Future of PBE for Community Resiliency-Transportation Systems

M. Saiid Saiidi

Department of Civil and Environmental Engineering Professor, University of Nevada, Reno Distinguished Researcher, UCLA

Seismic Performance Objective for Standard Structures:

No collapse under strong earthquakes

New thinking: "No Collapse" is only partial success

- Serviceability after earthquake:
 Minimize permanent drift and damage (Bridges need to be sustainable)
- Performance-based design
- Base isolation
- Advanced materials/details
 Shape memory alloys/ductile concrete
 Post-tensioned members
 Members w/ built-in elastomeric pads

FRP composites

Earthquake Damage in New Bridges:

Plastic Hinge Damage and Permanent Drift

Reducing Permanent Drift

- Post-tensioned columns (Steel; CFRP)
- Superelastic shape memory alloys (Nickel-Titanium NiTi; Copper-Aluminum-Manganese; Iron based)
- Fiber-reinforced polymer composites (FRP)

Dream or Reality- Advanced Materials Design Tools?

Evaluation and Design Guidelines for Columns w/ Novel Materials and Details (Published December 2017)

14

Implementation of SMA/ECC in Showcase Bridge (SR-99 Off Ramp) • Alaska Way Viaduct Replacement, Seattle, WA • Three Spans (33 m; 54 m, 33 m) • Single, Square Columns (1.5 m x 1.5m) w/ Circular Core

Damage at End of Testing

SR99-RC (8% Drift) SR99-LSE (12% Drift) SR99-SSE (10% Drift)

AWARDS (*Selected by Practicing Engineers!)

- *Outstanding Civil Engineering Achievement Award, ASCE, Seattle Section, 2018
- Lyman Award by the Precast Prestressed Concrete Institute for journal paper:

Baker, T., M. Saiidi, B. Nakashoji, J. Bingle, T. Moore, and B. Khaleghi, "Precast Spliced Girder Bridge in Washington State using Superelastic Materials in Bridge Columns to Improve Seismic Resiliency - From Research to Practice," PCI Journal, Precast/Prestressed Concrete Institute, January-February 2018, pp. 57-71.

- *SR-99 Bridge: Top 5 Outstanding Civil Engineering
 Achievement (OCEA) in the United States, Washington DC, ASCE, March 2019
- *SR-99 Bridge: Award of Merit for Bridge Research, International Bridge Conference, Maryland, June 2019

What does the future hold?

- Prediction ability of human specie?
- -- OK in predicting WHAT; Terrible in predicting HOW!

Resilient Bridges of the Future!

The WHAT part:

Resilient Bridges of the Future!

The **HOW** part:

- · Evolution of emerging technologies
- Trial deployments here and there
- Big bang in adoption of these or other technologies in routine bridge design?

No one predicted wide spread use of fiber reinforced polymer composites in civil structures 50 years ago!

Lessons from Recent Research

- Achieving seismic resiliency with novel materials and details is feasible.
- Barriers toward implementing novel materials are not insurmountable.
- For successful commercialization of novel materials life cycle cost should be considered.
- Design guidelines should evolve faster than those for RC.

Move Toward Resilient Bridges--New Era for Structural Engineering Research

- Structural and materials engineers should talk!
- Substantial research aimed at adapting novel materials to structural engineering use
- Experimental studies: Materials; components; systems
- Constitutive models supported by extensive data base
- Extensive analytical modeling methods for resilient structures