

The EQSIM Earthquake Simulation Framework and Plan for Open Access Data Sharing

2025 PEER-LBNL Workshop on the Regional Scale Simulated Ground Motion Database (SGMD) for the San Francisco Bay Area

D. McCallen
Energy Geosciences Division
Lawrence Berkeley National Lab

Two major Department of Energy projects have supported computational advancements

Computational R&D (2017-2023)

Provided the simulation tools

DOE developed the first exascale computational ecosystem based on GPU accelerator technologies

Energy System Applications (2023-2025)

Providing the mission "pull"

Office of
Cybersecurity, Energy Security,
and Emergency Response

Simulated high-fidelity earthquake ground motions across key regions for engineering risk applications

The DOE Exascale Computing Project created the opportunity to advance earthquake simulations

The DOE Exascale Computing Project (ECP) developments (2017-2023)

Advanced computer platforms – Frontier was the world's first exaflop (1X10¹⁸ Flops) GPU-accelerated supercomputer

9,400 nodes, 1.194 exaflops

24 competitively selected software apps

Advanced software – the *EQSIM* framework for regional-scale fault-to-structure simulations purpose built for GPU-accelerated platforms

Ground motion simulations

Infrastructure response simulations

Deeper insight into regional infrastructure risk

ECP provided the support to complete many key advancements to the SW4 geophysics code

SW4 – Fourth order in space and time (Petersson, Sjogreen, Pankajakshan)

Advanced algorithms

 Mesh refinement in curvilinear and Cartesian grids

Readiness for GPU-based platforms

 Decompose computation loops into subtasks / tuning code for GPUs

Massive data management

- Transition to HDF5-based
 IO (from SW4 homebrew)
- Utilization of ZFP for data compression

Enhanced physics models

 Enhancements to the Graves - Pitarka model

On GPU systems EQSIM has pushed the computational edge of simulation *resolution*

San Francisco Bay regional model

Computational effort...

f (domain size)
f (max frequency resolved)
f (min Vs resolved)

On GPU systems EQSIM has pushed the computational edge of simulation speed

Model	# Frontier nodes	Wall clock time (hrs)
Fmax 5 Hz Vsmin 250 m/s	3072	1.8
Fmax 10 Hz Vsmin 250 m/s	9152	6.3
Fmax 15 Hz Vsmin 140 m/s	9152	29.2

Take away – virtual exploration of the parameter space impacting ground motions is within grasp

With the transition toward applications, we have teamed with PEER to frame the path forward

PEER Pacific Rim Forum June 2021

261 International Participants 41 International Speakers

Attendees recommended priorities

Availability of a database of synthetic motions with open-access

Assessment and acceptance criteria for synthetic motions

An effective and operationally efficient user interface

Our initial baseline simulated ground motion database has focused on the SFBA

The inaugural Simulated Ground Motion Database (SGMD)

San Francisco Bay Area simulation model

Model domain 120 x 80 x 30km

29 billion grid points

Fmax 5Hz

Vsmin 250m/s

Linear viscoelastic material model

Frequency independent attenuation factors Qp and Qs for P and S waves

USGS SFBR 3D geologic and seismic velocity model V21.1

Activity 1 - completion of many SFBA regionalscale simulated earthquake ground motions

Engineering

F. Petrone

D. McCallen

Seismology

R. Nikata

H. Tang

Computer Science

Berkeley Lab

Univ. Nevada

Berkeley Lab

Livermore Lab Berkelev Lab

Berkeley Lab

E. Taciroglu

UCLA Civil Engineering

Current postdoctoral scholars and PhD students

Kostantinos

BERKELEY LAB

LBNL

Junfei

Clifford

Activity 2 - development of the interactive open access simulated ground motion database

PEER Director & UC Berkeley

C. Perez PhD student

Existing – Measured ground motion database

New – Simulated ground motion database

Workflow from simulation to SGMD server - developing a flexible data schema that can scale

Focus on representing source rupture variability with the Graves - Pitarka rupture model

50 Hayward fault rupture realizations

Simulated ground motions for 50 M7 Hayward ruptures are complete and on the SGMD server

110,606,400,000 time series @ 6.25 m spacing (compressed and time down sampled HDF5 files - 42TB)

We have tested our simulations in multiple ways

1) Testing the EQSIM Bay Area model – 7 small Hayward event simulations

C. Pinilla Ramos

Spectral comparisons

Berkeley 2018 - M_W 4.4

Berkeley 2018 - M_W 4.4

Frequency (Hz)

Comparison to measured ground motion waveforms

2) Evaluating the simulated large events - 50 M7 Hayward fault realizations

F. Petrone

R. Nikata

Comparison to existing empirical GMP equations

Comparison to existing commensurate ground motion data (near-fault sites < 10 km)

There is a *LOT* to analyze, e.g. complex withinand between-event distributions of motions

Since January 2025, 15 SGMD *Beta Users* have downloaded 5,633,712 time series

P. Arduino F. McKenna S. Muin T. Opabola M. Esteghamati **UW/SimCenter UCB/SimCenter** USC **UC Berkeley Utah State** J. Dai K. Hudnut B. Low A. Kottke A. Shepard SoCal Edison SoCal Edison PG&E PG&E **FEMA** I. Kim M. Kenawy B. Rowshandel H. Burton E. Miranda

CA EQ Authority

UCLA

OK State

Degenkolb

Stanford

The SGMD can continue to evolve to support advanced engineering risk applications

Community input for defining additional capabilities and enhancements is crucial

Links to more detailed info are on the SGMD website

