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ABSTRACT

Realistic time history simulation of a soil-drilled pier system under static and dynamic load-

ing is essential for the development of effective performance-based earthquake design of deep

foundations. Due to the nonlinear transient nature of the system and high computational

requirements, to date the application of nonlinear finite element analyses to this problem has

been limited. Thus, an important aspect of numerical modeling is a soil model that is simple

enough to be computationally efficient yet able to capture the cyclic stress-strain behavior.

In particular, it is essential to account for the modulus degradation and energy-dissipation

characteristics during cyclic loading, which depend on the rate of loading and soil proper-

ties. In this study, a multi-axial cyclic bounding surface plasticity model proposed by Borja

and Amies (1994) was developed in a general finite element framework called OpenSees. The

model requires a minimal number of parameters that can be easily obtained through conven-

tional site investigations. The stress point algorithm of this model is formulated in detail for

finite element implementation. It is shown that the model can reasonably capture modulus

degradation and hysteretic damping of nonlinear soil, and it is suitable for fully nonlinear

analysis of soil-structure interaction as well as site-specific response analysis. The model is

used to study load-displacement-capacity characteristics of an axially loaded soil-pier system

at small and large strains by simulating a set of in-situ static and dynamic axial load tests

on drilled piers performed at UC Berkeley. The numerical results are in excellent agreement

with the field data and show that fully coupled nonlinear soil-structure interaction analyses

can be successfully performed.

iii



ACKNOWLEDGEMENTS

The PLT and static pier load tests were performed by American Piledriving, Inc. (API) of

Pleasanton, California, under the direction of Dr. Gyimah Kasali of Rutherford & Chekene

Consulting Engineers. His cooperation and support are gratefully acknowledged.

FISO Technologies of Canada fabricated the optical strain bars based on parameters

provided by Lymon C. Reese and Associates, and the electrical strain bars were custom-

built by Lymon C. Reese and Associates, who also monitored all the tests. An automated

electronic data acquisition system was provided on loan by FISO. The authors also appreciate

the support and advice of Craig Comartin of Comartin Associates, UC Berkeley Capital

Projects group, and FISO Technologies throughout the test program.

The financial support for the test program was provided by UC Berkeley Capital

Projects and the research was supported by a grant from Pacific Earthquake Engineering

Research (PEER) Center under the NSF Award No. EEC-9701568.

Any opinions, findings, and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect those of the National Science

Foundation.

iv



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Review of Factors Controlling Axial Pile Performance . . . . . . . . . . . . . 4

1.2.1 Effects of Pile Installation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Loading Rate Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Cyclic Loading Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Combined Effect of Cyclic Loading and Rate of Loading . . . . . . . 12

1.2.5 Pile Group Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.6 Static Ultimate Bearing Capacity . . . . . . . . . . . . . . . . . . . . 15

1.2.7 Empirical Load Transfer Curves . . . . . . . . . . . . . . . . . . . . . 21

2 REVIEW OF ANALYTICAL AND NUMERICAL MODELS FOR
AXIALLY LOADED PILES . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Analytical Static Load Transfer Models . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Randolph-Wroth Solution . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Vertical Variations in Soil Modulus . . . . . . . . . . . . . . . . . . . 34

2.1.3 Radial Variations in Soil Modulus . . . . . . . . . . . . . . . . . . . . 37

2.1.4 Soil Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Analytical Dynamic Load Transfer Models . . . . . . . . . . . . . . . . . . . 39

2.2.1 Dynamic Stiffness of SDF System . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Equivalent Linearization of Axial Response of Piles . . . . . . . . . . 42

2.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Wave Equation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Nonlinear Winkler Foundation Model . . . . . . . . . . . . . . . . . . 49

2.3.3 Boundary Element Method . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.4 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



3 CONSTITUTIVE MODEL FOR CYCLIC SOIL RESPONSE . . . . . . 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 J2 Bounding Surface Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Constitutive Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 Hardening Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.3 Modified Loading/Unloading Criterion . . . . . . . . . . . . . . . . . 71

3.3 Mathematical Properties of Loading Surface . . . . . . . . . . . . . . . . . . 74

3.3.1 Consistency Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2 Hardening Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Finite Element Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 Nonlinear FEM Framework . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2 Algorithmic Tangent Operator . . . . . . . . . . . . . . . . . . . . . . 83

3.4.3 Operator Split across Bounding Surface . . . . . . . . . . . . . . . . . 85

3.5 Determination of Model Parameters . . . . . . . . . . . . . . . . . . . . . . 91

4 STATIC AND DYNAMIC LOAD TESTS ON PROTOTYPE PIERS
AT UC BERKELEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Site Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Stratigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.2 Shear Wave Velocity Profile . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.3 Shear Strength Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Drilled Pier Load Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 The Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 The PLT Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Summary of Pier Load Test Results . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Loading Rate Effects and Cyclic Degradation . . . . . . . . . . . . . 109

4.4.2 Normalized Pier Response . . . . . . . . . . . . . . . . . . . . . . . . 119

5 NONLINEAR STATIC AND DYNAMIC FINITE ELEMENT
ANALYSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1 Model Parameters for Static and Dynamic Analyses . . . . . . . . . . . . . 139

5.1.1 Dynamic Modulus Reduction Curves . . . . . . . . . . . . . . . . . . 139

5.1.2 Static Modulus Reduction Curves . . . . . . . . . . . . . . . . . . . . 140

5.1.3 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

vi



5.2 Nonlinear Finite Element Simulation . . . . . . . . . . . . . . . . . . . . . . 143

5.2.1 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.2 Simulation of Dynamic PLT Tests . . . . . . . . . . . . . . . . . . . . 144

5.2.3 Simulation of Static Compression Test . . . . . . . . . . . . . . . . . 152

5.2.4 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . 167

6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2 Recommendations and Future Work . . . . . . . . . . . . . . . . . . . . . . 168

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

vii



LIST OF FIGURES

1.1 System of Foundation-Soil-Structure Interaction (FSSI) . . . . . . . . . . . . 2

1.2 Nonlinear Viscous Resistance of Soil, from Litkouhi and Poskitt (1980) . . . 6

1.3 Rate of Loading Effects on Axial Pile Capacity, from Audibert and Dover (1982) 7

1.4 Rate of Loading Effects on Soil Samples, from Audibert and Dover (1982) . . 7

1.5 Definition of Cyclic Parameters, from Briaud and Fellio (1986) . . . . . . . . 8

1.6 Modulus Degradation Curves for Gulf of Alaska Clay, from Briaud and Fellio
(1986), whose data were compiled from Floess (1979) . . . . . . . . . . . . . 9

1.7 Power Law Exponents a, b versus R1 +R2 for Full-scale Pile Test Data, from
Briaud and Fellio (1986) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Effect of Cycles on Axial Pile Capacity, from Bea et al. (1980) . . . . . . . . 12

1.9 Repeated One-way Loading on Pile, reproduced from Bea (1980) from Matlock
and Homquist (1976) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.10 Repeated Two-way Loading on Pile, reproduced from Bea (1980) from Mat-
lock and Homquist (1976) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.11 Effect of Steady and Cyclic Shear Stress Ratios on Numbers of Cycles to
Failure (20% strain), from Bea (1992) . . . . . . . . . . . . . . . . . . . . . . 14

1.12 Extended Cyclic Stability Diagrams, from Lee and Poulos (1993) . . . . . . . 14

1.13 Statistical Distribution for Ultimate Pile Load Prediction, from Briaud and
Tucker (1988) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.14 Typical Axial Pile Load Transfer-Displacement (t− z) Curves, from API (2002) 22

1.15 Pile Tip Load-Displacement (Q− z) Curves, from API (2002) . . . . . . . . 23

1.16 p-y Curves for Soft Clay, from Matlock (1970) . . . . . . . . . . . . . . . . . 25

1.17 p-y Curves for Stiff Clay, from Reese et al. (1975) . . . . . . . . . . . . . . . 26

1.18 p-y Curves for Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.19 p-y Curves Parameters for Sand, from API (2002) . . . . . . . . . . . . . . . 27

2.1 Estimated Radial Distribution of Soil Modulus Ratio, from Kraft et al. (1981) 36

2.2 Idealized Radial Distribution of Soil Modulus Ratio, from Kraft et al. (1981) 36

2.3 Composite Soil Medium, from Novak and Sheta (1980) . . . . . . . . . . . . 43

2.4 Smith Model for Pile Driving Analysis, from Smith (1960) . . . . . . . . . . 47

2.5 Nonlinear Winkler Model for Dynamic Analysis of a Single Pile, from El
Naggar and Novak (1994b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



2.6 A Nonlinear p− y Element, from Boulanger et al. (1999) . . . . . . . . . . . 52

2.7 Pile Soil Analysis System, from Bea et al. (1984) . . . . . . . . . . . . . . . . 53

2.8 Generalized Nonlinear Rules, from Bea et al. (1984) . . . . . . . . . . . . . . 54

3.1 Nested Yield Surface Model: Monotonic Triaxial Compression and Extension,
from Prevost (1977) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Nested Yield Surface Model: Cyclic Triaxial Test, from Prevost (1977) . . . 65

3.3 Pressure-Dependent Nested Yield Surface Model: Conical Yield Surfaces,
from Prevost (1985) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Pressure Dependent Nested Yield Surface Model: Schematic of Constitutive
Response, from Elgamal et al. (2002) . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Bounding Surface Plasticity (in Deviatoric π Plane) . . . . . . . . . . . . . 69

3.6 Loading/Unloading Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Response upon Unloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Bounding and Loading Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9 Schematic Cyclic Soil Response . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.10 Modeled Cyclic Simple Shear Response . . . . . . . . . . . . . . . . . . . . . 93

3.11 Computed Modulus Reduction Curves, Dashed lines: PI=0,15,30 from Vucetic
and Dobry (1991) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Test Area Vicinity Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Schematic Soil Profile of Test Area 1 and Test Pier . . . . . . . . . . . . . . 100

4.3 Schematic Soil Profile of Test Area 2 and Test Pier . . . . . . . . . . . . . . 101

4.4 Vs Profile from SASW Testing along Array 1 and Array 2 . . . . . . . . . . 102

4.5 SPT N-value and Undrained Shear Strength Profile for Test Area 1 . . . . . 103

4.6 Arrangement of Test Piers, from Kasali (2002) . . . . . . . . . . . . . . . . . 104

4.7 PLT Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 PLT and Static Compression Test Results (Pier A1-19) . . . . . . . . . . . . 110

4.9 Comparison of Individual PLT Loops and Static Compression (Pier A1-19) . 111

4.10 Analysis of Pier A1-19 PLT Test Results . . . . . . . . . . . . . . . . . . . . 112

4.11 PLT Test Results (Pier A1-20A) . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.12 Comparison of Individual PLT Loops (Pier A1-20A) . . . . . . . . . . . . . . 115

4.13 Analysis of Pier A1-20A PLT Test Results . . . . . . . . . . . . . . . . . . . 116

4.14 A1-20B 1st PLT, Static Tension and 2nd PLT Tests Results . . . . . . . . . 117

4.15 Comparison of A1-20B 1st and 2nd PLT Test Results . . . . . . . . . . . . . 118

x



4.16 Normalized Pile Load Response (Test Area 1) . . . . . . . . . . . . . . . . . 123

4.17 Comparison of Normalized Pile Load Response with Elastic Solution (Pier
A1-19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.18 Comparison of Normalized Pile Load Response with Elastic Solution (Pier
A1-20AB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.19 PLT Test Results (Pier A2-20) . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.20 Comparison of Individual PLT Loops (Pier A2-20) . . . . . . . . . . . . . . . 127

4.21 Analysis of Pier A2-20 1st PLT Test Results . . . . . . . . . . . . . . . . . . 128

4.22 PLT Test Results (Pier A2-25) . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.23 Comparison of Individual PLT Loops (Pier A2-25) . . . . . . . . . . . . . . . 130

4.24 Analysis of Pier A2-25 1st PLT Test Results . . . . . . . . . . . . . . . . . . 131

4.25 1st PLT, Static Tension and 2nd PLT Tests Strength Envelope (Pier A2-25) 132

4.26 PLT Test Results (Pier A2-30) . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.27 Comparison of Individual PLT Loops (Pier A2-30) . . . . . . . . . . . . . . . 134

4.28 Analysis of Pier A2-30 1st PLT Test Results . . . . . . . . . . . . . . . . . . 135

4.29 1st PLT, Static Tension and 2nd PLT Tests Strength Envelope (Pier A2-30) 136

4.30 Normalized Pile Load Response (Test Area 2) . . . . . . . . . . . . . . . . . 137

5.1 Modulus Reduction Curves Used in the Dynamic and Static Finite Element
Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 Approximation of PLT Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Simulated Pier Head Displacement under Cyclic Loading (Pier A1-19 Homo-
geneous Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4 Computed Top Node Reaction (Pier A1-19 Homogeneous Profile) . . . . . . 147

5.5 Details of an Element (Pier A1-19 Homogeneous Profile) . . . . . . . . . . . 149

5.6 Displacement and Stress Fields at Peak of Last PLT Loop (Pier A1-19 Ho-
mogeneous Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.7 Residual Displacements and Stress Fields after Last PLT Loop (Pier A1-19
Homogeneous Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.8 Simulated Pier Head Displacement under Cyclic Loading (Pier A1-19, Layered
Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.9 Displacement and Stress Fields at Peak of Last PLT Loop (Pier A1-19 Layered
Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.10 Residual Displacements and Stress Fields after Last PLT Loop (Pier A1-19
Layered Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.11 Simulation of Pier A1-20A under Cyclic Loading . . . . . . . . . . . . . . . . 155

xi



5.12 Computed Top Node Reaction (Pier A1-20A, Homogeneous Profile) . . . . . 156

5.13 Residual Displacements and Stress Fields (Pier A1-20A, Homogeneous Profile) 157

5.14 Simulated Pier Head Displacement under Static Compression (Pier A1-19,
Homogeneous Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.15 Load Transfer under Static Compression (Pier A1-19, Homogeneous Profile) 160

5.16 Simulated Pier Head Displacement under Static Compression (Pier A1-19,
Layered Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.17 Load Transfer under Static Compression (Pier A1-19, Layered Profile) . . . . 162

5.18 Displacement and Stress Fields at Peak Static Load (Pier A1-19, Layered
Profile) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xii



LIST OF TABLES

1.1 API Recommended Design Parameters for Cohesionless Siliceous Soil (from
API, 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Methods for Ultimate Pile Capacity Prediction, from Briaud and Tucker (1988) 20

3.1 Determination of Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Summary of Pier Load Test Program . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Summary of Effective Resistance for PLT Tests . . . . . . . . . . . . . . . . 120

4.3 Mobilized Ultimate Shaft Resistance (in kPa) . . . . . . . . . . . . . . . . . 121

4.4 Effective Shear Modulus Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Summary of Soil Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 An Example of Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . 165

xiii



1 Introduction

1.1 OBJECTIVES

Use of pile/pier foundations as an economical means of transmitting the weight of structures

down to the competent underlying soil strata can be traced back to prehistoric times. In

China, there are numerous examples of timber piling supporting bridge foundations as early

as THE Han Dynasty (202 BC - 220 AD). In Europe, remnants of timber pile foundations

can be dated back to the Roman empire (Tomlinson, 1994). Today, timber has largely been

replaced by newer construction materials like concrete, reinforced concrete, and steel. Pile

foundations are also widely used in supporting transmission lines, bridges, buildings, and

offshore platforms for gas and petroleum production.

Tomlinson (1994) in the preface of his monograph Pile Design and Construction

Practice acclaims the use of pile in foundations as both an art and a science. The art

is manifested for example in the selection of suitable pile types, configurations (length,

diameter, spacing etc.) and method of installation for the proposed site conditions and

loading conditions. Science enables prediction of the pile behavior, notably deflection and

capacity, under specified design condition.

For many years, the science part of pile foundation design was mainly based on a

combination of empiricism and experience, as the attempt at a realistic simulation is often

deemed as out of place in view of complications arising from various uncertainties in pile

installation and soil properties etc. Such a pessimistic attitude is best exemplified by the

following remarks by Terzaghi (1943):

Because of the wide variety of soil conditions encountered in practice, any attempt
to establish rules for the design of pile foundations necessarily involves radical
simplifications, and the rules themselves are useful only as guides to judgement.

1



For the same reason, theoretical refinements in dealing with pile problems, such
as attempts to compute the distribution of load among the piles in a group by
means of the theory of elasticity, are completely out of place and can be safely
ignored.

Nevertheless, tremendous advancement has been made over the past half century in

improving the understanding of a soil-pile/pier system and soil-pile/pier interaction. The

effort branches largely into two general categories: One is based on experimental investiga-

tions including well-controlled model pile tests in the laboratory and well-explored in-situ

pile tests in the field. The other is based on various analytical, numerical linear and nonlin-

ear methods built on the strength of the fast-evolving computing technology and numerical

modeling capacity.

Fig. 1.1 System of Foundation-Soil-Structure Interaction (FSSI)

In the present study, the emphasis is on dynamic soil-pile/pier interaction. Among

the many factors that influence the dynamic soil-pile-structure system, the system response

is principally determined by structure stiffness, foundation stiffness, and energy-dissipation

characteristics of the individual components. The foundation stiffness further relies on the

loading characteristics, the soil properties (type, stress history, strain rate effect, and cyclic

2



degradation), pile properties (stiffness, geometry, and material), and pile installation meth-

ods. The energy dissipation comprises hysteretic damping due to internal friction of granular

soils, viscous damping that depends on the velocity, and radiation damping that dissipates

energy into the outer infinite domain.

In the past, much effort has been devoted to the study of the lateral response of soil-

pile systems, but very few studies have addressed the axial behavior. Although seismic loads

are usually viewed as being primarily horizontal, the action on the pile, when the interaction

of the superstructure is involved, has a significant vertical component. As schematically

illustrated in Fig. 1.1, vertically propagated shear waves during an earthquake cause rocking

of the structure, which subsequently induces vertical up-and-down axial movement of piles.

More importantly, the earthquake loading rate is about three orders of magnitude greater

than the rate for which the static pile capacity is based. Thus, for earthquake design of

pile foundations, proper consideration of dynamic effects may have important economic and

safety implications (Kraft et al., 1981). Such consideration is also critical in the design of

oil platforms which are usually subjected to wave and storm loads.

The objective of this study was to investigate the behavior of the vertically loaded

pile soil system. In particular, we examined the dynamic and static stiffness of the system,

the nonlinear characteristics, and energy dissipation based on field pile load tests, and dealt

with the challenges in the numerical modeling. The report is organized as follows: Chapter 1

and Chapter 2 provide a brief review of the state-of-the-practice design and state-of-the-art

research on axially loaded piles, with a special focus on nonlinear axial behavior. Chapter 3

formulates the bounding surface plasticity model and its algorithmic implementation in the

finite element framework. Chapter 4 documents a series of in-situ dynamic and static pile

load tests recently performed at the University of California, Berkeley, campus. The response

character of the pile in term of system stiffness, dynamic capacity, and accumulated displace-

ments are analyzed, and the degradation after cyclic loading are also discussed. Chapter 5

presents the nonlinear finite element analysis of a single pile and the results are compared

with the pile load tests. Chapter 6 provides conclusions including recommendations and

suggestions for further research.
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1.2 REVIEW OF FACTORS CONTROLLING AXIAL PILE PERFOR-

MANCE

1.2.1 Effects of Pile Installation

Depending on the installation method, most piles could be classified as either non-

displacement piles or displacement piles. Non-displacement piles are usually grout or cast

concrete in pre-bored holes, and the disturbance to in-situ soil properties and stress state

can be minimized to a certain extent. In contrast, displacement piles are inserted into the

ground by displacing soils through hammer driving or jacking, and the process can signif-

icantly affect the soil-pile interface properties. Hence the installation method should be

carefully chosen in the design phase, since it has great influence on the pile performance.

The effects of pile driving in clays, according to de Mello (1969) as cited in Poulos

and Davis (1980), should take into account the following factors: (a) remolding or partial

structural alternation of the soil surrounding the pile; (b) alternation of the stress state in the

soil in the vicinity of the pile; (c) dissipation of the excess pore pressures developed around

the pile; and (d) long-term phenomena of strength-regain in the soil. In addition, under

continued large displacement during driving, strength reduction of softening soil may also

be expected (Murff, 1980), and some reduction in capacity may be warranted to take into

account the degradation of shaft friction. In general, the unit skin friction should not exceed

the unconfined compression (UC) strength of cohesive soil in accordance with the ASTM D-

2166-63T method. For detailed discussions and field measurements of the pile-driving effects

in clays, one can also refer to Kraft et al. (1981), Randolph and Murphy (1985), Pestana

et al. (2002), and Hunt et al. (2002).

In cohesionless soils, the effect of pile driving is mainly reflected in the change in the

relative density and hence the friction angle of the soil. While loose soil below the pile tip

is usually compacted by displacement and vibration, resulting in increased capacity, the soil

in the immediate vicinity of the sides above the tip decreases in density and develops tensile

strains. The pattern of displacements and strains around driven pile was investigated by

Robinsky and Morrison (1964) in a series of model-pile tests in sand. Methods to estimate

the extent of change in density and friction angle of soils around the driven pile in sand have

been proposed by Meyerhof (1959) and Kishida (1967).
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1.2.2 Loading Rate Effects

Rate-dependent soil response was first explored in the pioneering work of Taylor (1942)

related to the study of secondary consolidation of soils. Although clay skeletons have been

observed to obey non-linear viscous law, linear viscous law was used in the analysis due to

its mathematical simplicity. Linear viscous damping was also used in the original work of

Smith (1960) for numerical computation of pile driving by the wave equation, where the soil

resistance from the damping was assumed to be proportional to the instantaneous velocity

of the pile. 1

However, the nonlinear nature of the viscosity of the soil at fast rates of deformation

has been repeatedly observed in laboratory tests. Based on reviewing viscosity laws used by

various researchers under different test conditions, Litkouhi and Poskitt (1980) conducted

experiments to measure the point and side damping constants for small model piles driven

at constant velocity into samples of soil, and they confirmed that a power law of the form

RD = RS(1 + JV N) (1.1)

fits many soil types over the range of velocities encountered during most pile-driving op-

erations in their experiments, where RD and RS are dynamic and static soil resistance,

respectively. V is the loading velocity, and J and N are factors depending on the nature of

soil. Litkouhi and Poskitt (1980) as well as Randolph and Deeks (1992) also recommended

N ≈ 0.2 for both point and side resistances, and, J ranges from 0.1 for sand to 1.0 for

clay. Their test data are summarized in Fig. 1.2. Eq.(1.1) is also analogous to the formula

proposed earlier by Coyle and Gibson (1970). A similar formula was also suggested by El

Naggar and Novak (1994b) to relate the dynamic ultimate soil resistance to the ultimate soil

resistance at a reference velocity.

Accordingly, the axial pile capacity can significantly increase with the loading rate.

In Fig. 1.3, Audibert and Dover (1982) compiled field pile load tests at varying loading rate

conducted in clay sites from Kraft et al. (1981), Dubose (1955), Seed and Reese (1955),

Ginzburg (1973), Goncharov (1966), Bea and Doyle (1975), Fuller and Hoy (1970) and

others. Although a large amount of scatter can be noted in the figure, the ratio of ultimate

1To take into account the fact that soil under the pile tip is displaced very rapidly as the pile is driven
downward, bigger damping constant is suggested for resistance at the pile tip than along the side. Damping
constant is assumed to be 0.15 for the resistance at the pile tip and 0.05 along the side in Smith (1960).
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Fig. 1.2. Nonlinear Viscous Resistance of Soil, from Litkouhi and Poskitt
(1980)

dynamic capacity to the static capacity shows a definite trend with increased loading rate.

In the range corresponding to wave and earthquake forces, the ultimate axial capacity of

a pile increases by 20% – 80%. Interestingly, the loading rate effect obtained from pile

load tests is in general agreement with that from laboratory triaxial tests on soil samples.

Fig. 1.4 overlays the increase of the dynamic axial capacity of the pile and the increase of the

undrained shear strength of soil samples, in which their general trends show great similarity.

It is also worth pointing out that in these figures, the rate of loading is expressed as a

percentage of the static ultimate capacity of the pile per unit of time to allow for comparison

between piles of differing size and capacity.

1.2.3 Cyclic Loading Effects

In general, cyclic loads tend to counteract rate effects such that capacity and stiffness degrade

with repeated loading cycles. An idealized cyclic response curve is illustrated in Fig. 1.5,

in which the cyclic behavior is bounded by the corresponding static stress-strain curve. To

facilitate quantitative analysis, several parameters need to be defined first as follows: The

cyclic ratios, R1 and R2, are used to describe the normalized cyclic amplitude and the
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Fig. 1.3. Rate of Loading Effects on Axial Pile Capacity, from Audibert
and Dover (1982)

Fig. 1.4. Rate of Loading Effects on Soil Samples, from Audibert and
Dover (1982)
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Fig. 1.5 Definition of Cyclic Parameters, from Briaud and Fellio (1986)

normalized mean cyclic stress

R1 =
ymax(0) − ymin(0)

2yult

(1.2)

R2 =
ymax(0) + ymin(0)

2yult

(1.3)

with parameters defined in Fig. 1.5. Thus, R1 + R2 specifies the ratio of the peak cyclic

stress over the ultimate static capacity. In general, a higher cyclic stress level leads to more

severe cyclic degradation. Hence a threshold value (R1 + R2)t can be defined, below which

some degradation of the soil or the soil-pile interface may occur but increasing the number

cycles does not produce excessive damage or failure. Above the “threshold”, failure of the

soil or soil-pile system would be expected. For each cycle N , secant stiffness GS(N) and cyclic

stiffness GC(N) are defined as

GS(N) =
ymax(N)

xmax(N)

(1.4)

GC(N) =
ymax(N) − ymin(N)

xmax(N) − xmin(N)

(1.5)

To quantify the stiffness degradation during cyclic tests, the secant stiffness degradation pa-

rameter β and the cyclic stiffness degradation parameter δ are used to compare the quantities
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Fig. 1.6. Modulus Degradation Curves for Gulf of Alaska Clay, from Briaud
and Fellio (1986), whose data were compiled from Floess (1979)

in cycle number N and the first loading by

β =
GS(N)

GS(0)

(1.6)

δ =
GC(N)

GC(0)

(1.7)

The following power law is usually adopted to quantify the rate of degradation with cycle

number N ,

β = N−a (1.8)

δ = N−b (1.9)

Eqs. (1.8) and (1.9) have been used successfully by various researchers, for example in Idriss

et al. (1978), Briaud and Fellio (1986), Poulos (1981), and Bouckovalas (1996). From the

strain-controlled cyclic test on soft clay, Idriss et al. (1978) concluded that parameters a and

b are strongly dependent on the cyclic strain level and that the values appear to be uniquely

determined by the applied cyclic strain for a wide range of initial confinement. Fig. 1.6 shows

an example of the β(δ) ∼ N degradation curve for various stress ratios R1 + R2 in stress-

controlled tests on Gulf of Alaska clay (Briaud and Fellio, 1986). A similar relationship was

also used by Poulos (1981) to study the cyclic degradation of axially load single pile.
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Degradation parameters seem to be strongly related to the peak cyclic stress ratio.

By reviewing published data on 9 cyclic tests on the clay samples in laboratory, 10 cyclic load

tests on model pile and 16 full-scale cyclic pile load tests in clay, Briaud and Fellio (1986)

observed the general trend of such a correlation. The values of a and b versus peak cyclic

stress ratio R1 +R2 are calculated by best-fit regression analysis for each cyclic stress-strain

curve from cyclic laboratory tests of soil samples and pile head load-displacement curves

from full-scale load tests. Although quite scattered, the data show that the degradation

parameters for full-scale piles are much less than those measured from laboratory tests on

soil specimens. For full-scale piles, the best-fit straight lines through the origin, see Fig. 1.7,

follow

a = 0.09(R1 +R2) (1.10)

b = 0.03(R1 +R2) (1.11)

While for soil specimens, the best-fit lines follow

a = 0.6(R1 +R2) (1.12)

b = 0.6(R1 +R2) (1.13)

The difference can be explained by the stress distribution in the soil surrounding a loaded

pile. For a given R1 + R2 value measured on the pile head, the actual shear stress level in

the soil decreases radially away from the pile, and the soil is also less stressed at greater

depth. In another words, the cyclic degradation is non-uniform in a pile-soil system, and the

integrated response of cyclic degradation is apparently less severe compared to that measured

from a simple shear test. A proper way of using laboratory measurement in prediction of

pile response should integrate the soil response in the radial direction and consider the

compressibility of the pile, as was suggested, for example, by Bea et al. (1984).

The effect of cyclic loading on the ultimate pile capacity seems at first glance to be

quite contrary to the observed behavior in cyclic pile load tests. On the one hand, large cyclic

capacity degradation was observed under cyclic displacement-controlled tests (Grosch and

Reese, 1980); on the other hand, the ultimate axial capacity was only slightly (10% – 15%)

affected under one-way cyclic load-controlled tests, as summarized in Fig. 1.8. This finding

also corroborates that reported in Kraft et al. (1981), where the pile capacity after cyclic

loading was observed to exceed its static capacity, i.e., no apparent reduction of ultimate
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Fig. 1.7. Power Law Exponents a, b versus R1 +R2 for Full-scale Pile Test
Data, from Briaud and Fellio (1986)

static capacity after the cyclic load test. Therefore they suggested that “the total effects of

the loading history must be evaluated together with loading rate.”

So we must distinguish two different forms of cyclic load tests. A one-way cyclic test

imposes cyclic loading without reversal of the load (e.g., compression only), while the load in

the two-way cyclic test reverses (e.g., applying both compression and extension). Complete

stress reversal in a two-way cyclic test induces much more severe structural damage in the

soil due to remolding along the shafts and at the tip, causing more rapid and severe pile

loading capacity and stiffness degradation compared to that in the one-way cyclic test. Figs.

1.9 and 1.10 show the repeated one-way and two-way loading tests on model piles reported

in Matlock and Homquist (1976). The two-way loading test is displacement controlled in

which the ultimate displacement exceeds yield displacement by a factor of 10. Considerable

degradation in strength and stiffness can easily be seen in that case.
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Fig. 1.8 Effect of Cycles on Axial Pile Capacity, from Bea et al. (1980)

1.2.4 Combined Effect of Cyclic Loading and Rate of Loading

The overall effect of strain-rate and cyclic loading on soil can be illustrated in Fig. 1.11 (from

Bea, 1992). A general cyclic stress can be decomposed into a steady (mean) component and

cyclic component. In the figure, two diagonal lines divide the plot into four regions. One

diagonal line (termed as “equal strength line”) indicates that the applied peak cyclic stress

equals the static strength, the other diagonal line (termed as “stress reversal line”) separates

the cases of stress reversal and no stress reversal. Contours of the numbers of cycles to failure

(defined as 20% strain) are plotted. For cases of no stress reversal, the presence of the rate

effect results in the contours exceeding the equal strength line. Reduction in cyclic strength

is seen when the soil experiences stress reversals.

The cyclic stability diagram, first proposed by Poulos (1988), is also a useful tool to

describe the effect of cyclic loading on the stability of the pile system. The diagram was

further extended by Lee and Poulos (1993) to four main regions, as shown in Fig. 1.12.

Region A is called the cyclically stable region, in which cyclic loading has no influence on

the axial capacity of the pile when the cyclic component is relatively small; Region B is

a cyclically metastable region in which cyclic loading causes some reduction of axial load

capacity, but the pile does not fail within the specified number of cycles. Region C is

called the serviceability loss region, in which excessive permanent displacement of the pile
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Fig. 1.9. Repeated One-way Loading on Pile, reproduced from Bea (1980)
from Matlock and Homquist (1976)

Fig. 1.10. Repeated Two-way Loading on Pile, reproduced from Bea (1980)
from Matlock and Homquist (1976)

13



Fig. 1.11. Effect of Steady and Cyclic Shear Stress Ratios on Numbers of
Cycles to Failure (20% strain), from Bea (1992)

Fig. 1.12 Extended Cyclic Stability Diagrams, from Lee and Poulos (1993)
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due to cyclic loading is beyond the allowable value so that the pile functionality is greatly

diminished. Region D is called the cyclically unstable region, in which cyclic loading causes

a sufficient reduction of axial pile capacity, with the pile failing within the specified number

of load cycles.

1.2.5 Pile Group Effects

Compared to an isolated single pile, loading of adjacent piles will increase the settlement

of a pile in the pile group. To quantify this effect, an interaction factor (Poulos, 1968) can

be introduced, which is defined as the ratio of the increased settlement to the settlement of

the single pile. For pile groups in homogeneous soil, the interaction factors can be derived

as functions of pile spacing (Poulos and Davis, 1980). For more general cases such as pile

groups in finite soil layers, one can refer to (Chin et al., 1990). Since the solutions are

obtained through boundary element procedure where soil is essentially assumed elastic, how

the interaction factors change with evolving soil nonlinearities is absent in their work. With

our focus on a single pile behavior, the group effect is beyond the scope of this report.

1.2.6 Static Ultimate Bearing Capacity

To satisfy the functional requirement of supporting superstructures, the bearing capacity of

piles has been the primary concern of pile design. In this section, the state-of-the-practice

pile foundations design guidance is outlined based on the latest design code Recommended

Practice for Planning, Designing and Constructing Fixed Offshore Platforms by American

Petroleum Institute (API, 2002).

Although many alternative interpretations exist, the axial capacity of a pile can be

defined as the maximum axial resistance under which a pile maintains a specified service

requirement (e.g., a specified pile head displacement). The bearing capacity of a pile can be

written as the summation of the skin friction and end bearing as,

Qd = Qf +Qp = fAs + qAp (1.14)
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where

Qf = skin friction resistance, lb(kN)

Qp = total end bearing, lb(kN)

f = unit skin friction capacity, lb/ft2(kPa)

q = unit end bearing capacity, lb/ft2(kPa)

As = side surface area of pile, ft2(m2)

Ap = gross end area of pile, ft2(m2)

Direct summation in Eq. (1.14) implies the maximum skin friction and the maximum end

bearing are mobilized simultaneously, which may not necessarily be true in some circum-

stances, where explicit consideration of different skin and end bearing behavior may be

warranted.

For piles in cohesive soils, the unit skin friction f and unit end bearing capacity q

can be related to the undrained shear strength of the soil by the following equations,

f = α Su (1.15)

q = 9 Su (1.16)

where

α = a dimensionless factor

Su = undrained strength of the soil, lb/ft2(kPa)

The reduction factor α here is presented to take into account the influence of many factors,

including pile type, soil type, and installation methods we have discussed before. Ideally,

α should be determined from a pile-load test. Besides other correlations (see Poulos and

Davis, 1980, pp.20), API recommends that it can be empirically estimated as a function of

undrained strength Su and effective overburden pressure p′0 via

α = 0.5Ψ−0.5, Ψ ≤ 1.0 (1.17)

α = 0.5Ψ−0.25, Ψ > 1.0 (1.18)

where Ψ = Su/p
′
0, and α ≤ 1.0 is constrained for the above equation.
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For piles in cohesionless soils, the unit shaft friction f is a function of the effective

overburden pressure p′0, the coefficient of lateral earth pressure K0, and the friction angle

between the soil and pile wall δ, and is expressed in the form of the Coulomb frictional law

f = K0p
′
0 tan δ (1.19)

and the end bearing capacity is expressed in terms of the effective overburden pressure p′0 at

the pile tip, and a bearing capacity factor Nq which depends on the internal friction angle

of the cohesionless soil.

q = p′0 Nq (1.20)

where

p′0 = effective overburden pressure at the pile tip

Nq = dimensionless bearing capacity factor

Table 1.1 summarizes the design parameters for cohesionless siliceous soils, which are

categorized according to the soil type and density. Field observations also show that the

unit skin friction and unit end bearing do not increase infinitely with depth but tend to

reach their limiting values – a phenomena that has been explained by many researchers as

the “arching effect”. This effect curtails the increase of the overburden pressure and of the

lateral earth pressure with depth. The recommended limiting values of f and q are also

provided in the table.

The above recommendation should be applied cautiously to piles in calcareous sands.

In comparison to non-calcareous sands, calcareous sands are more suspectable to crushing

during pile driving; moreover, cementation may prevent the development of lateral pressure

on the pile wall (McClelland, 1974). Particle crushing and cementation in calcareous sands

are known to affect the axial pile capacity significantly. According to Datta et al. (1980),

the capacity can be reduced to 1/3 of that in non-calcareous sands.

Besides API’s recommendation, numerous other empirical methods have been de-

veloped to predict axial pile capacities. Briaud and Tucker (1988) exercised 13 methods

published in the literature to predict the ultimate load of 98 full-scale pile load tests. These

methods are listed in Table 1.2 with corresponding references included. Basic parameters
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Fig. 1.13. Statistical Distribution for Ultimate Pile Load Prediction, from
Briaud and Tucker (1988)

used in predictions are based on the standard penetration test (SPT), the cone penetrometer

test (CPT) or pressuremeter tests (PMT), as well as laboratory tests, including undrained

triaxial tests and unconfined compression tests for undrained shear strength Su of clays.

The predictive capacities of these methods are varying, and one way to compare them is

to plot the ratio of the predicted ultimate load vs. the actual measured value 2, as shown

in Fig. 1.13. Some methods tend to overpredict the ultimate capacity whereas some under-

predict. Overall, the better methods have a mean of the ratio between 0.9 – 1.2, with the

coefficient of variation 0.40 – 0.45.

2The ultimate load was defined as the load inducing a settlement of one tenth of the pile diameter plus
the elastic compression of the pile.
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Table 1.1. API Recommended Design Parameters for Cohesionless
Siliceous Soil (from API, 2002)

Soil Soil-pile Limiting f value Nq Limiting q value
Density Description Friction δ(o) kips/ft2(kPa) kips/ft2(kPa)

Very Loose Sand 15 1.0 (47.8) 8 40 (1.9)
Loose Sand-Silt

Medium Silt

Loose Sand 20 1.4 (67.0) 12 60 (2.9)
Medium Sand-Silt
Dense Silt

Medium Sand 25 1.7 (81.3) 20 100 (4.8)
Dense Sand-Silt

Dense Sand 30 2.0 (95.7) 40 200 (9.6)
Very Dense Sand-Silt

Dense Gravel 35 2.4 (114.8) 50 250 (12.0)
Very Dense Sand
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Table 1.2. Methods for Ultimate Pile Capacity Prediction, from Briaud
and Tucker (1988)

Basic Parameters
Method Reference Clay Sand

Coyle Coyle and Castello (1981) Su SPT data

API API (1984) Su SPT data

Briaud-Tucker Briaud and Tucker (1984) Su SPT data

Meyerhof Meyerhof (1976) Su SPT data

Mississippi State MSHD (1972) Su SPT data-
Highway Dept. direct shear

Direct Cone Briaud (1986) CPT data CPT data

De Ruiter De Ruiter and Beringen (1979) CPT data CPT data

LPC Cone Bustamante and Gianeselli (1983) CPT data CPT data

Schmertmann Schmertmann (1978) CPT data CPT data

Tumay-Frakhroo Tumay and Fakhroo (1981) CPT data CPT data

Penpile Clisby (1978) CPT data CPT data

LPC PMT Bustamante and Gianeselli (1982) PMT data PMT data

EN Formula Peck et al. (1974) Blow count Blow count
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1.2.7 Empirical Load Transfer Curves

t− z and Q− z Curves for Clays and Sands

As the axial resistance of the soil is provided by a combination of load transfer along the

sides of the pile and end bearing resistance at the pile tip, the pile and the resistance can

be modelled as “Beam on Nonlinear Winkler Foundation” (BNWF). This approach assumes

that the reaction (force-displacement) of the system at a depth is independent of interaction

between different depths. Usually, the relationship between mobilized soil-pile shear transfer

t and local pile deflection z at a depth is described using a nonlinear relation called t − z

curve. Similarly, the relationship between mobilized end bearing resistance Q and axial tip

deflection z is described using a Q − z curve, such that the resistance can be discretized

along the pile length and at the pile tip.

In the absence of more definitive criteria, API (2002, section 6.7) recommended t− z

and Q− z curves for non-carbonate soils are presented in Figs. 1.14 and 1.15. As illustrated

in these figures, there are several distinctive features in API’s recommendations as follows:

• Maximum side resistance is more easily mobilized in sands than clays, especially for

large diameter piles. Similarly, maximum side resistance is more easily mobilized than

tip resistance. As suggested by the direct addition in Eq.(1.14) for calculating ulti-

mate bearing capacity, both of the maximum side and tip resistances are mobilized

simultaneously, which may overestimate the capacity in some circumstances.

• Sands are interpolated as perfectly elastic-plastic material, while clays behave nonlin-

early even at the small strain range. The t − z curve for clays may exhibit various

degrees of softening, once relative displacement between pile and clay is fully mobi-

lized (beyond z/D = 0.01, where D is pile diameter). Residual side adhesion drops

down to 0.70 to 0.90 of the maximum adhesion, whose values are a function of soil

stress-strain behavior, stress history, installation method, pile load sequence and other

factors. Laboratory, in-situ or model pile tests can be used to provide information for

determination of these values for various soils.

• Same tip load-displacement curve is suggested for both sand and clays. The tip resis-
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tance is mobilized parabolically to its full strength at the tip displacement of 0.10 pile

diameter.

Fig. 1.14. Typical Axial Pile Load Transfer-Displacement (t − z) Curves,
from API (2002)

p− y Curves for Soft Clays

Similar to t − z and Q − z curves for axially loaded piles, various p − y curves have been

formulated for lateral loaded pile reaction, which have been summarized for example in

Mosher and Dawkins (2000). Compared to a vertically loaded pile where soil resistances are

unidirectional, laterally loaded pile movement is at least two-dimensional. Distinctive failure

mechanisms are associated with upper and lower portions of the soil respectively – near the

ground surface, wedge type failure of the soil is expected due to lateral pile movement, while

in the lower position, the soil fails through plastic yielding. Correspondingly, different load

transfer mechanisms should be considered for these different regions.
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Fig. 1.15 Pile Tip Load-Displacement (Q− z) Curves, from API (2002)

Matlock (1970) recommended the following procedure to construct p − y curves for

soft clays, also see Fig. 1.16(a):

P

Pu

= 0.5

(
Y

Yc

) 1
3

(Y < 8Yc) (1.21)

P

Pu

= 1 (Y > 8Yc) (1.22)

where

Yc = 2.5Dεc, is the lateral displacement at one half of the ultimate resistance

D = the diameter of the pile

εc = strain at one half the maximum stress in a laboratory undrained compression test

of undisturbed soil samples

P = lateral static soil resistance per unit pile length

Pu = ultimate lateral static soil resistance per unit pile length

Y = lateral displacement of pile relative to the soil

The static ultimate resistance can be related to pile diameter (D) and undrained shear

strength of the soil (Su) through a dimensionless ultimate resistance coefficient Np as follows

Pu = Np Su D (1.23)
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Matlock (1970) recommended a linear variation of Np to a constant limiting value at depth

Np = 3 +
γ′

Su

Z +
J

D
Z (Z < Zcr) (1.24)

Np = 9 (Z > Zcr) (1.25)

in which Z is depth below ground surface and Zcr is a critical depth where soil wedge failure

transforms to flow failure, and γ′ is the effective unit weight of the soil. It is also recommended

J = 0.5 for a soft clay and 0.25 for a medium stiff clay. Note that the normalized consolidated

condition estimates
γ′ Z

Su

' 0.3 for normally consolidated clays, so Np varies from around

3 near the surface to 9 at the critical depth Zcr
3. On the other hand, the critical depth

which differentiates the wedge failure on the surface and the flow failure at the depth can be

obtained by equating Eq. (1.24) and Eq. (1.25),

Zcr =
6SuD

γ′D + JSu

(1.26)

Fig. 1.16 summarizes the recommended p − y curves for soft clays under static and

dynamic loading. Same exponential function is used for the nonlinear pre-yielding behavior

in both cases except that the dynamic curve is truncated at Y/Yc = 3 and considerable

reduction of the ultimate resistance occurs in the dynamic case in Fig. 1.16 (b). Moreover,

the intensity of strain softening is assumed to vary linearly with depth Z until no softening

is assumed to occur for soils deeper than Zcr.

p− y Curves for Stiff Clays

Stiff clays are usually more brittle than soft clays and capacity degradation has to be con-

sidered. Reese et al. (1975) proposed curves with five segments to describe strain softening

response of the overconsolidated stiff clay (see Fig. 1.17). The initial stiffness of the p − y

curve is the product of static or cyclic stiffness parameters (ks or kc) and the depth Z at

which the curve is applied. For the static case, the second segment in Fig. 1.17 (a) is of the

following form
P

Pc

= 0.5

(
Y

Yc

)0.5

(1.27)

3Stevens and Audibert (1979) noticed the above relations were based on field load tests on relatively
small diameter piles. By synthesizing a broader database, they proposed a modification of Np profile, which
assumes a higher value than that of Matlock.
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(a) Static (b) Dynamic

Fig. 1.16 p-y Curves for Soft Clay, from Matlock (1970)

with Pc taken as the smaller of

Pc =

(
2 +

γ′

Su

Z + 2.83
Z

D

)
SuD (1.28)

for wedge failure near the ground, or

Pc = 11SuD (1.29)

for flow failure at depth. Yc = εcD, A is a displacement parameter related to the depth. The

third segment is
P

Pc

= 0.5

(
Y

Yc

)0.5

− 0.055

(
Y

AYc

− 1

)1.25

(1.30)

After linear degradation, the residual resistance remains constant beyond 18A. Similar

construction for dynamic case was also proposed in Fig. 1.17(b).

p− y Curves for Sands

Based on a series of static and cyclic lateral load tests on pipe piles driven in submerged sands,

Reese et al. (1974) proposed a p − y relation for use in the sand. Fig. 1.18(a) represents

a characteristic curve, where two straight line segments OA and BU are connected by a

parabolic curve AB. A constant resistance is assumed beyond U.

O’Neill and Murchison (1983) also conducted a systematic study of proposed p − y

relationships in sands and proposed a single expression as follows, also refer to Fig. 1.18(b).
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(a) Static (b) Dynamic

Fig. 1.17 p-y Curves for Stiff Clay, from Reese et al. (1975)

(a) Reese et al. (1975) (b) O’Neill and Murchison (1983)

Fig. 1.18 p-y Curves for Sand

P

Pu

= nA tanh

(
kZ

APu

Y

)
(1.31)

where n is geometry factor, it takes 1.5 for tapered piles and 1.0 for prismatic piles; A is

a factor to account for cyclic or static loading condition. A = 0.9 for cyclic loading and

A = 3.0 − 0.8
Z

D
≥ 0.9 for static loading; k is the initial modulus of subgrade reaction, and

it can be determined from Fig. 1.19(a) as a function of the internal friction angle.

The ultimate lateral resistance per unit pile length is determined as the smaller value
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of the follows

Pu = (C1Z + C2D)γ′Z (1.32)

for a wedge failure near the ground surface, or

Pu = C3Dγ
′Z (1.33)

for a flow failure at depth. Coefficients C1, C2, C3 are determined from Fig. 1.19 (b) as a

function of the internal friction angle of the sand.

(a) Determination of k (b) Determination of C1, C2, C3

Fig. 1.19 p-y Curves Parameters for Sand, from API (2002)

p− y curves proposed by Reese et al. (1974) define the initial stiffness increasing lin-

early with depth Z and the initial modulus of subgrade reaction coefficient k. As commented

in Boulanger et al. (1999), a constant k value overestimates the p−y stiffness at depths larger

than a few pile diameters, since the stiffness of sand generally increases in proportion to the

square root (not the value) of confinement. Instead, they suggested using the elastic theory
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proposed by Vesic (1961):

ke = 0.65

√
EsD4

EI

Es

1− ν2
(1.34)

where Es = Young’s modulus of the soil = 2Gmax(1 + ν)Gmax, and Gmax is the small-strain

shear modulus of the sand, which can be either obtained by site investigation or empirical

correlations; ν is the soil’s Poisson’s ratio; D is the pile diameter, and EI is the bending

stiffness of the pile.

A similar adjustment can also be applied for clay. For example, p−y curve for soft clay

in Matlock (1970) implies an infinite initial stiffness, which is not appropriate for dynamic

analysis. Wang et al. (1998) proposed to use a computed ke from Eq.(1.34) to replace

Matlock’s exponential curve Eq.(1.21) up to the point of their intersection. Typically the

intersection corresponds to 35% Pu.
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2 Review of Analytical and Numerical Models
for Axially Loaded Piles

Numerous analytical and numerical models for static and dynamic load transfer of axially

loaded piles were developed over the years. The purpose of this review is to provide a context

for the numerical solution presented later and to examine typical assumptions made in the

analysis of the behavior of axially loaded piles.

2.1 ANALYTICAL STATIC LOAD TRANSFER MODELS

2.1.1 Randolph-Wroth Solution

Analytical models seek closed-form solutions of the pile behavior for the idealized soil re-

sponse and simplified boundary conditions. For a vertically loaded pile in an infinite linear

elastic half-space, the approximate analytical solution proposed by Randolph and Wroth

(1978) is often used to establish the load transfer function for the pile shaft and pile tip.

This solution is important because it forms the basis for the development of other methods.

To determine the load transfer of the shaft resistance, Randolph and Wroth (1978)

idealize the deformation pattern of soil around the pile shaft as shearing of concentric cylin-

ders. It can be further assumed that the radial soil displacements due to pile loads are

negligible compared with vertical displacement w. For this idealized model, the vertical

equilibrium of a soil element at radius r at depth z is governed by the following differential

equation
∂

∂r
(rτ) + r

∂σz

∂z
= 0 (2.1)

in which τ and σz are the shear stress increment and vertical stress increment (taking com-

pression as positive), respectively. When the pile is loaded, the increase in shear stress τ is
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much greater than the increase in vertical stress σz, so the second term in Eq.(2.1) can be

dropped 1 and Eq.(2.1) may be approximated as

∂

∂r
(rτ) = 0 (2.2)

Eq.(2.2) can be integrated to give the shear stress τ distribution in radial direction, written

in terms of shear stress τ0 at the pile shaft r0 as

τ =
τ0r0
r

(2.3)

Considering the fact that the gradient of the vertical displacement of the soil w is

much greater than that of radial displacement u, the shear strain (reduction in angle taken

as positive) is simplified as

γ =
∂u

∂z
+
∂w

∂r
≈ ∂w

∂r
(2.4)

Assuming that the stress-strain relation of the soil is linearly elastic, with a constant shear

modulus G, Eq. (2.4) can be written as

γ =
τ

G
=
τ0r0
rG

≈ ∂w

∂r
(2.5)

Integration of the above equation leads to approximation of the settlement of the pile shaft,

w0, as

w0 ≈
∫ ∞

r0

γdr = τ0r0

∫ ∞

r0

dr

Gr
(2.6)

Unfortunately, the above integral solution is unbounded and the usual assumption is that

there is some radius, rm, beyond which the shear stress and strain become negligible, i.e.,

w(rm) = 0. Accordingly, the shaft displacement w0 can be related to the local shaft stress

τ0 and modulus G as

w0 ≈ τ0r0

∫ rm

r0

dr

Gr
=
τ0r0
G

ln

(
rm

r0

)
= ζ

τ0r0
G

(2.7)

in which ζ = ln (rm/r0) is defined as the shaft load transfer factor. The settlement at a

radial distance r may be expressed as

w(r) = w0 −
τ0r0
G

ln

(
r

r0

)
(2.8)

1A more rigorous solution to incorporate σz is given by Mylonakis (2001).
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Obviously, the choice of rm is crucial to quantify local mobilized stress and strain

along the shaft. Randolph and Wroth (1978) proposed the following empirical relation

rm = 2.5 ρ L (1− ν) (2.9)

where L is the length of the pile, and ρ = G(L/2)/G(L) is an inhomogeneity factor, which

is defined as a ratio of the soil shear modulus at the pile mid-depth to that at the pile base.

So ζ = ln (rm/r0) depends on the slenderness ratio L/r0 of the pile and Poisson’s ratio ν of

the soil, and its value is usually around 4. Since the above formula is for a single pile in an

infinite homogeneous soil, modifications of rm to account for the influence of pile geometry,

inhomogeneous soil and layered soil stratigraphy are given by Guo and Randolph (1997) and

Chin and Poulos (1991). For more general soil profiles, rm may have to be determined from

a numerical procedure such as finite element analysis.

The solution for pile tip settlement, suggested by Randolph and Wroth (1978), is

similar to that of a rigid punch acting on the surface of an elastic half-space (Timoshenko

and Goodier, 1951, pp.372), and it can be estimated as

wb =
Pb (1− ν)

4 r0 Gb

η (2.10)

where Pb is the mobilized base load, Gb is the shear modulus of soil beneath the tip of the

pile. Compared with the original solution of Timoshenko and Goodier (1951), the additional

parameter η is introduced to account for the depth of the pile tip below the surface, i.e.,

the interaction of the soil layer above with the layer below. Although there has been much

debate and confusion over the coefficient η 2, it can be generally chosen as unity if plastic

yielding of the soil is considered.

By adding the results of the pile tip and shaft load transfer models, a reasonable

estimate of the deformation of an elastic pile in a homogeneous linearly elastic soil can be

obtained in closed-form. Considering the compressibility of an elastic pile, the pile load over

length P (z) can be determined by the elastic compression of the pile, as

P (z) = −AEp
∂w0(z)

∂z
(2.11)

2For example, Fox (1948) showed η = 0.5 should be used considering a loaded area embedded in a soil
mass at depth, and it was used by Burland and Cooke (1974). For plate loading testing conducted at the
bottom of an open borehole, Burland (1969) showed by finite element analyses that the limiting value for η
was about 0.85.
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in which Ep = Young’s modulus of the pile material; A = cross sectional area of the pile.

The gradient of pile load, P (z), can be related to the vertical soil reaction per unit pile

length, f(z), by
∂P (z)

∂z
= −f(z) = −k(z)w0(z) (2.12)

where k(z) ≡ f(z)

w0(z)
is often referred to as the modulus of subgrade reaction, in units of

force/length2. It is well known that k(z) depends on both soil and pile properties, and it

varies with depth even for a homogeneous soil profile when the compressiblity of the pile is

considered. For circular piles, the vertical soil reaction per unit pile length f(z) is simply

the integration of shear stress, i.e.,

f(z) = 2πr0τ0(z) (2.13)

Substituting Eq.(2.11) into Eq.(2.12) gives the one-dimensional equilibrium equation of a

single pile embedded in soils:

−EpA
∂2w0(z)

∂z2 + k(z)w0(z) = 0 (2.14)

Note that this governing equation is restricted only to the assumption of an elastic pile, and it

can be used for more general case of nonlinear soils. Considering the shaft load-displacement

relation of Eq. (2.7), the following governing differential equation can be derived from Eqs.

(2.14)
∂2w0(z)

∂z2 − 2

r2
0ζλ

w0(z) = 0 (2.15)

in which λ = Ep/G is the stiffness ratio between the pile material and the soil. The second-

order PDE can be solved by substituting the boundary conditions of Eqs.(2.10, 2.11) at the

tip of the pile

w0(L) = wb =
Pb (1− ν)

4 r0 G
η (2.16)

∂w0(z)

∂z

∣∣∣∣
z=L

= − Pb

AEp

(2.17)

Eq.(2.15) can be solved as

w0(z) =
1

2

Pb

r0G

{[
η(1− ν)

4
− 1

πr0λµ

]
e−µ(L−z) +

[
η(1− ν)

4
+

1

πr0λµ

]
eµ(L−z)

}
(2.18)

with µ =

√
2

ζλ

1

r0
. Due to the high stiffness contrast of pile and soil, the term (πr0λµ)−1 can

be ignored. Hence the solution of shaft displacement as a function depth can be simplified
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as

w0(z) = wb cosh (µ (L− z) ) (2.19)

In particular, the pile head displacement(z = 0) may be expressed in terms of the settlement

of the pile tip by

wt = w0(0) = wb cosh (µL) (2.20)

and total load supported by the pile may be obtained by integrating Eq. (2.12), and utilizing

Eqs.(2.13) and (2.18)

P (z) =
2πPb

ζr0

{
η(1− ν)

4µ
sinh[µ(L− z)] +

ζr0
2π

cosh[µ(L− z)]

}
(2.21)

and the pile load on top can be found as

Pt = P (0) =
2πPb

ζr0

{
η(1− ν)

4µ
sinh(µL) +

ζr0
2π

cosh(µL)

}
(2.22)

Finally, using Eqs.(2.20, 2.22, 2.10), the global stiffness of the soil-pile system, expressed as

a ratio of pile load on top and pile head displacement, can be evaluated as

kt =
Pt

wt

= G r0

[
4

η(1− ν)
+

2π

ζ

L

r0

tanh(µL)

µL

] [
1 +

4

η(1− ν)

1

πλ

L

r0

tanh(µL)

µL

]−1

(2.23)

The expression for the effective stiffness of the system Eq. (2.23) explicitly accounts

for the effect of the pile stiffness ratio λ, slenderness ratio L/r0, and Poisson’s ratio etc. It

should be noted that the result might become unstable for long compressible piles. Also,

the influence of the magnitude of the load is absent in this formulation because the soil is

considered linearly elastic, so the stiffness of the soil-pile system is also linearly elastic. The

above solution can degenerate to the limiting case of a rigid pile as λ→∞ and µ→ 0

kt =
Pt

wt

= ktip
t + kshaft

t =
4G r0
η(1− ν)

+
2πG L

ζ
(2.24)

where the first and second part of the above expression are contributions from tip resistance

and shaft resistance, respectively.

In summary, in seeking an approximated analytical solution for a vertically loaded

pile, the displacement pattern is assumed to have the form of shearing of the concentric

cylinders and the materials are assumed to be isotropic elastic. The approximation is made

such that radial displacements are assumed negligible, and shear stresses are assumed neg-

ligible beyond a radial distance rm. The zone of influence rm is usually taken as an average
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value along the shaft, and is a function of pile length L and the Poisson’s ratio ν of the soil.

The Randolph-Wroth solution is limited to homogeneous elastic soils, and the predicted

load-displacement is in good agreement only with the linear elastic part of the measured

pile settlement (Lee and Poulos, 1990). Various extensions to include nonlinearity and non-

homogeneity of soils have been attempted in the past and are discussed in the following

sections.

2.1.2 Vertical Variations in Soil Modulus

The analytical method can be extended to several special cases of nonhomogeneous soil

profiles. Randolph and Wroth (1978) first considered linearly increasing soil modulus with

depth. A more general vertical variation of soil shear modulus can be assumed as a power

function of depth z (Guo and Randolph, 1997; Guo, 2000a) and the solution procedure for

this case is briefly outlined below.

Assume that the shear modulus has the following general form

G = Ag(αg + z)n (2.25)

where n, Ag, and αg are constants. The above assumption is general enough to represent both

normally consolidated soil where shear modulus at the ground surface is usually assumed

to be zero and overconsolidated soil profiles where the shear modulus at ground surface is

nonzero.

Below the pile tip, shear modulus is assumed to be constantGb, which may be different

from the shear modulus GL at just above the pile tip. The jump in the shear modulus at the

pile tip can be described by the so-called end-bearing factor ξ = GL/Gb, and the stiffness

ratio is defined as λ = Ep/GL. The shaft load transfer equation of Eq.(2.7) can be rewritten

as

w0(z) = ζ
τ0(z)r0
G

= ζ
τ0(z)r0

Ag(αg + z)n
(2.26)

Combining with the governing equation Eq.(2.14), we get the basic differential equation for

the axial pile displacement

∂2w0(z)

∂z2 =
Ag

πr2
0Ep

2π

ζ
(αg + z)nw0(z) (2.27)
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The solution of Eq.(2.27) takes the form of modified Bessel functions of the non-integer

order. Again, the unknown constants can be found through the stress and deformation

compatibility boundary conditions at the pile tip, i.e.,

w0(L) =
Pb (1− ν)

4 r0 G
η = wb (2.28)

and
∂w0(z)

∂z

∣∣∣∣
z=L

= − Pb

πr02Ep

(2.29)

After elaborate derivation, the final expression for the displacement and load at any depth

of z can be expressed as

w0(z) = wb

(
αg + z

αg + L

)1/2 (
C3(z) + χvC4(z)

C3(L)

)
(2.30)

P (z) = ksEpπr
2
0wb(αg + z)n/2

(
αg + z

αg + L

)1/2 (
C1(z) + χvC2(z)

C3(L)

)
(2.31)

where

ks =
αg + L

r0

√
2

λζ

(
1

αg + L

) 1
2m

χv =
2
√

2

π(1− ν)ηξ

√
ζ

λ

C1(z) = −Km−1(L)Im−1(y) +Km−1(z)Im−1(L)

C2(z) = Km−1(L)Im−1(y) +Km−1(z)Im(L)

C3(z) = Km−1(L)Im(y) +Km(z)Im−1(L)

C4(z) = −Km(L)Im(y) +Km(z)Im(L) (2.32)

and Im, Im−1 are modified Bessel functions of the first kind of non-integer order m, m − 1

respectively. Km, Km−1 are modified Bessel functions of the second kind of non-integer

order m, m − 1 respectively. The order m and variable y of the function can be calculated

as m = 1/(2 + n), and y = 2mks(αg + z)1/(2m). The stiffness of the soil-pile system at any

depth z can be determined as

P (z)

w0(z)
=
√

2πr0GL

√
λ

ζ
Cv(z) (2.33)

Cv(z) =

(
αg + z

αg + L

)n/2 (
C1(z) + χvC2(z)

C3(L) + χvC4(z)

)
(2.34)

Hence we now have an analytical solution for the vertical variation in soil modulus; however,

the soil is still assumed to be linearly elastic.
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Fig. 2.1. Estimated Radial Distribution of Soil Modulus Ratio, from Kraft
et al. (1981)

Fig. 2.2. Idealized Radial Distribution of Soil Modulus Ratio, from Kraft
et al. (1981)
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2.1.3 Radial Variations in Soil Modulus

In practice, the radial variation in the soil modulus may be the result of pile installation,

and soil consolidation and, more significantly, due to reduction in the soil modulus at large

strains associated with pile loading especially as the pile capacity is reached or exceeded. As

schematically illustrated in Fig. 2.1, after pile-driving compaction and consolidation, the soil

modulus becomes stiffer around pile wall. Loading of the pile results in significant reduction

in the soil modulus. The reduction depends on load intensity and can be approximated by

a linear variation in radial direction.

Novak and Sheta (1980) were the first to examine the importance of the highly non-

linear region around the pile. They divided the soil around the pile into an outer and inner

hollow cylinder with distinctive modulus assigned. Hence the radial variation in the soil

modulus is prescribed in a piecewise constant manner. Kraft et al. (1981) proposed a linear

variation in the modulus (Fig. 2.2) based on cavity expansion and consolidation results by

Randolph et al. (1979). The average soil modulus for this case can be evaluated as

Gave = G∞

ln

(
rm

r0

)
(
r1
r0

)
− 1(

M0r1
r0

)
− 1

ln

(
M0r1
r0

)
+ ln

(
rm

r1

) (2.35)

in which Gave = equivalent shear modulus for the soil-pile system; G∞ = shear modulus at

great distance from pile; and r1, M0 are defined in Fig. 2.2.

2.1.4 Soil Nonlinearity

The theoretical work of Randolph and Wroth (1978) can be extended to consider the non-

linear stress-strain behavior of soils. Recall that the load-displacement relationship at the

pile shaft is given by Eq. (2.7),

w0 = τ0r0

∫ rm

r0

dr

Gr
(2.36)
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The following hyperbolic shear stress - shear strain relationship was considered by Kraft

et al. (1981),

G = Gi

(
1− τRf

τf

)
= Gi (1− ψ) (2.37)

in which Gi = initial small strain shear modulus; G = secant modulus at applied stress

level; τ = shear stress; τf = shear stress at failure; Rf = hyperbolic curve-fitting constant,

it takes value Rfs for the shaft and Rfb for the tip reaction; ψ = τRf/τf is defined as a

nondimensional parameter for loading intensity, and it has assumed values ψs for points

along the shaft and ψb at the pile tip.

Utilizing Eqs. (2.36) and (2.37), the following load-transfer relationship can be ob-

tained (Kraft et al., 1981):

w0 =
τ0r0
Gi

ln

(
rm/r0 − ψs

1− ψs

)
(2.38)

From which the secant stiffness for the pile shaft segment of unit length can be obtained as

kshaft
s =

2πGi

ln

(
rm/r0 − ψs

1− ψs

) (2.39)

where ψs = τ0Rf/τf is the loading intensity parameter evaluated at points along the shaft.

The result coincides with the Randolph-Wroth solution if linearly elastic soil (i.e., ψs = 0)

is assumed.

To facilitate incremental load-displacement analysis, the secant modulus in Eq.(2.37)

can be replaced by a corresponding tangent modulus as

Gt = Gi

(
1− τRf

τf

)2

= Gi (1− ψ)2 (2.40)

The resulting tangent stiffness for the pile shaft segment of the unit length can also be

obtained (Chow, 1986) as:

kshaft
t =

2πGi

ln

(
rm/r0 − ψs

1− ψs

)
+

ψs (rm/r0 − 1)

(rm/r0 − 1)(1− ψs)

(2.41)

and the tangent stiffness for the tip is:

ktip
t =

4Gir0
1− ν

(1− ψb)
2 (2.42)
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in which ψb = PbRfb/Pf ; Pb = mobilized tip load; Pf = limiting tip load; and ν= Poisson’s

ratio at the pile tip. Based on limited experience Poulos (1989) suggests the following

hyperbolic curve fitting constants: Rfs = 0 ∼ 0.5 and Rfb ≈ 0.9. It is interesting to

note that the above formula coincides with Randolph-Wroth solution Eq.(2.24) at the initial

loading stage (τ0 → 0), or for the special case of linearly elastic soil (Rfs = Rfb = 0).

For some other cases of nonlinear soil behavior, the equivalent stiffness of the soil-

pile system has also been derived analytically. For example, the viscoelastic effect has been

accounted for by integration of a generalized visco-elastic stress-strain model for the soil

(Guo, 2000b).

2.2 ANALYTICAL DYNAMIC LOAD TRANSFER MODELS

2.2.1 Dynamic Stiffness of SDF System

To illustrate the concept of dynamic stiffness, it is convenient to examine a single-degree-

of-freedom (SDF) dynamic system consisting of a mass M , a spring k, and a dashpot c,

subjected to external load F . The governing equation for the system is

Mü(t) + cu̇(t) + ku = F (t) (2.43)

The natural frequency of the undamped system, ω, can be determined by the spring stiffness

k and mass M ,

ω =

√
k

M
(2.44)

It is also customary to introduce the fraction of critical damping given by

β =
c

2
√
kM

=
1

2

c

k
ω (2.45)

The analytical solutions of this simple system are briefly reviewed here because the various

terms appear later in other formulations.

(1) Free vibration: Free vibration of a SDF system induced by the prescribed initial

displacement u0 of the mass is exponentially damped harmonic oscillation of the form

u = u0e
−βωt

(
cosωDt+

βω

ωD

sinωDt

)
(2.46)
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where the damped natural frequency ωD = ω
√

1− β2, and the period of vibration T =
2π

ωD

.

The amplitude of the vibration after each cycle is damped by a constant factor as follows,

u(t)

u(t+ 2π
ωD

)
= e2πβω/ωD = e2πβ/

√
1−β2

(2.47)

and the above solution is often used in a small strain dynamic test, such as the resonant

column test, to determine the damping coefficient β or c.

(2) Harmonic excitation: A harmonic load F with frequency Ω

F = P sin Ωt (2.48)

results in steady-state vibration of the system given by a harmonic function with phase delay

Ψ,

u = A sin (Ω t+ Ψ) (2.49)

where the amplitude A =
P√

(k −MΩ2)2 + 4β2Ω2/ω2
=

P√
(k −MΩ2)2 + c2Ω2

, and the

phase is delayed by tan Ψ = − 2βΩ/ω

1− Ω2/ω2
= − cΩ

k − Ω2M

With the steady-state solution of harmonic excitation, it is straightforward to gener-

alize the above solution to an external load F of the following complex form

F = PeiΩt (2.50)

and the displacement solution is given by

u = Aei(Ωt+Ψ) (2.51)

The real and imaginary part of u correspond to the steady-state response of external exci-

tations P cos Ωt and P sin Ωt, respectively.

The dynamic stiffness k∗, also in complex form, can be introduced to relate the force

and displacement as

F = k∗u (2.52)

and direct calculation reveals k∗ is quantified as

k∗ = (k −MΩ2) + i c Ω = k(k1 + ik2) (2.53)

where k1 = 1− Ω2

ω2
and k2 =

2βΩ

ω
.

40



Although the dynamic stiffness is cast as a complex number, Eq. (2.53) has direct

physical meaning. The real part of dynamic stiffness includes the effects of spring stiffness k

and inertiaM , and is a quadratic function of frequency Ω, while the imaginary part represents

energy dissipation through viscous damping c, and is a linear function of frequency Ω. The

energy dissipation by viscous damping can be evaluated through the ratio of the dissipated

energy to the maximum strain energy per cycle as

ER =
πcΩA2

1
2
kA2

= 4π
βΩ

ω
= 2π

cΩ

k
(2.54)

(3) Linearized hysteretic system: Physical systems rarely have an actual viscous dash-

pot. Thus, the assumption of linear viscous damping is useful mainly for its mathematical

simplicity, since it is easier to get the analytical solution of linear ODE with constant co-

efficients than a nonlinear differential equation. For the nonlinear hysteretic spring, the

equivalent linear system can be defined to match the load-displacement relation and the

energy ratio. At a given amplitude of motion, the equivalent secant stiffness keq can be

determined from the load-displacement relation, and the damping ratio D can be defined as

ER =
∆W

W
= 4πD (2.55)

As an analogy to Eq. (2.53), the dynamic stiffness of the equivalent system is determined

as

k∗ = keq

(
1− Ω2

ω2
eq

+ 2 i D

)
(2.56)

with

ωeq =

√
keq

M
(2.57)

In this formulation the hysteretic damping ratio, D, is independent of frequency. The

key point of Eq. (2.56) is to replace the original nonlinear system with a linear hysteretic

system such that the secant load-displacement relation and energy ratio are preserved. This

is also equivalent to a viscous system with c inversely proportional to frequency.

Finally, the dynamic stiffness of combined system with hysteretic spring and viscous

damping c can be found via simple addition if c is not affected by spring nonlinearity

k∗ = keq

[
1− Ω2

ω2
eq

+ 2 i

(
D +

βΩ

ωeq

)]
(2.58)
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As mentioned above, the linearization is equivalent in terms of the secant load-

displacement relation and energy dissipation. While this simplification captures the key

aspects of dynamic behavior, the real time-history of the load and deformation is not followed

and the quantitative evaluation of the actual tangential stiffness is very difficult. Hence, the

approximation is good only to the first order and is suitable for the steady-state harmonic

oscillation.

2.2.2 Equivalent Linearization of Axial Response of Piles

Equivalent linearization is frequently employed to derive the appropriate properties for a

dynamic soil-pile system. Early approximate solutions are mainly based on the assumption

that soils are radially homogeneous. Novak and Sheta (1980) were among the first to include

the highly nonlinear region around the pile. In their model, the soils are divided into an

outer infinite region and a massless inner layer (hollow cylinder) surrounding the pile, as

shown in Fig. 2.3. Soil nonlinearity, as well as weakened bond and slippage are approximately

accounted for by a reduced shear modulus and increased material damping of the inner layer.

Both soil zones are assumed to be homogeneous, isotropic and viscoelastic with frequency-

independent material damping (linear hysteretic damping).

Axial stiffness of the composite system can be obtained by assuming that the mode

of displacement is predominately under vertical harmonic excitation, and that horizontal

displacement can be ignored; i.e., vertical displacement w(t) = w(r) exp iΩt with harmonic

motion of frequency Ω. For this linear viscoelastic system, the governing differential equation

for a vertically excited soil layer of unit thickness is

G∗
∂2w

dr2
+
G∗

r

∂w

∂r
= ρ

∂2w

∂t2
(2.59)

where G∗ is the complex stiffness of soil, with its real part representing shear modulus, and its

imaginary component taking into account the hysteretic material damping. Eq. (2.59) holds

for all media, except that the inner cylinder is assumed massless (ρ = 0), which is necessary

to eliminate spurious wave reflections across the interface of two distinct soil regions. Further

assumptions are made such that there is no separation between the soil and pile, and the pile

cylinder is rigid, circular, and infinitely long. Considering the displacement compatibility

condition between the interface of two soil regions, the dynamic axial stiffness of the soil-pile
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Fig. 2.3 Composite Soil Medium, from Novak and Sheta (1980)
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system can be derived explicitly from Eq. (2.59) as

k∗w =
2πG∗m

− ln
R

b
+
G∗m
G∗s

K0(sb)

(sb) K1(sb)

= G(Sw1 + iSw2) (2.60)

where G∗s = G(1+ iDs) is the complex stiffness of the outer soil region, G∗m = Gm(1+ iDsm)

is the complex stiffness of the inner soil region, and K0 and K1 are modified Bessel functions

of order zero and order one, respectively. Parameter b is the radius of the soil interface, s =
Ω i

Vs

√
1 + iDs

, Vs =
√
G/ρ, and R is the pile radius. The dimensionless stiffness and damping

parameters Sw1 and Sw2 depend on the dimensionless frequency parameter (a0 = RΩ/Vs),

inner layer and pile radius ratio, as well as stiffness and damping contrast between inner and

outer soil layers.

Further development includes considering continuous radial variation of soil stiffness

(secant modulus), as proposed by Gazetas and Dobry (1984) and later refined by Michaelides

et al. (1997). As shown in Eq.(2.3), shear stresses developed in the soil are inversely pro-

portional to the radial distance from the pile. The radial variation of stress and strain

requires a strain compatible shear modulus to be used in the analysis. The idea is to replace

the actual nonlinear but radially homogeneous soils with linear but radially inhomogeneous

soils through equivalent linearization procedure. The governing differential equation for a

vertically excited soil layer taking account of radial variation in modulus is modified as,

G∗
d2w

dr2
+

(
dG∗

dr
+
G∗

r

)
dw

dr
= ρ

∂2w

∂t2
(2.61)

where G∗ = G(1 + 2 i ξ) is the complex stiffness of the soil. Using experimental data from

Vucetic and Dobry (1991), Michaelides et al. (1997) proposed the following variation of shear

modulus and damping ratio

G(r)

Gmax

= 1−
{

Λ
R

r
F (ar)

}0.72

(2.62)

ξ =

 2 + [18− 0.08(Ip − 15)](1−G/Gmax) if 0 ≤ Ip < 100

2 + 11.2(1−G/Gmax) if Ip ≥ 100
(2.63)

where Λ is called the loading intensity factor. It can be related to the amplitude of imposed

cyclic shear stress at the soil-pile interface (τ0), and the plasticity index of the soil ((Ip)) as

follows

Λ = 2700
τ0

Gmax

10−(1.4Ip/λ) (2.64)
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and λ is a function of plasticity index Ip

λ ≈ 0.002(Ip)
2 + 0.25(Ip) + 60 (2.65)

The radial distribution function

F (ar) ≈

 1 if ar < 1

a0.57
r if ar > 1

(2.66)

where the argument is a dimensionless frequency parameter defined as

ar = r Ω/Vs(r) (2.67)

and Ω is the frequency of excitation. Unfortunately, the introduction of Eq.(2.62) precludes

an analytical solution of Eq.(2.61). Instead, Eq.(2.62) can be fitted piecewisely by polynom-

inals, leading to a solution in terms of Hankel functions.

The complex stiffness of soil-pile system, k∗w = kw + i cwΩ can also be obtained.

Michaelides et al. (1997) showed that with increasing load intensity factor Λ, soil nonlinearity

increases, and the equivalent stiffness kw of the soil-pile system decreases. The damping cw

includes both the hysteretic damping of the soil and radiation damping of the infinite space.

The former increases and the latter decreases with increasing nonlinearity.

2.3 NUMERICAL METHODS

While analytical models are theoretically sound, but their limitations are that the site con-

dition and material properties have to be overly simplified. Numerical methods have been

introduced in recent years because, theoretically, they offer much greater flexibility in mod-

elling complex problems including heterogeneity, anisotropy and nonlinearity. In this section,

we review four types of most frequently used numerical methods in pile simulation: wave

equation analysis, the nonlinear Winkler model, the boundary element method and the finite

element method.

2.3.1 Wave Equation Analysis

From the pile design perspective, pile behavior derived from the pile-driving test itself is

desirable, since it has the advantage for both cost savings and incorporation of the site-
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specific condition. The initial attempts of this kind can be traced back to various dynamic

pile formulas proposed over the last 100 years. The dynamic formulas are usually based on

Newtonian mechanics of rigid body impact, and use only the simplest measurement available

(i.e., permanent set per hammer blow). In general, dynamic formulas are empirical in nature

and the predictions are not satisfactory.

It was not until the early 1930s that researchers realized that the pile-driving mech-

anism is more of a wave propagation problem and that the effects of soil-pile interaction

should also be addressed. For these purposes, the Smith model is perhaps the most widely

accepted in practice (Smith, 1960). The model introduces a one-dimensional wave equation

to analyze the elastic pile subjected to hammer blows and the induced soil resistance. As

illustrated in Fig. 2.4, the pile segments and driving elements (ram, capblock, and the pile

cap) are idealized by a series of discrete weights and springs. Simple constitutive relations

are specified for the capblock, and the soil resistance at any depth along the pile is modeled

by an elastic-perfectly plastic spring and dashpot in parallel. The one-dimensional wave

equation to the discrete system is solved by a simple numerical integration to provide the

response of each weight and spring for each time step. Since pile driving usually generates

a fairly long wave form, Smith recommended the division of the pile into lengths of 5 ft

to 10 ft and a time interval of about 1/4, 000 second for a computational step. Although

numerous improvements have been made ever since, Smith’s model continues to form the

basis for modern wave equation analysis.

One of the major applications of wave equation analysis is to estimate the pile ca-

pacity from force and velocity measurements during pile driving. Researchers from the Case

Institute of Technology (now Case Western Reserve University) developed a computer pro-

gram called CAPWAP c©(CAse Pile Wave Analysis Program) in the late 1960’s to fully

take advantage of the accurate force and acceleration measurements from the driving system

(Rausche, 1970). Based on wave theory, the Case method evolves to a “signal matching”

iterative process: Direct measurements at the pile top for each hammer blow (usually the

velocity integrated from the measured acceleration) are used as input to replace the hammer

model. The computed force is then compared with the measured force, therefore soil resis-

tance distribution can be back-analyzed accordingly to generate a good agreement between

these two records (Rausche et al., 1972). It is also shown that the resistance distribution
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Fig. 2.4 Smith Model for Pile Driving Analysis, from Smith (1960)
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calculated by CAPWAP is unique, from which the total pile capacity can be reasonably esti-

mated. The static pile capacity can also be obtained by subtracting the dynamic part from

the total driving resistance, which is usually assumed to be in proportion to the pile tip ve-

locity (Rausche et al., 1985). Several guidelines were also proposed in order to obtain reliable

pile capacity prediction. For example, the hammer impact energy during the test should be

sufficient to fully mobilize the soil resistance. If the hammer input is small, the method will

result in a conservative prediction, since the dynamic test will activate only a portion of pile

resistance. Also, due to setup or relaxation effects, the pile capacity can change with time,

so the dynamic method gives only the static capacity at the time of testing. Restrike tests

are recommended after an appropriate waiting period to obtain the long-term pile capacity

(Likins, 2004).

Because of the simplicity and the capacity to be calibrated with field pile-driving

tests, the wave equation method and computer programs have found wide application in

industry. It is estimated that over 5000 job sites are tested and analyzed annually based

on this method. The on-going International Conference on the Application of Stress-Wave

Theory to Piles has been devoted to exercise this approach in the past twenty years, and a

large amount of literature has been accumulated from the conference proceedings. A much-

detailed historical account of the development can be found in a recent review paper by

Hussein and Goble (2004).

However, the wave equation analysis method today still suffers many drawbacks. One

major limitation is its reliance on an overly simplistic soil model, which cannot described the

dynamic response of the soil accurately. Parameters used for the soil, namely the maximum

elastic deformation (termed as the “Quake” Q) and damping coefficients, are non-standard

and empirical in nature. It has been recognized that these parameters are not a function of

soil only, but also depend on pile properties. Since they cannot be independently obtained

from laboratory tests and then used in the analysis, there has been much debate on how

to sensibly choose them. Typically, they should be back-analyzed from the prototype field

tests or empirical correlations. Furthermore, discretization of a pile as a number of masses

and springs for wave equation analysis leads to discrete fields of displacement, velocity and

acceleration over the pile length, and the solution could be considerably improved if a con-

tinuous interpolation and implicit time integration scheme was used; see Borja (1988). Since
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the soil is modelled only through distributed reaction forces, inertial effect of the soil mass

is not considered. Significant energy loss by wave radiation from the pile to the soil mass

is also absent in the modelling. More importantly, the method is designed for estimating

the capacity of piles, and it is not suitable for the general purpose of soil-pile interaction

modelling.

2.3.2 Nonlinear Winkler Foundation Model

To analyze soil-pile interaction, the nonlinear Winkler foundation model is widely used due

to its simplicity. This model idealizes the effect of the soil surrounding the pile into a

combination of discrete springs, sliders, dashpots, lumped masses, with each component

representing the effect of soil nonlinearity, pile-soil slip and separation (gapping), energy

dissipation, inertia etc. In this section, we give a few examples to illustrate the main features

of this method.

In the case of a dynamic axially loaded pile, strong nonlinear soil-pile interaction

occurs in the near field, and the far field soil is primarily linear elastic. El Naggar and Novak

(1994b) presented a nonlinear Winkler foundation model as shown in Fig. 2.5, where the soil

is differentiated into a slip zone, an inner field and an outer field. Masses are lumped in soil

nodes of the inner field to account for inertial effect. The slip zone is a rigid plastic slider

between the pile and soil nodes, enabling slippage between the pile and soil at a limiting

load. The inner soil field can develop high nonlinearity, and it can be modelled, for example,

by a hyperbolic stress-strain relation suggested by Kondner (1963),

γ

γr

=
η

1− η
(2.68)

where η = τ/τf in which τf is the ultimate shear strength; γr = τf/Gmax is the reference shear

strain, and Gmax is the maximum soil shear modulus at small strain. Equivalent linearized

stiffness and hysteresis damping parameters are assigned to soil springs and dashpots. As

derived in previous sections, the equivalent stiffness of the inner field spring for a unit of the

shaft length, after integrating the stress-strain relation over the thickness of the inner zone
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and the perimeter of the shaft, can be expressed as

Knl =
2πGmax

ln

(
r1/r0 − η0

1− η0

) (2.69)

where η0 =
τ0
τf

represents the loading intensity, τ0 is stress at pile surface (r = r0), and r0,r1

are the pile and inner field radii, respectively. To model the hysteretic behavior of the soil,

unloading stiffness can be assumed completely elastic as

Knl =
2πGmax

ln

(
r1
r0

) (2.70)

Since stress intensity is usually low in the outer field, the outer field soil can be modelled by

an elastic spring with a dashpot for radiation damping. The linear stiffness Kl and damping

parameter C should be chosen to accurately represent radiation damping, and they can be

approximated for example by the plane strain solution for an infinitely long massless cylinder

vibrating in an infinite elastic medium (Novak et al., 1978) as,

Kl = Gmax S1 (2.71)

C =
Gmaxr0
Vs

S2 (2.72)

where S1 and S2 are constants, and they can be chosen based on the dominant dimensionless

frequency parameter a0 = Ωr0/Vs, where Ω is the frequency of excitation, r0 is the pile

radius, and Vs is the shear wave velocity of soils.

The Winkler model can also incorporate the loading rate effect and cyclic stiffness

degradation by proper modification of the ultimate resistance and loading/unloading stiffness

of the nonlinear soil spring (El Naggar, 2004). In the case of a dynamic laterally loaded pile,

a more sophisticated model by Boulanger et al. (1999) is also capable of simulating drag

force, gapping and closure etc. The nonlinear p − y behavior is conceptually divided into

three components in a series, namely, the elastic component (p − ye), plastic component

(p − yp), and gap component p − yg, shown in Fig. 2.6(a). Radiation damping is included

by a dashpot in parallel with the elastic components. The effect of gapping is modeled by

a drag and closure nonlinear springs in parallel. Physically, the drag force is caused by

mobilized residual soil resistance on the sides of the pile as it moves within the gap, and

its maximum value can be set as a suitable portion of the ultimate capacity. Component
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Fig. 2.5. Nonlinear Winkler Model for Dynamic Analysis of a Single Pile,
from El Naggar and Novak (1994b)

behavior and combined response are shown in Fig. 2.6(b). The reliability of the Winkler

model was validated through a series of centrifuge model pile tests.

In the past, researchers have used a variety of dashpot-spring combinations, and

there is no unanimous agreement on the details of the arrangement. The predicted response

for various combinations of nonlinear springs (representing nonlinear soil response in the

near field) and linear viscous dashpots (representing radiation damping in the far field) has

been examined by Wang et al. (1998) and compared with model pile centrifuge tests. They

concluded that combination in a series is technically superior to a parallel arrangement, since

the latter would produce excessive damping forces and the viscous force may dominate (or

pollute) the solution. Serial arrangement is also more representative of the physics, since

energy tends to pass successively from the near field to the far field. Hence, if serial radiation

damping is used, the solution depends more sensitively on the soil properties and improves

the predicted frequency content of the system.

51



Fig. 2.6 A Nonlinear p− y Element, from Boulanger et al. (1999)

In a seismic soil-pile interaction analysis, the response of the free-field soil column

can be analyzed separately using an equivalent linear site response program such as SHAKE

(Schnabel et al., 1970; Idriss and Sun, 1991). The free field response is then prescribed

as input motion to the Winkler soil at depths. Alternatively, a hybrid Winkler and finite

element model can be used, as schematically illustrated in Fig. 2.7. In this model, a far-field

soil column is modelled by finite element to generate site-specific ground motion input for

near-field soils, where highly nonlinear interactions between the pile and near-field soils are

modelled through the discrete springs and dashpots. Various empirical rules were proposed

by Bea et al. (1984) for initial loading, unloading/reloading, load reversal, gapping and cyclic

degradation etc., as shown in Fig. 2.8. The system has the capacity to analyze cyclic, strain

rate, gapping, and damping effects for piles embedded in cohesive and cohesionless soils.
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Fig. 2.7 Pile Soil Analysis System, from Bea et al. (1984)

In summary, the Winkler method has been extensively developed and used in the past

due to its simplicity. The model has been reported to give a satisfactory result for geometri-

cally simple soil-structure systems. However, the performance of the Winkler method is still

debatable if it is applied to more complex systems or pile group. Disregarding soil continuity

makes it impossible to model pile-to-pile interaction rigorously, albeit a few approximations

have been proposed to incorporate the group effect, for example, see El Naggar and Novak

(1994a); Mostafa and El Naggar (2002). More importantly, simplification of the continuum

soil into discrete springs and dashpots makes model parameters empirical or semi-empirical

in nature. They are not intrinsic soil properties but also depend on the pile properties

and loading conditions. For most cases, they have to be adjusted to fit the experimental

data. The shortcomings may be removed by means of continuum-based numerical methods,

particularly by the boundary element method and the finite element method.
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Fig. 2.8 Generalized Nonlinear Rules, from Bea et al. (1984)
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2.3.3 Boundary Element Method

The boundary element method (also known as the integral equation method) is probably

among the earliest continuum methods developed for the soil-pile interaction analyses. Com-

pared to other continuum methods, such as the finite element method, the boundary element

method has considerable advantage of computational efficiency, since only the boundary of

the simulation domain needs to be discretized. For a pile embedded in a infinite soil, only

the ground surface and soil-pile interface need to be meshed.

In the discrete setting, the boundary element method calculates displacement in the

k direction at node i (written as wki with two subscript indices) as the summation of con-

tribution from the nodal force Pkj in the k direction acting on node j over all nodes,

wki =
n∑

j=1

fijPkj (2.73)

where fij is the flexibility coefficient, representing the displacement at node i due to unit

point load at node j, and n is the total number of nodes.

The flexibility coefficient crucially depends on fundamental solutions of a given mate-

rial property and geometry. To date, only a few closed-form solutions exist for the simplest

materials. Mindlin’s solutions (Mindlin, 1936) for a point load in the interior of an elastic

half space is usually employed in most boundary element analyses; however, the solution is

suitable only for piles embedded in homogeneous, isotropic and elastic soils.

Many ad-hoc procedures have been proposed in the past to extend the boundary

element method to suit for more realistic soil responses and distributions. Considering a pile

embedded in a horizontally layered soil where the moduli of adjacent layers differ abruptly,

Poulos (1979), Lee and Poulos (1990) suggested an empirical modification of the soil moduli

and used them in Mindlin’s solutions. The modified soil modulus is a weighted average

taking into account the stiffness differences and distances between layers empirically. More

theoretically sound approaches directly take advantage of fundamental solutions for layered

soils. Although solutions for general multi-layered soil profile are not available at the present,

solutions for a point load in the interior and the interface of a two-layered elastic half-space

(Chan et al., 1974; Davies and Banerjee, 1978) have been used (Chin et al., 1990).

Since the development of the boundary element method requires the availability of the
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fundamental solution, severe restriction is imposed on the constitutive behavior of modelled

materials. Poulos and Davis (1980) devised an approximate method to treat the effect of

pile-soil slippage by loosening the constraint of vertical displacement compatibility. It should

be noted that soil displacements in their analyses are still given by elastic theory. The

dynamic problem is also cumbersome to solve in the time domain. Although time-domain

boundary element methods were proposed to analyze the transient response of a vertical

pile, for example in (Tham et al., 1996), the development is mainly limited to elastic soil.

More sophisticated material behavior such as nonlinearity, plasticity, hardening, and strain

localization, and more complex soil stratigraphy are, if not impossible, extremely difficult

to accommodate in boundary element analyses. With the advancements in computational

technology, computational costs are no longer a major concern. As a result, at present, the

interest in boundary element methods is diminishing, and the current trend is in favor of

more powerful and flexible finite element methods.

2.3.4 Finite Element Method

Although nonlinear discrete systems have been extensively used due to its simplicity, severe

limitations remain in the proper assessment of the empirical model parameters. With the

advancement of computing technology, the finite element method is increasingly attractive

as a versatile and powerful tool for realistic soil-structure interaction analyses.

Early finite element simulations of soil-pile interaction employed simple constitutive

relations to represent soils. Ottaviani (1975) assumed that the pile was embedded in linearly

elastic and homogeneous soil and studied a vertical loaded single pile as well as a pile group.

Amir and Sokolov (1976) also modelled the soil as linearly elastic to study the behavior

of piles in expansive soils. A trilinear elastic stress-strain relationship for soils was used

by Ellison et al. (1971) to study the load-deformation mechanism of bored piles in London

clay. Kuhlemeyer (1979) adopted a power law to study static and dynamic laterally loaded

floating piles. An axisymmetric model with elastic-perfectly plastic soil was used by Pressley

and Poulos (1986) for the pile group.

The hyperbolic family of soil models was often used to describe nonlinear stress-strain

behavior (Kondner, 1963; Duncan and Chang, 1970; Hardin and Drnevich, 1972; Fahey and
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Carter, 1993). Desai (1974) used the Duncan-Chang hyperbolic soil model for finite element

analysis of piles in sands. To model vertical pile movement in expansive soils, Mohamedzein

et al. (1999) introduced swell-induced strains in the Duncan-Chang model, and related swell-

induced strains to change in soil suction. Lee and Salgado (1999) reformulated the hyperbolic

equation initially proposed by Fahey and Carter (1993) to the 3D stress condition, with non-

associative Drucker-Prager criterion as the failure surface. The effect of sand density, which

can be related to the cone resistance from CPT test, was correlated to determine the tip

resistance of axially loaded piles.

Simple plasticity models, such as Mohr-Coulomb, von Mises and Drucker-Prager

model (Drucker and Prager, 1952), have also been often used for soils due to their relative

simplicity. For example, a comprehensive nonlinear finite element analysis of a vertically

loaded single pile was carried out using ABAQUSTM (Trochanis et al., 1991). In this study,

the soil was modeled using an extended Drucker-Prager plasticity, while piles were modeled

as linearly elastic material. Non-associative Drucker-Prager and von Mises models were also

used by Yang and Jeremic (2002, 2005) to study interaction between distinct soil layers for

a laterally loaded pile in multi-layered soil profiles. A non-associative Mohr-Coulomb model

for the soil was used in finite element by Lee et al. (2002) to compute the distribution of

dragloads due to negative skin friction in pile groups. They concluded that the dragload

is normally overestimated from empirical methods and elastic analyses. A nonlinear finite

element model, with proper stiffness and soil slip included, is necessary for an accurate

prediction. Although these previous analyses dealt with soil-pile interaction with various

degrees of success, uncertainties and limitations associated with these simple plasticity mod-

els were not fully addressed. Wang and Sitar (2004) have conducted a parametric study

of the influence of various model assumptions, i.e., friction angle approximation, volumetric

dilatancy etc., on predicted axial pile behaviors in cohesionless and cohesive soils.

Provided soil parameters can be sensibly determined, distinctive models can provide

similarly satisfactory performance. Four different constitutive soil models, namely, the linear

elastic model (LEM), the Duncan-Chang’s hyperbolic model (DCM), the Modified Cam-clay

model (MCM), and Yin’s two yield surface elastoplastic model (YM), were used separately

to simulate a benchmark static pile load test (Cheung and Lee, 1991). The computed load-

settlement of the single pile was compared with field measurements. It was found that the
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system response cannot be properly captured by a linear elastic model, and consideration of

soil nonlinearity in one way or another is necessary.

A more advanced model has also been developed to study statically loaded axial

piles. Geordiadis et al. (2003) have examined the influence of partial soil saturation on axial

pile behavior by a total stress elasto-plastic model. They found that the presence of an

unsaturated zone has significant importance for shallow foundations, which gives a higher

static bearing capacity due to suction, and it is subjected to the influence of ground water

table fluctuation.

An elasto-plastic model was also used in the dynamic finite element analysis of piles

(Wu et al., 1989). To simulate pile-driving dynamics, Liyanapathirana et al. (2000, 2001)

used von Mises material to model the soil and an Eulerian-like algorithm to accommodate

large accumulated displacements of piles subjected to multiple hammer blows. More com-

plicated effective stress analyses were performed by Mabsout et al. (1995) and Mabsout and

Sadek (2003) to model the pile-driving process in saturated clays. The soil model adopted is

a simplified version of bounding surface plasticity (Dafalias and Herrmann, 1986) proposed

by Kaliakin and Dafalias (1989). The soil model has 13 parameters: six parameters are typ-

ical of critical-state soil mechanics (λ, κ, Mc, Me, G, ν), two parameters for the geometry of

the bounding surface, and the remaining five parameters to describe the hardening function.

To accommodate large deformation experienced during penetration, an updated Lagrangian

scheme was used. Coulomb-type frictional elements via the penalty method were also used

along the soil-pile interface. Although the model simulated the time history of pile penetra-

tions and pore-pressure generation, it has not been calibrated against an experimental or an

actual pile-driving test.

For a soil-pile-structure system under earthquake loading, most research efforts have

been devoted to study laterally loaded pile response. Bentley and El Naggar (2000) nu-

merically evaluated the kinematic interaction effects on the pile response under earthquake

excitation using the Drucker-Prager soil model and considered the influence of soil plas-

ticity, pile-soil interface and radiation damping. The bounding surface plasticity model of

Dafalias and Herrmann (1986) has also been used in a two-dimensional finite element analy-

sis of a pile-supported structure under earthquake excitations and the results compared well

with a series of centrifuge model experiments (Anandarajah et al., 1995). The hierarchical
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single surface (HiSS) model, proposed by Wathugala and Desai (1993), was first used in

dynamic axial pile simulation by Desai et al. (1993). This model was later employed by

Cai et al. (2000) in a peudo-3D finite element analysis of the soil-pile-structure system with

a successive-coupling scheme to bind the foundation and structure subsystems. Using the

same soil model and coupling scheme, Maheshwari et al. (2004, 2005) further compared the

dynamic pile response under harmonic and seismic excitations with the solution in an elastic

soil. They found soil nonlinearity has significant effects on the pile response at low and

moderate frequencies, while the difference is negligible at high frequencies.

Slippage and separation of the soil and the pile usually occur under axial and lateral

loading. More importantly, pile installation may affect the interface property, therefore an

accurate modelling of soil-pile interface is very important in order to obtain realistic solutions

(Trochanis et al., 1991; Bentley and El Naggar, 2000; Lee et al., 2002). To be used in finite

element simulation, a simple but robust interface element is particularly desirable. One of

the first interface elements was introduced by Goodman et al. (1968) in their finite element

analysis of jointed rock masses. The element is a four-node element of zero thickness, in which

the normal and tangential behaviors are linearly elastic until the yield state is reached. The

strength envelope of the interface usually relates normal stress and tangential stress by Mohr-

Coulomb frictional law. The shear stress and displacement of the interface has been modified

to hyperbolic relation by Clough and Duncan (1971), and recently extended by Gomez et al.

(2003) to accommodate arbitrary stress path directions. More complex constitutive laws

for interface elements have also been reported to include the effects of strain hardening,

softening, volumetric dilatancy, rate effect, cyclic effect, grain crushing, and creeping etc.

(Boulon and Nova, 1990; Shahrour and Rezaie, 1997; Zeghal and Edil, 2002; Karabatakis

and Hatzigogos, 2002; Hu and Pu, 2004).

From a mathematical point of view, the constraint of inpenetration and the interface

law for two bodies in contact impose variational inequalities on a physical system, which can

add significant mathematical complication and may cause the boundary value problem to be

ill-posed (Oden and Pires, 1983). To date, only the simplest frictionless or Mohr-Coulomb

type frictional contact problems have been thoroughly studied for improved numerical sta-

bility in computational mechanics community. Typically, numerical methods that convert

the constraint inequalities into suitable equality for finite element formulation fall into two
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categories: the penalty method and the Lagrange multiplier method. For the frictional

contact problem, the penalty method is usually more straightforward and offers a distinct

advantage, although the numerical accuracy and stability pivot on the choice of penalty

numbers. A continuum-based implicit algorithm for large deformation frictional contact

problems was proposed in the pioneering work of Laursen and Simo (1993). One important

feature of this effort is the formulation of a frictional law in an appropriate convected ba-

sis; therefore the frame invariance of the constitutive behavior under finite deformation is

assured. The penalty method and backward Euler integration have been used in their work,

and the complete linearization of the global statement of virtual work provides a quadratic

rate of numerical convergence. In dynamic contact/compact computations, a choice of time

integrators is usually made between explicit and implicit ones. Although an explicit formula

(e.g., forward Euler) provides straightforward and less expensive implementation, an implicit

scheme (e.g., backward Euler) is preferred for better enforcement of constraints and ensu-

ing numerical stability especially for dynamic problems of long time duration. The features

of implicit integrators for dynamic frictional contact were further explored by Armero and

Petocz (1998, 1999). In their work, a modified midpoint rule was shown to be energy con-

serving for frictionless contact and dissipative for frictional contact. Variational constraints

can be numerically prescribed more precisely using methods of Lagrange multipliers. One

may refer to, for example, the work by Jones and Papadopoulos (2001) and Papadopoulos

and Taylor (1992, 1993).

As an alternative to the zero thickness element, Desai et al. (1984) proposed the idea

of a thin-layer element for interfaces and joints. They argued that the interface behavior

is often localized within a “smear zone” of finite thickness, which has different properties

from the surrounding materials. So a thin-layer element is essentially a solid element, and

its implementation is rather straightforward. Element penetration can be avoided using the

thin-layer element, so it can be more computationally stable than the zero thickness element.

However, the aspect ratio of a thin-layer element can affect the numerical solution, and it

needs to be sensibly selected.

Since the finite-element simulation domain is of finite size, spurious wave reflections

from the finite element boundary could significantly pollute dynamic simulation. Although

the simplest solution to this problem is to enlarge the simulation domain so that the truncated
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boundary does not affect the results, it is often computationally inefficient or infeasible to

do so. Finite elements can also be coupled with boundary elements or infinite elements,

but it is more convenient to use a transmitting boundary to dissipate outgoing waves. For

its simplicity, a Kelvin element (spring and dashpot in parallel) is often used to represent

infinite soil medium. The stiffness and damping parameters are frequency dependent, which

can be determined by the predominant frequency of input motion (Novak and Mitwally,

1988; Novak et al., 1978). The Lysmer-Kuhlemeyer transmitting boundary (Lysmer and

Kuhlemeyer, 1969) is also commonly used in dynamic soil-structure interaction analysis. The

boundary amounts to representing the infinite soil by a viscous dashpot and an equivalent

force that are proportional to the incident wave velocity. These transmitting boundaries

are easy to implement in a finite element model; however, the efficiency depends either

on wave frequency or angles of incidence. The state-of-the art absorbing boundary is the

perfectly matched layer (PML), first introduced in a study of electromagnetic waves in the

1990s. PML is a solid layer designed to absorb waves of any incident angles and at any

frequencies. The waves can be completely attenuated within the PML layer by appropriate

choice of the attenuation function and the depth of the layer. Displacement-based PMLs for

elastodynamics were recently formulated for both time-harmonic and transient wave motion,

and have been used in soil-structure interaction analysis by Basu and Chopra (2003, 2004).

In summary, the finite element method has been actively pursued in the past to simu-

late soil-pile-structure interaction. However, the endeavor is still quite limited in engineering

design practice. One major constraint is that the soil model is usually quite complicated

in that the parameters cannot be easily obtained by conventional site investigation. Many

advanced soil models require a considerable large set of parameters, and they need to be

determined from a series of high-quality laboratory tests. For example, the disturbed state

concept (DSC) model has been successfully used to characterize the cyclic behavior of sat-

urated clays and clay-steel pile interface (Desai and Shao, 2000). The DSC model uses up

to 25 parameters to describe a continuous transformation of the soil from a relatively intact

state to a fully adjusted (critical) state, the disturbance and loading-unloading behaviors.

The model parameters need to be obtained from triaxial compression tests, consolidation

tests, simple shear tests, and direct shear tests. However, in view of the unavoidable sam-

pling disturbance, the heterogeneity of nature soil deposits, and more importantly, various
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approximations made in any kind of numerical approach, estimating soil parameters di-

rectly from in-situ field tests is highly desirable. High computational cost further inhibits

the applicability of finite element method in day-to-day design practice. For example, as

documented in the pile-driving analysis performed by Mabsout et al. (1999), 70 hours CPU

time on a Pentium 90 MHz personal computer is needed for an analysis of 2800 steps (28

blows). Bentley and El Naggar (2000) reported a simulation of soil-pile system under a 20

sec earthquake excitation lasting approximately 10 days on a Pentium 233 MHz personal

computer. The excessive computational cost in dynamic analysis can be greatly reduced only

by using simplistic models, for example, the modified equivalent linear method by Wu and

Finn (1997). They proposed to update the strain-dependent soil properties (e.g., effective

secant shear modulus and damping ratio) every 0.5 sec based on the peak strain calculated at

the previous time interval, and the CPU time is reported to be within a reasonable range (3

hours on PC-486 30 MHz to run a full seismic quasi-3D analysis). However, soil nonlinearity

is actually modelled in an empirical fashion, and the solution scheme is ad-hoc in nature,

which can hardly be generalized. To push finite element simulation a step further, there is

great demand to implement a simple yet realistic cyclic soil model.
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3 Constitutive Model for Cyclic Soil Response

3.1 INTRODUCTION

The behavior of a pile subjected to lateral or axial dynamic loading is a three-dimensional,

nonlinear transient problem. Due to the complexity of the system and high computational

requirements, to date the application of nonlinear finite element analysis to this problem has

been limited. One of the primary interests in the numerical modelling scheme is a soil model

which is simple enough to be computationally efficient, yet able to capture the cyclic stress-

strain behavior, i.e., the modulus degradation and energy dissipation during cyclic loadings;

and the model should have the potential to be used in three-dimensional site response and

soil-structure interaction analysis.

Since the early 1970s, many different nonlinear constitutive models of soil behavior

were developed for various applications and a comprehensive review of the various approaches

can be found in Zienkiewicz et al. (1999); and Potts and Zdravkovic (1999, 2001). For the

purpose of the research herein, the models based on the concept of nested yield surfaces

(Prevost, 1977, 1985; Mroz et al., 1979) provided the greatest degree of flexibility to model

cyclic soil response. As shown in Fig. 3.1, the basic concept is that a collection of nested yield

surfaces defines the contours of constant shear moduli. A constant plastic shear modulus

is associated with each of the yield surfaces whose initial position and the value of the

plastic modulus can be determined from laboratory stress-strain curves. The outermost

yield surface plays the role of a failure surface, beyond which the stress state is inadmissible.

The associative flow rule, i.e., plastic flow occurs in the direction normal to the yield surface,

is usually assumed for each yield surface. Upon loading, the active surface (the locus of stress

point) is translated kinematically, touching and pushing other yield surfaces consecutively

without intersecting them. Upon loading reversal (see Fig. 3.2), the stress point reverses the
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(a) π Plane (b) Stress-Strain Curve

Fig. 3.1. Nested Yield Surface Model: Monotonic Triaxial Compression
and Extension, from Prevost (1977)

flow direction at point N and translates the surfaces in the new direction. The introduction of

nested yield surfaces essentially breaks down the the complexity of the nonlinear stress-strain

relation into a discrete set of relatively simple relations and, in principle, it can describe any

kind of experimental hardening law.

For clays under undrained condition, the yield surfaces can be assumed to be pressure

independent, and are nested cylinders in the principal stress space. They can also be modified

to be nested cones, as illustrated in Fig. 3.3, to describe the pressure-dependent behavior

such as that of the granular soils. By incorporating a phase transformation (PT) surface

delimitating phases of contraction and dilation, the model can also be further extended to

analyze the cyclic mobility of the sand and post-liquefaction site response (Elgamal et al.,

2002, 2003).

Since the nested yield surface model approximates nonlinear soil behavior in a discrete

sense, it requires significant computer storage for a robust numerical implementation. Moti-

vated by the need for a smooth evolution of nonlinearity, Borja and Amies (1994) proposed a

J2 bounding surface plasticity model with a vanishing elastic region, called multi-axial cyclic

plasticity model for cyclic clay behavior. The model is based on the pioneering concept of

bounding surface plasticity by Dafalias and Popov (1977). Similar to the classical plasticity,

a stress function (called bounding surface) is used in the bounding surface plasticity to de-
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(a) Yield Surfaces upon Reach N in compression (b) Cyclic Stress-Strain Curve

Fig. 3.2. Nested Yield Surface Model: Cyclic Triaxial Test, from Prevost
(1977)

Fig. 3.3. Pressure-Dependent Nested Yield Surface Model: Conical Yield
Surfaces, from Prevost (1985)
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Fig. 3.4. Pressure Dependent Nested Yield Surface Model: Schematic of
Constitutive Response, from Elgamal et al. (2002)

scribe a full plastic state. But plasticity also occurs for a stress state within the bounding

surface, whose plastic modulus is determined by a smooth mapping rule between the stress

state and its image point on the bounding surface.

Montáns and Borja further extended this type of J2 bounding surface plasticity model

to incorporate extended Masing behavior (Montans, 2000a); Prager’s translation rule (Mon-

tans and Borja, 2002); the multilayer J2 plasticity model with the Mróz translation rule

(Montans, 2000b); Prager’s translation rule (Montans, 2001); Prager-Ziegler translation rule

(Montans, 2004); and Cam-clay version of bounding surface model (Borja et al., 2001).

Due to its simplicity, the multi-axial cyclic plasticity model can be effectively utilized

in a numerical procedure such as a finite element scheme. Borja and Wu (1994) used this

type of model for three-dimensional finite element analysis of vibration of undrained clay

foundations; for nonlinear site response of Lotung LSST during the 20 May 1986 Taiwan

earthquake (Borja et al., 1999a,b, 2000); and for the nonlinear site response of the Gilroy 2

reference site during the 17 October 1989 Loma Prieta earthquake (Borja et al., 2000). This

model was also successfully used to characterize nonlinear site-specific response under the

near-fault ground motions (Rodriguez-Marek, 2000). These previous studies have demon-

strated the success of the model in modelling site-specific response as well as its numerical

stability. However, to the author’s knowledge, this type of model has not been used in the
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analysis of a strongly kinematically coupled problem, such as the pile-structure system, or

for modelling of behavior in the full range from very small to very large strains. For example,

the mobilized maximum shear strain of soils in Lotung site analysis (Borja et al., 1999a) was

only on the order of 0.2 % and, accordingly, the shear modulus of soil has degraded to, at

the most, 20% from its maximum value.

3.2 J2 BOUNDING SURFACE PLASTICITY

3.2.1 Constitutive Relation

In the classical theory of plasticity, yield surface, flow rule, and hardening law are three fun-

damental ingredients to describe constitutive behavior. The yield surface, usually expressed

in the stress space, specifies the state at which plastic flow occurs. The flow rule defines the

flow direction of the plastic strain increment. For the simplest case, the flow direction can

be assumed normal (associative) to the yield surface, although in general the non-associative

flow rule can be used. Finally, the hardening law describes the way the yield surface changes

during plastic flow. A combination of the isotropic and kinematic plastic hardening laws can

describe the change in the size and translation of the yield surface in stress space.

The basic concept of bounding surface plasticity is that there is no purely elastic

region in the stress-strain relationship; instead, the nonlinearity of the soil is modelled by

smoothly transforming the modulus from its initial value at small strain to full plastic state

through a state dependent hardening modulus. In the following sections, the model of

Borja and Amies (1994) is reformulated, with several features extended, including a revised

loading-unloading criterion, hardening of the bounding surface, and operator split for the

stress-strain transition from inside the bounding surface to the full plastic stage.

Within the framework of the bounding surface plasticity, a stress function, called

bounding surface B, is used to specify the full plastic state. The yield surface Q is always

inside the interior of the bounding surface B; see Fig. 3.5. The projection of these two

functions on the π plane are two circles. For clays under undrained condition, the bounding

surface is assumed pressure independent, which is circular if viewed in the deviatoric stress
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plane (π plane),

B := ‖σ̂′ − β‖ −R = 0 (3.1)

where σ̂′ is the stress image point, β is the deviatoric back stress of the bounding surface,

and R is the radius of the bounding surface. Prime (′) is used exclusively to signify that

a tensor is deviatoric. The image stress point is located on the bounding surface, and it is

projected from the current stress point σ′ and the last stress reversal point σ′
0 (Fig. 3.5).

The radius of the bounding surface R can be related to the undrained shear strength Su,

determined from an unconfined compressive strength test on a normally consolidated clay,

through

R =

√
8

3
Su (3.2)

As is customary, the tensorial strain rate can be additively decomposed into elastic

and plastic parts, i.e.,

ε̇ = ε̇e + ε̇p (3.3)

where superscripts “e” and “p” denote the elastic part and plastic part, respectively. The

plastic strain rate ε̇p is determined by the flow rule

ε̇p = λñ (3.4)

where λ is the plastic consistency parameter, and ñ specifies the direction of the plastic

strain rate, which can be chosen as outward normal to the yield surface. So the rate form of

the constitutive stress-strain relation is

σ̇ = Ce : (ε̇− ε̇p) = Ce : ε̇− 2Gλñ (3.5)

where the fourth-order elasticity tensor Ce is defined through elastic bulk modulus K and

elastic shear modulus G as

Ce = K 1⊗ 1 + 2G IIdev (3.6)

where 1 = δijei ⊗ ej is the second-order identity tensor; IIdev = II− 1
3
1⊗ 1; II = 1

2
(δikδjl +

δilδjk) ei ⊗ ej ⊗ ek ⊗ el is the fourth-order (symmetric) identity tensor.

Yield surface Q can be written as

Q := ‖σ′ − α̃‖ − Y = 0 (3.7)
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Fig. 3.5 Bounding Surface Plasticity (in Deviatoric π Plane)

in which Y is the radius of the yield surface Q and α̃ is the deviatoric back stress representing

the center. Then the unit outward normal to the yield surface Q is defined as

ñ =
σ′ − α̃

‖σ′ − α̃‖
(3.8)

Now assume the back stress of the yield function ˙̃α obeys Prager’s translation rule (Prager,

1956)

˙̃α = ‖ ˙̃α‖ñ =
2

3
H ′λñ (3.9)

where H ′ is the hardening modulus, which will be discussed in detail later. In the limit

case of the vanishing elastic region (Y → 0), the persistency condition Q̇ = 0 simply means

σ̇′ − ˙̃α = 0 , so σ̇′ and ñ becomes coaxial, i.e.,

˙̃α = σ̇′ = ‖ ˙̃α‖ñ (3.10)

So the outward normal ñ can be easily evaluated at the limit as

n = lim
Y→0

(
σ′ −α

‖σ′ −α‖

)
=

σ̇′

‖σ̇′‖
(3.11)

The rate form of the constitutive relation σ̇′ = 2G (ε̇′ − ε̇′p) becomes

σ̇′ = 2G

(
ε̇′ − λ

σ̇′

‖σ̇′‖

)
(3.12)
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which implies σ̇′ and ε̇′ are also coaxial. Further, Eq.(3.12) implies:

‖σ̇′‖ = 2G‖ε̇′‖ − 2Gλ (3.13)

Substituting the above into Eq. (3.9), Eq. (3.11) and Eq. (3.12), we obtained

σ̇′ = α̇ =
2

3
H ′λñ =

2

3
H ′λ

(
σ̇′

2G‖ε̇′‖ − 2Gλ

)
(3.14)

and it solves the plastic multiplier

λ =
3G

3G+H ′‖ε̇
′‖ (3.15)

Note that
σ̇′

‖σ̇′‖
=

ε̇′

‖ε̇′‖
since σ̇′ and ε̇′ are coaxial. So Eq.(3.12) and Eq.(3.15) leads to the

following nonlinear stress and strain relation

σ̇′ = 2G

(
1 +

3G

H ′

)−1

ε̇′ = Ψε̇′ (3.16)

in which the nonlinear shear modulus Ψ is defined as:

Ψ = 2G

(
1 +

3G

H ′

)−1

= 2G

1− 2G

2G+
2

3
H ′

 (3.17)

Finally, we obtained the constitutive relation written in the rate form as

σ̇ = K θ̇ I + Ψε̇′ (3.18)

During the foregoing derivations, the introduction of vanishing elastic region imposes no

singularity in the resulting constitutive equation. The results are derived from the framework

of classical plasticity, but interestingly enough, Eq.(3.18) is more reminiscent of nonlinear

elasticity than plasticity, since σ̇′ and ε̇′ are coaxial. This feature greatly simplifies its

numerical implementation, since provided H ′ is known, Eq. (3.18) can be easily integrated.

3.2.2 Hardening Law

The development of nonlinearity is fully manifested in the evolution of hardening modulus

H ′ and shear modulus Ψ. Among many interpolation schemes, the radial mapping rule is
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most widely used in the bounding surface plasticity, in that the hardening modulus depends

on the radial position of the current stress point.

Given a most recent stress reversal point σ′
0, the current deviatoric stress σ′ and its

image point σ̂′ on the bounding surface B (see Fig. 3.5), a dimensionless scalar κ can be

defined to measure the relative distance of these stress points

κ =
σ̂′ − σ′

σ′ − σ′
0

(3.19)

It is easy to see that κ is non-negative, taking values from infinity (when σ′ = σ′
0) to zero

(when σ′ = σ̂′). Accordingly, the hardening modulus H ′ can be specified as a smooth

monotonically increasing function of κ, H ′ = H ′(κ), such that H ′ → ∞ as σ′ → σ′
0, and

H ′ = H0 (constant) if σ′ lies on the bounding surface B. We will show later that contour

surfaces for constant H ′ are nested circles emanating from the latest stress reversal point σ′
0

in the π plane, and we denote the one passing the current stress point as loading surface F .

The properties of the loading surface will be examined in Section 3.3.

One example of such a hardening law can be chosen as the exponential function

H ′ = hκm +H0 (3.20)

in which h is a modulus parameter and m is a dimensionless scalar. They control the rate

of shear stiffness degradation. H0 is the hardening modulus associated with the bounding

surface. Using Eq.(3.20), the soil behaves instantaneously elastic upon unloading (H ′ →∞),

and transits asymptotically towards fully plastic stage on the bounding surface (H ′ = H0).

3.2.3 Modified Loading/Unloading Criterion

According to Borja and Amies (1994), the unloading condition can be interpreted as the

instance that the hardening modulus increases, i.e., Ḣ ′ > 0

Ḣ ′ =
dH ′

dκ
κ̇ > 0 (3.21)

Since H ′ is a monotonically increasing function of κ, i.e.,
dH ′

dκ
> 0, the unloading is implied

by the condition κ̇ > 0. Taking the time variation of Eq. (3.1) and considering the condition
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that σ̇′ and ε̇′ are coaxial, Borja and Amies (1994) proposed the following criterion for the

unloading condition:

χ = − (1 + κ)(σ′ − β) + κ(1 + κ)(σ′ − σ′
0)

(σ′ − β) : (σ′ − σ′
0) + κ(σ′ − σ′

0) : (σ′ − σ′
0)

: ε̇′ > 0 (3.22)

However, the above criterion lacks obvious geometrical interpretation. Alternatively, we

will provide a simplified loading/unloading criterion and prove that they are essentially

equivalent, but the new criterion has distinctive geometrical significance. As will be shown

in Section 3.3, the center of loading surface F , α, can be expressed as

α =
κσ′

0 + β

1 + κ
(3.23)

Hence

(σ′ − β) + κ(σ′ − σ′
0) = (1 + κ)(σ′ −α) (3.24)

Using above equation, the condition Eq.(3.22) can be simplified as

χ = − (1 + κ)(σ′ − β) + κ(1 + κ)(σ′ − σ′
0)

(σ′ − β) : (σ′ − σ′
0) + κ(σ′ − σ′

0) : (σ′ − σ′
0)

: ε̇′

= − (1 + κ) ((σ′ − β) + κ(σ′ − σ′
0))

(σ′ − σ′
0) : ((σ′ − β) + κ(σ′ − σ′

0))
: ε̇′ > 0

= − (1 + κ) (σ′ −α)

(σ′ − σ′
0) : (σ′ −α)

: ε̇′ (3.25)

We can further simplify the above expression. It is easy to prove that the following inequity

always holds by observing that σ′
0 and α are all inside the circle F

(σ′ − σ′
0) : (σ′ −α) > 0 (3.26)

Finally, Eq.(3.25) is simplified to a new loading condition for the bounding surface plasticity

model

χ = − (σ′ −α) : ε̇′ > 0 (3.27)

Since only the sign of χ matters, the above unloading criterion is preferably written in the

following way

χ =
σ′ −α

‖σ′ −α‖
: ε̇′ = n : ε̇′ < 0 (3.28)

The above expression has a straightforward geometrical interpretation, and the load-

ing/unloading criterion can be stated as the following: the material is undergoing loading
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if the strain increment ε̇′ points outward from surface F ; unloading if ε̇′ points inward;

and neutral loading if ε̇′ is tangential to F . The criterion is summarized in Eq.(3.29) and

illustrated in Fig. 3.6 for this geometrical interpretation. Compared with Eq.(3.22), the

new criterion is more intuitive and is similar to the loading/unloading condition in classical

theory of plasticity.

χ = n : ε̇′


> 0, loading

= 0, neutral loading

< 0, unloading

(3.29)

Fig. 3.6 Loading/Unloading Criterion

Identification of loading/unloading is critical for the cyclic material model. Once

the unloading is identified, the previous F surfaces dissolve. The stress reversal point σ′
0 is

updated to the new stress unloading point (which coincides with σ′ upon just unloading), and

new F surfaces for constant hardening modulus H ′ are re-centered about the new position

to interpolate the subsequent loading process. Fig. 3.7 illustrates the model response upon

unloading being detected.
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Fig. 3.7 Response upon Unloading

3.3 MATHEMATICAL PROPERTIES OF LOADING SURFACE

3.3.1 Consistency Condition

In this section, we examine the intrinsic mathematical properties of the loading surface F .

Recalling that the bounding surface B is circular in the deviatoric stress space,

B := ‖σ̂′ − β‖ −R = 0. (3.30)

Substituting the mapping σ̂′ = σ′+κ(σ′−σ′
0) into above, the current stress state σ′ satisfies

B = ‖(1 + κ)σ′ − (κσ′
0 + β)‖ −R = 0 (3.31)

When divided by (1 + κ), it reads

B
(1 + κ)

= ‖σ′ − κσ′
0 + β

1 + κ
‖ − R

1 + κ
= 0 (3.32)

Hence the contour of a constant κ passing through σ′ defines a loading surface F as

F :=
B

(1 + κ)
= ‖σ′ −α‖ − r = 0 (3.33)

The loading surface F is circular in the deviatoric stress space, with its center α determined

through

α =
κσ′

0 + β

1 + κ
(3.34)
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The radius r of F scales down R through

r =
R

1 + κ
(3.35)

Rewriting σ̂′ = σ′ + κ(σ′ −σ′
0), a similar mapping rule as Eq.(3.34) also holds between σ′

0,

σ′ and σ̂′

σ′ =
κσ′

0 + σ̂′

1 + κ
(3.36)

This implies σ′
0, α, and β are aligned, and the outward normal at the image stress point σ̂′

on B has the same direction as the outward normal at the stress point σ′ on F , i.e., n = n̂,

as illustrated in Fig. 3.8. The statement can be formally proven as follows,

n̂ =
∂B
∂σ̂′

=
σ̂′ − β

‖σ̂′ − β‖
=

(1 + κ)(σ′ −α)

R
=

σ′ −α

‖σ′ −α‖
(3.37)

n =
∂F
∂σ′ =

σ′ −α

‖σ′ −α‖
(3.38)

Moreover, the consistency condition on the bounding surface B is equivalent to the consis-

tency condition on the loading surface F , i.e.

B = Ḃ = 0 implies F = Ḟ = 0 (3.39)

The result F = 0 if B = 0 can be easily seen from Eq.(3.33). Taking the time derivative of B

gives Ḃ = (1 + κ)Ḟ + κ̇F . Since F = 0, it follows that Ḟ = 0 if B = Ḃ = 0. This amenable

feature allows all attributes of the standard return mapping algorithm for classical plasticity

to be carried out in the settings of bounding surface plasticity with minimum modifications.

The loading surface F can thus be practically treated as a yield surface, but it is not a yield

surface, since F = 0 is always enforced.

3.3.2 Hardening Behavior

In this section, we examine the hardening behavior of the loading surface. To simplify

analysis, we assume during a loading step that the bounding surface remains stationary, i.e.,

β, σ′
0 and R are constants. Define a parameter % as

% ≡ 1

1 + κ
(3.40)
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Fig. 3.8 Bounding and Loading Surfaces

so its variation can be evaluated as

%̇ = − κ̇

(1 + κ)2
= −%2 κ̇ (3.41)

Using parameter %, the radius of loading surface F is simply r = %R, and the backstress α

becomes

α =
κσ′

0 + β

1 + κ
= σ′

0 + % (β − σ′
0) (3.42)

It evolves according to the following expression

α̇ = %̇ (β − σ′
0) (3.43)

From Eq.(3.33) and Eq.(3.43), the consistency condition Ḟ = 0 gives

Ḟ =
σ′ −α

‖σ′ −α‖
: (σ̇′ − α̇)− %̇ R

= n : σ̇′ − %̇ [n : (β − σ′
0) +R] = 0 (3.44)

which implies the time derivative of p can be evaluated as

%̇ =
n

n : (β − σ′
0) +R

: σ̇′ (3.45)
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Comparing Eqs. (3.41) and (3.45), we obtain

∂κ̇

∂σ̇′
= − n

%2 [n : (β − σ′
0) +R]

(3.46)

Defining a fourth-order hardening tensor through

∂σ̇′

∂ε̇′p
= H ′n⊗ n (3.47)

So using the chain rule, the time derivative of κ can be evaluated as

κ̇ =
∂κ̇

∂σ̇′
:
∂σ̇′

∂ε̇′p
: ε̇′p = − H ′λ

%2 [n : (β − σ′
0) +R]

(3.48)

Correspondingly, the time derivative of % is obtained

%̇ = −%2κ̇ =
H ′λ

n : (β − σ′
0) +R

(3.49)

So %̇ [n : (β − σ′
0) +R] = H ′λ, and the consistency condition Eq.(3.44) can be simplified as

Ḟ = n : σ̇′ −H ′λ = 0 (3.50)

giving a useful relation

H ′λ = n : σ̇′ (3.51)

Finally the evolution of the back stress is found to be

α̇ = %̇ (β − σ′
0) =

β − σ′
0

n : (β − σ′
0) +R

H ′λ

=
(n : σ̇′) (β − σ′

0)

n : (β − σ′
0) +R

=

[
n : (β − σ′

0)

n : (β − σ′
0) +R

] [
(n : σ̇′) (β − σ′

0)

n : (β − σ′
0)

]
= (1− ζ)

n : σ̇′

n : (β − σ′
0)

(β − σ′
0)

= (1− ζ)
n : σ̇′

n : Λ
Λ = (1− ζ)H ′λ

Λ

n : Λ
(3.52)

with parameter ζ defined as

ζ =
R

n : (β − σ′
0) +R

(3.53)

and the unit tensor Λ specifies the hardening direction, which is defined as

Λ =
β − σ′

0

‖β − σ′
0‖

(3.54)
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The evolution of radius r can be obtained from equity r = ‖σ′ −α‖, Eqs.(3.51,3.52)

ṙ =
σ′ −α

‖σ′ −α‖
: (σ̇′ − α̇) = n : (σ̇′ − α̇)

= λH ′ − n : (β − σ′
0)

n : (β − σ′
0) +R

λH ′ =
R

n : (β − σ′
0) +R

λH ′

= ζ λH ′ (3.55)

Next, we proceed to explore the physical meaning of Eq. (3.52) and Eq.(3.55). The consis-

tency condition of F is

Ḟ = n : (σ̇′ − α̇)− ṙ = 0 (3.56)

If F is assumed to harden purely kinematically, i.e., ṙ = 0, we find the following relation

n : σ̇′ = n : α̇ (3.57)

Since α̇ is in the direction of Λ, we have α̇ = ‖α̇‖Λ. When it is double contracted with n

and considering Eq. (3.57), we obtain ‖α̇‖ =
n : σ̇′

n : Λ
, hence

α̇ =
n : σ̇′

n : Λ
Λ = H ′λ

Λ

n : Λ
(3.58)

Comparing to Eq. (3.52), it is clear that they are different only to the scale of (1 − ζ).

Moreover, if it is assumed F hardens purely isotropically, i.e., α̇ = 0, then the consistency

condition gives

ṙ = n : σ̇′ = λH ′ (3.59)

It only differs from Eq.(3.55) by a scalar coefficient ζ. The above analysis sheds light on the

hardening nature of loading surface F . The hardening behavior of F is a combined kinematic

hardening and isotropic hardening. The kinematic hardening part scales a pure kinematic

hardening by factor (1−ζ), and the isotropic hardening part scales a pure isotropic hardening

by ζ. This type of combination is very similar to that used in classical computational

plasticity (Simo and Hughes, 1997). However, the combination is not linear, since in general

ζ is not a constant during a loading history, and it may keep changing in the process of stress

evolution. It is also worth pointing out that although two types of hardening are combined

through ζ, neither the plastic multiplier nor the resulting continuum elastoplastic tangent

depends on the variables ζ and Λ. In fact, using Eqs.(3.52, 3.55), the consistency condition
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becomes

Ḟ =
∂F

∂ (σ′ −α)
: (σ̇′ − α̇) +

∂F
∂r

ṙ = n : (σ̇′ − α̇) +
∂F

∂r
ṙ

= n : σ̇′ − (1− ζ)
n : σ̇′

n : Λ
n : Λ− ζλH ′

= ζ(n : σ̇′ − λH ′) = 0 (3.60)

which rules out the influence of the factor ζ. As a final remark to conclude this section,

treating loading surface F as a yield surface unifies the bounding surface plasticity with the

classical framework. The only distinction is that hardening modulus H ′ in the bounding

surface model should be determined from the mapping rule discussed before.

3.4 FINITE ELEMENT IMPLEMENTATION

3.4.1 Nonlinear FEM Framework

The cyclic soil model can be easily implemented in a nonlinear finite element framework

such as FEAP (Taylor, 2002) and OpenSees (2005). For the nonlinear-transient problem

the finite element method uses semidiscrete formulation, where nodal displacements are

usually assumed as the primary unknowns to interpolate the displacement field from nodal

displacements (Hughes, 1987). After spatial discretization of the weak form by the finite

element scheme, the system to solve reduces to a system of algebraic equations, writing in

residual vector form as

R(u, u̇, ü) = Fext −Mü−Du̇− Fint(σ) = 0 (3.61)

where

Fint(σ) =
∑

e

∫
Ωe

BT σ dΩ (3.62)

is the internal nodal force vector and B is the strain-displacement matrix. The integration is

taken over the element domain Ωe, and summation
∑

e should be understood as the element

assemblage operator. Fext is the external nodal force vector; M is the consistent mass matrix,

M =
∑

e

∫
Ωe

NTρN dΩ (3.63)
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and D is the viscous damping matrix which will be discussed later.

To model incompressible materials such as undrained clays, finite element interpola-

tion should be designed to avoid the volumetric locking phenomenon at the incompressibility

limit, i.e., as Poisson’s ratio ν → 1
2
. Locking arises from the existence of parasitic shear in the

standard element formulation. Several techniques, either ad hoc or mathematically rigorous,

are designed to combat this difficulty, such as the method of incompatible modes (QM6),

selective reduced integration, the B̄ method, and the mixed formulation (Zienkiewicz and

Taylor, 2000). B̄ method is related to mixed methods. The essence of the B̄ formulation is to

modify the term associated with volumetric strain in the element such that incompressibility

is satisfied in a volume average sense without the need to reinforce it point-wise at each

Gaussian point. Accordingly, the internal force can be split into deviatoric and volumetric

parts by introducing the following decomposition

B = Bdev + Bvol, (3.64)

where the selective reduced integration scheme can be used for the volumetric part, which

reduces the rank of stiffness matrix.

To solve the above nonlinear set of ordinary differential equations, various direct

integration schemes can be used to relate the velocity and acceleration to a displacement

increment ∆un+1 = un+1 − un. For example, the popular Newmark method specifies the

following update to advance a solution from tn to tn+1,

vn+1 =

(
1− γ

β

)
vn +

γ

β∆t
∆un+1 + ∆t

(
1− γ

2β

)
an

an+1 =

(
1− 1

2β

)
an +

1

β∆t2
∆un+1 −

1

β∆t
vn (3.65)

in which un, vn, and an are approximations of u(tn), u̇(tn), ü(tn) at time step tn; ∆t is

the time step; β and γ are numerical parameters which control the stability and numerical

dissipation of the integration scheme respectively. β primarily controls the stability but

also influences the form of the matrix problem. For β = 0, the formulation is reduced to

explicit method, and the solution step can be greatly simplified especially if the lumped mass

matrix is used. However, the explicit method is only conditionally stable and very small time

steps are needed. For β 6= 0, the method is implicit, which improves the stability so quite

large time steps can be taken. For example, if β = 0.25, the method for linear problems
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is unconditionally stable, which is commonly called trapezoidal rule or constant average

acceleration. Values of β less than 0.25 shouldn’t be used, since they are only conditionally

stable (Zienkiewicz and Taylor, 2000). Since the Newmark integration scheme is linear and

has scalar coefficients, the primary unknowns in basic equation (3.61) can be reduced to a

single vector, which can be chosen as either the displacement un+1, the velocity vn+1, or

the acceleration an+1. Here we select un+1 as the primary unknowns and solve the following

residual equation at time step tn+1,

Rn+1 = R(un+1) = Fext
n+1 −Man+1 −Dvn+1 − Fint(σn+1) = 0 (3.66)

Given solutions at time tn, solutions of the above global system of nonlinear implicit equations

at time tn+1 can be obtained using an iterative procedure, such as Newton-Raphson or quasi-

Newton techniques. The sequence of approximation u
(i)
n+1, i = 0, 1, 2... can be calculated by

iteration, which (one hopes) converges to the solution un+1. Consistent with Newmark

integration (3.65), the initial values to start the iteration can be set as follows,

u
(0)
n+1 = un (3.67)

v
(0)
n+1 =

(
1− γ

β

)
vn + ∆t

(
1− γ

2β

)
an (3.68)

a
(0)
n+1 = − 1

β∆t
vn +

(
1− 1

2β

)
an (3.69)

Using Newton-Raphson iterative scheme, the residual form (3.66) can be linearized around

u
(i)
n+1,

R
(
u

(i+1)
n+1

)
= R

(
u

(i)
n+1

)
+

[
∂R(un+1)

∂un+1

]
u

(i)
n+1

(
u

(i+1)
n+1 − u

(i)
n+1

)
= R

(
u

(i)
n+1

)
−K∗(i)

(
u

(i+1)
n+1 − u

(i)
n+1

)
= 0 (3.70)

where

K∗(i) = −
[
∂R(un+1)

∂un+1

]
u

(i)
n+1

=
∂an+1

∂un+1

M +
∂vn+1

∂un+1

D +
∂Fint(σn+1)

∂un+1

(3.71)

To evaluate the above, Newmark integration (3.65) can be linearized as

∂an+1

∂un+1

=
1

β∆t2
(3.72)

∂vn+1

∂un+1

=
γ

β∆t
(3.73)
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Also we can evaluate
∂Fint(σn+1)

∂un+1

=
∑

e

∫
Ωe

BT ∂σn+1

∂εn+1

B dΩ (3.74)

We further define the material’s algorithmic consistent tangent Calg as the exact linearization

of the material’s constitutive relation at the step tn+1 as,

Calg =
∂σn+1

∂εn+1

(3.75)

Hence
∂Fint(σn+1)

∂un+1

=
∑

e

∫
Ωe

BTCalgB dΩ = Kalg (3.76)

Finally u
(i+1)
n+1 can be solved from the following

K∗(i)
(
u

(i+1)
n+1 − u

(i)
n+1

)
= R(u

(i)
n+1) (3.77)

where

K∗(i) = Kalg +
γ

β∆t
D +

1

β∆t2
M (3.78)

In practice, Rayleigh damping is often used so that the damping matrix D can be

assumed as a linear combination of mass matrix M and stiffness matrix K

D = α1 M + α2 K (3.79)

To produce a designed damping ratio ξ, constants α1 and α2 are determined by

α1 =
2ξ

ω1 + ω2

(3.80)

α2 =
2ω1ω2ξ

ω1 + ω2

= ω1ω2α1 (3.81)

and ω1 and ω2 are chosen to cover the desired frequency range (encompassing the natural

period of the soil and the predominant period of input motion). Alternatively, the damping

matrix can be directly assumed to be proportional to the initial modulus via

D =
2ξ0
ω

Ke (3.82)

where ω is the predominant frequency of input motion and ξ0 is the damping ratio at the

limit of zero shear strain, which is usually assumed to be quite small for soil (typical value

1%).

82



As a general remark to conclude this section, the importance of the algorithmic con-

sistent tangent has to be emphasized. The algorithmic consistent tangent can be the same

as the continuum tangent for a linear elastic material, but they are distinctive for a general

nonelastic material. The algorithmic consistent tangent is derived from the exact lineariza-

tion of the discrete constitutive relation, and it is compatible with the use of the Newton-

Raphson iterative scheme in solving the global system of equations. As pointed out by Simo

and Taylor (1985), the use of the algorithmic consistent tangent Calg is essential to preserve

the asymptotic global quadratic rate of convergence of the Newton-Raphson scheme, while

using the continuum tangent may deteriorate the efficiency and only results in a linear rate

of convergence.

3.4.2 Algorithmic Tangent Operator

To be implemented in a numerical analysis program, the rate constitutive equation of the

nonlinear material model needs to be numerically integrated. As commonly used in a

displacement-based finite element procedure, integration of the local constitutive equation is

usually treated as a strain-driven problem, i.e., given a strain increment ∆εn+1 = εn+1 − εn

and state variables at time tn, one seeks to obtain the stress and state variables at the

next discrete time step tn+1. Obviously, the accuracy and stability of the local integration

algorithm will directly influence the accuracy and stability of the global system.

Now consider the rate constitutive equation we have obtained in previous section

σ̇ = Kθ̇1 + 2G

(
1 +

3G

H ′

)−1

ε̇′ (3.83)

The deviatoric components of stress increment can be integrated from tn to tn+1,

σ′
n+1 − σ′

n = ∆σ′
n+1 = 2G

∫ tn+1

tn

(
1 +

3G

H ′

)−1

d ε′ (3.84)

Since H ′ is not a constant, a trapezoidal rule can be applied to integrate the above equation

∆σ′
n+1

[
1 + 3G

(
1− β

H ′
n

+
β

H ′
n+1

)]
= 2G∆ε′

n+1 (3.85)

where H ′
n = hκm

n +H0 and H ′
n+1 = hκm

n+1+H0 are hardening moduli evaluated at time tn and

tn+1, respectively. The parameter β is an integration parameter such that the integration
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is explicit if β = 0 and fully implicit if β = 1. Since it has been shown that the stress

increment and strain increment are coaxial, we can assume ∆σ′
n+1 = Ψ∆ε′

n+1, then the

above equation yields a residual equation:

G1 := 2G−Ψ

[
1 + 3G

(
1− β

H ′
n

+
β

H ′
n+1

)]
= 0 (3.86)

in which H ′
n+1 = hκm

n+1 + H0, and parameters Ψ and κn+1 remains unknown. We need

another restriction to solve these two unknowns. Imposing the following condition at tn+1

‖σ̂′
n+1 − βn+1‖ = ‖σ′

n+1 − βn+1 + κn+1(σ
′
n+1 − σ′

0)‖ = R (3.87)

If the stress state of tn+1 still remains within the bounding surface B, then βn+1 = βn

since kinematic hardening of B will not occur in this case. We obtained the second residual

equation:

G2 := R− ‖σ′
n − βn + Ψ ∆ε′

n+1 + κn+1(σ
′
n + Ψ ∆ε′

n+1 − σ′
0)‖ = 0 (3.88)

We propose to solve Eqs.(3.86) and (3.88) simultaneously for Ψ and κn+1 using the Newton-

Raphson iterative scheme. The procedure is outlined by pseudo-code in Algorithm 2. Once

Ψ is obtained, the stress point σn+1 can be updated accordingly:

σn+1 = σn +K∆θ1 + Ψ∆ε′
n+1 (3.89)

In the context of nonlinear finite element analyses, the consistent algorithmic tangent

is usually needed to improve the stability and efficiency of the global solution scheme. The

consistent algorithmic tangent can be obtained through complete linearization of constitutive

relation in discrete form:

Calg
F =

∂σn+1

∂εn+1

= KI⊗ I + Ψ IIdev +
∂Ψ

∂ε′
n+1

⊗∆ε′
n+1 (3.90)

In particular,
∂Ψ

∂ε′
n+1

can be obtained by differentiation of Eqs.(3.86) and (3.88) as follows:

∂G1

∂ε′
n+1

=

[
1 + 3G

(
1− β

H ′
n

+
β

H ′
n+1

)]
∂Ψ

∂ε′
n+1

−
[
3GΨβ

H
′ 2
n+1

∂H ′
n+1

∂κn+1

]
∂κn+1

∂ε′
n+1

= 0

(3.91)

∂G2

∂ε′
n+1

= (1 + κn+1)ξ̂n+1 : ∆ε′
n+1

∂Ψ

∂ε′
n+1

+ ξ̂n+1 : (σ′
n + Ψ ∆ε′

n+1 − σ′
0)
∂κn+1

∂ε′
n+1

+(1 + κn+1)Ψξ̂n+1 = 0 (3.92)
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where ξ̂n+1 = σ̂′
n+1−βn+1 = σ′

n−βn +Ψ ∆ε′
n+1 +κn+1(σ

′
n +Ψ ∆ε′

n+1−σ′
0) is image stress,

and it points to the radial direction. Solving the above equations leads to

∂Ψ

∂ε′
n+1

⊗∆ε′
n+1 = −Ψ(1 + κn+1)

θ1

ξ̂n+1 ⊗∆ε′
n+1 (3.93)

where

θ1 = (1 + κn+1)(ξ̂n+1 : ∆ε′
n+1) + ξ̂n+1 : (σ′

n + Ψ ∆ε′
n+1 − σ′

0)θ2 (3.94)

θ2 =

(
3GΨβ

H
′ 2
n+1

∂H ′
n+1

∂κn+1

)−1 [
1 + 3G

(
1− β

H ′
n

+
β

H ′
n+1

)]
(3.95)

As we can see from the above expression,
∂Ψ

∂ε′
n+1

is in line with ξ̂n+1, i.e., it points to the

radial direction. So the term
∂Ψ

∂ε′
n+1

⊗∆ε′
n+1 has no major symmetry for a general loading

path, and the exact evaluation of it is cumbersome. To preserve symmetry and simplicity,

we propose to drop this term and use the following tangent modulus in the algorithm:

Calg
F = KI⊗ I + Ψ IIdev (3.96)

It is also worth pointing out that the simplification slightly influences the convergence rate

of global solution iterations, but it will not affect the accuracy of the solution.

3.4.3 Operator Split across Bounding Surface

Given a strain increment, a special case must be considered in the stress update process, i.e.,

the initial stress point is inside the bounding surface B, but the stress point hits B at tn+γ

and pushes B together in the remaining time. For a given strain increment ∆ε′, it can be

additively decomposed into two parts,

∆ε′ = ∆ε′F + ∆ε′B (3.97)

where ∆ε′F is the strain increment that drives the stress state right onto the bounding

surface B , and ∆ε′B is the plastic strain persistent on the bounding surface.

Introducing a dimensionless strain split parameter 0 ≤ γ ≤ 1 such that

∆ε′F = γ∆ε′ and ∆ε′B = (1− γ)∆ε′ (3.98)
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Secant modulus Ψγ is the interpolation between H ′
n and H ′

n+γ(= H0)

Ψγ =
2G

1 + 3G

(
1− β

H ′
n

+
β

H0

) (3.99)

To avoid singularity that would occur to evaluate terms as H ′ → 0, an alternative expression

for secant modulus Ψγ can be written as

Ψγ = 2G

1− G

G+
1

3
((1− β)H ′

n + βH0)

 (3.100)

It should be noted that these two relations are not equivalent, since in general

1− β

H ′
n

+
β

H0

6= 1

(1− β)H ′
n + βH0

(3.101)

The left- and right-hand sides are trapezoidal integrations of H ′ and 1/H ′, respectively.

Although Eq. (3.99) is proposed by Borja and Amies (1994), Eq. (3.100) is preferred, since

the variation of H ′ is much less compared with the drastic change of 1/H ′ as H ′ → 0.

Considering the fact that ξn+γ is on the bounding surface B, i.e.,

‖ξn+γ‖2 = ‖ξn + Ψγγ∆ε′‖2 = R2 (3.102)

where ξn = σ′
n − βn The parameter γ could be solved as the positive root of the above

quadratic equation,

γ =
−ξn : ∆ε′ +

√
(ξn : ∆ε′)2 + ∆ε′ : ∆ε′(R2 − ξn : ξn)

Ψγ∆ε′ : ∆ε′ (3.103)

The above equation must be carefully examined to guarantee the solution 0 ≤ γ ≤ 1.

we propose the the following criteria for the operator split:

(a) ‖ξn‖2 < R2 (3.104)

(b) ξn : ∆ε′ > 0 (3.105)

(c) ‖ξtr‖2 = ‖ξn + Ψγ∆ε′‖2 ≥ R2 (3.106)

That is, if (a) the previous state is inside the bounding surface, (b) the strain increment step

is loading, and (c) the trial state ξtr is outside the bounding surface, the strain split should

be performed. For the bounding surface which is perfectly plastic or hardening (H0 ≥ 0),
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from Eq. (3.100) it is obvious Ψγ > 0, since H ′
n = hκm

n + H0 > H0 ≥ 0. Together with

condition (a), it can be assured γ > 0 in Eq. (3.103). Further, since

‖ξn + Ψγ∆ε′‖2 = ξn : ξn + 2Ψγξn : ∆ε′ + Ψ2
γ∆ε′ : ∆ε′ ≥ R2 (3.107)

‖ξn + Ψγγ∆ε′‖2 = ξn : ξn + 2Ψγγξn : ∆ε′ + Ψ2
γγ

2∆ε′ : ∆ε′ = R2 (3.108)

which implies

(1− γ)
(
2Ψγξn : ∆ε′ + Ψ2

γ(1 + γ)∆ε′ : ∆ε′) ≥ 0 (3.109)

considering loading condition ξn : ∆ε′ > 0, so γ ≤ 1 is proved.

For the case that the bounding surface is kinematically softening (H0 < 0), difficulties

can be seen by inspecting the above conditions. For the tn state close enough to the bounding

surface, it is likely that H ′
n = hκm

n +H0 < 0, which yields a trial modulus Ψγ < 0. Even if the

trial state is loading, the predictor is strain softening and so the bounding surface will never

be reached. An ad-hoc remedy can be proposed to interpolate H ′
n =< H0 > +hκm

n > 0

inside the bounding surface. So for the softening bounding surface, < H0 >= 0 and the

stationary point H ′ = 0 is achieved when trail stress crosses the bounding surface. For the

ensuing persistent plastic loading, the bounding surface softens according to the assigned

value H0 < 0.

To compute the plastic strain (1− γ)∆ε′, the classical return mapping scheme for J2

plasticity can be applied (Simo and Hughes, 1997). Finally, the state variables at tn+1 can

be updated as a linear combination

σn+1 = σn +K ∆θ I + γΨγ∆ε′ + 2G ((1− γ)∆ε′ − λB n̂B) (3.110)

βn+1 = βn +
2

3
H0λB n̂B (3.111)

λB = (1− γ)

(
G

G+H0/3

)
‖∆ε′‖ (3.112)

and the resulting algorithmic consistent tangent is simply a linear combination of two types

of tangent operators as

Calg = γ Calg
F + (1− γ) Calg

B (3.113)

The operator split algorithm is summarized in Algorithm 3.
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Algorithm 1 Classical J2 plasticity return mapping algorithm

1. For stress state σn on the bounding surface, elastic predictor:

σtr
n+1 = σn + Ce : ∆εn+1 (3.114)

where ∆εn+1 = 1
3
∆θn+1 I + ∆ε′

n+1 ; Ce = KI⊗ I + 2G IIdev

ξtr
n+1 = σtr

n+1 − βn (3.115)

f tr
n+1 = ‖ξtr

n+1‖ −R (3.116)

2. Loading/unloading check

If unloading, then set unloading point σ0 to current stress, and proceed to Alg. 2

or else CONTINUE

3. Compute plastic multiplier and normal

∆λB =
f tr

n+1

2G+ 2
3
H0

(3.117)

n̂B =
ξtr

n+1

‖ξtr
n+1‖

(3.118)

4. Update stress and back stress of bounding surface B

σn+1 = σn +K ∆θn+1 I + 2G (∆ε′
n+1 −∆λB n̂B) (3.119)

βn+1 = βn +
2

3
H0∆λB n̂B (3.120)

5. Consistent elasto-plastic tangent

Calg
B = KI⊗ I + 2G θ1IIdev − 2G θ2n̂B ⊗ n̂B (3.121)

where

θ1 = 1− 2G∆λB

‖ξtr
n+1‖

, θ2 =
1

1 + H0

3G

− (1− θ1) (3.122)
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Algorithm 2 Integration of bounding surface plasticity

1. Newton Iteration to solve Ψ and κ

Initialize [
Ψn+1

κn+1

](0)

=

[
Ψn

κn

]
(3.123)

G1 := 2G−Ψ

[
1 + 3G

(
1− β

H ′
n

+
β

H ′
n+1

)]
(3.124)

G2 := R− ‖ξn + Ψ ∆ε′
n+1 + κn+1(σ

′
n + Ψ ∆ε′

n+1 − σ′
0)‖ (3.125)

Compute Jacobian

[J(k)] =


∂G1

∂Ψ

∂G1

∂κ

∂G2

∂Ψ

∂G2

∂κ


(Ψn+1,κn+1)(k)

(3.126)

while ‖G2
1 + G2

2‖ < TOL do

Update solution [
Ψn+1

κn+1

](k+1)

=

[
Ψn+1

κn+1

](k)

− [J(k)]−1

[
G1

G2

](k)

(3.127)

Update G1, G2

end while

2. Update stress

σn+1 = σn +K ∆θn+1 I + Ψ∆ε′
n+1 (3.128)

3. Elasto-plastic tangent (symmetric version)

Calg
F = KI⊗ I + Ψ IIdev (3.129)
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Algorithm 3 Strain Step Split

1. Decompose the deviatoric strain into

∆ε′ = ∆ε′F + ∆ε′B (3.130)

where ∆ε′F is the strain that loads the soil to the bounding surface B at time tn+γ, and

∆ε′B is the deviatoric strain the soil experiences after reaching the bounding surface.

∆ε′F = γ∆ε′ (3.131)

2. Solve for secant modulus split

Ψγ =
2G

1 + 3G

(
1− β

H ′
n

+
β

H0

) (3.132)

3. Solve for split parameter γ

γ =
−ξn : ∆ε +

√
(ξn : ∆ε)2 + ∆ε : ∆ε(R2 − ξn : ξn)

Ψγ∆ε : ∆ε
(3.133)

where

ξn = σ′
n − βn (3.134)

4. Linear interpolation of the tangent modulus

Calg = γ Calg
F + (1− γ) Calg

B (3.135)

where Calg
F and Calg

B are from Algorithm 1 and 2.
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3.5 DETERMINATION OF MODEL PARAMETERS

In previous sections, the cyclic soil model has been formulated in a general three-dimensional

stress space, and a detailed numerical implementation has been derived. Fig. 3.9 schemati-

cally illustrates a cyclic soil response simulated by the model. Starting from the initial stress

point ¬, the nonlinear stress-strain curve from ¬ to  is governed by a bounding surface

hardening law. The shear modulus smoothly degenerates from maximum value at point ¬

to a constant residual value at point , where the stress point hits the bounding surface

B1. The full plastic stage is reached from point  to ®, and the bounding surface hardens

kinematically from B1 to B2. Once the unloading condition is detected at point ®, the stress

reversal point is updated to that point, and a new interpolated nonlinear stress-strain rela-

tion is developed until the stress point reaches the bounding surface again at point ¯. After

B2 hardens to B3, i.e., from point ¯ to point °, the soil is reloaded to point ±.

Fig. 3.9 Schematic Cyclic Soil Response

Table 3.1 summarizes recommended methods to determine model parameters. The

maximum shear modulus at small strain, Gmax, which was previously denoted as G for

brevity, can be computed from the shear wave velocity profile,

Gmax = ρs V
2
s (3.136)

91



Table 3.1 Determination of Model Parameters

Model Parameters Calibration Methods

Elastic Parameters
Gmax

From from shear wave velocity
profile

ν Poisson’s ratio

Strength Parameter Su
From unconfined compression
test or SPT correlation

Hardening Parameters
h, m

Shear modulus reduction
curves

H0
Tangential shear modulus at
large strain

where ρs is soil density, and Vs is the measured shear wave velocity of the soil. The undrained

shear strength, Su, which determines the radius of the bounding surface R, can be deter-

mined from an unconfined compression (UC) test or empirical correlation such as standard

penetration test (SPT) data.

As described before, the nonlinear stress-strain relation within the bounding surface

is governed by the exponential hardening law. The two hardening parameters h and m

control the rate of modulus degradation. Fig. 3.10 presents the cyclic simple shear response

produced by a strain-controlled single finite element test. The soil element is assumed to have

maximum shear modulus Gmax = 1.67 × 105 kPa, Possion’s ratio ν = 0.49, and undrained

shear strength determined from unconfined compressive strength test Su = 100 kPa. The

hardening modulus for the bounding surface is assumed to be zero (H0 = 0). As shown

in Fig. 3.10(a), for a given m = 0.8, larger h predicts a more elastic cyclic response. As a

limit case, the perfectly elasto-plastic J2 response can be approximated using a large h value

(h ≥ 10 in this case). Fig. 3.10(b) gives the predicted cyclic loops for a given h = 0.7 Gmax

and a varying m from 0.8 to 2.0. The stress-strain relation for a larger m is more elastic right

upon stress reversal; however, the curve bends over more quickly at large stress level. Since

a very small tangential modulus has been developed well before the stress point reaches the

bounding surface, the soil apparently experiences premature yielding for the case of larger m.

Fig. 3.10(c) plots cyclic stress-strain curves with increasing magnitude of control strains. It

can be observed that the Masing rule is well approximated by the cyclic curves. Note that as

highlighted in Fig. 3.10(d) for a single cyclic curve, a closed loop is not immediately formed
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Fig. 3.10 Modeled Cyclic Simple Shear Response
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Fig. 3.11. Computed Modulus Reduction Curves, Dashed lines:
PI=0,15,30 from Vucetic and Dobry (1991)
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after one cycle of loading. Instead, a slight strength degradation is captured naturally by

the model.

The cyclic stress-strain responses can also be represented in the form of modulus

reduction curves. The modulus reduction curve plots the ratio of secant shear modulus and

maximum shear modulus versus shear strains applied, and was found to be dependent on

the plasticity index (PI) for clays. As presented in Fig. 3.11, variations in h and m result

in a family of modulus reduction curves. Modulus reduction curves for clays (PI=0,15,30 in

dashed lines, left to right) from Vucetic and Dobry (1991) are also illustrated for comparison.

Although increases in h and m both shift modulus reduction curves to the right of the strain

axis, their ranges of influence are different: variation in h affects the curve shape over a small

to large strain range (10−4 % – 1 %), while variation inmmainly changes the curve shape over

small to medium strain levels (10−4 % – 10−1 %). The suitable combination of h and m can

be determined by fitting through two points on a measured modulus degradation curve, so

the parameters can be related to fundamental properties of the soil. The hardening modulus

of the bounding surface, H0, can be determined by fitting the tangential shear modulus at

large strains.

In summary, the bounding surface cyclic soil model has analytical features that can

simulate three-dimensional nonlinear cyclic soil response more realistically, and it can capture

the most important aspects of dynamic simulation, namely, the modulus reduction and

hysteretic energy dissipation. Furthermore, the model requires minimal parameters that

can be easily calibrated through a conventional field investigation. The cyclic soil model

provides physical simplicity and numerical efficiency that is very much needed in a general

nonlinear soil-structure analysis. The goal of this study is to use this model to simulate the

nonlinear soil-pile response, and the feasibility of the numerical model is examined directly

by analyzing prototype pile load tests.
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4 Static and Dynamic Load Tests on Prototype
Piers at UC Berkeley

4.1 INTRODUCTION

A number of seismic retrofit and new construction projects on the UC Berkeley campus relied

on drilled piers to handle the expected dynamic loads. In most of these cases, the drilled piers

were a relatively costly component; therefore, there was a considerable interest in making

the design as cost effective as possible. In particular, the earthquake loading rate is about

three orders of magnitude greater than the rate for which the static pier capacity is based.

Thus, for earthquake design of pile foundations, consideration of the loading rate for piers

may have important economic and safety implications (Kraft et al., 1981). To be useful in

the earthquake design, the loading rate in a test should be typical of an earthquake loading.

The time-histories of the displacement and load should be well monitored and the pier should

be loaded to a wide range of mobilized strains so that the tests can be used to explore the

energy-dissipation pattern of the system from low to high strains. The capacity and stiffness

degradation of the soil-pier system after the pier load test should also be investigated.

To address all these concerns and collect valuable data, a full-scale load test program

on drilled cast-in-placed concrete piers was recently performed adjacent to the campus of

the University of California, Berkeley (Kasali, 2002). The test results are documented and

discussed in detail in the following sections.
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4.2 SITE CONDITION

4.2.1 Stratigraphy

The drilled pier load test program was performed at Underhill Parking Lot near the Uni-

versity of California, Berkeley, campus as a part of the student residence halls Unit 1 and

Unit 2 seismic retrofit project. The site is located near the seismically active Hayward fault

geomorphic zone, which passes through the campus some 1,500 feet northeast of the site.

The site is underlain by alluvial deposits of the Temescal Formation, and mainly consists of

silts and clays of mottled yellowish / olive gray color. Fig. 4.1(a) shows the vicinity map

of the test area, where the parking lot is bounded to the north by Channing Way, to the

east by College Ave, to the south by Haste Street, and to the west by a construction site for

the proposed new Dining/Student Services building and an exiting apartment building. As

shown in Fig. 4.1(b), the Unit 1 and Unit 2 Residence Halls are located immediately north

and south of the Underhill Parking Lot. It should be noted that the Underhill Parking Lot

was constructed by excavating up to about 10 to 20 feet of native soil to form a relatively

level area.

(a) Test Site (b) Close-up

Fig. 4.1 Test Area Vicinity Map
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The two test areas were chosen located quite close to the locations of geotechnical

borings drilled by Geomatrix Consultants in 1997. Test Area 1 (close to Channing Way) is

near to boring B-2, and Test Area 2 (close to Haste Street) is located near to boring B-4.

The soil profiles derived from the geotechnical investigation are schematically illustrated in

Fig. 4.2 for Test Area 1 and Fig. 4.3 for Test Area 2, respectively. The surface elevations of

test areas 1 and 2 are 272.5 ft and 277.5 ft (MSL), respectively. As shown in these figures,

the site is underlain by stiff clay with varying amounts of silt, sand, and/or gravel. The

degree of saturation varies considerably throughout the site. Groundwater was reportedly

encountered at 21.5 feet in depth at Test Area 1, and 10 - 11.5 feet in depth at Test Area

2. The plasticity index of stiff clay is around 10 in the site. Thus, according to the criterion

proposed by Seed and Idriss (1982), the clayey and silty soils at the site should not experience

severe strength degradation during strong ground shaking.

4.2.2 Shear Wave Velocity Profile

As a part of site investigation, SASW (Spectral Analysis of Surface Waves) measurements

were conducted along two arrays by Rutherford & Chekene on June 22-24, 2001. Test

locations of SASW array 1 and array 2 were chosen to coincide with the locations of test

piers site 1 and site 2, respectively 1. SASW method is an in-situ geophysical method in

which surface waves (Rayleigh waves) of different wavelengths are generated at a point, and

the average of the wave velocity are measured along the array. Since different wave lengths

penetrate into different depths of soils, a profile of soil properties can be back analyzed. The

results provide a good “global” estimate of the small strain material properties along the

arrays.

The shear-wave velocity profiles for arrays 1 and 2 are presented in Fig. 4.4. Average

shear wave velocities to a depth of 30 m (Vs30) were found to be 456 m/s (1496 ft/s) for

array 1 and 545 m/s (1788 ft/s) for array 2, classifying the vicinity of the test area as class C

(very dense soil and soft rock) according to the 1997 Uniform Building Code. At the depth

of interest for our modelling, the average shear velocities of soil are 288–292 m/s for the top

1Array 1 was located in the west side of the parking lot, close to pier test site 1; and array 2 was located
in the east side of the parking lot, close to pier test site 2.

99



Fig. 4.2 Schematic Soil Profile of Test Area 1 and Test Pier
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Fig. 4.3 Schematic Soil Profile of Test Area 2 and Test Pier
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20–30 ft along array 1, and 280–307 m/s for the top 20-30 ft along array 2, respectively. It

should be noted that the Vs profile of array 1 is more uniform than that of array 2.

array 1
array 2
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Fig. 4.4 Vs Profile from SASW Testing along Array 1 and Array 2

4.2.3 Shear Strength Profile

The site is mainly underlain by hard to very stiff sandy clay, medium dense sandy silt,

and dense clayey sand. The undrained shear strength Su profile estimated from unconfined

compression (UC) test is shown in Fig. 4.5 for Test Area 1, together with the standard

penetration test blow counts per feet (SPT N-value). The SPT N-values range from 24 at

shallow depth to 54 at depth of 8 m. The shear strength profile shows fairly high undrained

shear strength of the soil close to the surface, indicating that the soil is overly consolidated.

The high OCR (over-consolidation ratio) may be attributed to desiccation and the unloading

of overburden pressure during deep excavation when the parking lot was constructed. The
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average undrained shear strength for simple shear is estimated around 100 kPa over the pier

length. Unfortunately, a shear strength profile in Test Area 2 is not available.
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Fig. 4.5 SPT N-value and Undrained Shear Strength Profile for Test Area 1

4.3 DRILLED PIER LOAD TESTS

4.3.1 The Test Program

Fig. 4.6 shows the detailed arrangement of test piers in each test area, where three piers

were installed in each group (Kasali, 2002). In Test Area 1, a 30-inch diameter, 19-foot long

pier is flanked by two 24-inch diameter, 20-foot long piers, with spacing of about 12 feet to

the middle pier. In Test Area 2, the middle pier is 24 inches in diameter and 30 feet long,

with one 24-inch diameter, 20-foot long pier installed about 12 feet to the west, and another

24-inch diameter, 25-foot long pier about 12 feet away to the east. The spacing was chosen

to be sufficiently large to avoid pier to pier interaction (group effect) under axial loadings.

All the concrete piers were cast in place during September 10-14, 2001. Conventional
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Fig. 4.6 Arrangement of Test Piers, from Kasali (2002)
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flight augers were used to drill the pier holes and concrete was placed in each hole at the

same day of drilling. Sonotubes were used on all piers to form pier heads about 18 inches

above the ground surface, which was necessary to perform the dynamic load test. Beneath

all 24-inch diameter piers, compressible materials were placed to ensure that the load was

predominately transferred by the side friction, with only one exception that the 30-inch

diameter, 19-foot long pier in Test Area 1 (Pier A1-19) was installed with downhole cleaning

to ensure end bearing capacity.

After curing for a minimum of 18 days, the concrete piers were loaded according

to a predetermined loading sequence. The test program consisted of dynamic pier load

tests (called PLT in short) and static compression or tension load tests on six test piers, by

American Piledriving, Inc. (API) of Pleasanton, California, under the direction of Rutherford

& Chekene Consulting Engineers.

Three kinds of tests were performed between 1 October and 5 October 2001. First,

dynamic PLT tests were performed on all piers. The PLT is a relatively new testing method

and was pioneered by Fundex of Belgium, as discussed in detail in the following section. For

each test pier, the PLT test would obtain dynamic load-displacement information. Second,

quick static compression and tension tests were performed based on the ASTM D1143 and

ASTM D3689 Quick Load Method. To evaluate the impact of the pier test sequence on

the results, the dynamic PLT tests were performed again to explore the differences in pier

capacities and stiffness between the first and second PLTs. A pier-by-pier summary of the

test program is listed in Table 4.1.
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4.3.2 The PLT Test

The PLT test was designed to produce “long-lasting” blows on the pier head. Fig 4.7

provides field photos for the test setup. To conduct a PLT test, a 25-metric ton mass is

hydraulically lifted by the mobile track-mounted load tester to a predetermined height to

create the potential energy. The mass is then released and free-falls on a striker plate. Large

damping springs spread the impact load over about a 200-millisecond period. The hydraulic

system then catches the mass on the rebound to allow only one strike on the pier per drop.

The resulting 200 – 400 millisecond duration of the load application reasonably simulates the

effective period of earthquake loading, making the device a good predictor of pier behavior

in seismic loading regardless of soil type (Schellingerhout and Revoort, 1996).

During the tests, pier head vertical displacements over the duration of the applied

load are recorded for each blow. The actual applied force of each drop is recorded by a load

cell placed on the pier head. The pier head displacement is measured using an optical diode

transmitter (an optical accelerometer) fastened to the face of the test pier. Stereo imaging

of the movement of the transmitter’s pair of LED diodes is recorded by a camera receiver

placed at least 30 feet away to minimize disturbance by vibration.

The PLT test conducted herein should not be confused with other methods of dynamic

tests. For example, the non-destructive vibrating test has been widely used in estimating the

stiffness, length, and cross-sectional area of intact piles (Davis and Robertson, 1976). The

non-destructive test is designed to measure small strain wave reflection inside the test pile,

and the amplitude of impact during the test is only tens of kPa, with the duration and the

pile head displacement in the order of several millisecond and 10−9 – 10−7m, respectively.

On the other hand, the PLT test is quite similar to the STATNamic (Middendorp et al.,

1992) pile load in some aspects. The STATNamic test uses high gas pressure generated by

burning of fuel inside the device to exert short duration (in order of 100 ms) load on the

pile. Thus, the STATNamic test usually fully mobilizes the soil resistance in a single load

cycle, and the test has primarily been used for the purpose of determining the equivalent

static pile capacity. With well-controlled multiple impacts, the PLT test conducted herein

can be used to explore dynamic stiffness, capacity, and energy-dissipation characteristics of

107



(a) PLT rig (b) Close-up

(c) Fundex PLT rig drawing, from Schellingerhout and Revoort (1996)

Fig. 4.7 PLT Test Setup
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the soil-pier system. The main results of the pier load test program are summarized in the

following section.

4.4 SUMMARY OF PIER LOAD TEST RESULTS

4.4.1 Loading Rate Effects and Cyclic Degradation

Pier A1-19 was 30 inches in diameter, 19 feet long, located at the middle of Test Area 1.

As mentioned before, downhole cleaning was performed before installation to ensure the end

bearing. The PLT tester impacted the pier with 9 consecutive blows, which progressively

loaded the pier from the small strain level to the yield state with increasing magnitude of

impact load. The PLT axial load versus pier head displacement curves are shown in Fig. 4.8.

A dynamic load displacement envelope is defined to encompass all loading cycles. To examine

the effects of loading rate, the PLT test was followed by a static compression test using a

reaction beam and flank piers on both sides. The heavy solid line in Fig. 4.8 shows the

static load displacement curve, which starts from about 0.5 inch of residual displacement

that resulted from the PLT test. To make the comparison of the response for each load

increment easier, each cyclic PLT loop and the static curve are re-plotted from the same

origin in Fig. 4.9. Each cyclic loop defines a dynamic load-displacement curve, with an

initial stiffness that is about twice as high as that of the static curve, and a higher ultimate

strength. The difference between dynamic and static response can be attributed to the rate

effect of the soil-pier system. The nonlinear load-displacement relationship is pronounced

in this plot, and the stiffness of the soil-pier system is dependent on applied load or strain

level.

For each PLT load cycle (numbered 1 – 9), the hysteretic energy dissipation, defined

as the area enclosed by each cyclic force-displacement loop, is calculated and plotted in

Fig. 4.10(a). It is also interesting to plot the energy dissipation in each cycle against the

peak load (Fig. 4.10(b)), and the energy dissipation against the residual displacement for

each cycle (Fig. 4.10(c)). The slope of the line in Fig. 4.10 (c), designated as F , is 784 kips for

Pier A1-19. This linear relationship between energy dissipation and residual displacement

implies that energy is primarily dissipated to overcome a constant resistance F , which can

therefore be interpreted as the effective resistance force of the soil-pier system. The plot of
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peak loads vs. residual displacement in Fig. 4.10(d) shows that there is an elastic threshold

load, below which no residual displacement could accumulate, hence making the pier behavior

virtually elastic. The elastic threshold accounted for approximately 30–40% of the ultimate

capacity. Once the peak load exceeds the threshold, considerable residual displacement

begins to accumulate.

Similar trends can be observed for all other test piers. Figs. 4.11 – 4.13 show the test

results for Pier A1-20A, which was 24 inches in diameter, 20 feet long, located at the east of

test area 1. The pier was constructed with compressible material in the bottom to eliminate

tip resistance. The results show effective resistance force F to be 491 kips for this pier, and

the elastic threshold falls into 30–40% of the ultimate capacity.

To examine the effect of stress reversal on the subsequent performance of a single

pier, a sequence of load tests was designed for pier A1-20B. The test pier was 24 inches in

diameter, 20 feet long, and was located at the west of test area 1. As in the case of A1-20A,

the axial load was carried by the shaft resistance only.

First, the PLT test was performed on pier A1-20B. After the PLT test, the pier was

subjected to a static tension test. Finally, a second PLT test was performed after the tension

test. Fig. 4.14 summarizes the recorded pier head displacement and applied axial load for

all tests on performed on pier A1-20B.

In terms of capacity, the static tension capacity of the test pier after the PLT test was

reduced to about 70% of the cyclic PLT capacity. The difference can be partially attributed

to the different loading rate of these two tests, as well as the influence of the foregoing cyclic

PLT compression 2. As a result of the stress reversal (from compression to tension) up to

yield in the tension test, the soil fabric is severely damaged at the soil-pier interface. The

effects of cyclic degradation are exhibited in significant stiffness and capacity degradation in

the second PLT test, where dynamic capacity was only about 50% of the first PLT test. This

2The effect of the compressive load on the uplift capacity of model piles in sands has been previously
reported by Dash and Pise (2003). After loaded to 0, 25, 50, 75, 100% of their ultimate capacity in
compression, the model piles were subjected to pull out loading tests. The experimental results indicate
that the presence of the compressive load tends to decreases the net uplift capacity of a pile. The decrease
further depends on the magnitude of the compressive loads, density of the sand, slenderness ratio L/d of the
model pile. It is argued that the placement of compressive load may change the fabric of granular soils at
the pile soil interface, resulting in a reduction of the soil-pile friction angle up to 4o – 10o if the ultimate
compressive has been applied. Further, it is observed that the reduction is more in loose sand than in dense
sand, and it increases with increasing compressive load intensity for both cases.
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PLT #1−#10 Cycle
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finding does suggest that full stress reversal during earthquake loading can lead to significant

degradation of the pier capacity and is consistent with soil behavior previously documented

under cyclic loading.

Fig. 4.15 compares the energy-dissipation characteristics of the first and second PLT

tests. Again, a linear relation can be found between energy dissipation and peak load in a

semi-logarithm for both PLT tests. The slope of the linear regression line from the second

PLT test data is higher and steeper than that of the first PLT test, indicating a much larger

energy dissipation for the damaged system. Consequently the effective resistance force, F ,

is reduced from 368 kips for the first PLT to about 70% (256 kips) for the second PLT.

Similarly, the elastic threshold in the second PLT (50 kips) is only about 1/3 of that of the

first PLT (150 kips).

While these tests represent a rather extreme condition of complete load reversal with

uplift and they do not address the condition of partial load reversal, they clearly show that

such loading could severely reduce the dynamic stiffness and dynamic load capacity of pier

foundations subjected to seismic loading.

Table 4.2 summarizes the effective resistance F derived from all PLT tests, see Figs.

4.10, 4.13, 4.15, 4.21, 4.24, 4.28. To allow for comparison between piers of different configu-

rations, the effective resistance per unit area, f , is also given in the table,

f =
F

πDL
(4.1)

where D and L are pier diameter and pier length, respectively. The effective resistance is

also found in the range of about 100% – 120% of ultimate dynamic capacity in each test

based on Davisson Offset Limit method.

4.4.2 Normalized Pier Response

To allow for better comparison of all results from the test program, the load-displacement

curves are normalized. The total per resistance is divided by surface area of the pier to

obtain an averaged unit pier resistance. Since only pier A1-30 has end bearing resistance,

that resistance has been subtracted from the total resistance before normalization. For

119



Table 4.2 Summary of Effective Resistance for PLT Tests

Pier
Length Diameter F f

ft ft kips kips/ft2 kPa
A1-19 19 2.5 784∗ 5.25 251

A1-20A 20 2.0 491 3.90 187
A1-20B (1st)

20 2.0
368 2.92 140

A1-20B (2nd) 256 2.04 98
A2-20 20 2.0 579 4.61 221
A2-25 25 2.0 825 5.25 252
A2-30 30 2.0 986 5.23 250

*including end-bearing resistance.

clarity, only the cyclic envelopes for PLT tests are plotted, with each data point representing

the peak load in each cyclic loop.

As shown in Fig. 4.16, the normalized PLT curves virtually coincide for all piers in

Area 1, except that pier A1-20B yields a lower ultimate resistance. The static compression

and static tension curves have almost the same initial slope, but the mobilized ultimate

resistance in tension is about 60% of the ultimate resistance in compression. The loading

rate effect is evident when comparing the PLT tests with the static compression and static

tension tests. The PLTs show that 20% – 40% higher ultimate resistance is mobilized in

dynamic cases. The initial stiffness of PLT curves is found about twice as much as the initial

stiffness of static test curves. Load reversal leads to 50% reduction in both stiffness and

ultimate resistance comparing the second PLT test with the first. The mobilized ultimate

resistance for each pier test is listed in Table 4.3.

The measured stiffness of the soil-pier system from the field test can be compared

with the elastic solution proposed by Randolph and Wroth (1978). As derived in Chapter

2, system stiffness from shaft reaction depends on soil modulus and pier geometry. When

normalized by surface area of the shaft, it can be expressed as follows,

k̄s =
Gs

r0 ln

(
rm

r0

) (4.2)

where r0 is pier radius, rm = 2.5L(1 − ν), L is pier length, ν = Poisson’s ratio of the soil,

which is chosen as 0.4 as the soil is partially saturated. Considering soil nonlinearity, Gs is

an effective soil modulus that can be related to the maximum shear modulus Gmax through
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a modulus ratio η, defined as

η =
Gs

Gmax

(4.3)

where Gmax can be estimated from the shear wave velocity profile. Figures 4.17 and 4.18

compare field data with the elastic solution for varying modulus ratio. The modulus ratio

was back-analyzed from field data. The results presented in Table 4.4 show that modulus

ratio between 0.3 – 0.5 can reasonably approximate the dynamic PLT stiffness over the range

of the working load. The modulus ratio of static compression and tension is around 0.2, while

for the second PLT test, the ratio has been reduced to 0.15 due to stiffness degradation. Eqs.

(4.2-4.3) and recommended values in Table 4.4 provided a simple means for estimating the

system stiffness under various loading conditions.

Table 4.3 Mobilized Ultimate Shaft Resistance (in kPa)

Test Pier
PLT Test Static Test

1st 2nd Compression Tension
A1-19 177 148

A1-20A 182
A1-20B 151 75 108

Table 4.4 Effective Shear Modulus Ratio

Test Pier
PLT Test Static Test

1st 2nd Compression Tension
A1-19 0.3 – 0.5 0.2

A1-20A 0.3 – 0.5
A1-20B 0.3 – 0.5 0.15 0.2

Figures 4.19 – 4.30 summarize the test results for piers A2-20, A2-25, and A2-30 in

Test Area 2. All these test piers are frictional piers of 24 inches in diameter, with penetration

to 20 ft, 25 ft, and 30 ft, respectively. The effect of cyclic degradation was also measured

on piers A2-25 and A2-30. The dynamic PLT test, followed by a static tension test, and

then a second round of PLT tests were conducted for both piers. Similar to the findings in

Test Area 1, pseudo-cyclic overall response curves are plotted in Figures 4.25 and 4.29. The

loading rate effects and severe stiffness and strength degradations after full loading reversal

can be systematically compared using normalized curves in Fig. 4.30.
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In summary, prototype load tests on cast-in-place concrete piers were performed to

examine dynamic and static responses of the soil-pier system under axial loading. In par-

ticular, loading rate effects and cyclic effects as well as characteristics of hysteretic energy

dissipation were studied. The field data provide valuable information for earthquake design

of pier foundations. At this point, the findings presented herein are restricted to current site

condition, pile type, and loading program. Additional field data for other site conditions

and pile types are still needed. Systematic evaluation of such data should ultimately provide

guidelines for performance-based earthquake design of deep foundations.
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PLT #1−#8 Cycle

0 100 200 300 400 500 600
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

D
is

pl
ac

em
en

t (
in

ch
)

Axial Load (kips)

0 500 1000 1500 2000 2500

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

(c
m

)

(kN)

Fig. 4.20 Comparison of Individual PLT Loops (Pier A2-20)
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Fig. 4.21 Analysis of Pier A2-20 1st PLT Test Results
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PLT #1−#11 Cycles
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Fig. 4.23 Comparison of Individual PLT Loops (Pier A2-25)

130



0 2 4 6 8 10 12
0

20

40

60

80

100

200 300 400 500 600 700
10

0

10
1

10
2

0 0.05 0.1 0.15 0.2
0

50

100

150

0 0.02 0.04 0.06 0.08 0.1 0.12
0

100

200

300

400

500

600

700

P
ea

k 
Lo

ad
 (

ki
ps

)

E
ne

rg
y 

D
is

si
pa

tio
n 

(k
ip

s*
in

ch
)

E
ne

rg
y 

D
is

si
pa

tio
n 

(k
ip

s*
in

ch
)

Cycle Number

E
ne

rg
y 

D
is

si
pa

tio
n 

(k
ip

s*
in

ch
)

Peak Load (kips)

Residual Disp. (inch)Residual Disp. (inch)

(a) (b) 

(c) (d) 

F =825 kips

Fig. 4.24 Analysis of Pier A2-25 1st PLT Test Results
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Fig. 4.26 PLT Test Results (Pier A2-30)
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PLT #1−#11 Cycles
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Fig. 4.28 Analysis of Pier A2-30 1st PLT Test Results
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5 Nonlinear Static and Dynamic Finite
Element Analyses

The nonlinear cyclic soil model, as described in Chapter 3, was implemented in a general finite

element framework called OpenSees (2005). The resulting code implementation is suitable

for analysis of static and dynamic soil-structure interaction problems. In this chapter, it is

used to simulate the prototype pier load test described in Chapter 4.

5.1 MODEL PARAMETERS FOR STATIC AND DYNAMIC ANALYSES

5.1.1 Dynamic Modulus Reduction Curves

The soil modulus reduction and damping factors during cyclic loadings depend on a number

of factors including: the amplitude of cyclic strain developed in the soil, as well as the

plasticity index (PI), void ratio, overconsolidation ratio (OCR), confining pressure, and

frequency and shape of the cyclic loading-time history (Seed et al., 1984; Sun et al., 1988;

Hsu and Vucetic, 2002; Vucetic et al., 1998a,b). The emerging trends of laboratory tests

include the extrapolation of cyclic stress-strain behavior to both very small and very large

strain regimes, where existing test data are relatively scarce (Vucetic, 2004).

For cohesive soils, the plasticity index (PI) has an important influence on the modulus

reduction curves (Zen et al., 1978; Vucetic and Dobry, 1991). Clays with higher PI tend to

behave more elastically than low PI soils, resulting in a slower rate of modulus reduction

and lower damping ratio. Similarly, the modulus of sands reduces much faster than that of

clays, and the damping ratio for sands is generally larger. Although it is most appropriate to

determine the modulus reduction curve on a site-specific basis, with limited site information,

we follow the guidelines suggested by Vucetic and Dobry (1991). Fig. 5.1 outlines the generic
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modulus reduction curve used in dynamic analysis. Since the soil in the test area is of low

plasticity, the generic curve (solid line) lies in the low plasticity range of Vucetic & Dobry

curves (shown in dashed lines).

5.1.2 Static Modulus Reduction Curves

Recent experimental investigations reveal significant dependence of the form of the modulus

reduction curve on the applied strain rate at small cyclic strains (Matesic and Vucetic, 2003;

Vucetic and Tabata, 2003). It is recognized that the rate effect on the stiffness and strength

of the soil can be attributed to the viscosity in the soil skeleton and associated creeping,

stress relaxation process. Due to the rate effect, dynamic and static modulus reduction

curves can be quite distinctive especially at small strains, which has been examined through

comparisons of monotonic and cyclic laboratory tests at varying strain rate (LoPresti et al.,

1993, 1996; Shibuya et al., 1996). Based on experiments, the maximum modulus at small

strains is not so influenced by the imposed strain rate. On the other hand, the elastic

threshold strain 1 is found to be significantly influenced by the strain rate, such that it is

larger for the higher strain rate applied 2. Beyond the elastic threshold strain, the moduli

degrade at a much faster rate for monotonic loading than for dynamic cases. The effect of

the loading rate also varies with the soil type. In general, the rate effect is very small in

clean sands and non-plastic silts, relatively small in silty and clayey sands, and significant in

clayey soils (Matesic and Vucetic, 2003). Moreover, the strain rate effect in clays generally

increases with the plasticity index (PI) and water content.

Since the shear modulus reduction curve is rate dependent, the effect has significant

implication on our numerical modelling procedure. In general, there can be two ways to take

into account the rate effect. One is to develop a rate-dependent constitutive model for the

soil such that the rate effect can be simulated by the model. Such a scheme is appealing

for accommodating variation in the strain rate during a loading history, but unfortunately,

is scarce in the literature and not sufficiently developed for practical use. The second ap-

1Elastic threshold strain is defined to be the strain beyond which nonlinear and irreversible deformation
occurs.

2An exponential form seems appropriate to relate the elastic threshold strain to the strain rate, as proposed
by Shibuya et al. (1996).
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proach used herein, considers different soil parameters for the static case and dynamic case,

respectively, such that the dependence of soil parameters on the strain rate can be considered

explicitly.
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Fig. 5.1. Modulus Reduction Curves Used in the Dynamic and Static
Finite Element Simulations

5.1.3 Model Parameters

As discussed in Chapter 3, the nonlinearity of the soil response is modelled by smoothly

transforming the tangential shear modulus from the small strain modulus to the plastic

yield state through a state-dependent hardening rule. The hardening rule is a continuous

exponential mapping function between the current stress state, the last stress reversal point,

and the image point on the bounding surface. Two hardening parameters, h and m, are used

to adjust the shape of the cyclic curves and can be fitted through the modulus reduction

curve of various soil types. In the dynamic simulation, the hardening parameters h and m
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are chosen to fit the low PI range of the Vucetic and Dobry (1991) curves. For the static

analysis, we back calculate a static modulus reduction curve, which degrades faster than the

dynamic curve. The difference is consistent with that observed in the laboratory tests. The

stiffness reduction schemes used in the analysis is shown in Fig. 5.1, with the Vucetic and

Dobry (1991) curves for PI=0,15,30 shown in dashed lines.

Table 5.1 Summary of Soil Parameters

Dynamic Analysis Static Analysis
Soil Density, ρ 2× 103kg/m3

Poisson’s Ratio, ν 0.4
Shear Wave Velocity, Vs 289 m/s
Max. Shear Modulus, Gmax 1.67× 105 kPa
Undrained Shear Strength, Su 100 kPa 86 kPa
Hardening Parameter, h 0.70 Gmax 0.25 Gmax

Hardening Parameter, m 0.8 0.8
Hardening Modulus, Ho 0 Gmax/300
Viscous Coefficient, βini 0.0003 –
Time Step, ∆t 0.005 sec –

Table 5.1 summarizes the soil parameters used in the analysis. Based on laboratory

tests of soil samples from the site, the soil density was taken as ρ = 2 × 103kg/m3. Since

the average shear wave velocity (Vs = 289m/s) was measured over the pier length, the small

strain shear modulus Gmax = ρV 2
s was computed using this measured value.

To simplify the simulation, homogeneous soil properties were first assumed. The

undrained shear strength for static loading, Su, was chosen to be 86 kPa over the depth,

which is the average of the undrained shear strength over the pier length. To account for

the loading rate effect, the undrained shear strength was chosen Su = 100 kPa in dynamic

analysis 3. This simplification will be assessed in subsequent sections, where refined analysis

is made using the measured Su profile that is inhomogeneous.

For the concrete piers, linear elastic material was assumed in the modelling, since

the stress developed during the test was well below the tensile and compressive strength of

3It was reported that the shear strength of the clay increases typically by a factor of 1.05 – 1.10 for
ten-fold increase of the strain rate (Mitchell, 1976). The relationship between soil strength and logarithm of
the strain rate can also be approximated by a bilinear relation — beyond the extremely high strain rates of
around 20% – 100% /s, the rate effect becomes much more pronounced (Yong and Japp, 1969).
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concrete. Young’s modulus was assumed 20 GPa, with Poisson’s ratio ν = 0.1 and density

2.4× 103kg/m3 (150 pcf).

5.2 NONLINEAR FINITE ELEMENT SIMULATION

5.2.1 Finite Element Model

Due to the symmetry of the problem, only one half of the cross section was meshed using

an axisymmetric bilinear element which was developed in OpenSees as a part of this study.

The mesh, shown as an example in Fig. 5.6(a), extends to 40 feet in depth and 20 feet in

length. The base of the mesh is constrained in both directions and only vertical movement

is allowed along the right side of the simulation domain and the axis of symmetry (the left

side). The size of the mesh was regarded as appropriate for the problem after mesh sensitivity

analysis. Since groundwater was found at 21.5 feet in depth at Test Area 1 and 10-11.5 feet

in depth at Test Area 2, the degree of saturation varies considerably throughout the site.

To alleviate possible volumetric locking at the incompressible limit, B-bar formulation was

used in undrained analysis.

Traditionally, frictional contact elements (zero length) can be placed along the pier-

soil interface to allow for slippage between pairs of pier and soil elements. Frictional contact

elements essentially enforce Mohr-Coulomb type failure criterion along the material interface,

which needs an additional set of parameters. However, many field observations reveal that

the failure surface of cast-in-place concrete piers does not occur exactly on the material

interface but some distance inside the surrounding soil. Instead of utilizing zero-length

contact elements, the interface behavior was modelled through a thin layer of nonlinear

interface elements adjacent to the pier shaft. Although distinct constitutive behavior can

be assigned to the interface elements, they were chosen to have the same properties as the

nonlinear soil. To minimize the bias due to element size, a very fine mesh was used in the

interface region.

Important for the ensuing analysis, the initial in-situ stress state should be properly

developed. A staged loading process was designed to enforce the in-situ stress state of soil

elements: The soil elements were initially assumed to be linearly elastic, with Poisson’s ratio
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determined by ν = K0/(1+K0), where K0 is the coefficient of earth pressure, approximately

0.5 for normally consolidated clays. After vertical consolidation under self weight to generate

the desired K0 profile, the soil elements were allowed to respond nonlinearly.

During a PLT test, a dynamic load F (t) was applied on the top of the test pier.

A typical load history measured during the test of a single load pulse (Fig. 5.2) can be

reasonably approximated by a trigonometric function as

F (t) =
P

4

[
1− cos

(
2π t

T

)]2

(5.1)

where P and T are the magnitude and duration of the load pulse. During the analysis, load

pulses were repeatedly applied on the pier top, with magnitude P for each pulse taken as

the value of actual measurement, and duration T assumed to be 0.3 second for all pulses.

The load was uniformly distributed on the pier head to eliminate point load singularity such

that the vertical movements of all top surface nodes of the pier were identical.

Measurement
Approximation

T 

P 

Fig. 5.2 Approximation of PLT Pulse

5.2.2 Simulation of Dynamic PLT Tests

The sequence of PLT test on Pier A1-19 was simulated first. The pier is 19 feet long, 2.5

feet in diameter, with end bearing capacity. Fig. 5.3 shows the recorded and predicted PLT
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curves for pier head displacement versus the applied load history. The plot shows that the

dynamic soil-pier stiffness for loading and unloading as well as residual displacements and

energy dissipation for all nine loops can be simulated reasonably well. The overall strength

envelope, which encompasses all these loops, closely follows the actual measurement. It

should be noted that during the test, there was considerable rebound at the end of each PLT

loop, which cannot be adequately simulated. The lack of rebound accumulates to produce

the apparently larger predicted total residual displacement (0.7 inches predicted against 0.5

inches measured).

Fig. 5.4 further juxtaposes the computed displacement, velocity, and acceleration time

histories of the top node in reaction to the applied load. When the load increases, the pier

accelerates downward, accumulating velocity and displacement. Displacement achieves its

maximum value at the point when velocity passes through zero, and reduces afterwards. It

is evident that the peak displacement lags slightly behind the peak load point due to the

inertial effect. A similar pattern is repeated with increasing magnitude of the cyclic peak

load applied. In the last two pulses, the downward peak velocity reaches 0.1m/s, and the

acceleration reaches 2m/s2 downward and 6m/s2 upward.

A detailed response of the soil element adjacent to the pile wall at middle depth is

presented in Fig. 5.5. With increasing load, the element loads from its initial stress state, and

its shear modulus degradates from the maximum value (small strain modulus) to the current

value according to the bounding surface mapping rule. Upon stress unloading, the current

stress state is set as the new unloading point, and the shear modulus is set back to the

maximum value, mapping back in the opposite direction afterwards. The unloading point

in the element corresponds to the point of maximum displacement, i.e., where the strain

increment changes direction, but not the applied peak load point. The plastic states during

the whole analysis are also monitored, where 0 stands for the current stress moving inside the

bounding surface, 1 for a full plastic state on the bounding surface, 2 for stress state moving

from the interior onto the bounding surface – for that case, the operator split algorithm was

performed. The time history of the plastic state indicates that the full plastic stage was

reached in the element during the last four pulses, where the shear modulus decreased to

zero, and considerable strain was accumulated in that range. To measure the intensity of the

strain developed within the element, L2 norm (‖ε‖ =
√

ε : ε) was also plotted. The strain
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A1-19 Homogeneous Profile)
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Fig. 5.4 Computed Top Node Reaction (Pier A1-19 Homogeneous Profile)
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level in the element ranges from very small to relatively large (up to 1%) under the cyclic

loading.

The displacement and stress fields at the peak load point of the last cycle of loading

are plotted in Fig. 5.6. In view of the vertical displacement, the pier as a whole penetrates

the soil like a rigid body. Underneath the pier end, a conical soil wedge is formed and moves

together with the pier, with a slip line of about 45o inclination. Significant displacement and

shear stress gradients are localized within one pier radius distance in the soil. Due to the

assumption of homogeneous soil profile, the shear stress along the pier shaft is rather uniform,

except for a small area of high stress concentration around the tip. Fig. 5.7 illustrates the

residual displacement and stress fields after the PLT test. Upon removal of the applied load

on the pier head, about 10% of the peak vertical stress is locked beneath the pier end, and

the residual shear stress is also concentrated in that area.

The above analysis was made under the assumption of a homogeneous soil profile,

where the averaged soil strength was used. To assess the influence of soil nonhomgeneity,

the model was re-analyzed using a more realistic undrained shear strength distribution, as

shown in Fig. 5.9 (a). A static strength profile was deduced from the (static) unconfined

compression test, in which the surface crust over the top 8 feet is over-consolidated and

has a higher strength. The Su profile for dynamic analysis was assumed to be 16% higher

pointwise than the static profile to account for strain rate effect. It may be noted that the

layered profile has an average strength value of 86 kPa for the static case and 100 kPa for

the dynamic case, the same as used before. As shown in Fig. 5.8, the refined analysis using

layered profile predicts very similar pier head response as in Figs. 5.3. This result suggests

that the nonhomogeneity of undrained shear strength distribution is not critical for a stiff

clay site, especially for short piers. However, the detailed stress distribution is quite different,

as shown in Figs. 5.9 and 5.10. In general, larger stresses are mobilized and locked in the

upper overconsolidated region.

To further validate the model, the same set of parameters was used to model the

PLT test conducted on another Pier A1-20A. This pier was 20 feet long, 2.0 feet in diameter,

and subjected to ten PLT pulses applied on the top. Since the pier was designed as purely

frictional, the elements right underneath were assumed to have very small elastic modulus.
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(a) FEM Mesh (b) Vertical Displacement Field (m)

(c) Vertical Stress Field (Pa) (d) Shear Stress Field (Pa)

Fig. 5.6. Displacement and Stress Fields at Peak of Last PLT Loop (Pier
A1-19 Homogeneous Profile)
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(a) FEM Mesh (b) Vertical Displacement Field (m)

(c) Vertical Stress Field (Pa) (d) Shear Stress Field (Pa)

Fig. 5.7. Residual Displacements and Stress Fields after Last PLT Loop
(Pier A1-19 Homogeneous Profile)
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Fig. 5.8. Simulated Pier Head Displacement under Cyclic Loading (Pier
A1-19, Layered Profile)

Figs. 5.11 – 5.13 summarize the predicted pier head response, as well as displacement and

stress fields. Similar to the previous case, the model agrees very well with the test data.

5.2.3 Simulation of Static Compression Test

As described in Chapter 4, the static compression test was performed after the PLT test

on Pier A1-19. The PLT load history, i.e., the influence of residual displacement and stress

condition, should be properly taken into account in the finite element analysis.

In our static analysis, the pier was first loaded and unloaded to generate the desired
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(a) FEM Mesh (b) Vertical Displacement Field (m)

(c) Vertical Stress Field (Pa) (d) Shear Stress Field (Pa)

Fig. 5.10. Residual Displacements and Stress Fields after Last PLT Loop
(Pier A1-19 Layered Profile)
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Fig. 5.11 Simulation of Pier A1-20A under Cyclic Loading
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Fig. 5.12 Computed Top Node Reaction (Pier A1-20A, Homogeneous Profile)

156



(a) FEM Mesh (b) Vertical Displacement Field (m)

(c) Vertical Stress Field (Pa) (d) Shear Stress Field (Pa)

Fig. 5.13. Residual Displacements and Stress Fields (Pier A1-20A, Homo-
geneous Profile)
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residual displacement. The pier was then loaded again and the prediction was compared with

the measured data. Fig. 5.14 presents the simulated pier head load displacement response

using static soil properties in Table 5.1. The prediction closely matches the test data, except

that the end bearing capacity is slightly underestimated. The compressive load in the pier

can be integrated over Gaussian points, as shown in Fig. 5.15, in which the spatial gradient

of the load corresponds to the shear stress of the soil mobilized along the shaft. Due to the

assumption of a homogeneous soil profile, the load transfer curve is straight with depth. The

load displacement response can be more accurately captured using a layered soil strength

profile. As shown in Fig. 5.16, we have obtained excellent prediction in terms of both total

capacity and end bearing capacity. Correspondingly, the load transfer curve in Fig. 5.17

appears more realistic.

Fig. 5.18 provides details of displacement and stress fields at the peak load point,

where the observation is very similar to what was presented before. The deformed mesh

(magnified by a factor of 10) is also illustrated. It is worth mentioning that although the

displacement gradient is highly concentrated close to the shaft, the maximum shear strain

developed in these elements reaches only about 3%. So the small strain formulation of the

constitutive model remains valid.

5.2.4 General Remarks

The results shown in the previous sections validate the numerical model and the material

parameters for the dynamic and static soil-pier interaction analysis. The model was also

used to perform a series of parametric studies on the influence of different parameters. An

extended parametric study is not presented here for brevity, but a number of general remarks

are worth enumerating:

In general, the strain dependent modulus reduction scheme of the soil is very critical

to the successful prediction of system stiffness. Here different schemes were used for static

and dynamic tests, respectively, to address the effect of loading rate explicitly. In general,

the loading rate effect can not be fully attributed to linear viscosity. Also it is very difficult

to separate the exact amount of viscosity contribution from the test data. In fact, the viscous
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Fig. 5.16. Simulated Pier Head Displacement under Static Compression
(Pier A1-19, Layered Profile)
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Fig. 5.17. Load Transfer under Static Compression (Pier A1-19, Layered
Profile)
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(a) Vertical Displacement Field (m) (b) Deformed Mesh (× 10, in m)

(c) Vertical Stress Field (Pa) (d) Shear Stress Field (Pa)

Fig. 5.18. Displacement and Stress Fields at Peak Static Load (Pier A1-19,
Layered Profile)
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damping coefficient used in the dynamic analysis is very small, and is mainly used to control

the solution at high strain levels.

The dynamic and static capacity of the system are primarily controlled by the static

and dynamic undrained shear strength of the soil. For the cast-in-place piers which we have

analyzed, no soil strength reduction is warranted for the prediction. Since local yielding has

occurred at the large strain levels, the response is very sensitive to a number of parameters.

Given that the analysis is essentially load controlled, slight reduction in the soil strength as

well as viscous damping will lead to a larger residual displacement for each loop, leading to

an apparent lower dynamic strength envelope.

Changing the time step does not significantly change the pier head response. However,

smaller time steps can capture more high-frequency content of the applied force, enriching

especially the high-frequency component of the acceleration. The time step 0.005 sec em-

ployed here is sufficient in view of the frequency range of the input motion and the size of

the element. In the analysis, the applied force history assumed is a very smooth function of

time, although, the actual pulse generated in the test is quite irregular and when it is taken

into account, the high-frequency response can also be enriched.

The effectiveness of the finite element model can be directly measured by the conver-

gence rate for each time step. Table 5.2 illustrates an example of the rate of convergence with

respect to the L2 norm of the displacement increment. The rate of convergence is found to

be better than linear, but it is not quadratic. Ideally, the global Newton-Raphson iteration

should provide a quadratic rate of convergence if a consistent algorithmic tangent is used

(Simo and Taylor, 1985). However, because the constitutive soil model is highly nonlinear in

nature (H ′ is in exponential form), the discrete algorithm cannot be linearized to provide a

completely consistent algorithmic tangent. Instead, the trapezoidal rule used for constitutive

integration is slightly strain-step dependent. It also must be mentioned that the lack of a

quadratic convergence rate does not affect the accuracy of the solution. The accuracy de-

pends only on the prescribed tolerance in the convergence test. The general performance of

the model is robust and reasonably fast. For example, the total run time was approximately

12 minutes for a full analysis consisting of 789 elements and 540 time steps on a personal

computer (Pentium IV 2G HZ CPU).
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Table 5.2 An Example of Rate of Convergence

Iteration Displacement Increment Norm
1 7.56 ×10−4

2 1.83 ×10−4

3 1.50 ×10−6

4 1.61 ×10−8

5 2.01 ×10−10

6 2.19 ×10−11
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6 Conclusions and Recommendations

6.1 SUMMARY AND CONCLUSIONS

Prototype load tests on cast-in-place concrete piers were performed to examine dynamic

and static responses of a soil-pier system under axial loading. In particular, loading rate

effects and cyclic effects as well as characteristics of hysteretic energy dissipation have been

systematically evaluated from the field data. For the test conducted herein, the dynamic

capacity of the piers is 20% – 40% higher than the static resistance, and the dynamic stiffness

is about twice as high as the static stiffness observed. The multiple PLT tests conducted

on the same drilled pier also indicate that a shaft might experience significant stiffness and

strength degradation when subjected to full load reversal.

The successful application of the test program to the Resident Units project indicates

that results from static and PLT can be effectively used to assess the axial response of drilled

piers under gravity and seismic loads, and the test suggests lower foundation deflections under

seismic loads compared to that under static loads. So use of PLT data in performance-based

design can lead to substantial savings in foundation costs. For the Resident Units project,

Moore et al. (2003) reported that utilizing the design parameters derived from the test data

resulted in between $400,000 and $600,000 savings in foundation costs over the $125,000 cost

of the test program. Since the PLT test is fast and easy to perform, the test procedure is

economical even for relatively small projects.

To simulate nonlinear dynamic and static soil-pier interaction, a numerical model

was developed within the framework of the finite element method. The cyclic soil model

is based on a 3D bounding surface plasticity theory, and it is enhanced from the original

model proposed by Borja and Amies (1994). A fully nonlinear implicit algorithm has been
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formulated in 3D stress space for numerical implementation. The model requires minimal

parameters that can be easily calibrated through conventional field investigation.

Using this model, the load-displacement-capacity of a soil-pier system under static and

dynamic axial loading was simulated and prototype pier load tests were analyzed. The nu-

merical model reasonably captured system nonlinearity across the full range of applied loads.

Overall, the model shows great promise for use in simulation of coupled soil-foundation-

structure interaction problems in the time domain.

6.2 RECOMMENDATIONS AND FUTURE WORK

Soil-foundation-structure interaction is a highly complicated phenomenon, and the funda-

mental mechanism to this problem is still not well understood. Both physical modeling and

numerical modeling of this problem should continue to be pursued in future work, and the

following recommendations are made for improvement of this research.

Since the present field data are limited to the case of a stiff clay site and bored

concrete piers under axial loading, additional field data for other site conditions, pile/pier

types, configurations, and loading conditions are much needed. Other important influential

factors, such as the effects of loading history and the soil-pier interface properties, should

also be properly measured during field tests. It is our hope that systematic evaluation of

such data can provide general guidelines for earthquake design of deep foundations, and can

also improve reliability in numerical simulations.

Although the present bounding surface model can reasonably capture system nonlin-

earity, stiffness, and strength degradation due to full stress reversal is absent in constitutive

formulation. This feature can be important for system prediction in the case of extreme

loading conditions. A damage material model should be properly incorporated in current

bounding surface theory to extend the model capacity.

Significant pore pressure buildup during earthquake excitation is often experienced,

especially in liquefiable ground. However, the current numerical model is based on total

stress analysis, and cannot predict pore pressure generation. The use of an effective stress

model can overcome this problem and enhance the model capacity. A coupled formulation
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of fluid-soil mixture is also necessary to model the fluid phase and soil phase simultaneously

during earthquake excitations. Moreover, large deformations associated with liquefaction can

not be accurately modeled using current small strain formulation. Geometric nonlinearity

and frame invariance should be properly reflected in a finite deformation version of bounding

surface model.

Full three-dimensionality of the current model capacity should be further explored by

coupled simulation of the soil-pier-structure system under multi-directional shaking. Large-

scale field tests, shaking table tests, or centrifuge tests for this case are ultimately needed

to calibrate the model solution in both time and frequency domains. Parametric studies on

model parameters against experimental data need to be performed to identify key compo-

nents governing system response. Moreover, a systematic way to determine model parameters

is highly desirable. Due to the relative simplicity of the model, sensitivity and reliability

analyses should also be performed using an advanced statistical finite element technique.
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