

Milestones in Understanding Tsunami Hazards

in California from the "academic" point of view.

1970s - Houston and Garcia assessment of tsunamis from Alaska and Chile - estimates every 5 miles of coastline at 500m offshore depth.

1992 - McCarthy, Legg & Bernard assessment of risk in the aftermath of the Cape Mendocino event.

1995 - First simulation of local tsunami in Southern California - presentation to SSC in 1996. SSC->FEMA->USC&LLNL&SLC local offshore faults.

1997 - Synolakis, Titov & McCarthy re-assessment of Houston & Garcia estimates - factor of 5 difference in inundation distances.

1998 Papua New Guinea tsunami focuces attention to offshore landslides. Funding from NOAA->OES->USC for first modern inundation maps.

2001 McCarthy et al simulations in NATO ARW on California. Eisner et al in ITS.

2002 Analysis of Skagway tsunami.

2005 Refocusing of thinking on distant sources in the aftermath of Sumatra.

2006 Damage to Crescent City underscores the impact of "marginal" events.

2009 Completion of "most" MOST maps, dissemination under way.

3 major ports and harbors including Los Angeles/Long Beach , San Diego harbor and San Francisco Bay

Could It Happen Here?

The catastrophic tsunami that struck southern Asia on December 26, 2004, underscored the extraordinary social and economic havoc that such an event can wreak. Could it happen here in the United States—in particular, off the coast of Southern California? The disturbing answer is that, yes, it could. Although the National Oceanic and Atmospheric Administration's National Ocean Service has 13 continuously operating tide stations in the state of California that are capable of producing real-time data for tsunami warnings, there is no way to prevent a strike. Recent developments in the modeling of tsunami waves and the analysis of their economic consequences, combined with data from recent offshore mappings of the Santa Barbara Channel and other locations, suggest the mechanism and economic effect of an undersea landslide in the vicinity of Los Angeles that would spawn a tsunami. By Jose Borrero, Ph.D., Sungbin Cho, James E. Moore II, Ph.D., Harry W. Richardson, and Costas Synolakis, Ph.D. <text><text><text><text><text><text><text>

54 085-7024-785-004-0154-\$25.00 permitik

Civil Engineering April 2005

Regional economic losses from landslide tsunami in POLA/LB.

City	Baseline (\$ thousands)	Direct loss (\$ thousands)	Direct loss as percentage of baseline
Carson	6,591,962	85,736	1.30
Hawaiian Gardens	216,150	323	0.15
Long Beach	22,838,571	3,607,647	15.80
Palos Verdes Estates	416,315	32,338	7.74
Rancho Palos Verdes	510,586	26,903	5.27
Wilmington/San Pedro	5,675,587	314,931	5.55
Unincorporated			
LA County	17,623,822	2,565	0.01
Garden Grove	4,969,415	190	0.00
Huntington Beach	7,031,246	299,580	4.26
Los Alamitos	1,481,826	12,543	0.85
Rossmoor (census			
designated place)	120,899	5,761	4.76
Seal Beach	1,398,293	103,892	7.43
Westminster	2,238,251	6,908	0.31
Unincorporated			
Orange County	3,401,272	3,051	0.09
Total	74,513,195	4,502,257	6.04

Industry	Total exports ^a (\$ millions)	Port share of exports (percent)	Direct impact (\$ millions)
Mining	158.5	46.90	74.34
Durable	25,172.7	40.61	10,628.73
Nondurable	37,595.9	23.23	8,732.27
Wholesale	19,394.3	13.05	2,531.60
Sum	82,321.4		21,966.94 ^{b,c}

	Туре с	of loss	
Direct loss (\$ millions)	Indirect loss (\$ millions)	Induced loss (\$ millions)	Total (\$ millions)
4,502.257	1,541.117	1,325.883	7,369.257
4,502.257	1,541.117	1,325.883	7,369.257
4,502.257	1,541.117	1,325.883	7,369.257
26,469.198	8,903.868	677.045	43,550.111
	Direct loss (\$ millions) 4,502.257 4,502.257 4,502.257 26,469.198	Type of Direct loss Indirect loss (\$ millions) (\$ millions) 4,502.257 1,541.117 4,502.257 1,541.117 4,502.257 1,541.117 26,469.198 8,903.868	Type of loss Direct loss Indirect loss Induced loss (\$ millions) (\$ millions) (\$ millions) 4,502.257 1,541.117 1,325.883 4,502.257 1,541.117 1,325.883 4,502.257 1,541.117 1,325.883 26,469.198 8,903.868 677.045

(ACM)
WILL W
1. Sh
UNIVERSITY
OF SOUTHERN
0

	Economic loss (\$ millions)	Network loss (\$ millions)	Total (\$ millions)
Scenario 1	7,369.257	-18.206	7,351.051
Scenario 2	7,369.257	357.984	7,727.241
Scenario 3	7,369.257	744.163	8,113.420
Scenario 4	43,550.111	-477.651	43,072.460

Post the 2004 Indian Ocean tsunami, emphasis returned to far field events

The USC Tsunami Research Center www.usc.edu/dept/tsunamis

- Field surveys of current and past events 22 total from 1992 Nicaragua to Solomon Islands and Chile 2010
- Numerical and Analytical Modeling
- Hazard Assessment and Planning
- Public Education
- Research in tsunami hydrodynamics

Several grids have been developed for the various ports, harbors and locations of interest and earthquake scenarios. The numerical grids are derived from 3-second (90m) combined topographic/bathymetric data. In later slides we show results that demonstrate results of various simulations of scenario earthquake generated tsunamis.

Probabilistic Tsunami Studies for California

- Probabilistic hazard analysis involves superposition of probabilities of exceedance of different wave heights from specific sources.
- Two methods exist for estimating probabilities timedependent and time-independent.
- An example of a time-independent event is rolling dice. The probability of rolling 6 is 1/6, every time.
- An example of a time-dependent event is drawing a card. The probability of drawing a spade is 1/4, only the first time. The following draw will depend on the initial draw (Stein, 2003).

Soloviev and Go, 1969

They introduced a probabilistic frequency tsunami distribution n $^{(i),}$ $n(i) = \alpha \cdot 10^{-\beta i},$

where
$$n$$
 gives the frequency of a tsunami with an intensity i ,

$$i = \log\left(\sqrt{2}H_{\rm avg}\right)$$

Soloviev and Go (1969) were motivated by a Gutenberg and Richter-type relationship,

$$\log N = \alpha - \beta M,$$

where M is an earthquake magnitude and N the number of earthquakes magnitude M.

They derived an exponential frequency distribution, $n(i) = \alpha e^{-\beta i}$, where α , β are not necessarily the same as before.

Soloviev (1970) assumed b=0.31 for all subduction zones and calculated intensity as $n(i) = \alpha 10^{-0.31i}$; whereas, Houston (1980), solution for ChSZ was $n(i) = 0.07410^{-0.63i}$ and AASZ was $n(i) = 0.113 \cdot 10^{-0.63i}$.

Seaside Oregon Study cases

source						return
number	location	M_w	L(km)	W(km)	disp (m)	period (yr)
1	AASZ	9.2	1000	100	17.7	1,313
2	AASZ	9.2	1100	100	18.1	750
3	AASZ	9.2	600	100	_	750
4	AASZ	9.2	1200	100	16.3	1,133
5	AASZ	9.2	1200	100	14.8	750
6	AASZ	8.2	300	100	2.1	875
7	AASZ	8.2	300	100	2.1	661
8	KSZ	8.2	300	100	2.1	661
9	KSZ	8.8	500	100	9.8	100
10	KSZ	8.8	600	100	9.8	100
11	KSZ	8.5	300	100	5.8	500
12	KSZ	8.5	300	100	5.8	500
13	KSZ	8.5	1000	100	5.8	500
14	SASZ	9.5	800	100	40.0	300
15 - 26	CSZ	9.1	N/A	N/A	N/A	300

Table 3.1: Earthquake scenarios used in the Gonzalez et al. (2006) study.

ble 5.1. Earthquake scenarios used in the Gonzalez et al. (2000)

UNIVERSITI OF SOUTHER CALIFORNI

Scenario earthquakes for probabilistic models

HERN INIA	case	L(km)	W(km)	disp (m)	mo(Nm)	M_w
	a	100	100	1	3E + 20	7.65
	b	200	100	1	6E + 20	7.85
	с	300	100	1	9E + 20	7.97
	d	400	100	1	$1.2E{+}21$	8.05
	e	300	100	2	$1.8E{+}21$	8.17
	f	400	100	2	$2.4E{+}21$	8.25
	g	500	100	2	3E + 21	8.32
	h	500	100	3	$4.5E{+}21$	8.44
	Ι	600	100	4	7.2E + 21	8.57
	j	600	100	5	$9E{+}21$	8.64
	k	700	100	6	1.26E + 22	8.73
	1	700	100	7	1.47E + 22	8.78
	m	800	100	8	$1.92E{+}22$	8.86
	n	800	100	9	2.16E + 22	8.89
	0	800	100	10	2.4E + 22	8.92
	р	800	100	12	2.88E + 22	8.97
	q	800	100	15	$3.6E{+}22$	9.04
	r	800	100	20	4.8E + 22	9.12
	\mathbf{S}	1000	100	20	6E + 22	9.19
	t	1000	100	30	9E + 22	9.30

					convergence rates	
UNIVERSITY	Location	year	lat	lon	(mm/yr)	plates
CALIFORNIA	South Chile	1960	-39.5	-74.5	70	NZ-SA
	Central Chile	1922	-28.5	-70	70	NZ-SA
	North Chile	1877	-20	-70.5	68	NZ-AP
	South Peru	1868	-18.3	-70.6	67	NZ-AP
	North Peru	1940	-10.5	-77	63	NZ-SA
	Ecuador-Colombia	1906	1	-81.5	55	NZ-ND
	Central America	1992	11.2	-87.8	73	CO-NA
	Mexico	1932	19.5	-104.25	30	RI-NA
	Cascadia	1700	48	-125	42	JF-NA
	Alaska	1964	61.04	-147.73	54	PA-NA
	East Aleutian	1946	53.31	-162.88	64	PA-NA
	West Aleutian	1965	51.1	178.4	73	PA-NA
	Kamchatka	1952	52.75	159.5	78	PA-OK
	Kuril Islands	1963	44.8	149.5	81	PA-OK
	Northeast Japan	1968	40.84	143.22	83	PA-OK
	Nankai	1707	33.2	136.5	57	PS-AM
	Ryukyu	1920	30.47	131.29	65	PS-ON
	Izu	1947	32.54	141.64	45	PA-PH
	Marianas	1929	24.27	142.66	27	PA-MA
	Loyalty-Vanuatu	1950	-18.25	167.5	103	AU-NH
	Tonga	1865	-20	-173.5	185	NH-CR
	Kermadec	1917	-29	-177	63	AU-KE
	New Zealand	1931	-39.5	177	43	AU-KE
	Java	1994	-10.5	112.8	64	AU-SU
	South Sumatra	1833	-3	100	51	AU-SU
	North Sumatra	2004	3.3	95.78	33	IN-BU
	Makran	1945	24.5	63	28	AR-EU
	Lesser Antilles	1974	16.7	-61.4	20	SA-CA

KSZ	31	519	
WASZ	10	99	
AASZ	45	559	
CASZ	36	619	
SASZ	45	799	
location	Longitude	Latitude	depth
Crescent City	234.95	42.02	422
Pt. Reyes	236.55	38.35	344
San Francisco	237.33	37.72	31
Monterey	237.02	37.72	57
San Luis Obispo	238.95	35.14	448
Los Angeles	241.88	33.61	52
San Diego	242.68	32.713	83

