al. 2015]. 

Both generations of aforementioned models have been developed for a hard-rock 

reference condition similar to the proposed condition of VS = 3000 m/sec in Hashash et al. 

[2014]. However, national ground motion hazard maps have been developed relative to a VS30 = 

760 m/sec reference condition [Frankel et al. 1996; Petersen et al. 2008; and Petersen et al. 2014] 

and) where VS30 is the time average shear wave velocity in the top 30 m of a site. This reference-

rock condition incompatibility between GMM’s and hazard maps reveals the longstanding need 
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of correction of hard rock GMM’s to a 760 m/sec condition. This document is a companion 

report to Expert Panel Recommendations for Ergodic Site Amplification in Central and Eastern 

North America [Stewart et al. 2017] developed for linear site amplification assessment, and 

presents recommendations for the nonlinear component of site amplification models for 

reference conditions of both 760 m/sec and 3000 m/sec. The nonlinear amplification models use 

a common functional form and include a conversion from 760 m/sec to 3000 m/sec to modify 

reference rock peak ground acceleration (PGA) values to the appropriate reference condition. An 

uncertainty model derived from judgment and the functional form of the proposed median 

amplification models is included. 

It should be noted that this report refers to several linear and nonlinear models from the 

Geotechnical Working Group (GWG) of NGA-East that are currently being finalized [Harmon 

2017; Parker et al. 2017]. 

1.2 ORGANIZATION OF THE REPORT 

In this report, Section 2 presents recommended median nonlinear amplification models and the 

associated uncertainty for VS30 = 760 m/sec and VS = 3000 m/sec reference conditions. Section 3 

presents the nonlinear amplification models and methodology used to determine the 

recommended median models and associated uncertainty. The nonlinear amplification models 

considered are (1) the Harmon et al [2017] nonlinear amplification model relative to a VS = 3000 

m/sec reference-rock condition (referred to as the GWG-S model), (2) the Darragh et al. [2015] 

nonlinear amplification model (referred to as the Pacific Engineering & Analysis (PEA) model), 

and (3) the GWG-S model converted to a VS30 = 760 m/sec reference condition. The epistemic 

uncertainty model is derived from visual inspection of the nonlinear amplification models and 

physical considerations. Section 4 of this report gives a summary of the recommended nonlinear 

models and their limitations, and the conclusions of the report are given in Section 5.  
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2 RECOMMENDED NONLINEAR 
AMPLIFICATION MODEL 

2.1 APPROACH 

The response spectrum amplification,  SF , is commonly represented as the sum of an intensity 

independent linear amplification component  linF  and a nonlinear site amplification  nlF  

component as given in Equation (2.1) as 

S lin nlF F F   (2.1) 

The following sections present recommended median nonlinear amplification models for 

linF  Two median models with estimated epistemic uncertainty are recommended for the 

reference conditions of 760 m/sec and 3000 m/sec. The model relative to 3000 m/sec is the N2 

GWG-S amplification model [Harmon 2017], and the nonlinear model relative to a 760 m/sec 

condition is derived from the GWG-S model relative to 3000 m/sec. The conversion between a 

760 m/sec reference condition and the 3000 m/sec condition is performed on the input PGA and 

is adopted from depth-independent 760/3000 m/sec correction at T = 0.001 sec GWG-S linear 

amplification simulations in Harmon [2017]. 

The epistemic uncertainty on the recommended median nonlinear amplification models is 

derived using judgement, with the objective of producing a reasonable variation of Fnl across the 

period and VS30 range of interest and is derived from the functional form of the recommended 

GWG-S median models. 
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2.2 RECOMMENDED MODEL FORM AND COEFFICIENTS 

The recommended median nonlinear amplification model form is presented in Equations (2.2) 

and (2.3) as a function of site VS30 and PGA from a reference condition of VS = 3000 m/sec 

 ,3000rI . The model form in Equation (2.2) can be modified with the reference-rock conversion 

in Equation (2.4) to produce the recommended median nonlinear amplification model for site 

VS30 and PGA from a reference-rock condition of VS30 = 760 m/sec. 

 2 ,3000 3 3 30

30

ln

0

r S
nl

S

f I f f V V
F

V V


    


 (2.2) 

where  is the nonlinear site amplification, Vc is a period dependent limiting site VS30 for 

nonlinearity, f3 is a model coefficient, and f2 is defined in Equation (2.3) as 

     2 4 5 30 ref 5 refexp min , 360 exp 360Sf f f V V f V         (2.3) 

where f4 and f5 are model coefficients, and Vref is the reference-rock condition of 3000 m/sec. 

The coefficients f3, f4,
 f5, and Vc are identically the GWG-S nonlinear coefficients derived in 

Harmon [2017] and reproduced in Table 2.1 for periods of 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, 

2.0, 3.0, 4.0, 5.0, and 10.0 sec, and shown in Figure 2.1. The parameter ,3000rI  in Equation (2.2) 

can be calculated from Equation (2.4) for PGA values computed from a reference condition of 

760 m/sec as 

,3000 .760 760/3000 ,360 / 2.275r r rI I C I   (2.4) 

where .760rI  is the rock outcrop PGA relative to 760 m/sec, and C760/3000 is a conversion factor 

between a 760 m/sec and 3000 m/sec reference condition. C760/3000 represents the depth-

independent 760–3000 m/sec correction factor from the GWG-S linear amplification model 

presented in Harmon [2017] at 0.001 sec and is equal to 2.275. 
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Epistemic uncertainty on the recommended nonlinear amplification models (i.e., the 

median recommended amplification models for PGA relative to VS conditions of 3000 m/sec and 

760 m/sec) is obtained by functional form in the Equation (2.5) as 

30

30
2 30

30

300 m sec

ln 300 1000 m sec
1000 300

ln
300

1000 m sec0

Sc

c S
f c S

S

V

V
V

V




 


 
                   



 (2.5) 

where c  is given in Table 2.1 for periods of 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, 2.0, 3.0, 4.0, 

5.0, and 10.0 sec and shown in Figure 2.2. 

Table 2.1 Recommended nonlinear amplification model and uncertainty model coefficients. 

Period (Sec) 3f  4f  5f  m seccV  c  C760/3000 

0.08 0.16249 -0.50667 -0.00273 2990 0.12 2.275 

0.1 0.15083 -0.44661 -0.00335 2990 0.12 2.275 

0.2 0.12815 -0.30481 -0.00488 1533 0.12 2.275 

0.3 0.1307 -0.22825 -0.00655 1152 0.15 2.275 

0.4 0.09414 -0.11591 -0.00872 1018 0.15 2.275 

0.5 0.09888 -0.07793 -0.01028 938 0.15 2.275 

0.8 0.07357 -0.01592 -0.01515 832 0.1 2.275 

1 0.04367 -0.00478 -0.01823 951 0.06 2.275 

2 0.00164 -0.00236 -0.01296 879 0.04 2.275 

3 0.00746 -0.00626 -0.01043 894 0.04 2.275 

4 0.00269 -0.00331 -0.01215 875 0.03 2.275 

5 0.00242 -0.00256 -0.01325 856 0.02 2.275 

10 0.05329 -0.00631 -0.01403 837 0.02 2.275 
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Figure 2.1 Coefficients of response spectrum nonlinear amplification 
recommended model relative to 760 m/sec. Dotted red lines indicate 
bounds used in coefficient regression in Harmon [2017]. Figure 
modified from Harmon [2017]. 
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Figure 2.2 Epistemic uncertainty with respect to VS30 at oscillator period value 
of 0.1 sec. 
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3 NONLINEAR AMPLIFICATION MODELS 

3.1 INTRODUCTION AND LITERATURE REVIEW 

Central and eastern North America (CENA) is considered a stable continental region (SCR) from 

the perspective of ground motion model development. The lack of strong ground-motion 

recordings in SCR leads to ground motion models (GMMs) developed from sparse datasets with 

relatively weak motions or GMMs developed as modifications of GMMs for active seismic 

regions. For relatively weak ground motions at a site, the soil experiences low levels of strain, 

and the response of the site is very near the linear site amplification. Site response simulations 

considering much larger ranges of site conditions and ground shaking levels than available in 

recorded earthquake data have previously been used to evaluate site nonlinear amplification and 

supplement models developed from the limited empirical datasets of SCRs to produce 

amplification functions for use with GMMs in regions such as CENA. 

Site amplification model forms are generally defined as functions of VS30 and a ground-

motion intensity measure to capture linear and nonlinear site amplification. The Choi and 

Stewart [2005] site amplification models propose separate model terms for the linear 

amplification as a function of VS30 scaling and nonlinear amplification as a function of PGA at 

the reference-rock condition, PGAr. PGAr is commonly used as the driver of nonlinearity for 

these models (i.e., an indicator of the magnitude of nonlinear site amplification). 

Simulation-based nonlinear site amplification models have previously been used to 

constrain nonlinear site effects in empirical models. The simulation-based Walling et al. [2008] 

used in the Next Generation Attenuation Relationships (NGA-West) project adopts linear VS30 

scaling model terms and additional model terms to capture nonlinear site amplification effects as 

a function of both VS30 and PGAr. The consideration of VS30 in the nonlinear site amplification 

model reflects the idea that a site with initially stiffer material (i.e., higher VS30) will be exposed 
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to less strain during shaking, and less nonlinear amplification will be observed. The Kamai et al. 

[2014] formulation used in the NGA-West 2 project updates the Walling et al. [2008] form with 

additional simulations to use two alternative formulations, one which uses PGAr as the driver of 

nonlinearity and the other which uses Sa(T), where Sa(T) is the spectral acceleration (SA) from 

the 5% damped response spectrum (RS) at the period (T) of interest. The Seyhan and Stewart 

[2014] model uses both simulations and empirical observations of site to update the current 

NEHRP site amplification models [BSSA 2015]. The Seyhan and Stewart [2014] functional form 

is modified from the nonlinear site amplification model in Chiou and Youngs [2008]. 

The CENA site database [Goulet et al. 2014] used in the NGA-East GMM development 

process is mostly dominated by weak ground motions. The treatment of linear site effects in the 

NGA-East GMM development is described in Stewart et al. [2017] companion to this report.  

In this section, two median models with estimated epistemic uncertainty are 

recommended for the reference conditions of 760 m/sec and 3000 m/sec. Epistemic uncertainty 

on the recommended models is provided by a functional form obtained from visual inspection of 

results and physical considerations. Two approaches (one recommended and one alternative) for 

converting PGAr in the nonlinear amplification models between a VS = 3000 m/sec and VS30 = 

760 m/sec reference conditions are also discussed in the following section. 

3.2 RESPONSE SPECTRUM MODELS CONSIDERED IN PANEL 
RECOMMENDATION FORMULATIONS 

3.2.1 GWG-S Nonlinear Amplification Model Relative to 3000 m/sec Reference 
Condition 

In the suite of amplification models for site amplification relative to a VS = 3000 m/sec reference 

condition developed in Harmon [2017] as a part of the NGA-East GWG, two models for the 

nonlinear site amplification were developed from the difference between linear and nonlinear site 

amplification simulations. The N1 model uses SA, and the N2 model uses PGAr as the driver of 

nonlinearity. Both models adopt the same functional form as Seyhan and Stewart [2014] and use 

different model coefficients. The uncertainty in the correlation between SA and PGA and ease of 

implementation with the USGS hazard maps causes the N2 model to be selected over the N1 

model for evaluation. The N2 model is hereafter referred to as the GWG Simulation-based 
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(GWG-S) model. The nonlinear site amplification, , functional form used in the GWG-S 

model is given in Section 2.2. 

It should be noted that the definition of Vc in the GWG-S model is a velocity condition 

where site amplification relative to the reference-rock condition of 3000 m/sec is not observed 

and comes from the L1 model in Harmon [2017] for linear amplification as a function of VS30 

(the VS30 scaling model). The Vc values in the GWG-S model are nominally high VS30 values 

above which little to no site nonlinearity is observed in mean amplification data and were 

included in the model for stability. 

3.2.2 GWG-S Nonlinear Amplification Model Relative to 760 m/sec Reference 
Condition 

The GWG-S nonlinear amplification models are developed for a reference-rock condition of 

3000 m/sec. For use with USGS hazard maps, two methods of converting the GWG- model to a 

760 m/sec reference condition were evaluated: (1) converting the reference rock PGA to a 760 

m/sec condition, and (2) converting the reference rock PGA to a 760 m/sec condition and 

adjusting the reference velocity Vref to a 760 m/sec condition. The conversion of a factor between 

these reference-rock conditions is commonly referred to as a 760/3000 correction. 

The first approach uses the identical equational form given in Equation. (2.2) but includes 

a conversion factor to change an input PGAr from a 760 m/sec condition to the model’s native 

3000 m/sec condition. The PGAr conversion between reference conditions uses the following 

760/3000 correction factor in Equation (3.1): 

,3000 .760 760/3000r rI I C  (3.1) 

where Ir,3000 is the PGAr for a 3000 m/sec condition, Ir,760 is the PGAr for a 760 m/sec condition, 

and C760/3000 is a scalar. With this approach, the Vref factor condition in f2 coefficient is preserved 

as 3000 m/sec. 

The 760–3000 correction (C760/3000) used in Equation (3.1) is obtained the depth-

independent 760/3000 correction of Harmon [2017] at a RS period of 0.001 sec. The Harmon 

[2017] 760/3000 model is derived from 29,541 linear elastic site response simulations for sites 

with VS30 between 700 m/sec and 800 m/sec. The response spectral period of 0.001 sec converges 
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with the PGA and it was determined that 760/3000 correction for 0.001 sec was a suitable 

approximation of the 760/3000 correction for the PGA. The correction term C760/3000 is computed 

in Equation (3.2) as 

    760/3000 30 30exp ln Amp 760 m sec ln Amp 3000 m sec 2.275S SC V V            (3.2) 

where  30ln Amp 760 m secSV     is the log mean from the amplification sites with VS30 

between 700 m/sec and 800 m/sec relative to the amplification of sites with VS30 = 3000 m/sec 

(ln amplification = 0, amplification = 1). C760/3000 is equal to 0.822 in log units (2.275). The 

computation of C760/3000 is shown in Figure 3.1. 

A second approach of converting the GWG-S model to a 760 m/sec reference condition 

employs the same procedure outlined above in Equations (3.1) and (3.2) to convert the PGAr, but 

additionally includes changing Vref in the f2 equation of Equation (2.3) to 760 m/sec as: 

     2 4 5 30 ref 5 refexp min , 760 360 exp 760 360Sf f f V V f V           (3.3) 

This approach changes when nonlinearity in the site amplification model is observed, and 

prevents site nonlinearity from being estimated in sites with VS30 greater than 760 m/sec. A 

comparison of the GWG-S models relative to 3000 m/sec and 760 m/sec (for both approaches) is 

shown in Figure 3.2 through Figure 3.14. 

Of the two models evaluated to convert the GWG-S model to a reference condition of 

760 m/sec, the first approach (scaling of PGAr) is preferred to the second (scaling of P PGAr GA 

and setting Vref = 760 m/sec). The second approach including setting Vref to 760 m/sec changes 

the behavior of the amplification model above 760 m/sec, and re-regression of the amplification 

terms would be required. Additionally, for some spectral periods, nonlinear amplification in the 

Harmon [2017] simulations can be observed for sites with VS30 > 760 m/sec, and the adjustment 

of Vref to 760 m/sec will prevent this site nonlinearity from being captured. 
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Figure 3.1 Linear viscoelastic (LE) simulation amplification data and binned 
mean of simulation data at oscillator period of 0.001 sec. The red 
lines denotes the data range used to calculate 760/3000 correction 
value. 
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Figure 3.2 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 0.08 sec. The black line 
is the recommended nonlinear amplification model relative to 3 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA.  
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Figure 3.3 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 0.1 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.4 Recommended GWG-S Response Spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 0.2 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.5 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 0.3 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA.  
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Figure 3.6 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 0.4 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.7 Recommended GWG-S Response Spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 0.5 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.8 Recommended GWG-S Response Spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 0.8 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA.  
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Figure 3.9 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 1.0 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.10 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 2.0 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.11 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 3.0 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.12 Recommended GWG-S Response Spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 4.0 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.13 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 5.0 sec. The black line is 
the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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Figure 3.14 Recommended GWG-S response spectrum nonlinear amplification model estimations relative to 3000 
m/sec (blue line) and estimations by two approaches relative to 760 m/sec at T = 10.0 sec. The black line 
is the recommended nonlinear amplification model relative to 760 m/sec from the GWG-S model with 
converted PGA, and the dotted gray line is the GWG-S nonlinear amplification model relative to 760 m/sec 
from converted Vref and PGA. 
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3.2.3 PEA Nonlinear Model 

The Darragh et al. [2015] GMM developed as a part of NGA-East uses equivalent linear site 

response simulations to calibrate the linear and nonlinear site effects. The equivalent linear site 

response simulations use VS profiles representative of geologic regimes in CENA and modulus 

reduction and damping curves that have been calibrated to preserve high-frequency attenuation 

behavior at the ground surface, the EPRI Peninsular Region curves from Silva et al. [1997]. 

Amplification in the Darragh et al. [2015] simulations is computed relative to a VS = 3000 m/sec 

reference-rock condition. 

The component of nonlinear site amplification in the Darragh. et al. [2015] GMM can be 

computed by comparing the change in the equivalent linear site amplification as a function of 

PGA. The previously mentioned GWG-S model compares the intensity-independent linear 

elastic site response with nonlinear site response simulations to compute nonlinear amplification. 

Similarly, the equivalent linear site response calculations for low PGA values in the Darragh et 

al. [2015] simulations will show little site nonlinearity and can be compared to the equivalent 

linear site amplification simulations for larger PGA values for computation of nonlinear site 

amplification. The nonlinear amplification computed from the Darragh et al. [2015] simulations 

is referred to as the PEA model. 

The PEA model is limited in usage compared to the GWG-S model because it features 

nonlinear site amplification calculated at discrete values of VS30 and PGA. No functional form is 

provided for the PEA model. For these reasons, the GWG-S model is preferred to the PEA 

model. However, the PEA model is valuable for comparison to the GWG-S model as it is 

developed independently from separate simulations and authors and designed similarly for use in 

modeling nonlinear site effects in CENA. 

3.3 UNCERTAINTY IN RESPONSE SPECTRUM NONLINEAR AMPLIFICATION 
MODEL 

The GWG-S models relative to 3000 m/sec and 760 m/sec in Sections 3.2.1 and 3.2.2 are the 

recommended median models for nonlinear site amplification. For these models, an epistemic 

uncertainty on the nonlinear amplification is recommended by including an estimate of 
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uncertainty into the f2 coefficient model term in Equation (2.2). The uncertainty on the f2 model 

term, 2f , is estimated using judgement, with the objective of having a reasonable variation of 

nonlinear amplification across the period and VS30 range of interest. The uncertainty model 

recommended here was derived for use with the VS = 3000 m/sec reference recommended 

median model. However, the uncertainty model produces reasonable bounds of behavior for the 

VS30 = 760 m/sec reference recommended median model and is judged to be appropriate for both 

recommended median models. 

The uncertainty 2f  has a piecewise functional form given in the Equation (2.5) 

developed from visual inspection of estimated nonlinear amplification and physical 

considerations of nonlinear site amplification given as: 

 2f  is assumed to be constant for VS30 < 300 m/sec 

 2f  decreases linearly in log-space for 300 m/sec ≤ VS30 < 1000 m/sec, and is 

zero at VS30 = 1000 m/sec and beyond. 

This uncertainty model is described by a single parameter (i.e., 2f  for VS30 < 300 

m/sec), which is called as ( )c f T   and is given in Table 2.1 for period values of 0.08, 0.1, 0.2, 

0.3, 0.4, 0.5, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, and 10.0 sec. The behavior of 2f  as a function of VS30 

range of 100 m/sec and 3000 m/sec at oscillator period value of 0.1 sec is presented visually in 

Figure 2.2. 

The application of epistemic uncertainty model on recommended nonlinear amplification 

model is presented in Figure 3.15 through Figure 3.27 with the PGA-Gradient [Darragh et al. 

2015] model, and recommended GWG-S nonlinear amplification models for oscillator periods of 

0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, and 10.0 sec. The resulting uncertainty 

range from the epistemic uncertainty model typically lies within the range of the binned Harmon 

[2017] simulation data with ±1 standard deviation and PEA model, suggesting that the range of 

model uncertainty is appropriate.  
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Figure 3.15 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 0.08 sec.  
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Figure 3.16 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 0.1 sec.  
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Figure 3.17 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 0.2 sec.  
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Figure 3.18 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 0.3 sec.  
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Figure 3.19 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 0.4 sec.  
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Figure 3.20 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 0.5 sec.  
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Figure 3.21 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 0.8 sec. 
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Figure 3.22 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 1.0 sec. 
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Figure 3.23 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 2.0 sec. 
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Figure 3.24 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 3.0 sec. 
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Figure 3.25 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 4.0 sec. 
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Figure 3.26 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/s, GWG nonlinear 
amplification data binned as function of VS30 and PGA for (a) VS30 = 
180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) VS30 = 1170 
m/sec, and (e) VS30 = 2032 m/sec at an oscillator period of 5.0 sec. 
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Figure 3.27 Two recommended nonlinear amplification models relative to 3000 
m/sec and 760 m/sec reference conditions with ± 1σ, PEA-Gradient 
nonlinear amplification model relative to 3000 m/sec, GWG 
nonlinear amplification data binned as function of VS30 and PGA for 
(a) VS30 = 180 m/sec, (b) VS30 = 270 m/sec, (c) VS30 = 560 m/sec, (d) 
VS30 = 1170 m/sec, and (e) VS30 = 2032 m/sec at an oscillator period 
of 10.0 sec. 
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4 SUMMARY OF RECOMMENDED NONLINEAR 
AMPLIFICATION MODELS AND LIMITATIONS 

In this report, two median nonlinear amplification models are recommended for capturing the 

site nonlinearity in central and eastern North America with an epistemic uncertainty model. The 

GWG-S nonlinear amplification model developed in Harmon [2017] is recommended for a 

reference condition of VS = 3000 m/sec. For the use of this model with USGS hazard maps 

relative to 760 m/sec, the GWG-S nonlinear amplification model, in which input intensity 

measure (PGAr) is converted to VS30 = 760 m/sec reference condition is recommended. A 

recommended epistemic uncertainty model on the median nonlinear amplification models is 

proposed to provide reasonable variation of nonlinear amplification in CENA. 

4.1 RECOMMENDED MODEL FORM AND COEFFICIENTS 

The functional form and coefficients for GWG-S recommended median nonlinear amplification 

model relative to 3000 m/sec reference condition are presented in Equations (2.2) and (2.3), and 

Table 2.1, respectively, and it is detailed in Section 3.2.1. The proposed nonlinear amplification 

model relative to 760 m/sec is explained in Section 3.2.2 with the methodology of converting 

760 m/sec reference condition into 3000 m/sec. The epistemic uncertainty model form to 

represent the variation of on two recommended median nonlinear amplification model is detailed 

in Section 3.3. 

4.2 RECOMMENDED MODEL LIMITATIONS 

Recommended median nonlinear amplification limitations result from two sources as: limitations 

from 1D site response simulations and those from proposed models. Proposed amplification 

models are based on 1D site response simulations without multi-dimensional and basin effects, 
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and 1D assumption of site response begins to break down for simulations that result in high shear 

strains within the soil profile during analysis. 

Model limitations are limits on ground motion intensity (PGAr), soil profile stiffness 

represented by VS30, and the limit on shear strain index Iy = PGV/VS30 as given in Harmon [2017]. 

Recommended models are applicable for PGAr < 1.0g, and sites with VS30 greater than 200 

m/sec, which is similar to the boundary of VS30 = 180 m/sec between NEHRP [BSSC 2015] site 

classes D and E. The shear strain index applicability of proposed models are reported as 0.1 % < 

Iy < 0.2 % in Harmon [2017]. For sites and ground motion conditions outside the range 

considered, a site-specific analysis is recommended. 

For consistency with the recommended linear model in Stewart et al. [2017], the 

recommendations on the nonlinear amplification in this report have an additional maximum VS30 

of applicability and period range limitations. The maximum limiting VS30 is 2000 m/sec, and the 

recommended period range is 0.08 sec to 5.0 sec. The GWG-S nonlinear amplification model is 

developed for a wider VS30 and period range, and the additional VS30 and period range constraints 

are applied for the purposes of this report. 
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5 CONCLUSIONS 

This report details the expert panel recommendations for ergodic median nonlinear site 

amplification models for two reference conditions (VS = 3000 m/sec and VS = 760 m/sec) in 

CENA and an associated epistemic uncertainty model. The recommended median amplification 

models are the GWG-S amplification model for reference-rock condition of VS = 3000 m/sec, 

and a modified GWG-S amplification model for reference-rock condition of VS = 760 m/sec 

where a 760/3000 conversion on PGAr is used. The recommended median models are compared 

to the Darragh et al. [2015] PEA model and found to be similar. 

The recommended epistemic uncertainty on the median models is a judgement-based 

model that modifies the f2 coefficients of the GWG-S models. The range of behavior on the f2 

coefficients, , is a period dependent piecewise function of VS30. The epistemic uncertainty is 

constant for VS30 < 300 m/sec. The log-linear relationship is assigned to  for 300 m/sec ≤ VS30 

< 1000 m/sec, which converges to 0 for VS30 > 1000 m/sec. The epistemic uncertainty model on 

the median amplification models is compared to the binned mean and ±1 standard deviation of 

the nonlinear simulation amplification data from Harmon [2017] and found to produce a similar 

range of model behavior. 

The nonlinear amplification models included in this report have certain limitations 

resulting from the assumptions of 1D site response calculations and model development. The 

median models in this report do not include the effects of deep-soil sites and basin effects. The 

recommended models are valid for rock outcrop PGA of up to 1.0g, for sites of VS30 < 200 m/sec, 

and combined site and ground motion conditions of Iy = PGV/VS30 less than the upper bound 

threshold of 0.1 % < Iy < 0.2 %.   
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