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Multi-stage friction pendulum systems: Modeling

• Plasticity analogs
• Planar kinetic models (scalar)

• Missing fully kinetic models capable of bi-directional
motion

• Permits modeling of the full range of motion
• Removes modeling guesswork
• Permit identification of real failure mechanisms
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Exact nonlinear kinematics
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• Each element of the pendulum is modeled with its mass
and full inertia tensor

• Kinematic state {r ,R} – 1-2-3 (relative) Euler angles
• Easy enforcement of kinematic sliding constraints
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Exact nonlinear kinematics
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• Co-rotational frame
t1

i = R1E i , t2
i = R2t1

i , . . . , tn+1
i = Rn+1tn

i

• Euler angle singularity occurs at θ = ±π/2, well away from
real motions

• Facilitates expressions of bearing center of masses
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Contact point computation

• Effective contact point is not the center point of the bearing
surfaces, equilibrium needs to be satisfied

• A new set of 1-2 Euler angles is needed to define normal
forces

t̃1
i = R̃1t1

i , t̃2
i = R̃2t2

i , t̃3
i = R̃3t3

i , t̃4
i = R̃4t4

i

R̃1 = R(ψ̃1, θ̃1; t1
i ), R̃2 = R(ψ̃2, θ̃2; t2

i )

R̃3 = R(ψ̃3, θ̃3; t3
i ), R̃4 = R(ψ̃4, θ̃4; t4

i )
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Frictional forces

• The frictional forces are easily resolved using the contact
point 1-2 Euler angles

• Lots of models are possible, e.g. Coulomb with Bouc-Wen
directions HARVEY & GAVIN (2014)

• Euler direction components in t̃k
1- and t̃k

2-directions

Ẏ1 =
R1

R0

(
(1− a1Y 2

1 )ũ1 − b1Y1Z1ṽ1

)
, a1 =

{
1, Y1ũ1 > 0
0, Y1ũ1 ≤ 0

Ż1 =
R1

R0

(
(1− b1Z 2

1 )ṽ1 − a1Y1Z1ũ1

)
, b1 =

{
1, Z1ṽ1 > 0
0, Z1ṽ1 ≤ 0

• Rotational friction is also naturally handled in this
parameterization
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Rim contact

• Motion limit states are also easily expressible in our
proposed parameterization

• e.g. base and first sliding element contact definition

s1 = R1 cos−1 (t1
3 · t2

3
)

g1 = sc1 − s1
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Overall structure

• Parameterization + Linear + Angular momentum balance
• Model with 24 internal parameters for Euler parameters and

normal forces
• Time integration using DORMAND-PRINCE (1980)

(Runge-Kutta) variable order scheme
• Nonlinear algebraic system
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Performance

• One-dimensional behavior FENZ & CONSTANTINOU

(2008)
• Bi-directional motion BECKER & MAHIN (2012)

• Zero fitting parameters, geometry and mass, measured
friction coefficients from the experiments
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Kinematic state accuracy
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Stage I: 2 and 3 surface motion
Stage II: 1 and 3 surface motion
Stage III: 1 and 4 surface motion
Stage IV: 2 and 4 surface motion
Stage V: 2 and 3 surface motion
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Kinematic state accuracy

• Displacements and forces at transition points between
stages.

Analytical† Experimental† Kinetic Model
u∗ (mm) 0.1 2 1.9
u∗∗ (mm) 38.4 42 49
udr1 (mm) 92.1 90 87
udr4 (mm) 130.4 130 134

Fdr1/N 0.161 0.173 0.175
Fdr4/N 0.240 0.272 0.275

† Analytical and Experimental values come from FENZ & CONSTANTINOU (2008)
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Circular motion: Force vs displacement by component

• Ω = 0.1 rad/s. ug = A (cos(Ωt)E1 + sin(Ωt)E2).
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• BECKER & MAHIN (2012) data solid black curve
• No fitting involved
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Circular motion: Force vs force
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• BECKER & MAHIN (2012) data solid black curve
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Figure-8 motion: Force vs displacement by component

• Ω = 0.1 rad/s. ug = A (sin(Ωt)E1 + sin(2Ωt)E2).
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• BECKER & MAHIN (2012) data solid black curve
• No fitting involved
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Figure-8 motion: Force vs force
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• BECKER & MAHIN (2012) data solid black curve
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Summary

• Works for uni- and bi-directional motion
• No linearization assumptions – good agreement with real

experiments
• Main assumption – axisymmerty
• Can model many types of bearings, e.g. SARLIS &

CONSTANTINOU (2016) µ2 = µ3 > µ1 = µ4

• Easily connected to FEA codes
• Uplift and loss of compression can be incorporated (where

inertia matters)
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