Modeling Interdependent CI Systems for Seismic Resilience Evaluation and Design

Prof. Dr. Božidar Stojadinović Chair of Structural Dynamics and Earthquake Engineering ETH Zürich

Community:

Geographically bounded entity with shared history and future

Institute of Structural Engineering Structural Dynamics and Earthquake Engineering Group

Community Resilience

- Not giving up
 - Continuity of community existence thorough the survival of its inhabitants and the continuity of its social and economic functions
- Hypothesis: community resilience depends on the resilience of its built infrastructure

http://science.k12flash.com/naturalhazards.html

ETH zürich

Community Functions and Its Civil Infrastructure Systems

- Safety
- Physical infrastructure:
 - Energy
 - Water
 - Communication
 - Transportation
 - Waste
- Health and Economy
- Social:
 - Culture
 - Heritage
 - Education...

Raking of Important community functions (SERRI and CARRI, 2009)

http://ceeesa.es.anl.gov/images/ceeesa_ProjectsWECC_Climate_Power_Impacts_800.jpg

- Infrastructure system supply:
 - Suffers an (instantaneous) drop when the event occurs
 - Recovers over time
 - Recovery depends on the vulnerability and recovery of elements of community infrastructure

Supply/Demand Formulation to Quantify Community Infrastructure Resilience

 Power, water, communication...

LoR_{sys,r} =
$$\int_{t_0} (D_{sys,r}(t) - C_{sys,r}(t)) dt$$

Lack of Resilience

 t_f

Didier M, Broccardo M, Esposito S, Stojadinovic B (2017). A Compositional Demand/Supply Framework to quantify the Resilience of Civil Infrastructure Systems (Re-CoDeS). Sustainable and Resilient Infrastructure.

Re-CoDeS Framework

Institute of Structural Engineering Structural Dynamics and Earthquake Engineering Group

Re-CoDeS Framework: Formulation and Implementation

- Modeling the community on an component level:
 - Buildings, generators, pumps, cellular network base stations...
- Modular simulation platform architecture
- Physics-based (as much as possible)

Re-CoDeS Framework:

Interdependence among Infrastructure Systems

- Lack of Resilience is the unmet demand of the community for the considered resource:
 - Power, water, communication...
- Interdependences among civil infrastructure system components play a significant role in community recovery

A Virtual Community

- Area of 10 x 30 km
- 3600 inhabitants
- Three infrastructure systems:
 - Electric Power Supply
 - Cellular Communication
 - Water Supply
- Three types of links:
 - Power lines
 - Water pipes
 - Roads (to transport repair crews, machinery and material)

ETHzürich

A Virtual Community:

Interdependence among Infrastructure Systems

- Community components are dependent on each other for function
- Interdependencies among infrastructure systems are defined at the component level

ETH zürich

A Virtual Community:

Interdependence among Infrastructure Systems

- Restoration of component function depends on:
 - Its damage
 - Resources needed for recovery
 - Start and rate of its recovery
 - Availability of resources it needs to function:
 - A generator needs cooling water and communication

A Virtual Community:

Interdependence among Infrastructure Systems

At each recovery time step, functionality of each component is established in an iteration designed to detect feedback loops

Supplies: 2E of cellular communication

Demands: 0.5MWh, 0.5MI/day

- Demands: 1MWh, 1E, 1MI/day
- Demands: 0.5MWh
- Supplies: 1E
- Demands: 0.5MWh, 0.5MI/day

Institute of Structural Engineering Structural Dynamics and Earthquake Engineering Group

A Virtual Community: Post-Earthquake Recovery Simulation

A Virtual Community: Post-Earthquake Recovery Simulation

A Virtual Community: Effect of Interdependencies

Interdependencies increase LoR of EPS by 74%

Institute of Structural Engineering Structural Dynamics and Earthquake Engineering Group

A Virtual Community: Effect of Interdependencies

Interdependency increases community disaster risk exposure

ETHzürich

A Virtual Community: Investigation of Community Sensitivity

- Sensitivity analysis:
 - Sobol index approach
 - Find which community infrastructure elements contribute the most to changes in community disaster resilience (or lack thereof)

ETH zürich

Challenge: Make Communities more Resilient

- Community risk is increasing:
 - Population growth
 - Productivity
 - Innovation
- Engineering resilient communities is a key element of societal risk governance
 - Re-CoDeS framework can be used for community resilience evaluation and design

Acknowledgements

- Doctoral Students:
 - Mr. Nikola Blagojević
- Master Students:
 - Ms. Fiona Hefty
 - Mr. Jonas Henken
 - Mr. Lucas Russi

- Post-doctoral researchers:
 - Dr. Max Didier
 - Dr. Li Sun
 - Dr. Panos Galanis
 - Dr. Marco Broccardo
 - Dr. Simona Esposito
- Colleagues at the <u>ETH Risk</u> <u>Center</u> and the <u>SEC FRS</u> <u>program</u> at Singapore CREATE

