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Multi-stage friction pendulum systems: Modeling

¢ Plasticity analogs
e Planar kinetic models (scalar)
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Multi-stage friction pendulum systems: Modeling

e Plasticity analogs

e Planar kinetic models (scalar)
e Missing fully kinetic models capable of bi-directional
motion
e Permits modeling of the full range of motion
o Removes modeling guesswork
e Permit identification of real failure mechanisms
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Exact nonlinear kinematics

e Each element of the pendulum is modeled with its mass
and full inertia tensor
o Kinematic state {r, R} — 1-2-3 (relative) Euler angles
¢ Easy enforcement of kinematic sliding constraints
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Exact nonlinear kinematics

e Co-rotational frame

t! = RE;, 2=Rot], ..., t7" = Ry 417
e Euler angle singularity occurs at § = +x /2, well away from
real motions

e Facilitates expressions of bearing center of masses



Contact point computation

o Effective contact point is not the center point of the bearing
surfaces, equilibrium needs to be satisfied

¢ A new set of 1-2 Euler angles is needed to define normal
forces
0 =Ritl, PRt B=Ret], ¥ =Rt

Ri = R(J1,0i;t]),  Ro = R(J, ;)
ﬁS = R(@ZC’M §3;t?)7 ﬁ4 = R(@E47§4;t?)



Frictional forces

e The frictional forces are easily resolved using the contact
point 1-2 Euler angles

e Lots of models are possible, e.g. Coulomb with Bouc-Wen
directions HARVEY & GAVIN (2014)
o Euler direction components in t§- and 4-directions

. R, - 1, Y1El1>0
Y, 1—a1 Y9y — b1 YiZivy ), a1 = ~
1= R0<( 1 Y2y — 1111) 1 {0, Yiin < 0
. R, 1, Z1\71>0
Z 1—-b1Z))n — a1 YiZiiy ), by = .
1= R0<( W22 — a1 Y1 Zy 1) 1 {07 Z <0

¢ Rotational friction is also naturally handled in this
parameterization



Rim contact

¢ Motion limit states are also easily expressible in our
proposed parameterization

e e.g. base and first sliding element contact definition

s1 = Rycos™ (t] - 8)

91 = Sc1 — $1



Overall structure

e Parameterization + Linear + Angular momentum balance

o Model with 24 internal parameters for Euler parameters and
normal forces

¢ Time integration using DORMAND-PRINCE (1980)
(Runge-Kutta) variable order scheme

¢ Nonlinear algebraic system
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Performance

e One-dimensional behavior FENZ & CONSTANTINOU
(2008)
e Bi-directional motion BECKER & MAHIN (2012)

e Zero fitting parameters, geometry and mass, measured
friction coefficients from the experiments
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Kinematic state accuracy

0.1 -0.05 0
ug1 (m)

Stage I: 2 and 3 surface motion
Stage Il: 1 and 3 surface motion
Stage lll: 1 and 4 surface motion
Stage IV: 2 and 4 surface motion
Stage V: 2 and 3 surface motion
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Kinematic state accuracy

e Displacements and forces at transition points between

stages.
Analytical’ Experimental’ Kinetic Model
u* (mm) 0.1 2 1.9
v (mm) 38.4 42 49
Ugrt (mm) 92.1 90 87
Ugra (MM)  130.4 130 134
Fai/N 0.161 0.173 0.175
Fara/N 0.240 0.272 0.275

T Analytical and Experimental values come from FENZ & CONSTANTINOU (2008)
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Circular motion: Force vs displacement by component

e Q=0.1rad/s. ug = A(cos(Qt)E1 + sin(Qt)E>).

e BECKER & MAHIN (2012) data solid black curve
¢ No fitting involved
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Circular motion: Force vs force
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e BECKER & MAHIN (2012) data solid black curve
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Figure-8 motion: Force vs displacement by component

e Q=0.1rad/s. ug = A(sin(Qt)Eq + sin(2Qt)Ey).

e BECKER & MAHIN (2012) data solid black curve
¢ No fitting involved
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Figure-8 motion: Force vs force
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e BECKER & MAHIN (2012) data solid black curve
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Summary

e Works for uni- and bi-directional motion

¢ No linearization assumptions — good agreement with real
experiments

e Main assumption — axisymmerty

e Can model many types of bearings, €.g. SARLIS &
CONSTANTINOU (2016) pp = ug > py = g

e Easily connected to FEA codes

e Uplift and loss of compression can be incorporated (where
inertia matters)
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