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Introduction

Seismic compression is defined as the
accrual of contractive volumetric strains in
solls during earthquake shaking and has
been recognized as a major cause of
seismically-induced damage to civil
Infrastructure (Stewart et al. 2004). The
state-of-the-practice method used to predict
contractive volumetric strains of soil layers
during earthquake shaking involves use of a
chart developed by Tokimatsu and Seed
(1987), which was developed based solely
on test results on saturated and dry quartz
sands from Silver and Seed (1971).
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Figure 1. (a) Seismic compression due to upward shear waves
In earthquake events; (b) Empirical approach to estimate
seismic compression of soil layers (Tokimatsu and Seed, 1987)

Motivation and Objectives

Compacted backfill soil layers in
transportation systems (i.e. retaining walls
and slopes, embankments and bridge
abutments) are designed with the intention of
remaining in unsaturated conditions by
provision of adequate drainage. Even small
backfill settlements can have a negative
Impact on the functionality of transportation
systems and can lead to high repair costs.
Therefore, In earthquake-prone areas, It is
critical to understand the mechanisms of
seismic compression of unsaturated solls.
Specifically, the objectives of this study are
summarized as below,

1. Develop a cyclic simple shear test device
with a suction-saturation system that can
provide independent measurements of both
fluid phases in controlled drainage

2. Perform drained and undrained cyclic
shearing tests to understand the effect of
suction In seismic compression

3. Create experimental data for unsaturated
soll model calibration and develop new model
based on the experiments
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Figure 2. Overall view of the NGI-type simple shear test device
with updated cyclic motor and transducers
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Figure 3. Design of the specimen housing for unsaturated sand

with a suction-saturation control (detailed view of the
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Material Properties and Testing Program

Parameter Value
van Genuchten SWRC parameter, avc (kPa™) 0.70
van Genuchten SWRC parameter, Nve 2.10
] Residual volumetric water content, 0 0.00
1 Volumetric water content at zero suction on drying path, 6o, drying 0.38
1 Volumetric water content at zero suction on wetting path, 0o, weting ~ 0.20
' Hydraulic conductivity of saturated soil, Ksat (m/s) 1.5x107

Particle Size (mm)

Figure 4. Particle size distribution curve along with the sand properties
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Figure 7. Applied constant
shear strains of different
amplitudes in one cycle

Test Results
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Figure 8. Test results on unsaturated sand specimens with the
matric suction of 6 kPa in drained and undrained conditions
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Figure 9. A simplified model to predict the stabilized seismic
compression of unsaturated sand based on the test results In
drained condition (Rong and McCartney 2020, manuscript

accepted for publication)

Conclusions

1. The results In drained and undrained tests

emp
mec
com

nasizes the importance of considering hydro-
nanical coupling in estimating seismic
oression of unsaturated soils

2. In the funicular regime, the stabilized volumetric
strain was observed to have a log-linear relationship
with suction assuming drained conditions
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