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ABSTRACT 

The “strength” of an earthquake ground motion is often quantified by an intensity measure (IM), 

such as peak ground acceleration or spectral acceleration at a given period. This IM is used to 

quantify both the rate of occurrence of future earthquake ground motions (hazard) and the effect 

of these ground motions on the structure (response). In this report, intensity measures consisting 

of multiple parameters are considered. These intensity measures are termed vector-valued IMs, 

as opposed to the single parameter, or scalar, IMs that are traditionally used. Challenges 

associated with utilizing a vector-valued IM include choosing an effective vector of IM 

parameters, computing the ground motion hazard associated with the vector IM, and estimating 

structural response as a function of a vector of parameters. Contributions are made in all of these 

areas.  

A newly proposed intensity measure of particular interest consists of spectral acceleration 

plus a parameter termed epsilon. Epsilon (defined as a measure of the difference between the 

spectral acceleration of a record and the mean of a ground motion prediction equation at the 

given period) is found to have significant ability to predict structural response. Epsilon is shown 

to be an indicator of spectral shape, explaining its effectiveness. Neglecting the effect of epsilon 

typically leads to conservative estimates of structural performance.  

In this report, it is shown that vector-valued intensity measures can be used to eliminate 

bias in structural performance assessments, as well as increase the efficiency of structural 

response prediction (which can lead to a reduction in the number of dynamic analyses required to 

estimate response with a given precision). One of the intensity measures is also shown to be 

useful for characterizing the effect of near-fault ground motions that contain a velocity pulse—a 

class of ground motions whose effects are poorly captured by current intensity measures.  

Findings regarding effective intensity measures have also been used to identify new methods for 

selecting ground motions for use in dynamic analysis. 
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1 Introduction 

1.1 MOTIVATION 

Quantitative assessment of risk to a structure from earthquakes poses significant challenges to 

analysts. It is a multi-disciplinary problem that incorporates seismology and geotechnical 

engineering to quantify the shaking that a structure might experience at its base; structural 

engineering to quantify the structural response and resulting damage; and finance, public policy, 

and construction cost estimating to help determine the social and economic consequences of the 

damage. The uncertainties present in many aspects of this problem also require that the 

assessment be made in terms of probabilities, adding a further layer of complexity. 

A formal process for solving this problem has been developed by the Pacific Earthquake 

Engineering Research (PEER) Center. There are several stages to this process, consisting of 

quantifying the seismic ground motion hazard, structural response, damage to the building and 

contents, and resulting consequences (financial losses, fatalities, and business interruption). Each 

stage of the process is performed in formal probabilistic terms. The process is also modular, 

allowing the stages to be studied and executed independently, and then linked back together, as 

illustrated in Figure 1.1. For this method to be tractable and transparent, it is helpful to formulate 

the problem so that each part of the assessment is effectively independent. The independent 

assessment modules are then linked together using intermediate output variables, or “pinch- 

point” variables (Kaplan and Garrick 1981). In the PEER methodology the intermediate 

variables are termed intensity measure (IM), engineering demand parameter (EDP) and damage 

measure (DM). The final consequences, termed decision variable (DV), could also be considered 

a pinch point. An important assumption in this methodology is that what follows in the analysis 

is dependent only on the values of the pinch-point variables and not on the scenario by which it 
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was reached (e.g., the response of the structure depends only upon the intensity measure of the 

ground motion, with no further dependence on variables such as the magnitude or distance of the 

causal earthquake). Further, the relationship between each of the stages is Markovian: given 

knowledge of EDP, the damage to building elements is independent of IM. This model relies 

heavily on assumptions of conditional independence between analysis stages, and these 

assumptions should be verified before the model is applied to a given problem. If the 

assumptions are not valid, then modifications to the model are required before proceeding. The 

use of vector-valued intensity measures is one such modification. 

This multi-stage methodology has had success in other complex Probabilistic Risk 

Assessment problems (Kaplan and Garrick 1981; NUREG 1983; Garrick 1984), and a significant 

effort has been made to prepare this methodology for practical earthquake risk assessment 

applications (Cornell and Krawinkler 2000; Moehle and Deierlein 2004).  

 

Fig. 1.1  Schematic illustration of performance-based earthquake engineering 
model and pinch points IM, EDP, and DM 

1.2 ROLE OF INTENSITY MEASURES 

This report focuses on the “intensity measure” pinch point of Figure 1.1, which links the ground 

motion hazard with the structural response. Ground motion hazard is computed using 

probabilistic seismic hazard analysis, and the typical output is the mean annual frequency of 

exceeding various levels of peak ground acceleration or a spectral response value at a given 

period. Structural analysis is then performed in order to obtain a probabilistic model for 

structural response as a function of this intensity measure parameter (peak ground acceleration or 
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the spectral response value). Spectral acceleration at the first-mode period of the structure 

(Sa(T1)) is the intensity measure used most frequently today for analysis of structures.  

1.2.1 Concerns Regarding Intensity Measures 

The intensity measure approach is appealing because it allows the analysis stages shown in 

Figure 1.1 to be performed independently. However, the assumption that structural response 

depends only upon the IM parameter or parameters, and not on any other properties of the 

ground motion, must be carefully verified. Luco and Cornell (2005) have termed this required 

condition “sufficiency.” If the sufficiency condition is not met, then the estimated EDP 

distributions will not only depend upon IM, but also upon the properties of the records selected 

for analysis. If the properties of the selected records do not in some sense match the properties of 

the records that the real structure will be subjected to, then a biased estimate of structural 

response will result. This will be demonstrated more precisely in the following section. 

Several researchers have proposed alternative methods of linking ground motion hazard 

and structural response that do not require the use of intensity measures (Han and Wen 1997; 

Bazzurro et al. 1998; Jalayer et al. 2004). These procedures should not face the same sufficiency 

concerns as the intensity-measure-based procedure.  However, the fully probabilistic methods 

that avoid use of intensity measures tend to require a much greater number of ground motions 

and structural analyses. Further, the need for a large number of ground motions often necessitates 

the simulation of artificial ground motions rather than use of recorded ground motions. 

Simulation of ground motions is commonly accepted in areas such as the eastern United States 

where the number of recorded motions is very small. But in seismically active areas such as the 

western United States where recorded ground motions are more plentiful, the use of simulated 

ground motions is more questionable, as most simulation procedures have not been fully 

validated to confirm that simulated ground motions are consistent with observed ground motions. 

Further, some codes (e.g., ASCE 2005) require that real ground motions be used for dynamic 

analysis. The concerns with simulated ground motions, the added computational expense of 

performing many analyses, and the complications involved when the ground motion hazard and 

structural response cannot be treated independently mean that the intensity measure approach 

still has many advantages as a method for assessing seismic risk to structures. 



   
 
 

4

1.2.2 Benefits of Vector-Valued Intensity Measures 

One way to address concerns about intensity measures is to increase the number of parameters in 

the intensity measure so that it more completely describes the properties of the ground motions. 

The benefit of these so-called vector-valued intensity measures can be explained in more detail 

using the following argument, which has also been made by others (Shome and Cornell 1999, 

Bazzurro and Cornell 2002). Consider a structural response parameter EDP that is potentially 

dependent upon a vector of two ground motion parameters: IM1 and IM2. The rate of exceeding a 

specified value of EDP, z, can be computed using knowledge of the conditional distribution of 

EDP given IM1 and IM2, along with the joint rates of occurrence of the various levels of IM1 and 

IM2. Mathematically, this can be written as 

 
1 2 2 1 1

1 2

| , 1 2 | 2 1 1( ) ( | , ) ( | ) ( )EDP EDP IM IM IM IM IM
IM IM

z G z im im f im im d imλ λ= ∫ ∫  (1.1) 

where ( )EDP zλ  is the annual rate of exceeding the EDP level z. The term 
1 2| , 1 2( | , )EDP IM IMG z im im  

denotes the probability that EDP is greater than z, given an earthquake ground motion with 

intensity such that IM1=IM1 and IM2=IM2. The term 
2 1| 2 1( | )IM IMf im im  denotes the conditional 

probability density function of IM2 given IM1, at the site being considered, and 
1 1( )IM imλ  is the 

annual rate of IM1 exceeding im1 at the site being considered. This vector-IM-based calculation 

will be used extensively in the report that follows. A fundamental question that motivates the 

work of this report is “why is this vector-IM-based formulation any better than one that uses only 

a scalar IM?” For example, what if the ground motion parameter IM2 were ignored and only IM1 

were used in the assessment? Then the distribution of EDP would not depend (explicitly) on IM2, 

and Equation 1.1 would instead look like 

 
1 1

1

| 1 1( ) ( | ) ( )EDP EDP IM IM
IM

z G z im d imλ λ= ∫  (1.2) 

This scalar-IM-based equation is simpler than Equation 1.1, which makes it appealing if it is 

accurate. Consider a case where IM2 actually did not affect structural response (given IM1). That 

is, the conditional distribution of EDP did not depend upon IM2 (given IM1). Then 

1 2| , 1 2( | , )EDP IM IMG z im im  would be equal to 
1| 1( | )EDP IMG z im , and Equations 1.1 and 1.2 would be 

exactly equal. This should be intuitive: if the ground motion parameter IM2 has no effect on 

structural response, then a calculation that considers IM2 (Eq. 1.1) should not produce a different 

answer than a calculation that does not (Eq. 1.2).  
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However, if the parameter IM2 does affect response, then more care is needed. If one uses 

only a scalar IM to estimate structural response in this case, then the estimate of EDP given IM1 

depends implicitly upon the distribution of IM2 values present in the record set used for analysis. 

This can be seen by expanding Equation 1.2 using the total probability theorem (Benjamin and 

Cornell 1970) to explicitly note that EDP is a function of both IM1 and IM2: 

 
1 2 2 1 1

1 2

| , 1 2 | 2 1 1( ) ( | , ) ( | ) ( )EDP EDP IM IM IM IM IM
IM IM

z G z im im f im im d imλ λ= ∫ ∫ %  (1.3) 

This is similar to Equation 1.1, but with one important difference. The response as a function of 

IM2 is dependent upon the IM2 values of the records used, rather than on the actual IM2 values 

occurring at the site of interest1. That is, the conditional distribution of IM2 given IM1 occurring 

at the site, 
2 1| 2 1( | )IM IMf im im , has been replaced by the conditional distribution of IM2 given IM1 

within the record set used for analysis, which is denoted 
2 1| 2 1( | )IM IMf im im% . 

By comparing Equation 1.1 to Equation 1.2 (and its equivalent expanded form in Eq. 

1.3), it is clear that there are two ways to obtain the “correct” answer of Equation  1.1 without 

using a vector IM. First, if the structural response, EDP, is not dependent upon the ground 

motion parameter IM2, then the two approaches are equivalent. Second, if EDP is dependent 

upon IM2, then the scalar-IM-based answer will equal the vector-IM-based answer only if the 

conditional distribution of IM2 given IM1 within the record set equals the conditional distribution 

of IM2 given IM1 at the site of interest. Therefore, if one would like to use a scalar IM for 

analysis, either conditional independence of EDP and IM2, given IM1, must be verified (i.e., IM1 

must be sufficient with respect to IM2), or the records used for analysis must be carefully 

selected so that they match the required conditional distribution of IM2 as described above2. If 

one is willing to perform a vector-IM-based analysis, then concerns about proper record selection 

(with respect to the additional ground motion parameter) are no longer necessary. This 

discussion all assumes that there is no remaining dependence upon any other parameters—an 

assumption that will be investigated. 

                                                 
1 If a recording instrument had been located at the site of interest for thousands of years, then it would be possible to 
use the recorded ground motions in conjunction with Equation 1.2 and get the correct answer. That is, the total 
probability theorem on which Equation 1.2 is based does not cause any errors. It is the substitution of records which 
may not be representative of ground motions at the specified site that can potentially cause an error. 
2 This suggests that careful record selection is a valid alternative to adoption of vector IMs. This result has guided 
previous attempts to select records with proper distributions of magnitude, distance, or other parameters (e.g., 
Shome 1999; Somerville 2001; Jalayer 2003). In Chapter 6, empirical results will also be used to show that careful 
record selection can be used in place of vector IMs. Note, however, that the target distribution can and does change 
as a function of the IM level, meaning that many record sets may need to be selected over a range of IM levels. 
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Viewed in this way, the use of vector-valued intensity measures is closely related to the 

issue of IM sufficiency. The search for additional useful IM parameters is closely related to the 

verification of sufficiency with respect to the same parameters. Thus, vector-valued intensity 

measures are a direct way of reducing insufficiency problems, and thus reducing the potential for 

bias in structural response estimates. 

A further goal that can be achieved using a vector-valued IM is increased estimation 

accuracy. If by adding IM2 to the analysis, one can explain a large portion of a ground motion’s 

effect on a structure, then the remaining “variability” in EDP given IM1 and IM2 will be reduced. 

This means fewer nonlinear dynamic analyses will be needed to characterize the relationship 

between structural response and the intensity measure. An IM that results in small variability of 

EDP given IM is termed “efficient” by Luco and Cornell (2005). A vector-valued IM can achieve 

significant gains in efficiency, as will be seen in this report. Thus, an effectively chosen vector 

IM can reduce the number of dynamic analyses that must be performed to assess a structure’s 

performance.  

For the above reasons, the vector-valued IM approach can bring significant benefits to the 

seismic performance assessment approach described in Figure 1.1. By “widening” the IM pinch 

point to incorporate multiple parameters, more information can be transferred between the 

ground motion hazard and structural response stages of the analysis. This will reduce the 

possibility of biasing the structural response estimates, as well as reduce the number of dynamic 

analyses needed to estimate the relationship between IM and the structural response. Along with 

these gains, the benefits of keeping the assessment procedure in a modular form are maintained. 

Several researchers have recognized the benefits of improved sufficiency and efficiency 

in an intensity measure, and have investigated the use of vector IMs for this purpose. 

Investigations for prediction of building response have been performed by several authors 

(Shome and Cornell 1999; Bazzurro and Cornell 2002; Vamvatsikos 2002; Conte et al. 2003; 

Luco et al. 2005). A similar approach has been applied to prediction of rock overturning during 

earthquake shaking (Purvance 2005). Other researchers have taken a slightly different approach 

and attempted to develop more advanced scalar parameters, rather than switching to a vector 

parameter (Cordova et al. 2001; Taghavi and Miranda 2003; Luco and Cornell 2005), but the 

goal is essentially the same. This report aims to extend the findings from these earlier 

investigations, as will be discussed in the following section. 



   
 
 

7

1.3 CONTRIBUTIONS TO VECTOR-VALUED INTENSITY MEASURE 
APPROACH 

There are three major challenges associated with the selection and use of a vector-valued 

intensity measure, and in this report contributions are made to all three. 

1.3.1 Choice of Intensity Measure Parameters 

The parameters in the vector-valued intensity measure should be chosen in order to convey the 

most possible information between the ground motion hazard and the structural response stages 

of analysis. This requires identifying parameters that most affect the structure under 

consideration. It is also desirable that the parameters have low correlation, so that they are not 

describing the same properties of the ground motion, and so that their individual effects are 

easily separable when predicting structural response. In this report, a new parameter termed ε is 

proposed for use in an intensity measure, and its effectiveness is demonstrated. Following the 

work of others, a vector of parameters consisting of spectral acceleration values at multiple 

periods is also considered, but here a new method for selecting an optimal set of periods is 

proposed. Use of these vector IMs to characterize near-fault ground motions is also considered 

for the first time. These investigations were performed on a range of 2D frame structures, using 

models developed by others (Jalayer 2003; Ibarra 2003; Medina and Krawinkler 2003), in order 

to confirm the findings for a range of structures. 

1.3.2 Ground Motion Hazard Analysis 

In order to use a vector-valued intensity measure in this methodology, one must perform 

probabilistic ground motion hazard analysis for this vector. Bazzurro and Cornell (2002) 

describe the mathematics of this procedure, especially for a vector consisting of multiple spectral 

acceleration values. Knowledge of the correlations among these spectral values is needed in 

order to perform the analysis, and in this report a new predictive model for these correlations is 

presented. The model improves upon previous models for spectral values of a single component 

of ground motion, but also provides the first predictions of correlations among perpendicular 

horizontal components, or among horizontal and vertical components of a ground motion. This 

will allow vector IMs to be used for analysis of three-dimensional structures. 
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Difficulties associated with computing the ground motion hazard may also influence the 

choice of IM parameters. For example, Shome and Cornell (1999) considered a vector-valued 

intensity measure consisting of spectral acceleration plus magnitude or distance, and they were 

able to easily compute the hazard for this vector by using standard spectral acceleration hazard 

analysis along with disaggregation on magnitude or distance rather than performing a more 

difficult vector-valued hazard analysis. This disaggregation-based hazard analysis will be used 

for the newly proposed ε parameter, allowing for the ground motion hazard analysis to be 

simplified in this case.  

1.3.3 Estimation of Structural Response Based on Vector of Intensity Measure 
Parameters 

In order to take advantage of a vector of parameters, structural response must be predicted as a 

joint function of each of the IM parameters (i.e., one must estimate 
1 2| , 1 2( | , )EDP IM IMG z im im  in Eq. 

1.1). Structural response is estimated statistically based on the IM values associated with each of 

a set of ground motions and the resulting structural responses obtained by performing nonlinear 

dynamic analysis of a structure with the ground motions as inputs. Several methods of 

characterizing the relationship between the IM parameters and the resulting structural response 

are proposed in this report, and their relative advantages and disadvantages are discussed. 

Several of these estimation procedures involve scaling of ground motions, and the validity of this 

scaling is investigated. Another challenge related to prediction of structural response is 

combining these predictions with the ground motion hazard analysis to compute the annual rates 

of exceeding various structural response levels. This problem is discussed as well.  

In this report, progress is made in all three of the above areas. The primary focus, 

however, is on selection of parameters for the vector and on use of a vector of parameters to 

predict structural response. 

1.4 ORGANIZATION 

This report addresses several issues related to vector-valued intensity measures for assessment of 

structural performance due to seismic hazard. Chapter 2 discusses several methods for estimation 

of structural response based on a vector-valued intensity measure. Chapters 3 through 6 deal 
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primarily with selection of improved vector-valued intensity measures, and their effectiveness in 

various situations. Chapters 6 through 8 address questions associated with ground motion hazard 

analysis. 

Chapter 2 focuses on the mathematical implementation of vector-valued intensity 

measures in estimation of structural response. Depending on the desired accuracy and allowable 

computational effort, several options exist for modeling structural response at a given level of 

earthquake intensity. The choice of a model is somewhat independent of the actual IM 

parameters used. Various options have been developed for traditional scalar intensity measures, 

and these are reviewed briefly. The options for vector-valued intensity measures are then 

introduced, and their various advantages and disadvantages are described. In later chapters, 

typically only a single method is used, so this chapter provides an opportunity to compare 

different methods and justify the methods used later in the report. 

Chapter 3 presents a novel vector IM consisting of spectral acceleration at the first-mode 

period of the structure, denoted Sa(T1), plus a parameter termed ε. It is seen that ε has a 

significant effect on the response of structures because it is an implicit indicator of spectral shape 

(more specifically, it tends to indicate whether Sa(T1) is in a peak or a valley of the spectrum). 

This vector is particularly appealing professionally because it is easy to find the joint distribution 

of Sa(T1) and ε from standard PSHA and its associated disaggregation, with no need for 

specialized hazard analysis software. 

Chapter 4 also investigates a vector IM that attempts to capture spectral shape, but this 

time it is done directly by combining Sa(T1) with information about spectral acceleration at a 

second period. This IM is seen to provide significant predictive power, especially when the 

second period is chosen properly with regard to the structure and nonlinearity level of primary 

interest. 

Chapter 5 considers a special class of ground motions termed near-fault pulse-like ground 

motions. These motions, which sometimes occur at certain site/fault geometries, are potentially 

very damaging to structures. Further, an IM consisting of spectral acceleration alone is not 

effective in predicting the unusual effects of these motions on structures. In this chapter, the 

previously proposed vector-valued IMs are evaluated with regard to their effectiveness in 

predicting the response of near-fault ground motions. It is seen that while the vector consisting of 

Sa(T1) and ε is not useful in this situation, the vector considered in Chapter 4 can be quite 
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effective. The implications for incorporating the effect of near-fault ground motions using this 

IM are investigated. 

The vector-valued IMs considered in the early chapters of this report provide insight into 

which properties of earthquake ground motions have the most effect on structural response. In 

Chapter 6, this knowledge is applied to the problem of appropriately selecting earthquake ground 

motions for use in structural analysis. By carefully selecting records, one can obtain the benefits 

of a vector-valued IM without introducing any complexity in the analysis (i.e., one can use 

scalar-IM-based methods rather than the somewhat more complicated vector-based methods 

outlined in Chapter 2). But in order to select records to match some target, one must first identify 

what the target is. This problem is discussed, and new guidelines for record selection are 

proposed, using intuition gained from the earlier vector-valued IM work. 

Chapter 7 addresses an issue that is relevant to all PBEE assessments, regardless of 

whether a vector or scalar IM is used. As discussed throughout this report, the PBEE procedure 

relies heavily on the IM pinch point, which typically includes a spectral acceleration in both the 

scalar and vector IM formulations (at least for assessment of buildings and bridges). However, in 

past practice, an error has been made frequently because seismologists and structural engineers 

use slightly different definitions for “spectral acceleration.” This error typically results in 

unconservative conclusions about the risk to the structure of interest. The nature of this error is 

explored in Chapter 7, and several fairly simple methods of correcting it are presented. The 

correction is alluded to in many of the other chapters, and so this chapter explains the correction 

in more detail. 

Chapter 8 provides supporting material that will be helpful for assessments utilizing a 

vector IM consisting of multiple spectral acceleration values (such as that used in Chapter 4). In 

order to compute the joint ground motion hazard for these multiple spectral acceleration values, 

it is necessary to know the correlation of these values within a given record. This chapter 

presents new predictions of correlation coefficients for single-component ground motions 

measured at two differing periods, and also across orthogonal components of three-dimensional 

ground motions. For correlations within a vertical ground motion or across orthogonal 

components of a ground motion, these predictions are believed to be the first of their kind. 

Increased knowledge of response spectrum correlations has facilitated much of the work in 

earlier chapters, and will also allow vector-valued IM hazard analysis to be extended to new 

areas such IMs for 3-dimensional ground motions. 
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Finally, Chapter 9 will summarize the important contributions and findings of this report 

and discuss future extensions of this research. Recommendations will be made regarding record-

selection criteria and use of vector-valued IMs in research and practice, at least within the scope 

of the work in this report.  

The chapters of this report are designed to be largely self-contained because they have 

been or will be published as individual journal articles. Because of this, there is some repetition 

of background material. In addition, notational conventions were chosen to be simple and clear 

for the topic of each chapter rather than for the report as a whole; because of this, the notational 

conventions may not be identical for each chapter. Apologies are made for any distraction this 

causes when reading the report as a continuous document. 

 



 

   
 
 

 

2 Estimation of EDP Given IM 

2.1 ABSTRACT 

There are many possible methods to estimate probabilistic structural response as a function of 

ground motion intensity using the results of nonlinear dynamic analyses. Options include using 

regression analysis on structural analysis results from a set of unscaled (or uniformly scaled) 

ground motions, or fitting a probability distribution to the analysis results from a set of records, 

each of which has been scaled to a target ground motion intensity level. Most studies use only a 

single method among the several options, so it is difficult to compare the relative advantages and 

disadvantages of alternative methods. In this chapter, several methods for estimating 

probabilistic structural response are described and discussed. Several novel methods for utilizing 

vector-valued intensity measures are presented, and the differences between methods for scalar- 

and vector-valued intensity measures are highlighted. The recommended method for using a 

vector-valued intensity measure consists of scaling records to the primary intensity measure 

parameter (e.g., spectral acceleration at the first-mode period of the structure), and then using 

regression analysis to measure the effect of the additional intensity measure parameters. This 

method does not severely restrict the functional form of the median response versus intensity 

measure relationship, while also not requiring excessive numbers of structural analyses to be 

performed. “Hybrid” estimation methods that obtain the benefit of vector-valued intensity 

measures through simplified methods such as informed record selection are also discussed. In 

general, there is a tradeoff between the restrictiveness of the assumptions made regarding the 

response behavior and the number of structural analyses needed for estimation.  
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2.2 INTRODUCTION 

Estimation of probabilistic structural response as a function of ground motion intensity is a major 

step in performance-based earthquake engineering assessments (Cornell and Krawinkler 2000; 

Deierlein 2004). The objective of this step is to estimate the probability distribution of a 

structural response parameter as a function of the earthquake ground motion intensity (quantified 

by one or several parameters termed an “intensity measure”). Several methods are available for 

obtaining this estimate, and they are discussed in this chapter. The methods have been developed 

elsewhere for scalar intensity measures consisting of a single parameter (Jalayer 2003, Chapters 

4 and 5). These methods are reviewed and then extended to vector-valued intensity measures 

consisting of two or more parameters. 

Following the terminology conventions of the Pacific Earthquake Engineering Research 

(PEER) Center, the structural response parameter is termed an engineering demand parameter, or 

EDP, in the discussion that follows. This EDP can be any response parameter of interest, 

although in the examples here the primary EDP used will be the maximum interstory drift ratio 

observed on any story of a building during the ground motion shaking. The intensity measure 

will be abbreviated as IM in much of the discussion that follows. 

It is seen that the optimal estimation method for a particular application depends on the 

sample size used for estimation (i.e., the number of nonlinear dynamic analyses performed), the 

level of nonlinearity in the structure, whether the intensity measure is scalar-valued or vector-

valued, and the level to which the response can accurately be parameterized. 

The estimate of EDP|IM can be combined with a ground motion hazard curve to compute 

the mean annual rate of exceeding a given EDP level ( ( )EDP yλ ) using the equation 

 

 |
d ( )( ) ( | ) d

d
IM

EDP EDP IM
IM

imy G y im im
im

λλ = ∫   (2.1) 

where | ( | )EDP IMG y im  is the complementary cumulative distribution function (CCDF) of EDP|IM 

(the probability that EDP > y, given that IM = im) obtained using the estimation methods 

described in this chapter. The term ( )IM imλ  is the mean annual rate of exceeding the IM level im, 

obtained using probabilistic seismic hazard analysis, a procedure which is well documented 

elsewhere (e.g., Kramer 1996; McGuire 2004). Equation 2.1 is used often in research, but the 

estimate of EDP|IM is normally obtained using a single method. In this chapter, EDP|IM is 
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obtained using several methods, and Equation 2.1 is evaluated using each estimate to determine 

whether the resulting estimates of ( )EDP yλ  are equivalent.  

2.3 ESTIMATION FROM A STATISTICAL INFERENCE PERSPECTIVE 

Estimation of the properties of a random variable (in this case, EDP given an IM level) from a 

finite sample of data is referred to as statistical inference. In this chapter, statistical inference 

tools are applied while highlighting particular concerns of this specific application in 

performance-based engineering.  

There are two classes of approaches for estimating probability distributions. Using a 

parametric approach, one assumes that the random variable EDP has some probability 

distribution (e.g., normal or lognormal) which is defined by only a few parameters. One then 

estimates these parameters to define the distribution (Rice 1995). Generally the choice of a 

distribution is made based on past experience, and statistical tests exist to identify when a dataset 

is not well represented by the specified distribution (although with a small dataset it is difficult 

for such methods to confidently identify a lack of fit).  

Non-parametric approaches are also available, which do not require assumptions about 

the distribution of the data (Lehmann and D’Abrera 1998). These approaches have the advantage 

being robust when the data do not fit a specified parametric distribution, at a cost of reduced 

efficiency when the data do fit a specified parametric distribution. 

Complicating the EDP estimation problem relative to simple statistical inference 

situations is that the distribution of structural response (EDP) is a function of the ground motion 

intensity measure (IM) (i.e., structural response tends to be larger when the intensity of ground 

motion is greater). For some applications the distribution of EDP is needed over a continuous 

range of IMs, or at least a somewhat finely discretized set. In other applications, the distribution 

of EDP may be needed for only a single IM level. The choice of an estimation method used will 

depend on whether distribution estimates are needed for a (wide or narrow) range of IM levels or 

for only a single level.  
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2.4 ANALYSIS USING SCALAR INTENSITY MEASURE 

Jalayer (2003, Chapters 4 and 5) has explored in detail the topic of EDP estimation using scalar 

intensity measures. A brief summary of methods is presented here, and they will be generalized 

in Section 2.5 to incorporate vector-valued intensity measures. 

To facilitate comparison of the methods, illustrative results are provided for an example 

structure. The structure is a 1960s-era reinforced-concrete moment-frame building which will be 

used extensively throughout this report. A nonlinear, stiffness and strength degrading 2D model 

of the transverse frame created by Jalayer (2003) is used here. Spectral acceleration at 0.8s (the 

first-mode period of the building) is used as the IM, and maximum interstory drift ratio is used as 

the EDP. These results are presented only as illustration of the methods of analysis; the 

effectiveness of intensity measures will not be considered until later chapters. 

2.4.1 Regress on a “Cloud” of Ground Motions 

With this method, the structure is subjected to a set of ground motions with associated IM values. 

The records are either left unmodified, or all records are scaled by a constant factor if the 

unmodified records are not strong enough to induce the structural response level of interest. The 

set of IM values and their associated EDP values resulting from nonlinear dynamic analysis are 

sometimes referred to as a “cloud,” because they form a rough ellipse when plotted (see Fig. 

2.1). Regression can be used with this cloud of data to compute the conditional mean and 

standard deviation of EDP given IM. A linear relationship (determined using regression) 

between the logarithms of the two variables often provides a reasonable estimate of the mean 

value of lnEDP over a small range, yielding the model 

 ln lnEDP a b IM e= + +   (2.2) 

where a and b are constant coefficients to be estimated from linear regression (Neter et al. 1996) 

and e is a zero-mean random variable representing the remaining variability in lnEDP given IM. 

Then the mean value of lnEDP given a specified IM value im is 

 ˆˆ[ln | ] lnE EDP IM im a b im= = +   (2.3) 

where ˆˆ and a b  are the regression estimates of the coefficients a and b. If e is assumed to have a 

constant variance for all IM (a reasonable assumption over a small range of IM, but usually less 

appropriate for a wide range of IM), then its variance can be estimated as 
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( )( )ˆˆln ln

ˆ [ ]
2

n

i i
i

edp a b im
Var e

n

− +
=

−

∑
  (2.4) 

where edpi and imi are the EDP and IM values of record i, and n is the number of records. If 

lnEDP|IM is further assumed to have a Gaussian distribution, then the estimated conditional 

probability of exceeding an EDP level y given IM=im is 

 |

ˆˆln ( ln )( | ) 1
ˆ [ ]EDP IM

y a b imG y im
Var e

⎛ ⎞− += − Φ ⎜ ⎟⎜ ⎟
⎝ ⎠

  (2.5) 

where | ( | )EDP IMG y im  is the complementary cumulative distribution function (CCDF) of EDP 

given IM, and Φ(•) is the cumulative distribution function of the standard Gaussian distribution.  

To illustrate the data used in this procedure and the resulting mean estimate, a regression 

is performed on the results of 60 records that have been scaled by a factor of two and applied to 

the example structure. The resulting cloud of data is shown in Figure 2.13.  
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Fig. 2.1  Cloud of EDP|IM data, the conditional mean value from linear 
regression, and CCDF of EDP given Sa(0.8s) = 0.5g  

                                                 
3 Throughout this report, IM is displayed on the x-axis (abscissa) of figures and EDP on the y-axis (ordinate), in 
contrast with many publications elsewhere. This is done to emphasize that EDP is a function of IM. Mathematical 
convention suggests that the independent variable (IM in this case) should be plotted on the abscissa with the 
dependent variable (EDP) on the ordinate. Once the IM becomes a vector of two parameters, this convention is an 
even more natural choice. It is hoped that the intuition provided by following mathematical convention overcomes 
the distraction of breaking with the typical display of IM-EDP relationships used by others. That display is intended 
to maintain the structural convention of “force” versus deformation. 
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This method has more restrictions on the form of the conditional distributions than any 

other method to follow. In particular, it requires the relationship between EDP and IM to be 

linear with constant variance (more precisely, linear with constant variance after 

transformations—most commonly performed by taking logarithms). These restrictions may be 

appropriate only over a limited range of IM levels, but they have the benefit of reducing the 

computational expense of the estimation (fewer data are needed because there are fewer 

parameters to estimate). In this basic format, the method also has the great advantage of being 

associated with a closed-form solution to Equation 2.1 (Cornell et al. 2002). For these reasons 

this is the preferred analysis procedure for some situations. This method will be used in the 

examples of Chapter 7. 

If the assumptions discussed above are not believed to be valid, and a closed-form 

solution to Equation 2.1 is not needed, then these assumptions can be relaxed. For example, if the 

conditional variance is not constant, then linear regression can still be used (perhaps with 

weights on the data corresponding to the estimated variance), and the variance can be estimated 

separately for several IM ranges or estimated continuously using a windowed analysis. Also, a 

linear relationship may not be reasonable for the entire IM range of interest, and so the regression 

should be either limited to the IM regime where its form is adequate or conservative (e.g., SAC 

2000a, b; Jalayer 2003; Luco and Cornell 2005; Aslani 2005) or a piecewise linear relationship 

may be fit (e.g., Mackie and Stojadinovic 2003, p50). Finally, the simple framework outlined 

above does not include the possibility that a record may cause “collapse” of the structure (as 

indicated by large calculated displacements that would likely cause collapse of the real 

structure). Collapse can be incorporated by adding a supplemental probability-of-collapse 

estimation as a function of IM. The non-collapse responses are then accounted for by performing 

regression with only the records that do not cause collapse, and then multiplying the resulting 

estimated distribution by the probability of non-collapse estimated from the first step (e.g., 

Shome and Cornell 2000). With these modifications, many of the assumptions of the most basic 

cloud method can be relaxed. The resulting assessment then lies somewhere between the basic 

cloud method and the less restrictive methods described below, both in terms of the required 

number of analyses and the number of parametric assumptions made. 
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2.4.2 Scale Records to Target IM Level and Fit Parametric Distribution to Response  

If one is interested in estimating the distribution of EDP at a specified IM level im, another 

possible method consists of scaling a suite of records so that the IM value of each record is equal 

to im.  (Record scaling is assumed to be valid for now but is investigated further in Section 2.8 

and Chapter 6.) Nonlinear dynamic analysis can then be performed with each of these scaled 

records to obtain EDP values. The resulting plot of EDP versus IM looks like a “stripe” (see Fig. 

2.2). To estimate a distribution from this data, one can estimate the mean and standard deviation 

of the responses and use these values to fit a distribution4. For example, one can fit a normal 

distribution to lnEDP values, giving a complementary cumulative distribution function defined 

as 

 |
ˆln( | ) ˆEDP IM

yG y im μ
β

⎛ ⎞−= Φ ⎜ ⎟
⎝ ⎠

  (2.6) 

where μ̂  and β̂  are the sample mean and standard deviation, respectively, at the stripe of data 

with IM = im. An example of a stripe of 40 records with a fitted CCDF is shown in Figure 2.2.  
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Fig. 2.2  Stripe of data and its estimated complementary cumulative distribution 
function from fitted parametric distribution 

                                                 
4 It is also possible to fit the distribution using maximum-likelihood or by making the CCDF pass through two 
counted fractiles. The choice of fitting should not significantly affect the results when a large number of dynamic 
analyses are available. The method of moments is used here because it is the natural choice with the cloud 
regression method, and is also straightforward for the stripe-based method.  
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In order to estimate EDP distributions at a range of IM values, one simply repeats this 

procedure at a range of IM values (either at every IM value of interest, or by analyzing a few IM 

values and interpolating). Multiple stripes of data are shown in Figure 2.3 (using a suite of 40 

ground motions scaled to 25 spectral acceleration levels between 0.1g and 5g). It is apparent 

visually that the standard deviation of lnEDP is not constant over the range of IM considered 

here. It also appears that the mean value of lnEDP is not a linear function of lnIM. Thus, the 

most basic cloud method would need to be generalized in order to accurately model responses 

over the entire IM range shown here. 
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Fig. 2.3  Multiple stripes of data used to re-estimate distributions at varying IM 
levels. Note that records causing maximum interstory drift ratios of 
larger than 0.1 are displayed with interstory drift ratios of 0.1. 

This method can easily account for records that cause collapse of the structure. This is 

done by first estimating the probability of collapse as the fraction of records in a stripe that cause 

collapse, and then fitting a parametric (often lognormal) distribution to the remaining records 

that do not collapse. With this formulation, the lognormal complementary cumulative 

distribution function is given by 

 |
ˆln( | ) 1 P( | ) ˆEDP IM

yG y im NC IM im μ
β

⎛ ⎞−= − = Φ ⎜ ⎟
⎝ ⎠

  (2.7) 
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where μ̂  and β̂  are the sample mean and standard deviation, respectively, of the non-collapsing 

responses, and P( | )NC IM im=  is the counted fraction of records at the IM im=  stripe that do not 

cause collapse. When estimating the probability of collapse at multiple IM levels, the probability 

can be counted at each IM im=  stripe, or a parametric function can be fit over a range of IM 

levels (Shome and Cornell 2000). 

If response at only a single IM level is of interest (e.g., if answering “what is the 

probability of exceeding EDP level y at the 10%-in-50-year ground motion hazard level?”), then 

this is a direct method. The disadvantage of this method is that it potentially requires more 

structural analyses than the cloud method if response estimates are needed at many IM levels. 

One thousand dynamic analyses were used to produce Figure 2.3 for research purposes, although 

in practice this number could be reduced significantly.  

2.4.3 Scale Records to Target IM level and Compute Empirical Distribution for Response 

With this non-parametric method, a stripe of data is obtained in the same manner as in the 

previous section. However, instead of using a parametric CCDF to represent the distribution, an 

empirical CCDF is fitted (Lehmann and D'Abrera 1998). With this method the probability of 

exceeding an EDP level y is estimated by simply counting the fraction of records that cause a 

response larger than y: 

 |
number of responses  ( | )
total number of recordsiIM

yG y imθ
>=   (2.8) 

An empirical CCDF is superimposed on a stripe in Figure 2.4. This method has the desirable 

property that no assumptions are made regarding distributions or functional relationships 

between EDP and IM—the data provide all of the information. The eliminated assumptions have 

a cost, however: more data are typically needed to characterize well the conditional distributions. 

In addition, empirical distributions can present difficulties in estimating extreme values5. It is 

important to remember this in situations where extreme values are of concern. In Section 2.4.5, 

however, it will be seen that this method provides good accuracy with the large dataset used 

here.  

                                                 
5 For example, an empirical distribution estimates zero probability of exceeding the largest response value observed, 
while we might expect larger values to in fact be possible. It should be noted however, that the expected value of 
GEDP|IM(y|im) estimated from an empirical distributions is unbiased even for these large response values. Methods 



 

   
 
 

22

10
-1

10
0

10
1

10
-3

10
-2

10
-1

1 0

E
D

P
 =

 M
ax

. I
n

te
rs

to
ry

 D
rif

t R
at

io

IM = Sa(0.8s) [g]  

Fig. 2.4  Stripe of data and its empirical CCDF 

2.4.4 Fit Distribution for IM Capacity to IDA Results 

Unlike previous methods, with this method the distribution of EDP|IM is not estimated directly. 

Rather, the results from incremental dynamic analysis (IDA) are used to determine the 

distribution of IM values that cause a given EDP level to be reached. In previous methods, our 

goal was to obtain 

 | ( | ) P( | )EDP IMG y im EDP y IM im= > =   (2.9) 

With this method, we instead obtain 

 | ( | ) P( | )
capIM EDP capF im y IM im EDP y= < =  (2.10) 

where IMcap is a random variable representing the distribution of IM values that result in an EDP 

level y occurring in the structure (i.e., the “capacity” of the structure to resist a given EDP level, 

defined in terms of the IM of the ground motion). The term | ( | )
capIM EDPF im y  is the probability that 

the IM level of a ground motion is less than im, given that the ground motion caused a level of 

response EDP=y. This method has been used by several others (Kennedy et al. 1984; Bazzurro 

and Cornell 1994a, b). 

                                                                                                                                                             
exist to combine empirical distributions with models for extreme values (Deutsch and Journel 1997, p134), but the 
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By using Equation 2.10, the structural response hazard can be computed as 

 |
d ( )( ) ( | ) d

dcap

IM
EDP IM EDP

IM

imy F im y im
im

λλ = ∫  (2.11) 

This is an alternative to Equation 2.1 and produces comparable results, as will be seen in the next 

section for the example structure considered in this chapter. 

An example of IDA results and a fitted distribution for EDP = 0.01 is shown in Figure 

2.5. For ease of comparison, the IDAs in this figure were obtained by interpolating the stripes 

from Figure 2.3. But with wise selection of analysis points (Vamvatsikos and Cornell 2004) it is 

not necessary to perform as many dynamic analyses as were needed to generate Figure 2.3. In 

addition, if one is only interested in a single structural response level y, then Equation 2.10 need 

only be evaluated at a single EDP value. This will further reduce the number of dynamic 

analyses that need to be performed in order to estimate the mean annual rate of exceeding a 

given response level6. This method also avoids the need to treat separately the records that cause 

collapse. 
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Fig. 2.5  Incremental dynamic analysis curves, and estimated (lognormal) CDF 
of IMcap given maximum interstory drift ratio = 0.01 

                                                                                                                                                             
amount of effort required is likely not worth any gains that could be achieved for this problem.  
6 For example, Ibarra (2003) used this formulation to estimate the mean annual rate of collapse, meaning he only had 
to perform dynamic analyses until he identified the IM level at which each considered record caused collapse, rather 
than finding the entire IDA curve for each record. 
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A drawback of this method is that it will likely still require more analyses than a cloud 

analysis (although it will likely provide more accuracy than the cloud method over a large range 

of IMs). The need to have continuous IDAs also means that one must use the same records for 

analysis at all IM levels, rather than reselecting different records at increasing IM levels in order 

to reflect the differing causal earthquake events (this will be discussed later in Section 2.6.1).  

Another issue that arises with this method is that the IM value of a record which causes 

the response EDP = y is not necessarily unique. This can be observed by drawing a horizontal 

line through Figure 2.5 and noting that sometimes an IDA trace will cross the line more than one 

time (i.e., some IDA traces are not monotonically increasing in some ranges of IM). The obvious 

remedy is to define IMcap as the smallest (or largest) value of IM such that EDP = y.   

2.4.5 Comparison of Results from Alternative Methods 

Using the results shown graphically in the previous sections, resulting estimates can be compared 

in several ways. The estimated mean and standard deviation of lnEDP|IM from stripe and cloud 

methods are shown in Figure 2.6 and Figure 2.7, respectively. With the stripes method, the 

values at each stripe are interpolated linearly to obtain a continuous estimate. Only the most 

basic stripe method is used, without piecewise linear fits or probability of collapse estimates (if 

collapses were of interest in practice the cloud record set would need to be scaled by a greater 

factor, as none of the records in this example caused a collapse) We see in Figure 2.6 that the 

simple cloud method can only provide a linear estimate of the mean (in log space), while the 

stripes method can provide an estimate that varies in any possible way, because the mean is re-

estimated at each stripe. Because a large number of dynamic analyses were performed for the 

stripes in this example, the stripes estimates can be reasonably treated as the “truth.” For spectral 

acceleration values of approximately 1g, the stripes method reveals an increase in mean EDP 

values as the structure reaches large levels of nonlinearity. These results are for only the non-

collapsing cases, where here collapse is assumed to occur after exceedance of a 10% maximum 

interstory drift ratio. Thus the stripes produce a mean estimate that peaks at about 10% for the 

extremely high ground motion levels (greater than 2g). The cloud estimate predicts mean values 

greater than 10%, however, when spectral acceleration is greater than about 2.5g, even though no 

records produce responses that large. 
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Fig. 2.6  Mean values of EDP|IM for non-collapsing records, estimated using 
cloud and stripe methods. For stripe method, values between stripes are 
determined using linear interpolation. 

A comparison of the estimated log standard deviations of EDP using the cloud and stripe 

methods is shown in Figure 2.7. The simple cloud method provides a constant estimated standard 

deviation of lnEDP for all spectral acceleration levels, but the stripe estimates indicate that this is 

not correct. The stripes suggest that log standard deviation is increasing with increasing IM level. 

It should be noted that the shortcomings of the stripe method identified here can be addressed 

using the generalizations of the method discussed at the end of Section 2.4.1. However, the 

number of records needed will begin to increase as the number of model parameters increases. 

Alternatively, the stripe method can be fit over a more narrow range of IM than was used here, 

where the assumptions are more likely to be reasonable. 
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Fig. 2.7  Standard deviation of lnEDP|IM for non-collapse responses, estimated 
using cloud and stripe methods. Only IM levels where less than 50% of 
records cause collapse are displayed because at levels with higher 
probability of collapse, statistics estimated using only non-collapse 
responses are less meaningful. 

Either the means and standard deviations from the stripe data can be used as the 

parameters for a normal distribution, or all of the data points from each stripe can be used to 

create a non-parametric distribution as was done in Figure 2.4.  

In order to see the effect of the complete distributional estimates for all spectral 

acceleration levels, we can combine the probabilistic estimates of EDP|IM with an IM hazard 

curve to compute an EDP hazard curve, per Equation 2.1 (and Eq. 2.11 for the capacity 

formulation). The ground motion hazard is computed for the location in Van Nuys, California, 

where the example structure is located. The mean spectral acceleration hazard curve is shown in 

Figure 2.8. Using each of the above methods to estimate EDP|IM, the drift hazard curve is 

computed and displayed in Figure 2.9.  
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Fig. 2.8  Ground motion hazard at Van Nuys, California, site for spectral 
acceleration at 0.8 sec 
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Fig. 2.9  Comparison of drift hazard results for example structure using four 
estimation methods described above 

Because of the large number of analyses used, the two stripe methods and the capacity 

method all capture the distribution of EDP|IM very well, and the resulting drift hazard curves 

show reasonable agreement. Thus it appears that the stripe methods and the capacity method will 
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produce approximately equivalent results, given sufficient data for estimation, lognormality of 

the conditional distributions, and monotonicity of the IDA traces. In statistical inference, the 

property of convergence for large sample sizes is termed consistency—this is the property that 

we are considering in an informal way here. Connections and comparisons between these 

methods have also been made by others (Shome and Cornell 1999; Jalayer 2003; Vamvatsikos 

and Cornell 2004). 

For this example the cloud method agrees somewhat with the other methods at EDP 

values of less than 0.04, but the functional form constraints of this method limit its accuracy at 

large EDP levels. The stripe method was not used with records causing large responses, and 

probability-of-collapse generalizations were not considered. With a greater number of analyses, 

and generalization to remove the basic assumptions, the stripe method could be made to agree 

more closely with the other methods. At any rate, the stripe method agrees reasonably well with 

the other methods over the range where the cloud estimate was fit. 

In practice it is possible to reduce the number of stripe levels and the number of records 

and still retain most of the accuracy achieved using this large number of analyses. But it is 

unlikely that the number of dynamic analyses needed for stripe analysis could be reduced to less 

than the number used for cloud analysis (the number of records necessary for the cloud method 

can also be reduced from the 60 used here). Thus the cloud analysis method remains an 

important option because of its reduced computational expense. For checking response at a 

single IM level, however, a single stripe may require fewer analyses than a cloud. Thus, the 

cloud, stripe, and capacity formulations each have unique characteristics that may be 

advantageous in certain cases. 

2.5 ANALYSIS USING VECTOR-VALUED INTENSITY MEASURE 

Throughout this report, intensity measures consisting of multiple parameters (i.e., vector-valued 

intensity measures) are considered and shown to have desirable attributes. As will be shown, the 

additional parameters provide more information about the earthquake ground motion and thus 

allow for more accurate prediction of structural response. This enables estimation of conditional 

EDP distributions with smaller standard deviations (increased efficiency), and reduces the 

possibility that the estimates are biased due to ground motion properties not included in the IM 

(increased sufficiency). 
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To incorporate these improved intensity measures, the methods of the previous section 

can all be generalized to incorporate prediction based on multiple parameters. Because the 

intensity measure is a vector in this section, a new notational convention is used. The vector of 

intensity measure parameters will be denoted IM, and the individual parameters will be denoted 

IM1, IM2, etc. Several of the vector-based methods treat one of the IM parameters, IM1, as the 

dominant predictor of structural response and treat IM2, IM3, etc., as subordinate predictors. This 

allows us to treat IM1 differently than we treat the other parameters (e.g., by scaling to match IM1 

and using regression to account for the others). Using this vector IM, the integral of Equation 2.1 

becomes 

 |
d ( )( ) ( | ) d

d
IM

EDP EDPy G y λλ = ∫ IM
IM

imim im
im

 (2.12) 

In many instances, the vector IM will consist of only two parameters. Further, the joint hazard 

( )IMλ im  will be expressed as a typical scalar hazard in terms of IM1, along with a conditional 

distribution of IM2 given IM1. In this case, Equation 2.12 can be expressed as 

 1
| 1 2 2 1 1

1

d ( )( ) ( | , ) ( | ) d
d
IM

EDP EDP
IM

imy G y im im f im im im
im

λλ = ∫ IM  (2.13) 

where 1( )IM imλ  is the ground motion hazard for parameter IM1, 2 1( | )f im im  is the conditional 

distribution of IM2 given IM1=im1 (obtained from vector-valued hazard analysis) and 

| 1 2( | , )EDPG y im imIM  is the CCDF of EDP given the vector of IM parameters. The goal of this 

section is to evaluate methods for obtaining | 1 2( | , )EDPG y im imIM . 

The same example structure will continue to be used in this section. The same dynamic 

analysis results will be used as well; the only change is the use of additional ground motion 

parameters to explain the variability in structural responses. For illustration, a vector IM 

consisting of Sa(0.8s) and a parameter denoted ε will be used for illustration. The parameter ε 

has been found to be an effective predictor of structural response (Chapter 3). This is because it 

is an implicit measure of spectral shape; more specifically, it tends to indicate whether Sa(T1) is 

in a peak or a valley of the response spectrum. Records with positive ε values tend to have 

smaller responses than records with negative ε values, given that they have the same Sa(T1) 

values. This ground motion parameter will be considered in more detail in Chapter 3 and Chapter 

6, but for now it will serve as a useful parameter to demonstrate structural response prediction as 

a function of a vector IM.  
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2.5.1 Use Multiple Linear Regression on Cloud of Ground Motions 

The cloud method of Section 2.4.1 can be easily adapted to use vector-valued IMs. Regression 

analysis using multiple predictor variables (IM parameters) is called multiple linear regression 

and there exists a well-developed theory regarding model selection, confidence intervals for 

regression coefficients, etc. (Neter et al. 1996). With this method, a linear functional form is 

assumed (after variable transformations) that specifies the relationship between the mean value 

of EDP and IM. For example 

 1 2ln ln lnEDP a b IM c IM e= + + +  (2.14) 

where a, b, and c are coefficients to be estimated from the multiple linear regression, and e is a 

zero-mean random variable representing the remaining variability in lnEDP given IM. An 

example of an estimated mean prediction is shown in Figure 2.10, using the example IM 

parameters lnSa(0.8s) and ε. Assuming that lnEDP is normally distributed, then the probability 

of exceeding an EDP level y given IM = (im1, im2) can be estimated as 

 1 2
|

ˆˆ ˆln ( ln ln )( | ) 1
ˆ [ ]EDP

y a b im c imG y
Var e

⎛ ⎞− + += − Φ ⎜ ⎟⎜ ⎟
⎝ ⎠

IM im  (2.15) 

 
where the mean value of EDP given (im1, im2) is estimated as 1 2

ˆˆ ˆln lna b im c im+ + , and ˆ [ ]Var e  is 

estimated as the sample variance of the residuals.  

This method has the advantage of easily accommodating many IM parameters by simply 

adding additional terms to Equation 2.14 (e.g., 3lnd IM ). It also has the great advantage of 

requiring many fewer parameters to be estimated than with any of the other methods, typically 

allowing estimates to be obtained from fewer analyses—a significant benefit when analyses are 

computationally expensive. The model can be generalized, as in Section 2.4.1, to incorporate 

features such as non-constant variance or records that cause collapse. 

 Because of these appealing features, this was the analysis method of choice for many 

previous investigations of vector-valued intensity measures (e.g., Bazzurro 1998; Shome and 

Cornell 1999; Luco et al. 2005).  

 



 

   
 
 

31

(a)  

(b)  

Fig. 2.10  (a) Mean fit from cloud of data, predicted using multiple linear 
regression with Sa(0.8s) and ε as predictors and (b) same mean from 
different viewpoint, to emphasize that prediction is plane  
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One difficulty with this method is that when two parameters IM1 and IM2 are highly 

correlated, it is difficult to separate their effects and estimate with confidence the coefficients b 

and c in Equation 2.14. This condition is termed collinearity, and is a particular problem when 

using vector intensity measures consisting of two spectral acceleration values, or when using the 

vector consisting of spectral acceleration and ε described briefly above and discussed in more 

detail in Chapter 3.  

An underappreciated difficulty with multiple regression is that extrapolation is much 

more common in higher dimensions. Although marginally one might have predictor variables 

that span the IM range of interest, their joint distribution may not cover the range of data 

expected. This can easily be seen in Figure 2.10a: although there are data points with 2<ε<3, and 

there are data points with 0.1g<Sa<0.3g, there are no data points with 2<ε<3 and 0.1g<Sa<0.3g 

(i.e., the left side of the fitted plane). So this region is actually an extrapolation, although it might 

not be noticeable at first inspection. As the number of predictors grows, this problem quickly 

becomes very significant. Bellman (1961) named this phenomenon the “curse of 

dimensionality.” 

A final problem is that it is difficult to model interactions between intensity measure 

parameters. For example, if IM1 is spectral acceleration at the first-mode period of the structure 

and IM2 is spectral acceleration at a lower frequency (which captures nonlinear response), then 

IM2 may have a small effect on response at low IM1 levels when the structure is linear and a 

large effect on response at large IM1 levels when the structure is very nonlinear. This would 

imply a small value for the c coefficient in Equation 2.14 for low IM1 and a large value of c for 

high IM1 (this changing functional form will be seen in Fig. 2.15 below).  In the formulation of 

Equation 2.14, however, the value of c is constrained to be constant for all levels of IM1. One 

could attempt to fix this by adding an interaction term to the equation (e.g., 1 2lnd IM IM ), but in 

practice it can be difficult to determine and incorporate the correct functional form without a 

large amount of data.  

This method has several appealing features, but the assumptions made regarding the 

functional form should be verified to make sure they are appropriate for a given analysis. 
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2.5.2 Scale Records to Specified Level of Primary IM Parameter, and Regress on 
Additional Parameters 

With this method, records are scaled to the primary IM parameter (e.g., Sa(T1)) as in Section 

2.4.2, and then regression analysis is used on the stripe of data to determine the effect of the 

remaining IM parameters. Logistic regression is used to compute the probability of collapse, and 

linear regression is used to model the non-collapsing responses. The procedure is explained here 

for a two-parameter IM but is sufficiently straightforward to add additional parameters by using 

multiple regression. This method is used extensively in Chapter 3; a more detailed description of 

the procedure is given there.  

Rather than estimating the probability of collapse as simply the fraction of records at an 

IM1 stripe that cause collapse, IM2 is used to predict the probability of collapse using logistic 

regression (Neter et al. 1996).  With this procedure, each record has a value of IM2 which is used 

as the predictor variable. Using the indicator variable C to designate occurrence of collapse (C 

equals 1 if the record causes collapse and 0 otherwise), the following functional form is fitted  

 ( )
2

21 1 2 2
eˆ | ,

1 e

a bim

a bimP C IM im IM im
+

+= = =
+

 (2.16) 

where a and b are coefficients to be estimated from regression on a record set that has been 

scaled to IM1=im1 (because of this, a and b are implicitly dependent on IM1). An example of 

these data and a fitted logistic regression curve is shown in Figure 2.11. By repeating this 

regression for multiple IM1 levels, one can obtain the probability of collapse as a function of both 

IM1 and IM2. This is illustrated in Figure 2.12. 
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Fig. 2.11  Prediction of probability of collapse using logistic regression applied to 
binary collapse/non-collapse results at Sa(0.8s) = 1.2g 

 

Fig. 2.12  Probability of collapse fit from stripes of data, predicted by scaling to 
Sa(0.8s) and using repeated logistic regressions with ε as predictor  
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To incorporate IM2 in the prediction of non-collapse response, we use linear regression. 

At an IM1 stripe, the relationship between IM2 and EDP is modeled by a linear function (after 

transformations). For example 

 2ln lnEDP c d IM e= + +  (2.17) 

where c and d are constant coefficients, and e is a zero-mean random variable modeling the 

residuals as before. In contrast to the cloud method, these coefficients and the residual variance 

are re-estimated at every IM1 stripe. So assuming a Gaussian distribution for the residuals, the 

probability that EDP exceeds y, given IM1 = im1, IM2 = im2, and no collapse (NC) can be 

expressed as 

 ( ) ( )2
| 1 2

ˆˆln ln
| , , 1

ˆ [ ]EDP

y c d im
G y im im NC

Var e

⎛ ⎞− +
⎜ ⎟= − Φ
⎜ ⎟⎜ ⎟
⎝ ⎠

IM  (2.18) 

Where ĉ , d̂  and ˆ [ ]Var e  are estimated using response data associated with records scaled to 

IM1=im1. A plot of the data, the regression fit, and the estimated distribution are shown in Figure 

2.13. 
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Fig. 2.13  Prediction of response given no collapse, at Sa(0.8s) = 0.3g, with 
distribution of the residuals superimposed over data 
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By repeating this scaling and regression for multiple IM1 levels, one can obtain distribution of 

non-collapse responses as a function of both IM1 and IM2. The mean value of non-collapse 

responses as a function of Sa(0.8s) and ε are shown in Figure 2.14. In this case, the fit is close to 

planar and does not look significantly different than in Figure 2.10 except at high Sa(0.8s) levels. 

In Figure 2.15 a vector IM is shown where there is an interaction effect between IM1 and IM2. A 

cloud regression would have difficulty capturing this behavior. 

 

Fig. 2.14  Conditional mean fit of non-collapse responses from stripes of data, 
predicted by scaling records to Sa(0.8s) and using repeated regressions 
with ε  as predictor 
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Fig. 2.15  Conditional mean fit of non-collapse responses from stripes of 
data, predicted by scaling records to Sa(0.8s) and using 
repeated regressions with R(0.8s, 2.0s) as predictor. In this case, 
predicted mean is not planar, so it would be difficult to capture 
true behavior using cloud regression. 

The collapse and non-collapse cases are combined using the total probability theorem and 

Equations 2.14 and 2.16, to compute the conditional probability that EDP exceeds y 

 
( ) ( ) ( )

( )
2

2

2
| 1 2

ˆˆ

ˆˆ

ˆˆln
ˆ ˆ| , ( ) 1 ( ) 1

ˆ [ ]

eˆwhere 
1 e

EDP

a bim

a bim
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where ˆ ˆˆ ˆ, , ,  and [ ]a b c d Var e  are all estimated using records scaled to IM1 = im1.  

This method has several desirable attributes. The method of scaling to stripes is already 

used frequently for scalar IMs (Section 2.4.2), so the record processing is not new. We merely 

add a secondary regression analysis to the procedure. In fact, the scalar parametric stripe case is 

merely a special case of this method, with the b and d coefficients omitted from Equation 2.17. 

In regression terms, only two additional degrees of freedom per stripe are used for estimation by 

moving to a vector, and this “loss” of degrees of freedom should be offset by the increased 

efficiency (i.e., decreased ˆ [ ]Var e ) obtained from the vector. In addition, because the regression 
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coefficients are re-estimated at each stripe, the interaction between IM1 and IM2 is captured 

automatically—a feature that cannot be achieved using the cloud method of Section 2.5.1. 

Because of the advantages discussed here, this is the primary procedure adopted throughout this 

report.  

2.5.3 Fit Conditional Distribution for IM1 Capacity to IDA Results 

Here, the IM capacity method of Section 2.4.4 is generalized to incorporate a vector IM. 

Although only a single IM parameter (IM1) is scaled during the IDA, it is still possible to 

determine the effects of other IM parameters as follows. First, perform incremental dynamic 

analysis by varying IM1 until the EDP value of interest is obtained. This will provide the 

distribution of IM1cap values as in Section 2.4.4. Then display these IDAs along with IM2, as 

shown in Figure 2.16. 
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Fig. 2.16  Incremental dynamic analysis with two intensity parameters, used to 
determine capacity in terms of intensity measure  

The point at which each IDA trace first reaches the EDP level of interest (max interstory drift 

ratio = 0.1 for this example) defines a set of IM capacity values. These points are plotted in 

Figure 2.17 for exceedance of EDP = 0.1 maximum interstory drift ratio (these are the same 

points as the tips of the IDA traces in Fig. 2.16).  
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Fig. 2.17  Sa(0.8s), ε pairs corresponding to occurrence of 0.1 maximum 
interstory drift ratio 

It is apparent in Figure 2.17 that IM2 can explain part of the variation of IM1 capacity 

(that is, the IM1Cap values tend to be larger for positive values of ε). So the probability of 

exceeding the IM capacity associated with the target EDP level can be expressed in terms of a 

conditional distribution of IM1Cap given IM2. Here, the conditional distribution of lnIM1Cap 

appears to be linearly dependent upon IM2. Therefore, linear regression can be used to find the 

conditional mean of lnIM1Cap given IM2 

 
1 2 2ln | 0 1 2CapIM IM im IMμ β β= = +  (2.20) 

where β0 and β1 are coefficients to be estimated from linear regression using, e.g., the data points 

from Figure 2.17. Further, the conditional standard deviation of lnIM1Cap given IM2 can be 

estimated by computing the standard deviation of the regression residuals, as was done using the 

other regression-based methods discussed earlier. This conditional standard deviation is denoted 

1 2 2ln |CapIM IM imσ = . If the conditional distribution of lnIM1Cap given IM2 is assumed to be Gaussian, 

then the conditional mean and standard deviation computed above completely define the 

conditional distribution of lnIM1Cap associated with reaching a given EDP level y. The 

probability density function (PDF) of this distribution is shown in Figure 2.17 for two different 

values of IM2. The CDF of this conditional distribution can be computed as  
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where ( )Φ ⋅  is the CDF of the standard Gaussian distribution. Using Equation 2.21, the drift 

hazard can then be computed as 

 ( ) ( )
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EDP Cap IM IM
im im

imy P IM im EDP y IM im f im im im
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where the IM1cap points were defined as the IM1 level associated with occurrence of the EDP 

level y. This procedure can be extended to larger vectors by using additional IM parameters to 

the conditional distribution of IM1cap.  

As an example, ( )1 1 2 2|CapP IM im IM im< =  is displayed in Figure 2.18 for a range of im1 

and im2, where IM1Cap is defined as the Sa(0.8s) level that causes first exceedance of 0.1 

maximum interstory drift ratio (which is considered to indicate collapse for this example), given 

ε, which is defined to be IM2. This plot can be compared to Figure 2.12, which was obtained 

using the stripes method (a comparison between the two will be made in Section 2.5.6).  

 

Fig. 2.18  Probability of collapse predicted by fitting joint normal distribution to 
collapse capacity as function of lnSa(0.8s) and ε 
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The advantage of this method relative to the stripes is that the IDAs potentially require 

fewer analyses if the data points are chosen wisely. Unlike the cloud method, interactions among 

the IM parameters are captured because the conditional capacity distribution (as a function im2) 

is re-estimated at each EDP level. The disadvantage is that wise selection of IDA analysis points 

and interpolation to determine capacity points is slightly more difficult than simply scaling to 

target intensity measure values to create stripes. 

In this example, assumptions of linear dependence between transformed IM parameters, 

constant standard deviations, and Gaussian distributions of IM1Cap were made. The 

reasonableness of these assumptions should be verified before proceeding with this method. As 

with the previous methods, it is possible to relax these assumptions if appropriate. Relaxation of 

these assumptions, however, may require additional analysis effort as well as an increased 

number of dynamic analyses for estimation. 

2.5.4 Scale Records to Specified IM Levels and Calculate Empirical Distribution 

With this method, records are scaled to target IM1 levels and then bins of IM2 values are selected. 

Within each bin, an empirical CCDF is computed as in Section 2.4.3. This is then used as the 

| 1 2( | , )EDPG y im imIM  in drift hazard computations. It can be shown that this method is equivalent to 

fitting a scalar-IM empirical CCDF after using the re-weighting procedure that will be discussed 

in Section 2.6.2. It is conceptually simpler to present this method in the context of re-weighting, 

so discussion will be postponed until that later section. 

2.5.5 Process Records to Match Target Values of All IM Parameters  

Another potential method, which has not been attempted for vector IMs to the author’s 

knowledge, is the processing of a suite of records to match all parameters specified in the IM 

vector, leaving the other record properties random. The conditional distribution of EDP could 

then be estimated directly from the modified records. This is done for scalar IMs by simply 

scaling records. With vector IMs it will require a more complicated scheme. For example, when 

the IM consists of spectral acceleration plus a measure of spectral shape (e.g., Chapter 4), one 

would scale the record to match spectral acceleration, and then use a spectrum-compatibilization 

scheme (Abrahamson 1993, Silva 1987) to match the spectral shape. The spectrum should not be 



 

   
 
 

42

completely smoothed, as is sometimes done to match a uniform hazard spectrum. Rather, the 

spectrum roughness should be retained and only the general shape of the spectrum should be 

modified, in accordance with the target spectral shape parameter.  

This type of spectrum modification scheme is sometimes referred to as a “one-pass” 

compatibilization (e.g., McGuire et al. 2001), because it requires only a single iteration of 

spectrum modification as opposed to the multiple iterations required to create a smooth 

spectrum. This scheme was used by Carballo and Cornell (1998) to create records representative 

of eastern U.S. earthquakes from western U.S. records. To date, however, it has not been used to 

estimate EDP using a vector IM as proposed here. An illustration of this procedure is shown 

below. In Figure 2.19a, spectra are shown for records scaled to Sa(0.8s). In Figure 2.19b, records 

are shown scaled to Sa(0.8s) and compatibilized to match a target spectral acceleration at 2.0s as 

well. These figures were created using simulated spectra for illustration—the actual processing 

and analysis of records using this scheme is a topic of current research. 
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Fig. 2.19  (a) Response spectra of records scaled to match spectral acceleration at 
0.8s and (b) response spectra of records scaled to match spectral 
acceleration at 0.8s and processed to match spectral acceleration at 
2.0s  

If the same suite of records is used for a range of IM values by repeatedly rescaling and 

recompatibilizing the records, then this could be thought of as a generalization of incremental 

dynamic analysis, where there are now two or more scaling parameters rather than the single 

parameter used in standard IDA. This processing scheme should be possible when the intensity 
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measure consists of spectral acceleration plus a measure of spectral shape (as is the case for the 

intensity measures in this report). It is not so obvious, however, how one would process a record 

to match other parameters such as duration. This method would likely also require a great 

number of dynamic analyses, which may make it impractical in cases where computational 

expense is a concern. 

Rather than processing records to have specified values of each IM parameter, one could 

approximately reproduce this approach by selecting real records whose IM values closely match 

the target values. Or one could still use simple record scaling to match the first spectral 

acceleration parameter, and then select only those records whose other IM values closely match 

the target values. This approach will be used in Chapter 6, and is closely related to the method 

proposed in Section 2.6.1. 

2.5.6 Comparison of Results from Alternative Methods 

Using an intensity measure consisting of Sa(0.8s) and ε, several comparisons can be made 

among the results from the above methods. Mean values of EDP given Sa(0.8s) and ε were 

shown for the cloud and stripe methods in Figure 2.10 and Figure 2.14, respectively, and seen to 

match reasonably well at least for values of  Sa(0.8s) less than 1g or 2g. Probability of collapse 

estimates were shown for the stripe and capacity methods in Figure 2.12 and Figure 2.18, 

respectively. They were also seen to match reasonably well, although the estimate from stripes is 

not “smooth7.” The EDP predictions can also be combined with ground motion hazard using 

Equation 2.13 to predict the mean annual rate of exceeding various EDP levels. A comparison of 

this result for each of the methods is shown in Figure 2.20. With the exception of the cloud 

method, the results are in good agreement. Note also that the curves have shifted down with 

respect to the curve based on the scalar IM Sa(0.8s) alone. This tells us that the vector intensity 

measure has provided more information about structural response. This conclusion will be 

discussed further in Chapter 3. 

                                                 
7 One would expect these probabilities of collapse to be monotonic functions of the IM parameters, as is seen in 
Figure 2.18, but not in Figure 2.12. Although this might suggest that the capacity method is preferable, its prediction 
of probability of exceeding EDP levels is not necessarily continuous as a function of the EDP level. In contrast the 
stripe method prediction is monotonic as a function of EDP level, but not as a function of IM2. So the two methods 
in fact provide comparable prediction “accuracy” over the IM-EDP space, even though this is not apparent from 
Figures 2.12 and 2.18. 
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Fig. 2.20  Comparison of drift hazard results using vector-valued intensity 
measure consisting of Sa(T1) and ε 

2.6 “HYBRID” METHODS FOR CAPTURING EFFECT OF VECTOR OF 
INTENSITY MEASURES 

Although vector-valued intensity measures facilitate improved estimation of EDP distributions, 

they can also add complexity to the analysis. In this section, several methods are described that 

can achieve the gains of a vector-valued IM while simplifying the analysis procedure. The 

common theme among these methods is that they try to mimic the conditional distribution of 

IM2|IM1 that is expected at the site in the ground motion dataset used for analysis. Then only the 

scalar parameter IM1 need be used for estimating EDP, and the underlying distribution of 

IM2|IM1 is consistent between the dataset and the true ground motion hazard. That is, if the 

distribution of IM2|IM1 is consistent between the dataset and the true ground motion hazard, then 

the following is true 
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2.6.1 Scale Records to Specified Level of IM1, Selecting Records to Match Desired 

Distribution of Secondary Parameters 

With this method, we carefully select records to match the target IM2|IM1 distribution at each 

IM1 level. This is often done today, with IM1 as spectral acceleration and IM2 as magnitude 

and/or distance (Stewart et al. 2001). The target conditional distribution is obtained from 

disaggregation of probabilistic seismic hazard analysis results, and records with the target 

magnitude and distance values are identified and used for analysis. This same method has also 

recently been used for the more effective intensity measures (e.g., ε) discussed in this report 

(Chapter 6 and Haselton et al. 2005).  

The difficulty with this method is that the conditional distribution of IM2|IM1 typically 

changes as the value of IM1 changes (e.g., as the spectral acceleration level increases large 

positive ε values become more common). Thus, records need to be reselected at differing IM1 

levels. This adds an extra step in the record selection process, and makes IDA methods more 

complicated because the records change as the IM level changes. The limited number of 

available ground motion records may also provide a practical impediment to the adoption of this 

procedure. Nonetheless, we will see in Chapter 6 that the advantages of this method may justify 

the extra work. 

2.6.2 Fit Distribution to Stripe of Data, after Reweighting to Match Target Distribution of 

IM2|IM1 

In an attempt to avoid reselecting records at each stripe, one could select a single set of records 

with a range of IM2 values and then re-weight the data after scaling to IM1 so that the re-weighted 

dataset has the proper distribution of IM2|IM1 at each IM1 level.  This method has been proposed 

by Shome and Cornell (1999, p208) and Jalayer (2003, Chapter 6) After discretizing IM2 into a 

set of “bins,” the weight for a record with an IM2 value in bin j would be 

 2 1| 2, 1( | )IM IM j
j

j

f im im
weight

n
=  (2.24) 

where 
2 1| 2, 1( | )IM IM jf im im  is the target probability that IM2 = im2 (in bin j), given IM1 = imi 

(obtained from vector-valued PSHA, or disaggregation if IM2 = ε), and nj is the number of 

records in the record set with IM2 in bin j. The weighted record set will have a probability 
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distribution equal to the target 
2 1| 2 1( | )IM IMf im im . The scalar stripe methods of Sections 2.4.2 and 

2.4.3 can then be applied to this weighted dataset, and the procedure works as before. 

There are a few disadvantages to consider when using this method. It is necessary to have 

records in every IM2 bin considered, or else the denominator of Equation 2.22 will be equal to 

zero for some IM2 bins. Ensuring that there are records in each IM2 bin will require either careful 

record selection or course discretization, which may mask the effect of the underlying intensity 

measure parameter. In addition, some records may be assigned weights close to zero, meaning 

that some data are essentially discarded for the purposes of estimation. Given the large expense 

of obtaining response data, this is undesirable. This problem is of some concern when 

incorporating a second parameter but becomes nearly insurmountable if the vector consists of 

more than two parameters. This is because the number of bins increases exponentially with the 

number of IM parameters, and thus the average number of records in each bin decreases very 

quickly to zero even with a large record set. This so-called curse of dimensionality is a concern 

for all of the methods considered but is especially problematic for this method because of its 

nonparametric nature (Bellman 1961; Hastie et al. 2001, p22). Whereas parametric methods 

require a few model parameters to be estimated for each additional IM parameter, the number of 

parameters (i.e., weights) estimated with this method is equal to the (exponentially increasing) 

number of bins. Shome and Cornell (1999) and Jalayer (2003) use a slightly different weighting 

scheme than the one in Equation 2.24, but it too will suffer from the curse of dimensionality. The 

large number of estimated parameters reduces the free degrees of freedom available for 

estimating the means and variances of response, and thus reduces or even eliminates any 

efficiency gained by using a vector-valued IM. Therefore, this method is essentially limited to a 

two-parameter vector where the second parameter is coarsely discretized (which is perhaps not 

very restrictive in practice, although it is a shortcoming for exploratory research). 

Despite these disadvantages, the ability to use the same set of records at all IM1 levels is 

very desirable in some situations. This is of particular concern if one is trying to account for a 

second IM parameter using incremental dynamic analysis, where the records must stay the same 

as the IM1 level changes. For the IDA situation especially, this may be a preferred method of 

incorporating vector-valued IMs. 
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2.6.3 Comparison of Results from Alternative Methods 

To demonstrate the effect of the hybrid methods, several response estimates are compared to the 

original estimates based on Sa(0.8s) alone, and displayed in Figure 2.21. These results come 

from the same structural model and record set as used before. The exception to this is for the 

special record-selection scheme of Section 2.6.1 where records are reselected at each Sa level to 

match the ε distribution obtained from disaggregation (record-selection details will be given in 

Chapter 6). We see that all three of the methods that account for the effect of ε result in a 

lowering of the drift hazard curve. Although the agreement is not perfect, clearly all three 

methods are capturing the effect of ε to some extent. Thus the hybrid methods based on record 

selection or reweighting can achieve similar results to the vector IM method that uses regression 

on ε. This result also shows that the scalar IM Sa(0.8s) is biased (“insufficient”) at large levels of 

EDP (i.e., incorporating ε in the prediction changes the answer, suggesting that the scalar IM 

consisting of Sa alone does not provide complete information about the effect of the ground 

motions). Further evidence for this will be presented in Chapters 3 and 6. 
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Fig. 2.21  Comparison of drift hazard results using vector-IM-based regression 
procedure of Section 2.5.2, record selection procedure of Section 2.6.1 
and reweighting procedure of Section 2.6.2. Scalar intensity measure 
used is Sa(0.8s), and vector is  Sa(0.8s) and ε.  
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2.7 VECTOR-VALUED EDPs 

This chapter has focused on incorporating vector-valued IMs into structural analyses, but vector-

valued EDPs are also a useful quantity in many assessments. When performing loss estimation at 

a detailed level, it may be important to know the distribution of peak interstory drift ratios and 

peak floor accelerations at each level of a multi-story building. Fortunately this extension is not a 

difficult one.  

The conditional distribution of individual EDPs (given the IM value) are often assumed 

to be lognormally distributed, so that lnEDP is normally distributed (Shome and Cornell 1999; 

Aslani and Miranda 2003). Making an additional assumption that multiple lnEDPs have a joint 

normal distribution allows for a fairly simple estimation method. We compute the sample mean 

and variance for each of the individual EDP parameters as before. For the joint normal 

distribution, the only additional information that is needed is the correlation between the 

residuals for each lnEDP parameter, which can easily be estimated from the same data used to 

estimate means and variances. This has been done using the parametric stripe method by Baker 

and Cornell (2003) and using the cloud method by Luco et al. (2005). 

If one assumes constant correlations for all IM levels (as is typically done with cloud 

methods), then all of the prediction residuals can be used simultaneously to estimate correlations. 

If one would like the correlations to vary as a function of a scalar IM, then residuals from 

individual stripes would be used separately for estimates. If one would like the correlations to 

vary with a vector of IM parameters, estimations of correlations will be more difficult. But such a 

complicated model for correlations may be unnecessary. Merely assuming correlations to be 

constant or a function of a scalar IM parameter is a positive step and is likely to be sufficient for 

many applications. 

2.8 RECORD SCALING FOR RESPONSE ESTIMATION 

Several of the above procedures (which use “stripes” or “IDAs”) require records to be scaled. 

Even with the cloud methods, which do not require scaling, the records are often scaled by a 

factor of two or more in order to induce greater nonlinearity in the structure during assessment 

(as they were in the example above). The use of scaling leads to questions about whether the 

scaled ground motions are truly representative of ground motions with the given IM level. From 
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a structural engineer’s perspective, the question can be phrased, “will ground motions scaled to a 

specified IM level produce the same structural responses as unscaled ground motions naturally at 

that IM level?” 

Previous work indicates that a suite of records may be safely scaled to the median Sa 

value of that suite without biasing the median structural response value (Shome et al. 1998; 

Iervolino and Cornell 2005a). But Luco and Bazzurro (2005) find that in some other situations 

record scaling may induce some bias in structural response, a conclusion also reached in Chapter 

6 of this report. In Chapter 6 we will conclude that this bias results from the scaled records 

having inappropriate values of other intensity parameters (such as ε or the spectral shape 

parameter discussed in Chapter 4). Therefore, despite intuitive concerns about the ground motion 

scaling used with some of the above methods, Chapter 6 will show that using an appropriate 

record-selection scheme (such as that described in Section 2.6.1) or a proper vector-valued IM 

will prevent scaling from causing any significant biases in estimated structural response. 

2.9 SUMMARY 

There are a variety of ways in which the distribution of EDP given a scalar IM can be estimated. 

Several possibilities have been discussed above, and are summarized in Table 2.1. In general, 

one must make trade-offs between the accuracy of the estimates and the amount of data required 

for estimation.  

In addition, EDP estimation methods that utilize vector-valued intensity measures are 

described. The same trade-offs between speed and accuracy tend to hold. Cloud methods require 

relatively few dynamic analyses and most effectively avoid the “curse of dimensionality,” but the 

simple linear regression model may sometimes need modification in order to capture the 

potentially complex relationships between the IM parameters and the response parameter of 

interest. At the other extreme, nonparametric methods such as empirical cumulative distribution 

functions are potentially very accurate but may require a prohibitive number of dynamic 

analyses, especially for vectors containing many parameters. A middle ground is found by 

scaling records to the dominant IM1 parameter and using regression analysis to predict the 

remaining effect of IM2, IM3, etc. This allows more freedom in functional forms than cloud 

methods, but constrains the number of model parameters to a more reasonable number than with 
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fully nonparametric methods. For this reason, it is adopted for most of the investigations in this 

report. 

Table 2.1. Summary of EDP|IM estimation methods considered 

Method Pros Cons “Vectorization” Potential 
Linear regression on 
a cloud 

Can avoid record 
scaling. Generally 
requires fewer records 
than other methods. 
Compatible with 
closed-form solutions 
for drift hazard. 

Approximations (linear 
conditional mean and 
constant variance) can 
cause difficulties over 
large ranges of IM. 
Relaxation of the 
approximations is 
possible, but removes 
some of the advantages 
of this choice. 

Multiple regression on 
vector IMs is a simple 
extension. Colinearity 
among predictors may be a 
problem. 

Parametric 
distributions on IM 
stripes 

Fewer parametric 
assumptions than with 
clouds. IM dependence 
can vary by IM level. 

Typically requires 
more dynamic analyses 
than cloud methods. 

Regression on stripes is less 
restrictive than regression 
on all IM parameters 
simultaneously, while also 
limiting the required 
number of dynamic 
analyses. 

Empirical CCDF on 
IM stripes 

No parametric 
assumptions about 
response distribution. 

Requires a significant 
number of records for 
estimation.  

Curse of dimensionality is a 
significant problem. 
Application to vectors 
requires a significant 
number of records, 
carefully selected. 

IM capacity from 
IDAs 

Requires fewer runs 
than IM stripes if IDAs 
are formed carefully. 

Requires a few extra 
steps to create IDAs 
and interpolate to 
compute capacity 
distributions. 

Generalization to vectors is 
straightforward. 

Hybrid method: 
Scale ground 
motions to IM1, 
while carefully 
selecting the records 
to match other IM 
parameters. 

Achieves the gains of 
vector IM methods 
while requiring only 
the scalar-IM 
processing procedure. 

Requires careful record 
selection. Records 
likely need to be 
reselected at differing 
IM1 levels. 

Simpler post-processing 
than explicit vector 
procedures. 

Hybrid method: 
Scale ground 
motions to IM1, 
while re-weighting 
the data to match the 
target distribution of 
other IM parameters.  

After reweighting, 
simple scalar-IM 
methods can be applied 
but a vector-IM result 
is obtained. Records do 
not need to be 
reselected at each IM1 
level. 

Weights for results 
from some records will 
be zero or nearly zero, 
essentially throwing 
away data. The curse of 
dimensionality is a 
problem for vectors 
with many elements. 

Simpler post-processing 
than explicit vector 
procedures. 

 
 



 

   
 
 

3 Vector-Valued Ground Motion Intensity 
Measure Consisting of Spectral Acceleration 
and Epsilon 

Baker, J.W., and Cornell, C.A. (2005). A Vector-Valued Ground Motion Intensity Measure 
Consisting of Spectral Acceleration and Epsilon. Earthquake Engineering & Structural 
Dynamics 34(10): 1193–1217. 

3.1 ABSTRACT 

The “strength” of an earthquake ground motion is often quantified by an intensity measure (IM), 

such as peak ground acceleration or spectral acceleration at a given period. This IM is used to 

predict the response of a structure. In this section an intensity measure consisting of two 

parameters, spectral acceleration and epsilon, is considered. The IM is termed a vector-valued 

IM, as opposed to the single parameter, or scalar, IMs that are traditionally used. Epsilon 

(defined as a measure of the difference between the spectral acceleration of a record and the 

mean of a ground motion prediction equation at the given period) is found to have significant 

ability to predict structural response. It is shown that epsilon is an indicator of spectral shape, 

explaining why it is related to structural response. By incorporating this vector-valued IM with a 

vector-valued ground motion hazard, we can predict the mean annual frequency of exceeding a 

given value of maximum interstory drift ratio, or other such response measure. It is shown that 

neglecting the effect of epsilon when computing this drift hazard curve leads to conservative 

estimates of the response of the structure. These observations should perhaps affect record 

selection in the future. 
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3.2 INTRODUCTION 

As nonlinear dynamic analysis becomes a more frequently used procedure for evaluating the 

demand on a structure due to earthquakes, it is increasingly important to understand which 

properties of a recorded ground motion are most strongly related to the response caused in the 

structure. A value that quantifies the effect of a record on a structure is often called an intensity 

measure (IM). The peak ground acceleration of a record was a commonly used IM in the past. 

More recently, spectral response values (e.g., spectral acceleration at the first-mode period of 

vibration — Sa(T1)) have been used as IMs. Spectral acceleration at T1 has been found to be an 

effective IM (Shome et al. 1998), but among records with the same value of Sa(T1), there is still 

significant variability in the level of structural response in a multi-degree-of-freedom nonlinear 

structural model. If some of this remaining record-to-record variability could be accounted for by 

an improved intensity measure, then the accuracy and efficiency of structural response 

calculations could be improved. 

In this section, vector-valued intensity measures are considered as potential 

improvements on current intensity measures. The intensity measures considered consist of Sa(T1) 

as before, but also include a second parameter: the magnitude, distance or ε (“epsilon”) 

associated with the ground motion. The IM is termed vector-valued because it now has two 

parameters as opposed to traditional scalar, or single-parameter, IMs. It is found that the vector-

valued IM consisting of Sa(T1) and ε is significantly superior to the IM consisting of Sa(T1) alone. 

The predictive power of ε is demonstrated, and an intuitive understanding is developed about the 

source of this predictive power.  

3.3 WHAT IS EPSILON? 

Magnitude and distance are familiar quantities to any earthquake engineer, but understanding of 

the ε parameter may be less common. Epsilon is defined by engineering seismologists studying 

ground motion as the number of standard deviations by which an observed logarithmic spectral 

acceleration differs from the mean logarithmic spectral acceleration of a ground-motion 

prediction (attenuation) equation. Epsilon is computed by subtracting the mean predicted lnSa(T1) 

from the record’s lnSa(T1), and dividing by the logarithmic standard deviation (as estimated by 

the prediction equation). Epsilon is defined with respect to the unscaled record and will not 
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change in value when the record is scaled. We will see later that ε is an implicit indicator of the 

“shape” of the response spectrum, and the shape of the spectrum does not change with scaling, 

providing intuition as to why ε would not vary with scaling. 

Because of the normalization by the mean and standard deviation of the ground motion 

prediction equation, ε is a random variable with an expected value of zero, and a unit standard 

deviation. In fact, the distribution of ε is well represented by the standard normal distribution, at 

least within values of ±3 (Abrahamson 1988, 2000b). Thus, a sample of randomly chosen 

records will have an average ε  value near zero, as can be seen visually in Figure 3.1b, although 

an average value of zero is not required for our vector-valued IM work below. It should be noted 

that for a given ground motion record, ε is a function of T1 (i.e., ε will have different values at 

different periods) and the ground motion prediction model used (because the mean and standard 

deviation of lnSa(T1) vary somewhat among models). Epsilon is also a function of damping 

because both the observed and predicted spectral acceleration values are functions of the 

damping used; throughout this report, 5% damping will be used for consistency with most 

ground motion prediction models. The definition of ε is valid for any ground motion prediction 

model, but the model of Abrahamson and Silva (1997) is the only one used in calculations here. 

If one would like to use ε in a vector IM to compute drift hazard, the model used to compute ε  

should be the same as the model used to perform the ground motion hazard assessment and 

disaggregation. 
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Fig. 3.1  Analysis of data at fixed value of Sa, (a) prediction of probability of 
collapse using logistic regression applied to binary collapse/non-collapse 
results and (b) prediction of response given no collapse, with 
distribution of residuals superimposed over data 

It should also be noted that there is more than one way to define spectral acceleration, 

and that the choice of definition will affect the computation of ε. Many ground motion prediction 

equations provide mean and standard deviation values for the average lnSa(T1) of the two 

horizontal components of a ground motion (Abrahamson and Silva 1997). However, in this work 
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we analyze only 2D frames, and thus use only one (arbitrarily chosen) component of a given 

ground motion. Thus, we use lnSa(T1) of an arbitrary horizontal component of the ground motion 

as our IM. It is therefore important that we compute our ground motion hazard for lnSa(T1) of an 

arbitrary component (as opposed to the average lnSa(T1) provided by the ground motion 

prediction equation). In this study, the ground motion hazard was computed using Abrahamson 

and Silva’s equation, but the standard deviation of lnSa(T1) was inflated to reflect the increased 

variability of an arbitrary component of lnSa(T1) rather then the average of two components. The 

inflation factor was determined from another ground motion prediction model (Boore et al. 

1997), which presents standard deviation values for both definitions of spectral acceleration8. 

This inflated standard deviation must also be used when computing the ε values for ground 

motion recordings as well. This issue is explained more thoroughly in Chapter 7. 

Now that ε has been defined, we discuss how it and other IMs are used to predict drift, 

and then incorporated with ground motion hazard results to compute a drift hazard curve. 

3.4 CALCULATION OF DRIFT HAZARD CURVE USING SCALAR IM 

Once an intensity measure is defined, the predicted structural response given an intensity 

measure level can be combined with probabilistic seismic hazard analysis (PSHA) to calculate 

the mean annual rate of exceeding a given structural response level. An example of the need for 

this calculation is seen in the work of the Pacific Earthquake Engineering Research (PEER) 

Center (Cornell and Krawinkler 2000). Here, following PEER practice, the response of a 

structure is termed an engineering demand parameter, or EDP (in this section, the only EDP 

considered is maximum interstory drift ratio, although the methodology is directly applicable to 

any EDP of interest). The annual frequency of exceeding a given level of the EDP is calculated 

as follows: 

 

all 

( ) ( | ) ( )

( | ) ( )
i

EDP IM
x

i IM i
x

z P EDP z IM x d x

P EDP z IM x x

λ λ

λ

= > = ⋅

≅ > = ⋅ Δ

∫
∑

  (3.1) 

                                                 
8 The inflation factor can now be determined from the models of Chapter 8 as well, but that work had not been 
completed at the time this research was performed. Changing the inflation factor would not have affected any of the 
conclusions drawn in this chapter. 
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where λEDP(z) is the mean annual frequency of exceeding a given EDP value z, λIM(xi) is the 

mean annual frequency of IM exceeding a given value xi (this is commonly referred to as the 

seismic hazard curve), and ΔλIM(xi) = λIM(xi) - λIM(xi+1) is approximately the annual frequency of  

IM=xi. The term P(EDP>z|IM=xi) represents the probability of exceeding a specified EDP level, 

z,  given IM=xi. In this section we will use numerical integration to compute results, making use 

of the discrete summation approximation. We see that the rate of exceeding a given EDP level is 

found by assessing the ground motion hazard and the response of the structure, and coupling 

these two parts together with the use of an IM. Note that methods of computing drift hazard with 

techniques other than the IM-based method have been proposed (Bazzurro et al. 1998; Jalayer et 

al. 2004), but the IM-based method is the focus of this section. If the IM is a vector, Equation 3.1 

must be generalized, as will be discussed below.  

3.5 PREDICTION OF STRUCTURAL RESPONSE USING SCALAR IM 

The IM-based procedure described above requires estimation of the probability distribution of 

structural response at a given IM level (i.e., P(EDP>z|Sa(T1)=xi) in Eq. 3.1). An estimation 

procedure is now described for the scalar case, and later generalized to the case of a vector-

valued IM. The scalar IM Sa(T1) is used in this section, both because of its wide use elsewhere, 

and because it will be easily generalized to our vector case: Sa(T1) and ε. Standard terminology 

from regression analysis is used in this section, to allow for quick descriptions of some concepts 

from statistics. The reader desiring a more detailed explanation is referred to a previous related 

publication (Baker and Cornell 2004).  

The method used in this section requires a suite of earthquake accelerograms, all at the 

same IM value, Sa(T1) = x (e.g., in this study, 40 records are used at each IM level). We scale a 

suite of recorded earthquake accelerograms to the given  Sa(T1) value (e.g., Shome et al. 1998). 

In this study, we use the same suite of records for different Sa(T1) levels, although one could use 

different record suites at different levels if PSHA disaggregation suggested that, for example, the 

representative magnitude level was changing (Stewart et al. 2001)—we shall return to the record 

selection subject below. This suite of records is used to perform nonlinear dynamic analysis on a 

model of the structure. Now we have n records, all with Sa(T1) = x, and n corresponding values 

of EDP. So EDP given Sa(T1) = x is a random variable that we need to characterize. 
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3.5.1 Characterizing Collapses 

When predicting nonlinear response of structures, it is necessary to account for the possibility 

that some records may cause collapse of the structure at higher levels of IM. For the purpose of 

illustration here, collapse is defined to have occurred if the dynamic analysis algorithm fails to 

converge due to numerical instability or if the drift ratio at any story exceeds 10%. Such a finite 

cutoff is used because the validity of current nonlinear models is not well confirmed beyond 

large deformation levels, which a real structure may not be able to reach before collapsing. For 

example, for the particular older reinforced concrete frame considered below, one might in fact 

expect axial failure of columns in the 3–5% interstory drift ratio range. This failure mechanism is 

difficult to model and was not incorporated in the computer model, resulting in larger 

displacements being obtained before collapse was signaled by numerical instability of the 

program. Other collapse criteria that have been used in such studies include dynamic instability, 

defined as the ratio of the increment in displacement to the increment in spectral acceleration 

level exceeding a specified threshold. The simpler 10% drift criterion is used here for illustration, 

but the proposed procedure applies universally, regardless of the structural model or the specified 

collapse criteria. Future research to more precisely model and identify response levels associated 

with collapse will be helpful to the drift hazard procedure presented here. 

To account for these collapses, we separate our realizations of EDP into collapsed and 

non-collapsed data. We then estimate P, the probability of collapse, C, at the given Sa(T1) level. 

This estimate is denoted P̂  and calculated as: 

 1
number of records causing collapseˆ( | ( ) )

total number of recordsaP C S T x= =  (3.2) 

We then return to the non-collapse responses for the remainder of the response prediction.  

3.5.2 Characterizing Non-Collapse Responses 

The distribution of the non-collapsed responses for our EDP maximum interstory drift ratio has 

been found to be well represented by a lognormal distribution (the Kolmogorov-Smirnov test 

(Neter et al. 1996), was used to verify this supposition, and the same conclusion has been 

reached elsewhere (Shome 1999; Aslani and Miranda 2003)). For this reason we work with the 

natural logarithm of EDP, which then follows the normal distribution. We can estimate the 

parameters for this normal distribution using the method of moments (Benjamin and Cornell 
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1970). For each IM level, we denote the estimated mean of lnEDP as 
1ln | ( )ˆ

aEDP S T xμ =  and the 

estimated standard deviation as 
1ln | ( )

ˆ
aEDP S T xβ =  (this logarithmic standard deviation is sometimes 

referred to as “dispersion”). The probability that EDP exceeds z given IM = x and no collapse 

can now be calculated using the normal complimentary cumulative distribution function: 

 1

1

ln | ( )
1

ln | ( )

ˆln
( | ( ) ,  no collapse) 1 ˆ

a

a

EDP S T x
a

EDP S T x

z
P EDP z S T x

μ
β

=

=

⎛ ⎞−
⎜ ⎟> = = − Φ
⎜ ⎟
⎝ ⎠

  (3.3) 

where ( )Φ    denotes the standard normal cumulative distribution function. 

3.5.3 Combining Collapse and Non-Collapse Results 

We now combine the characterizations of collapses and non-collapse responses using the total 

probability theorem. Our estimate of the probability that EDP exceeds z given IM = x is: 

 ( ) 1

1

1 1

ln | ( )
1

ln | ( )

ˆ( | ( ) ) ( | ( ) )

ˆlnˆ1 ( | ( ) ) 1 ˆ
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a

a a
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EDP S T x

P EDP z S T x P C S T x
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P C S T x
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β

=

=

> = = =

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟+ − = − Φ

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.4) 

We can now proceed to work with this estimate.  

3.6 CALCULATION OF DRIFT HAZARD CURVE USING VECTOR-VALUED IM 

A vector-valued IM can also be used to compute a drift hazard curve using a generalization of 

Equation 3.1, as given in Equation 3.5 (Bazzurro and Cornell 2002). 

 1 2

1, 2,

2
1 2

1 1 2 1 2
1 2

1 1, 2, 1, 2,
all all 

( , )( ) ( | ( ) , )

( | ( ) , ) ( , )
i j

IM
EDP a

x x

a i j IM i j
x x

x xz P EDP z S T x x dx dx
x x

P EDP z S T x x x x

λλ ε

ε λ

∂= > = = ⋅
∂ ∂

≅ > = = ⋅ Δ

∫ ∫
∑ ∑

 (3.5) 

We see first that the scalar-IM drift prediction P(EDP>z|IM=x) has been replaced with the 

vector-IM drift prediction P(EDP>z|Sa(T1)=x1,ε=x2), which will be expanded in a means 

analogous to Equation 3.4 in Equation 3.11 below. In addition, the scalar-IM ground motion 

hazard has been replaced by the joint hazard of the vector-valued IM. Defining 1, 2,( , )IM i jx xλΔ  as 

1, 1, 1 2, 2, 1[ , ], [ , ]i i j jSa x x x xελ
+ +∈ ∈ , we take advantage of the fact that we could also express this as the 

marginal rate density of Sa(T1), and the conditional probability distribution of ε given Sa(T1):  
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11, 2, 2, 2, 1 1 1, ( ) 1,( , ) ( | ( ) ) ( )

aIM i j j j a i S T ix x P x x S T x xλ ε λ+Δ = < < = ⋅ Δ  (3.6) 

Then Equation 3.5 can be restated as: 

 
1

1, 2,

1 1, 2, 2, 2, 1 1 1, ( ) 1,
all all 

( ) ( | ( ) , ) ( | ( ) ) ( )
a

i j

EDP a i j j j a i S T i
x x

z P EDP z S T x x P x x S T x xλ ε ε λ+= > = = ⋅ < < = ⋅ Δ∑ ∑  (3.7) 

We state the equation in this way because we obtain the distribution of Sa(T1) and ε from PSHA 

in this form: 
1( ) 1,( )

aS T ixλΔ  comes from the standard PSHA hazard curve, and 

2, 2, 1 1 1,( | ( ) )j j a iP x x S T xε +< < =  is a standard disaggregation result. Note that the disaggregation 

can be presented in more than one way. Some PSHA codes provide 

2, 2, 1 1 1,( | ( ) )j j a iP x x S T xε +< < =  (see McGuire 1995), while others provide 

2, 2, 1 1 1,( | ( ) )j j a iP x x S T xε +< < ≥  (see Bazzurro and Cornell 1999). For instance, Abrahamson’s 

code (2004) provides 2, 2, 1 1 1,( | ( ) )j j a iP x x S T xε +< < = , while the U.S. Geological Survey  provides 

2, 2, 1 1 1,( | ( ) )j j a iP x x S T xε +< < ≥ . It is a fairly simple matter to convert the results between the two 

forms (Bazzurro 1998, p195), but one should be aware of which version is provided by the 

software in use, and convert the results if necessary. The hazard assessments in this study were 

performed using the Abrahamson code, which provides results (e.g., Fig. 3.6) directly in the form 

needed for drift hazard calculations. 

3.7 PREDICTION OF BUILDING RESPONSE USING VECTOR-VALUED IM 

We now generalize the prediction procedure of the preceding section for use with a vector-

valued IM. Consider the vector consisting of Sa(T1) and ε. We are now trying to estimate 

1 1 2( | ( ) , )aP EDP z S T x xε> = = . The simplest solution, if possible, would be to scale our records to 

both parameters of our IM: Sa(T1) = x1 and ε = x2. However, ε is defined with respect to the 

unscaled record, and does not change with scaling (similarly, magnitude and distance do not 

change with scaling). Because of this, we need a supplement to scaling for the vector-valued IM 

procedure, in order to predict response as a function of the second IM parameter.  

The solution we adopt is to scale to Sa(T1) as before, and then apply regression analysis to 

estimate EDP as a function of ε (Neter et al. 1996). Thus our treatment of Sa(T1) remains the 

same as in the scalar case, but we now incorporate information from the regression on ε. Our 



 

   
 
 

62

approach with the vector case is the same as the scalar case in that we separate out the collapse 

responses first, and then deal with the remaining non-collapse responses. 

3.7.1 Accounting for Collapses with Vector-Valued IM 

When using a vector-valued IM, instead of taking the probability of collapse to be simply the 

fraction of records that cause collapse, we can take advantage of the second IM parameter to 

predict the probability of collapse more accurately. We do this using logistic regression, which is 

a commonly used tool for analyzing binary data (Neter et al. 1996).  It should be noted that this 

is not the only method for quantifying the probability of collapse. For example, a bivariate 

normal model for collapse capacity of the structure could be defined and used to estimate 

probability of collapse. The results from the two models will be similar (e.g., Fig. 2.20), but it 

may be more convenient to adopt one or the other in certain cases, as discussed in Chapter 2.  

 

Fig. 3.2  Prediction of probability of collapse as function of both Sa(T1) and ε 
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With the logistic regression procedure used here, each record has a value of ε, which we 

use as our predictor variable. We designate C as an indicator variable for collapse (C is equal to 

1 if the record causes collapse and 0 otherwise). We then use the logistic regression to predict 

collapse: 

 ( ) 0 1 2
1 1 2

0 1 2

ˆ ˆexp( )ˆ | ( ) , ˆ ˆ1 exp( )a
xP C S T x x

x
β βε

β β
+= = =

+ +
 (3.8) 

where 0 1
ˆ ˆ and β β  are coefficients to be estimated from regression on a dataset that has been scaled 

to Sa(T1) = x1 (i.e., 0 1
ˆ ˆ and β β   will be different for different values of Sa(T1)). An example of this 

data and a fitted logistic regression curve are presented in Figure 3.1a. The tendency for the 

probability of collapse to decay with increasing ε is common; such observations will be 

discussed below. By performing this regression for all Sa(T1) levels, one can obtain the 

probability of collapse as a function of both Sa(T1) and ε, as seen in Figure 3.2. 

It should be noted that the level of confidence in the result from Equation 3.8 depends on 

the nature of the data used in the regression analysis. If there are significant numbers of both 

collapses and non-collapses in the dataset, then the regression should be very stable. However, if 

for a given Sa level, the dataset consists of, for instance, 39 records that do not cause collapse, 

and one record that causes collapse, the logistic regression will be strongly influenced by the 

single collapse data point, and may indicate a different trend that in fact exists (if the exercise 

were to be repeated with more records or different records). For this reason, it is suggested that if 

there are two or fewer collapse data points, then the probability of collapse should be taken as a 

simple constant (i.e., 1/n or 2/n, where n is the number of records) for all levels of x2.  This is 

equivalent to using the scalar-IM procedure for the collapse portion of the prediction (Eq. 3.2). 

The same should be done in the case where all but one or two records cause collapse. It should 

be noted that in these cases, the probability of collapse will already be very high or very low, so 

the second IM parameter would not have much effect anyway. This modification to the 

procedure will merely prevent the logistic regression prediction from producing unstable results 

which are strongly influenced by a single data point. 

3.7.2 Characterizing Non-Collapses with Vector-Valued IM 

We now incorporate the second parameter of our IM in prediction of response for the non-

collapse results. Note that each of these records has been scaled to Sa(T1) = x1. Each of the 
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records has a value of ε and a value of EDP. We have found that there tends to be a relationship 

between ε and EDP of the form 2 3ln EDP eβ β ε= + + , where 2β  and 3β  are constant coefficients, 

and e is the prediction error (“residual”). We can use linear least-squares regression (Neter et al. 

1996) to obtain estimates of the two regression coefficients, 2β̂  and 3β̂  (again, these values will 

vary for different Sa(T1) levels). A graphical example of these data and the regression fit are 

shown in Figure 3.1b. 

When using linear least-squares regression on a dataset, several assumptions are normally 

implicitly made, and the accuracy of the results depends on the validity of these assumptions. 

The prediction error of record i (the difference between the predicted value of lnEDPi and the 

actual value) is termed the “residual” of record i, and is assumed to be mutually independent 

from the prediction error of record j for all i≠j. In addition, we will later assume the residuals to 

be normally distributed with constant variance (i.e., homoscedastic).  The assumptions of 

independent normal residuals with constant variance have been examined for the data in this 

study, and found to be reasonable. An estimate of the variance of the residuals is also available 

from the analysis software, and we denote it 2ˆ ˆ[ ] eVar e σ≡ . This variance in the residuals is 

displayed graphically in Figure 3.1b, by superimposing the estimated normal distribution of the 

residuals over the data. From regression, we now know that given Sa(T1) = x1, ε = x2 and no 

collapse, the mean value of lnEDP is: 

 [ ] 2 3 2
ˆ ˆlnE EDP xβ β= +  (3.9) 

where  2β̂  and 3β̂  have been obtained by regressing on records scaled to Sa(T1) = x1. We also 

know that, conditional on Sa(T1) and ε, lnEDP is normally distributed with variance equal to the 
2ˆeσ . So the probability that EDP exceeds z, given Sa(T1) = x1, ε = x2, and no collapse can be 

expressed: 

 ( ) ( )2 3 2
1 1 2

ˆ ˆln
| ( ) , ,no collapse 1

ˆa
e

z x
P EDP z S T x x

β β
ε

σ

⎛ ⎞− +
⎜ ⎟> = = = − Φ
⎜ ⎟
⎝ ⎠

 (3.10) 

Recall that 2β̂ , 3β̂ , and 2ˆeσ  are all functions of Sa(T1) or x1. This equation is very similar to 

Equation 3.3 used in the scalar case. We previously estimated the mean of the normal 

distribution by the average logarithmic response of all records, but now we use a result from 

regression on ε. We have also replaced the standard deviation of the records by the standard 

deviation of the regression residual. Otherwise, the equation is the same.  
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As with the estimation of collapse, there is more than one way to incorporate the vector 

IM. For example, rather than using regression, one could use a weighted scheme where the 

weights of each record are determined according to the results of the PSHA analysis (Shome 

1999). The results from these two schemes will agree closely, but one may be more appropriate 

than the other based on the amount of data available and the extent to which the effect of the IM 

can be parameterized. This will be described in a future publication by the authors.  

We now combine the possibilities of collapse or no collapse, using the total probability 

theorem and Equations 3.8 and 3.10, to compute the conditional probability that EDP exceeds z: 
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⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟> = = = + − − Φ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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+ +

 (3.11) 

Although x1 does not appear in Equation 3.12, our estimate is implicitly a function of x1 because 

the data used to estimate 0 1 2 3
ˆ ˆ ˆ ˆ ˆ, , ,  and eβ β β β σ  all come from records scaled to Sa(T1) = x1. This 

gives us a response prediction that is similar to the original prediction of Equation 3.4 but that 

now incorporates a two-element vector.  

3.8 INVESTIGATION OF MAGNITUDE, DISTANCE, AND EPSILON AS IM 
PARAMETERS 

The procedure for evaluating drift hazard using a vector-valued IM can now be used to assess the 

response-predicting effectiveness of ε as an element in a vector with Sa(T1). Additionally, we will 

examine magnitude (M) and distance (R) as elements in a vector with Sa(T1), using the same 

procedure, to evaluate whether they have any significant effect on structural response after 

conditioning on Sa(T1). This study considers only M, R, and ε because the conditional 

distribution P(x2,j<IM2<x2,j+1|Sa(T1)=x1,i) is then easily available from standard PSHA software 

(where IM2 is used to represent either M, R, or ε). If one is interested in the effect of other 

parameters such as spectral shape or duration, special modifications to the PSHA analysis 

(Bazzurro and Cornell 2002) are needed in order to obtain the conditional distribution 

P(x2,j<IM2<x2,j+1|Sa(T1)=x1,i).  
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To test the effectiveness of M, R or ε as predictors, we examine the results from our 

response regressions on these variables. The seven-story concrete frame structure described 

below was used to generate response data. At each level of Sa(T1), we predict collapse using 

logistic regression on M, R, or ε, and we use linear regression on these variables to model the 

non-collapse responses. An effective predictor should show a trend in one or both of these 

regressions and the trend (i.e., slope of the regression) should be statistically significant.  A 

standard way of measuring statistical significance is with the “p-value” for the regression 

coefficient. Typically, a p-value smaller than 0.05 is interpreted to indicate that the predictive 

variable is significant (Neter et al. 1996), although when a slightly larger p-value shows up 

repeatedly in separate tests of the same predictor variable, this can also be interpreted as an 

indicator of significance. A p-value can also be computed for both the logistic and linear 

regression results.  

When distance is considered as a candidate IM parameter, we find no statistical 

significance (median p-values of 0.34 and 0.29 for linear and logistic regression, respectively, 

considering 13 levels of Sa(T1)). Both ε and magnitude show some significance for the linear 

response regression (median p-values of 0.05 and 0.06, respectively), although ε shows more 

significance than M for the logistic collapse probability regression (median p-values of 0.14 and 

0.37, respectively). The lack of significance of R and slight significance of M are consistent with 

results from previous work on this topic (e.g., Shome et al. 1998). The significance of ε and the 

evaluation of significance with respect to collapse prediction are believed to be new results. 

The p-values from both regressions using M and ε as predictors at 13 levels of spectral 

acceleration are given in Table 3.1 (distance has been omitted because of the consistent lack of 

significance it demonstrated). Values for logistic regression are omitted when fewer than three 

records cause collapse, preventing the regression from being performed. At high Sa(T1) levels, 

when nearly all of the records cause collapse and there are little data for either the linear or 

logistic regression, the regressions are less useful, and the results are omitted. 
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Table 3.1  P-values from linear and logistic regression on magnitude and epsilon 

   Magnitude Epsilon 

Sa 
Percent 

Collapsed  

Linear 
Regression 

p-value 

Logistic 
Regression 

p-value 

Linear 
Regression 
Coefficient 

Potential 
Prediction 

Error (M=6.5 
vs M=7) 

Linear 
Regression 

p-value 

Logistic 
Regression 

p-value 

Linear 
Regression 
Coefficient 

Potential 
Prediction 

Error (ε=0 vs 
ε=1.5) 

           
0.1 0%  0.04 - 0.13 7% 0.00 - -0.15 24% 

0.2 0%  0.09 - 0.16 8% 0.01 - -0.15 25% 

0.3 0%  0.05 - 0.25 13% 0.07 - -0.14 24% 

0.4 0%  0.04 - 0.29 16% 0.05 - -0.19 32% 

0.5 0%  0.06 - 0.35 19% 0.01 - -0.30 56% 

0.6 3%  0.06 - 0.37 20% 0.13 - -0.20 34% 

0.7 8%  0.05 0.36 0.33 18% 0.03 0.14 -0.24 42% 

0.8 9%  0.20 0.45 0.23 12% 0.01 0.26 -0.30 57% 

0.9 14%  0.10 0.29 0.36 20% 0.02 0.20 -0.32 61% 

1.0 16%  0.04 0.37 0.41 22% 0.08 0.14 -0.24 43% 

1.2 24%  0.10 0.10 0.28 15% 0.13 0.04 -0.19 32% 

1.4 56%  0.10 0.98 0.49 28% 0.17 0.09 -0.23 42% 

1.6 68%  0.51 0.66 0.27 14% 0.69 0.05 -0.09 14% 

           
 Median  0.06 0.37 0.29 16% 0.05 0.14 -0.20 34% 

 

In addition to standard p-values, a value termed the “potential prediction error” is also 

reported in Table 3.1. This value is defined as the percentage difference in predicted response for 

a reasonable range of values in the second IM (i.e., what is the difference in response between 

magnitude 6.5 and 7 records, given the same Sa(T1) level). In Table 3.1 we see that for the given 

range of variation, a change in magnitude produces a potential prediction error of 16%, while a 

change in ε produces a potential prediction error of 34%. This major difference is because, while 

the slopes of the two trends are similar, there is more room for variation with ε (records are 

typically selected to be within 0.5 magnitude units of the target value obtained from PSHA, but 

using zero-epsilon records in place of 1.5-epsilon records is not uncommon). Both the statistical 

significance and this potential prediction error are relevant, and jointly they suggest that ε, and to 

a lesser extent magnitude, should be considered when predicting the response of a structure. 

Note that the trend with ε would be more difficult to discern if we had not already scaled 

the records to Sa(T1). This is because ε and Sa(T1) tend to be correlated, making it more difficult 

to separate effects due to Sa(T1) and effects due to ε. By first scaling to Sa(T1) we have eliminated 

this problem (termed “colinearity,” Neter et al. 1996) and allowed the effect of ε  to be seen more 

clearly. 
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Although Table 3.1 appears to show empirically that ε has an effect on structural 

response, this conclusion would be much more convincing if supported by an intuitive 

understanding as to why ε might matter. This understanding is developed in the following 

section. 

3.9 WHY DOES EPSILON AFFECT STRUCTURAL RESPONSE? 

When considering why ε could affect structural response, we should consider current 

understanding about nonlinear response of multi-degree-of-freedom structures. The first 

parameter of our IM, Sa(T1) provides the response of a linear single-degree-of-freedom structure 

with a period of vibration approximately equal to the first-mode period of the MDOF structure 

under consideration. Given Sa(T1), the shape of the response spectra is known to be a significant 

factor in the response of nonlinear MDOF structures (e.g., Kennedy et al. 1984; Baker and 

Cornell 2004). This is because the response of an MDOF structure is also affected by excitation 

of higher modes of the structure at periods shorter than T1 (as implied, e.g., by response spectrum 

analysis, Chopra 2001). In addition, Sa at periods longer than T1 affects nonlinear structures, 

because as the structure starts behaving nonlinearly, the effective period of its first mode 

increases to a period larger than T1 (Iwan 1980; Kennedy et al. 1985). Thus, given two records 

with the same Sa(T1) value, the record with higher Sa values at periods other than T1 will tend to 

cause larger responses in a nonlinear MDOF system. So given Sa(T1), we would like to know 

about Sa at other periods. We could do this by measuring that Sa at other periods directly (Baker 

and Cornell 2004; Cordova et al. 2001; Vamvatsikos 2002). Alternatively, we will see that ε is a 

convenient implicit measure of spectral shape.  
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Fig. 3.3  Scaling negative ε record and positive ε record to same Sa(T1): 
illustration of peak and valley effect. In this case, T1 = 0.8 sec 

A record with a positive ε value is one that has a larger-than-expected spectral 

acceleration at the specified period. But what does it tell us about the spectral acceleration at 

other periods? It may be that the record is stronger than expected at all periods, or it may be that 

the record is stronger than expected in only a nearby range of periods, and that the spectral 

acceleration values at other periods are not as strongly related. We are interested in the 

possibility that only a narrow range of periods have comparatively large Sa values. We term this 

a record with a spectral “peak” at Sa(T1). Conversely, a record that is lower than expected in only 

a narrow range of periods has a spectral “valley” at Sa(T1). Now consider scaling a record with a 

peak and a record with a valley to the same Sa(T1) level. At T1, the two records will have the 

same spectral acceleration by construction, but at other periods the valley record will tend to 

have larger spectral accelerations than the peak record. This is seen by examining the two sample 

response spectra shown in Figure 3.3. If a record has a peak or valley at the period considered, 
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then ε (which measures deviation from expected spectral values) may be an indicator of this 

condition, and if so would be useful for predicting structural response.  

3.9.1 Effect of Epsilon, as Seen Using Second-Moment Model for Logarithmic Spectral 
Acceleration 

Anecdotal evidence of ε indicating a spectral peak or valley is seen in Figure 3.3, but there is 

more concrete evidence to show the connection between ε and spectral shape. We note that for a 

given magnitude, distance, site classification, and faulting mechanism, logarithmic spectral 

acceleration at a given period is a random variable with a mean and standard deviation specified 

by a ground motion prediction equation (Abrahamson and Silva 1997). Lines indicating the mean 

value ± one standard deviation at all periods for a scenario event are shown in Figure 3.4a. Now 

consider logarithmic spectral accelerations at two periods simultaneously. We can obtain the 

means and standard deviations from the ground motion prediction equation. In order to 

completely specify the first and second moments of this pair, we also need to know the 

correlation between lnSa values at the two periods. An empirically determined relationship for 

this correlation is given by Inoue and Cornell (1990): 

 
1 2ln ( ),ln ( ) 1 2 1 21 0.33 ln( / )     0.1 , 4Sa T Sa T T T s T T sρ = − ≤ ≤  (3.12) 

This correlation coefficient approaches one when the two periods are nearly equal, and decreases 

as the periods get further apart from each other. We have now fully defined the mean and 

covariance of this pair of response spectra values. Note that for expository purposes, we will 

later assume that this equation is valid over the range 0.05s≤T1,T2≤5s. 
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Fig. 3.4  Mean value and mean ± sigma values of lnSa for magnitude = 6.5, distance 
= 8 km event:  (a) unconditioned values; (b) conditioned on lnSa(0.8s) 
equal to mean value of ground motion prediction equation; (c) conditioned 
on lnSa(0.8s) equal to mean value of ground motion prediction with actual 
response spectra superimposed; (d) conditioned on lnSa(0.8s) equal to 
mean value of ground motion prediction plus two standard deviations 

 

Previous research has established that lnSa(T1) and lnSa(T2) are each marginally normally 

distributed (Abrahamson 1988, 2000b). Under the mild assumption that they are jointly normally 

distributed, we obtain the conditional mean of lnSa(T2), given lnSa(T1), as given in Equation 3.13: 

 
1

2 1 2 1 2 2

1

2 1 2 2 1

ln ( )
ln ( )|ln ( ) ln ( ) ln ( ),ln ( ) ln ( )

ln ( )

ln ( ) ln ( ),ln ( ) ln ( )

Sa T
Sa T Sa T x Sa T Sa T Sa T Sa T

Sa T

Sa T Sa T Sa T Sa T T

x μ
μ μ ρ σ

σ

μ ρ σ ε

=

⎛ ⎞−
= + ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
= + ⋅ ⋅

 (3.13) 
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where 
1Tε  is the ε value of the record at the period T1 (this equation is derived from the result 

2 1 1 2 1ln ( ),ln ( )[ | ]T T Sa T Sa T TE ε ε ρ ε= ⋅ ). We see that the conditional mean of lnSa(T2) is shifted up if 

1
0Tε >  or down if 

1
0Tε < . We can also obtain the conditional standard deviation of lnSa(T2): 

 
2 1 2 1 2

2
ln ( )|ln ( ) ln ( ) ln ( ),ln ( )1Sa T Sa T x Sa T Sa T Sa Tσ σ ρ= = −  (3.14) 

We see that, as might be expected, the conditional standard deviation of lnSa(T2) is reduced as 

the correlation increases between lnSa(T1) and lnSa(T2). In Figure 3.4b, for T1 = 0.8 sec, we 

condition on 
1ln ( )ln (0.8 ) Sa TSa s μ=  and plot the mean and mean ± sigma for a scenario event (for 

each value of T, we use the conditional mean and standard deviation from Equations 3.13 and 

3.14). This plot represents the theoretical distribution of the response spectra for all records with 

1ln ( )ln (0.8 ) Sa TSa s μ= . 

We see in Figure 3.4b that there is less dispersion in Sa for periods close to T1, but for 

periods at some distance from T1, there is little reduction in dispersion gained by conditioning on 

T1. While it is not strictly a verification, we can confirm that this multi-variate distribution model 

is representative of reality by scaling real records to lnSa(0.8s) and superimposing them over the 

model distribution. We see in Figure 3.4c that the real records match the model reasonably well 

(i.e., the mean value of the records is close to the predicted mean value, and the model prediction 

that 95% of the records should fall between the mean  ± two sigma is reasonable). 

In Figure 3.4d we plot the expected Sa value and +/- sigma, but now conditioned on 

1 1ln ( ) ln ( )ln (0.8 ) 2Sa T Sa TSa s μ σ= +  (i.e. an “ε = 2” record). The original mean is also plotted as a 

reference. In this figure, we see that for periods near to T1 we have larger spectral values than 

originally expected, but as the period gets much larger or smaller than T1, the expected value of 

lnSa(T) goes back toward the original mean value, reflecting Equations 3.12 and 3.13.  

The results of this analysis can be restated in words as follows. A record with a positive ε 

has a higher than expected Sa value at the specified period. But Sa values are not perfectly 

correlated, so a higher-than-average value at one period does not imply correspondingly higher-

than-average values at all periods—in fact, the conditional expected values of Sa at other periods 

tend back toward the marginal expected value. Thus, records with positive ε values tend to have 

peaks in the response spectrum at the specified period, and records with negative ε values tend to 

have valleys. Therefore, ε is an indicator of spectral shape, and this is why it is effective in 

predicting the response of nonlinear MDOF models. 
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3.9.2 Consideration of Other Candidate IM Parameters 

It has been shown that ε is an indicator of spectral shape, supporting its utility in predicting 

nonlinear response. But the question naturally arises, is it the best predictor of nonlinear 

response? Other candidates have been considered. Magnitude has often been considered as an 

indicator of spectral shape as discussed above, but it effectively has a weaker relationship with 

spectral shape than ε. We demonstrate next via Figure 3.5 this difference. Consider a target event 

with M =  7 and ε = 1.5. Records with these parameters are rare; there are few recordings 

available from large magnitudes, and of those recordings, only 7% are expected to have an 

lnSa(T1) at least 1.5 standard deviations larger than the mean. Suppose instead we have two 

records available for analysis: an M = 7, ε = 0 record, and an M = 6.5, ε = 1.5 record (i.e., we can 

match either magnitude or ε, but not both). The expected spectra for these two records are shown 

in Figure 3.5a, along with the expected spectrum for the target event. In Figure 3.5b, the three 

“records” have been scaled so that their Sa(T1) values match. We see that the record with the 

correct ε and incorrect magnitude comes closer to matching the target spectral shape than does 

the record with the correct magnitude but incorrect ε. So a difference of 0.5 units in magnitude 

makes much less difference in spectral shape than the difference of 1.5 units of ε. Therefore it is 

anticipated that ε will prove more effective than M. This conclusion will be confirmed below. 
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Fig. 3.5  (a) Expected response spectra for three scenario events; (b) expected 
response spectra for three scenario events, scaled to have same Sa(0.8s) 
value. 

As mentioned earlier, it is also possible to measure spectral shape in a direct manner by 

considering spectral acceleration at an additional period as a second parameter in the vector IM. 

In previous work, the drift estimation method presented in this section has been used with such a 

direct measure of spectral shape. With an informed choice of the second period, the direct 

measure of spectral shape has been shown to be an effective IM as well (Baker and Cornell 

2004). The comparative advantage of ε is that it is easy to find the joint distribution of Sa and ε 

from PSHA disaggregation, with no need for specialized hazard analysis software. Further 
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consideration of spectral shape is outside the scope of this section, but it should also be 

considered a promising candidate for a vector-valued IM. 

Spectral acceleration averaged over a range of periods may be an effective IM in the case 

where a structure is sensitive to several periods, and may reduce the peak/valley effects seen 

when using spectral acceleration at only a single period (Shome 1999). The disadvantage is that 

when structural response is predominantly governed by a single period, averaging spectral values 

over a range of periods will tend to reduce the efficiency of response predictions. 

One might also wonder if there is a better epsilon-based measure of spectral shape. For 

example, it is possible that a record could have a positive ε at the period considered, but also 

have large ε values at all other periods. In this case, the positive ε value would incorrectly 

suggest the presence of a peak and thus it would incorrectly predict the relatively smaller level of 

response we have seen to be typically associated with positive ε values. It would seem plausible 

that a more sophisticated “epsilon-type” parameter might do a better job than one considering 

simply ε itself. The authors have tried several approaches to develop an improved epsilon-based 

measure. A measure separating the interevent epsilon from the intra-event epsilon (see 

Abrahamson and Silva 1997) was attempted, anticipating that the intra-event epsilon would tend 

to represent peaks and valleys, while the interevent epsilon would reflect the overall increase or 

decrease in the response spectra already accounted for by Sa(T1). Measures attempting to separate 

“global” shape effects from “local” shape effects (see Carballo 2000) were also examined. 

However, neither of these measures showed significant improvement over ε, and thus were 

rejected in favor of the simpler ε parameter. 

For these reasons, the ε predictor is believed to have advantages over alternative response 

predictors, making it an interesting candidate as an effective intensity measure.  
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Fig. 3.6  Disaggregation of PSHA results. Conditional distribution of ε given 
Sa(0.8s)=x is shown for both fault models at three different hazard 
spectral acceleration levels associated with three different mean annual 
frequencies of exceedance. 

3.9.3 Epsilon and Ground Motion Hazard 

Having established ε as an effective predictor of structural response supplemental to Sa(T1), it is 

useful to consider what values of ε are typically to be anticipated in ground motions that are of 

interest to structural engineers. For a given site and a given fault, the three parameters that can 

vary are magnitude, distance, and ε. In a probabilistic seismic hazard analysis, the possible 

values of these three parameters and their likelihoods are integrated over for each fault, and the 

hazard contributions of all faults are summed (Kramer 1996). The result is a curve specifying the 

annual rate of exceeding varying levels of ground motion intensity. For purposes of illustration, 

consider a hypothetical site that has a single fault, capable of producing only magnitude 6.5 

events at a distance of 8 km. At this site, magnitude and distance are fixed for all events, so ε is 
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the only free variable in the PSHA analysis; thus the effect of ε can be more clearly seen. A 

single-event model is also quite representative of the ground motion hazard situation at many 

sites located near a single large fault (i.e., some urban locations near the San Andreas or 

Hayward faults in northern California). This model will be referred to as the “characteristic-event 

model.” 

With this model, the median value of spectral acceleration (i.e., the exponential of the 

mean of lnSa) is 0.46g, so any ground motions larger than 0.46g have a positive ε value. Thus, at 

low annual frequencies (where Sa values greater than 0.46g are seen) the ground motion hazard is 

governed exclusively by records with positive epsilons. This is seen in Figure 3.6: as the ground 

motion level is increased, the ε value seen in the disaggregation shows a corresponding increase.  

Now consider the ground motion hazard at a real site surrounded by several faults, each 

of which is capable of producing events with a variety of magnitudes and distances. The hazard 

assessment used here is that for Van Nuys, California, at the site of the example structure which 

will be analyzed below. (The activity rate of the characteristic-event model is specified such that 

both of these models have the same ground motion level at the 10%-in-50-year hazard: Sa(0.8s) = 

0.6g. In addition, the magnitude and distance values for the characteristic event equal the mean 

values of the Van Nuys disaggregation at the 10%-in-50-year level.) The hazard there is simply a 

summation of many hazard contributions each similar to the characteristic-event model. There is 

a limit on the maximum magnitude and minimum distance of an event, so it is still true that large 

ground motion events will have positive ε values. In fact, as noted earlier, we can determine the ε 

values at a given hazard level by examining the disaggregation of the PSHA results. The 

disaggregation-based distribution of ε at the Van Nuys site is shown in Figure 3.6 for several 

levels of Sa. As the annual rate of exceedance decreases (i.e., as the ground motion level 

increases) the epsilons contributing to the hazard are seen to shift to larger values. Thus in 

general, for any hazard environment, the ground motion hazard at long low annual frequencies 

will be dominated by positive ε events.  
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3.10 EPSILON AND DRIFT HAZARD 

In the previous section, it was established that at ground motion intensity levels with low annual 

rates of exceedance, records tend to have positive ε values. Further, we have seen that for a given 

Sa value, records with larger ε values tend to cause smaller responses in structures because ε is an 

indicator of peaks and valleys in the response spectra at the period of interest. But a typical 

random sample of records would have an average ε value of zero. Now consider the usual 

practice of using simply a scalar Sa with a suite of (on average) zero-epsilon records. When these 

records are used to estimate the response of a structure at (low annual frequency) high ground 

motion levels (typically characterized by positive epsilons), estimates of the frequency of 

exceeding large structural drifts are likely to be conservatively biased. This expectation can be 

confirmed by using the drift hazard procedure outlined earlier. The traditional approach using 

Equation 3.1 and Sa(T1) alone as the intensity measure is referred to here as the “scalar-based 

approach.” The alternative approach using a vector-valued IM consisting of Sa(T1) and M or ε, 

and using Equation 3.7, is referred to as the “vector-based approach.” A complete drift hazard 

curve is computed for a variety of structures using both of these approaches, and it is seen that 

neglecting to account for the ε value of a record nearly always results in overestimation of the 

mean annual rates of exceeding large levels of drift. 

3.10.1 Description of Structures Analyzed 

The primary structure analyzed is a reinforced-concrete moment-frame building. The building 

has 1960’s era construction and is serving as a test-bed for PEER research activities 2004. The 

actual structure is located in Van Nuys, California, at the same site for which the ground motion 

hazard assessment above was conducted. A 2D model of the transverse frame created by Jalayer 

(2003) is used here. This model has a first-mode period of 0.8 sec, and contains nonlinear 

elements that degrade in strength and stiffness, both cyclically and in-cycle (Pincheira et al. 

1999). Forty historical earthquake ground motions from California are used to analyze this 

structure. The events range in magnitude from 5.7 to 7.3, and the recordings are at distances 

between 6 and 36 km. Directivity effects are not expected at this site (Van Nuys Testbed Report 

2004), so these effects were avoided by choosing records with small distances only when the 

rupture/site geometry suggested that near-fault effects would be unlikely; the ground motion 
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velocity histories were not observed to contain pulse-like intervals. Epsilon was not calculated 

before the records were selected—therefore they have been effectively randomly selected with 

respect to ε. The set of 40 records was then scaled to 16 levels of Sa(T1) between 0.1g and 2.4g. 

To supplement the data from this structure, a series of generic frame structures was 

evaluated as well. Fifteen generic frame models were analyzed, with a variety of configurations, 

periods, and degradation properties. The specific model parameters are summarized in Table 3.2. 

All of the structures are single-bay frames, with stiffnesses and strengths chosen to be 

representative of typical structures. Five structural configurations were considered, with varying 

numbers of stories and first-mode periods. A set of non-degrading models designed and analyzed 

by Medina and Krawinkler (2003) was considered. These models do not have degrading 

elements, but the more flexible structures still have the potential to collapse due to P-Δ effects. A 

set of degrading models designed and analyzed by Ibarra (2003) was also considered. These 

structures are identical to the models of Medina and Krawinkler, except for incorporation of 

elements that degrade in stiffness and strength. For each of the five building configurations, a 

non-degrading model and two degrading models were considered. A second set of forty records 

were used by those authors to analyze these structures, ranging in magnitude from 6.5 to 6.9, and 

ranging in distance from 13 to 40 km. It is difficult to generalize conclusions to all possible 

structures, but it is believed that by considering this wide range of models, the consistent effect 

of ε  is apparent.  
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Table 3.2  Percent change in mean annual collapse rate and in 10%-in-50-
year drift demand on a series of structural models when using 
improved vector-based procedure versus scalar-based 
procedure 

Number of 
Stories 

Period 
(s) 

Degradation 
Model 

Reduction in mean 
annual rate of 

collapse 

Reduction in  drift 
at 10%- in-50-year 

hazard 

3 0.3 a 55% 93% 

3 0.3 b 58% 91% 

3 0.3 none 0% 17% 

3 0.6 a 40% n.a. 

3 0.6 b 51% 73% 

3 0.6 none 99% 25% 

7 0.8 c 43% n.a. 

9 0.9 a 72% 42% 

9 0.9 b 80% 41% 

9 0.9 none 99% 32% 

9 1.8 a 5% 18% 

9 1.8 b 49% 20% 

9 1.8 none 71% 25% 

15 3.0 a 41% 5% 

15 3.0 b 40% n.a. 

15 3.0 none 46% 13% 

Degradation models: 

(a) Ibarra degradation parameters: peak oriented model, 
/ 4c yδ δ = , 0.10cα = − , 0.03sα = , , , ,s c k aγ = ∞  

(b) Ibarra degradation parameters: peak oriented model, 
/ 4c yδ δ = , 0.05cα = − , 0.03sα = , , , , 50s c k aγ =  

(c) Pincheira model (1999), with parameters calibrated to reflect 
concrete connections with representative detailing   

3.10.2 Drift Hazard Results 

The first case considered is the reinforced concrete frame structure. This structure was evaluated 

for both the characteristic-event and the Van Nuys ground motion hazard environments. The 

results are shown in Figure 3.7. We see that in both cases, versus the scalar approach, inclusion 

of ε in the intensity measure results in lower mean annual frequencies for high levels of drift. 

While inclusion of M with Sa has the same effect, it is much less pronounced, as anticipated. 
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(b) 

Fig. 3.7  Seven-story reinforced concrete frame. Mean annual frequency of 
exceedance versus maximum interstory drift. (a) Scalar-based and 
vector-based drift hazard curves for characteristic-event hazard and (b) 
scalar-based and vector-based drift hazard curves for Van Nuys hazard. 

This same procedure was repeated for the 15 generic frames considered. The drift hazard curves 

look similar to those of Figure 3.7. In order to present the results in a concise way, two important 

values for each structure are considered: the annual rate of exceeding 10% maximum interstory 

drift ratio (this amount of drift could be interpreted to indicate collapse of the structure), and the 

drift that has a 10% chance of being exceeded in 50 years (i.e., the drift level z such that 
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λ(EDP≥z) = 0.0021). The percentage change in these values between the scalar-based (Sa) result 

and the vector-based (Sa, ε) result is listed in Table 3.2. For some cases, the structure collapses 

with a greater than 10% probability in a 50-year period (e.g., this is seen in Fig. 3.7). In these 

cases, there is no drift level associated with the 10%-in-50-year hazard level, so the 

corresponding cell in Table 3.2 is marked “n.a.” (not applicable). In addition, the non-degrading 

structure with a period of 0.3 sec is not predicted to collapse at the ground motion levels present 

at the site, so there is no change in the frequency of collapse. We see that in every case (besides 

these special cases) the improved vector-based procedure produces lower demands on the 

structure. One interesting insight: it can be noted that the collapse rate reduction is typically less 

for the longer period version of otherwise similar models; the absolute rates are, however, larger 

in such cases implying smaller values of ε, and hence less effect.  

3.11 DISCUSSION 

It has been shown that ε is an implicity indicator of the shape of a record’s response spectra, and 

thereby an important effect on the response of nonlinear MDOF models. This being the case, it is 

desirable to account for the effect of ε when predicting the annual rate of exceeding a given drift 

level. There is more than one way to accomplish this. One approach is to consider ε values 

carefully when selecting ground motions to use in analysis. In current practice, ground motions 

are selected so that they match the magnitude and distance values of the events that dominate the 

disaggregation, and the soil conditions present at the site under consideration (Stewart et al. 

2001). This section suggests that ε should also be considered when selecting ground motions. 

Unfortunately, the existing library of recorded ground motions is not large enough that all 

desired parameters can be matched simultaneously, especially for a sample of nominal size. In 

light of the relatively greater effect that ε has on structural response, the desire to closely match 

distance and magnitude should probably be relaxed in favor of matching ε levels. For example, 

one could match ε while also trying to match magnitude, but allow records from a wide range of 

distances to be used. When selecting records to match ε, one needs to remain aware that target ε 

values will increase as the mean annual frequency considered decreases (the target magnitude 

and distance may also change as the annual frequency decreases, and this is sometimes 

accounted for in the selection process, e.g., Stewart et al. 2001). 
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The method to address the effect of ε proposed here is to adopt an IM that accounts for 

the effect of ε (i.e., an IM that is sufficient with respect to ε, Luco and Cornell 2005). The most 

obvious IM that accomplishes this is the vector-valued IM presented in this section, with Sa(T1) 

and ε as parameters. One first assesses the dependence of drift on ε at one or more levels of Sa, as 

described herein. One level at or near the mean annual frequency of interest (e.g., 2% in 50 

years) may be sufficient in some cases. The sample size can probably be limited to the order of 

10 records, especially if record selection is designed to capture the dependence of ε (note that 

with this approach, extreme positive and negative ε values in the suite of records are desirable in 

order to improve the slope fit, in contrast to the previous approach where only records with 

specific ε values are desired). Then the drift hazard curve is computed using the vector-based 

procedure of Equation 3.7, as was done to produce Figure 3.7. 

Finally, there is a possibility that alternative scalar intensity measures may account for 

the effects of ε more sufficiently than spectral acceleration (for instance, some of the improved 

scalar IMs that have been proposed recently Cordova et al. 2001; Luco and Cornell 2005; Mori et 

al. 2004). If this were the case, then ε would not need to be included as a second parameter of the 

IM. However, this hypothesis remains to be tested. In the meantime, the most direct way to 

address the observed effect of ε is to use the vector-valued IM presented in this section.  

3.12 CONCLUSIONS 

A method for calculating the probabilistic response of structures with a vector-valued IM is used 

to evaluate the significance of magnitude, distance and ε on the response of structures, 

conditioned on spectral acceleration. It is seen that ε has a significant effect on the response of 

structures, because it is an indicator of spectral shape (more specifically, it tends to indicate 

whether Sa at a specified period is in a peak or a valley of the spectrum). For a fixed Sa(T1),  

records with positive ε values tend to cause smaller demands in structures than records with 

negative ε values. The effect of ε on structural response given Sa(T1) is seen to be greater than 

the effect of magnitude or distance. 

In addition, by examining disaggregation of the ground motion hazard, it is seen that at 

low mean annual frequency of exceedance the ground motions are all positive-epsilon motions. 

Therefore, the practice of scaling up zero-epsilon (on average) records to represent records with 
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positive epsilons is likely to result in overestimation of the demand on the structure. This will 

lead to overestimation of drift at a given hazard level, or overestimation of the mean annual 

frequency of collapse.  

A vector-valued IM consisting of Sa(T1) and ε has been proposed in this section. The 

proposed IM will account for the effect of ε on structural response. Alternatively, one could 

correct for the effect of ε on structural response by intelligently choosing records that have the 

proper ε value, and then using Sa(T1) as a scalar IM. 

The results presented here are based on a suite of structural models that are similar in 

behavior to many frame structures. However, these models are by no means representative of all 

classes of structures in existence. It is believed that the effect of ε will be seen in a broad class of 

structures, but further work is needed to further confirm and quantify this effect. 

 



 

   
 
 

 

4 Vector-Valued Ground Motion Intensity 
Measure Consisting of Spectral Acceleration 
and Measure of Spectral Shape 

4.1 ABSTRACT 

Among the challenges of performance-based earthquake engineering is estimation of the demand 

on a structure from a given earthquake. This is often done by calculating the distribution of 

structural response as a function of the ground motion intensity (as measured by an “intensity 

measure,” or IM), and then combining this with the rates of exceeding various IM levels, as 

quantified by the probabilistic ground motion hazard. Traditional IMs include peak ground 

acceleration and spectral acceleration at the first-mode period of vibration. These IMs consist of 

a single parameter. In this chapter, we investigate IMs consisting of two parameters: spectral 

acceleration at the first-mode period of vibration along with a measure of spectral shape (the 

ratio of spectral acceleration at a second period to the original spectral acceleration value). A 

method for predicting the probability distribution of demand using a vector IM is presented that 

accounts for the effect of collapses on the distribution of demand. Two complimentary methods 

for determining the optimum second period at a given intensity level are described, and an 

improvement in the efficiency of demand predictions is shown. Finally, the parameter ε is 

included to create a three-parameter vector. It is seen that although the spectral shape parameter 

has increased the efficiency of response predictions, it does not fully account for the effect of ε. 

Thus, ε should still be accounted for in analysis, either through informed record selection or by 

using this larger vector of IM parameters. 
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4.2 INTRODUCTION 

In this section a method is presented for determining an optimal vector “intensity measure” for 

predicting the demand in a structure (defined as a measure of the structural response such as the 

maximum interstory drift angle seen in the structure). To predict this response effectively, one 

needs an intensity measure (IM) for the given earthquake. In the past, the peak ground 

acceleration (PGA) of the earthquake was commonly used as an IM. More recently, spectral 

response values (i.e., spectral accelerations at the first-mode period of vibration — Sa(T1)) have 

been used as IMs. These IMs are generally a single parameter. In this section, intensity measures 

containing two or three parameters are proposed. These intensity measures are called “vector 

IMs,” as opposed to the “scalar IMs” that contain only a single parameter. One would expect 

intuitively that a vector IM would contain more information about the ground motion than a 

scalar IM, and would thus be more effective at predicting the response of a structure. This will be 

shown, and criteria for finding an optimal set of parameters will be described.  

An example of the need for prediction of structural response is seen in the work of the 

Pacific Earthquake Engineering Research (PEER) Center (Cornell and Krawinkler 2000). Here, 

the response of a structure is termed an engineering demand parameter, or EDP. The annual 

frequency of exceeding a given EDP is calculated as follows: 

 
all 

( ) ( | ) ( )
i

EDP i IM i
x

z P EDP z IM x xλ λ= > = ⋅ Δ∑  (4.1) 

where λEDP(z) is the annual frequency of exceeding a given EDP value z, λIM(xi) is the annual 

frequency of exceeding a given IM value xi (this is commonly referred to as a ground motion 

hazard curve), and ΔλIM(xi) = λIM(xi) – λIM(xi+1) is approximately the annual frequency of  IM = xi. 

The final element of this equation is P(EDP>z|IM=xi), the probability of exceeding a specified 

EDP level,  given a level of IM. This is the value of interest for efficiently estimating using a 

vector IM. If the IM becomes a vector, Equation 4.1 must be generalized, as will be discussed 

below. 

In this section, only a specific class of candidates are considered as potential vector IMs. 

Given that Sa(T1) has been verified as an effective predictor of structural response for a wide 

class of structures, we will continue to use this as the first element of our vector. For the second 

element, we will consider the predictor RT1,T2 = Sa(T2)/ Sa(T1) (see Fig. 4.1 for an illustration). 

The predictor RT1,T2 is a measure of spectral shape. Together the vector Sa(T1) and RT1,T2 define 
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two points on the spectrum of an accelerogram. The first-mode elastic period of vibration of the 

building will always be used as T1, but T2 will be allowed to vary and chosen to optimally predict 

the response of the structure. (A range of T1 values was examined at an early stage in the 

research, but at low to moderate levels of nonlinearity, other periods did not show a significant 

improvement over the first-mode period of the structure.) The spectral shape predictor RT1,T2 has 

been found by others to be a useful predictor of structural response (e.g., Cordova et al. 2001; 

Vamvatsikos 2002). A two-element vector is the primary focus of this study, although a three-

element vector will be considered briefly as well. This study also considers only maximum 

interstory drift (referred to as θmax) as an EDP, although an identical study could be performed on 

any other EDP value.  
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Fig. 4.1  Illustration of calculation of RT1,T2 for given response spectrum 

4.3 PREDICTION OF BUILDING RESPONSE USING SCALAR IM 

The prediction of building response requires estimation of the term P(EDP>z|IM=xi) in Equation 

4.1. This is true for both the scalar and vector IM cases. In this section, an estimation method is 

presented for the scalar IM case, and in the next section it is modified for use with vector IMs. 
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The scalar IM Sa(T1) is used in this section, both because of its wide use elsewhere, and because 

it will be easily generalized to our vector case, IM = (Sa(T1), RT1,T2). 

The method used in this section requires a suite of earthquake of records, all at the same 

IM value, Sa(T1)=x (e.g., in this study, 40 records are used at each IM level). We scale a suite of 

historical earthquake records to the given  Sa(T1) value (e.g., Shome et al. 1998). (We use the 

same suite of records for different Sa(T1) levels, although one could use different record suites at 

different levels if PSHA disaggregation suggested that, for example, the representative 

magnitude level was changing. This method will be explored in Chapter 6.) This suite of records 

is used to perform nonlinear dynamic analysis on a model of the structure. Now we have n 

records, all with IM = x, and n corresponding values of EDP (see an illustration in Fig. 4.2). A 

perfect IM would be one such that all records with IM = x would have an identical value of EDP. 

However, with our less-than-perfect IMs, there will be a distribution of EDPs. So in fact, EDP 

given IM = x is a random variable with an unknown distribution, and our n values of EDP are a 

sample from this distribution. We need to estimate this distribution in order to calculate the 

probability that EDP is greater than a given value. Our EDP, maximum interstory drift ratio, has 

been found to be well represented by a lognormal distribution (e.g., Shome 1999; Aslani and 

Miranda 2003). Because of this we work with the natural logarithm of EDP, which then has the 

normal distribution. We can estimate the parameters for this normal distribution using the 

method of moments (Benjamin and Cornell 1970). For each IM level, estimate the mean of 

lnEDP as the sample average of the lnEDPs, and denote this ln |ˆ EDP IM xμ = . Estimate the standard 

deviation of lnEDP, which we call the “dispersion” and denote ln |
ˆ

EDP IM xβ = , as equal to the sample 

standard deviation. These two parameters fully define the normal distribution. The probability 

that EDP exceeds z given IM = x can now be calculated using the Gaussian complimentary 

cumulative distribution function 

 ln |

ln |

ˆln
( | ) 1 ˆ

EDP IM x

EDP IM x

z
P EDP z IM x

μ
β

=

=

⎛ ⎞−
⎜ ⎟> = = − Φ
⎜ ⎟
⎝ ⎠

 (4.2) 

where ( )Φ ⋅   denotes the standard normal distribution. 
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Fig. 4.2  Structural response results from dynamic analysis using forty records 
scaled to Sa(T1) = 0.4g, and superimposed lognormal probability density 
function, generated using method of moments 

4.3.1 Accounting for Collapses 

In the previous section, it was stated that EDP given IM = x has a lognormal distribution. While 

this may be a valid assumption at lower ground motion levels, it does not explicitly account for 

the possibility that some records may result in a collapse of the structure at higher levels of IM. 

For these records, we would say that EDPi is greater than z for any value of z (or equivalently, 

iEDP = ∞ ). This causes two problems: the probability that iEDP = ∞  is zero in the lognormal 

distribution, and collapses cause our estimates of the lognormal mean and standard deviation to 

be infinite. To address this issue, we need to make a modification to our procedure, as proposed 

by Shome and Cornell (2000). First, we separate our realizations of EDP into collapsed and non-

collapsed data. We then estimate the probability of collapse at the given IM level as 

 number of records causing collapse( | )
total number of records

P C IM x= =  (4.3) 
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We then use the method of moments to estimate ln |EDP IM xμ =  and ln |EDP IM xβ =  using only the non-

collapsed records. Combining the two possibilities, our estimate of the probability that EDP 

exceeds z given IM = x is now 

 ( ) ln |

ln |

ˆln
( | ) ( | ) 1 ( | ) 1 ˆ

EDP IM x

EDP IM x

z
P EDP z IM x P C IM x P C IM x

μ
β

=

=

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟> = = = + − = − Φ

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (4.4) 

We can now proceed with this estimate.  

4.4 PREDICTION OF BUILDING RESPONSE USING VECTOR IM 

We now adapt the procedure of the preceding section for use with a vector IM. If we label the 

two elements of our vector IM as IM1 = Sa(T1) and IM2 = RT1,T2, then we are trying to estimate 

1 1 2 2( | , )P EDP z IM x IM x> = = . Ideally, we would like to scale our records to both IM1 = x1 and IM2 

= x2. However, when we scale our record by a factor y, each spectral acceleration value is 

changed by the same factor y. Therefore, RT1,T2 = Sa(T2)/ Sa(T1) is unchanged by scaling. (In 

general, because there is only one factor that we are scaling by—a uniform scale factor on the 

entire record—we cannot match two IMs simultaneously even if we consider other classes of IM2 

than RT1,T2.) So we need a supplement to scaling.  

The solution adopted here is to scale on IM1 (Sa(T1)) as before, and then apply regression 

analysis to estimate EDP versus IM2 (RT1,T2) for each IM1 level. In Section 4.7, we will explain 

the reasoning behind scaling to IM1 rather than using regression analysis on both variables (the 

advantages and disadvantages of a variety of methods are also discussed in depth in Chapter 2). 

Our approach will parallel the scalar IM case, in that we separate out the collapsing records first, 

and then deal with the remaining non-collapsed records. 

4.4.1 Accounting for Collapses with Vector IM 

As with the scalar IM, there is a possibility that some records may cause collapse of the structure. 

However, instead of taking the probability of collapse to be simply the fraction of records that 

collapse, we would like to take advantage of our vector IM to predict the probability of collapse 

more accurately. We do this using logistic regression, which is commonly used to generate 

predictions for binary data (Neter et al. 1996). Each record has a value of RT1,T2, which we denote 

more simply as Ri and use as our predictor variable. We then build an indicator variable for 
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collapse (call this Yi and set it to 1 if the record causes collapse and 0 otherwise). We then use the 

logit transform to predict collapse 

 0 1

0 1

exp( )
1 exp( )

i
i

i

RY
R

β β
β β

+=
+ +

 (4.5) 

where 0 1 and β β  are parameters to be estimated using our set of data points (Yi, Ri). Logistic 

regression is a built-in function in many mathematical and statistical software packages. We then 

use this function (and our estimated parameters) to predict the probability of collapse, given 

Sa(T1) and RT1,T2 

 ( ) 0 1 2
1 1 1, 2 2

0 1 2

ˆ ˆexp( )| ( ) , ˆ ˆ1 exp( )a T T
xP C S T x R x

x
β β

β β
+= = =

+ +
 (4.6) 

where 0 1
ˆ ˆ and β β  denote the estimates of 0 1and β β  obtained from regression on a dataset that has 

been scaled to Sa(T1) = x1 (i.e. 0 1
ˆ ˆ and β β   will be different for different values of Sa(T1)). We now 

have a probability of collapse prediction that varies with RT1,T2, rather than being constant as in 

the scalar case. An example of these data and a fitted logistic regression curve is presented in 

Figure 4.3.  
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Fig. 4.3  Example of prediction of probability of collapse using logistic regression 
applied to binary collapse/non-collapse results (Sa(T1) = 0.9g) 
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4.4.2 Accounting for Non-Collapses with Vector IM 

Once the probability of collapse has been estimated, it is necessary to quantify the behavior of 

the non-collapse records. We now separate out the non-collapsed records. Note that each of these 

records has been scaled to Sa(T1) = x1. Each of the records has a value of RT1,T2, which we again 

refer to as Ri, and it has a value of EDP, which we refer to as EDPi. We have found that there 

tends to be a relationship between RT1,T2 and EDP of the form 1 1, 2| ( ), ( )b
a T TEDP S T NC a R e≈ % , 

where a and b are constant coefficients, and e%  is a random variable representing the randomness 

in the relationship. This becomes a linear relationship after we take logarithms of both sides: 

1 1, 2ln | ( ), ln lna T TEDP S T NC a b R e≈ + +  (in which a new random variable, lne e= % , has been 

defined). Linear least-squares regression (Neter et al. 1996) is used to obtain estimates of the two 

regression coefficients, 2 ln aβ =  and 3 bβ =  

 2 3ln lni i iEDP R eβ β= + +  (4.7) 

Linear regression is available in many mathematical and statistical software packages, 

and can be used to obtain estimates of the coefficients, 2β̂  and 3β̂  (again, these values will vary 

for different Sa(T1) levels). A graphical example of these data and the regression fit is shown in 

Figure 4.4. 

When using linear least-squares regression on a dataset, several assumptions are 

implicitly made, and the accuracy of the results depends on the validity of these assumptions. If 

we denote our predicted value of lnEDP for record i as ˆln iEDP , then the prediction error for this 

record is called the “residual” from record i 

 ˆln lni i ie EDP EDP= −  (4.8) 

These residuals are assumed to be mutually independent. In addition, when estimating the 

distribution of lnEDP below, we will assume the residuals to be normally distributed with 

constant variance (this condition is termed homoscedasticity).  The assumptions of independent 

normal residuals with constant variance have been examined for the data in this study, and found 

to be reasonable. An estimate of the variance of the residuals is also available from the analysis 

software, and we will denote it 2ˆ ˆ[ ] eVar e σ≡ . This variance in the residuals is represented 

graphically in Figure 4.4 by superimposing the estimated normal distribution of the residuals 

over the data. 
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Fig. 4.4  Example of non-collapse data, and fit to data using linear regression. 
Data come from records scaled to Sa(T1) = 0.3g. Estimated distributions 
of residuals have been superimposed over data.  

From regression, we now know that given Sa(T1) = x1 and RT1,T2 = x2, and given no collapse, the 

mean value of lnEDP is 

 1, 2 2 2 3 2
ˆ ˆ[ln | ] lnT TE EDP R x xβ β= = +  (4.9) 

where  2β̂  and 3β̂  have been obtained by regressing on records scaled to Sa(T1) = x1. We also 

know that lnEDP is normally distributed, and that it has a variance equal to the 2ˆeσ . So the 

probability that lnEDP is greater than z, given Sa(T1) = x1, RT1,T2 = x2, and no collapse can be 

expressed 

 ( ) ( )2 3 2
1 1 1, 2 2

ˆ ˆln ln
| ( ) , , no col. 1

ˆa T T
e

z x
P EDP z S T x R x

β β

σ

⎛ ⎞− +
⎜ ⎟> = = = − Φ
⎜ ⎟
⎝ ⎠

 (4.10) 

This equation is very similar to Equation 4.2 used in the scalar case. We previously estimated the 

mean of the normal distribution by the average response of all records, but now we use a result 

from regression on RT1,T2. We have also replaced the standard deviation of the records by the 

standard deviation of the regression residual. But otherwise, the equation is the same. 



 

   
 
 

94

We can combine Equations 4.6 and 4.8 to compute the probability that EDP exceeds z: 

 
( ) ( )

( )

2 3 2
1 1 1, 2 2

0 1 2

0 1 2

ˆ ˆln ln
( | ( ) , ) ( ) 1 ( ) 1

ˆ

ˆ ˆexp( )where ˆ ˆ1 exp( )

a T T
e

z x
P EDP z S T x R x P C P C

xP C
x

β β

σ

β β
β β

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟> = = = + − − Φ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+=
+ +

 (4.11) 

Although 1x  does not appear in Equation 4.9, our estimate is implicitly a function of x1 because 

the data used to estimate 0 1 2 3
ˆ ˆ ˆ ˆ ˆ, , ,  and εβ β β β σ  all come from records scaled to Sa(T1) = x1. This 

gives us a response prediction that is similar to the original prediction of Equation 4.4, but that 

now incorporates a two-element vector. It is a simple matter to generalize this to a larger vector, 

by using regression on multiple variables in Equations 4.5 and 4.7, as will be done in Section 4.8. 

4.5 CHOICE OF VECTOR 

Once the above method has been established for predicting drift, we can proceed to choose an 

“optimal” vector for use in prediction. The general goals to be considered when choosing an IM 

are efficiency (minimum variance in EDP for records with the same IM value), sufficiency (Luco 

and Cornell 2005), and ease of calculation (e.g., it should not be too difficult to obtain the ground 

motion hazard for the IM, or to determine the IM value of a given record). As noted earlier, in 

this study the only class of IM considered is Sa(T1) and RT1,T2, with T2 free to vary over a range of 

possible values. Here T2 will be selected to maximize efficiency. The scalar IM = Sa(T1) has been 

found to be a sufficient predictor with respect to magnitude and distance (Shome et al. 1998), but 

in Chapter 3 it was seen to be insufficient with respect to ε. The vector IM with the added 

parameter RT1,T2 retains sufficiency with respect to magnitude and distance, and its effect on 

sufficiency with respect to ε will be considered in Section 4.8. The ground motion hazard for this 

IM can be computed (Bazzurro and Cornell 2002), and spectral acceleration values are easy to 

calculate and familiar to many engineers. Thus, the ease of calculation criterion is met. 

The question of efficiency arises when we examine, for example, the estimated mean of 

lnEDP. We are trying to estimate the mean of a population based on n samples from that 

population. A basic result in statistics tells us that the standard deviation of that estimate is 

proportional to ln |EDP IM x nβ =  (Benjamin and Cornell 1970). If ln |EDP IM xβ =  can be decreased by 

using a more efficient IM, then n can be decreased without increasing the standard deviation of 
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the estimated mean lnEDP. Reducing n means reducing the number of required nonlinear 

dynamic analyses, which reduces the effort and computational expense associated with the 

assessment procedure. This same principle holds in the vector case—to increase the efficiency of 

our regression estimate, we need to decrease the standard deviation of the regression residuals. 

For example, in Figure 4.5a an IM2 with a large residual standard deviation is shown, whereas in 

Figure 4.5b an IM2 with a small residual standard deviation is displayed. If we are trying to 

estimate a trend in the data, clearly fewer data points will be needed to obtain an estimate of 

lnEDP when using the IM2 from Figure 4.5b. 

To choose the optimal T2 value at a given Sa(T1) level, we regress on RT1,T2 for a range of 

T2 values. We will then compute the standard deviation of the residuals for each of these 

regressions. To normalize these results, we will compute the fractional reduction in standard 

deviation relative to the standard deviation from the scalar IM case with Sa(T1) alone. If the 

fractional reduction is zero, then we have gained no efficiency by including the given IM2. If the 

fractional reduction is one, then we have a perfect relation between IM2 and EDP, and there is no 

remaining randomness. We will choose the T2 that has the largest fractional reduction among all 

possible T2 values. 
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Fig. 4.5  Comparison of effectiveness of IM2 with two potential T2 values: (a) IM2 
choice with low efficiency and (b) IM2 with high efficiency 
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4.6 BUILDING MODELS AND EARTHQUAKE GROUND MOTIONS 

To perform the analysis as described above, one needs both a structural model and suite of 

earthquake records. The primary structure used in this study is a reinforced concrete moment-

frame building. The building has 1960s’-era construction and is serving as a test-bed for PEER 

research activities (PEER 2004). A 2D model of the transverse frame is used, which was created 

by Jalayer (2003) and contains nonlinear elements that degrade in strength and stiffness, in both 

shear and bending (Pincheira et al. 1999). The frame has seven stories and three bays. The first 

mode of the model has a period of 0.8 sec, and the second mode has a period of 0.28 sec. 

Maximum interstory drift ratios in this structure are predominantly controlled by first-mode 

response. Forty historical earthquake ground motions are used for the analysis of the primary 

structure (see Appendix A, Table A.1 for the list of records). All of the records come from 

California, and the events range in magnitude from 5.7 to 7.3. The distances vary from 6.5 km to 

56 km. Attempts were made to avoid directivity effects by choosing records with small distances 

only when the rupture and site geometry suggested that near-fault effects would be unlikely, and 

velocity histories were not observed to contain pulse-like intervals. This set of 40 records was 

then scaled to 12 levels of Sa(T1) between 0.02g and 1.0g. 

To supplement this primary structure, a suite of generic frame structures was also 

evaluated. Twenty generic frame models were analyzed, with a variety of configurations, 

periods, and degradation properties. The specific model parameters are summarized in Table 4.1. 

All of the structures are single-bay frames, with stiffnesses and strengths chosen to be 

representative of typical structures. Six structural configurations were considered, with varying 

numbers of stories and varying first-mode periods. A set of non-degrading models designed and 

analyzed by Medina and Krawinkler (Medina and Krawinkler 2005) was considered. These 

models do not have degrading elements, but can still collapse due to P-Δ effects. A set of 

degrading models designed and analyzed by Ibarra (2003) was also considered. These structures 

are identical to the models of Medina and Krawinkler, except for incorporation of elements that 

degrade in stiffness and strength. For each of the six building configurations, a non-degrading 

model and two degrading models were considered. For the supplemental generic structures, a 

different set of 40 records was used for analysis (see Appendix A, Table A.3 for the list of 

records). They range in magnitude from 6.5 to 6.9, and range in distance from 13 to 40 km. 
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Table 4.1  Model parameters for 20 generic frame structures considered. All 
parameters specify element properties. Parameter δc/δy refers to ductility 
capacity (peak displacement at peak strength divided by yield displacement). 
Parameter αc refers to post-capping stiffness. Cyclic degradation parameters 
γs,c,k,a quantify rate of (hysteretic-energy-based) deterioration. All models 
have strain-hardening stiffness of 0.03 times elastic stiffness, and all models 
have peak-oriented hysteretic model. Details of this hysteretic model are 
given by Ibarra (2003). 

Number of 
stories T1 δc/δy αc 

Cyclic 
deterioration 
parameters 

3 0.3 4 -0.1 γs,c,k,a=∞ 

3 0.3 4 -0.5 γs,c,k,a =50 

3 0.3 ∞ - γs,c,k,a=∞ 

3 0.6 4 -0.1 γs,c,k,a=∞ 

3 0.6 4 -0.5 γs,c,k,a =50 

3 0.6 ∞ - γs,c,k,a=∞ 

6 0.6 4 -0.1 γs,c,k,a=∞ 

6 0.6 4 -0.5 γs,c,k,a =50 

6 0.6 ∞ - γs,c,k,a=∞ 

9 0.9 2 -0.1 γs,c,k,a=∞ 

9 0.9 4 -0.1 γs,c,k,a=∞ 

9 0.9 6 -0.1 γs,c,k,a=∞ 

9 0.9 4 -0.5 γs,c,k,a =50 

9 0.9 ∞ - γs,c,k,a=∞ 

9 1.8 4 -0.1 γs,c,k,a=∞ 

9 1.8 4 -0.5 γs,c,k,a =50 

9 1.8 ∞ - γs,c,k,a=∞ 

15 3 4 -0.1 γs,c,k,a=∞ 

15 3 4 -0.5 γs,c,k,a =50 

15 3 ∞ - γs,c,k,a=∞ 

4.7 RESULTS 

Using the primary test structure and associated ground motions, we can now use the vector IM 

methodology to test candidate T2 values for RT1,T2. A plot of the fractional reduction in residual 

standard deviation is shown in Figure 4.6, where all records have been scaled to Sa(T1) = 0.3g. 

We see that the optimal T2 is one second (note, this optimal T2 at this spectral acceleration level 

was shown in Figure 4.5b above, and a non-optimal T2 was shown in Fig. 4.5a). We see that the 

reduction in dispersion was approximately 60%. We can make a comparison of the standard 

errors of estimation. 
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 scalar vector

scalar vectorn n
σ σ=  (4.12) 

 
If we can reduce our dispersion by 60%, ( 0.4vector scalarσ σ= ), then 0.16vector scalarn n= . That is, by 

adopting the most efficient vector, we could potentially reduce the number of records used by a 

factor of approximately six and still maintain the same confidence in our estimate of the mean 

response of the structure. This could lead to a great reduction in computational expense. Or, for a 

fixed n, the estimated standard deviation (which is proportional to the confidence interval) could 

be reduced by 60%. 
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Fig. 4.6  Fractional reduction in dispersion vs. T2 for T2 between 0 and 4 sec for 
Sa(T1)=0.3g 

This optimal T2 value is relevant only for a single level of Sa(T1). We repeat this same calculation 

for two additional levels of Sa(T1) and show the results in Figure 4.7. It is apparent that the 

optimal T2 value varies depending on the level of Sa(T1). An additional value, μ%  is given in the 

legend. This is the ratio of the average EDP among the 40 records to the approximate EDP at 

yielding (as determined from a pushover analysis of the structure). This value is analogous to a 

ductility level for the structure.  

For Sa(T1) = 0.1g, we find that the optimal T2 is 0.36 sec. This is near 0.28 sec: the 

second-mode period of the structure. In fact, 0.28 sec shows a reduction in dispersion that is 
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nearly as large as the reduction at 0.36 sec. If 0.28 sec were indeed the best T2, then this vector 

IM would be somewhat analogous to the modal analysis method of estimating linear response. 

The modal analysis method (with two modes) would take the spectral acceleration at the first two 

modes of the building and use them to estimate the response of the structure. Note that at this 

level of spectral acceleration, our estimate of ductility using the above definition is 0.533, 

implying that for most of the records, the structure stays linear.  

For Sa(T1) = 0.3g, we find that the optimal T2 is 1.0 sec. This is the level that was 

discussed previously. It is noted now that 1.56μ =% , suggesting that most of the records cause 

some level of nonlinear behavior in the structure.  For Sa(T1) = 0.7g, we find that the optimal T2 

is 1.5 sec. At this level of spectral acceleration, 4.66μ =% . This suggests that most of the records 

experience large levels of nonlinearity.  
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Fig. 4.7  Fractional reduction in dispersion vs. T2 for three levels of Sa(T1) 

If one were to combine engineering intuition with the results of Figure 4.7, the following 

conclusion might be drawn, keeping in mind that response of this seven-story structure is first-

mode dominated: if Sa(T1) is low enough that few or no records cause nonlinearity, then the 

optimal second period to incorporate would be near the second-mode period of the structure, and 

if Sa(T1) is large enough that most records cause nonlinearities, then the optimal T2 will be larger 

than T1. Figure 4.8 below shows this pattern as well. In this figure, the level of Sa(T1) is plotted 

on the x-axis. On the y-axis is T2, plotted as a ratio of T2 to T1. A circle is placed in the plot at the 
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location of the optimal T2 for a given Sa(T1). In addition, a line is plotted over the range of T2/T1 

where the reduction in dispersion is at least 75% of the reduction seen at the optimal T2. This line 

is shown to indicate the breadth of the optimal solution (i.e., are there only a few effective T2’s, 

or is there a large range of T2 that reduces dispersion comparably?). Other authors have 

examined choices of T2, and have also recognized the dependence on the level of nonlinearity 

(Cordova et al. 2001; Vamvatsikos 2002). 

The average μ%  is less than one for Sa(T1) between 0 and 0.1g, and this is where we see an 

optimal T2 that is near to the second-mode period of the building. For Sa(T1) ≥ 0.2g (and 1μ >% ), 

the optimal T2 is larger than T1, and shows an increasing trend as Sa(T1) increases (and as levels 

of nonlinearity increase). This increase in T2 with increasing levels of nonlinearity may be 

related to the idea of an equivalent linear system (e.g., Iwan 1980; Kennedy et al. 1985). The 

theory is that a nonlinear single-degree-of-freedom (SDOF) system may be represented by an 

“equivalent” linear system with a longer period. As the level of nonlinearity increases, the period 

of the equivalent linear system increases. A schematic force-deformation diagram of a nonlinear 

system and its equivalent linear system is shown in Figure 4.9. The original SDOF has elastic 

stiffness ke, and the equivalent linear system has a reduced stiffness k* that is dependant on the 

ductility demand (μmax) of the nonlinear system. Methods for determining an equivalent 

nonlinear system based on level of ductility have been proposed by, for example, Iwan (1980) 

and Kennedy (1985). The suggested equivalent periods from these two sections are plotted on 

Figure 4.8, and they show trends similar to the ideal T2’s seen in this study. It should be noted, 

however, that there is a difference between the period of an equivalent linear system and the IM2 

being selected for a vector. An equivalent linear system is used to replace Sa(T1), while the IM2 

is used to supplement Sa(T1). The discrepancy between these two goals is most apparent in Figure 

4.8 when Sa(T1) is 0.3 or 0.4g. Here, the equivalent nonlinear system has a period almost 

identical to the elastic period of a structure. However, the optimal T2 from this study is at a 

longer period. This is because if T2 is near to T1, then Sa(T1) is very highly correlated with Sa(T2) 

(see Chapter 8). Thus, RT1,T2 = Sa(T2)/Sa(T1) is essentially constant for all records and so there is 

little or no predictive ability provided by RT1,T2. The optimal T2 must be significantly different 

than T1 in order to decrease the correlation between Sa(T1) and Sa(T2). This can be seen in Figure 

4.7, where the fractional reduction in dispersion is zero or nearly zero for T2 values that are very 
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close to T1. So, although the equivalent linear systems somewhat match the optimal T2 values at 

moderate to large levels of ductility, there is a difference between the two at low levels of 

nonlinearity. 
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Fig. 4.8  Optimum second period T2, versus level of Sa(T1) 

 

Fig. 4.9  Schematic illustration of nonlinear SDOF and potential equivalent 
linear system based upon maximum observed ductility 
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The conclusions from the Van Nuys testbed structure can be generalized by examining 

the generic frame structures described earlier and listed in Table 3.1. The same search for 

optimal periods was performed, but for display purposes, Sa(T1) is converted to the normalized 

value (Sa(T1)/g)/(yield base shear/weight), so that the nonlinear behavior starts occurring at a 

normalized value of approximately one (Medina and Krawinkler 2003). Further, the optimal T2 is 

normalized by the first-mode period of the structure as was done in Figure 4.8. These 

normalizations allow multiple structures to be plotted on the same figure for comparison, 

independent of their first-mode period or yield strength. The structures are separated into three 

groups for consideration. 

The first group, shown in Figure 4.10, consists of three-story structures with peak 

interstory drift ratios controlled primarily by first-mode response (a description that also fits the 

primary building considered previously). For most of these structures, the optimal T2 is 

approximately equal to the second-mode period of the structure when the structure is linear 

(normalized spectral acceleration<1) or slightly nonlinear. In the moderately nonlinear range, 

however, the optimal period is typically larger than the first-mode period, and increases as the 

ground motion intensity increases. The general trend in Figure 4.10 is similar to the trend in 

Figure 4.8. 

The second group of structures, shown in Figure 4.11, have peak interstory drift ratios 

that are moderately sensitive to second-mode response. In the elastic range, the optimal T2 is 

again near the second-mode period. However, here the optimal T2 is less than the first-mode 

period for normalized Sa values up to four in several cases. The optimal T2 in this nonlinear 

response range is larger than the elastic second-mode period, however. This suggests that the 

effective second-mode period may be lengthening due to nonlinearity (Fu 2005), although no 

further analysis was performed to confirm this. 

The third group of structures, shown in Figure 4.12, have peak interstory drift ratios that 

are significantly affected by second-mode response—more-so than most typical buildings 

(Krawinkler 2005). Here, the optimal T2 is nearly always less than the first-mode period. Again, 

the optimal T2 is greater than the elastic second-mode period for some structures, perhaps 

indicating nonlinearity in the second mode.  

The fourth group of structures, shown in Figure 4.13, all have nine stories and a first-

mode period of 0.9 sec, but have varying ductility capacities (δc/δy). Each of these structures 

undergoes a transition from having an optimal T2 less than T1 to having an optimal T2 greater 
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than T2, once the normalized Sa level becomes large enough. The structures with lower ductility 

capacity undergo this transition at a lower Sa level. This is likely because structures with low 

ductility are more sensitive to long-period excitations that may drive them to extreme responses. 

Ductile structures may be more able to withstand these long-period excitations, and thus 

information about higher mode response may be more important in this transition region. At 

large enough Sa levels, all four of these structures are sensitive to long-period T2’s; the low-

ductility structures merely make the transition sooner. 
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Fig. 4.10  Optimal T2, normalized by first-mode period (T1) for set of three-story 
structures dominated by first-mode response 



 

   
 
 

105

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

(Sa(T
1
)/g) / (Base shear strength/Weight)

T
2/T

1

N=6, T
1
=0.6, δ

c
/δ

y
=4, α

c
=-0.1, γ

s,c,k,a
=∞

N=6, T
1
=0.6, δ

c
/δ

y
=4, α

c
=-0.5, γ

s,c,k,a
=50

N=6, T
1
=0.6, δ

c
/δ

y
=∞, γ

s,c,k,a
=∞

N=9, T
1
=0.9, δ

c
/δ

y
=4, α

c
=-0.1, γ

s,c,k,a
=∞

N=9, T
1
=0.9, δ

c
/δ

y
=4, α

c
=-0.5, γ

s,c,k,a
=50

N=9, T
1
=0.9, δ

c
/δ

y
=∞, γ

s,c,k,a
=∞

 

Fig. 4.11  Optimal T2, normalized by first-mode period (T1) for set of six- and 
nine-story structures with moderate contribution from second-mode 
response 
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Fig. 4.12  Optimal T2, normalized by first-mode period (T1) for set of nine- and 
fifteen-story structures with significant contribution from second-
mode response  
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Fig. 4.13  Optimal T2, normalized by first-mode period (T1) for set of nine-story 
structures with varying levels of element ductility  

Some general conclusions might be inferred from these empirical results. When the 

structure is significantly affected by second-mode response (either the structure is behaving 

linearly or second-mode response is a strong contributor to response even in the nonlinear 

range), then the optimal T2 is typically near the elastic second-mode period. When the structure 

is behaving nonlinearly and second-mode response is not critical, the optimal T2 is typically 

larger than the elastic first-mode period. In this case, an optimal T2 might be estimated using an 

equivalent linear system based on the predicted ductility level. In addition, low-ductility 

structures may have optimal T2 values longer than the first-mode period at lower Sa levels than 

high-ductility structures. These trends are all consistent with engineering intuition about dynamic 

structural response, but the results are not general enough to develop concrete rules for optimal 

T2 values at this time. 

With these results in mind, it is valuable to reconsider our original scheme for predicting 

EDP as a function of a two IM parameters. As discussed in Chapter 2, there are a variety of 

choices for making this prediction, but here we chose to first scale records to Sa(T1) and then 

regress on RT1,T2. Therefore, all of our regression coefficients were allowed to vary at each Sa(T1) 

level. This allows for full interaction between Sa(T1) and RT1,T2. If we had not scaled the records, 

but instead used unscaled records and had regressed on both Sa(T1) and RT1,T2 simultaneously, 
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then it would have been more difficult to identify the interaction between the two parameters. In 

addition, had we regressed on both Sa(T1) and RT1,T2 simultaneously without scaling, we would 

only find a single optimal T2 for all Sa(T1) levels, rather than an optimal T2 that varies with the 

level. For these two reasons, scaling to Sa(T1) and then regressing on RT1,T2 was chosen as the 

methodology. It should be noted however, that regressing on two IMs simultaneously has been 

done by Shome (1999). The advantage of regressing on two IMs simultaneously is that there are 

fewer parameters to estimate (one set of coefficients for the entire range of Sa(T1) and RT1,T2, 

rather than a new set of coefficients for RT1,T2 at each Sa(T1) stripe), so potentially fewer analyses 

need to be performed in order to estimate the needed parameters. 

4.7.1 Optimization of Choice of IM2 Using Bootstrap and Drift Hazard Curve 

Another issue with the proposed methodology that should be mentioned is the criterion for 

choosing an optimal RT1,T2. Recall that the quantity being optimized in Figure 4.6 is the reduction 

in residual dispersion from regression on the non-collapse records only. This quantity does not 

measure the ability of RT1,T2 to predict the probability of collapse. Perhaps if the collapse 

capacity of the structure is of primary interest, the quantity to optimize would be the reduction in 

residual dispersion from Equation 4.6. Ideally, the quantity to optimize should incorporate the 

improvements made in prediction of both collapse and non-collapse records. Because of this, the 

plot of Figure 4.8 is limited to Sa(T1) ≤ 1g. For Sa(T1) > 1g, more than one-quarter of the records 

cause the structure to collapse, so it would not be appropriate to neglect the records that cause 

collapse as has been done above. 

It would be possible to address this issue by computing a weighted sum of the reduction 

in dispersion from the collapse prediction (Eq. 4.6) and the reduction in dispersion from 

regression on the non-collapse records (Eq. 4.7). But the weights used should be a function of the 

relative importance of collapse and non-collapse behavior, and it is not clear what that function 

should be. One natural way to resolve this issue is to carry the prediction of EDP all the way 

through to the computation of the mean rate of exceeding an EDP value z, as discussed in the 

introduction. The vector version of Equation 4.1 is given below: 

 
1, 2,

1 1, 1, 2 2, 1, 2,
all all 

( ) ( | ( ) , ) ( , )
i i

EDP a i T T i IM i i
x x

z P EDP z S T x R x x xλ λ= > = = ⋅ Δ∑ ∑  (4.13) 
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This rate is the final result we desire, and this calculation incorporates both the collapse 

prediction and the non-collapse response prediction. The estimate will vary depending upon the 

records chosen for analysis, although with an efficient IM, hopefully the estimate will not vary 

by much. In fact, our ultimate goal is to choose an IM such that this result does not depend upon 

the records chosen, and so a reduction in sensitivity to the records chosen here would be a good 

criterion to use in selecting RT1,T2. To measure the statistical variability of the estimate of λEDP(z), 

one can employ the bootstrap (Efron and Tibshirani 1993). The procedure is as follows: select n 

records with replacement from the original set of n records (some records will be duplicated and 

others will not be present at all). With this new record set and a candidate RT1,T2, use the vector 

IM to predict the building response as outlined above. Using this new estimate, recompute 

λEDP(z) using Equation 4.13. Repeat this process B times (typically B = 25 to 200). The standard 

deviation of these B values is an estimate of the standard error of estimation of λEDP(z). No new 

structural analyses are needed for this process, so the computational expense is not large. A good 

T2 value for RT1,T2 will result in a λEDP(z) with significantly reduced variability relative to the 

λEDP(z) using a scalar IM (e.g., Eq. 4.1). There are two advantages introduced by this method. 

The first is that it incorporates gains in efficiency from both the collapse and non-collapse 

predictions, but rather than using a potentially arbitrary weighting scheme, it incorporates them 

naturally into the final computation where the results will be used. The second advantage is that 

the probability of exceeding a given EDP value does not come from a single Sa(T1) level, but 

from a range of levels. Thus, a good predictor according to this criterion will show efficiency 

gains over the range of Sa(T1) values that contribute significantly at the given EDP level. Note 

that this calculation requires knowledge of vector-valued ground motion hazard, 1, 2,( , )IM i ix xλ  

(the rate of jointly exceeding both Sa(T1)=x1,I and RT1,T2=x2,i). This result is available (Bazzurro 

and Cornell 2002; Somerville and Thio 2003), but not yet in widespread use in engineering 

practice.  

As an illustration, the complete drift hazard curve λEDP(z) is computed using the scalar 

and vector procedures (Eq. 4.1 and Eq. 4.13, respectively). The ground motion hazard is 

calculated for the actual location of the structure being studied (a soil site in the Los Angeles 

area). The vector IM used is (Sa(T1), RT1,T2(T2=1.0s)). The scalar and vector-based curves are 

shown in Figure 4.14. Note that the flattening of the curve toward the right occurs because the 

exceedance of these EDP values is dominated by collapses (P(collapse) ≅ 3*10-3). There is not a 

large difference between the two curves, but what cannot be seen in this figure is that there is 
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much less uncertainty in the curve estimated using the vector IM. To measure this uncertainty, 

we now use the bootstrap. Four example bootstrap replicates of the record set have been 

generated, and their corresponding vector-IM-based drift hazard curves are shown in Figure 4.15. 

To display the variability in our estimates, we compute histograms of the λEDP(z) values for a 

given z, using both the vector IM and scalar IM methods. These curves use maximum interstory 

drift ratio as the EDP of interest. 

We now examine histograms at a value of z of 0.01, to compare our scalar and vector IMs 

(see Fig. 4.16). We see that the results from the vector-based drift hazard curve are much more 

tightly bunched around their central value than the results from the scalar-based drift hazard 

curve. This means that we can be more confident about the value obtained from the vector-based 

drift hazard calculation. Or equivalently, if we adopt the vector-based drift hazard calculation, 

we do not need to use as many records in the analysis to obtain a level of uncertainty comparable 

to the scalar method. (In this case, the standard deviation of the bootstrapped replicates is cut by 

a factor of about two, so in principle the number of records used could be reduced by a factor of 

about four. However, the method does demand a minimum of approximately five to ten records 

per stripe in order to estimate the needed regression coefficients.) 
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Fig. 4.14  Maximum interstory drift hazard curves computed using scalar IM 
and vector IM 
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Fig. 4.15  Bootstrap replicates of vector IM drift hazard curve 

The histogram of Figure 4.16 shows results only for one vector IM at a single EDP value, 

but we can extend this calculation to additional values of EDP. We can also consider additional 

candidate IMs. Consideration of candidate vector IMs is slightly more complicated now, because 

the vector ground motion hazard λIM(x1,x2) needs to be recomputed for each candidate IM. For 

this reason, the analysis here is limited to three vectors that appeared promising in Figure 4.8: T2 

= 0.28s, 1.0s and 2.0s. The coefficient of variation of the replicate results is used as a measure of 

dispersion of the bootstrap replicates (because the mean values of λEDP(z) vary by two orders of 

magnitude depending on z, standard deviations of λEDP(z) are much more variable than the 

coefficient of variation). A plot of the coefficient of variation versus EDP level is shown for the 

three candidate vector IMs in Figure 4.17, along with the coefficient of variation using the scalar 

IM. We see that the vector (Sa(T1), RT1,T2(T2=1.0s)) produces a significant reduction in coefficient 

of variation for nearly all levels of IM, but the 50% reduction is limited to the range 

0.003<EDP<0.01. The other two vectors do not show a significant improvement. This result fits 

with results seen earlier. We saw in Figure 4.8 that the vector with T2 = 0.28s was only helpful 

for very small levels of Sa(T1) (and in fact we see that for very small levels of EDP, this IM 

produces a small improvement). The vector with T2 = 2.0s was helpful as Sa(T1) levels got very 

large, but these large-intensity events are rare enough that they do not significantly affect the 

EDP hazard curve except at large levels of EDP (and here we see a slight improvement). The 
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vector with T2 = 1.0s showed a significant improvement over a large range of important Sa(T1) 

levels, and thus it is the most useful. These results are consistent with earlier results, but perhaps 

this method reveals more information about the overall usefulness of a candidate vector than the 

previous method did. Note that to select a vector, we still need to specify a value of z to consider. 

But this choice of z may not be too hard if we are concerned with specific limit states (e.g., 

collapse, or EDP = 1% drift). 

This bootstrap procedure requires more computation than the regression procedure. 

However, it has the advantage of directly measuring uncertainty in the value of interest (λEDP(z)), 

and incorporating estimates from both collapse and non-collapse prediction at multiple IM levels 

simultaneously. We saw from the example calculation above that the results from the two 

procedures appears consistent.  Research to date seems to show that the two alternative 

techniques agree at levels of EDP where collapses are not frequent.  

0.015 0.02 0.025 0.03 0.035
0

100

200

300

400

0.015 0.02 0.025 0.03 0.035
0

50

100

150

200

250

300

λ
EDP

(0.01)

#
 o

f o
cc

ur
re

nc
es

Scalar IM 

Vector IM with R
T1,T2

(1.0s) 

 

Fig. 4.16  Histograms of scalar and vector drift hazard curves, for z = 0.01 
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Fig. 4.16  Coefficient of variation vs. EDP level for three candidate vector IMs 
and scalar IM 

4.8 THREE-PARAMETER VECTOR CONSISTING OF SA(T1), RT1,T2 AND ε 

In Chapter 3, the ground motion parameter ε was investigated, and found to have a significant 

effect on structural response given Sa(T1). Both ε and RT1,T2 are related to spectral shape, so the 

possibility exists that they are accounting for the same effect. If they do account for the same 

effect, then use of a vector with RT1,T2 would eliminate the need to carefully account for the 

effect of ε. In order to investigate this possibility, we consider a vector consisting of three 

parameters: Sa(T1), RT1,T2 and ε (where ε  is calculated at T1, as in Chapter 3). The question to be 

answered is whether this three-parameter IM is better than the two parameter IM consisting of 

Sa(T1) and RT1,T2. To test this, we first perform scaling on Sa(T1) stripes, as in Section 4.4. Then, 

at each stripe, instead of performing regression on RT1,T2 alone, we perform multiple regression, 

using both RT1,T2 and ε as predictors. The prediction is analogous to Equation 4.7, but now with 

an added term for ε. The equation becomes 

 2 3 4ln lni i i iEDP R eβ β β ε= + + +  (4.14) 
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where EDPi is the EDP value of record I at a given Sa(T1) level, as before, and Ri and εI are the 

records’ associated RT1,T2 and ε values, respectively. In the same way, we can use the extra ε 

parameter to aid in predicting collapse, using a generalization of Equation 4.5 

 0 1 5

0 1 5

exp( )
1 exp( )

i i
i

ii i

RY
R

β β β ε
β β β ε

+ +=
+ + +

 (4.15) 

where again Yi is equal to 1 if the record causes collapse at the given Sa(T1) level and 0 

otherwise.  

The question to be answered is whether the predictions incorporating ε (Eqs. 4.14 and 

4.15) are significantly superior to predictions that do not include ε (Eqs. 4.5 and 4.7). A 

statistical test known as the F-test (Neter et al. 1996) helps to answer this question. For a given 

structure and Sa(T1) level, both the full model (Eqs. 4.14 and 4.15) and the reduced model  (Eqs. 

4.5 and 4.7) are fitted. A normalized measure of the improvement in fit from the reduced model 

to the full model, called an F statistic, is computed. The probability of exceeding that F statistic 

under the assumption that ε is not significant is called a “p-value.” Low p-values suggest that ε is 

in fact significant because they indicate that the observed improvement in fit is unlikely to occur 

under the assumption that ε is not significant. A p-value of less than 0.05 is typically interpreted 

as indicating that ε has a statistically significant effect. P-values from a subset of the test results 

are displayed in Table 4.2. In all, approximately 30% of the tests show p-values below 0.05, 

versus the predicted 5% under the assumption that ε is not significant. This suggests that ε is still 

a mildly significant predictor of structural response as a third parameter in addition to Sa(T1) and 

RT1,T2. One pattern in the results of these tests can be seen in the linear regression tests for 

approximately linear (Sa(T1)/g)/(Base shear strength/Weight) ≤ 1) structures is that when T2 is 

chosen to be longer than the first-mode period of the building, ε is very significant for the 0.6s 

and 0.9s structures, while when T2 is chosen at the second-mode period of the building, ε is no 

longer significant for these same structures. This suggests that ε is predicting the response of the 

second mode: ε is only significant if the RT1,T2 is not chosen to account for the second-mode 

response. The same effect is not present with the 0.3 second structure; this is probably because 

the second mode of this structure does not contribute significantly to the response parameter of 

interest. 
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Table 4.2  P-values for tests of significance of ε, given Sa(T1) and RT1,T2. Tests 
performed by predicting response of generic frame structures using 
candidate intensity measures. All structures considered above have 
following parameter values: δc/δy=4, αc=-0.1 and γs,c,k,a=∞ (see Table 
4.1). Linear regression tests performed only when at least 10 records 
did not cause collapse. Logistic regression tests performed only 
when at least 5 records caused collapse and at least 5 records did not 
cause collapse. Field marked “-” if test not performed. Tests 
indicating statistical significance (p<0.05) marked in bold. 

 Linear Regression  Logistic Regression 
               

 T2 = T1/3  T2 = T1*2  T2 = T1/3 T2 = T1*2 
# of stories 3 6 9   3 6 9   3 6 9  3 6 9 

First-mode period, T1 0.3 0.6 0.9  0.3 0.6 0.9  0.3 0.6 0.9 0.3 0.6 0.9 
T2 used  in RT1,T2 0.1 0.2 0.3  0.6 1.2 1.8  0.1 0.2 0.3 0.6 1.2 1.8 

                
Sa(T1)/(base shear coefficient*g)             

0.25 0.61 0.97 0.97  0.87 0.00 0.00  - - - - - - 
0.5 0.61 0.97 0.97  0.87 0.00 0.00  - - - - - - 

0.75 0.61 0.97 0.97  0.87 0.00 0.00  - - - - - - 
1 0.61 0.97 0.97  0.87 0.00 0.00  - - - - - - 

1.25 0.91 0.42 0.50  0.99 0.02 0.00  - - - - - - 
1.5 0.02 0.15 0.57  0.03 0.01 0.00  - - - - - - 

1.75 0.02 0.02 0.61  0.02 0.01 0.00  - - - - - - 
2 0.05 0.02 0.93  0.03 0.02 0.00  - - - - - - 

2.25 0.07 0.02 0.76  0.06 0.03 0.01  - - - - - - 
2.5 0.41 0.03 0.64  0.31 0.11 0.03  - - - - - - 

2.75 0.30 0.04 0.86  0.19 0.21 0.03  - - - - - - 
3 0.24 0.05 0.88  0.18 0.25 0.06  0.25 - - 0.52 - - 

3.25 0.14 0.07 0.50  0.04 0.26 0.10  0.26 - - 0.71 - - 
3.5 0.77 0.14 0.13  0.59 0.59 0.03  0.05 - - 0.06 - - 

3.75 0.57 0.20 0.08  0.38 0.63 0.04  0.09 - - 0.09 - - 
4 0.62 0.19 0.04  0.45 0.07 0.08  0.09 - - 0.12 - - 

4.25 0.70 0.25 0.05  0.11 0.07 0.09  0.04 - - 0.06 - - 
4.5 - 0.07 0.04  - 0.01 0.15  0.03 - - 0.03 - - 

4.75 - 0.22 0.28  - 0.08 0.44  0.03 0.17 0.04 0.03 0.16 0.29 
5 - 0.74 0.12  - 0.27 0.46  0.01 0.07 0.11 0.02 0.04 0.67 

5.25 - 0.46 0.10  - 0.23 0.39  0.01 0.14 0.11 0.02 0.04 0.67 
5.5 - 0.91 0.16  - 0.67 0.32  0.04 0.04 0.07 0.03 0.02 0.61 

5.75 - 0.89 0.03  - 0.94 0.10  0.07 0.11 0.16 0.07 0.03 0.97 
6 - 0.45 0.06  - 0.41 0.16  0.07 0.14 0.16 0.07 0.08 0.97 
7 - - 0.60  - - 0.59  - 0.11 0.06 - 0.11 0.38 
8 - - -  - - -  - 0.16 0.06 - 0.87 0.30 
9 - - -  - - -  - 0.17 0.23 - 0.97 0.37 

10 - - -  - - -  - 0.05 0.18 - 0.15 0.40 
11 - - -  - - -  - 0.05 0.59 - 0.15 0.91 
12 - - -  - - -  - - 0.86 - - 0.26  
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The response predictions of Equations 4.14 and 4.15 can also be combined with ground 

motion hazard results to re-compute a drift hazard curve, similar to that of Figure 4.14. The 

ground motion hazard is calculated by performing vector-valued hazard analysis as before, but 

also disaggregating on ε to obtain the conditional distributions of ε given Sa(T1) and RT1,T2. The 

resulting hazard curves using several candidate IMs are shown in Figure 4.18. The IMs including 

ε as a parameter (the heavy lines) result in lower estimates of the mean annual rate of exceedance 

at large maximum interstory drift ratios. The IMs consisting of RT1,T2, but not ε, do not show the 

same lower mean annual rate of exceedance. If the addition of ε to the IM affects the drift hazard 

results, then it can be inferred that RT1,T2 is not fully accounting for the effect of ε. 
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Fig. 4.17  Maximum interstory drift hazard curves computed using scalar IM, 
two-parameter IMs, and three-parameter IMs. Results shown for 
three-story structure with T1=0.3s, δc/δy=4, αc=-0.1 and γs,c,k,a=∞ (see 
Table 4.1). 

A possible explanation as to why RT1,T2 is not able to account for the effect of ε is shown 

in Figure 4.19. Here, the ability to predict spectral shape at a range of periods is measured using 

RT1,T2 and/or ε. The procedure used to create this plot is as follows. The set of 40 ground motions 

used for analysis with the generic frames was selected and scaled so that they all had the same 

Sa(0.8s) value. The parameters ε and RT1,T2 were then used to predict spectral acceleration values 

at a range of periods. The standard deviation of the residuals after prediction was compared to 
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the standard deviation of the spectral values before prediction. The level of reduction in standard 

deviation indicates the second parameter’s predictive power. In Figure 4.19, we see the reduction 

in standard deviation resulting from prediction using the two possible parameters. RT1,T2 explains 

100% of the variation at the period T2 (1.0s in this figure). But at other periods it is less effective. 

In particular, RT1,T2 with this T2>T1 has essentially zero predictive power at periods less than T1, 

as might be expected. On the other hand, ε has at least some predictive power over almost the 

entire range of periods considered. Judging from this picture, it appears that ε and RT1,T2 are not 

explaining the same features of spectral shape. In particular, ε predicts spectral values on either 

side of T1, while RT1,T2 predicts only on one side. This would explain why the predictions based 

on the three-parameter vector of Sa(T1), RT1,T2 and ε are different than the predictions based on 

Sa(T1) and RT1,T2.  
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Fig. 4.19  Fractional reduction in standard deviation of Sa(T) given Sa(T1) after 
conditioning on RT1,T2 or ε. T1=0.8s, T2=1.0s  

Additionally, unpublished research by the author indicates that when the median spectral 

shape of the records used for structural analysis is inconsistent with the spectral shape predicted 

by the ground motion prediction (attenuation) model used for hazard analysis, an inconsistency 

in the resulting drift hazard is introduced. This may be the cause of the two-parameter and three-

parameter drift hazard curves in Figure 4.18 not agreeing. Further investigation is needed into 

this phenomenon, however, before firm conclusions can be drawn. 
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Another test that can be performed is to again use bootstrap to compute the coefficient of 

variation of estimation for each drift hazard curve in Figure 4.18. The surprising result from this 

figure is that the coefficients of variation of λEDP(z) for the intensity measures containing ε are 

much larger than even the scalar IM Sa(T1). This increased coefficient of variation appears to 

result from the fact that ε-based predictions (i.e., the regression of EDP and P(Collapse) based 

on ε or RT1,T2 and ε at a Sa(T1) stripe) normally require some extrapolation, because mean ε 

values for randomly selected ground motions are near zero, while ground motion hazards and 

EDP hazards of interest for safety assessment (e.g., <10-3) can often be dominated by ε values of 

one to two9. Further, the prediction based on ε explains less of the record-to-record variability 

than does RT1,T2 (compare, e.g., Fig. 4.4 to Fig. 3.1b). With the use of three predictors the curse 

of dimensionality (Bellman 1961, Hastie et al. 2001) becomes more significant, and so although 

the efficient parameter RT1,T2 reduces the coefficient of variation relative to the vector with ε, it 

cannot reduce the overall coefficient of variation back to the level of the scalar IM.  
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Fig. 4.18  Coefficient of variation vs. EDP level for six candidate IMs consisting 
of one, two, or three parameters  

                                                 
9 For loss assessment, ground motions with mean annual rates of exceedance of 10-2 may also be important, and at 
this hazard level, ground motions are more likely to have mean epsilon values close to zero. Thus, the effect of ε 
may be less important for loss estimation. 
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Although ε increases the coefficient of variation of estimation of the drift hazard curve 

when used in an IM, it was seen in Chapter 3 to eliminate a source of bias associated with use of 

Sa(T1) alone. And Figure 4.18 suggests that RT1,T2 by itself is not able to eliminate this bias. Thus, 

it still suggested that ε be included in probabilistic performance assessments. The increased 

coefficient of variation of estimation of λEDP(z) due to ε could be avoided by using ε-based 

record selection (see Chapter 6), rather than random selection with vector-valued IMs. 

The results from this section suggest that use of a vector-valued IM consisting of Sa(T1) 

and RT1,T2 does not desensitize the analysis to the effects of ε. Although ε and RT1,T2 are both 

effective IM parameters because they are related to spectral shape, they are each describing 

somewhat different properties of the shape of the spectrum. Further, these two parameters have 

different effects on estimated drift hazard curves: a vector IM RT1,T2 tends to reduce slightly the 

uncertainty in the curve relative to use of a scalar IM; a vector IM with ε tends to eliminate a bias 

in the drift hazard, while actually increasing the uncertainty in the drift hazard curve10. The 

parameter ε should thus still be accounted for, as its effect is significant, especially at large levels 

of response. This is seen in Chapter 3 and in the results of Figure 4.18. 

4.9 CONCLUSIONS 

A method for selecting an efficient vector intensity measure using regression analysis has been 

presented. This method is based on scaling to the first IM element (Sa(T1)) and then using 

regression on the second element (RT1,T2) to predict the response of the structure. The optimal 

second period (T2) for use in the vector was chosen by minimizing the standard deviation of the 

prediction errors. It was shown that the proper choice of RT1,T2 can significantly reduce prediction 

error when compared to prediction using Sa(T1) alone. A range of nonlinear MDOF structures 

were tested to find the optimal second period for use in this IM. When the building response was 

linear or when nonlinear building response has a significant contribution from the second mode 

of vibration, the optimal second period for use in RT1,T2 was shown to be approximately equal to 

the second-mode period of the building. When Sa(T1) was large enough to cause nonlinear 

behavior and second-mode response was not critical, the optimal second period was larger than 

                                                 
10 This conclusion is based on the currently common practice of ignoring ε in selecting records. As will be seen in 
Chapter 6, ε-sensitive record selection can also address this source of bias and may also avoid inflating the 
uncertainty in λEDP(z) by avoiding regression extrapolation. 
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the first-mode period of the building, and increased as the level of nonlinearity increased. The 

lengthened period appears to be related to the effective period of an equivalent linear system. 

Further, increasing the ductility of a structure tends to decrease its sensitivity to long period T2 

values, relative to short period T2 values.  

A method for evaluating vector IMs that utilizes bootstrap replications of the drift hazard 

curve was also presented. This method has the advantage of directly computing the statistical 

variability in estimates of the drift hazard curve, and it accounts for the increased prediction 

efficiency of both collapse and non-collapse responses at many IM levels simultaneously. The 

disadvantage of this method is that it requires a vector-valued ground motion hazard for each 

candidate IM, and it also requires slightly increased computational time. Because of this, it is 

suggested that the regression analysis method be used to narrow down a broad range of potential 

vector IMs to a few promising candidates. The bootstrap method can then be used to examine 

these few in detail.  

A three-parameter IM consisting of Sa(T1), RT1,T2 and ε was also considered, in order to 

determine whether RT1,T2 accounted for the effect of ε discussed in Chapter 3. It was found that 

RT1,T2 does not fully account for the effect of ε, and that neglecting ε in analysis results in 

conservative estimates of the annual rate of exceeding a given maximum interstory drift ratio, 

especially at large levels of structural response. This unconservative bias is consistent with the 

effect seen in Chapter 3. So although the parameter RT1,T2 produces significant increases in 

estimation efficiency, it does not account for the effect of ε.  

A vector-valued intensity measure consisting of Sa(T1) and RT1,T2 has the potential to 

produce a drift hazard curve with significantly narrower confidence bands than the equivalent 

curve computed using the scalar intensity measure Sa(T1) and the same number of nonlinear 

analyses. Analysis of the structure evaluated in this section shows the potential for a reduction in 

the standard deviation of λEDP(z) of as much as a factor of two. This implies that in principle the 

required number of analyses could be reduced by a factor of as much as four without increasing 

the standard deviation of the λEDP(z) result. This decrease in computational expense is very 

appealing, and may justify the use of the vector intensity measure. 

The subjects of vector IMs, estimates of uncertainty in λEDP(z), and record selection with 

respect to ε are all new. The joint effects of these topics, such as λEDP(z) estimation uncertainty 

when ε-based record selection is used, require further study. 



 

   
 
 

 

5 Vector-Valued Intensity Measures for Pulse-
like Near-Fault Ground Motions 

5.1 INTRODUCTION 

Pulse-like near-fault ground motions are a special class of ground motions that are particularly 

challenging to characterize for earthquake hazard assessment. These motions are characterized 

by a “pulse” in the velocity time history of the motion, in the direction perpendicular to the fault 

(see Fig. 5.1). It is particularly important to characterize these ground motions, because they are 

typically very intense and have been observed to cause severe damage to structures in past 

earthquakes. 

The source of the severe damage has been divided into two parts. First, it has been noted 

that these motions have, on average, larger elastic spectral acceleration values at moderate to 

long periods. This has been accounted for by modifying ground motion prediction 

(“attenuation”) models (e.g., Somerville et al. 1997), and improved modifications are currently in 

development. Second, it has been noted that these motions cause severe response in nonlinear 

multi-degree-of-freedom structures (e.g., Mahin et al. 1976; Bertero et al. 1978. A more detailed 

history of the research surrounding this topic is provided by Alavi and Krawinkler 2001.). 

Further, this severe response is not entirely accounted for by measuring the intensity of the 

ground motion using spectral acceleration of the elastic first-mode period of a structure (Sa(T1)), 

as has been noted by several researchers (e.g., Mehanny and Deierlein 2000; Baez and Miranda 

2000; Alavi and Krawinkler 2001; Ruiz-Garcia 2004;Luco and Cornell 2005). 
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Fig. 5.1  Velocity time history of fault-normal horizontal ground motion 
recorded at Lucerne during 1992 Landers earthquake.  “Pulse” is 
clearly present. 

Given these challenges, Luco and Cornell (2005) suggest that when using the 

probabilistic performance assessment procedure used throughout this report, the intensity 

measure Sa(T1) has shortcomings in capturing the effect of pulse-like ground motions. Luco and 

Cornell  (2005) have proposed a replacement scalar IM for use with pulse-like ground motions, 

which is a combination of inelastic spectral displacement at the first-mode period and elastic 

spectral displacement at the second-mode period. As an alternative, the vector-valued IMs 

considered in Chapters 3 and 4 may be effective at assessing the effect of these motions. In 

Chapters 3 and 4, only “ordinary” ground motions were considered, while here pulse-like ground 

motions will be considered as well. The ability of these intensity measures to characterize pulse-

like ground motions will be evaluated. Analysis of vector-valued probabilistic ground motion 

hazard will require some modifications for use with pulse-like ground motions, and these 

modifications are discussed as well. 
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5.2 PULSE-LIKE GROUND MOTIONS 

The earthquake engineering community has recognized in recent years that sites located near an 

earthquake fault rupture may experience ground shaking that includes a velocity “pulse.” This 

pulse is most likely to occur in specific site-source geometrical configurations (see, e.g., 

Somerville et al. 1997). Roughly speaking, a velocity pulse is likely to occur in the fault-normal 

direction at sites where the earthquake rupture is propagating toward the site rather than away 

from it. Ground motion shaking in the fault-parallel direction is typically less intense. In the 

discussion that follows, the term “pulse-like ground motion” is used to refer to fault-normal 

ground motions with an observed velocity pulse, typically occurring within 20 or 30 km of the 

fault.  

A set of 70 fault-normal near-fault ground motions collected by Tothong and Cornell 

(2005a) is utilized in this study. This set is an aggregation of records identified by Mavroeidis 

and Papageorgiou (2003), Fu and Menun (2004), and Luco (2002). All of the records from these 

studies recorded on firm soil or rock and including clearly identifiable velocity pulse are 

included. The processed ground motion time histories come from the next generation attenuation 

project database (2005). A particularly important property of pulse-like ground motions is the 

period of the velocity pulse (denoted Tp); following Alavi and Krawinkler (2001), Tothong and 

Cornell (2005a) have defined Tp as the period associated with the maximum of the velocity 

response spectrum. A table of the records and their associated properties is presented in 

Appendix A, Table A.4. 

A set of 40 “ordinary” ground motions (i.e., ground motions with no velocity pulses) is 

also used for comparison with the pulse-like record set. The properties of these records are given 

in Appendix A, Table A.3. 

5.3 SPECTRAL ACCELERATION AS INTENSITY MEASURE 

At large periods, pulse-like ground motions tend to cause larger elastic spectral acceleration (Sa) 

levels than standard ground motion (attenuation) models predict. A model for this effect was 

proposed by Somerville et al. (1997), in the form of a modification to a popular ground motion 

prediction model (Abrahamson and Silva 1997), with the intention that the correction could also 

be applied to other prediction models as well. This model adjusts a broad range of spectral 
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acceleration values at periods greater than 0.6 sec. Future “narrow-band” models may only adjust 

a smaller range of spectral acceleration values depending upon the period of the velocity pulse, 

which is related to the magnitude of the earthquake (Somerville 2003).  

Regardless of the exact form of the ground motion prediction model, it is clear that Sa 

values tend to be larger, at least at longer periods, for ground motions with velocity pulses than 

for ordinary ground motions with similar magnitudes and distances. The question to be answered 

then is whether the larger Sa values completely account for the larger structural responses 

observed from these records, or whether there is an additional effect from pulse-like ground 

motions that is not described by the IM Sa(T1). It will be seen below that Sa(T1) does not 

completely account for the effect of these ground motions, and so vector-valued IMs will be used 

to better quantify the effects of these ground motions. 

5.4 STRUCTURAL RESPONSE FROM PULSE-LIKE GROUND MOTIONS 

To quantify the effect of pulse-like ground motions, a set of multi-degree-of-freedom nonlinear 

structures are used for evaluation. A set of generic frame structures designed by Ibarra (2003) is 

used for analysis. All of the structures are single-bay frames, with stiffnesses and strengths 

chosen to be representative of typical structures. Four structures were considered, with varying 

numbers of stories and first-mode periods. Their properties are summarized in Table 5.1. Peak 

interstory drift ratios in these structures are known to be significantly affected by second-mode 

response. This will help demonstrate the ability of a vector IM to account for higher-mode 

response, but the effect of higher-mode response is likely less significant for most typical 

structures with comparable numbers of stories and/or comparable first-mode periods. 

Table 5.1  Model parameters for four generic-frame structures 
considered in this chapter 

Elastic first-
mode 

period (T1) 
Number of 
stories (N) 

Ductility 
capacity 

(δc/δy) 

Post-capping 
stiffness 

coefficient (αc)

Cyclic 
deterioration 
parameters 

(γs,c,k,a) 
0.3 3 4 -0.5 50 

0.9 9 4 -0.5 50 

1.2 6 4 -0.5 50 

1.8 9 4 -0.5 50  
 



 

   
 
 

125

In order to summarize results from these various structures, structural response data are 

computed for ground motions scaled such that the records’ Sa(T1) level in units of g is a 

specified multiple of the structure’s base shear coefficient γ (where γ=yield base shear/weight). 

This ratio of first-mode spectral acceleration to base shear coefficient is analogous to an R-factor 

in present building codes if there were no overstrength in the structure. Here, this normalized 

spectral acceleration value will be referred to as Rμ. Using this normalized ground motion 

intensity measure, all four structures will yield at Rμ factors of approximately one (recognizing 

that higher-mode response may or may not induce yielding at this Rμ level). Increasing Rμ levels 

will represent increasing levels of nonlinearity in the structures. 

Several levels of Sa(T1) (or, equivalently, Rμ) were considered for each structure. At each 

Sa(T1) level, all of the ground motions were scaled so that they had the same Sa(T1) value. They 

were then input into the structure in order to compute structural response. For this study, the 

structural response parameter of interest is the maximum interstory drift ratio observed in any 

story, as it is a good indicator of the ability of a structure to resist P-Δ instability and collapse, as 

well as maximum rotation demands on beams, columns, and connections (FEMA 2000a). 

An important principle for all of the response studies that follow is that not all pulse-like 

ground motions are equally severe with respect to a given structure. One important factor that 

affects structural response is the period of the velocity pulse with respect to the modal periods of 

the structure (Alavi and Krawinkler 2001; Fu 2005; Tothong and Cornell 2005a), as is illustrated 

in Figure 5.2. On the y axis, the maximum interstory drift ratio of the nine-story structure with a 

period of 0.9 sec is plotted for each of the 70 pulse-like ground motions. On the x axis, the period 

of each record’s velocity pulse (Tp) divided by the first-mode period of the structure (T1) is 

plotted11. In addition to the individual data points, a general trend is plotted that was computed 

using the Nadaraya-Watson kernel-weighted average, with a tri-cube kernel weight function and 

an adaptive window that includes the 10 nearest neighbors (Hastie et al. 2001). All of these data  

are shown for ground motions scaled such that the records’ Sa(T1) level in units of g is 4 times 

the structure’s base shear coefficient γ, where γ=yield base shear/weight (i.e., the Rμ factor is 

equal to 4). Note also that three records are highlighted in Figure 5.2, and their associated 

response acceleration and velocity spectra are shown in Figure 5.3. The velocity spectrum 

                                                 
11 Some of the near-fault records have Tp values as large as 9 seconds, but here it is assumed that when Tp /T1 is 
greater than 5, the “pulse-like” properties of the records are not as important with regard to estimating structural 
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( ( ) ( ) ( / 2 )Sv T Sa T T π= ⋅ ) is plotted because the periods of the near-fault pulses are most clear in 

this figure. Use of spectral velocity values as the IM parameters would give the same results as 

the spectral acceleration values, but spectral acceleration values are used for consistency with 

standard ground motion prediction models and hazard maps. 
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Fig. 5.2  Maximum interstory drift ratio versus Tp/T1 for generic frame with nine 
stories and first-mode period of 0.9 sec, at Rμ-factor level of 4. Record 1: 
Morgan Hill, Anderson Dam (magnitude = 6.2, distance = 3 km). 
Record 2: Kobe, KJMA (magnitude = 6.9, distance = 1 km). Record 3: 
Superstition Hills, parachute test site (magnitude = 6.5, distance = 1 
km).  

Some trends apparent in this figure for this particular structure and Rμ value are observed 

systematically over a range of structures and Rμ factors, and these trends are consistent with the 

observations of earlier researchers. For Tp/T1 values larger than 1.5 or 2, the response is relatively 

large compared to the response from records with shorter-period pulses. This is because Sa(T1) is 

measuring only the intensity of the ground motion at T1. As the structure behaves nonlinearly and 

its effective period lengthens, it is greatly affected by the velocity pulse at the longer period (see 

the response spectrum of Record 3 in Fig. 5.3). Conversely, the minimum responses are observed 

                                                                                                                                                             
response. Further, no clear trends were observed between Tp /T1 and structural response for these records. For this 
reason, Figure 5.2 and other similar figures are truncated at Tp/T1=5. 
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for Tp/T1 values of approximately 1. In this case a record’s Sa(T1) value will be large because of 

the energy from the pulse with a period of approximately T1, implying that the record is very 

intense as measured by Sa(T1). But as the structure begins to behave nonlinearly, its period 

lengthens into a range where there is comparatively lesser energy (see the response spectrum of 

Record 2 in Fig. 5.3).  Finally, for Tp/T1 values of approximately 0.3, the pulse falls at a period 

that excites the higher mode of the structure12, although the IM Sa(T1) cannot detect it. Thus, 

records with Tp/T1 values in this range can also cause large responses (see the response spectrum 

of Record 1 in Fig. 5.3). The effect of short-period pulses can also be confirmed by noting that 

for records with Tp/T1<1 the maximum responses are often observed in the upper stories (as 

shown in Fig. 5.2), indicating that the higher modes of vibration are contributing significantly to 

response. Conversely, for Tp/T1 values greater than one, maximum responses nearly always occur 

in the lower stories, indicating that first-mode response is controlling peak displacements. 
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(b) 

Fig. 5.3  (a) Acceleration and (b) velocity spectra of three highlighted records 
from Fig. 5.2, after scaling each record so that Sa(0.9s) = 0.5g  

The velocity time histories of these three records are shown in Figure 5.4, to illustrate the 

velocity pulses present in these ground motions.  

                                                 
12 The second mode of this structure has a period of 0.39T1. Maximum interstory drift ratios in this structure are 
particularly sensitive to higher-mode response (Krawinkler, 2005), making the effect of short-period pulses 
particularly pronounced for this example. 
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(c) 

Fig. 5.4  Velocity time histories of three example pulse-like ground motions, after 
scaling each so that Sa(0.9s)=0.5g. (a) Record 1: Morgan Hill, Anderson 
dam (Tp = 0.4s, magnitude = 6.2, distance = 3 km). (b) record 2: Kobe, 
KJMA (Tp = 0.9s, magnitude = 6.9, distance = 1 km). (c) Record 3: 
Superstition Hills, parachute test site (Tp = 2.9s, magnitude = 6.5, 
distance = 1 km).  

The effect of pulses on higher modes is also seen in Figure 5.5, which is identical to 

Figure 5.2 except that the records have been scaled to an Rμ factor of 2. At this Rμ factor, 

structural nonlinearity is minor and so Tp/T1 values larger than one do not affect the structure 

significantly. However, Tp/T1 values near the second-mode period of the structure do cause much 

larger responses, and peak responses always occur in the upper stories of the structure, indicating 

the effect of higher modes. 
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Fig. 5.5  Maximum interstory drift ratio versus Tp/T1 for generic frame with nine 
stories and first-mode period of 0.9 sec, at Rμ level of 2  

The results of Figures 5.2 and 5.5 come from records scaled to given Sa(T1) levels. If one 

uses Sa(T1) as an intensity measure, the assessment of structural response is much more robust 

(e.g., insensitive to the ground motions selected for analysis) if other properties of a ground 

motion do not affect structural response, given Sa(T1). This condition is termed “sufficiency” by 

Luco and Cornell (2005). As seen in Figures 5.2 and 5.5, Sa(T1) is not sufficient with respect to 

Tp (i.e., given Sa(T1), a record’s ground motion property Tp is still a useful predictor of structural 

response). Without sufficiency, the results of the Sa(T1)-based probabilistic response assessment 

are affected by the particular ground motions used for analysis, and so currently the procedure 

has problems when applied to structures located at sites where pulse-like ground motions may 

occur. If a vector-valued intensity measure can be shown to be sufficient with respect to Tp, then 

it would be a significant improvement over Sa(T1) and would allow the probabilistic response 

assessment to proceed as before. It is this possibility that will be investigated below. 

Given knowledge of the effect of Tp/T1, two subsets of the pulse-like records are also 

compared with the ordinary ground motions. The records with Tp/T1>2 are separated and labeled 

the “worst case” pulse-like ground motions, and the records with 0.5<Tp/T1<1.5 are separated 
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and labeled “best case” pulse-like ground motions13. These records are compared to the complete 

set of pulse-like ground motions, and to the ordinary ground motions with no velocity pulse. In 

Figure 5.6 the counted median of the maximum interstory drift ratio is plotted versus Rμ for all 

four groups of ground motions. In Figure 5.7, the probability of collapse is plotted for the same 

four groups of ground motions, where collapse of these deteriorating structures is indicated by 

large interstory drift ratios that cause non-convergence of the analysis program (Ibarra 2003). In 

general, some trends are apparent. The worst case pulse-like records have the largest median 

responses for Rμ factors greater than 2, and greater probabilities of collapse for Rμ factors greater 

than 6. The best case pulse-like ground motions have the smallest median responses and the 

smallest probabilities of collapse at all Rμ factor levels. However, the set of all pulse-like records 

does not have median responses that differ substantially from the ordinary ground motions at 

most Rμ levels. The median probabilities of collapse are nearly equal for the ordinary ground 

motions, and the set of all pulse-like ground motions. But the pulse-like ground motions collapse 

distribution has heavier tails, due to the presence of the best-case and worst-case ground motions, 

which cause greater record-to-record variability than the ordinary ground motions. 

Clearly there are some pulse-like ground motions that cause relatively severe responses in 

a structure and some that do not. If a vector-valued IM were able to supplement Sa(T1) with 

information that would distinguish between the severe and non-severe records, then the 

sufficiency problems of Sa(T1) would be addressed and standard probabilistic performance 

assessment would be feasible even when pulse-like ground motions are considered. 

                                                 
13 A “best-case” ground motion is likely have a naturally large Sa(T1) value due the presence of a pulse with a period 
close to T1. But a response prediction based on this (large) Sa(T1) value will tend to overestimate the response from 
this record because spectral values at other periods are likely not as large. Thus, given Sa(T1), a best-case record will 
tend to have smaller responses than other records, and that is why it is called a “best case” ground motion. 
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Fig. 5.6  Median maximum interstory drift ratio versus normalized spectral 
acceleration (Rμ) for generic frame with nine stories and first-mode 
period of 0.9 sec  
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Fig. 5.7  Counted probabilities of collapse versus normalized spectral acceleration 
for frame with nine stories and first-mode period of 0.9 sec  
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5.5 VECTOR-VALUED IMS FOR PREDICTION OF RESPONSE OF PULSE-LIKE 
GROUND MOTIONS 

Two ground motion parameters, ε and RT1,T2, have been considered in Chapters 3 and 4 for 

inclusion in a vector IM, and both were found to be useful for prediction of response from 

ordinary ground motions. Here they will be evaluated for prediction of response from pulse-like 

ground motions. Specifically, they will be evaluated to see if they have fixed the sufficiency 

problems with respect to Tp.  

5.5.1 Vector-Valued IM with Sa(T1) and ε 

The ground motion parameter epsilon (ε) is a measure of the difference between the spectral 

acceleration of a record and the mean value of a ground motion prediction model at the given 

period. Epsilon is an indirect measure of spectral shape (specifically, it tends to indicate whether 

Sa(T1) is in a peak or a valley of the spectrum at a given period), and so it is an effective 

predictor of structural response. In Chapter 3, it was seen that using ε in a vector IM with Sa(T1) 

can reduce potential biases in prediction of structural response from ordinary ground motion 

records. Here it will be considered for prediction of response from pulse-like ground motions. 

When computing ε values of pulse-like ground motions, the mean predicted spectral 

acceleration value should account for near-fault effects that are on average present in the ground 

motions. Somerville et al. (1997) proposes a modification factor for standard prediction models 

(which typically do not consider pulse-like motions) in order to account for these pulse-like 

effects. Thus, for the investigation of this section, ε values are computed based on the ground 

motion prediction model of Abrahamson and Silva (1997), with modification as specified by 

Somerville et al. (1997). The effect of this modification is discussed in Appendix C.  

Before proceeding to examine the relationship between ε and Tp, it should be verified that 

ε predicts structural response in the same way for both ordinary and pulse-like records. To 

perform this test, we compare two prediction alternatives. The simpler alternative is that ordinary 

and pulse-like ground motions cause the same mean logarithmic structural response as a function 

of ε. Here the structural response parameter (which is termed an engineering demand parameter, 

or EDP, by the Pacific Earthquake Engineering Research Center) is maximum interstory drift 

ratio. The predictive equation for this proposed model is  
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 1[ln | ln ( ), ] lnE EDP Sa T a bε ε= +   (5.1) 

where a and b are coefficients to be estimated from regression analysis used to predict lnEDP as 

a function of ε using records scaled to a specified level of Sa(T1). A fitted prediction using this 

model is shown in Figure 5.8a for an Sa(T1) level such that the structure has an Rμ factor value of 

4. 

The more complicated alternative is that records with and without a pulse-like velocity 

pulse have differing functional relationships between ε and mean structural response. The 

predictive equations for this alternative could be expressed as 

 1

1

[ln | ln ( ), , no pulse] ln
[ln | ln ( ), , pulse] ln

E EDP Sa T a b
E EDP Sa T c d

ε ε
ε ε

= +
= +

  (5.2) 

where a and b are coefficients to be estimated from regression on ordinary records scaled to a 

specified level of lnSa(T1), and c and d are coefficients to be similarly estimated using pulse-like 

records. Equation 5.2 can also be stated in the following form, which is convenient for regression 

analysis 

  1[ln | ln ( ), ,pulse] ln ( ) ( ) lnNF NFE EDP Sa T a b c a I d b Iε ε ε= + + − + −   (5.3) 

where INF is an indicator variable equal to 1 if the given record has a near-fault velocity pulse 

and is equal to 0 otherwise. A fitted prediction using this model is shown in Figure 5.8b. 

A classical statistical test referred to as an F test (Neter et al. 1996) can be used to choose 

between the models of Equations 5.1 and 5.3. The simpler model of Equation 5.1 is assumed to 

be the truth until evidence is found to the contrary (this model is called the null hypothesis). The 

model of Equation 5.3 is tested, and if the prediction errors using this model (called the 

alternative hypothesis) are significantly smaller than the errors from Equation 5.1, this is taken as 

evidence that the more complex model is appropriate.  An F statistic is computed by comparing 

the aggregate prediction errors from the two models, and a “p-value” associated with the statistic 

provides the probability that the apparent improvement from the null hypothesis to the 

alternative hypothesis would be observed, even though (i.e., “given that”) the null hypothesis is 

actually true. Low p-values indicate significant improvement using the more complex model, and 

suggest that this model should be adopted. P-values less than 0.05 are usually taken as support 

for the more complex model. In the example of Figure 5.8, the associated p-value is 0.49, 

suggesting that little predictive accuracy was gained by using the more complex model and thus  
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the simpler prediction associated with Figure 5.8a (and Eq. 5.1) is the appropriate model. P-

values for a range of structures and Sa levels are tabulated in Table 5.2. Even if the simple model 

holds, 5% of p-values will be below 0.05. In Table 5.2, approximately 4% of the tests have p-

values below 5%, providing strong support for the simpler model of Equation 5.1: no distinction 

need be made between pulse-like and ordinary records when predicting response based on ε. 

This is important because one of the desirable attributes of an improved IM is that an analyst 

should not have to distinguish between pulse-like and ordinary records when predicting response 

as a function of IM. In other words, predictions based on such an IM will be robust for the 

records selected for analysis. 
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(b) 

Fig. 5.8  Prediction of response as function of ε using linear regression on records 
scaled to have Rμ factor level of 4. (a) Estimate of ordinary and pulse-like 
ground motion responses using same prediction equation and (b) estimate of 
ordinary and pulse-like ground motion responses using separate prediction 
equations. 
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Table 5.2  P-values from F tests to test hypothesis that ε has different effect on 
responses to pulse records and non-pulse records, for each of four 
structures listed in Table 5.1. Lack of statistically significant results 
suggests that it does not. Results are omitted for Rμ levels where 
more than 50% of records caused collapse.  

 Structure 
Rμ  

Factor 
N=3,  
T=0.3 

N=9, 
T=0.9 

N=6, 
T=1.2 

N=9, 
T=1.8 

0.5 0.48  0.43  0.59  0.24 

1.0 0.48  0.52  0.54  0.20 

1.5 0.56  0.28  0.18  0.25 

2.0 0.24  0.66  0.65  0.65 

2.5 0.82  0.95  0.97  0.30 

3.0 0.40  0.63  0.83  0.05 
3.5 0.05  0.65  0.70  0.27 

4.0  0.49  0.50  0.63 

4.5  0.59  0.63  0.95 

5.0  0.90  0.91  0.56 

5.5  0.73  0.89   

6.0  0.70  0.73   

6.5  0.34    

7.0  0.51   

7.5  0.55     
 

Epsilon and sufficiency with respect to Tp 

The next test that must be performed when selecting a vector-valued IM for pulse-like ground 

motions is to test for Tp sufficiency. It was seen in Figures 5.2 and 5.5 that Sa(T1) is unable to 

fully account for the effect of the pulse period (Tp) of the pulse-like ground motions, but perhaps 

the effect of Tp could be accounted for by adding the parameter ε to the vector. In order to test 

this for the IM consisting of Sa(T1) and ε, the prediction residuals are studied. First, consider the 

scalar IM case of Sa(T1) again. Given an Sa(T1) level, the median structural response obtained 

from the record set forms the median structural response prediction (under the common 

assumption that structural response given IM is lognormally distributed, the median can be 

estimated using the geometric mean of the data, or the mean of the logarithmic structural 

responses). Thus, the difference between an individual record’s associated response value and 

the median response value of all records is a prediction error (termed a residual in statistical 

analysis). These residuals are shown in Figure 5.9 for the nine-story structure with a first-mode 

period of 0.9s, and Sa(T1) values such that the structure has an Rμ factor level of 4. The data in 
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this plot are identical to the data from Figure 5.2, only the y axis values have been rescaled based 

on the mean log response value (0.153) of all of these data. Again it is clear that there is a 

systematic trend with Tp/T1. 
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Fig. 5.9  Residuals from response prediction based on Sa(T1) plotted versus Tp/T1 for 
generic frame with nine stories and first-mode period of 0.9 sec, at Rμ factor 
level of 4. 

The equivalent test that can be performed based on a vector IM with Sa(T1) and ε is to 

compare the prediction residuals based on that IM to Tp/T1. In this case, the prediction residuals14 

are obtained from the prediction of Equation 5.1: that is, the distance from each response data 

point in Figure 5.8a to the regression fit in that figure. These new residuals are plotted versus 

Tp/T1 in Figure 5.10. Unfortunately, there is little improvement in the dependence of the residuals 

versus Tp/T1: ε has not accounted for the effect of Tp on structural response.  

                                                 
14 Because the predictions were made for log response values, the residual can be computed as the ratio of non-log 
actual response divided by predicted response, and then plotted on logarithmic paper. This is equivalent to plotting 
the differences of the log predictions on non-log paper, and the units on the y axis may be more intuitive when non-
log response values are shown. 
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Fig. 5.10  Residuals from response prediction based on Sa(T1) and ε plotted versus Tp/T1 
for generic frame with nine stories and first-mode period of 0.9 sec, at Rμ 
factor level of 4. No significant reduction in bias is seen, relative to Fig. 5.9. 

 

Further insight into why ε could not account for the effect of Tp is provided in Figure 

5.11. When Tp/T1=1 (or equivalently Tp=T1), ε tends to be positive. This is because when Tp=T1, 

the elastic spectral acceleration value is likely to be unusually large, and thus ε would indicate 

that the record has a “peak” in the spectrum at T1. Because of this, the vector with ε does 

improve the prediction error at Tp/T1≈1 (if the region near Tp/T1=1 is compared in Figs. 5.9–5.10, 

it is seen that the residuals tend to be closer to one and thus less biased in Fig. 5.10). However, ε 

does not vary with other Tp/T1 values, and thus is not able to predict the effect of records with 

varying Tp values. Critically, ε is not able to identify pulses in the important range near Tp/T1=2. 

To do so, ε would need to be negative when Tp/T1≈2 (i.e., there would need to be a reason why 

Sa values at Tp/T1≈2 were less than predicted by Somerville 1997); this is clearly not the case. 
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Fig. 5.11  Epsilon values at 0.9s plotted versus Tp/T1 

 

This same test can be performed at other spectral acceleration levels as well. In Figure 

5.12, another comparison is made between the residual predictions using either Sa(T1) alone or 

Sa(T1) and ε as predictors. In this figure, the test is performed on the same structure as above, but 

for an Rμ factor of two. Again it is seen that adding the parameter ε to the vector did not 

significantly improve the IMs ability to account for the effect of pulse period. Further 

examination of all of the structures listed above at many levels of ground motion intensity 

suggests that ε has no significant ability to account for the effect of Tp. Therefore, a vector IM 

consisting of Sa(T1) and ε should not be considered an effective IM for use with pulse-like 

ground motions. 
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(b) 

Fig. 5.12  Residuals from response prediction based on (a) Sa(T1) and (b) Sa(T1) and ε 
plotted versus Tp/T1 for generic frame with nine stories and first-mode 
period of 0.9 sec, at an Rμ level of 2. No significant reduction in bias is seen 
when ε is incorporated in intensity measure. 

5.5.2 Vector-Valued IM with Sa(T1) and RT1,T2 

A vector-valued IM based on spectral acceleration values at two periods was proposed in Chapter 

4 and found to be an effective predictor for ordinary ground motions. The IM consists of the 

parameters Sa(T1) and RT1,T2=Sa(T2)/Sa(T1), where T1 is constrained to equal the first-mode 

period of the structure, but T2 can be chosen freely. This intensity measure can provide 

information about excitation of higher modes or information about the severity of response once 

the structure becomes nonlinear and its effective period lengthens. Because the effect of the 

velocity pulse period is related to these same effects, this vector was expected to be more 

effective than the vector with ε at accounting for near-fault effects. 

As with the previous vector IM, statistical tests are first performed to determine whether 

the relationship between RT1,T2 and structural response is the same for both ordinary and pulse-

like ground motions. In this case, however, T2 must be specified before the test can be 

performed. In much of the following investigation, T2 will be specified as twice the elastic first-

mode period. This was seen to be an effective predictor for nonlinear MDOF structures in 

Chapter 4, and twice the elastic first-mode period is a period range of particular concern for 

pulse-like ground motions as explained in Section 5.4. Thus this choice of T2 seems natural. In 

Figure 5.13, predictions based on the two potential models are displayed; the predictive 
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equations for these models are the same as Equations 5.1 and 5.3, but with lnRT1,T2 substituted for 

ε as the predictor. The first model again treats pulse-like and ordinary motions the same, while 

the second distinguishes between these two types of ground motions. In Figure 5.13, the 

predictions based on these two models are similar visually, which suggests that the simpler 

model is appropriate. F tests are again performed here to determine which model is appropriate. 

The tests are performed for a suite of structures, using the following two choices for T2: T2=2T1 

(results shown in Table 5.3a) and T2=T1/3 (results shown in Table 5.3b). There are no clear 

characteristics of statistical significance apparent in Table 5.3 (8.5% of the tests indicate 

significance, which is relatively close to the expected 5% if the simpler model is appropriate). 

Thus we will proceed with the simpler model that treats pulse-like and ordinary ground motions 

together.  
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(b) 

Fig. 5.13  Prediction of response as function of R0.9s,1.8s using linear regression on 
records scaled to Sa(T1) level such that structure’s Rμ factor is 4. (a) 
Estimate of ordinary and pulse-like ground motion responses using same 
prediction equation. (b) Estimate of ordinary and pulse-like ground 
motion responses using separate prediction equations. 
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Table 5.3  P-values from F tests to test hypothesis that RT1,T2 has different 
effect on pulse records and non-pulse records. Tests are 
performed for two choices of T2: (a) T2=2T1 and (b) T2=T1/3. If 
more than 50% of records caused collapse, then p-value is not 
reported.  

 (a) 

 Structure 
Rμ  

Factor 
N=3,  
T=0.3 

N=9, 
T=0.9 

N=6, 
T=1.2 

N=9, 
T=1.8 

0.5 0.14 0.19 0.08 0.95 

1.0 0.14 0.29 0.07 0.83 

1.5 0.47 0.69 0.06 0.70 

2.0 0.04 0.65 0.27 0.91 

2.5 0.05 0.42 0.21 0.65 

3.0 0.13 0.22 0.66 0.21 

3.5 0.02 0.30 0.33 0.66 

4.0 0.32 0.52 0.30 0.71 

4.5  0.31 0.50 0.98 

5.0  0.36 0.90 0.53 

5.5  0.27 0.88  

6.0  0.80 0.93  

6.5  0.28 0.54  

7.0  0.48   

7.5  0.57   
 (b) 

 Structure 
Rμ  

Factor 
N=3,  
T=0.3 

N=9, 
T=0.9 

N=6, 
T=1.2 

N=9, 
T=1.8 

0.5 0.20 0.40 0.31 0.01 
1.0 0.20 0.35 0.14 0.04 
1.5 0.73 0.85 0.01 0.16 

2.0 0.47 0.28 0.02 0.25 

2.5 0.46 0.27 0.13 0.15 

3.0 0.23 0.06 0.19 0.17 

3.5 0.03 0.13 0.24 0.39 

4.0 0.50 0.12 0.24 0.90 

4.5  0.24 0.08 0.90 

5.0  0.41 0.62 0.67 

5.5  0.51 0.96  

6.0  0.44 0.90  

6.5  0.70 0.29  

7.0  0.98   

7.5  0.85   

 
 

RT1,T2 and sufficiency with respect to Tp 

The parameter RT1,T2 is next considered to determine whether it can account for the effect of Tp. 

The procedure used to test ε in the previous section is repeated here. The residuals from the 

prediction based on Sa(T1) are used as the baseline. The nine-story structure with a first-mode 

period of 0.9 sec is again used here, with an Rμ factor of 4. Thus, the residuals are the same as in 

Figure 5.9 earlier. These residuals are re-plotted in Figure 5.14a for convenience. The 

dependence on Tp is very clear. Next, prediction based on RT1,T2 is considered. For this 

significantly nonlinear case, one reasonable choice for T2 is 2T1, or 1.8 sec. Prediction based on 

this IM was shown in Figure 5.13a. The residuals from this prediction are plotted in Figure 

5.14b, showing a dramatic reduction in the relationship between Tp and structural response. 

Further, the standard deviation of the residuals is also reduced significantly (e.g., the standard 

deviation of the residuals in Figure 5.14b is 34% less than the standard deviation in Fig. 5.14a), 
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and so gains have been made in prediction efficiency (the goal of Chapter 4) as well as in bias 

reduction with respect to pulse-like records.  

An explanation for the effectiveness of RT1,T2 in this case can be seen by examining the 

relationship between Tp and RT1,T2. These two values are plotted in Figure 5.15. The RT1,T2 has 

nearly the same relationship with Tp as structural response does (i.e., the shapes of the kernel-

weighted average trends from Fig. 5.14a and Fig. 5.15 are very similar). When Tp/T1≈1, RT1,T2 

tends to be small because Sa(T2) is lower than the peak caused by the pulse. But when Tp/T1≈2, 

RT1,T2 tends to be large because Sa(T2) is on a peak caused by the pulse. This is encouraging for 

dealing with Tp sufficiency in a vector-valued IM.  

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.5

1

2

5

T
p
/T

1

R
e

si
d

ua
l f

ro
m

 p
re

di
ct

io
n 

ba
se

d
 o

n 
S

a
(0

.9
s)

 
(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.2

0.5

1

2

5

T
p
/T

1

R
e

si
du

al
 fr

om
 p

re
d

ic
tio

n 
us

in
g

S
a(

0
.9

s)
 &

 R
0.

9s
, 1

.8
s   

  

 
(b) 

Fig. 5.14  Residuals from response prediction based on (a) Sa(T1) only and (b) both  
Sa(T1) and RT1,T2, plotted versus Tp/T1 for generic frame with nine stories 
and first-mode period of 0.9 sec, at Rμ factor level of 4. T2=1.8s for this 
plot. 
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Fig. 5.15  Tp versus RT1,T2 for pulse-like ground motions, where T1=0.9s and T2 
=1.8s  

The choice of T2=2T1 was made based on intuition gained from Chapter 4, but other 

periods may also account for the effect of velocity pulses. To examine this, consider the 

following statistic, which is designed to measure the potential bias due to an IM’s inability to 

account for Tp. The area between the kernel-weighted average line and the zero residual line is 

taken as a proxy for the total bias unaccounted for by the IM, as illustrated in Figure 5.16 (the 

total area is summed to create the statistic, so that positively and negatively biased regions do not 

cancel each other). In this example, it is clear that the IM consisting of Sa(T1) and RT1,T2 has less 

total bias than the IM consisting of Sa(T1) alone, and that this is reflected in the reduced shaded 

area. To measure the improvement gained by adding RT1,T2, we compute the fractional reduction 

in area between these two figures — 0.65 in this case. This fractional reduction is a function of 

the T2 value chosen. In Figure 5.17, this fractional reduction is plotted for a range of possible T2 

values. The optimal T2 in this case is exactly 2T1, but other nearby periods also cause significant 

reduction in bias: T2 values between 1.7T1 and 2.4T1 all provide at least 75% of the improvement 

attained using the optimal T2. Further, this same test can be performed for the four structures 

considered, each with an Rμ factor of 4. As seen in Figure 5.18, in each case the value T2=2T1 is 

close to the optimal T2.  
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(a) 

 
(b) 

Fig. 5.16  Area under kernel-weighted average line, to be used as proxy for total bias as 
function of Tp. Results are for generic frame with nine stories and a first-
mode period of 0.9 sec, T2=1.8s, and Rμ=4. (a) Bias when using Sa(T1) as IM 
and (b) bias when using Sa(T1) and RT1,T2, as IM. Total area reduced by 65% 
when vector IM adopted. 
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Fig. 5.17  Percent reduction in proposed bias statistic versus T2 value used in 
RT1,T2. Results shown for N=9, T1 = 0.9s structure with Rμ factor of 4. 
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Fig. 5.18  Percent reduction in proposed bias statistic versus T2 value used in 
RT1,T2. Results shown for all four structures, each with Rμ factor of 4. 

To further test the effect of RT1,T2, the above test was repeated when the ground motions 

were scaled to an Sa(T1) level such that the Rμ factor of the structure was 2. Remember that for 

this structure and at this low level of nonlinearity, higher mode effects were more important than 

nonlinear effects (this might be predicted based on the results of Chapter 4, and direct evidence 

from Fig. 5.5 is also available in this case). For this reason, T2=T1/3 was selected as the second 

period, in order to capture second-mode response. The residuals from prediction based on Sa(T1) 

alone and based on Sa(T1) and RT1,T2 are shown in Figure 5.19. Again, a substantial gain is made 

in reducing the effect of Tp on structural response. A plot of the fractional reduction in bias 

versus T2 is shown in Figure 5.20, and it is seen that only T2 values less than T1 produce a 

reduction in bias. For this low-nonlinearity case, the period T2=2T1 cannot effectively account for 

the effect of Tp, because it is the pulses at short periods that affect the structure significantly, and 

so a lengthened T2 value is not effective. However, for the moderate to high nonlinearity cases 

most likely to be of engineering interest when pulse-like ground motions are present, a T2 value 

greater than the first-mode period of structure is likely to be effective. In general, however, the 

choice of whether nonlinear first-mode response or higher-mode response is more important will 

depend upon the structure of interest and the level of nonlinearity.  
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(b) 

Fig. 5.19  Residuals from response prediction based on (a) Sa(T1) only and (b) both  
Sa(T1) and RT1,T2, plotted versus Tp/T1 for generic frame with nine stories 
and first-mode period of 0.9 sec, at Rμ factor level of 2. T2 =0.3s for this plot 
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Fig. 5.20  Percent reduction in proposed bias statistic versus T2 value used in RT1,T2. 
Results shown for N=9, T1 = 0.9s structure with Rμ factor of 2. 

The same tests were performed for each of the structures at a range of Sa(T1) levels, and 

RT1,T2 was seen to consistently reduce bias due to the effect of Tp, given reasonable selection of 

the period T2. These results are encouraging for engineering assessment of pulse-like ground 

motions: they suggest that a structural analyst’s primary concern be the ground motion 
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parameters Sa(T1) and RT1,T2, with reduced need to worry about the presence and period of a 

velocity pulse in the record.  

To illustrate this, probabilistic structural response predictions are combined with ground 

motion hazard analysis to compute the “structural response hazard” for an example structure, 

using the scalar- and vector-IM based procedures explained in detail in Chapter 4. The procedure 

is repeated with the four sets of ordinary and near-fault ground motions used earlier (in Figs. 

5.6–5.7), to determine whether the calculated result depends upon the ground motions used. The 

same nine-story structure as was used earlier is considered for illustration. Ground motion hazard 

is computed for two intensity measures: the scalar IM Sa(0.9s), and the vector IM consisting of 

Sa(0.9s) and R0.9s,1.8s. As was seen in Figures 5.6–5.7, the four sets of ground motions cause 

different levels of response in the structure for a given Sa(0.9s) level, so it seems reasonable that 

the structural response hazard curves computed using Sa(0.9s) will vary depending upon which 

of these ground motion sets are used. This is in fact observed in Figure 5.21a: the “best-case 

pulse-like records” which were observed to cause smaller responses at a given Sa(0.9s) level, 

also result in lower estimates of mean rates of exceeding large maximum interstory drift ratios. 

Similarly, the “worst-case pulse-like records” result in higher estimates of the mean rates of 

exceedance. However, when the vector IM consisting of Sa(0.9s) and R0.9s,1.8s is used, the 

variations in estimated structural response hazard are reduced, as seen in Figure 5.21b. Similar 

results are observed for the other example structures as well, suggesting that the use of the vector 

IM consisting of Sa(T1) and RT1,T2 desensitizes interstory drift ratio estimates to the presence of 

velocity pulses in the near-fault ground motions.  

The ground motion hazard is for the Van Nuys site used throughout this report. The site 

is not expected to experience pulse-like ground motions, but it still provides a useful test as to 

whether the vector IM proposed here can desensitize the resulting estimates to the presence of 

velocity pulses. To accurately perform this assessment at a site where pulse-like ground motions 

can potentially occur, revisions are needed to standard ground motion hazard analysis, as will be 

described below. 



 

   
 
 

148

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

M
ea

n 
A

nn
ua

l R
a

te
 o

f E
xc

e
e

da
nc

e

Maximum Interstory Drift Ratio

Worst case pulse-like records
All pulse-like records
Non-pulse records
Best case pulse-like records

 
(a) 

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

M
ea

n 
A

nn
ua

l R
a

te
 o

f E
xc

e
e

da
nc

e

Maximum Interstory Drift Ratio

Worst case pulse-like records
All pulse-like records
Non-pulse records
Best case pulse-like records

 
(b) 

Fig. 5.21  Drift hazard curves using four considered record sets. (a) Curves 
computed using scalar IM Sa(0.9s). (b) Curves computed using vector 
IM consisting of Sa(0.9s)  

The vector IM consisting of Sa(T1) and RT1,T2 is useful for the reasons discussed above, 

but some significant limitations remain. This vector IM has so far only been shown to robustly 

predict maximum interstory drift ratios. Alavi and Krawinkler (2001) noted that pulse-like 

ground motions can cause different distributions of interstory drift ratios over the height of the 

structure, and this IM may not account for that effect. Further work is needed to test the 

robustness of vector IMs in predicting a range of other structural response parameters, and 

predicting response in other structural systems. Further, in order to use response predictions 

based on Sa(T1) and RT1,T2 in the presence of pulse-like ground motions, the challenge still 

remains to compute a vector-valued ground motion hazard that incorporates the effect of pulse-

like ground motions on the probability of given Sa(T1) and RT1,T2 values occurring at the site of 

interest. This challenge will be discussed in Section 5.6 below.  

5.5.3 Additional IMs 

Before concluding the consideration of IMs, two more potential IMs should be mentioned. Luco 

and Cornell (2005) have proposed an improved scalar intensity measure that was shown to be 

effective for predicting the effect of pulse-like ground motions. This intensity measure is a 

combination of inelastic spectral displacement at the first-mode period and elastic spectral 

displacement at the second-mode period. It was seen to be effective at accounting for the effect 

of pulse-like records, but as with the vector IM proposed here, accounting for pulse-like records 
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in the ground motion hazard for this IM will be a challenge. Ongoing research should address 

this problem soon (Tothong and Cornell 2005b). 

Another IM that might be considered is a vector consisting of Sa(T1) along with the pulse 

period of the ground motion. This would certainly account for Tp dependence in a direct way. 

However, there are several difficulties which keep this from being an appealing option. First, 

relationship between Tp and structural response could not be quantified through a simple linear 

equation (e.g., Fig. 5.14 or Fig. 5.19). This will cause some difficulties when creating a 

predictive model, although one could be determined if necessary. Also, only pulse-like ground 

motions have an associated pulse period. This means that pulse and non-pulse records will need 

to be treated separately, which is an inconvenience. On the other hand, the relationship between 

RT1,T2 and maximum interstory drift ratio is essentially the same for both ordinary and pulse-like 

motions if T2 is chosen effectively (e.g., Fig. 5.13a), and so the two classes of ground motions 

may not need to be distinguished when RT1,T2 is used. In addition, in Chapter 4 RT1,T2 was shown 

to provide increased efficiency for predicting response from ordinary ground motions, and so the 

effectiveness of RT1,T2 as an intensity measure is much broader than the near-fault-specific Tp 

value. For these reasons, RT1,T2 appears to be a more effective IM parameter than Tp  for use with 

Sa(T1) to predict response from pulse-like ground motions. 

5.6 VECTOR-VALUED PSHA FOR PULSE-LIKE GROUND MOTIONS 

In the preceding section it was demonstrated that a vector-valued IM consisting of Sa(T1) and 

RT1,T2 can efficiently predict the effect of pulse-like ground motions on structures, and that this 

vector is sufficient with respect to Tp. This is very appealing for analysis of structures because it 

means that pulse-like and ordinary ground motions do not need to be identified separately, at 

least for estimation of maximum interstory drift ratio. Given the values of Sa(T1) and RT1,T2, the 

presence of a velocity pulse in a ground motion does not further affect the maximum interstory 

drift ratio caused in a structure. However, to perform a full probabilistic assessment of a 

structure, one hurdle remains: estimation of the joint probabilities of Sa(T1) and RT1,T2 values at 

the site, accounting for the fact that pulse-like ground motions might occur. Loosely speaking, 

we now know how to predict structural response from both ordinary and pulse-like ground 

motions using Sa(T1) and RT1,T2, but for a given site we need to know how often ground motions 

with given values of those two parameters will occur. Bazzurro and Cornell (2002) have 
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described this procedure, termed vector-valued probabilistic seismic hazard analysis (VPSHA) 

for sites subjected to ordinary ground motions, but it requires some modification for use at sites 

with pulse-like ground motions.  

Ground motion prediction models for pulse-like ground motions are in active 

development at present and so improved models should be available in the near future. The use 

of these improved models for performing a probabilistic hazard analysis is described by Tothong 

et al. (2005).  In the present period of transition to these new models, it may be helpful to think 

about a reasonable approach that could be used immediately, as well as an improved approach 

that would be preferable given results from anticipated future research. These possibilities are 

considered below.  

5.6.1 Minor Modification to Standard VPSHA  — Modify Means and Covariances of 
Ground Motion Prediction Model 

Bazzurro and Cornell (2002) outline VPSHA using joint normal random variables for lnRT1,T2 

and lnSa(T1), where the conditional dependence between the two is fully defined by a correlation 

coefficient. The simplest modification to VPSHA would be to use this same formulation with the 

means, variances, and correlation coefficients modified to account for the fact that pulse-like 

motions might be present in some situations. This could be implemented immediately, using 

existing attenuation models for pulse-like ground motions. Today, the only existing prediction 

model for pulse-like ground motions is the one proposed by Somerville et al. (1997), and 

modified by Abrahamson (2000a) and Bozorgnia and Bertero (2004, Chapter 5) for application 

in PSHA. Further, the correlation coefficient between RT1,T2 and Sa(T1) may need to be modified. 

Empirical correlation coefficients obtained from the pulse-like ground motions used here tend to 

be lower than the correlation coefficients observed in ordinary ground motions (see Appendix 

C).  

For example, consider Figure 5.22. In this figure, the joint distribution of Sa(T1) and 

RT1,T2 values is shown, given occurrence of a magnitude 7 event at a distance of 5 km, with the 

near-fault parameters X=0.5 and θ=5% (parameters from Somerville et al. 1997). The prediction 

is based on the ground motion prediction model of Abrahamson and Silva (1997) with near-fault 

modification as described in Bozorgnia and Bertero (2004, Chapter 5) and an empirical 
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correlation coefficient from the dataset used here (Appendix C). Considering near-fault effects 

increases the probability of observing large Sa(T1) and/or RT1,T2 values.  

To perform VPSHA, one would simply repeat this calculation for a range of magnitude, 

distance, X and θ values, where the distribution of magnitudes and distances specified in the 

same way as for standard PSHA (McGuire 2004) and the distributions of X and θ values come 

from assuming random earthquake hypocenter locations within the fault rupture. This procedure 

has been implemented for scalar intensity measures  (Abrahamson 2000a), so the only 

modification would be to compute joint distributions for Sa(T1) and RT1,T2 (as in Fig. 5.22a) 

rather than marginal distributions for Sa(T1). This approach to VPSHA requires the least 

modification from current ground motion hazard analysis practice, and can be implemented in 

the near future (Somerville and Thio 2005).  
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Fig. 5.22  Joint conditional probability density function of Sa(T1) and RT1,T2, given 
magnitude 7 event at distance of 5 km, with near-fault parameters X=0.5 
and θ=5%. T1=0.9s and T2=1.8s, in fault-normal direction. (a) With near-
fault effects considered and (b) without near-fault effects considered.  

5.6.2 Major Modification to Standard VPSHA — Explicitly Incorporate Probability of 
Velocity Pulse and Distribution of Pulse Periods  

The procedure of the preceding section is desirable from a practical viewpoint but has theoretical 

shortcomings. Earlier in this chapter, it was seen that pulse-like ground motions may or may not 

cause severe responses, based on the period of the pulse. Further, the occurrence of a velocity 

pulse is not certain even at source-to-site geometries where a pulse might be comparatively 

likely. So given a site where a pulse might occur, if the occurrence of a pulse is a random event 
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and the period of the pulse is a random variable, then the resulting Sa(T1) value may not have a 

lognormal distribution, as was assumed in the previous section. In fact, the distribution may be 

bimodal, with one peak associated with records that have Tp≈T1, and another peak associated 

with the other records. Further, if the pulse only increases the elastic response spectrum in a 

narrow range, then the distribution of Sa(T1) and RT1,T2 might not be jointly lognormal, as was 

assumed in the previous section. In this section, a VPSHA procedure is described that 

incorporates the occurrence of pulses and their resulting Tp values explicitly. The procedure 

consists of the following steps: 

1. For each magnitude, distance and hypocenter location considered, does the geometry suggest 
pulse-like effects? 

a. If no, compute the joint distribution of Sa(T1) and RT1,T2 given the magnitude, distance, 
site conditions, etc. 

b. If yes, compute the conditional joint distribution of Sa(T1) and RT1,T2 for both the pulse 
and non-pulse possibilities. 

i. Compute the joint distribution of Sa(T1) and RT1,T2 given the magnitude, 
distance, site conditions, etc., given no velocity pulse (this might be the same as, 
or similar to, the non-pulse-like case). 

ii. Given that a pulse does occur, integrate over the distribution of possible Tp 
values. For each Tp value, compute the joint distribution of Sa(T1) and RT1,T2 
given the magnitude, distance, site conditions, etc., and given a velocity pulse 
with period Tp. 

iii. Combine the pulse and non-pulse predictions by weighting the conditional 
distributions, given a pulse and given no pulse, by their associated probabilities 
of occurrence. 

2. Integrate these over the random hypocenter locations for each earthquake event (i.e., magnitude 
and distance) considered. 

3. Integrate over the joint rates of occurrence of magnitude and distance values (as with standard 
PSHA). 

This hazard analysis model should provide the most accurate distribution of Sa(T1) and 

RT1,T2 values for hazard analysis. Further, by using disaggregation (McGuire 1995; Bazzurro and 

Cornell 1999), it would be straightforward to compute the probability that a pulse-like record 

caused the occurrence of a given Sa(T1) and RT1,T2 level, as well as the distribution of Tp values 

associated with the causal pulse-like record. This information would be helpful in identifying a 

representative “scenario event” that has a high probability of causing the target IM level to occur. 

It should not be necessary to select specific ground motions based on this information, because 

Sa(T1) and RT1,T2 are already sufficient with respect to pulse-like record properties. However, if 

one wanted to, one could select ground motions with the scenario event in mind. 
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This procedure is not presently ready for implementation, however, because currently not 

all of the required steps can be performed. The probability of occurrence of a velocity pulse is 

needed in step 1.b of the procedure, but no prediction of this probability has been published 

(Iervolino and Cornell 2005b have a model in preparation). Several models have been proposed 

to predict the distribution of pulse periods given the existence of a pulse and given the 

earthquake magnitude needed in step 1.b.ii (Somerville et al. 1997; Alavi and Krawinkler 2001; 

Mavroeidis and Papageorgiou 2003; Somerville 2003; Fu and Menun 2004). No models 

currently predict the distribution of Sa(T1) given magnitude, distance, and Tp, although again 

work is known to be under way within the PEER NGA project. Even more challenging than 

prediction of a single Sa(T1) value (given magnitude, distance, and Tp) is prediction of the joint 

distribution of Sa(T1) and RT1,T2 (i.e., the distribution needed in step 1.b.ii of this procedure).  

Although this model is not yet ready for practice, discussion of the proposed procedure may help 

to guide current research efforts, as well as motivate new research on topics required for 

execution of this procedure. The ideas presented in this section were developed with significant 

assistance from Polsak Tothong and Iunio Iervolino, and are described more rigorously in an 

upcoming paper (Tothong et al. 2005). 

VPSHA for pulse-like ground motions is a challenging problem with more research 

required, but the vector-valued-IM approach appears to be a promising solution for 

characterizing the effect of pulse-like ground motions. This is because once the VPSHA 

challenges are overcome, the advantages of the IM-based procedure can be applied to near-fault 

environments. Because the vector IM is sufficient with respect to pulse-like ground motions, it is 

less important to identify representative pulse-like records on a building-by-building basis, as is 

sometimes done today (Stewart et al. 2001; Somerville 2001a). Record selection problems will 

become much less critical, as is the case today for ordinary ground motions. By de-coupling the 

ground motion occurrence problem from the structural response problem, the probabilistic 

assessment procedures described elsewhere in this report can be used for pulse-like ground 

motions as well.  

5.7 CONCLUSIONS 

Vector-valued intensity measures have been considered for predicting the effects of pulse-like 

ground motions, where here the term pulse-like ground motion is used to refer to near-field 
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ground motions in the fault-normal direction which exhibit a velocity pulse. These ground 

motions are of particular concern to structural engineers because of their potential to cause large 

levels of structural response. Further, their effects are not well-predicted by traditional measures 

of ground motion intensity such as spectral acceleration.  

To address these problems, two vector-valued intensity measures were considered for 

prediction of these ground motions. The first was a vector consisting of spectral acceleration at 

the first-mode period of the building (denoted Sa(T1)) along with a parameter termed ε. While ε 

was found in Chapter 3 to be an effective predictor of structural response because it indicates 

whether the spectrum is in a peak or valley at the specified period, here it has been found to be 

ineffective at identifying the effect of velocity pulses in near-fault ground motions. The second 

IM considered was one consisting of Sa(T1) plus a parameter RT1,T2 = Sa(T2)/ Sa(T1) that 

describes the shape of the response spectrum, and where the period T2 is specified by the user. In 

Chapter 4 this IM was found to efficiently predict maximum interstory drift ratios from ordinary 

ground motions, especially given wise choice of T2. Here this vector has been found to be 

effective at predicting maximum interstory drift ratios resulting from pulse-like ground motions 

as well. This IM is sufficient with respect to near-fault effects if T2 is chosen reasonably well. 

That is, given Sa(T1) and RT1,T2, there is generally no statistically significant difference in 

maximum interstory drift ratios between ordinary and pulse-like records. Further, given Sa(T1) 

and RT1,T2, the resulting maximum interstory drift ratio is significantly desensitized to the period 

of a record’s velocity pulse. These desirable properties do not hold when Sa(T1) alone is used as 

an intensity measure. This finding suggests that the vector consisting of Sa(T1) and RT1,T2 is an 

effective measure of ground motion intensity for predicting structural performance (in terms of 

maximum interstory drift ratio) when pulse-like ground motions may occur at a site. For the 

example structures considered here, a second period (T2) equal to twice the first-mode period 

(T1) of the structure was seen to effectively predict moderate-to-severe nonlinear structural 

response, although this should be confirmed on a wider range of structural types. 

In addition to predicting response given Sa(T1) and RT1,T2, the ground motion hazard must 

be computed for this intensity measure in order to assess the performance of a structure at a 

given site. Two possible methods were proposed for capturing near-fault effects in ground 

motion hazard analysis. The first is a slightly modified version of the method of Bazzurro and 

Cornell (2002), where random hypocenter locations must be considered and where the means, 

variances, and correlations of the response spectral values are computed based on a ground 
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motion prediction model that accounts for near-fault effects. Results obtained using this method 

will be available soon. In the second method of computing ground motion hazard, the probability 

of pulses occurring and their associated pulse periods are considered explicitly as conditional 

random variables, in the same way as magnitude and distance are in standard seismic hazard 

analysis. The ground motion prediction model could then be dependent upon the presence of a 

pulse and its associated period. This method should be more accurate, but requires further 

development of models for the probability of a pulse occurring, as well as so-called narrow-band 

ground motion prediction models that account for pulse period explicitly. 

By adopting the vector-valued IM consisting of Sa(T1) and RT1,T2, the problem of 

rigorously estimating probabilistic structural response in the presence of near-fault effects is less 

critical. This IM is sufficient with respect to the presence of velocity pulses and their associated 

pulse-periods, and selection of appropriate ground motions for analysis becomes much less 

important. Challenges remain with respect to computing the probabilistic ground motion hazard 

in a way that accounts for near-fault effects, but research in progress promises to resolve those 

concerns in the near future. 



 

   
 
 

6 Spectral Shape, Epsilon, and Record 
Selection 

An adaptation of this chapter has been published as: Baker J.W., and Cornell C.A. (2006). 
Spectral Shape, Epsilon and Record Selection. Earthquake Engineering & Structural Dynamics 
35(9): 1077–1095. 

 

6.1 ABSTRACT 

Selection of earthquake ground motions is considered with the goal of accurately estimating the 

response of a structure at a specified ground motion intensity, as measured by spectral 

acceleration at the first-mode period of the structure (Sa(T1)). Consideration is given to 

magnitude, distance and epsilon (ε) values of the ground motions. First, it is seen that selecting 

records based on their ε values is more effective than selecting records based on magnitude and 

distance. Second, a method is discussed for finding the conditional response spectrum of a 

ground motion, given a level of Sa(T1) and its associated mean (disaggregation-based) causal 

magnitude, distance, and ε value. Records can then be selected to match the mean of this target 

spectrum, and the same benefits are achieved as when records are selected based on ε. This mean 

target spectrum differs from a uniform hazard spectrum, and it is argued that this target spectrum 

is a more appropriate target for record selection than a uniform hazard spectrum. When properly 

selecting records based on either spectral shape or ε, the improved accuracy in estimated 

structural response is comparable to that gained by using a vector-valued measure of earthquake 

intensity. Here accuracy includes both reduced bias and variance. These improved record-

selection methods also allow records to be scaled without introducing bias, unlike the less 

effective methods of record selection. 
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6.2 INTRODUCTION 

Selection of recorded earthquake ground motions as inputs for dynamic analysis is an important 

consideration when assessment of structures is based on nonlinear dynamic analysis. As 

described in Chapter 2, careful selection of earthquake records can achieve the same reduction in 

bias and variance of structural response gained by use of improved vector-valued intensity 

measures, while allowing the user to process the records using a simple scalar IM. In Chapter 3, 

the ground motion parameter epsilon (ε) was seen to be an important predictor of structural 

response as part of a vector-valued IM, and it was suggested that ε should be considered when 

selecting records. The effect of selecting records based on ε was not studied, however.  

Here we will consider record-selection criteria more thoroughly, and identify the record 

properties that should be considered when selecting records for analysis. These record-selection 

criteria are considered in the context of probabilistic assessment of structures, where both the 

ground motion hazard and the response given the ground motion are quantified in a formal 

probabilistic manner. It will be seen that consideration of ε values when selecting records is 

important, as ε is an effective predictor of structural response (and a more effective predictor 

than the magnitude or distance of the ground motion).  

Alternatively, a method is proposed for developing a target spectrum that accounts for the 

magnitude (M), distance I, and ε values likely to cause a given target ground motion intensity at 

a given site. The spectrum obtained in this way is termed a conditional mean spectrum, 

considering ε (CMS-ε). This target spectrum possibly widens the range of acceptable records for 

analysis, because the selected records do not have to match the causal magnitude, distance, and ε 

values, but rather the records need only have a spectral shape which looks like the mean 

spectrum from the causal event. The proposed target spectrum is also compared to a uniform 

hazard spectrum, and seen to be superior for obtaining unbiased estimates of structural response. 

The CMS-ε spectrum is similar to target response spectra used in the nuclear safety industry 

(DOE 1996, NRC 1997, ASCE 2005) except that the effect of ε has been incorporated as well, 

given the new findings about the effect of ε on structural response (Chapter 3). 

The effect of record scaling is also considered, and it is seen that if records are selected 

based on ε or the CMS-ε, then the records can be scaled without inducing a bias in structural 



 

   
 
 

159

response. However, for records selected without respect to these values, scaling the records by 

large scale factors may induce a bias.  

For the above reasons, it is suggested that earthquake motions for dynamic structural 

analysis be selected based on ε or the CMS-ε. The magnitude and distance values associated with 

the records are relatively less important, although they are accounted for in the CMS-ε. Using 

these selection criteria, more efficient estimates of structural response can be obtained, and 

biases due to scaling of records can be avoided. These results are relevant for estimating the 

mean response at a given ground motion level (as used in, e.g., ICC 2003) as well as 

probabilistic assessments of structural response (as used in, e.g., FEMA 2000a; Deierlein 2004). 

6.3 EFFECT OF EPSILON ON SPECTRAL SHAPE 

In Chapter 3, ε  was identified as an indicator of spectral shape (spectral shape was formally 

measured using Sa(T2)/Sa(T1) for some T1 and T2; more generally it can be thought of as the 

relative values of spectral accelerations at other periods, given Sa at T1). The parameter ε is a 

measure of the difference between the spectral acceleration of a record and the mean of a ground 

motion prediction equation at the given period.  That finding is confirmed here by observing 

patterns seen in a large set of recorded ground motions taken from the PEER Strong Ground 

Motion Database (2000). This relationship between ε and spectral shape justifies the conclusions 

regarding record selection that will be made below. All of the records from this database that met 

the following criteria were selected:  

1. The site was classified as stiff soil: USGS class B-C or Geomatrix class C-D. 

2. The recording was made in the free field or the first story of a structure. 

3. The earthquake magnitude was greater than 5.5. 

4. The source-to-site distance was less than 100 km. 

5. The vertical and both horizontal components of the recording were available and each had 
high-pass filter corner frequencies less than 0.2 hertz and low-pass filter corner frequencies 
greater than 18 hertz. 

These criteria were used to identify records believed to be most relevant for engineering 

purposes. A total of 191 recordings met the above criteria, resulting in 382 horizontal ground 

motion components available for use below (record details are given in Appendix A, Table A.5). 

The records were examined to search for a relationship between ε and spectral shape. First, ε 

values were computed for each record at a range of periods using the ground motion prediction 
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model of Abrahamson and Silva (1997). The structure considered below has a first- mode period 

of 0.8 sec, so here the ε values at 0.8s are investigated as an example. The twenty records with 

the largest ε values at a period of 0.8s were identified (these records have ε values greater than 

2.25), as well as the twenty closest to zero (these records have ε values between -0.06 and 0.06) 

and the twenty with the smallest ε values (these records have ε values less than -2.25). The 

spectra of the records with large ε values are scaled to have the same Sa(0.8s) value and plotted 

in Figure 6.1a, along with the geometric mean of the twenty spectra (the records are scaled to 

Sa(0.8s)=0.5g, but the relative shapes of the spectra are not affected by the Sa(0.8s) value and so 

the actual value is not important here). In Figure 6.1b, the spectra with small ε values are shown, 

along with their mean. In Figure 6.2, the geometric means of these two sets, along with the 

geometric mean of the set with ε values close to zero, are displayed. It is clear that the average 

shapes of these record sets differ, even though each set has a wide range of magnitudes and 

distances, and the distribution of magnitude and distance values of the records do not differ 

appreciably among the sets. The same exercise was repeated at a period of 0.3s (the selected 

records depend upon the period because records with a large ε value at 0.8s may not have an 

equally large ε value at 0.3s), and the resulting median spectral shapes are shown in Figure 6.3, 

and the same effect is seen. Thus, we see empirically that ε is accounting for differences in 

spectral shape, providing further evidence for the effect proposed in Chapter 3. Note that 

although both positive and negative epsilons are considered here, the most important distinction 

is that between positive-ε records and zero-ε records because the former are associated with 

long-return period ground motions while the latter are associated with typical record sets chosen 

without regard to ε values. 

It is widely known that for records with the same Sa(T1) value, spectral shape will affect 

the response of multi-degree-of-freedom and nonlinear structures (because spectral values at 

other periods affect response of higher modes of the structure as well as nonlinear response once 

the structure’s effective period has lengthened). It is also widely recognized that magnitude and 

distance affect the spectral shape of records. In Chapter 3, however, it was seen that ε also affects 

spectral shape (and that its effect is greater than the effect of magnitude or distance, as was seen 

in Chapter 3). In the next section, we will use knowledge of the effect of M, R and ε on structural 

response as a guide when selecting appropriate records for nonlinear analysis.  
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Fig. 6.1  (a) Response spectra of records with 20 largest ε values at 0.8s, and geometric 
mean of set, after scaling all records to Sa(0.8s)=0.5g. (b) Response spectra of 
records with 20 smallest ε values at 0.8s, and geometric mean of set, after 
scaling all records to Sa(0.8s)=0.5g. 
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Fig. 6.2  Geometric mean of response spectra for negative-ε, zero-ε , and positive-ε 
record sets, after each record’s spectrum has been scaled to Sa(0.8s)=0.5g  
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Fig. 6.3  Geometric mean of response spectra for negative-ε, zero-ε , and positive-ε 
record sets, after each record’s spectrum has been scaled to Sa(0.3s)=0.5g.  
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6.4 PREDICTIVE MODEL FOR SPECTRAL SHAPE 

Given our growing knowledge of the role of ε in spectral shape, we propose here a new method 

is proposed here for developing a target spectrum. To develop this target spectrum, we first find 

the Sa(T1) value corresponding to the target probability of exceedance at the site using PSHA, 

denoted Sa(T1)*. We then use disaggregation to find the mean of the M, R, and ε values (denoted 

M , R , and ε ) that cause the occurrence of Sa(T1)* level (e.g., McGuire 1995)15. M  and R , in 

turn, via ground motion prediction models, determine the means and standard deviations of the 

response spectral values for all periods, and ε  specifies the number of standard deviations away 

from the mean the ground motion is at the first-mode period, T1. Given knowledge of the mean ε 

at T1, denoted 1( )Tε , we can calculate the conditional distribution of Sa values at other periods 

using only the disaggregation data and knowledge of correlations of ε values at a range of 

periods, as will be shown below.  

This scheme for developing a target spectrum follows closely from procedures to develop 

target spectra for analysis of nuclear facilities (DOE 1996, NRC 1997, ASCE 2005) except that 

those methods incorporate only the causal M and R values from disaggregation. The target 

spectra must then be scaled up to match the specified Sa value. Here, the effect of ε is 

incorporated as well, given the finding in Chapter 3 that ε is an important predictor of structural 

response. A similar idea was used by Toro and Silva (2001) to develop target response spectra 

that accounted somewhat for the effect of ε.  

The target response spectrum based on M , R , and ε  can be computed in the following 

manner: as was outlined in Chapter 3, given certain assumptions that the conditional mean and 

standard deviation of the response spectrum can be computed using the following equations16. 

                                                 
15 For record-selection purposes, one should use the McGuire (1995) definition of disaggregation, which provides 
the distribution of M, R, and ε given Sa(T1) equals Sa(T1)*, rather than the Bazzurro and Cornell (1999) definition, 
which provides the distribution of M, R, and ε given Sa(T1) exceeds Sa(T1)*. Bazzurro and Cornell discussed the 
differences between these two definitions and expressed a preference for the latter, but they were not considering 
this target spectrum question. 
16 These equations are in fact an approximation obtained by substituting M , R , and ε  for the random values of M, 
R, and ε obtained from disaggregation given the target Sa(T1) value. The approximation slightly modifies the mean 
and standard deviation, but the difference is believed to be small in most cases. Further, when substituting M , R , 
and ε  into Equation 6.1, one does not necessarily obtain the target Sa(T1) value back again. This can be addressed 
by re-assigning ε  to the ε value that results in a prediction of the Sa(T1) target value; the modification will be small 
and this is consistent with the treatment of ε by McGuire (1995). More details regarding this approximation are 
given in Appendix E. 
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2 1 1 1 2ln ( )|ln ( ) ln ( )* ln 2 ln 2 ln ( ),ln ( ) 1( , , ) ( , ) ( )Sa T Sa T Sa T Sa Sa Sa T Sa TM R T M T Tμ μ σ ρ ε= = + ⋅  (6.1) 

 
2 1 1 2

2
ln ( )|ln ( ) ln 2 ln ( ),ln ( )( , ) 1Sa T Sa T x Sa Sa T Sa TM Tσ σ ρ= = −  (6.2) 

Where M , R , and 1( )Tε  come from disaggregation given 1 1( ) ( )*Sa T Sa T= . The terms 

ln 2( , , )Sa M R Tμ  and ln 2( , )Sa M Tσ  are the marginal mean and standard deviation of lnSa at T2, as 

predicted by a ground motion prediction (attenuation) relationship (e.g., Abrahamson and Silva 

1997), and a model for 
1 2ln ( ),ln ( )Sa T Sa Tρ  is given in Equation 8.9. Equations 6.1 and 6.2 describe the 

distribution of response spectra at the specific site of interest, given that Sa(T1) is to the target  

value Sa(T1)*. Actually, to completely specify the conditional distribution, one also needs the 

conditional correlations; it is also possible to calculate those, but they are not needed for what 

follows. 

In Figure 6.4, a distribution for the response spectrum is given, conditioned on 

occurrence of an Sa(0.8s) level of 1.6g (the 2% in 50-years ground motion at the example site), 

and M  = 6.4, R  = 11.5 km, and ε  = 2.1 from the PSHA disaggregation. Note that the 

distribution of Sa at 0.8s has zero standard deviation (because we have conditioned knowing this 

value), while the Sa values at other periods have some uncertainty because they are only partially 

correlated with Sa(0.8s). Note also that the spectrum has a slight “peak” at 0.8s. This 

phenomenon was identified in Chapter 3 and observed empirically in Figure 6.1a.  
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Fig. 6.4  Distribution of spectral acceleration values, given Sa(0.8s) = 1.6g, and 

given M , R , ε  from PSHA disaggregation  
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It is reasonable to assume that M, R, and ε are important to structural response only 

indirectly as proxies for spectral shape because, beyond Sa(T1), spectral shape is the dominant 

factor affecting structural response (this assumption will be further justified below). This is 

because spectral shape dictates higher-mode response and describes the relative ground motion 

strength at longer periods of concern in nonlinear behavior. Thus, rather than trying to match 

target M, R, and ε values when selecting records, one might use the target M, R, and ε values to 

determine a target spectral shape, and select records based on this target spectral shape alone. 

This should increase the number of available records because some records with incorrect M, R, 

or ε values may have the “correct” spectral shape. The natural choice for this spectrum is the 

conditional mean spectrum computed in Equation 6.1. 

We will take only the mean value of this conditional spectrum as the target, rather than 

attempting to match the entire conditional distribution. This is done under the justification that 

Sa(T1) is the primary predictor of structural response, and spectral values of other periods are of 

secondary importance. Thus we account for Sa(T1) fully probabilistically using probabilistic 

hazard analysis, and we account for the other spectral values by taking their conditional means. 

This approach follows probabilistically based load combination rules used in practice elsewhere 

(e.g., Norwegian Technology Standards Institution 1999, pp. 17–18). This condition spectrum is 

termed the conditional mean spectrum, considering ε (or CMS-ε). The “considering ε” term is 

included to emphasize the modification from nuclear industry conditional mean spectrum, which 

is computed without considering the effect of ε. A record selection procedure based on the CMS-

ε spectrum will be considered below. 

6.5 POTENTIAL RECORD-SELECTION STRATEGIES 

Given the effect that ε has on structural response, ε values should be considered carefully when 

choosing ground motions for estimation of structural response. Ideally, the target distribution of 

magnitude, distance, and ε values in the record set should equal the condition distribution of 

magnitude, distance, and ε values seen at the site of interest, given Sa(T1), as determined from 

standard PSHA disaggregation. Note that this conditional distribution will change as a function 

of Sa(T1), and so different records will need to be selected for different Sa(T1) levels. 
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To test the effect of the M, R, and ε values in a selected record set, several record-

selection methods are now considered, and the resulting structural response outputs compared. 

Ideally, we would match the target distribution of all of these parameters simultaneously, but this 

can be difficult in practice due to the finite number of available recorded ground motions. 

Because of this limitation, priority should be given to matching the most important parameters, 

and so the most important parameters need to be identified. Alternatively, one could select 

records that have a spectral shape representative of a spectrum given the target M, R, and ε 

values, as discussed above. Four record-selection methods are used, in order to investigate the 

effect of these different record-selection strategies on resulting estimated structural responses: 

1. Select records at random from a record library, without attempting to match any specific record 
properties (this will be abbreviated as the AR Method, as it uses Arbitrary Records). 

2. Select records with magnitude (M) and distance I values representative of the site hazard, without 
attempting to match the ε values (this will be abbreviated as the MR-BR Method, as it uses M, 
R-Based Records).  

3. Select records with ε values representative of the site hazard, without attempting to match the 
magnitude and distance values (this will be abbreviated as the ε-BR Method, as it uses ε-Based 
Records). 

4. Select records with spectral shapes that match the conditional mean spectral shape given M , R  
and ε  as discussed earlier, but make no attempt to directly match the M, R, or ε values (this will 
be abbreviated as the CMS-ε Method, as it uses the Conditional Mean Spectrum, considering ε). 

With all four methods, we make the additional restriction that the record site be classified 

as soil, to match the conditions present at the site of interest. Method 1 can be considered as a 

base case, where information about the causal events is ignored when selecting records (i.e., 40 

records at random were selected from the library of 382). Method 2 reflects state-of-the-art 

practice today (e.g., Stewart et al. 2001; Bommer and Acevedo 2004). For Method 2, records 

were selected to have a minimum difference in magnitude and distance relative to the M , R  

obtained from disaggregation (where a difference of one unit in magnitude was treated as equal 

to a difference of 40 km in distance). Method 3 is used to test the effect of ε. With this method, 

the 40 records with ε values closest to ε  were selected. One other study has been performed to 

date where records were selected based on M, R, and ε simultaneously (Haselton et al. 2005), but 

here we choose to match only subsets of the parameters (i.e., only ε in method 3, and only M and 

R in method 2), in order to clearly distinguish the effects of these parameters. Later, a vector-

valued intensity measure will be used to account for magnitude, distance, and ε simultaneously. 
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Finally, Method 4 is used to investigate the possibility that M, R, and ε are proxies for 

spectral shape, and that spectral shape is the factor directly influencing structural response. If this 

is true, then records with a spectral shape matching the CMS-ε spectrum for a given M, R, and ε 

will be accurate predictors of structural response, regardless of their actual M, R, and ε values. 

With the CMS-ε method, records were selected that had a minimum sum of squared differences 

between their spectrum and the CMS-ε spectrum at seven periods in the range 0.16 to 2.4 sec 

(0.16, 0.3, 0.5, 1.2, 1.5, 1.9, and 2.4 sec), after scaling the records to match the target Sa(0.8s). 

The periods were selected to include shorter periods corresponding to higher modes of 

oscillation of the structure, and longer periods corresponding to structure softening as it becomes 

nonlinear. The suggestion of ASCE 7-02 (2002, section 9.5.7.2.1) to use  0.2T1 and 1.5T1 as the 

period range of interest was adopted, although periods as large as 3T1 were also included because 

the structure will be driven to high levels of nonlinearity where effective-period lengthening may 

cause the structure to be sensitive to motion at much longer periods. The spectra of selected 

records are displayed in Figure 6.5, along with the conditional distribution of the target spectrum. 

For most periods the standard deviation of the records’ spectra is smaller than the conditional 

spectrum distribution, but the mean spectrum of the records is approximately equal to the target 

mean17. 

                                                 
17 Underestimating the standard deviation of the records spectra suggests that the standard deviation of structural 
response will be underestimated as well, as will be seen below. This is similar to the effect seen when spectrum-
compatibilizing records, only it is seen to a lesser extent here because the records are not fully smooth. This effect 
may be helpful for code-based procedures when the mean-response is desired, because the lower standard deviation 
of structural response implies that the mean can be estimated with greater confidence. The reduced standard 
deviation of response may cause problems for probabilistic assessment procedures, although the effect is not 
obvious in the example results below.  
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Fig. 6.5  Conditional mean spectrum considering ε, CMS-ε +/- two σ, and response 
spectra of records selected based on their match with this spectral shape. 
All spectra are conditioned upon Sa(0.8s)=1.6g. 

The records selected using methods 2, 3, and 4 will depend (to different degrees) on the 

site of interest because the causal M, R, and ε values depend on the surrounding faults and their 

rates of activity. The records selected will also depend upon the hazard level of interest because 

small frequent levels of ground motion typically have different associated magnitudes and 

distances than large rare levels of ground motions, but most importantly, ε changes radically as 

the ground motion level increases. This can be seen in the changing conditional mean spectral 

shapes (and associated M, R, and ε values) at three hazard levels in Figure 6.6 for a site in Van 

Nuys, California. Thus, if one is analyzing the structure at multiple ground motion intensities, as 

will be done here, then the records should be reselected at each level to reflect the changing 

sources. For this exercise, we consider a large range of ground motion intensities (as measured 

using Sa(0.8s)—the first-mode period of the example structure considered below). Note that if 

we were able to simultaneously match target M, R, and ε values in our records then they would 

also have the approximately the correct Sa(0.8s) value. (To match the target Sa(0.8s) value 

exactly, a minor modification is needed, as explained in Appendix E), but because we are not 

able to match all properties, we will have to employ some degree of record scaling to match the 

target Sa(0.8s) values.  
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Fig. 6.6  Mean values of conditional response spectrum for site in Van Nuys, 
California, given occurrence of Sa(0.8s) values exceeded with 2%, 10%, and 
50% probabilities in 50 years  

Using method 1, we use the same set of records at all Sa(0.8s) levels. Using methods 2, 3, 

and 4, we reselect records at several levels of ground motion intensity according to the 

disaggregation results at each level. The selected records used are listed in Appendix A. For all 

four methods, 40 records were selected at 12 Sa(T1) levels between 0.1g–4.0g.  

In Tables 6.1–6.3, the magnitude, distance, and ε values of the selected records are given, 

along with the target values obtained from disaggregation. A few observations can be made. 

When the record property is being matched explicitly the selected records tend to match the 

target value; otherwise the records tend to match the mean value of the record library. This is 

most obvious in Table 6.2, where the distance-specified records closely match the target 

distances, but the other record sets have mean distance values of approximately 33 km: the mean 

of the record library. An interesting phenomenon also arises with the records selected based on 

spectral shape. The magnitudes and distances of the selected records do not change appreciably 

as the Sa level varies, but the ε values do change. This implies that in order to match the spectral 

shape associated with a given M, R, and ε, it is possible to substitute records with differing 

magnitudes and distances, but the spectral shapes associated with large ground motion levels 

tend to have large ε values. Note, however, that the mean ε value of the spectral-shape selected 
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records is lower than the mean ε value from disaggregation, meaning that it is not entirely 

necessary to rely on only the largest (and rarest) ε records for selection of these more peaked 

conditional mean spectra. 

Table 6.1  Mean magnitude values from disaggregation of Van Nuys site, and 
mean magnitude values of records selected using each of four 
proposed methods. Mean magnitude value of record library was 
6.7. 

    Magnitude 

Sa(0.8s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  6.3 6.7 6.5 6.8 6.6 
0.2  6.4 6.7 6.4 6.7 6.7 
0.4  6.4 6.7 6.4 6.6 6.9 
0.6  6.4 6.7 6.4 6.8 6.9 
0.8  6.4 6.7 6.4 6.7 6.9 
1.0  6.4 6.7 6.5 6.7 6.9 
1.4  6.4 6.7 6.5 6.6 6.8 
1.6  6.4 6.7 6.5 6.6 6.9 
1.8  6.4 6.7 6.5 6.6 6.8 
2.4  6.5 6.7 6.5 6.6 6.8 
3.0  6.6 6.7 6.6 6.6 6.7 
4.0   6.8 6.7 6.7 6.6 6.7  

Table 6.2  Mean distance values from disaggregation of Van Nuys site, and 
mean distance values of records selected using each of four 
proposed methods. Mean distance value of record library was 33 
km. 

    Distance 

Sa(0.8s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  57.6 35.5 52.4 36.8 33.1 
0.2  40.6 35.5 36.4 28.5 31.9 
0.4  27.5 35.5 29.5 30.9 34.7 
0.6  21.7 35.5 23.3 32.9 35.2 
0.8  18.1 35.5 20.8 35.2 33.5 
1.0  15.6 35.5 16.9 39.8 33.9 
1.4  12.5 35.5 10.8 48.0 33.5 
1.6  11.5 35.5 10.3 48.9 36.6 
1.8  10.8 35.5 7.4 49.7 35.8 
2.4  9.7 35.5 7.7 49.7 37.0 
3.0  9.0 35.5 9.2 49.7 37.2 
4.0   9.1 35.5 11.4 49.7 37.1  
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Table 6.3  Mean ε values (at 0.8s) from disaggregation of the Van Nuys site, 
and the mean ε values of the records selected using each of the four 
proposed methods. The mean ε value of the record library was 0.2. 

    Epsilon (ε) 

Sa(0.8s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  0.0 0.0 0.6 0.0 0.1 
0.2  0.5 0.0 0.2 0.5 0.2 
0.4  1.0 0.0 0.2 0.9 0.4 
0.6  1.3 0.0 0.0 1.3 0.5 
0.8  1.5 0.0 0.0 1.4 0.5 
1.0  1.7 0.0 -0.2 1.6 0.7 
1.4  2.0 0.0 -0.4 1.9 0.9 
1.6  2.1 0.0 -0.5 1.9 1.0 
1.8  2.2 0.0 -0.4 2.0 1.0 
2.4  2.4 0.0 -0.5 2.0 1.2 
3.0  2.5 0.0 -0.1 2.0 1.2 
4.0   2.8 0.0 0.1 2.0 1.3  

 

 

The selected records can also be compared by examining their mean response spectra at a 

specified Sa level relative to the target mean from Equation 6.1. This is shown in Figure 6.7. At 

Sa(0.8s)=1.6g, the ε-BR and CMS-ε records have mean spectra close to the target, while the 

MR-BR records have larger Sa values at some periods, and the AR records have particularly high 

Sa values at nearly all periods other than 0.8s. 
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Fig. 6.7  Conditional mean spectrum at Sa(0.8s)=1.6g (given M =6.4, R =11.5 km and 
ε =2.1) and mean response spectra of record sets selected using each of four 
proposed record selection methods 

6.6 STRUCTURAL ANALYSIS 

The records selected in the previous section were then used as inputs to the Van Nuys testbed 

model used earlier in this report, in order to investigate any differences in resulting structural 

responses. For clarity of presentation, only one structure is considered in this chapter; in 

Appendix F, two additional structures are analyzed using the same procedure and similar results 

are observed. The maximum observed interstory drift ratio was used as the structural response 

parameter of interest. This structure has a first-mode period of 0.8 sec, which is the reason why 

Sa(0.8s) has been used as the intensity measure in this study. A plot of the calculated maximum 

interstory drift ratios versus Sa(0.8s) using the records of  method 1 is shown in Figure 6.8.  
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Fig. 6.8  Maximum interstory drift ratio vs. Sa(0.8s). Results are shown for 
records from arbitrary records method (i.e.,  method 1). Similar results 
were obtained for other three methods. Collapses are plotted as 10-1 
maximum interstory drift ratio, and fraction of records causing collapse 
are indicated in Fig. 6.11. 

The geometric mean of EDP as a function of IM is shown in Figure 6.9, using the results 

from the four record-selection methods. We see that the matched-ε records produce the lowest 

mean responses, with the spectral-shape-matched records producing approximately the same 

response. The other two methods produce slightly larger mean responses. This comparison of 

medians is of particular interest to current practice (e.g., ICC 2003), where the objective is to 

estimate the mean response at a specified ground motion intensity level. Note that the x axis of 

this plot is limited to Sa values less than 1g, because at larger Sa levels, a significant portion of 

records cause collapse and thus comparisons of non-collapse responses are less meaningful. 

The standard deviations of log maximum interstory drift ratio from the three record sets 

are shown in Figure 6.10, where we see that the ε-matched records produce slightly smaller 

dispersions than the non-specified and M,R-matched records, and the CMS-ε records produce 

significantly lower dispersions, in part because the spectral-shape-matching procedure used to 

select these records causes them to be “smoother” than the model specifies them to be. This was 

observed in Figure 6.5, where the selected records had smaller standard deviations over a range 

of periods than the predicted conditional standard deviations.  
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Fig. 6.9  Geometric mean of maximum interstory drift ratio for records that do not 
cause collapse, plotted versus Sa(T1) for four record-selection methods 
considered. x axis of figure is truncated at 1g, because at higher levels of 
spectral acceleration, a significant fraction of records cause collapse. 
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Fig. 6.10  Standard deviation of log maximum interstory drift ratio for records 
that do not cause collapse, plotted versus Sa(T1) for four record-
selection methods considered 
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In addition, we can compute the probability of collapse versus Sa (i.e., the collapse 

“fragility curve”) for the four record selection methods, by counting the fraction of records that 

cause collapse at each Sa level and fitting a lognormal distribution to the results (see Appendix D 

for details). The result is seen in Figure 6.11. The non-specified and M,R-specified records have 

much larger probabilities of collapse, particularly in the left tail of the distribution, which tends 

to be the most critical (because smaller Sa values occur much more frequently than the larger Sa 

values at the right end of the distribution). The estimated probabilities of collapse versus Sa from 

the spectral-shape-selected records and the ε-selected records are nearly identical. 

Judging from the non-collapse geometric means and log standard deviations, and the 

probability of collapse estimates, it appears that the method used to select records can have an 

effect on the resulting estimates of structural response. Further, the spectral-shape-matched 

records (which should be accounting for the effects of M, R, and ε) produce responses 

comparable to the ε-matched records. 
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Fig. 6.11  Estimated probability of collapse vs. Sa(T1) (i.e., collapse “fragility 
curve”) using four record-selection methods considered 

Incorporating ground motion hazard to compute drift hazard 

An additional way to evaluate the results from each of the record-selection methods is to 

combine the estimated distributions of response as a function of Sa(T1) with the probability of 

exceedance of each Sa(T1) level (shown in Fig. 6.12), to compute the mean annual frequency of 
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exceeding a given structural response level (sometimes referred to as a “drift hazard curve”). The 

mathematical details of this simple integration are explained in detail in, e.g., Chapters 3 and 4.  
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Fig. 6.12  Mean annual frequency of exceeding various levels of Sa(0.8s) (i.e., 
ground motion hazard curve), for Van Nuys, California, site of interest 

 

The resulting drift hazard curves are shown in Figure 6.13. We see that the AR method 

and MR-BR  method records produce higher estimated probabilities of exceedance than the other 

two methods, particularly at large response levels. These results are in good agreement with the 

results of Chapter 3, but here we are investigating the results of various record properties through 

careful record selection rather than with a vector-valued intensity measure as was done in 

Chapter 3. We see that results from records selected using the AR  method and MR-BR method 

do not differ significantly, while the records selected using the ε-BR method produce 

significantly lower mean annual frequencies of exceeding large levels of structural response. 

Further, we see here that the CMS-ε method records produce nearly identical results to the ε-BR 

method records. 
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Fig. 6.13  Mean annual frequency of exceeding various levels of maximum interstory 
drift ratio, as computed using scalar intensity measure Sa(T1) 

We can further verify that the variation among the results in Figure 6.13 is due to 

variation in spectral shape (which is explained by either ε or the CMS-ε) by incorporating a 

vector-valued intensity measure consisting of Sa(T1) and ε, using the method of Chapter 3. As 

discussed in Chapter 2, records selected based on ε values (or equivalently, the CMS-ε spectrum) 

should produce comparable drift hazard results as records selected randomly but analyzed using 

a vector-valued intensity measure which includes ε. In Figure 6.14, we see that this is indeed the 

case—the curves lay on top of each other. Unfortunately the curve from the MR-BR method 

records does not agree perfectly with the others, but the difference is now less than it was in 

Figure 6.13 before the effect of ε was accounted for. The results of Figures 6.9–6.11 can also be 

corrected with the vector IM including ε, and here the ε parameter also causes these results to 

agree more closely.  

Vector-valued intensity measures can also be used to incorporate the effect of magnitude 

or distance with the ε-specified records. However, incorporating magnitude or distance in the 

intensity measure does not result in appreciable changes in the drift hazard curve (consistent with 

the findings in Chapter 3). This suggests that ε (or its implied effect on mean spectral shape) 

should be given primary consideration when selecting records, with lesser consideration given to 

magnitude or distance. 



 

   
 
 

178

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

Maximum Interstory Drift Ratio

M
ea

n
 A

nn
ua

l R
at

e 
of

 E
xc

ee
d

an
ce

Method 1 (AR) records, IM = Sa(T1), ε
Method 2 (MR-BR) records, IM = Sa(T1), ε
Method 3 (ε-BR) records, IM = Sa(T1)
Method 4 (CMS-ε) records, IM = Sa(T1)

 

Fig. 6.14  Mean annual frequency of exceeding various levels of maximum 
interstory drift ratio, as computing using either scalar intensity 
measure Sa(T1) or vector intensity measure Sa(T1) and ε 

6.7 CONDITIONAL MEAN SPECTRA VERSUS UNIFORM HAZARD SPECTRA 

The target spectrum used most frequently today for analysis of buildings is the uniform hazard 

spectrum (UHS) (Kramer 1996; ASCE 2002; McGuire 2004). A uniform hazard spectrum is 

defined as the locus of points such that the spectral acceleration value at each period has an 

exceedance probability equal to the specified target probability. When developing this spectrum, 

the PSHA analysis at each period is performed independently of all other periods, so it is 

important to remember that nothing can be said about the joint occurrence or exceedance of all of 

these spectral values simultaneously. Because of this, treating the UHS as the spectrum of a 

single earthquake event is questionable, as has been noted by others (e.g., Reiter 1990; Naeim 

and Lew 1995; Bommer et al. 2000). Because of these concerns regarding the reasonableness of 

the UHS as a design spectrum, nuclear industry design procedures specify a design spectrum 

similar to the CMS-ε proposed here, but without considering ε (DOE 1996; NRC 1997; ASCE 

2005). The difference in requirements between the nuclear and building design procedures 

indicates that no consensus has yet emerged regarding appropriate design spectra. 
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It is well-known that a uniform hazard spectrum has difficulties in representing a single 

earthquake at a given site. This problem is most often explained as follows: the high-frequency 

portion of the UHS is frequently dominated by small nearby earthquakes, while the low-

frequency portion is dominated by larger, more distant earthquakes. Because the high-frequency 

and low-frequency portions come from different events, no single earthquake will produce a 

response spectrum as high as the UHS throughout the frequency range considered (Reiter 1990; 

NRC 1997; DOE 1996). While it is true that no single earthquake is likely to produce a spectrum 

as high as the UHS, an underappreciated reason for this is the variability in spectral values (for a 

given magnitude and distance). At each period, the spectral acceleration value given a magnitude 

and distance is random—it could be higher or lower than the mean prediction. For low annual 

probability (long return period) design criteria, the uniform hazard spectrum is almost always 

higher than the mean spectrum (or spectra) for the dominant event (or events) at a site (i.e., ε is 

greater than 0, as explained in Chapter 3). But even if a particular record has a spectral 

acceleration value as large as the UHS at a given period, it is unlikely to be as high as the 

uniform hazard spectra at all periods. Thus, a spectrum that is equal to the UHS at a range of 

periods has a much lower probability of exceedance than the probability level assigned to the 

UHS. Therefore, using a UHS as a target spectrum for probabilistic analysis would be 

conservative, due to variations in causal magnitudes, distances, and epsilons from period to 

period, as discussed above. An alternative target spectrum is needed if this conservatism is to be 

eliminated.  
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Fig. 6.15  2% in 50-years uniform hazard spectrum at Van Nuys site, along with 
several conditional mean spectra, considering ε (CMS-ε), conditioned 
on Sa(T) at four different values of T (0.1, 0.3, 0.8 and 2 sec) 

The fact that a uniform hazard spectrum is always higher than individual CMS-ε spectra, 

as illustrated in Figure 6.15, suggests that a UHS may be a reasonable target spectrum in some 

cases. If one is performing expensive analyses or experiments on a system with an unknown 

period or many sensitive periods and cannot run many tests, the UHS could safely be used as a 

target spectrum, recognizing that the results will not be unconservative, although they may be 

quite conservative. But if one can afford to perform many analyses, a less biased estimate of 

responses can be obtained by using CMS-ε spectra conditioned on target Sa values at several 

periods, and taking the envelope (or some other combination) of responses estimated with 

records based on these spectra. That is, rather than estimating the response from an envelope of 

spectral values (the UHS), one could estimate the envelope of responses from several CMS-ε 

spectra. Using several CMS-ε spectra should be less conservative than using the UHS, and more 

suited for use in probabilistic assessments. Note that this procedure follows the nuclear industry 

design guidelines (e.g., DOE 1996), except that the important effect of ε has been included in 

this derivation of target conditional mean spectral shapes. 
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6.8 BIAS FROM RECORD SCALING 

The analysis above required use of (generally upward) record scaling in order to obtain records 

with the desired target Sa(T1) values. The use of scaling leads to questions about whether the 

scaled ground motions are truly representative of ground motions with the given IM level. 

Seismologists and engineers sometimes worry that simple record scaling violates the physics of 

the earthquake ground motion process. Here we will take a more pragmatic view, and conclude 

that record scaling is “valid” and useful as long as records scaled to a given IM level produce the 

same levels of structural response as ground motions naturally at the target IM level (i.e., scaled 

records do not produce biased estimates of structural response).  

One very straightforward way to detect a bias from scaling is to take a suite of records 

that have been scaled to a given Sa level, and plot the structural response caused by each record 

versus the factor by which the record was scaled. This is done for an Sa(0.8s) value of 0.6g with 

each of the four proposed record selection methods, and displayed in Figure 6.16.  By examining 

the data visually and considering the regression predictions plotted on the figures, we can 

examine whether the records with large scale factors induce different responses in the structure 

than records with a scale factor near one. If the regression line has a slope of zero, then records 

with large scale factors are unbiased (i.e., the mean estimated response does not depend on 

whether the record has been scaled). We see in Figure 6.16 that the record sets selected with the 

AR  method and the MR-BR method show some bias, while the record sets selected with the ε-

BR  method and the CMS-ε  method show no bias. 
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(d) 

Fig. 6.16  Maximum interstory drift ratio versus record scale factor for each of four 
selection methods considered, at an Sa(0.8s) level of 0.6g. Regression fits 
based on scale factor are shown with solid lines. Dashed horizontal lines 
corresponding to mean prediction at scale factor of one are shown for 
comparison. (a) Records using AR  method. (b) Records using MR-BR 
method. (c) Records using ε-BR method. (d) Records using CMS-ε 
method.  

The significance of the slopes from the regression analyses of Figure 6.16 can be 

measured using a common statistical diagnostic tool known as the F-test (Neter et al. 1996). This 

test produces a probability (referred to as a p-value) that the estimated slope would be as large as, 

or larger than, the observed slope given that there was no underlying trend in the data (i.e., the 

probability of erroneously estimating a given slope due to an imprecise estimate from a finite 

data sample). P-values for the four record-selection methods are reported for six Sa levels in 

Table 6.4 (higher Sa levels are not included because the number of records causing collapse is 

significant and so regression on non-collapsing records becomes less meaningful). The row of 
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this table associated with Sa(0.8s) = 0.6g provides the p-values for the regressions of Figure 

6.16. For this Sa level, the method using a range of M, R, and ε values and the method based on 

M, R record selection have low p-values, indicating that the observed trend is statistically 

significant. The large p-values for the other two methods indicate that there is likely no 

underlying trend. These conclusions fit with intuitive observations made by visually examining 

Figure 6.16. When examining all levels of Sa in this table, some trends are apparent: methods 1 

and 2 show significant trends with scale factor, while methods 3 and 4 do not. Thus, we can 

conclude that if records are selected based on ε or spectral shape, then they can be safely scaled 

without inducing a bias in the estimated responses (this is supported by additional results from 

the two structures considered in Appendix F).  

Table 6.4  P-values from regression prediction of max interstory drift ratio as 
function of scale factor for four methods of record selection, at six 
levels of Sa(0.8s). P-values of less than 0.05 are marked in boldface.  

Sa(0.8s) 

Method 1: 
Arbitrary 
Records 

Method 2: M, 
R-Based 
Records 

Method 3:  
ε-Based 
Records 

Method 4: 
CMS-ε 
Method 

0.1 0.00 0.01 0.21 0.68 

0.2 0.01 0.89 0.33 0.07 

0.4 0.01 0.46 0.73 0.51 

0.6 0.00 0.00 0.67 0.44 

0.8 0.00 0.00 0.73 0.30 

1 0.05 0.04 0.23 0.37 
median  
p-value 0.01 0.02 0.50 0.40  

 

Several previous studies have investigated the effect of record scaling, and so their 

conclusions can be compared to the results in this section. Shome et al. (1998) found that an M, 

R “bin” of records (a set of records with similar magnitude and distance values) scaled to the bin-

median spectral acceleration at the fundamental period of the structure will not produce biased 

median structural response values relative to unscaled records; a conclusion further confirmed by 

Iervolino and Cornell (2005a). The magnitude-distance bin approach for selecting records used 

in that paper is very similar to the “method 2 (M, R selection)” approach used here, but in this 

chapter the records were not necessarily scaled to the bin-median spectral acceleration value. 

Luco and Bazzurro (2005) found that scaling an M, R “bin” of records to Sa values other than the 

median of the suite may induce some bias in structural response (this scaling procedure was 
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termed “intra-bin” scaling by the authors). This finding is consistent with the results seen using 

the M, R -based record selection scheme in Figure 6.16b. The conclusions from these studies do 

not conflict with the findings here. 

The conclusion here that inappropriate record scaling can bias the estimated structural 

response supports the concern expressed by others that record scaling might fail to modify all 

ground motion properties in an appropriate way. For example, Han and Wen (1994) state that 

“scaling an earthquake to attain a target damage level of different intensity is questionable, since 

scaling a ground motion does not account for variations in ground motion characteristics (e.g., 

frequency content) which change with intensity.” Through the exploration of conditional mean 

response spectra above, we have seen that the frequency content of ground motions does in fact 

change as the intensity (i.e., Sa(T1)) changes. What is probably unexpected for most readers, 

however, is that the frequency content is more affected by the variation of ε than by the variation 

of magnitude or distance. Further, if we select records with the desired spectral shape through a 

careful record selection scheme (i.e., ε-BR or CMS-ε selection), then we can scale records 

without inducing bias.  

6.9 DO WE REALLY WANT RECORDS WITH PEAK IN THEIR SPECTRUM? 
CONSIDERATION OF SPECTRAL ACCELERATION AVERAGED OVER 
PERIOD RANGE 

The previous discussion depends upon measuring earthquake intensity with Sa(T)—that is, 

spectral acceleration at a single period. This intensity measure is a perfect predictor of structural 

response for elastic single-degree-of-freedom systems with natural period T. For multi-degree-

of-freedom structures, Sa(T) has also been seen to effectively predict even nonlinear structural 

response when the period T is chosen to equal the first-mode period of the structure, especially if 

the structure is “first-mode dominated” (Shome et al. 1998).  

Given that earthquake intensity will be measured with Sa(T1), we have seen above that 

extreme (rare) values of Sa(T1) are not associated with equally extreme Sa values at other 

periods, due to a lack of perfect correlation among response Sa values at differing periods. This 

phenomenon results in the spectrum of rare ground motions (as defined by their Sa(T1) level) 

having a peak at Sa(T1), as was seen earlier, and in Chapter 3. But if the structural response 

parameter of interest is sensitive to Sa values at multiple periods, then perhaps this peaked 
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spectrum should not be of primary concern (loosely speaking, rather than worrying about a 

spectrum that is “very” strong at a single period, one might worry about a spectrum that is 

“somewhat” strong at several periods). Perhaps an intensity measure that averages spectral 

acceleration values over a range of periods is a better indicator of structural response (this class 

of intensity measure was first used by Kennedy et al. 1988).  In this section we will discuss what 

happens to target spectra if our IM is Sa averaged over a range. 

Here we will consider the case of the geometric mean of spectral acceleration values at a 

set of periods: 

 1

1

( ,..., ) ( )
n

n inavg
i

Sa T T Sa T
=

= ∏  (6.3) 

where 1,..., nT T  are the n periods of interest. This can also be expressed as an (arithmetic) mean 

of logarithmic spectral acceleration values 

 1

1

1ln ( ,..., ) ln ( )
n

n i
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i

Sa T T Sa T
n =

= ∑  (6.4) 

This formulation is convenient, because attenuation laws can be easily developed for an lnSaavg 

with an arbitrary set of periods, 1,..., nT T , using existing attenuation models and the correlation 

model of Chapter 8. The mean and variance of 1ln ( ,..., )n
avgSa T T  are given by 
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where ln ( )iE Sa T⎡ ⎤⎣ ⎦  and ln ( )iSa Tσ  are the conditional mean and standard deviation of ln ( )Sa T , 

available from popular ground motion attenuation models (e.g., Abrahamson and Silva 1997), 

and ln ( ),ln ( )i jSa T Sa Tρ  is available from Equation 8.9 of this report. (Note that Eqs. 6.5–6.6 are the 

conditional mean and variance given magnitude, distance, etc., as with standard ground motion 

prediction models for lnSa(T).) Further, if individual ln ( )iSa T  values are assumed to be jointly 

Gaussian, as is often done (Bazzurro and Cornell 2002; Stewart et al. 2002), their sum is also 

Gaussian, and thus the mean and variance of Equations 6.5–6.6 completely define the 

distribution of 1ln ( ,..., )n
avgSa T T . We can then proceed to perform probabilistic seismic hazard 
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analysis for this intensity measure, exactly as we would for any single spectral acceleration 

value.  

Further, we can again develop the Conditional Mean Spectrum, considering ε (CMS-ε) 

for this intensity measure, as was done above for ln ( )Sa T  when conditioned on the 1ln ( )Sa T  

level. Analogously, we are now interested in the conditional mean of ln ( )Sa T  versus T, 

conditioned on the 1ln ( ,..., )n
avgSa T T  level. The critical value to be determined for this 

calculation is the correlation coefficient between any ln ( )Sa T  and 1ln ( ,..., )n
avgSa T T  (because 

ln ( )Sa T  values at multiple periods are assumed to be jointly Gaussian, then a linear correlation 

coefficient completely defines the dependence between ln ( )Sa T  values or linear functions of 

them). This correlation coefficient can be computed as 

 1

ln ( ),ln ( ) ln ( )
1

ln ( ),ln ( ,..., )

ln ( ),ln ( ) ln ( ) ln ( )
1 1

i i

n
avg

i j i j

n

Sa T Sa T Sa T
i

Sa T Sa T T n n

Sa T Sa T Sa T Sa T
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ρ σ
ρ

ρ σ σ
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= =

=
∑

∑∑
 (6.7) 

This correlation coefficient, along with the results from hazard analysis for 1ln ( ,..., )avg nSa T T , will 

allow us to develop a target spectrum analogous to the CMS-ε presented above18. 

For illustration, we consider a simple case of Equation 6.4 consisting of periods at only 

T1 (the first-mode period of the considered structure) and 2T1. This is in fact equivalent to the 

intensity measure considered by Cordova et al. (2001). We will again consider a T1 value of 0.8s, 

so that 2T1=1.6s. Using the Abrahamson and Silva (1997) ground motion prediction model for 

ln (0.8 )Sa s  and ln (1.6 )Sa s , and the prediction for ln (0.8 ,1.6 )avgSa s s  based on the above 

equations, three hazard analyses were performed for the Van Nuys site described above19. Their 

hazard curves are shown in Figure 6.17. Further, at the 2% in 50-year hazard level, the CMS-ε is 

computed for each of the three IMs using their respective IM values and associated 

disaggregations on M, R, and ε. The spectra are displayed in Figure 6.18. Note that with the 

ln (0.8 ,1.6 )avgSa s s  CMS-ε spectrum, the peaks at individual periods no longer exist, but this 

                                                 
18 Although Equations 6.5–6.7 appear complicated, they are nearly always computed within a computer program by 
using “for” loops and calls to functions previously defined for other purposes. Thus, in practice the computation is 
rather simple. Further, for most ground motion prediction models, these equations simplify to the original prediction 
equation, only with new coefficients. Therefore, probabilistic seismic hazard analysis software (the application 
where these equations would be used) need only call the same ground motion prediction subroutine but with a 
modified set of coefficients than those for a fixed single T value. 
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smoother spectrum is different than the uniform hazard spectrum (it will always be lower than 

the uniform hazard spectrum). 
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Fig. 6.17  Hazard curves for ln (0.8 )Sa s , ln (1.6 )Sa s , and ln (0.8 ,1.6 )avgSa s s  at Van 
Nuys site 
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Fig. 6.18  CMS-ε spectra for ln (0.8 )Sa s , ln (1.6 )Sa s , and ln (0.8 ,1.6 )avgSa s s  at 2% in 
50-year hazard level, and 2% in 50-year uniform hazard spectrum  

                                                                                                                                                             
19 This hazard analysis was also performed in the paper by Cordova et al. (2001). 
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In addition to the conditional mean, we can examine the conditional variance of spectral 

values, given each of these IMs. The conditional mean +/- one standard deviation is shown for 

ln (0.8 )Sa s  and ln (0.8 ,1.6 )avgSa s s  in Figure 6.19. Note that the conditional standard deviation of 

ln (0.8 )Sa s  decreases to zero at 0.8s. The conditional standard deviation of ln (0.8 ,1.6 )avgSa s s  is 

nonzero everywhere, but it is reduced through the entire range from 0.8s to 1.6s. So by giving up 

perfect knowledge of Sa at 0.8s, the ln (0.8 ,1.6 )avgSa s s  IM is able to provide some improved 

information about Sa values at a range of periods. This can also be seen in Figure 6.20, where 

actual records have been scaled to these target IM values. While the spectra in Figure 6.20a 

display the characteristic “pinch” at 0.8s, the spectra in Figure 6.20b are never equal at any 

period. It should be emphasized that although the spectra in Figure 6.20b appear to be casually 

scaled using a conventional method to minimize the RMS error between the record spectra and a 

target spectrum over a range of periods (e.g., ASCE 2002), they have actually been scaled 

precisely so that each record has a common specified value of (0.8 ,1.6 )avgSa s s . Therefore they 

can be used unambiguously to obtain a drift hazard curve as was done earlier when (0.8 )Sa s  was 

the IM. 

Although some insight can be gained from examining response spectra as is done below, 

no structural assessments are performed as part of this study. Whether this intensity measure is a 

more efficient predictor of response than the traditional Sa(T1) will depend upon the level of 

nonlinearity in the structure and whether the structure is sensitive to multiple periods. An 

investigation of this type has been performed by Cordova et al. (2001) for a single structure, but 

more work is needed to draw general conclusions. 
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Fig. 6.19  Conditional mean spectrum, considering ε, and +/ one standard 
deviation at 2% in 50-year hazard level given (a) ln (0.8 )Sa s  and (b) 
ln (0.8 ,1.6 )avgSa s s . 

 



 

   
 
 

190

(a)
10

-1
10

0
10

-1

10
0

10
1

Period [s]

S
pe

ct
ra

l a
cc

el
er

at
io

n 
[g

]

 

(b)
10

-1
10

0
10

-1

10
0

10
1

Period [s]

S
pe

ct
ra

l a
cc

el
er

at
io

n 
[g

]

 

Fig. 6.20  Records scaled to target 2% in 50-year IM levels. (a) Records scaled to 
ln (0.8 )Sa s  and (b) records scaled to ln (0.8 ,1.6 )avgSa s s . 

If a structure is sensitive to a range of periods, the possibility exists that the IM  
1ln ( ,..., )n

avgSa T T  could be designed specifically to incorporate these periods. The Sa values at 

different periods could even have differing weights to reflect to some degree the relative 

importance of each to structural response (Shome and Cornell 1999; Cordova et al. 2001, Mori et 
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al. 2004). Using a measure such as this, it may be possible to desensitize the structural response 

to remaining spectral shape variation, so that differences between the record-selection schemes 

considered above are not as critical. However, care would need to be taken to choose the 

intensity measure appropriately for that structure. Further, the ground motion hazard analysis 

would need to be performed specifically for the new intensity measure. This possibility is to be 

considered in future research. 

The CMS-ε spectrum can be easily computed when measuring ground motion intensity as 

the average of spectral acceleration values at a set of periods. The resulting CMS-ε are not as 

‘peaked’ as CMS-ε based on spectral acceleration at a single period. These smoother spectra 

might be desirable if a structure’s response is sensitive to a range of periods. However, the CMS-

ε obtained in this way still differs from a uniform hazard spectrum.   

6.10 CONCLUSIONS 

Selection of earthquake ground motions as input to dynamic analysis of structures has been 

investigated, with the aim of accurately measuring the distribution of structural response 

associated with earthquake ground motions of a specified intensity, as measured by Sa(T1). The 

structural response parameter of interest here was the maximum interstory drift ratio observed in 

the building. The goal was to identify which properties of ground motions affect the response of 

a nonlinear multi-degree-of-freedom structure, given that the motion has a specified Sa(T1) level. 

To investigate this question, records were selected using several methods: by using arbitrary 

records, by selecting records to match the causal magnitude and distances at the site of interest, 

or by selecting records to match the causal ε values at the site of interest. Causal values of 

magnitude, distance, and ε depend upon the site of interest and the earthquake intensity level of 

interest, and are determined from probabilistic seismic hazard disaggregation. A method for 

calculating the expected spectral shape given a specified Sa(T1) level and its associated causal 

magnitude, distance and ε values was presented. The resulting spectrum was termed the 

conditional mean spectrum, considering ε, or CMS-ε. As a fourth record-selection alternative, 

records were selected to match this CMS-ε, without trying to match those values directly. This 

CMS-ε is very similar to spectra used for design of nuclear facilities, except that the effect of ε is 

not considered in those spectra. 
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The response spectra of records selected using these four methods were examined, and it 

was seen that the CMS-ε spectrum at a rare, extreme ground motion intensity (as measured by 

Sa(T1)) has a “peak” at the T1. Records selected based on their ε values, or based on their match 

with the CMS-ε, displayed this peak, while records selected at random or selected based on 

magnitude and distance did not. For each of these of these four record-selection methods, the 

median structural response, standard deviation of structural response, probability of collapse, and 

drift hazard were computed at a range of ground motion intensity levels. It was found that the 

records selected based on ε or based on their match with the CMS-ε produced unbiased structural 

response results using only Sa(T1) as an intensity measure. However, for the records selected at 

random and the records selected based on magnitude and distance, it was necessary to use a 

vector IM including Sa(T1) and ε in order to obtain unbiased structural response results. 

Because records were scaled for analysis, the records were studied to determine whether 

scaling had induced any bias in the resulting structural responses. It was seen that the records 

selected based on ε or spectral shape could be safely scaled without introducing any bias, 

whereas the records selected at random or selected based on magnitude and distance had biased 

structural responses when scaled. 

These conclusions can be explained by recognizing that spectral shape (i.e., spectral 

acceleration values at other periods, given Sa(T1)) is the record property that directly affects 

structural response, whereas magnitude, distance, and ε are merely proxies for spectral shape. 

However, variation among ε values has a greater effect on spectral shape than variation in either 

magnitude or distance, explaining why matching ε was seen to be more critical in obtaining 

correct structural response levels. All selected records were recorded on stiff soil sites in order to 

match the soil conditions at the example site of interest. It is likely also important to match soil 

type, especially at soft soil sites, due to its effect on spectral shape (Stewart et al. 2001). 

Response spectra of ground motions whose intensity is defined based on spectral 

acceleration averaged over a range of periods is also considered. It is seen that the mean spectra 

of motions defined in this way do not have the peak seen in the previous mean conditional 

spectra. This definition of intensity provides improved but limited information about spectral 

values at a defined set of periods, at the cost of giving up perfect information about spectral 

acceleration at T1. Probabilistic seismic hazard analysis, record selection, and target spectra 

could all be obtained for this intensity measure in the same way as for the standard Sa(T1) 
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intensity measure. The question of which of these two intensity measures is more efficient for 

analysis of a given structure was not considered in this section. 

Based on the findings in this chapter, the following suggestions for record selection can 

be made: the record property ε at the period T1 is the most important property to try to match 

when selecting ground motions for analysis where the ground motion intensity is measured using 

Sa(T1). This applies for estimation of mean response at a given Sa(T1), as well as for fully 

probabilistic “drift hazard” assessment. The magnitude and distance values of the ground 

motions may also be important, but when selecting records, ε values should not be ignored in an 

effort to match magnitude and distance. As an alternative to selecting earthquake records based 

on magnitude, distance and/or ε, one can instead use the procedure outlined above (method 4) to 

determine the conditional mean spectrum, considering ε, given the Sa(T1) level of interest. 

Records can then be selected to match this spectrum without worrying further about other record 

properties (magnitude, distance, and ε, for example). This spectral-shape-matching approach is 

appealing not only because it avoids response prediction bias by accounting for ε, but also 

because there are by definition few records with ε values equal to the ε values of rare intense 

ground motions of engineering interest. This lack of records limits the application of method 3. 

There are, however, relatively more records with a spectral shape similar to the spectral shape of 

rare ground motions, which means that there are potentially a larger number of appropriate 

ground motions available with this approach. 

 



 

   
 
 

 

7 Which Spectral Acceleration Are You Using? 

Baker J.W., and Cornell C.A. 2006. Which Spectral Acceleration Are You Using? Earthquake 
Spectra 22(2): 293–312. 
 

7.1 ABSTRACT 

Analysis of the seismic risk to a structure requires assessment of both the rate of occurrence of 

future earthquake ground motions (hazard) and the effect of these ground motions on the 

structure (response). These two pieces are often linked using an intensity measure such as 

spectral acceleration. However, earth scientists typically use the geometric mean of the spectral 

accelerations of the two horizontal components of ground motion as the intensity measure for 

hazard analysis, while structural engineers often use spectral acceleration of a single horizontal 

component as the intensity measure for response analysis. This inconsistency in definitions is 

typically not recognized when the two assessments are combined, resulting in un-conservative 

conclusions about the seismic risk to the structure. The source and impact of the problem is 

examined in this section, and several potential resolutions are proposed. This discussion is 

directly applicable to probabilistic analyses, but also has implications for deterministic seismic 

evaluations. 

7.2 INTRODUCTION 

Calculation of the risk to a structure from future earthquakes requires assessment of both the 

probability of occurrence of future earthquakes (hazard) and the resulting response of the 

structure due to earthquakes (response). The analysis of hazard is typically performed by earth 

scientists (e.g., seismologists or geotechnical engineering scientists), while the analysis of 
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response is typically performed by structural engineers. The results from these two specialists 

must then be combined, and this is often done by utilizing an intensity measure (IM) (Banon et 

al. 2001; Cornell et al. 2002; Moehle and Deierlein 2004). Earth scientists provide the 

probability of occurrence of varying levels of the IM (through hazard maps or site-specific 

analysis), and structural engineers estimate the effect of an earthquake with given levels of the 

IM (using dynamic analysis or by associating the IM with the forces or displacements applied in 

a static analysis). 

Spectral acceleration, Sa, is the most commonly used intensity measure in practice today 

for analysis of buildings. This value represents the maximum acceleration that a ground motion 

will cause in a linear oscillator with a specified natural period and damping level. (In fact, the 

true measure is pseudo-spectral acceleration, which is equal to spectral displacement times the 

square of the natural frequency, but the difference is often negligible and the name is often 

shortened to simply “spectral acceleration.”). But Sa is often defined differently by earth 

scientists and structural engineers. The difference originates from the fact that earthquake ground 

motions at a point occur in more than one direction. While structural engineers often use the Sa 

caused by a ground motion along a single axis in the horizontal plane, earth scientists often 

compute Sa for two perpendicular horizontal components of a ground motion, and then work 

with the geometric mean of the Sa’s of the two components. Both definitions of Sa are valid. 

However, the difference in definitions is often not recognized when the two pieces are linked, 

because both are called “spectral acceleration.” Failure to use a common definition may 

introduce an error in the results.  

In this section, the differences in these two definitions are examined, along with the 

reasons why earth scientists and structural engineers choose their respective definitions. 

Examples of the use of these definitions are presented, along with the potential impact of failing 

to recognize the discrepancy. Several procedures for addressing the problem are examined, and 

the relative advantages and disadvantages of each are considered. Analysis is sometimes 

performed for each axis of a structure independently, and other times an entire 3D structural 

model is analyzed at once. Both of these cases are considered, and consistent procedures for each 

are described. These procedures should be helpful for analysts performing seismic risk 

assessments of structures. 
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7.3 SPECTRAL ACCELERATION: TWO DEFINITIONS  

7.3.1 Treatment of Spectral Acceleration by Earth Scientists 

The earth scientist’s concern with spectral acceleration is in predicting the distribution of spectral 

acceleration at a site, given an earthquake with a specified magnitude, distance, faulting style, 

local soil classification, etc. This prediction is made in the form of an attenuation model. Many 

attenuation models are empirically developed using analysis of recorded ground motions (see 

Abrahamson and Silva 1997; Boore et al. 1997; Campbell 1997; Sadigh et al. 1997; and Spudich 

et al. 1999, among many others). There is scatter in these recorded data (due to path effects, 

variation in stress drop, and other factors which are not captured by the attenuation model), 

which must be dealt with during development of the attenuation model.  

The observed variability in spectral acceleration is well represented by a lognormal 

distribution (Abrahamson 1988, 2000b). Thus, attenuation models work with the mean and 

standard deviation of the logarithm of Sa, which can be represented by a Gaussian distribution. 

The broad variability of the distribution hinders estimation of the mean value of lnSa needed for 

the attenuation law. The log Sa’s of two perpendicular components of the ground motion are thus 

averaged, reducing the variance and allowing the mean value of lnSa to be estimated with greater 

confidence. For example, in Figure 7.1 it is seen that arbitrary-component spectra vary more 

about the estimated mean than their geometric mean does. 
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Fig. 7.1  Response spectra from magnitude 6.2 Chalfant Valley earthquake recorded 
at Bishop LADWP, 9.2 km from fault rupture. Response spectra for two 
horizontal components of ground motion, geometric mean of response 
spectra, and predicted mean for given magnitude and distance using 
prediction of Abrahamson and Silva (1997). 

The exponential of the mean of the logarithms of two numbers is termed the geometric 

mean because it is the square root of their product (this is also the same as the SRSS spectral 

values referred to in section 9.5.7.2.2 of ASCE 2002). For conciseness, we will refer to the 

geometric mean of spectral acceleration of two components as Sag.m., and the spectral 

acceleration of an arbitrary component will be referred to as Saarb. The logarithms of these values 

will be referred to as lnSag.m. and lnSaarb, respectively. The terms Sa and lnSa will be used to 

refer to spectral acceleration and its logarithm, without specification as to which definition is 

used. And the standard deviation of lnSa will be referred to as the “dispersion” of Sa, following 

common practice elsewhere. It is noted again that these values are functions of the period and 

damping level specified, but this is not stated explicitly in the notation because consideration of a 

particular period and damping are not needed for this discussion. 

Attenuation models typically provide a predicted mean and standard deviation for the 

conditional random variable lnSag.m., given an earthquake magnitude, distance, etc. These 

estimates for lnSag.m. can be made directly from the data because the averaging of the two 
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components transformed the observed data into values of Sag.m.. For a given earthquake, the 

mean of the conditional random variable lnSaarb is equal to the mean of lnSag.m.. But the standard 

deviation of lnSaarb is greater than that of lnSag.m. by a factor that could be as large as 2  if the 

two components were uncorrelated (because the standard deviation of the mean of 2 uncorrelated 

random variables with common standard deviation σ is equal to σ/ 2 ). Calculating the standard 

deviation of lnSaarb thus takes an additional step of going back to the non-averaged data and 

examining the standard deviation there. This step was taken by some researchers (e.g., Boore et 

al. 1997; Spudich et al. 1999), but was not by many others because it was not recognized as 

important. However, the difference in standard deviations is in fact relevant for ground motion 

hazard analysis, as will be seen in the next section. 

Deterministic ground motion hazard analysis 

The effect of the standard deviation of lnSa is easily seen in deterministic seismic hazard 

analysis. Often in a deterministic hazard analysis, a target spectral acceleration for a “maximum 

considered event” is computed by specifying a scenario event (magnitude and distance) and then 

computing the value of lnSa, at a given period and damping level, that is one standard deviation 

greater than the mean prediction for that event (Reiter 1990; Anderson 1997). But the value of 

the standard deviation depends upon whether Sag.m. or Saarb is being used as the IM. Because of 

its greater dispersion (logarithmic standard deviation), the target value of Saarb will thus be larger 

than that for Sag.m.. So the target spectral acceleration depends on the definition of Sa being used, 

even though both definitions have the same mean value of lnSa. For a “mean plus one sigma” 

ground motion, Saarb will thus be larger than that for Sag.m. by a factor of 
. .ln lnexp( )

arb g mSa Saσ σ− . 

For example, using the model of Boore et al. (1997, Boore 2005), this difference is exp(0.047)  

at a period of 0.8 sec with 5% damping, implying that if Saarb is to be used as the IM, the target 

spectral acceleration would be about 5% larger  than if Sag.m. is used. 

Another method used in deterministic hazard maps is to take as the hazard value 150% of 

the median spectral acceleration value for a characteristic event (ASCE 2002). One of the 

justifications for the 150% rule is that this will capture a reasonable fraction of the Sa values that 

could result from occurrence of this characteristic event. However, the fraction captured will 

vary based on which of the two definitions is used. Consider Sa at a period of 0.8 sec. Per the 

Boore et al. (1997, Boore 2005) attenuation relationship used above, Saarb has a 23% chance of 

exceeding 150% of the median Sa value given the event, while Sag.m. has a 21% chance of 
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exceeding 150% of the median Sa given the event. Thus the level of conservatism resulting from 

this rule varies slightly depending on the Sa definition used. Spectral acceleration is merely a 

tool used to simplify the analysis problem; therefore the factor of safety should not vary based on 

the definition used. In principle the 150% rule for Sag.m. should be a “156% rule” for Saarb, in 

order to provide the same level of conservatism. 

Probabilistic ground motion hazard analysis 

The variation in standard deviation is also seen in probabilistic seismic hazard analysis. In Figure 

7.2, hazard curves for the two definitions of Sa are shown for a hypothetical site 8 kilometers 

away from a recurring magnitude 6.5 earthquake (this simple hazard environment is 

representative of sites near a single large fault). Again the attenuation model of Boore et al. 

(1997, Boore 2005) is used, because it provides dispersions for both Saarb and Sag.m.. We see that 

the hazard curve for Saarb is greater than Sag.m. due to the larger dispersion in Saarb. This is 

because ground motion hazard, especially at long return periods, is driven by ground motions 

that are larger-than-average. So even though Saarb and Sag.m. have the same median value for 

each magnitude/distance considered, the larger-than-average values for Saarb will be greater than 

those for Sag.m.. This is the same effect as is seen in the deterministic hazard analysis case. (It is 

also true that the smaller-than-average values will be smaller for Saarb than for Sag.m., but these 

events make a relatively smaller contribution to hazard, so the larger-than-average and smaller-

than-average events are not offsetting.) For this site the Saarb with a 2% probability of 

exceedance in 50 years is 12% larger than the corresponding Sag.m.. The hazard for sites near 

multiple faults is simply a weighted sum of hazard curves similar to that shown in Figure 7.2, so 

we expect hazard curves at all sites to show this pattern. 
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Fig. 7.2  Ground motion hazard from recurring magnitude 6.5 earthquake at 
distance of 8 kilometers, for Saarb and Sag.m. at period of 0.8 sec with 5% 
damping 

The conclusion to be drawn from these examples is that the ground motion hazard is 

dependent on the definition of spectral acceleration. Even though Sag.m. and Saarb have the same 

median value (for a given magnitude, distance, etc.), the difference in dispersion will cause a 

difference in ground motion hazard. 

This result is important, because it means that ground motion hazard cannot be used 

interchangeably for both Saarb and Sag.m.. This brings to light a problem with the U.S. Geological 

Survey maps of spectral acceleration hazard (Frankel et al. 2002). The maps are produced using 

results from several attenuation models, some of which emphasize the dispersion in Saarb, some 

of which provide only dispersion for Sag.m.. The U.S. Geological Survey has used the dispersions 

emphasized by the models’ authors, resulting in a mix of both definitions being used. Thus the 

current maps are not strictly interpretable as the ground motion hazard for either Saarb, or Sag.m.. 

This will be addressed in future revisions to the maps, in light of the new recognition of the 

importance of this issue (Frankel 2004).  
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7.3.2 Treatment of Spectral Acceleration by Structural Engineers 

Structural engineers also utilize spectral acceleration as a basis for analysis of structural 

response. Let us first consider analysis of a single two-dimensional frame of a structure—a 

common situation in practice. In this case, only a single horizontal component of earthquake 

ground motion is needed for analysis. Therefore, spectral acceleration is computed only for the 

selected component at a period equal to the elastic first-mode period of the structure, and that is 

used as the intensity measure. In most cases, no distinction is made between the two components 

of a ground motion, so using a single component in this case is equivalent to using Saarb as the 

intensity measure. Computing Sag.m. (which incorporates both horizontal components of the 

ground motion) but then using only one of the components for analysis will introduce 

unnecessary scatter into the relationship between the IM and structural response.  

This increased scatter resulting from prediction with Sag.m. is illustrated in Figure 7.3. 

Prediction of response of a structure is made using both Saarb and Sag.m.. A model of an older 

seven-story reinforced concrete frame, described by Jalayer (2003), is used for analysis. Sixty 

unscaled recorded ground motions were used to perform nonlinear dynamic analysis. Figure 7.3 

shows that the prediction of the mean log maximum interstory drift ratio, denoted lnθ, is very 

similar for both intensity measures, but use of Sag.m. as the IM results in increased dispersion of θ  

relative to the use of Saarb, as was anticipated above. The larger dispersion implies that there is 

greater uncertainty in the estimate of median response (i.e., if Sag.m. is used as the IM, a greater 

number of analyses would need to be performed to achieve the same confidence in the mean 

lnθ). Thus, the use of Saarb as the IM is preferable for the structural engineer in order to minimize 

the number of nonlinear dynamic analyses performed.  

Many examples of the use of Sa as an intensity measure exist in the literature. For 

example, modal analysis (Chopra 2001), the SAC/FEMA methodology (FEMA 2000a, b, c), and 

incremental dynamic analysis (Vamvatsikos and Cornell 2002) all use Sa as a predictor of 

structural response in some cases. In virtually every application of these procedures, Saarb (as 

opposed to Sag.m.) is used as the intensity measure for analysis of a single frame of a structure. 
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Fig. 7.3  Prediction of response of single frame of structure using (a) spectral 
acceleration of ground motion component used (Saarb) and (b) spectral 
acceleration of average of both components (Sag.m.)  
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7.4 INCORRECT INTEGRATION OF HAZARD AND RESPONSE 

Spectral acceleration hazard is coupled with response analysis during performance-based 

analysis procedures (e.g., Cornell and Krawinkler 2000; Cornell et al. 2002). In past application 

of these procedures, frequently the ground motion hazard analysis has been unwittingly been 

performed with Sag.m. (to utilize existing attenuation models), and the response analysis has 

performed with Saarb (to minimize dispersion in the response prediction), resulting in the 

inconsistency discussed in this section. Examples where the authors know only too intimately 

that a hazard analysis based on Sag.m. was inadvertently coupled with a response analysis based 

on Saarb include Baker and Cornell (2004), Jalayer and Cornell (2003), Yun et al. (2002), and 

Shome and Cornell (1999). In the work of others it is seldom clear because the question was not 

discussed, but it can be suspected that if the hazard analysis was based on the USGS hazard maps 

or popular attenuation laws such as Abrahamson and Silva (1997) and Sadigh et al. (1997) where 

the only reported dispersion is that for Sag.m., then an inconsistency is likely to exist.  

In addition, other design and analysis procedures (e.g., ASCE 2000d, 2002), utilize the 

U.S. Geological Survey maps of spectral acceleration hazard (Frankel et al. 2002) to attain target 

Sa values at which the performance of the structure should be checked. Although in this case 

there is no explicit statement of the reliability of a structure analyzed in this manner, Sa is still 

used as a link between hazard and response. Thus, it is preferable to define Sa consistently in 

both the hazard and response. Possibilities for a consistent treatment of the problem are 

discussed in the following section. 

7.5 VALID METHODS OF COMBINING HAZARD AND RESPONSE 

For performance-based analysis procedures, it is necessary that the median and dispersion of 

response at a given IM level be consistent with the IM definition used for hazard analysis. This 

can be achieved in several ways, the choice of which may depend in part on the situation and 

available information. Three proposed solutions for use in analyzing a structure along a single 

axis are outlined below. The common characteristic of each method is that the IM used for 

hazard analysis and the IM used for response analysis are consistently defined. 
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7.5.1 Calculate Ground Motion Hazard for Saarb 

With this method, the structural response analysis described above is unchanged, but the ground 

motion hazard analysis is performed for the consistent intensity measure, Saarb. This allows for 

the estimation of structural response with less dispersion than when Sag.m. is used (e.g., see Fig. 

7.3). And when more attenuation models are developed with dispersion for Saarb, the hazard 

analysis is no more difficult than for Sag.m.. The disadvantage is that few current attenuation 

models provide the dispersion for Saarb, meaning that many models, and the resulting hazard 

analysis, cannot be used without modification. 

7.5.2 Predict Structural Response Using Sag.m. 

With this method, the ground motion hazard is unchanged from current Sag.m.-based practice. 

Instead, the response analysis is modified, using Sag.m. as the IM rather than Saarb. To do this, one 

would compute the IM of a record as the geometric mean of Sa of the two components of the 

ground motion, even though only one component will be used for analysis. This method has the 

advantage of not requiring new attenuation laws or hazard analysis. Unfortunately, it will 

introduce additional dispersion into the response prediction, as was seen in Figure 7.3, and hence 

be less efficient as an IM. 

7.5.3 Perform Hazard Analysis with Sag.m., Response Analysis with Saarb, and Inflate 
Response Dispersion  

This method takes advantage of the fact that the median structural response for a given Sa level 

is the same whether Sag.m. or Saarb is used. Only the dispersion is increased if Sag.m. is used, as 

was seen in Figure 7.3. Structural response is thus performed using Saarb (as per standard 

practice) to obtain the median response. Then the dispersion in response is inflated to reflect that 

which would have been seen if Sag.m. had been used as the intensity measure instead. An estimate 

of the amount by which the dispersion should be increased can be obtained using a first-order 

approximation. For this procedure, we assume the following model for the relationship between 

spectral acceleration and response: 

 ln ln arb arba b Saθ ε= + +   (7.1) 

 . . . .ln ln g m g ma b Saθ ε= + +   (7.2) 



 

   
 
 

206

where θ is the structural response value of interest, a and b are coefficients to be estimated from 

the data using least-squares regression, and ε’s are zero-mean random variables (note that a and 

b have the same expected value in Equations 7.1–7.2, as will be demonstrated in Equations 7.3 

and 7.11, and as is supported by the empirical estimates in Fig. 7.3). The model is seen to fit well 

in Figure 7.3, as in many other cases (at least locally). We are interested in estimating the 

standard deviation of lnθ given Sag.m., in the case where we know only the standard deviation of 

lnθ given lnSaarb. From Equation 7.13, we can find the ratio of the two conditional standard 

deviations. For the example dataset here, ln ,ln 0.797
x ySa Saρ =  and ln ,ln 0.942

x xSaθρ = , implying a 

ratio between standard deviations of 1.34. Thus the predicted conditional standard deviation for 

the example problem would be 1.34*0.27=0.36, approximately matching the standard deviation 

in 2b (0.35). 

The SAC procedure (FEMA 2000a, b, c) uses the model of structural response adopted in 

Equation 6.8, but with b = 1. So an analysis using the SAC procedure would be a natural 

candidate for this method. One would simply perform analysis using Saarb as before, but inflate 

the dispersion in structural response using Equation 7.13 before continuing with the SAC 

methodology. 

In the short term, this third method is attractive because it leaves existing hazard and 

response procedures unmodified, and instead makes a correction before the two analyses are 

combined. However, in the long term one of the two more direct methods using a consistent IM 

for both hazard and response would be more expeditious. 

7.5.4 Results from Proposed Methods 

All three of the methods described should result in the same answer for the probability of 

exceedance of a given limit state in the structure, aside from the inherent variability in the 

answer resulting from the statistically uncertain estimates of hazard and response (Baker and 

Cornell 2003). Additional methods can also be conceived using alternative intensity measures, 

but the above methods are expected to be the simplest and most similar to current practices. 

To illustrate the results of the proposed methods, a drift hazard analysis is performed 

using the three proposed methods and the previous inconsistent method. This analysis combines 

the ground motion hazard from Figure 7.2 with the structural response analysis from Figure 7.3 

to determine the rate of exceeding a given response level in the structure. The procedure for 
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computing this drift hazard curve is described by Bazzurro et al. (1998). The results are 

displayed in Figure 7.4. It is seen that the three proposed methods produce comparable results, 

while the inconsistent method results are unconservative (e.g.,  the drift level exceeded with a 

2% probability in 50 years is underestimated by approximately 10%). While the magnitude of 

the error is not overwhelmingly large, it nonetheless represents an easily correctible systematic 

flaw in the procedure.  
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Fig. 7.4  Drift hazard as computed using three methods proposed above and 
inconsistent method  

In many applications today, the drift hazard curve is not computed. Rather, the ground 

motion hazard is used to specify a target spectral acceleration to use in analyzing structural 

response (i.e., the spectral acceleration associated with a 2% probability of exceedance in 50 

years). An inconsistent approach will cause a comparable bias in these calculations as well. 

7.6 ANALYSIS OF 3D STRUCTURAL MODELS: COMBINING HAZARD AND 
RESPONSE 

When analyzing a 3D structural model, both horizontal components of the ground motion are 

used, so the above procedures using a single component are not necessarily applicable. In this 

case, as before, the concern is that the intensity measures used in the hazard analysis and 
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response analysis should be consistent. Fortunately, the preferred method for analysis in this case 

is also a method which is apparently often used in practice. Several potential procedures are 

discussed here: 

7.6.1 Use Sag.m. as Intensity Measure 

In this case, ground motion hazard analysis is performed for Sag.m., as is standard practice today. 

The intensity measure used for structural response is also Sag.m., computed for the two 

components of ground motion used in the analysis. This method is in use today (e.g., Stewart et 

al. 2001) and appears to be the most straightforward for 3D structures. For this reason, it is 

currently recommended by the authors when a scalar intensity measure is used (see below). The 

preferred choice of an IM in the case where the two axes of the structure have different 

fundamental periods has not been extensively examined. In the absence of further research, one 

obvious possibility is to use Sag.m. at an intermediate period (e.g., the geometric mean of the two 

periods). 

7.6.2 Use Saarb as Intensity Measure 

When using Saarb as an intensity measure in this case, it is necessary to specify the component of 

the ground motion being measured, as there are now two horizontal components used in the 

analysis, each with a differing value of Sa. If the objective is only a scalar drift hazard curve 

(e.g., there is only a single response parameter of interest), then the practitioner may obtain the 

most efficient estimate by performing the regression analysis shown in Figure 7.3 one time for 

each candidate IM (e.g., for Saarb oriented along the “X-X” axis of the structure, for Saarb 

oriented along the “Y-Y” axis of the structure, and for Sag.m.). Because all three IM choices 

should lead to the same answer (in the limit with a very large sample of dynamic analyses), the 

engineer is free to choose the IM that results in the most efficient estimation; that is, the IM 

which results in the smallest standard deviation of response prediction. In some cases, the 

optimal IM will be apparent a priori: if the response parameter of interest is a drift in the X-X 

axis, then it is likely that the optimal IM is Saarb oriented along the X-X axis. In other cases, for 

example when assessing the axial force in a corner-column of a structure or when there is 

significant torsion in the structure, the optimal IM may be less obvious. 
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In some cases it is necessary to select a common IM for estimation of more than one 

response parameter simultaneously. For example, in loss estimation procedures associated with 

performance-based engineering it is often desirable to know the probability distribution of a set 

of story drifts and floor accelerations simultaneously. In this case, it may again be useful to 

consider several candidate IMs and examine the tradeoffs in efficiency. For instance, Saarb 

oriented along the X-X axis is likely to estimate the responses along the X-X axis efficiently but 

the responses along the Y-Y axis less efficiently and vice versa for Saarb along the Y-Y axis. 

Choosing an IM in this case will depend upon the relative importance of the various response 

parameters of interest, and an understanding of which IM is most efficient for predicting the 

important response parameters. Note that the results for the less-important response parameters 

will not be incorrect, but only estimated with less statistical precision. 

The above procedure appears to be valid in the case where no record-scaling is used as 

part of the response predictions. If the records are scaled before performing the structural 

analysis, the scaling procedure must be carefully considered. Previous studies of the implications 

of scaling a single component of ground motion may not be applicable to scaling of two 

components. The authors are particularly concerned about the choice of a scale factor for the 

orthogonal component of a ground motion when a selected component has been scaled by a 

specified factor. This problem is currently under investigation.  

7.6.3 Use Vector Intensity Measure Representing Two Components Individually 

This approach uses a two-parameter intensity measure, consisting of the spectral accelerations in 

both the X-X and Y-Y directions. Vector-valued ground motion hazard analysis (Bazzurro and 

Cornell 2002) is used to compute the joint hazard for the spectral acceleration values of the two 

components of ground motion. Response prediction can then be an explicit function of the two 

components independently. This approach should reduce the dispersion in structural response, 

and may be useful in some situations (e.g., the two axes of the structure have differing periods, 

or Saarb along a given axis is not effective at estimating responses along the opposite axis). 

However, this method is not ready for widespread adoption until use of vector ground motion 

hazard analysis becomes more common.  
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7.7 APPLICATION TO CURRENT PRACTICE 

The approaches described above rationally combine the uncertainty in both ground motion 

hazard and structural response, but they differ from current U.S. building-code-based design 

practice (i.e., ASCE 2002). When dynamic time history analyses are utilized in practice today, a 

suite of ground motions (typically three or seven) is scaled to a target response spectrum 

(obtained using the deterministic or probabilistic hazard analysis methods described above). 

These motions are then used to analyze a structure, and evaluation is based on either the 

maximum structural response (if fewer than seven motions are used) or the average response (if 

at least seven motions are used). But again, the definition of spectral acceleration is not stated 

explicitly. An inconsistent basis (e.g., Sag.m. spectra and Saarb scaling) is to be discouraged. As 

shown above, the use of Sag.m. for two-dimensional analysis will result in lower target spectra 

than when Saarb is used, but higher variation among the structural response. If less than seven 

records are used, then the higher variation of structural response values will be implicitly (but not 

accurately) captured by the current rule because the maximum response value is likely to be 

larger. If, however, seven records are used and the average structural response is taken, then 

there is no penalty paid for the higher variation of structural response that results from using 

Sag.m. rather than Saarb. Therefore, consistent use of Sag.m. would be somewhat unconservatively 

biased with seven or more records under the current rule. The ideal solution to this inconsistency 

would be to incorporate the structural response uncertainty explicitly (as is done explicitly in, 

e.g., FEMA 2000a, b, c and Banon et al. 2001). Short of this, the code should require that target 

response spectrum be based on Saarb when at least seven records are used for two-dimensional 

analysis, so that the analysis will include the extra variability in the ground motion intensity. In 

this case structural engineers should explicitly request that the hazard analysis and the scaled 

ground motion records be based on the Saarb definition of Sa. For three-dimensional analysis, 

Sag.m. is probably the natural choice for the reasons outlined in the previous section. 

7.8 CONCLUSIONS 

Although intensity-measure-based analysis procedures have proven to be useful methods for 

linking the analyses of earth scientists and structural engineers, care is needed to make sure that 

the link does not introduce errors into the analysis. Two definitions of “spectral acceleration” are 
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commonly used by analysts, and the distinction between the definitions is not always made clear. 

Because of this, a systematic error has been introduced into the results from many risk analyses, 

typically resulting in unconservative conclusions. For an example site and structure located in 

Los Angeles, the error resulted in a 12% underestimation of the spectral acceleration value 

exceeded with a 2% probability in 50 years, and a 10% underestimation of the structure’s 

maximum interstory drift ratio exceeded with a 2% probability in 50 years. 

This problem is, however, merely one of communication, and not a fundamental flaw 

with the intensity measure approach. It is not difficult to use intensity measures in ways that 

produce correct results. For analysis of a single frame of a structure, the authors see three paths 

to the correct answer: (1) use Saarb for both parts of the analysis, (2) use Sag.m.  for both parts of 

the analysis, (3) perform hazard analysis with Sag.m., structural response analysis with Saarb, but 

inflate the dispersion in the structural response prediction to represent the dispersion that would 

have been seen if Sag.m. had been used. If a three-dimensional model of a structure is to be 

analyzed, the most straightforward method is to use Sag.m. as the intensity measure for both the 

ground motion hazard and the structural response. In the absence of a single standard procedure, 

both earth scientists and structural analysts are encouraged to explicitly state which Sa definition 

they are using for evaluation, in the interest of transparency. 

The methods described above will all produce valid estimates of the annual frequency of 

exceeding a given structural response level. In the future it would be desirable to have 

attenuation models that estimate the dispersion of both Sag.m. and Saarb in order to allow 

flexibility in the definition of the spectral acceleration used for analysis. Finally, vector-based 

methods of hazard and response analysis should improve upon the current situation in the future. 

7.9 APPENDIX: SLOPES AND STANDARD DEVIATIONS OF REGRESSION 
PREDICTIONS 

This appendix explores in more detail the prediction of structural response as a function of either 

spectral acceleration of an arbitrary component or an average component. Consider a set of 

earthquake ground motions consisting of two components. We will refer to these two 

components as the “X” and “Y” components for clarity (the common assumption of no 

preferential orientation of motion is made here, which is typically valid when near-fault 

directivity effects are not present). Now consider the probabilistic distribution of the spectral 
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acceleration values of these ground motion components. Logarithms of spectral acceleration and 

structural response are used to take advantage of the linear relationships in the logarithmic 

domain often observed between these variables (e.g., Figs. 7.3 and Fig. 7.5). 

The lnSa values of the X and Y components have means, denoted ln xSaμ  and ln ySaμ , and 

standard deviations, denoted ln xSaσ  and ln ySaσ . Because there is no preferential direction to these 

motions, ln lnx ySa Saμ μ=  and ln lnx ySa Saσ σ=  (although our estimates of these values for a particular 

dataset might not be exactly equal, the underlying true values are assumed to be). We can 

compute a correlation coefficient between the two components, denoted ln ,lnx ySa Saρ . The 

dependence between lnSax and lnSay is purely linear due to the lack of preferential orientation, as 

can be seen for example in Figure 7.5. We make the further mild assumption that the conditional 

variances of lnSay given lnSax and lnSax given lnSay are constant. 

Consider now the analysis of a structural frame, oriented along the X axis of the ground 

motions. We perform nonlinear dynamic analysis with the X component of each ground motion 

to calculate a set of structural response values. The logarithmic response values have a mean, 

ln xθμ , and a standard deviation, ln xθσ . There is a relationship between lnSax (log spectral 

acceleration in the X direction) and lnθx (log response of the structure, oriented in the X 

direction) which can be represented by a linear correlation, and measured with a correlation 

coefficient denoted ln ,lnx xSaθρ . This linear relationship is represented by, for instance, the 

regression line shown in Figure 7.3a. But sometimes the relationship between ground motion 

intensity and structural response is represented as a function of the geometric mean of the Sa’s of 

the two components, as in Figure 7.3b. We can represent this relationship with the correlation 

coefficient denoted 
. .ln ,lnx g mSaθρ . We make the assumption that the dependence between lnθx and 

lnSa is purely linear and the conditional variance of lnθx given lnSa is constant (for both lnSax 

and lnSag.m.). We are interested in the relationship between the slopes and standard deviations of 

prediction errors resulting from prediction using these two predictors lnSax and lnSag.m..  
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Fig. 7.5  Samples of (lnSax, lnSay) pairs from (a) set of ground motions with 
magnitude ≈ 6.5 and distance ≈ 8 km and (b) set of ground motions with 
wider range of magnitudes and distances, used to perform structural 
analyses displayed in Fig. 7.3 
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First, recalling that lnSag.m. is the average of lnSax and lnSay, we note that the spectral 

acceleration of the Y component has no direct physical effect on the response of the frame 

oriented in the X direction (indeed, the Y component of the ground motion is not even used in 

analysis). By itself, the parameter lnSay does have, however, an indirect ability to predict θx 

simply due to its correlation with the predictor lnSax. Therefore, while lnθx and lnSay are 

statistically correlated, it is true that given lnSax, lnSay provides no additional information about 

the distribution of lnθx. That is, lnθx and lnSay are conditionally independent given lnSax. 

Using the above information, we can calculate conditional means and variances, using 

best linear predictors. For example, the mean value of lnθx given lnSax is: 
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ln |ln ln
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x x x x x x x
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≡ +

  (7.3) 

It can be shown that a and b are the expected values of the coefficients estimated from linear 

least squares regression of lnθx on lnSax. The conditional variance of lnθx given lnSax is: 

 ( )2 2 2
ln |ln ln ln ,ln1

x x x x xSa Saθ θ θσ σ ρ= −   (7.4) 

We are interested in computing the conditional mean and variance of lnθx given lnSag.m. for 

comparison, but several intermediate results are needed first. The marginal mean and variance of 

lnSag.m. are: 
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The conditional variance of lnθx given lnSay is: 
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This implies that the correlation coefficient between lnθx and lnSay is ln ,ln ln ,lnx x x ySa Sa Saθρ ρ , showing 

that it is weaker than the correlation between lnθx and lnSax, and only as strong as the correlation 

lnSay has with lnSax permits. This simple product form is a result. Next we compute the 

covariance between lnθx and lnSag.m.: 
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  (7.8) 

Finally, using the results of Equations 7.6 and 7.8, we compute the correlation coefficient 

between lnθx and lnSag.m.: 
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We are now ready to find the conditional mean of lnθx given lnSag.m.: 

 . .

. . . .

. .

ln
ln |ln ln ln ,ln ln

ln

g m

x g m x x g m

g m

Sa
Sa z Sa x

Sa

z
θ θ θ θ

μ
μ μ ρ σ

σ=

⎛ ⎞−
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

  (7.10) 

Substituting from Equations 7.5–7.6 and 7.9 gives: 
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where a and b are the same as in Equation 7.3. Therefore, the expected slope and intercept of a 

regression analysis will be the same regardless of whether lnSag.m. or lnSax. is used to predict 

lnθx. Now consider the conditional variance of lnθx given lnSag.m.: 
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Therefore, the conditional standard deviation of of lnθx given lnSag.m. is greater than the 

conditional standard deviation given lnSax by a factor equal to: 
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  (7.13) 

Noting that correlation coefficients always lie on the interval [-1, 1], we see that the ratio in 

Equation 7.13 is always greater than or equal to 1, and increases with decreasing ln ,lnx ySa Saρ  or 

increasing ln ,lnx xSaθρ . The term ln ,lnx ySa Saρ  is dependent on the record set in use, but typically falls 

between 0.8 and 0.9, depending on the range of magnitudes and distances of the records (letting 

the magnitude and distance vary in the record set increases the correlation between components 

relative to a record set selected from a narrow range of magnitude and distance values, as is seen 

in Fig. 7.5). 

Note that this result holds only under the conditions described above. The most critical 

assumption is that response in the X direction is unaffected by ground motion input in the Y 

direction. This may not be the case in, for example, torsionally coupled structures. In addition, 

the assumption of linear dependence between lnθx and lnSa may not always hold. In these cases, 

the simple inflation factor is not applicable. 

 
 
 



 

   
 
 

 

8 Correlation of Response Spectral Values for 
Multi-Component Ground Motions 

Baker, J.W., and Cornell, C.A. (2005). Correlation of Response Spectral Values for Multi-
Component Ground Motions. Bulletin of the Seismological Society of America 96(1): 215–227. 
 
 

8.1 ABSTRACT 

Ground motion prediction (attenuation) models predict the probability distributions of spectral 

acceleration values for a specified earthquake event. These models provide only marginal 

distributions, however; they do not specify correlations among spectral accelerations with 

differing periods or orientations. In this section a large number of strong ground motions are 

used to empirically estimate these correlations, and nonlinear regression is used to develop 

approximate analytical equations for their evaluation. Because the correlations apply to residuals 

from a ground motion prediction, they are in principle dependent on the ground motion 

prediction model used. The observed correlations do not vary significantly when the underlying 

model is changed, however, suggesting that the predictions are applicable regardless of the 

model chosen by the analyst. The analytical correlation predictions improve upon previous 

predictions of correlations at differing periods in a randomly oriented horizontal ground motion 

component. For correlations within a vertical ground motion or across orthogonal components of 

a ground motion, these results are believed to be the first of their kind.  

The resulting correlation coefficient predictions are useful for a range of problems related 

to seismic hazard and the response of structures. Past uses of previous correlation predictions are 

described, and future applications of the new predictions are proposed. These applications will 

allow analysts to better understand the properties of single- and multi-component earthquake 

ground motions. 
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8.2 INTRODUCTION 

Spectral acceleration (Sa) values of earthquake ground motions are widely used in seismic 

hazard analysis and evaluation of structural response. Relatively little work has been done, 

however, to measure the joint distributions of multiple simultaneous spectral acceleration values. 

In this section, the authors measure correlation coefficients of spectral acceleration values to gain 

insight into these joint distributions and to facilitate other research. Correlations are presented for 

spectral acceleration values of a single ground motion component at two differing periods, and 

also for spectral accelerations of orthogonal components (horizontal/horizontal or 

horizontal/vertical) at two periods. 

This analysis was performed in recognition of the many potential applications of the 

results. Several predictions have been previously developed for correlations of spectral 

acceleration values of a single ground motion component, and past uses of those models are 

mentioned below. The models for spectral accelerations of orthogonal components are new, and 

so several potential applications are described. 

8.3 MOTIVATION 

Knowledge of correlation of spectral values has been used in several past studies to gain insight 

into seismic hazard and structural performance. Several past uses of the type of models presented 

here are discussed in this section, and potential future applications will be discussed later. 

Conventional probabilistic seismic hazard analysis (PSHA) (Kramer 1996) provides the 

mean annual rate of exceeding a specified value of a single ground motion parameter, such as 

spectral acceleration at a given period. These hazard analyses can be repeated for spectral 

acceleration at several periods and presented simultaneously as uniform hazard spectra. But these 

uniform hazard spectra, being the locus of results from a suite of marginal hazard analyses for 

individual spectral values, should not be interpreted as providing any knowledge about the joint 

occurrence of spectral values at differing periods. In order to obtain knowledge about the joint or 

simultaneous occurrence of spectral acceleration at multiple periods, it is necessary to perform a 

vector-valued probabilistic seismic hazard analysis (VPSHA) (Bazzurro and Cornell 2002). This 

analysis is a direct extension of traditional PSHA, using the same information about the 

magnitudes, locations, and recurrence rates of earthquakes and the same ground motion 
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prediction (attenuation) models. The only additional information requirement is knowledge of 

the joint distribution of the spectral values for a given magnitude and distance. Logarithmic 

spectral acceleration values have been observed to be well-represented by the normal distribution 

marginally, so the mild assumption that pairs of values are well-represented by the joint normal 

distribution (and/or that the conditional distributions of one given the other are normal) is 

probably a reasonable one, but has not been investigated as yet to the authors’ knowledge. Under 

this assumption, only correlation coefficients between spectral values at two periods are needed 

to define the joint distribution and proceed with VPSHA. The models presented in this section 

will provide improved predictions of these correlation coefficients, furthering the development of 

the vector-valued probabilistic seismic hazard analysis. Once a vector-valued PSHA has been 

performed, structural engineers can use this new information to improve the efficiency of 

probabilistic performance assessments of structures (e.g., Baker and Cornell 2004, 2005a). 

Because engineers are provided with more information about the spectral content of the ground 

motions occurring at a site, they are able to increase the precision of their structural response 

analyses. 

Correlation of spectral acceleration values also arises implicitly in the development of 

ground motion prediction models. The seismologists who develop these models often average 

the (log) spectral acceleration values of two perpendicular horizontal components of a ground 

motion and use this averaged data for fitting regression lines. This averaging decreases the noise 

in the data, allowing for more accurate estimates of the model parameters. Thus, PSHA 

calculations using these ground motion prediction models provide mean exceedance rates for 

averaged spectral acceleration values, or more precisely for the geometric mean of the two 

horizontal components. But structural engineers often do not perform this averaging across 

components, resulting in an inconsistency between PSHA and structural analysis. The work of 

the seismologist and engineer can be properly re-connected, however, once knowledge of 

correlations of spectral acceleration values in perpendicular ground motion components is known 

(Baker and Cornell 2005b). 

In addition to averaging across perpendicular components, averaging spectral 

accelerations across a range of periods is sometimes also performed, with a similar goal of 

reducing the variability of the resulting ground motion intensity parameter for a given magnitude 

and distance (e.g., Pacific Gas & Electric 1988; Shome and Cornell 1999; Abrahamson et al. 
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2003). With this work, knowledge of correlations of spectral accelerations is again needed, in 

order to quantify the effect of the averaging procedure. 

A measure of ground motion intensity proposed by Cordova et al. (2001) is a function of 

spectral acceleration at two periods. This measure was found to be useful for predicting response 

of the structure under consideration. A custom ground motion prediction model was needed to 

complete the assessment of the structure, and was derived from an existing model by making use 

of an estimate of correlation between spectral acceleration values at the two periods of interest. 

In addition to these past applications, there are several easily envisioned future 

applications that make use of the new information in this section regarding correlations across 

multiple components of ground motion. Examples are presented below, after the development of 

the predictive equations.  

It should be noted that there are other studies of earthquake ground motions that at first 

glance might appear similar to this work, but are in fact not related. For example, Penzien and 

Watabe (1975) observed that temporal cross-correlations of ground motion accelerations at an 

instant in time are approximately zero along specified principle axes. That work does not imply 

anything about the phenomenon examined in this section: the correlation of peak spectral values 

(i.e., frequency content measures) at differing frequencies and orientations.  

8.4 ANALYSIS PROCEDURE 

8.4.1 Record Selection 

The results presented in this study were derived empirically from a strong motion dataset based 

on worldwide recordings of shallow crustal earthquakes. The records for this study were taken 

from the PEER Strong Motion Database (2000). Records were selected based on the following 

criteria: 

1. The site was classified as stiff soil: USGS class B-C or Geomatrix class B-D. 

2. The recording was made in the free field or the first story of a structure. 

3. All three components (two horizontal and one vertical) were available and had high-pass filter 
corner frequencies less than 0.2 hertz and low-pass filter corner frequencies greater than 18 hertz. 

4. The earthquake magnitude was greater than 5.5. 

5. The source-to-site distance was less than 100 km. 

The recordings were left oriented as recorded rather than rotated into fault-normal and 

fault-parallel components, so they have effectively random orientations with respect to fault 
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direction. This is analogous to the record orientations used to develop typical ground motion 

prediction models. The next generation attenuation project will produce a record library and 

predictive models that treat fault-normal and fault-parallel ground motions separately. When that 

project is completed it will be useful to compute correlations for fault-normal and fault-parallel 

ground motions separately, but at present only randomly oriented ground motions are considered.  

A total of 469 records from 31 earthquakes met the selection criteria, each consisting of 

three components of ground motion recordings. Of the 469 records, 202 were from the 1999 Chi-

Chi, Taiwan earthquake. The Chi-Chi records were removed from the initial analysis to ensure 

that the results would not be excessively influenced by any peculiarities of the records from this 

single earthquake. The Chi-Chi records were later used to cross-validate the predictive equations.  

8.4.2 Computation of Correlations 

Using the 267 remaining three-component records, correlations were computed for the two 

horizontal and vertical components. At this point, the variable for which the correlation is 

estimated should be defined more clearly. The logarithmic spectral accelerations of the three 

ground motion components can be represented by the following model: 

 ln ( ) ( , , , ) ( , ) ( )x H H xSa T f M R T M T Tθ σ ε= +  (8.1)  

 ln ( ) ( , , , ) ( , ) ( )y H H ySa T f M R T M T Tθ σ ε= +  (8.2)  

 ln ( ) ( , , , ) ( , ) ( )z V V zSa T f M R T M T Tθ σ ε= +  (8.3)  

where x and y are used to denote the two horizontal directions of the recording, and z is used to 

denote the vertical direction. The functions ( , , , )Hf M R T θ  and ( , , , )Vf M R T θ  are mean ground 

motion predictions for the horizontal and vertical logarithmic response spectral values, 

respectively. These predictions are a function of the earthquake magnitude (M), distance (R), 

period (T) and other parameters (θ) such as the local soil conditions and faulting mechanism. 

These mean ground motion predictions are deterministic, given the input parameters. The terms 

( , )H M Tσ  and ( , )V M Tσ  account for the observed standard deviation of the logarithmic 

horizontal and vertical spectral accelerations, respectively. The standard deviations are observed 

to be dependent on the magnitude of the earthquake and the period of interest. Finally, the 

random variables ( )x Tε , ( )y Tε , and ( )z Tε  account for the randomness of the observations. 

Because the other terms in Equations 8.1–8.3 have already accounted for the means and standard 
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deviations of logarithmic spectral acceleration, the ε terms have means of zero and unit standard 

deviations.  

The ( , , , )f M R T θ  and ( , )M Tσ  functions are completely defined by previously published 

ground motion prediction models. What is not defined by standard ground motion prediction 

models is the correlation between ε terms at different frequencies or for different components. 

For example, the correlation between the ε values of the two horizontal components of a given 

record is of interest: ( ), ( )x yT Tε ερ . The ε values of a record also vary as the period varies, and so the 

correlation of the ε values of a single component of a record at two periods is also of interest: 

1 2( ), ( )x xT Tε ερ . Finally, one might be interested in the correlations between two components at two 

differing periods: 
1 2( ), ( )x yT Tε ερ . These correlation values are estimated in this section. 

It can be seen from Equations 8.1–8.3 that the computed ε values will vary somewhat for 

a given record depending on the ground motion prediction model chosen. That is, lnSa(T) of a 

record is given and ( , , , )f M R T θ  and ( , )M Tσ  vary slightly among models, and so the ( )Tε  

value of a record must also vary among models to maintain equality. The correlations of ε 

values, however, were observed to be insensitive to the ground motion prediction model 

considered. Correlations were computed here using the model of Abrahamson and Silva (1997), 

but the results were found to be nearly identical when other models (specifically, Boore et al. 

1997 and Campbell 1997) were compared. 

Once correlations of the ε values have been determined, we note that ln ( )Sa T  is simply a 

linear function of ( )Tε , with no other sources of uncertainty. Therefore, the correlation between, 

for example, ln ( )xSa T  and ln ( )ySa T  (for a given record) is equal to the correlation between 

( )x Tε  and ( )y Tε . Thus the procedure used here is to compute the ε values for all records, in 

order to remove the effect of magnitude, distance, etc., from the variation in observed spectral 

values. Correlations can be computed for these ε values, which are then appropriate to represent 

the correlations between lnSa values for a given magnitude, distance, etc. For the same reason, 

the predictions can be used to represent logarithmic spectral velocity or spectral displacement. 

The correlation of ln ( )xSa T  and ln ( )ySa T  is also generally a reasonable approximation for the 

correlation between ( )xSa T  and ( )ySa T  (Liu and Der Kiureghian 1986). In applications such as 

vector-valued PSHA, however, it is often the logarithms of response spectral values that are used 
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in the joint distributions, so the more precise correlation between ln ( )xSa T  and ln ( )ySa T  is 

sufficient in many cases. 

To estimate correlation coefficients, we use the maximum likelihood estimator, 

sometimes referred to as the Pearson product-moment correlation coefficient (Neter et al. 1996): 
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ρ =
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− −
=

− −

∑

∑ ∑
 (8.4)  

where A and B are the random variables of interest (e.g., ( )x Tε  and ( )y Tε ), A  and B  are their 

sample means, Ai is the ith observation of variable A, and n is the total number of observations 

(records). We perform this correlation computation for each pair of orientations 

(horizontal/horizontal in the same direction, horizontal/horizontal in perpendicular directions, 

vertical/vertical, and vertical/horizontal) and for each pair of periods of interest (75 periods 

between 0.05 and 5 sec). The matrix representing correlations for all combinations of the 75 

periods is most compactly displayed using a contour plot as a function of the periods T1 and T2 

(e.g., Fig. 8.1). 

Before performing further analysis, the correlation coefficients estimated using Equation 

8.4 were smoothed using a simple averaging with correlation coefficients in a nearby 

neighborhood of periods, in order to remove some of the noise in the estimates and make the 

underlying patterns in the correlation matrix clearer. A comparison of contours of the correlation 

matrix before and after smoothing is displayed in Figure 8.1. 
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Fig. 8.1  Effect of smoothing on empirical correlation matrix for horizontal 
epsilons in perpendicular directions at two periods (T1 and T2). (a) 
Before smoothing and (b) after smoothing.  

8.4.3 Nonlinear Regression 

Nonlinear least-squares regression was utilized to condense the data from a large empirical 

correlation matrix into a relatively simple predictive equation. Functional forms were chosen 

based on inspection of the correlation matrices, and coefficients for the functions were 

determined using nonlinear regression. Correlation coefficients estimated from empirical data 

have non-constant standard errors that are dependent on the true underlying correlation 

coefficient. For this reason, minimizing the squared error between the empirical correlation 

matrix and the predictive function would not be the optimal criteria for fitting the predictive 

function (i.e., fitting a correlation coefficient of 0.9 with an estimate of 0.8 is a worse error than 

fitting a correlation coefficient of 0.1 with an estimate of 0). For this reason the Fisher z 

transformation (Neter et al. 1996) was applied to the correlation coefficients: 

 1 1ln
2 1

z ρ
ρ

⎛ ⎞+= ⎜ ⎟−⎝ ⎠
 (8.5)  

where ρ is an estimated correlation coefficient and z the transformed data with a constant 

standard error. Simple least-squares regression could then be applied to these z values. The 

coefficients for the prediction equations were selected such that the squared prediction errors 

were minimized over the range of periods of interest: 
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 (8.6)  

where ,i jρ  is the empirical correlation coefficient at the period pair (Ti, Tj) and ,ˆ ( )i jρ θ  is its 

predicted value using the functional forms shown below with a vector of coefficients θ . The 

resulting models are strictly empirical and thus should not be extrapolated beyond the range over 

which they were fit (periods between 0.05–5 sec, earthquake magnitudes between 5.5–7.6, and 

distances between 0–100 km). 

8.5 RESULTS 

The results of the above analyses are presented in the form of simple equations. They are broken 

into three separate cases, presented individually below. 

8.5.1 Cases at a Single Period 

Correlations between response spectral values with the same period but differing orientations are 

presented first. The correlation between horizontal orthogonal ε values at the period T is 

estimated by the equation: 

 , 0.79 0.023 ln( )
x y

Tε ερ = − ⋅  (8.7)  

The predictions from this function and the empirical correlations from the dataset are displayed 

in Figure 8.2. By using the bootstrap to resample ground motion records (Efron and Tibshirani 

1993), the slope of the regression line was found to be statistically significant, with a p-value of 

0.001. 
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Fig. 8.2  Correlation coefficients for perpendicular horizontal epsilons at same 
period. Empirical results, prediction from Eq. 8.7, and correlations 
implied from ratios of standard deviations in Boore et al. (1997) and 
Spudich et al. (1999).  

The correlation between a horizontal ε value and a vertical ε value at the period T is 

estimated by the constant: 

 , 0.63
x zε ερ =  (8.8)  

A regression fit was performed with a prediction as a function of T, but the slope was not 

statistically significant and so the prediction is a constant value for all periods. The empirical 

correlations from the dataset and the predicted value are displayed in Figure 8.3.  
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Fig. 8.3  Correlation coefficients between horizontal epsilons and vertical 
epsilons at same period. Empirical results and prediction from Eq. 8.8. 
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8.5.2 Cases with Differing Periods but Same Orientation 

When the two periods of interest differ, more complex functional forms are needed. The 

correlation between the ε values of a single horizontal ground motion component at two differing 

periods is estimated by the function: 

 ( )min 0.189

maxmin
,

min

1 cos 0.359 0.163 ln ln
2 0.189x x T

TTI
Tε ε

πρ
<

⎛ ⎞⎛ ⎞= − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (8.9)  

where ( )min 0.189TI
<

 is an indicator function equal to 1 if min 0.189T <  second and equal to 0 otherwise, 

implying that the form of the equation is simply ( )( )max min1 cos ln /a b T T− −  for periods larger than 

0.189 second. The variables Tmin and Tmax are used to denote to the smaller and larger of the two 

periods of interest, respectively. The empirical correlations from the dataset and the predictions 

from Equation 8.9 are displayed in Figure 8.4a and Figure 8.4b, respectively. Note that both the 

empirical data and this prediction imply that correlation does not always decrease with 

increasing separation of periods (e.g., the correlation between Sa values at {Tmin=0.05s, Tmax=1s} 

is greater then the correlation at {Tmin=0.2s, Tmax=1s}). The authors see no obvious reason for 

this phenomenon, but it is seen clearly in the data. 
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(d) 

Fig. 8.4  Correlation contours for horizontal epsilons in same direction at two 
periods (T1 and T2). (a) Smoothed empirical results. (b) Prediction from 
Eq. 8.9. (c) Prediction from Abrahamson et al. (2003). (d) Prediction 
from Inoue and Cornell (1990).  

Although Equation 8.9 was fit for ε values of individual components, it is equally valid 

for ε values of geometric mean spectral acceleration values. This is shown both theoretically and 

empirically in Appendix B. The equation could also be used to approximately represent the 

correlation of interevent ε values (which are of interest for modeling losses to portfolios of 

spatially distributed buildings) but the agreement is not as good in this situation. The definition 

of interevent ε values can be found in Abrahamson and Silva (1997). 

The correlation between the ε values of a vertical ground motion component at two 

different periods is estimated by the function: 
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1.4

max max
,

min min

1 0.77 ln 0.315 ln
z z

T T
T Tε ερ

⎛ ⎞
= − + ⎜ ⎟

⎝ ⎠
 (8.10)  

A comparison of this prediction with the empirical correlation coefficients is shown in Figure 

8.5. 

0.05 0.1 0.5 1 5
0.05

0.1

0.5

1

5

T1

T 2

0.20.3

0.4
0.5

0.6
0.7

0.8

0.9

1.0

 
(a) 

0.05 0.1 0.5 1 5
0.05

0.1

0.5

1

5

T1

T 2

0.20.3

0.4
0.5

0.6

0.7

0.8

0.9

1.0

 
(b) 

Fig. 8.5  Correlation contours for vertical epsilons in same direction at two 
periods (T1 and T2). (a) Smoothed empirical results. (b) Prediction from 
Eq. 8.10.  

8.5.3 Cases with Differing Periods and Differing Orientations 

For correlations of ε values between two horizontal components in perpendicular directions, it 

was hypothesized that perhaps the correlation coefficient could be represented as a product of the 

correlation due to perpendicular orientation and the correlation due to differing periods. The 

model of Equation 8.7 was used to represent the perpendicular orientations, evaluated at 

min maxT T T= , the geometric mean of the two periods of interest, and the model of Equation 8.9 

was used to represent the correlations at differing periods. The resulting product-form equation 

is:  

 
( )

( )min 0.189

, min max

maxmin

min

0.79 0.023 ln

1 cos 0.359 0.163 ln ln
2 0.189

x y

T

T T

TTI
T

ε ερ

π
<

= − ⋅

⎛ ⎞⎛ ⎞⎛ ⎞⋅ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (8.11)  

A comparison of this prediction with the empirical correlation contours is shown in Figure 8.6. 

This form fits the empirical results well, and agrees with Equation 8.7 in the special case 
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min maxT T= . This “product of correlation coefficients” form implies that a Markov-process-like 

relationship exists, where 1( )x Tε  and 2( )y Tε  are conditionally (linearly) independent given either 

2( )x Tε  or 1( )y Tε  (Ditlevsen 1981, p339). Approximate conditional independence is observed in 

both the empirical data and in Equation 8.11 (making the approximation 

1 1 2 21 2 1 2 ( ), ( ) ( ), ( )( ), ( ) x y x yx y T T T TT T T T ε ε ε εε ερ ρ ρ≅ ≅ ). 
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(b) 

Fig. 8.6  Correlation contours for horizontal epsilons in perpendicular directions 
at two periods (T1 and T2). (a) Smoothed empirical results. (b) Prediction 
from Eq. 8.11.  

The same procedure was used to predict the correlations of epsilons between a horizontal 

and a vertical component of a ground motion at differing periods. The estimate of Equation 8.8 at 

the geometric mean of the two periods was multiplied by a term with the functional form of 

Equation 8.9. In this case, the coefficients of Equation 8.9 did not provide a good fit to empirical 

results (which was expected because the coefficients are not associated with vertical motions), so 

two coefficients were re-estimated using nonlinear regression (the additional improvement from 

re-fitting all coefficients was negligible). The final estimate is given by: 

 
( )

( )min 0.189

, min max

max min

min

0.64 0.021 ln

1 cos ln 0.29 0.094 ln
2 0.189

x z

T

T T

T TI
T

ε ερ

π
<

= + ⋅

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⋅ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 (8.12)  

This prediction is compared to empirical results in Figure 8.7. One notable feature of Figure 8.7a 

is that the contours are not symmetric about the line T1=T2. That is, the correlation between Sa of 

the horizontal component at T1 with the Sa of the vertical component at T2 is not necessarily 

equal to the correlation of the Sa of the horizontal component at T2 with the Sa of the vertical 
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component at T1. When the empirical correlations from the primary dataset were compared with 

the empirical correlations from the Chi-Chi dataset, however, variations between the two 

indicated that any asymmetries in the empirical correlations were likely due to sampling 

variability, rather than from some underlying trend. For this reason, the form of Equation 8.12 is 

left such that predictions are symmetric about the line T1=T2. 
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(b) 

Fig. 8.7  Correlation contours of vertical epsilons with horizontal epsilons at two 
periods (T1 and T2). (a) Smoothed empirical results. (b) Prediction from Eq. 
8.12.  

Among the horizontal/vertical correlations, certain period pairs will be of more 

engineering interest than others. For instance, periods of vibration of buildings are typically 

much shorter in the vertical direction than the horizontal direction. Using a simple estimate of 

0.1s for the vertical period of a typical building, it would be interesting to know the correlation 

of vertical Sa’s at 0.1s with horizontal Sa’s at a range of periods (corresponding to varying 

horizontal periods of vibration). This is shown in Figure 8.8, for both the empirical and predicted 

correlations. 
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Fig. 8.8  Correlation coefficient between vertical epsilons and horizontal epsilons 
when period in vertical direction is 0.1 sec 

For all of the predictions above, several checks were performed. The positive definiteness 

of the predicted correlation matrices (when computed for a large array of periods 

simultaneously) was verified. A joint correlation matrix consisting of predictions in all three 

directions simultaneously was also found to be positive definite. This is a required property of a 

correlation matrix, and is necessary if one needs the joint distribution of Sa at many periods 

simultaneously (e.g., the “simulation of response spectra” application below). In addition, it was 

verified that the empirical correlations do not depend on magnitude or distance. This was done 

by taking windows of magnitude or distance values, and comparing the computed correlation 

coefficients as the window moved to different magnitude or distance values. No trends were 

seen, and so the above models were left functionally independent of magnitude and distance. 

Supporting calculations for these conclusions can be found in Appendix B. 

Some general observations can be made from the above data and analytical predictions. 

When both periods are the same, the correlation between the Sa’s of two perpendicular 

horizontal components is roughly 0.8. For frame-type buildings, the first two periods of vibration 

in the same axis typically have a ratio of approximately 3 to 1. Spectral acceleration values at 

these two periods are often used by engineers (e.g., in response spectrum analysis, Chopra 2001), 

and we see that if the periods are greater than 0.189s, the correlation coefficient between these 

two Sa’s is approximately 0.6. When considering two periods with a ratio of 3 to 1 in orthogonal 

horizontal directions, we can use the Markov approximation and estimate the correlation 

coefficient as 0.8*0.6=0.48. When considering vertical ground motions, if we assume that the 

vertical period of interest is 0.1s and the horizontal period of interest is 0.5–1s (for midrise 
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buildings) then we see that the correlation coefficient is approximately 0.3– 0.4. If we define the 

correlation distance as the ratio of periods Tmax/Tmin such that the correlation coefficient between 

the two is e-1=0.37, then the correlation distance is approximately 5 for vertical records and 6.5 

for horizontal records (if Tmin>0.189). These numbers may serve as useful rules-of-thumb for 

quick estimates.  

8.6 COMPARISONS WITH PREVIOUS WORK 

The predictions provided by Equations 8.7–8.12 are believed to be the first of their kind in most 

cases, except for two previous models analogous to Equation 8.9. Inoue and Cornell (1990) 

proposed the following analogous model: 

 , max min1 0.33 ln( / )
x x

T Tε ερ = − ⋅  (8.13)  

The function was fit over a period range between 0.1–4 sec, using 64 record components. Its 

contours are plotted in Figure 8.4c. This prediction agrees reasonably well with empirical results 

within the range over which it was fitted, but it would perform poorly if extrapolated to the larger 

period range used by the newer models. 

Another model for the correlations of epsilons at two periods along the same component 

is provided by Abrahamson et al. (2003): 

 
( ) ( )( )( )
( ) ( )( )( )

2
10 10 10

, 2
10 10 10

tanh 1 1.32 log 0.072 log 0.05 0.5 log ( )  for 3.16 
  

tanh 1 1.32 log 0.072 log 0.95 1.3 log ( )  for 3.16 x x

c c

c c

X X f f Hz

X X f f Hz
ε ερ

⎧ − ⋅ + − − ⋅ ≤⎪= ⎨
− ⋅ + − + ⋅ >⎪

⎩

 (8.14)  

where f1 and f2 are the larger and smaller frequencies, respectively, fc=0.5(f1+f2), and X=ln(f1/f2). 

The function was fit over a range of periods between 0.03–5 sec, using a record set similar to the 

one used here. The contours of this prediction are shown in Figure 8.4d. It is not dramatically 

different from that of Equation 8.9, displayed in Figure 8.4b. Selected contours from Figure 8.4a, 

b, and c are overlaid in Figure 8.9 to aid comparisons of the predictions. It should be noted that 

one desirable attribute missing from the Abrahamson et al. prediction is positive definiteness 

when the correlation matrix is computed for multiple periods simultaneously. This violates a 

required property of correlation matrices as discussed above.  
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Fig. 8.9  Overlaid contours at four correlation levels for empirical correlations, 
prediction from Eq. 8.9 and prediction from Abrahamson et al. (2003). 

In general, these previous models agree reasonably well with Equation 8.9 proposed here. 

Equation 8.9 may be considered an improvement due to its increased range of periods as 

compared with the model of Inoue and Cornell and due to its positive definiteness property, 

which the Abrahamson et al. model does not possess. Equation 8.9 also produces smaller 

residuals than these two models when predicting correlations of either the primary record set 

above or the Chi-Chi record set (which was not used to fit any of the three models).  

One additional study of spectral acceleration correlations used 30 records from the 1999 

Chi-Chi, Taiwan, earthquake (Wang et al. 2001). The results are not directly comparable to the 

work here, however, and so this work is not considered further. 

Previous work also exists that can be indirectly compared to Equation 8.7. Some ground 

motion prediction models provide standard deviations of residuals for both the logarithmic 

spectral acceleration of a single horizontal component of a ground motion, or for the geometric 

mean of two orthogonal components (e.g., Boore et al. 1997; Spudich et al. 1999). By examining 

the ratios of the two standard deviations, one can back-calculate the implied correlation 

coefficient between the two components using the following equation: 

 2 2
, . .2 1

x y g m arbε ερ σ σ= −  (8.15)  

where . .g mσ  is the logarithmic standard deviation of the geometric mean of the two horizontal 

components, and arbσ  is the logarithmic standard deviation of an arbitrary component. The 

correlation coefficients implied by the models of  Boore et al. (1997, 2005) and Spudich et al. 

(1999) are displayed in Figure 8.2. These models underestimate the correlation seen empirically 
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in this study, but estimation of correlations was not a goal of these studies. The value of interest 

to these authors is 2 2
. .arb g mσ σ , but a slight change in this ratio can produce a large change in the 

correlation coefficient. Given that these authors were not interested in correlations and that the 

correlations calculated using Equation 8.15 are very sensitive to the ratio  2 2
. .arb g mσ σ , it is 

perhaps not surprising that there is a slight discrepancy between the direct calculations of this 

section and the indirect back-calculations from previous work.  

8.7 APPLICATIONS 

To demonstrate the usefulness of these new predictions and perhaps inspire new uses, several 

applications of the new correlation predictions are briefly described here. 

8.7.1 Vector-Valued Hazard Analysis for Horizontal and Vertical Components of Ground 
Motion 

The vector-valued hazard analysis methodology of Bazzurro and Cornell (2002) can now be 

easily applied to analysis of horizontal and vertical ground motions simultaneously. Consider a 

hypothetical two-dimensional building frame with a first-mode period of 1 second in the 

horizontal direction and a first-mode period of 0.1 sec in the vertical direction. Using Equation 

8.12, we estimate a correlation coefficient between the Sa’s at these two periods of 0.30. We 

assume that the building is located 8 km from a single fault which produces only (characteristic) 

magnitude 6.5 earthquakes with a mean return period of 500 years. Using the Abrahamson and 

Silva (1997) ground motion prediction model and the correlation coefficient predicted here, we 

can compute the joint distribution of  horizontal and vertical spectral acceleration values at the 

specified first-mode periods. Contours of that hazard are displayed in Figure 8.10. It is 

interesting to note that because of the low correlation, extreme values of Sa are unlikely to occur 

in the horizontal and vertical directions simultaneously. For example, we note that a horizontal 

Sa of 0.65g has a 2% probability of exceedance in 50 years, and a vertical Sa of 0.98g has a 2% 

probability of exceedance in 50 years. But the probability of exceeding both a horizontal Sa of 

0.65g and a vertical Sa of 0.98g simultaneously is only 0.65% in 50 years. This suggests that 

designing for extreme ground motions in all directions simultaneously (e.g., by applying a 

horizontal uniform hazard spectrum and a vertical uniform hazard spectrum simultaneously) may 
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be more conservative than intended. If one is primarily concerned with horizontal motions and 

thus uses the 2%-in-50-years horizontal Sa value, the preferred vertical Sa design value would be 

that associated with the mean lnSa in the vertical direction, given that Sa in the horizontal 

direction has exceeded 0.65g. This choice is consistent with load combination rules used in 

practice elsewhere (e.g., Norwegian Technology Standards Institution 1999, pp. 17–18). For this 

example the design value of the vertical Sa was determined to be 0.66g, which is approximately 

30% less than the Sa with a 2% probability of exceedance in 50 years. 
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Fig. 8.10  Contours of vector-valued probabilistic seismic hazard analysis. 
Contours denote mean annual rate of exceeding both Savertical and 
Sahorizontal values.  

Only a single magnitude/distance pair was used in this example for computational 

simplicity. Generalization of the analysis to incorporate multiple faults with multiple magnitudes 

and distances is merely a matter of coding the correlation prediction into a vector-valued hazard 

analysis program (Somerville and Thio 2003). (As an approximation, one can also use the 

dominant value of ε obtained by disaggregation to obtain the associated ε’s for other 

components.) No further mathematical developments are needed.  

8.7.2 Ground Motion Prediction Model for the Geometric Mean of Orthogonal Spectral 
Accelerations at Two Periods 

The geometric mean of spectral acceleration values in two orthogonal horizontal directions is 

often computed in ground motion prediction models. This quantity is useful for analyzing a 

three-dimensional structure subjected to ground motions in two horizontal directions because it 

describes the intensity of ground motion in two directions using only a single parameter (Stewart 
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et al. 2001; Baker and Cornell 2005b). The geometric mean of spectral acceleration provided by 

ground motion prediction models uses the same period of vibration in both directions, however, 

while a structure commonly has different periods of vibration in its two principal directions. 

Using the correlation models presented above, one can easily develop a “custom” correlation 

model incorporating the two periods of interest in a particular application.  

Ground motion prediction models provide the ( , , , )Hf M R T θ  and ( , )H M Tσ  terms for 

Equation 8.11. We are interested in determining an analogous equation of the form: 

 . . 1 2 . . 1 2 . . 1 2 . . 1 2ln ( , ) ( , , , , ) ( , , ) ( , )g m g m g m g mSa T T f M R T T M T T T Tθ σ ε= +  (8.16)  

where . . 1 2( , )g mSa T T  is the geometric mean of two orthogonal horizontal spectral accelerations at 

two periods T1 and T2. The function . . 1 2( , , , , )g mf M R T T θ  is the mean value of . . 1 2ln ( , )g mSa T T  and 

. . 1 2( , , )g m M T Tσ  is the standard deviation. Recognizing that 

( ). . 1 2 1 2ln ( , ) 1 2 ln ( ) ln ( )g m x ySa T T Sa T Sa T= + , the mean and standard deviation terms can be derived 

from existing models and the correlation predictions presented above: 

 ( ). . 1 2 1 2( , , , , ) 1 2 ( , , , ) ( , , , )g m H Hf M R T T f M R T f M R Tθ θ θ= +  (8.17)  

 
2 2

, 1 2 1 21 2
. . 1 2

( , ) ( , ) ( , )( , ) ( , )( , , )
4 4 2

x y H HH H
g m

T T M T M TM T M TM T T ε ερ σ σσ σσ = + +  (8.18)  

where , 1 2( , )
x y

T Tε ερ  comes from Equation 8.11. Remembering that many ground motion 

prediction models provide the standard deviation of the geometric mean of two horizontal Sa’s, 

rather than the standard deviation of a single component Sa, it may be first necessary to make the 

following conversion before calculating Equation 8.18: 

 
2

. .2

,

2 ( , )
( , )

1
x y

g m
H

M T
M T

ε ε

σ
σ

ρ
=

+
 (8.19)  

where ,x yε ερ  comes from Equation 8.7, . . ( , )g m M Tσ  is the standard deviation of the geometric 

mean of two horizontal Sa’s (the quantity presented in most ground motion prediction models), 

and ( , )H M Tσ  is the standard deviation of a single component Sa (the quantity used in Eqs. 8.1–

8.2 and 8.18). The ( , , , )Hf M R T θ  term is unchanged regardless of whether the geometric mean or 

arbitrary component Sa definition is adopted, so it can be taken from the ground motion 

prediction model without modification. Equations 8.17–8.19 can be easily implemented in a 

computer code alongside an existing ground motion prediction, and the output used in the same 



 

   
 
 

238

way as the output from any other ground motion prediction (e.g., for PSHA analysis). It is 

expected that this “custom” model and corresponding hazard analysis will allow an engineer to 

increase the precision of response analyses in cases where the structure of interest has different 

periods of vibration in its two principle directions. 

8.7.3 Simulation of Response Spectra 

The correlation predictions derived above can be used to simulate response spectra given an 

earthquake scenario. For a given earthquake magnitude (M), distance (R), and other parameters 

(θ), the distribution of horizontal lnSa values at a range of periods (T1, T2, …, Tn) can be 

obtained using the model of Equation 8.1. The mean of lnSa(Ti) is equal to ( , , , )H if M R T θ  and its 

standard deviation is equal to ( , )H iM Tσ . The covariance of lnSa(Ti) and lnSa(Tj) is equal to 

,( , ) ( , ) ( , )
x xH i H j i jM T M T T Tε εσ σ ρ , where , ( , )

x x i jT Tε ερ  is computed using Equation 8.9. If we again 

assume a multi-variate normal distribution for lnSa values, then these means and covariances 

fully define the distribution which can be used for simulation. A comparison of empirical spectra 

and simulated spectra is shown in Figure 8.11. In Figure 8.11a and b, spectra are simulated using 

zero correlation and perfect correlation, respectively. In Figure 8.11c, spectra are simulated using 

the correlation prediction from Equation 8.9. In Figure 8.11d, real spectra from recorded ground 

motions are shown for comparison. It is clear that the results in Figure 8.11a and b are not 

accurate representations of real record spectra, and so a model such as that presented here is 

needed for accurate simulation. Note that this simulation procedure can also be applied to 

simulation of multiple-component response spectra. 

These simulated spectra may also be compared with synthetic ground motions to verify 

that the spectra of the synthetic motions show sufficient variability (or “roughness”). In cases 

where synthetic spectra are not “rough” enough, corrective actions could be taken to increase the 

variability (e.g., “rough” spectra were generated in Sewell et al. 1996). 
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Fig. 8.11  Samples of 20 response spectra from magnitude 6.5 earthquakes with 
source-to-site distance of 8 km.  Simulated spectra use means and variances 
from Abrahamson and Silva (1997). (a) Simulated spectra using correlation 
coefficients equal to zero between all periods. (c) Simulated spectra using 
correlation coefficients equal to one between all periods. (c) Simulated 
spectra using correlation coefficients from Equation 8.9. (d) Real spectra 
from recorded ground motions with magnitude ≅ 6.5 and distance ≅ 8 km. 

8.8 CONCLUSIONS 

Models have been presented for correlations of spectral response values of earthquake ground 

motions. The models include predictions of correlations for single-component ground motions 

measured at two differing periods, and also across orthogonal components of three-dimensional 

ground motions. The predictive models improve upon previous predictions of correlations at 

differing periods in a single horizontal ground motion. For correlations within a vertical ground 
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motion or across orthogonal components of a ground motion, these predictions are believed to be 

the first of their kind. It is seen that correlations of Sa at differing periods across orthogonal 

horizontal components of a ground motion can be approximated as a product of the correlation of 

Sa’s across differing components (at a single period) and the correlation at differing periods (in 

the same component). 

The predictions are presented in the form of correlations of standardized residuals 

(“epsilons”) from established empirical ground motion prediction models. These predictions 

provide information about the correlations of two logarithmic Sa values for a given magnitude 

and distance. Although the observed residuals are in principle dependent on the ground motion 

prediction model chosen, it is observed that the correlations do not vary significantly when the 

underlying model is changed. Thus the correlation predictions are applicable regardless of the 

ground motion prediction model used by the analyst. This suggests that although one might 

repeat this exercise when the models from the current next generation attenuation project are 

released, the functional forms and even parameter values should not change appreciably, at least 

for vertical or randomly oriented horizontal components. (Correlations among or within fault-

normal and fault-parallel components were not examined as part of this study, but it will be 

possible to examine them upon completion of the next generation attenuation project.) 

Several approximate “rule-of-thumb” correlation values can be determined from the 

above models. It is seen that correlation of orthogonal horizontal Sa values with the same period 

are comparatively highly correlated ( 0.8ρ ≅ ), while horizontal and vertical Sa values at typical 

first-mode periods of mid-rise buildings are less correlated ( 0.3 to 0.4ρ ≅ ). Several past and 

potential future applications are presented, illustrating that the correlations shown here are useful 

for a variety of earthquake hazard and engineering problems. Increased knowledge of response 

spectrum correlations will facilitate the further development of vector-valued probabilistic 

seismic hazard analysis, as well as allow simple modification of existing ground motion 

prediction models to develop custom predictions for any combination of periods and 

orientations. These applications will allow analysts to better understand the properties of multi-

component earthquake ground motions. 

 

 

 



 

   
 
 

9 Conclusions 

In this report, vector-valued intensity measures (IMs) have been considered for use in 

probabilistic assessments of the seismic performance of structures. Use of vector-valued IMs 

requires methods for predicting structural response as a function of the IM parameters, 

calculating a vector-valued ground motion hazard, and choosing effective parameters to include 

in the IM. Contributions have been made in all three of these areas. The following subsections 

summarize briefly the important findings of this work, the limitations of this work and suggested 

future work related to this report. 

9.1 PRACTICAL IMPLICATIONS 

9.1.1 Structural Response Prediction Given Vector IM 

Several methods for predicting the probability distribution of structural response given a scalar 

IM have been considered previously (see, e.g., Jalayer 2003 for a summary). In Chapter 2 of this 

report, extensions of those methods to vector IMs have been proposed and discussed. In 

particular, while most previous work with vector IMs has been based on joint “cloud” regression 

on multiple IM parameters simultaneously (Shome and Cornell 1999; Bazzurro and Cornell 

2002l; Luco et al. 2005), a new method is proposed and used extensively in this report. This 

method consists of scaling records to the first IM parameter (typically Sa(T1)) and then using 

regression analysis to predict response as a function of one or more additional parameters. This 

method is advantageous for two reasons. First, the interaction between the first and subsequent 

IM parameters is not parameterized, making this interaction easier to detect than with multiple 

regression alone, where the interaction must be explicitly parameterized. Second, it allows one to 

see more clearly the separate effects of correlated IM parameters (such as Sa(T1) and ε, as was 

seen in Chapter 3). The downfall of this new method is that it generally requires more dynamic 

analyses than the “cloud” method, which may reduce its usefulness in practice in the near future. 
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However, because of the advantages listed above, it is believed to be superior to any alternative 

methods for exploratory research purposes. Other methods of incorporating vector IMs, such as 

carefully selecting records to have the appropriate distribution of IM values, have also been 

explored in depth. 

9.1.2 Parameter ε as Predictor of Structural Response 

The ground motion parameter ε, defined as a measure of the difference between an 

accelerogram’s recorded spectral acceleration value at a specified period and the predicted value 

from a ground motion prediction model, has been found to be an effective predictor of structural 

response. The parameter ε is important because it provides information about the shape of a 

record’s response spectrum (i.e., whether Sa at the specified period is in a peak or a valley of the 

spectrum). The effect of ε is seen to be greater than the effect of either magnitude or distance. 

Further, rare ground motions (which are likely to be of most engineering interest) are associated 

with positive ε values. Positive-ε ground motions tend to cause smaller demands in nonlinear or 

multi-degree-of-freedom structures, given the same Sa(T1) value. This implies that neglecting the 

effect of ε will result in conservative conclusions being drawn about the response of a structure: 

overestimation of drift associated with a specified ground motion level, and overestimation of the 

mean annual rate of exceeding a given response limit state such as collapse. When ε was 

neglected for the example cases considered in Chapter 3, the estimated mean annual rate of 

collapse was often biased high by a factor of two, and sometimes by a factor of more than ten. 

Once the effect of ε was identified, two methods were proposed to incorporate its effect 

in a probabilistic structural response assessment. The first method, considered in Chapter 3, 

consists of including ε as a parameter in the intensity measure. This ensures that structural 

response is predicted as a function of ε, and the ε values associated with a given ground motion 

level are included through the ground motion hazard. The (vector) ground motion hazard for this 

IM is simple to obtain, as it consists of the standard scalar ground motion hazard for Sa(T1) along 

with the conditional distributions of ε given Sa(T1), which can be obtained from PSHA 

disaggregation. The second method of incorporating ε, considered in Chapter 6 and discussed 

further in Section 9.1.5, consists of using the PSHA disaggregation to determine the mean value 

of ε for each Sa(T1) level of interest. Records for analysis are then carefully selected at each 
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Sa(T1) level to have ε values as close to this mean value as possible. With this method, the 

responses from these records are naturally at the level associated with the proper ε value, and so 

no vector IM is necessary. Additionally in Chapter 6, a method of selecting records based on 

their consistency with the spectral shape implied by ε, rather than by their actual ε values, was 

considered. It was seen that either of these record-selection procedures can produce results 

comparable to those obtained using a vector IM with ε.  

The target ε value associated with a given hazard level is site dependent. For highly 

seismic areas such as coastal California, typical target ε values are in the range of 1–2 at the 

10%-in-50-year hazard level, and 2 or greater at the 2%-in-50-year hazard level. The limited 

library of ground motion recordings makes it difficult to find many records with ε values larger 

than 2, so when selecting records to analyze a structure for large ground motion intensities, one 

might practically select those records with the largest available ε values. In regions with low 

seismicity, such as some parts of the eastern United States, the ground motion intensities 

exceeded with 2%-in-50-year probability might have associated ε values near one20. 

Consideration of ε when performing structural analysis is important in order to avoid 

conservative conclusions about structural performance, especially at rare levels. To date, ε has 

been considered in one other research project by selecting records based on ε values, in a similar 

manner to that proposed in Chapter 6 (Haselton et al. 2005). Given the findings in this report, it 

is suggested that this practice be adopted widely.  

9.1.3 Optimal Vector-Valued IMs Consisting of Spectral Acceleration Values at Multiple 
Periods 

In Chapters 4 and 5, a vector was considered that consists of two parameters: Sa(T1) along with a 

measure of spectral shape (the ratio of spectral acceleration at a second period to the original 

spectral acceleration value). The extra IM parameter is denoted RT1,T2, where T2 is the second 

period at which spectral acceleration is measured. In order to be most effective, T2 should be 

chosen based on the level of nonlinearity in the structure and the structure’s sensitivity to higher-

mode response. This IM has been considered by others, but a more thorough investigation has 

                                                 
20 In these less seismically active regions, ε values might even be negative at some low ground motion levels, 
making it possible that in some situations neglecting ε could be unconservative. These situations may not be of 
engineering interest, but the possibility that they could arise should be kept in mind. 
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been made here. Two methods of choosing an optimal second period were proposed (fixing T1 at 

the first-mode period of the structure). The first method consists of choosing T2 in order to 

minimize the standard deviation of structural responses after regressing on RT1,T2 at a given 

Sa(T1) level. The second method consists of minimizing the standard error of estimation of the 

drift hazard curve calculated using the vector IM {Sa(T1), RT1,T2}. With the second method, the 

standard error is estimated by using the bootstrap to repeatedly re-sample results from the 

available dynamic analyses. The first method is simpler, but the second method has the 

advantage of directly computing the statistical variability in estimates of the drift hazard curve. 

Prediction of structural response with this vector shows significantly reduced standard 

deviations relative to prediction using Sa(T1) alone (reductions of as great as 50% were 

observed). This suggests that the number of dynamic analyses could be reduced if this vector is 

adopted. Further, this vector IM is effective at characterizing the effect of near-fault ground 

motions, as will be discussed in Section 9.1.4. Because RT1,T2 describes the shape of the response 

spectrum, it was hoped that this parameter might account for the effect of ε (which also describes 

spectral shape). However, it was found that RT1,T2 does not fully account for the effect of ε. 

Specifically, when ε is included in an IM it removes a bias in structural response predictions, and 

when RT1,T2 is included in an IM it does not remove this bias. This shortcoming of RT1,T2 occurs 

because ε describes somewhat different properties of spectral shape than RT1,T2. In particular, 

RT1,T2 measures spectral shape on only one side of T1, while ε measures spectral shape at both 

higher and lower periods simultaneously.  Thus, the effect of ε still needs to be considered 

explicitly when using this IM, either through careful record selection or through use of a three-

parameter vector consisting of Sa(T1), RT1,T2 and ε. 

9.1.4 Vector-Valued IMs for Predicting Response from Pulse-Like Ground Motions 

In Chapter 5, the effectiveness of vector-valued IMs for predicting response from pulse-like 

ground motions was considered (where the term “pulse-like ground motions” is used to refer to 

those ground motions occurring nearby a fault where a velocity pulse is detected in the fault-

normal direction). These ground motions can cause severe levels of structural response, which is 

a significant concern for engineers. The effect of these ground motions was not well-captured by 

Sa(T1) alone, but the vector consisting of Sa(T1) and RT1,T2 was better able to account for the 

effect of these motions. Given Sa(T1) and RT1,T2, there was found to be no significant difference 
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in the maximum interstory drift ratios of frame structures caused by ordinary and pulse-like 

ground motions. This IM also substantially accounted for the effect of the velocity pulse period 

on the resulting maximum interstory drift ratio. This suggests that the intensity-measure-based 

procedure might be used effectively even when pulse-like ground motions may occur at a site, as 

long as a vector of Sa(T1) and RT1,T2 is used as the intensity measure.  

In order to perform the IM-based procedure with this IM, however, it is still necessary to 

compute the ground motion hazard for Sa(T1) and RT1,T2 while considering the effect of pulse-

like ground motions on the IM levels that are likely to occur. Two methods for computing this 

hazard were proposed. The first is based on the method proposed by Bazzurro and Cornell 

(2002) except that the ground motion prediction model should be modified to account for near-

fault effects. The second method incorporates explicit consideration of the probabilities of 

occurrence of velocity pulses, along with the distribution of their associated pulse periods, 

conditioned on each possible magnitude and distance. Results obtained using the first method 

will be available soon (Somerville and Thio 2005). The second method should produce more 

accurate hazard estimates, but it requires new ground motion models that do not yet exist. Once 

these ground motion hazard analysis results are available, they can be combined with structural 

response analyses of the type performed in Chapter 5 in order to assess the performance of a 

structure located at a site where pulse-like ground motions might occur. 

The IM consisting of Sa(T1) and ε was also considered for prediction of response from 

pulse-like ground motions, but it was found to be ineffective at distinguishing between pulse-like 

and ordinary ground motions. This result is consistent with the current understanding of the 

effect of ε. It suggests that while the IM consisting of Sa(T1) and ε  is useful in general, it is not 

able to quantify the effect of pulse-like ground motions.  

9.1.5 Record Selection for Dynamic Analysis 

Based on the understanding gained in the previous chapters, new techniques for selecting 

“appropriate” ground motion records were considered in Chapter 6, with the goal of obtaining 

the benefits of vector IMs without their added analysis complexity. Given that ε is a ground 

motion parameter affecting structural response, record selection incorporating this knowledge 

was considered, and successfully accounted for the effect of ε without using a vector IM. Further, 

knowledge of the mean magnitude, distance and ε values associated with a given Sa(T1) level (as 
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determined from PSHA disaggregation) was used to determine the conditional mean value of a 

response spectrum at the given Sa level. The spectrum was named a conditional mean spectrum, 

considering ε (abbreviated as CMS-ε). Records can then be selected that match this CMS-ε 

spectrum, without considering further the magnitude, distance, or ε values of the records. 

Records selected in this way were shown to account for the effect of ε, but the number of records 

available using this method is potentially larger than the number of records with the exact target 

ε value. Further, records selected based on either their ε values or their match with the CMS-ε 

spectrum were able to be scaled without introducing a bias in structural response, unlike records 

selected using other methods. The CMS-ε spectrum is somewhat analogous to target response 

spectra used in the nuclear safety industry (DOE 1996; NRC 1997; ASCE 2005) except that the 

effect of ε has been incorporated as well, given the new findings in this report. In Section 6.7, the 

CMS-ε spectrum was compared to a uniform hazard spectrum (UHS), in order to demonstrate 

the conservativeness of the UHS. The CMS-ε spectrum is a useful tool for use in selecting 

records for dynamic analyses associated with probabilistic performance assessments, but it could 

also be a useful target spectrum for other code-based procedures as well. 

9.1.6 Consistency in Ground Motion Hazard and Structural Response Prediction for 
Probabilistic Structural Assessment 

The probabilistic assessment procedure used throughout this report relies on combining the 

ground motion hazard (in terms of the specified IM) with conditional structural response 

predictions (structural response given IM). In practice today, the IM most often used is Sa(T1). 

However, the ground motion hazard is typically computed for the geometric mean of the spectral 

accelerations of the two horizontal components of ground motion, while prediction of the 

response of (two-dimensional) structural models is made using a single horizontal component. 

This inconsistency is identified in Chapter 7, and its implications are discussed. The error results 

in unconservative estimates of the rates of exceeding given structural response levels. For an 

example site and structure located in Los Angeles, inconsistent treatment of Sa(T1) resulted in a 

12% underestimation of the spectral acceleration value exceeded with a 2% probability in 50 

years, and a 10% underestimation of the structure’s maximum interstory drift ratio exceeded with 

a 2% probability in 50 years. Several methods of correcting the error are discussed, and 

suggestions are made regarding permanent correction of this error, such as modifying the U.S. 
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Geological Survey hazard maps (2002) to be defined in terms of the Sa(T1) parameter used most 

often for structural response prediction. 

9.1.7 Correlation of Response Spectral Values for Use in Hazard Analysis 

An important part of the vector-valued IM analysis process is computation of ground motion 

hazard for the vector IM. When the vector IM consists of multiple spectral acceleration values, it 

is necessary to know the correlation coefficients between these spectral acceleration values in a 

given ground motion (Bazzurro and Cornell 2002). In Chapter 8, new predictive equations were 

proposed for these correlation coefficients. Several approximate “rule-of-thumb” correlation 

values can be determined from the models: correlation of orthogonal horizontal Sa values with 

the same period are comparatively highly correlated ( 0.8ρ ≅ ), while horizontal and vertical Sa 

values at typical first-mode periods of mid-rise buildings are less correlated ( 0.3 to 0.4ρ ≅ ). 

The predictive equation for correlations within a single-component ground motion 

improves upon two previous models of the same type. The model proposed here is valid for a 

larger range of periods than the model of Inoue and Cornell (1990), and the matrix of 

correlations at multiple periods predicted using this model has the required property of positive 

definiteness, unlike the prediction of Abrahamson et al. (2003). Also, the first predictive 

equations are developed for correlations among different components of a three-dimensional 

ground motion (i.e., between perpendicular horizontal components or between a horizontal and a 

vertical component). These new models will facilitate analysis of three-dimensional structures by 

allowing the incorporation of spectral acceleration values from orthogonal ground motion 

components into a vector IM. Software for vector-valued probabilistic seismic hazard analysis 

that incorporates these new models should be available in the near future (Somerville and Thio 

2005).  

9.2 LIMITATIONS AND FUTURE WORK 

9.2.1 Structural Response Parameters of Interest 

The only structural response parameter considered in this report is maximum interstory drift ratio 

in frame structures. This parameter has been used in, e.g., the FEMA-350 guidelines (2000a), 

because it is a good indicator of the ability of a frame structure to resist P-Δ instability and 
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collapse, as well as an indicator of peak rotation demands on beams, columns, and connections. 

However, modern probabilistic loss estimation procedures (e.g., Aslani and Miranda 2003; 

Haselton et al. 2005) often require knowledge of floor accelerations as well. Further, these loss 

estimation procedures typically require a vector of response parameters at each story of a 

structure, rather than a peak value over all stories. Thus, maximum interstory drift ratio may not 

be satisfactory as a structural response parameter. It is not obvious a priori that the vector IMs 

proposed here will be equally effective for predicting these other response parameters of interest. 

In fact, Taghavi and Miranda (2003) have found that effective IMs for prediction of peak floor 

accelerations may differ from effective IMs for prediction of interstory drift ratios. Further 

investigation of this observation could be performed using the same procedures proposed in this 

report. If one is computing expected annual losses only and total losses are a sum of element 

losses, then separate IMs could be used to predict displacements and accelerations, and the mean 

annual losses from drift-sensitive and acceleration-sensitive elements could be computed 

separately and summed. However, if complete distributions of losses are desired, then a joint 

prediction of all response parameters is needed, and a single intensity measure must be used. 

However, the question of which IM is most effective for joint prediction of a vector of response 

parameters will need to be posed carefully because tradeoffs will need to be made between 

effective predictions of the various structural response parameters.  

9.2.2 Intensity Measure Parameters  

The intensity measure parameters considered in this report consisted of spectral acceleration 

values at multiple periods, as well as the ground motion parameter ε. In this report, these 

parameters have been shown to be effective and other researchers have also confirmed the 

effectiveness of multiple spectral parameters (Shome and Cornell 1999; Bazzurro and Cornell 

2002; Vamvatsikos 2002). However, other parameters may also be useful. In Chapter 6, an IM 

parameter was proposed consisting of spectral accelerations averaged over a range of periods. 

This intensity measure has been suggested elsewhere (Kennedy et al. 1984; Shome and Cornell 

1999; Cordova et al. 2001) and it might be more robust with respect to the effect of ε identified 

in Chapter 3. Further, given correlation information such as that in Chapter 8, the ground motion 

hazard for this IM can be easily developed based on existing ground motion prediction models 

for single spectral acceleration values, as was discussed in Chapter 6. Many of the studies 



 

   
 
 

249

presented here could be repeated on this IM in order to determine its robustness with respect to ε, 

its efficiency in predicting structural response, and its role in record selection.  

Intensity measures consisting of inelastic response spectral values may also prove 

effective as structural response predictors. Intensity measures of this type have been seen to have 

some of the same benefits as the IMs considered here (Mori et al. 2004; Luco and Cornell 2005; 

Tothong and Cornell 2005b; Luco et al. 2005). More research is needed to determine, for 

example, whether these intensity measures account for the effect of ε.  

Only two-element vectors were considered in depth in this report, although a three-

element vector was considered briefly in Chapter 4. As seen in Chapter 4, larger vectors may 

provide additional insight into the relationship between record properties and structural response. 

For example, questions remain about the relationship between the RT1,T2 parameter and the ε 

parameter, given that both are descriptors of spectral shape. It is anticipated that extremely large 

vectors of parameters will be impractical (due to the curse of dimensionality), but more work is 

needed to determine a limiting size. Three-element vectors may be useful in some situations, but 

that was not determined with certainty in this work. 

9.2.3 Structural Models Considered 

The models used for evaluation here represent only a small subset of the range of possible 

models (and their associated physical structures). Only two-dimensional frame models were 

considered. Three-dimensional models will provide a rich set of new research problems related 

to this work. For example, a vector IM consisting of Sa values in two perpendicular directions 

may be very effective for predicting response of a three-dimensional structure, but testing of this 

IM is currently quite limited (e.g., Vamvatsikos and Sigalas 2005), and response prediction using 

this IM has never been coupled with a ground motion hazard analysis. The new models of 

Chapter 8 will allow ground motion hazard analysis to be performed for this IM in the future. 

Additionally, while the structural models considered include strength degradation, they 

do not include other effects known to influence structural response such as soil-structure 

interaction, irregularities in elevation, and axial failure of columns. Further, other structural 

systems such as walls and dual systems have not been considered. Intuition developed in this 

report about the relationship between the proposed IMs and spectral shape, plus our confidence 

that spectral shape will affect response of all structures, suggests that these improved vector IMs 
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will be effective for other types of structures. It will be important to verify that hypothesis 

empirically, however.  

9.2.4 Hazard Analysis for Pulse-like Near-Fault Ground Motions 

The intensity measure consisting of Sa(T1) and RT1,T2 was found to be effective at characterizing 

the effect of pulse-like near-fault ground motions, given a (ductility-dependent) effective choice 

of T2. However, there are still a variety of related unresolved questions. Challenges remain in the 

computation of ground motion hazard for a vector IM at a site where near-fault motions may 

occur. For this to be done using the more accurate of the two methods proposed in Chapter 6, it 

is necessary to know the probability of a velocity pulse occurring in a record for a given 

magnitude, distance, and source-to-site geometry. It is also necessary to have a prediction model 

for the distribution of Sa(T1) and RT1,T2, given a ground motion with a velocity pulse and a given 

pulse period. Further, it would be helpful to have a quantitative method for identifying whether a 

given record is actually a near-fault record or an ordinary record. This classification is made in a 

variety of ways today, but all of them require at least some level of subjective judgment on the 

part of the analyst. An objective classification method will be helpful for a range of research 

problems, such as investigation of IMs for predicting structural response and development of 

ground motion prediction models. 

In addition, the effect of ε was not considered in this study of near-fault ground motions, 

even though it was seen to be important in other sections of the report. Once models for hazard 

analysis are developed that consider pulse-like ground motions, it will be possible to measure the 

changes to spectral shape from consideration of both ε and pulse-like ground motions. 

Consideration of ε tends to reduce the estimated demand on structures, while pulse-like ground 

motions tend to increase the demand. The net effect when both of these phenomena are 

considered has not yet been determined. 

9.2.5 Adoption of Vector IMs in Code Procedures 

While the proposed vector IMs can be adopted in the assessment methodology of the Pacific 

Earthquake Engineering Research Center, they do require much more effort than is allowable for 

a more common code-based assessment procedure. In order to achieve widespread adoption of 
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the ideas presented in this report, simplified procedures for using these intensity measures are 

needed. One particularly promising method is environmental contours (e.g., Winterstein et al. 

1993, Bazzurro 1998), a procedure which has been adopted for similar problems in assessment of 

offshore structures. Future work by the author will further explore this opportunity.  

9.3 CONCLUDING REMARKS 

The summaries and observations made in this chapter are based on empirical analysis of two 

dimensional nonlinear frame structures subjected to a variety of recorded earthquake ground 

motions of varying intensities. Maximum interstory drift ratio was the only response parameter 

considered, and only a subset of potential intensity measures was considered when searching for 

an “optimal” intensity measure. Interpretation of the conclusions drawn within this report should 

be made while keeping these limitations in mind. Given the success of vector-valued intensity 

measures within these limitations, further related research appears warranted. 



 

   
 
 

 

Appendix A Earthquake Ground Motion 
Records 

Several sets of earthquake ground motions were used for various purposes throughout this report. 

The record properties are given in the tables below.  

All records except those from Table A.4 come from the PEER Strong Motion Database 

(2000). Column headings match fields from that database. The records from Table A.4 come 

from the next generation attenuation (NGA) project strong motion database (2005). Column 

headings match fields from that database. Empty fields are either not applicable for the given 

record, or not provided by the source database. 
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Table A.1  Primary record set used in stripe analysis of Van Nuys testbed building. 
These records were used in Chapters 2–4 and 6–7. 

# Event Mechanism Year Mw Station Name Distance

USGS 
Soil 
Type FileName1 HP LP

1 Loma Prieta RV/OB 1989 6.9 Agnews State Hospital   28.2 D LOMAP/AGW090 0.2 30

2 Loma Prieta RV/OB 1989 6.9 Anderson Dam (Downstream) 21.4 D LOMAP/AND270 0.2 41

3 Northridge TH 1994 6.7 Arleta - Nordhoff Fire Sta 9.2 D NORTHR/ARL090 0.12 23

4 Landers SS 1992 7.3 Coolwater 21.2 D LANDERS/CLW-LN 0.1 30

5 Landers SS 1992 7.3 Desert Hot Springs 23.2 D LANDERS/DSP000 0.07 23

6 Cape Mendocino - 1992 7.1 Fortuna - Fortuna Blvd 23.6 D CAPEMEND/FOR000 0.07 23

7 Imperial Valley SS 1979 6.5 Aeropuerto Mexicali 8.5 D IMPVALL/H-AEP315 0.05 - 

8 Imperial Valley SS 1979 6.5 Agrarias   12.9 D IMPVALL/H-AGR273 0.05 - 

9 Imperial Valley SS 1979 6.5 Chihuahua 28.7 D IMPVALL/H-CHI282 0.05 - 

10 Imperial Valley SS 1979 6.5 El Centro Array #13   21.9 D IMPVALL/H-E13140 0.2 40

11 Imperial Valley SS 1979 6.5 Holtville Post Office 7.5 D IMPVALL/H-HVP225 0.1 40

12 Coalinga RV/OB 1983 6.4 Pleasant Valley P.P. - yard 8.5 D COALINGA/H-PVY045 0.2 40

13 Loma Prieta RV/OB 1989 6.9 Hollister - South & Pine 28.8 D LOMAP/HSP000 0.1 29

14 Imperial Valley SS 1940 7.0 El Centro Array #9 8.3 D IMPVALL/I-ELC180 0.2 15

15 Landers SS 1992 7.3 Joshua Tree  11.6 C LANDERS/JOS000 0.07 23

16 Landers SS 1992 7.3 North Palm Springs 24.2 D LANDERS/NPS090 - - 

17 N Palm Springs RV/OB 1986 6.0 Palm Springs Airport 16.6 D PALMSPR/PSA000 0.2 50

18 Northridge TH 1994 6.7 Sun Valley - Roscoe Blvd 12.3 D NORTHR/RO3090 0.1 30

19 Loma Prieta RV/OB 1989 6.9 Sunnyvale - Colton Ave.   28.8 D LOMAP/SVL360 0.1 32

20 Landers SS 1992 7.3 Yermo Fire Station 24.9 D LANDERS/YER270 0.07 23

21 Borrego - 1942 6.5 El Centro Array #9 49.0 D BORREGO/B-ELC000 0.1 15

22 Coalinga RV/OB 1983 6.4 Parkfield - Cholame 8W 50.7 D COALINGA/H-C08000 0.2 23

23 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 1W   46.5 D COALINGA/H-PG1090 0.2 22

24 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 3   36.4 D COALINGA/H-COH000 0.1 27

25 Imperial Valley SS 1979 6.5 Compuertas 32.6 D IMPVALL/H-CMP015 0.2 - 

26 Imperial Valley SS 1979 6.5 Victoria   54.1 D IMPVALL/H-VCT075 0.05 - 

27 Northridge TH 1994 6.7 Covina - W. Badillo 56.1 D NORTHR/BAD000 0.2 30

28 Northridge TH 1994 6.7 LA - Pico & Sentous 32.7 D NORTHR/PIC180 0.2 46

29 Northridge TH 1994 6.7 LA - E Vernon Ave 39.3 D NORTHR/VER180 0.1 30

30 Coalinga RV/OB 1983 5.8 Pleasant Valley P.P. - yard 17.4 D COALINGA/D-PVY045 0.08 30

31 Coyote Lake SS 1979 5.7 Gilroy Array #2   7.5 D COYOTELK/G02050 0.2 40

32 Coyote Lake SS 1979 5.7 Gilroy Array #3   6.0 D COYOTELK/G03050 0.2 40

33 Coyote Lake SS 1979 5.7 San Juan Bautista 15.6 D COYOTELK/SJB213 0.2 20

34 Livermore SS 1980 5.8 Antioch - 510 G St   20.3 D LIVERMOR/A-ANT270 0.2 13

35 Whittier Narrows RV 1987 6.0 Arcadia - Campus Dr   12.2 D WHITTIER/A-CAM009 0.15 25

36 Whittier Narrows RV 1987 6.0 LA - 116th St School   22.5 D WHITTIER/A-116360 0.2 30

37 Whittier Narrows RV 1987 6.0 Carson - Water St 24.5 D WHITTIER/A-WAT180 0.2 25

38 Northridge TH 1994 6.7 Northridge, Roscoe #1 13.7 - *NR-nrr1/transverse - - 

39 Northridge TH 1994 6.7 Van Nuys, Sherman Circle #1 12.8 - *NR-vnsc/longitudinal - - 

40 Whittier Narrows RV 1987 6.0 Cal Tech, Brown Athletic Building 16.6 - *WH-athl/transverse - - 
1 Filenames preceded by an asterisk come from the Somerville ground motion set for the Van Nuys 
tesbed project (2001b). 
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Table A.2  Supplemental records added to primary record set of Table A.1 for cloud 
analysis of Van Nuys testbed building. These records were used in 
Chapter 7. 

# Event MechanismYear Mw Station Name Distance 

USGS
Soil 
Type FileName1 HP LP

1 Superstitn Hills SS 1987 6.7 Wildlife Liquef. Array 24.4 D SUPERST/B-IVW360 0.1 40

2 Loma Prieta RV/OB 1989 6.9 Coyote Lake Dam (Downst) 22.3 D LOMAP/CLD285 0.1 29

3 Northridge TH 1994 6.7 Canoga Park - Topanga Can  15.8 D NORTHR/CNP106 0.05 30

4 Loma Prieta RV/OB 1989 6.9 Gilroy Array #4   16.1 D LOMAP/G04000 0.2 28

5 Imperial Valley SS 1979 6.5 Bonds Corner 2.5 D IMPVALL/H-BCR230 0.1 40

6 Coalinga RV/OB 1983 6.4 Cantua Creek School 25.5 D COALINGA/H-CAK270 0.2 23

7 Imperial Valley SS 1979 6.5 Calexico Fire Station 10.6 D IMPVALL/H-CXO315 0.2 40

8 Imperial Valley SS 1979 6.5 El Centro Array #12 18.2 D IMPVALL/H-E12230 0.1 40

9 Northridge TH 1994 6.7 LA - Hollywood Stor FF 25.5 D NORTHR/HOL360 0.2 23

10 Imperial Valley SS 1979 6.5 Cucapah 23.6 D IMPVALL/H-QKP085 0.05 null

11 Imperial Valley SS 1979 6.5 SAHOP Casa Flores 11.1 C IMPVALL/H-SHP270 0.2 null

12 San Fernando RV 1971 6.6 Lake Hughes #1   25.8 C SFERN/L01111 0.5 35

13 San Fernando RV 1971 6.6 Palmdale Fire Station 25.4 D SFERN/PDL210 0.5 35

14 Cape Mendocino - 1992 7.1 Rio Dell Overpass - FF 18.5 C CAPEMEND/RIO270 0.07 23

15 Northridge TH 1994 6.7 Sepulveda VA 8.9 D NORTHR/SPV270 0.1 null

16 Loma Prieta RV/OB 1989 6.9 WAHO 16.9 D LOMAP/WAH090 0.1 null

17 Coalinga RV/OB 1983 6.4 Parkfield - Cholame 12W   55.2 D COALINGA/H-C12270 0.2 23

18 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 1   40.4 D COALINGA/H-COW000 0.2 20

19 Imperial Valley SS 1979 6.5 Coachella Canal #4 49.3 D IMPVALL/H-CC4045 0.2 40

20 Imperial Valley SS 1979 6.5 Delta 43.6 D IMPVALL/H-DLT262 0.05

21 Imperial Valley SS 1979 6.5 Niland Fire Station   35.9 D IMPVALL/H-NIL090 0.1 30

22 Northridge TH 1994 6.7 Bell Gardens - Jaboneria 46.6 D NORTHR/JAB310 0.13 30

23 Northridge TH 1994 6.7 Lawndale - Osage Ave   42.4 D NORTHR/LOA092 0.13 30

24 Northridge TH 1994 6.7 LB - Rancho Los Cerritos   54.3 D NORTHR/LBR000 0.16 23

25 Coyote Lake SS 1979 5.7 Gilroy Array #4   4.5 D COYOTELK/G04360 0.12 25

26 Point Mugu RV 1973 5.8 Port Hueneme   25.0 D PTMUGU/PHN180 0.2 25

27 Whittier Narrows RV 1987 6.0 Compton - Castlegate St   16.9 D WHITTIER/A-CAS000 0.09 25

28 Whittier Narrows RV 1987 6.0 Carson - Catskill Ave 28.1 D WHITTIER/A-CAT090 0.18 25

29 Northridge TH 1994 6.7 Encino, Ventura Blvd. #1 17.7 - *NR-env1/transverse - - 

30 Northridge TH 1994 6.7 Encino, Ventura Blvd. #9 17.9 - *NR-env9/transverse - - 

31 Northridge TH 1994 6.7 N. Hollywood, Landershim Blvd #1 18.4 - *NR-nhl2/longitudinal - - 

32 Northridge TH 1994 6.7 Van Nuys, Sherman Way #1 12.8 - *NR-vns1/transverse - - 

33 Northridge TH 1994 6.7 Van Nuys, 7-story Hotel 11.3 - *NR-vnuy/longitudinal - - 

34 Northridge TH 1994 6.7 Woodland Hills, Oxnard Street #4 20.0 - *NR-whox/transverse - - 

35 San Fernando RV 1971 6.6 Los Angeles, 14724 Ventura Blvd 16.3 - *SF-253/longitudinal - - 

36 San Fernando RV 1971 6.6 Los Angeles, 15910 Ventura Blvd 16.2 - *SF-461/longitudinal - - 

37 San Fernando RV 1971 6.6 Los Angeles, 15250 Ventura Blvd 16.4 - *SF-466/transverse - - 

38 San Fernando RV 1971 6.6 Glendale, Muni. Bldg. 633 E Brdwy 18.8 - *SF-glen/transverse - - 

39 San Fernando RV 1971 6.6 Van Nuys, 7-story Hotel 9.5 - *SF-vnuy/longitudinal - - 
1 Filenames preceded by an asterisk come from the Somerville ground motion set for the Van Nuys 
tesbed project (2001b). 
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For initial studies of ground motions intensity measures, it was desirable to have earthquake 

ground motions with a range of intensity measure values. Thus, as seen in Figure A.1, the 

records of Tables A.1 and A.2 were selected to have a range of magnitude and distance values. 
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Fig. A.1  Magnitudes and distances of primary and secondary datasets (Tables 
A.1 and A.2) used for analysis of Van Nuys testbed building 
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Table A.3  “LMSR-N” record set from work of Medina and Ibarra. These records 
were used in Chapters 3–5. 

# Event Mechanism Year Mw Station Name Dist.

USGS 
Soil 
Type FileName HP LP

1 Imperial Valley SS 1979 6.5 Calipatria Fire Station 23.8 C IMPVALL\H-CAL315 0.1 40

2 Imperial Valley SS 1979 6.5 Chihuahua 28.7 C IMPVALL\H-CHI012 0.05  

3 Imperial Valley SS 1979 6.5 Compuertas 32.6 C IMPVALL\H-CMP015 0.2  

4 Imperial Valley SS 1979 6.5 El Centro Array #1 15.5 C IMPVALL\H-E01140 0.1 40

5 Imperial Valley SS 1979 6.5 El Centro Array #12 18.2 C IMPVALL\H-E12230 0.1 40

6 Imperial Valley SS 1979 6.5 El Centro Array #13 21.9 C IMPVALL\H-E13230 0.2 40

7 Imperial Valley SS 1979 6.5 Niland Fire Station 35.9 C IMPVALL\H-NIL090 0.1 30

8 Imperial Valley SS 1979 6.5 Plaster City 31.7 C IMPVALL\H-PLS135 0.1 40

9 Imperial Valley SS 1979 6.5 Cucapah 23.6 C IMPVALL\H-QKP085 0.05  

10 Imperial Valley SS 1979 6.5 Westmorland Fire Sta 15.1 C IMPVALL\H-WSM180 0.1 40

11 Loma Prieta RV/OB 1989 6.9 Agnews State Hospital 28.2 C LOMAP\AGW000 0.2 30

12 Loma Prieta RV/OB 1989 6.9 Capitola 14.5 C LOMAP\CAP090 0.2 40

13 Loma Prieta RV/OB 1989 6.9 Gilroy Array #3 14.4 C LOMAP\G03090 0.1 40

14 Loma Prieta RV/OB 1989 6.9 Gilroy Array #4 16.1 C LOMAP\G04090 0.2 30

15 Loma Prieta RV/OB 1989 6.9 Gilroy Array #7 24.2 C LOMAP\GMR000 0.2 40

16 Loma Prieta RV/OB 1989 6.9 Hollister City Hall 28.2 C LOMAP\HCH090 0.1 29

17 Loma Prieta RV/OB 1989 6.9 Hollister Diff. Array 25.8 C LOMAP\HDA255 0.1 33

18 Loma Prieta RV/OB 1989 6.9 Halls Valley 31.6 C LOMAP\HVR000 0.2 22

19 Loma Prieta RV/OB 1989 6.9 Salinas - John & Work 32.6 C LOMAP\SJW250 0.1 28

20 Loma Prieta RV/OB 1989 6.9 Palo Alto - SLAC Lab 36.3 B LOMAP\SLC270 0.2 33

21 Loma Prieta RV/OB 1989 6.9 Sunnyvale - Colton Ave. 28.8 C LOMAP\SVL270 0.1 40

22 Northridge RV 1994 6.7 LA - Centinela St 30.9 C NORTHR\CEN245 0.2 30

23 Northridge RV 1994 6.7 Canoga Park - Topanga Can 15.8 C NORTHR\CNP196 0.05 30

24 Northridge RV 1994 6.7 LA - N Faring Rd 23.9 C NORTHR\FAR000 0.13 30

25 Northridge RV 1994 6.7 LA - Fletcher Dr 29.5 C NORTHR\FLE234 0.15 30

26 Northridge RV 1994 6.7 Glendale - Las Palmas 25.4 C NORTHR\GLP267 0.1 30

27 Northridge RV 1994 6.7 LA - Hollywood Stor FF # 25.5 C NORTHR\PEL090 0.2 23

28 Northridge RV 1994 6.7 Lake Hughes #1 # 36.3 B NORTHR\L01000 0.12 23

29 Northridge RV 1994 6.7 Leona Valley #2 # 37.7 C NORTHR\LV2090 0.2 23

30 Northridge RV 1994 6.7 Leona Valley #6 # 38.5 C NORTHR\LV6090 0.2 23

31 Northridge RV 1994 6.7 La Crescenta - New York 22.3 C NORTHR\NYA180 0.1 30

32 Northridge RV 1994 6.7 LA - Pico & Sentous # 32.7 C NORTHR\PIC180 0.2 46

33 Northridge RV 1994 6.7 Northridge - 17645 Saticoy St 13.3 C NORTHR\STC090 0.1 30

34 Northridge RV 1994 6.7 LA - Saturn St 30 C NORTHR\STN020 0.1 30

35 Northridge RV 1994 6.7 LA - E Vernon Ave 39.3 C NORTHR\VER180 0.1 30

36 San Fernando RV 1971 6.6 LA - Hollywood Stor FF 21.2 C SFERN\PEL180 0.2 35

37 Superstitn Hills SS 1987 6.7 Brawley Airport 18.2 C SUPERST\B-BRA225 0.1 23

38 Superstitn Hills SS 1987 6.7 El Centro Imp. Co. Cent 13.9 C SUPERST\B-ICC000 0.1 40

39 Superstitn Hills SS 1987 6.7 Plaster City 21 C SUPERST\B-PLS135 0.2 18

40 Superstitn Hills SS 1987 6.7 Westmorland Fire Sta 13.3 C SUPERST\B-WSM090 0.1 35
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Table A.4  Near-fault records used for Chapter 5. Note that these records came 
from next-generation attenuation (NGA) ground motion database 
(2005) rather than PEER ground motion database. 

# Location Mechanism Year Mw Station Name Distance 
GMX Soil 
Type 

1 Parkfield SS 1966 6.2 Cholame - Shandon Array #2 6.28 D 

2 Parkfield SS 1966 6.2 Temblor pre-1969 15.96 A 

3 San Fernando RV 1971 6.6 Pacoima Dam (upper left abut) 1.81 A 

4 Gazli, USSR RV 1976 6.8 Karakyr 5.46 A 

5 Tabas, Iran RV 1978 7.4 Tabas 2.05 A 

6 Coyote Lake SS 1979 5.7 Gilroy Array #6 3.11 A 

7 Imperial Valley-06 SS 1979 6.5 Brawley Airport 10.42 D 

8 Imperial Valley-06 SS 1979 6.5 EC County Center FF 7.31 D 

9 Imperial Valley-06 SS 1979 6.5 EC Meloland Overpass FF 0.07 D 

10 Imperial Valley-06 SS 1979 6.5 El Centro Array #10 6.17 D 

11 Imperial Valley-06 SS 1979 6.5 El Centro Array #4 7.05 D 

12 Imperial Valley-06 SS 1979 6.5 El Centro Array #5 3.95 D 

13 Imperial Valley-06 SS 1979 6.5 El Centro Array #6 1.35 D 

14 Imperial Valley-06 SS 1979 6.5 El Centro Array #7 0.56 D 

15 Imperial Valley-06 SS 1979 6.5 El Centro Array #8 3.86 D 

16 Imperial Valley-06 SS 1979 6.5 El Centro Differential Array 5.09 D 

17 Imperial Valley-06 SS 1979 6.5 Westmorland Fire Sta 15.25 D 

18 Coalinga-01 RV 1983 6.4 Pleasant Valley P.P. - bldg 8.41 D 

19 Morgan Hill SS 1984 6.2 Anderson Dam (Downstream) 3.26 D 

20 Morgan Hill SS 1984 6.2 Coyote Lake Dam (SW Abut) 0.53 A 

21 Morgan Hill SS 1984 6.2 Gilroy Array #6 9.86 A 

22 Morgan Hill SS 1984 6.2 Halls Valley 3.48 C 

23 Nahanni, Canada RV 1985 6.8 Site 1 9.60 A 

24 Nahanni, Canada RV 1985 6.8 Site 2 4.93 A 

25 N. Palm Springs RV/OB 1986 6.1 Desert Hot Springs 6.82 D 

26 N. Palm Springs RV/OB 1986 6.1 North Palm Springs 4.04 D 

27 N. Palm Springs RV/OB 1986 6.1 Whitewater Trout Farm 6.04 C 

28 Whittier Narrows-01 RV/OB 1987 6.0 Bell Gardens - Jaboneria 17.79 D 

29 Whittier Narrows-01 RV/OB 1987 6.0 Downey - Co Maint Bldg 20.82 D 

30 Whittier Narrows-01 RV/OB 1987 6.0 Norwalk - Imp Hwy, S Grnd 20.42 D 

31 Whittier Narrows-01 RV/OB 1987 6.0 Santa Fe Springs - E.Joslin 18.49 D 

32 Superstition Hills-02 SS 1987 6.5 El Centro Imp. Co. Cent 18.20 D 

33 Superstition Hills-02 SS 1987 6.5 Parachute Test Site 0.95 D 

34 Loma Prieta RV/OB 1989 6.9 Gilroy - Gavilan Coll. 9.96 B 

35 Loma Prieta RV/OB 1989 6.9 Gilroy - Historic Bldg. 10.97 D 

36 Loma Prieta RV/OB 1989 6.9 Gilroy Array #1 9.64 A 

37 Loma Prieta RV/OB 1989 6.9 Gilroy Array #2 11.07 D 

38 Loma Prieta RV/OB 1989 6.9 Gilroy Array #3 12.82 D 

39 Loma Prieta RV/OB 1989 6.9 Gilroy Array #4 14.34 D 

40 Loma Prieta RV/OB 1989 6.9 LGPC 3.88 A 
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Table A.4—(continued)  

# FileName1 HP LP Tp
2 X3 θ3 Xcos(θ)3 Y3 φ3 Ycos(φ)3 

1 PARKF/C02065.at2 0.20 10 0.67 1 4.74 1.00 0.83 4.05  

2 PARKF/TMB_051_FN.at2 0.20 15 0.4 1 10.43 0.98 0.83 34.39  

3 SFERN/PUL_195_FN.at2 0.10 35 1.34 0.25 63.42  0.8 7.53 0.79 

4 GAZLI/GAZ_177_FN.at2 0.05 38 1.06 0 89.96  1 3.15  

5 TABAS/TAB-TR.at2 0.05  4.7 0.6 12.56  0.32 0.58 0.32 

6 COYOTELK/G06_246_FN.at2 0.08 25 0.91 0.62 16.99 0.59 0.71 0.93  

7 IMPVALL/H-BRA_233_FN.at2 0.10 40 4.8 0.76 10.54 0.75 0.65 48.4  

8 IMPVALL/H-ECC_233_FN.at2 0.10 40 3.7 0.55 18.15 0.52 0.78 32.28  

9 IMPVALL/H-EMO_233_FN.at2 0.10 40 3 0.39 5.37 0.39 0.78 0.34  

10 IMPVALL/H-E10_233_FN.at2 0.10 40 6.1 0.5 17.53 0.48 0.78 28.5  

11 IMPVALL/H-E04_233_FN.at2 0.10 40 3.7 0.53 11.49 0.52 0.68 38.49  

12 IMPVALL/H-E05_233_FN.at2 0.10 40 3.4 0.55 4.68 0.55 0.72 22.82  

13 IMPVALL/H-E06_233_FN.at2 0.10 40 3.3 0.55 0.78 0.55 0.76 7.85  

14 IMPVALL/H-E07_233_FN.at2 0.10 40 3.2 0.55 4.8 0.55 0.78 3.07  

15 IMPVALL/H-E08_233_FN.at2 0.10 40 4.2 0.55 11.52 0.54 0.78 19.39  

16 IMPVALL/H-EDA_233_FN.at2 0.10 40 3.7 0.53 14.55 0.51 0.78 24.48  

17 IMPVALL/H-WSM_233_FN.at2 0.10 40 4.6 0.76 3.04 0.76 0.72 25.71  

18 COALINGA/H-PVB_047_FN.at2 0.20 20 1.1 0.15 76.24  0.21 4.61 0.21 

19 MORGAN/AND_058_FN.at2 0.10 30 0.45 0.61 11.12 0.60 0.7 20.73  

20 MORGAN/CYC_058_FN.at2 0.10 39 0.75 0.91 0.4 0.91 0.7 1.15  

21 MORGAN/G06_058_FN.at2 0.10 35 1.15 0.98 0.95 0.98 0.7 4.07  

22 MORGAN/HVR_058_FN.at2 0.20 26 0.84 0.02 6.74 0.02 0.7 3.11  

23 NAHANNI/S1_070_FN.at2 0.05 63 3.4 0.11 55.73  0.1 79.91 0.02 

24 NAHANNI/S2_070_FN.at2 0.10 63 0.55 0.11 56.61  0.47 30.77 0.40 

25 PALMSPR/DSP_197_FN.at2 0.50 46 0.42 0.47 7.01  0.66 37.43  

26 PALMSPR/NPS_197_FN.at2 0.15 20 0.91 0.43 36.12  0.73 14.47 0.71 

27 PALMSPR/WWT_197_FN.at2 0.10 40 0.53 0.18 32.22  0.71 32.4 0.60 

28 WHITTIER/A-JAB_190_FN.at2 0.25 25 0.62 0.5 62.84  0.03 24.36 0.03 

29 WHITTIER/A-DWN_190_FN.at2 0.20 30 0.81 0.5 70.33  0.03 14.02 0.03 

30 WHITTIER/A-NOR_190_FN.at2 0.15 40 0.6 0.36 76.12  0.03 15.12 0.03 

31 WHITTIER/A-EJS_190_FN.at2 0.35 25 0.26 0.15 82.71  0.03 21.45 0.03 

32 SUPERST/B-ICC_037_FN.at2 0.10 40 1.5 0.9 8.31 0.89 0.75 29.91  

33 SUPERST/B-PTS_037_FN.at2 0.06 20 1.9 0.8 3.4 0.80 0.75 6.01  

34 LOMAP/GIL_038_FN.at2 0.20 45 0.39 0.5 23.03  0.81 12.96  

35 LOMAP/GOF_038_FN.at2 0.20 38 1.29 0.5 30.89  0.81 19.54 0.76 

36 LOMAP/G01_038_FN.at2 0.20 50 0.4 0.5 22.84  0.81 12.45  

37 LOMAP/G02_038_FN.at2 0.20 40 1.56 0.5 25.42  0.81 16.18  

38 LOMAP/G03_038_FN.at2 0.10 33 0.47 0.5 27.13  0.81 19.32  

39 LOMAP/G04_038_FN.at2 0.20 28 1.5 0.5 30.26  0.81 23.02  

40 LOMAP/LGP_038_FN.at2 0.10 80 0.75 0.45 14.37  0.81 5.32 0.81 
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Table A.4—continued 

# Location Mechanism Year Mw Station Name Distance 
GMX Soil 
Type 

41 Loma Prieta RV/OB 1989 6.9 Saratoga - Aloha Ave 8.50 D 

42 Loma Prieta RV/OB 1989 6.9 Saratoga - W Valley Coll. 9.31 D 

43 Sierra Madre RV 1991 5.6 Cogswell Dam - Right Abutment 22.00 A 

44 Erzican, Turkey SS 1992 6.7 Erzincan 4.38 D 

45 Landers SS 1992 7.3 Lucerne 2.19 A 

46 Northridge-01 RV 1994 6.7 Canoga Park - Topanga Can 14.70 D 

47 Northridge-01 RV 1994 6.7 Canyon Country - W Lost Cany 12.44 C 

48 Northridge-01 RV 1994 6.7 Jensen Filter Plant 5.43 B 

49 Northridge-01 RV 1994 6.7 LA - Sepulveda VA Hospital 8.44 D 

50 Northridge-01 RV 1994 6.7 LA Dam 5.92 A 

51 Northridge-01 RV 1994 6.7 Newhall - Fire Sta 5.92 D 

52 Northridge-01 RV 1994 6.7 Newhall - W Pico Canyon Rd. 5.48 B 

53 Northridge-01 RV 1994 6.7 Pacoima Dam (downstr) 7.01 A 

54 Northridge-01 RV 1994 6.7 Pacoima Kagel Canyon 7.26 B 

55 Northridge-01 RV 1994 6.7 Rinaldi Receiving Sta 6.50 B 

56 Northridge-01 RV 1994 6.7 Sylmar - Converter Sta 5.35 D 

57 Northridge-01 RV 1994 6.7 Sylmar - Converter Sta East 5.19 B 

58 Northridge-01 RV 1994 6.7 Sylmar - Olive View Med FF 5.30 D 

59 Kobe, Japan SS 1995 6.9 KJMA 0.96 B 

60 Kocaeli, Turkey SS 1999 7.5 Arcelik 13.49 B 

61 Kocaeli, Turkey SS 1999 7.5 Duzce 15.37 D 

62 Kocaeli, Turkey SS 1999 7.5 Gebze 10.92 A 

63 Kocaeli, Turkey SS 1999 7.5 Sakarya 3.12 B 

64 Kocaeli, Turkey SS 1999 7.5 Yarimca 4.83 D 

65 Chi-Chi, Taiwan RV/OB 1999 7.6 TCU052 0.66 A 

66 Chi-Chi, Taiwan RV/OB 1999 7.6 TCU065 0.59 D 

67 Chi-Chi, Taiwan RV/OB 1999 7.6 TCU068 0.32 A 

68 Chi-Chi, Taiwan RV/OB 1999 7.6 TCU075 0.91 D 

69 Chi-Chi, Taiwan RV/OB 1999 7.6 TCU076 2.76 D 

70 Chi-Chi, Taiwan RV/OB 1999 7.6 TCU129 1.84 D 
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Table A.4—continued 

# FileName1 HP LP Tp
2 X3 θ3 Xcos(θ)3 Y3 φ3 Ycos(φ)3 

41 LOMAP/STG_038_FN.at2 0.10 38 1.69 0.5 23.2  0.81 11.53  

42 LOMAP/WVC_038_FN.at2 0.10 38 1.15 0.5 27.61  0.81 15.65 0.78 

43 SMADRE/chan1_152_FN.at2 0.50 23 0.29 0.13 51.57  0.07 89.22  

44 ERZIKAN/ERZ_032_FN.at2 0.10  2.3 0.31 1.95 0.31 0.75 25.06  

45 LANDERS/LCN_239_FN.at2 0.08 60 4.5 0.66 20.24 0.62 0.47 8.32  

46 NORTHR/CNP_032_FN.at2 0.05 30 2.05 0.25 23.66  0.41 56.34 0.23 

47 NORTHR/LOS_032_FN.at2 0.05 30 0.67 0.15 84.31  0.81 6.42 0.80 

48 NORTHR/JEN_032_FN.at2 0.08  2.9 0.1 82.22  0.81 13.7 0.79 

49 NORTHR/0637_032_FN.at2 0.08 50 0.85 0.19 66.62  0.72 26.01 0.65 

50 NORTHR/LDM_032_FN.at2 0.10  1.34 0.02 88.45  0.81 16.04 0.78 

51 NORTHR/NWH_032_FN.at2 0.12 23 1.25 0.5 63.44  0.81 3.99 0.81 

52 NORTHR/WPI_032_FN.at2 0.05 30 2.3 0.78 41.13  0.81 10.99  

53 NORTHR/PAC_032_FN.at2 0.16 23 0.44 0.22 76.56  0.81 1.46 0.81 

54 NORTHR/PKC_032_FN.at2 0.14 23 0.88 0.22 63.46  0.81 5.41  

55 NORTHR/RRS_032_FN.at2 0.06 30 1.06 0.08 82.22  0.81 18.3 0.77 

56 NORTHR/SCS_032_FN.at2   3 0.07 84.62  0.81 13.29 0.79 

57 NORTHR/SCE_032_FN.at2   3.1 0.03 87.53  0.81 12.18 0.79 

58 NORTHR/SYL_032_FN.at2 0.12 23 2.58 0.08 84.98  0.81 6.32 0.81 

59 KOBE/KJM_140_FN.at2 0.05  0.85 0.3 7.83 0.30 0.87 13.16  

60 KOCAELI/ARC_184_FN.at2 0.07 50 9.2 0.35 19.92 0.33 0.64 40.92  

61 KOCAELI/DZC_163_FN.at2  20 3.8 0.65 17.4 0.62 0.55 14.72  

62 KOCAELI/GBZ_184_FN.at2 0.03 25 4.3 0.34 23.87 0.31 0.64 37.34  

63 KOCAELI/SKR090.at2   5.7 0.24 3.56 0.24 0.73 25.32  

64 KOCAELI/YPT_180_FN.at2 0.07 50 3.8 0.14 13.92 0.14 0.64 4.57  

65 CHICHI/TCU052_278_FN.at2 0.04 50 6.7 0.43 34.77  0.39 6.59 0.39 

66 CHICHI/TCU065_272_FN.at2 0.03 50 4.5 0.22 46.3  0.38 5.99 0.38 

67 CHICHI/TCU068_280_FN.at2 0.03 50 9 0.48 33.32  0.39 7.01 0.39 

68 CHICHI/TCU075_271_FN.at2 0.03 50 4.4 0.15 54.08  0.36 4.05 0.36 

69 CHICHI/TCU076_271_FN.at2 0.10 50 3.2 0.06 63.27  0.32 0.05 0.32 

70 CHICHI/TCU129_271_FN.at2 0.03 50 4.1 0.05 73.62  0.29 3.75 0.29 
2 Pulse period as measured by Tothong and Cornell (2005a). 
3 Near-fault ground motion parameters as specified in Somerville et al. (1997). Blanks denote that the 
parameter is not applicable (e.g., Xcos(θ) is only provided for strike-slip events within the distance 
range where directivity is suggested). 
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Table A.5  Expanded record set used for calculation of response spectral correlations 
in Chapter 8. These records were also used as library of records in 
Chapter 6. 

# Event Mechanism Year Mw Station Name Distance 

USGS 
Soil 
Type 

GM 
Soil 
Type 

1 Cape Mendocino RV 1992 7.1 Eureka - Myrtle & West  44.6 B D 

2 Cape Mendocino RV 1992 7.1 Fortuna - Fortuna Blvd  23.6 B D 

3 Cape Mendocino RV 1992 7.1 Petrolia  9.5 C D 

4 Cape Mendocino RV 1992 7.1 Rio Dell Overpass - FF  18.5 B C 

5 Chalfant Valley SS 1986 5.9 Bishop - LADWP South St 24 - D 

6 Chalfant Valley SS 1986 6.2 Bishop - LADWP South St 9.2 - D 

7 Chalfant Valley SS 1986 5.8 Bishop - LADWP South St 13 - D 

8 Chalfant Valley SS 1986 6.2 Convict Creek 44.9 - D 

9 Chalfant Valley SS 1986 6.2 McGee Creek Surface 36.3 - C 

10 Chalfant Valley SS 1986 5.9 Zack Brothers Ranch 11 - D 

11 Chalfant Valley SS 1986 6.2 Zack Brothers Ranch 18.7 - D 

12 Coalinga RV/OB 1983 6.4 Cantua Creek School 25.5 - D 

13 Coalinga RV 1983 5.8 Palmer Ave 12.2 - B 

14 Coalinga RV/OB 1983 6.4 Parkfield - Cholame 12W 55.2 - D 

15 Coalinga RV/OB 1983 6.4 Parkfield - Cholame 2WA 42.8 - D 

16 Coalinga RV/OB 1983 6.4 Parkfield - Cholame 3W 43.9 - C 

17 Coalinga RV/OB 1983 6.4 Parkfield - Cholame 4W 44.7 - C 

18 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 1 40.4 - D 

19 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 10 30.4 - D 

20 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 11 28.4 - B 

21 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 12 29.5 - C 

22 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 14 29.9 - C 

23 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 15 29.9 - B 

24 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 16 28.1 - C 

25 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 3 36.4 - D 

26 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 4 34.3 - B 

27 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 6 32.8 - B 

28 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 7 31 - C 

29 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 8 29.6 - B 

30 Coalinga RV/OB 1983 6.4 Parkfield - Fault Zone 9 31.9 - B 

31 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 1W 46.5 - D 

32 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 2E 32.3 - D 

33 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 2W 36.6 - B 

34 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 3E 29.2 - D 

35 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 3W 38.8 - B 

36 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 4W 41 - B 

37 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 5W 43.7 - B 

38 Coalinga RV/OB 1983 6.4 Parkfield - Gold Hill 6W 48 - C 

39 Coalinga RV/OB 1983 6.4 Parkfield - Vineyard Cany 1E 26.7 - C 

40 Coalinga RV/OB 1983 6.4 Parkfield - Vineyard Cany 2W 30.7 - C 
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Table A.5—continued 

# FileName (Vertical) Filename (Horiz. #1) Filename (Horiz. #2) HP4 LP4 

1 CAPEMEND\EUR-UP CAPEMEND\EUR000 CAPEMEND\EUR090 0.16 23 

2 CAPEMEND\FOR-UP CAPEMEND\FOR000 CAPEMEND\FOR090 0.07 23 

3 CAPEMEND\PET-UP CAPEMEND\PET000 CAPEMEND\PET090 0.07 23 

4 CAPEMEND\RIO-UP CAPEMEND\RIO270 CAPEMEND\RIO360 0.07 23 

5 CHALFANT\B-LAD-UP CHALFANT\B-LAD270 CHALFANT\B-LAD180 0.11 20 

6 CHALFANT\A-LAD-UP CHALFANT\A-LAD180 CHALFANT\A-LAD270 0.1 30 

7 CHALFANT\D-LAD-UP CHALFANT\D-LAD160 CHALFANT\D-LAD070 0.2 20 

8 CHALFANT\A-CVK-UP CHALFANT\A-CVK090 CHALFANT\A-CVK000 0.2 30 

9 CHALFANT\A-MCG-UP CHALFANT\A-MCG270 CHALFANT\A-MCG360 0.1 35 

10 CHALFANT\B-ZAK-UP CHALFANT\B-ZAK270 CHALFANT\B-ZAK360 0.11 30 

11 CHALFANT\A-ZAK-UP CHALFANT\A-ZAK270 CHALFANT\A-ZAK360 0.2 33 

12 COALINGA\H-CAK-UP COALINGA\H-CAK270 COALINGA\H-CAK360 0.2 23 

13 COALINGA\D-PLM-UP COALINGA\D-PLM360 COALINGA\D-PLM270 0.2 20 

14 COALINGA\H-C12-UP COALINGA\H-C12270 COALINGA\H-C12360 0.2 21 

15 COALINGA\H-C02-UP COALINGA\H-C02000 COALINGA\H-C02090 0.2 22 

16 COALINGA\H-C03-UP COALINGA\H-C03000 COALINGA\H-C03090 0.2 21 

17 COALINGA\H-C04-UP COALINGA\H-C04000 COALINGA\H-C04090 0.2 21 

18 COALINGA\H-COW-UP COALINGA\H-COW000 COALINGA\H-COW090 0.2 20 

19 COALINGA\H-Z10-UP COALINGA\H-Z10000 COALINGA\H-Z10090 0.2 21 

20 COALINGA\H-Z11-UP COALINGA\H-Z11000 COALINGA\H-Z11090 0.2 21 

21 COALINGA\H-PRK-UP COALINGA\H-PRK090 COALINGA\H-PRK180 0.2 20 

22 COALINGA\H-Z14-UP COALINGA\H-Z14090 COALINGA\H-Z14000 0.2 23 

23 COALINGA\H-Z15-UP COALINGA\H-Z15000 COALINGA\H-Z15090 0.2 20 

24 COALINGA\H-Z16-UP COALINGA\H-Z16000 COALINGA\H-Z16090 0.2 26 

25 COALINGA\H-COH-UP COALINGA\H-COH000 COALINGA\H-COH090 0.1 22 

26 COALINGA\H-Z04-UP COALINGA\H-Z04000 COALINGA\H-Z04090 0.2 22 

27 COALINGA\H-Z06-UP COALINGA\H-Z06000 COALINGA\H-Z06090 0.2 24 

28 COALINGA\H-Z07-UP COALINGA\H-Z07000 COALINGA\H-Z07090 0.2 30 

29 COALINGA\H-Z08-UP COALINGA\H-Z08000 COALINGA\H-Z08090 0.2 21 

30 COALINGA\H-Z09-UP COALINGA\H-Z09000 COALINGA\H-Z09090 0.2 23 

31 COALINGA\H-PG1-UP COALINGA\H-PG1000 COALINGA\H-PG1090 0.2 22 

32 COALINGA\H-GH2-UP COALINGA\H-GH2000 COALINGA\H-GH2090 0.2 30 

33 COALINGA\H-PG2-UP COALINGA\H-PG2000 COALINGA\H-PG2090 0.2 20 

34 COALINGA\H-GH3-UP COALINGA\H-GH3000 COALINGA\H-GH3090 0.2 26 

35 COALINGA\H-PG3-UP COALINGA\H-PG3000 COALINGA\H-PG3090 0.2 30 

36 COALINGA\H-PG4-UP COALINGA\H-PG4000 COALINGA\H-PG4090 0.2 30 

37 COALINGA\H-PG5-UP COALINGA\H-PG5000 COALINGA\H-PG5090 0.2 26 

38 COALINGA\H-PG6-UP COALINGA\H-PG6000 COALINGA\H-PG6090 0.2 30 

39 COALINGA\H-PV1-UP COALINGA\H-PV1000 COALINGA\H-PV1090 0.2 23 

40 COALINGA\H-VC2-UP COALINGA\H-VC2000 COALINGA\H-VC2090 0.2 30 
4 Maximum high-pass frequency among the three components, and minimum low-pass frequency 
among the three components. 
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Table A.5—continued 

# Event Mechanism Year Mw Station Name Distance 

USGS 
Soil 
Type 

GM 
Soil 
Type 

41 Coalinga RV/OB 1983 6.4 Parkfield - Vineyard Cany 4W 34.6 - B 

42 Coalinga RV/OB 1983 6.4 Parkfield - Vineyard Cany 6W 41 - C 

43 Coalinga RV/OB 1983 6.4 Pleasant Valley P.P. - bldg 8.5 - D 

44 Coalinga RV 1983 5.8 Pleasant Valley P.P. - FF 17.4 - D 

45 Coalinga RV/OB 1983 6.4 Pleasant Valley P.P. - yard 8.5 - D 

46 Coyote Lake SS 1979 5.7 Gilroy Array #2 7.5 C D 

47 Coyote Lake SS 1979 5.7 Gilroy Array #6 3.1 B B 

48 Coyote Lake SS 1979 5.7 San Juan Bautista, 24 Polk St 15.6 B D 

49 Duzce, Turkey SS 1999 7.1 Duzce 8.2 C D 

50 Duzce, Turkey SS 1999 7.1 Lamont 1058 0.9 B B 

51 Duzce, Turkey SS 1999 7.1 Lamont 1059 8.5 - B 

52 Duzce, Turkey SS 1999 7.1 Lamont 1061 15.6 B B 

53 Duzce, Turkey SS 1999 7.1 Lamont 1062 13.3 - B 

54 Duzce, Turkey SS 1999 7.1 Lamont 375 8.2 - B 

55 Duzce, Turkey SS 1999 7.1 Sakarya 49.9 B B 

56 Friuli, Italy - 1976 6.5 Barcis 49.7 - B 

57 Friuli, Italy - 1976 6.5 Codroipo 34.6 - D 

58 Friuli, Italy - 1976 6.5 Tolmezzo 37.7 - B 

59 Imperial Valley SS 1979 6.5 Bonds Corner 2.5 C D 

60 Imperial Valley SS 1979 6.5 Brawley Airport 8.5 C D 

61 Imperial Valley SS 1979 6.5 Calexico Fire Station 10.6 C D 

62 Imperial Valley SS 1979 6.5 Calipatria Fire Station 23.8 C D 

63 Imperial Valley SS 1979 6.5 Coachella Canal #4 49.3 C D 

64 Imperial Valley SS 1979 6.5 EC County Center FF 7.6 C D 

65 Imperial Valley SS 1979 6.5 EC Meloland Overpass FF 0.5 C D 

66 Imperial Valley SS 1979 6.5 El Centro Array #1 15.5 C D 

67 Imperial Valley SS 1979 6.5 El Centro Array #10 8.6 C D 

68 Imperial Valley SS 1979 6.5 El Centro Array #11 12.6 C D 

69 Imperial Valley SS 1979 6.5 El Centro Array #12 18.2 C D 

70 Imperial Valley SS 1979 6.5 El Centro Array #13 21.9 C D 

71 Imperial Valley SS 1979 6.5 El Centro Array #4 4.2 C D 

72 Imperial Valley SS 1979 6.5 El Centro Array #5 1 C D 

73 Imperial Valley SS 1979 6.5 El Centro Array #6 1 C D 

74 Imperial Valley SS 1979 6.5 El Centro Array #7 0.6 C D 

75 Imperial Valley SS 1979 6.5 El Centro Array #8 3.8 C D 

76 Imperial Valley SS 1979 6.5 El Centro Differential Array 5.3 C D 

77 Imperial Valley SS 1979 6.5 Holtville Post Office 7.5 C D 

78 Imperial Valley SS 1979 6.5 Niland Fire Station 35.9 C D 

79 Imperial Valley SS 1979 6.5 Parachute Test Site 14.2 B D 

80 Imperial Valley SS 1979 6.5 Plaster City 31.7 C D 
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Table A.5—continued 

# FileName (Vertical) Filename (Horiz. #1) Filename (Horiz. #2) HP4 LP4 

41 COALINGA\H-VC4-UP COALINGA\H-VC4000 COALINGA\H-VC4090 0.2 27 

42 COALINGA\H-VC6-UP COALINGA\H-VC6000 COALINGA\H-VC6090 0.2 25 

43 COALINGA\H-PVB-UP COALINGA\H-PVB045 COALINGA\H-PVB135 0.2 20 

44 COALINGA\D-PVP-UP COALINGA\D-PVP270 COALINGA\D-PVP360 0.1 30 

45 COALINGA\H-PVY-UP COALINGA\H-PVY045 COALINGA\H-PVY135 0.2 31 

46 COYOTELK\G02-UP COYOTELK\G02050 COYOTELK\G02140 0.2 40 

47 COYOTELK\G06-UP COYOTELK\G06230 COYOTELK\G06320 0.2 25 

48 COYOTELK\SJB-UP COYOTELK\SJB213 COYOTELK\SJB303 0.2 20 

49 DUZCE\DZC-UP DUZCE\DZC180 DUZCE\DZC270 0.08 50 

50 DUZCE\1058-V DUZCE\1058-N DUZCE\1058-E 0.06 50 

51 DUZCE\1059-V DUZCE\1059-N DUZCE\1059-E 0.06 50 

52 DUZCE\1061-V DUZCE\1061-N DUZCE\1061-E 0.07 50 

53 DUZCE\1062-V DUZCE\1062-N DUZCE\1062-E 0.06 50 

54 DUZCE\375-V DUZCE\375-N DUZCE\375-E 0.15 50 

55 DUZCE\SKR-UP DUZCE\SKR180 DUZCE\SKR090 0.05 40 

56 FRIULI\A-BCS-UP FRIULI\A-BCS000 FRIULI\A-BCS270 0.2 30 

57 FRIULI\A-COD-UP FRIULI\A-COD000 FRIULI\A-COD270 0.1 25 

58 FRIULI\A-TMZ-UP FRIULI\A-TMZ000 FRIULI\A-TMZ270 0.1 30 

59 IMPVALL\H-BCR-UP IMPVALL\H-BCR140 IMPVALL\H-BCR230 0.1 40 

60 IMPVALL\H-BRA-UP IMPVALL\H-BRA225 IMPVALL\H-BRA315 0.1 40 

61 IMPVALL\H-CXO-UP IMPVALL\H-CXO225 IMPVALL\H-CXO315 0.2 40 

62 IMPVALL\H-CAL-UP IMPVALL\H-CAL225 IMPVALL\H-CAL315 0.1 40 

63 IMPVALL\H-CC4-UP IMPVALL\H-CC4045 IMPVALL\H-CC4135 0.2 40 

64 IMPVALL\H-ECC-UP IMPVALL\H-ECC002 IMPVALL\H-ECC092 0.1 35 

65 IMPVALL\H-EMO-UP IMPVALL\H-EMO000 IMPVALL\H-EMO270 0.1 40 

66 IMPVALL\H-E01-UP IMPVALL\H-E01140 IMPVALL\H-E01230 0.1 40 

67 IMPVALL\H-E10-UP IMPVALL\H-E10050 IMPVALL\H-E10320 0.1 40 

68 IMPVALL\H-E11-UP IMPVALL\H-E11230 IMPVALL\H-E11140 0.2 40 

69 IMPVALL\H-E12-UP IMPVALL\H-E12140 IMPVALL\H-E12230 0.1 40 

70 IMPVALL\H-E13-UP IMPVALL\H-E13140 IMPVALL\H-E13230 0.2 40 

71 IMPVALL\H-E04-UP IMPVALL\H-E04140 IMPVALL\H-E04230 0.1 40 

72 IMPVALL\H-E05-UP IMPVALL\H-E05140 IMPVALL\H-E05230 0.1 40 

73 IMPVALL\H-E06-UP IMPVALL\H-E06140 IMPVALL\H-E06230 0.2 40 

74 IMPVALL\H-E07-UP IMPVALL\H-E07140 IMPVALL\H-E07230 0.1 40 

75 IMPVALL\H-E08-UP IMPVALL\H-E08140 IMPVALL\H-E08230 0.1 40 

76 IMPVALL\H-EDA-UP IMPVALL\H-EDA270 IMPVALL\H-EDA360 0.1 40 

77 IMPVALL\H-HVP-UP IMPVALL\H-HVP225 IMPVALL\H-HVP315 0.1 40 

78 IMPVALL\H-NIL-UP IMPVALL\H-NIL090 IMPVALL\H-NIL360 0.1 30 

79 IMPVALL\H-PTS-UP IMPVALL\H-PTS225 IMPVALL\H-PTS315 0.1 40 

80 IMPVALL\H-PLS-UP IMPVALL\H-PLS045 IMPVALL\H-PLS135 0.1 40 
4 Maximum high-pass frequency among the three components, and minimum low-pass frequency 
among the three components. 
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Table A.5—continued 

# Event Mechanism Year Mw Station Name Distance 

USGS 
Soil 
Type 

GM 
Soil 
Type 

81 Imperial Valley SS 1979 6.5 Superstition Mtn Camera 26 B A 

82 Imperial Valley SS 1979 6.5 Westmorland Fire Sta 15.1 C D 

83 Kobe SS 1995 6.9 Abeno 23.8 C D 

84 Kobe SS 1995 6.9 Tadoka 30.5 C D 

85 Kocaeli, Turkey SS 1999 7.4 Arcelik 17 B B 

86 Kocaeli, Turkey SS 1999 7.4 Atakoy 67.5 C D 

87 Kocaeli, Turkey SS 1999 7.4 Bursa Tofas 62.7 - D 

88 Kocaeli, Turkey SS 1999 7.4 Cekmece 76.1 C B 

89 Kocaeli, Turkey SS 1999 7.4 Fatih 64.5 - C 

90 Kocaeli, Turkey SS 1999 7.4 Goynuk 35.5 - B 

91 Kocaeli, Turkey SS 1999 7.4 Iznik 31.8 C D 

92 Kocaeli, Turkey SS 1999 7.4 Mecidiyekoy 62.3 B B 

93 Kocaeli, Turkey SS 1999 7.4 Zeytinburnu 63.1 C D 

94 Landers SS 1992 7.3 Baker Fire Station  88.5 B D 

95 Landers SS 1992 7.3 Barstow  36.1 B D 

96 Landers SS 1992 7.3 Boron Fire Station  90.6 B D 

97 Landers SS 1992 7.3 Coolwater 21.2 B D 

98 Landers SS 1992 7.3 Desert Hot Springs  23.2 B D 

99 Landers SS 1992 7.3 Fort Irwin  64.2 B D 

100 Landers SS 1992 7.3 Hemet Fire Station  69.5 C D 

101 Landers SS 1992 7.3 Indio - Coachella Canal  55.7 C D 

102 Landers SS 1992 7.3 Joshua Tree  11.6 B C 

103 Landers SS 1992 7.3 Palm Springs Airport  37.5 C D 

104 Landers SS 1992 7.3 Riverside Airport  96.1 B B 

105 Landers SS 1992 7.3 San Bernardino-E &Hospitality 80.5 C D 

106 Landers SS 1992 7.3 Yermo Fire Station  24.9 C D 

107 Loma Prieta RV/OB 1989 6.9 Agnews State Hospital 28.2 C D 

108 Loma Prieta RV/OB 1989 6.9 Anderson Dam (Downstream) 21.4 B D 

109 Loma Prieta RV/OB 1989 6.9 Anderson Dam (L Abut) 21.4 B A 

110 Loma Prieta RV/OB 1989 6.9 APEEL 10 - Skyline 47.8 B A 

111 Loma Prieta RV/OB 1989 6.9 APEEL 2E Hayward Muir Sch 57.4 C D 

112 Loma Prieta RV/OB 1989 6.9 APEEL 3E Hayward CSUH 57.1 B A 

113 Loma Prieta RV/OB 1989 6.9 APEEL 7 - Pulgas 47.7 B A 

114 Loma Prieta RV/OB 1989 6.9 APEEL 9 - Crystal Springs Res 46.9 B A 

115 Loma Prieta RV/OB 1989 6.9 Belmont - Envirotech 49.9 B A 

116 Loma Prieta RV/OB 1989 6.9 Berkeley LBL 83.6 B A 

117 Loma Prieta RV/OB 1989 6.9 Capitola 14.5 C C 

118 Loma Prieta RV/OB 1989 6.9 Corralitos 5.1 B B 

119 Loma Prieta RV/OB 1989 6.9 Fremont - Emerson Court 43.4 C B 

120 Loma Prieta RV/OB 1989 6.9 Fremont - Mission San Jose 43 B B 
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Table A.5—continued 

# FileName (Vertical) Filename (Horiz. #1) Filename (Horiz. #2) HP4 LP4 

81 IMPVALL\H-SUP-UP IMPVALL\H-SUP045 IMPVALL\H-SUP135 0.1 40 

82 IMPVALL\H-WSM-UP IMPVALL\H-WSM090 IMPVALL\H-WSM180 0.1 40 

83 KOBE\ABN-UP KOBE\ABN000 KOBE\ABN090 0.05 40 

84 KOBE\TDO-UP KOBE\TDO000 KOBE\TDO090 0.05 40 

85 KOCAELI\ARCDWN KOCAELI\ARC000 KOCAELI\ARC090 0.08 50 

86 KOCAELI\ATK-UP KOCAELI\ATK000 KOCAELI\ATK090 0.08 40 

87 KOCAELI\BUR-UP KOCAELI\BUR090 KOCAELI\BUR000 0.08 50 

88 KOCAELI\CNA-UP KOCAELI\CNA000 KOCAELI\CNA090 0.02 50 

89 KOCAELI\FAT-UP KOCAELI\FAT000 KOCAELI\FAT090 0.03 50 

90 KOCAELI\GYN-UP KOCAELI\GYN090 KOCAELI\GYN000 0.15 25 

91 KOCAELI\IZN-UP KOCAELI\IZN180 KOCAELI\IZN090 0.1 25 

92 KOCAELI\MCD--V KOCAELI\MCD000 KOCAELI\MCD090 0.1 50 

93 KOCAELI\ZYT-UP KOCAELI\ZYT000 KOCAELI\ZYT090 0.06 50 

94 LANDERS\BAK-UP LANDERS\BAK050 LANDERS\BAK140 0.1 23 

95 LANDERS\BRS-UP LANDERS\BRS000 LANDERS\BRS090 0.07 23 

96 LANDERS\BFS-UP LANDERS\BFS000 LANDERS\BFS090 0.07 23 

97 LANDERS\CLW-UP LANDERS\CLW-LN LANDERS\CLW-TR 0.1 30 

98 LANDERS\DSP-UP LANDERS\DSP000 LANDERS\DSP090 0.07 23 

99 LANDERS\FTI-UP LANDERS\FTI000 LANDERS\FTI090 0.07 23 

100 LANDERS\H05-UP LANDERS\H05000 LANDERS\H05090 0.16 23 

101 LANDERS\IND-UP LANDERS\IND000 LANDERS\IND090 0.1 23 

102 LANDERS\JOS-UP LANDERS\JOS000 LANDERS\JOS090 0.07 23 

103 LANDERS\PSA-UP LANDERS\PSA000 LANDERS\PSA090 0.07 23 

104 LANDERS\RIV-UP LANDERS\RIV180 LANDERS\RIV270 0.16 23 

105 LANDERS\HOS-UP LANDERS\HOS090 LANDERS\HOS180 0.1 50 

106 LANDERS\YER-UP LANDERS\YER270 LANDERS\YER360 0.07 23 

107 LOMAP\AGW-UP LOMAP\AGW000 LOMAP\AGW090 0.2 30 

108 LOMAP\AND-UP LOMAP\AND270 LOMAP\AND360 0.2 40 

109 LOMAP\ADL-UP LOMAP\ADL250 LOMAP\ADL340 0.1 32 

110 LOMAP\A10-UP LOMAP\A10000 LOMAP\A10090 0.1 20 

111 LOMAP\A2E-UP LOMAP\A2E000 LOMAP\A2E090 0.2 25 

112 LOMAP\A3E-UP LOMAP\A3E000 LOMAP\A3E090 0.2 30 

113 LOMAP\A07-UP LOMAP\A07000 LOMAP\A07090 0.1 22 

114 LOMAP\A09-UP LOMAP\A09137 LOMAP\A09227 0.2 40 

115 LOMAP\BES-UP LOMAP\BES000 LOMAP\BES090 0.2 22 

116 LOMAP\BRK-UP LOMAP\BRK000 LOMAP\BRK090 0.2 18 

117 LOMAP\CAP-UP LOMAP\CAP000 LOMAP\CAP090 0.2 40 

118 LOMAP\CLS-UP LOMAP\CLS000 LOMAP\CLS090 0.2 32 

119 LOMAP\FMS-UP LOMAP\FMS090 LOMAP\FMS180 0.1 31 

120 LOMAP\FRE-UP LOMAP\FRE000 LOMAP\FRE090 0.2 24 
4 Maximum high-pass frequency among the three components, and minimum low-pass frequency 
among the three components. 
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Table A.5—continued 

# Event Mechanism Year Mw Station Name Distance 

USGS 
Soil 
Type 

GM 
Soil 
Type 

121 Loma Prieta RV/OB 1989 6.9 Gilroy - Gavilan Coll. 11.6 B B 

122 Loma Prieta RV/OB 1989 6.9 Gilroy - Historic Bldg. 12.7 - D 

123 Loma Prieta RV/OB 1989 6.9 Gilroy Array #2 12.7 C D 

124 Loma Prieta RV/OB 1989 6.9 Gilroy Array #3 14.4 C D 

125 Loma Prieta RV/OB 1989 6.9 Gilroy Array #4 16.1 C D 

126 Loma Prieta RV/OB 1989 6.9 Gilroy Array #6 19.9 B B 

127 Loma Prieta RV/OB 1989 6.9 Gilroy Array #7 24.2 C B 

128 Loma Prieta RV/OB 1989 6.9 Golden Gate Bridge 85.1 B A 

129 Loma Prieta RV/OB 1989 6.9 Halls Valley 31.6 C C 

130 Loma Prieta RV/OB 1989 6.9 Hayward - BART Sta 58.9 B D 

131 Loma Prieta RV/OB 1989 6.9 Hollister - South & Pine 28.8 - D 

132 Loma Prieta RV/OB 1989 6.9 Hollister City Hall 28.2 C D 

133 Loma Prieta RV/OB 1989 6.9 Hollister Diff. Array 25.8 C D 

134 Loma Prieta RV/OB 1989 6.9 Oakland - Title & Trust 77.4 C D 

135 Loma Prieta RV/OB 1989 6.9 Palo Alto - 1900 Embarc. 36.1 C D 

136 Loma Prieta RV/OB 1989 6.9 Palo Alto - SLAC Lab 36.3 B A 

137 Loma Prieta RV/OB 1989 6.9 Richmond City Hall 93.1 C D 

138 Loma Prieta RV/OB 1989 6.9 SAGO South - Surface 34.7 B B 

139 Loma Prieta RV/OB 1989 6.9 Salinas - John & Work 32.6 C D 

140 Loma Prieta RV/OB 1989 6.9 Saratoga - Aloha Ave 13 B D 

141 Loma Prieta RV/OB 1989 6.9 SF - Diamond Heights 77 B A 

142 Loma Prieta RV/OB 1989 6.9 SF - Presidio 83.1 B A 

143 Loma Prieta RV/OB 1989 6.9 SF Intern. Airport 64.4 C D 

144 Loma Prieta RV/OB 1989 6.9 Sunnyvale - Colton Ave. 28.8 C D 

145 Loma Prieta RV/OB 1989 6.9 UCSC Lick Observatory 17.9 B A 

146 Loma Prieta RV/OB 1989 6.9 Woodside 39.9 B B 

147 Mammoth Lakes RV/OB 1980 6.3 Convict Creek 9 - D 

148 Mammoth Lakes SS 1980 6 Convict Creek 17.4 - D 

149 Mammoth Lakes SS 1980 5.7 Convict Creek 3 - D 

150 Mammoth Lakes RV/OB 1980 6 Convict Creek 18.6 - D 

151 Morgan Hill SS 1984 6.2 Anderson Dam (Downstream) 2.6 B D 

152 Morgan Hill SS 1984 6.2 Capitola 38.1 C C 

153 Morgan Hill SS 1984 6.2 Corralitos 22.7 B B 

154 Morgan Hill SS 1984 6.2 Gilroy Array #2 15.1 C D 

155 Morgan Hill SS 1984 6.2 Gilroy Array #3 14.6 C D 

156 Morgan Hill SS 1984 6.2 Gilroy Array #4 12.8 C D 

157 Morgan Hill SS 1984 6.2 Gilroy Array #6 11.8 B B 

158 Morgan Hill SS 1984 6.2 Gilroy Array #7 14 C B 

159 Morgan Hill SS 1984 6.2 Halls Valley 3.4 C C 

160 Morgan Hill SS 1984 6.2 Hollister City Hall 32.5 C D 
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Table A.5—continued 

# FileName (Vertical) Filename (Horiz. #1) Filename (Horiz. #2) HP4 LP4 

121 LOMAP\GIL-UP LOMAP\GIL067 LOMAP\GIL337 0.2 35 

122 LOMAP\GOF-UP LOMAP\GOF090 LOMAP\GOF180 0.2 38 

123 LOMAP\G02-UP LOMAP\G02000 LOMAP\G02090 0.2 31 

124 LOMAP\G03-UP LOMAP\G03000 LOMAP\G03090 0.1 33 

125 LOMAP\G04-UP LOMAP\G04000 LOMAP\G04090 0.2 28 

126 LOMAP\G06-UP LOMAP\G06000 LOMAP\G06090 0.2 31 

127 LOMAP\GMR-UP LOMAP\GMR000 LOMAP\GMR090 0.2 35 

128 LOMAP\GGB-UP LOMAP\GGB270 LOMAP\GGB360 0.2 22 

129 LOMAP\HVR-UP LOMAP\HVR000 LOMAP\HVR090 0.2 22 

130 LOMAP\HWB-UP LOMAP\HWB220 LOMAP\HWB310 0.2 31 

131 LOMAP\HSP-UP LOMAP\HSP000 LOMAP\HSP090 0.1 23 

132 LOMAP\HCH-UP LOMAP\HCH090 LOMAP\HCH180 0.1 29 

133 LOMAP\HDA-UP LOMAP\HDA165 LOMAP\HDA255 0.1 33 

134 LOMAP\TIB-UP LOMAP\TIB180 LOMAP\TIB270 0.2 38 

135 LOMAP\PAE-UP LOMAP\PAE000 LOMAP\PAE090 0.2 30 

136 LOMAP\SLC-UP LOMAP\SLC270 LOMAP\SLC360 0.2 28 

137 LOMAP\RCH-UP LOMAP\RCH190 LOMAP\RCH280 0.2 25 

138 LOMAP\SG3-UP LOMAP\SG3261 LOMAP\SG3351 0.1 25 

139 LOMAP\SJW-UP LOMAP\SJW160 LOMAP\SJW250 0.1 28 

140 LOMAP\STG-UP LOMAP\STG000 LOMAP\STG090 0.1 38 

141 LOMAP\DMH-UP LOMAP\DMH000 LOMAP\DMH090 0.2 22 

142 LOMAP\PRS-UP LOMAP\PRS000 LOMAP\PRS090 0.1 31 

143 LOMAP\SFO-UP LOMAP\SFO000 LOMAP\SFO090 0.2 30 

144 LOMAP\SVL-UP LOMAP\SVL270 LOMAP\SVL360 0.1 32 

145 LOMAP\LOB-UP LOMAP\LOB000 LOMAP\LOB090 0.2 40 

146 LOMAP\WDS-UP LOMAP\WDS000 LOMAP\WDS090 0.1 25 

147 MAMMOTH\I-CVK-UP MAMMOTH\I-CVK090 MAMMOTH\I-CVK180 0.2 41 

148 MAMMOTH\A-CVK-UP MAMMOTH\A-CVK090 MAMMOTH\A-CVK180 0.2 30 

149 MAMMOTH\B-CVK-UP MAMMOTH\B-CVK090 MAMMOTH\B-CVK180 0.2 35 

150 MAMMOTH\L-CVK-UP MAMMOTH\L-CVK090 MAMMOTH\L-CVK180 0.1 40 

151 MORGAN\AND-UP MORGAN\AND250 MORGAN\AND340 0.1 30 

152 MORGAN\CAP-UP MORGAN\CAP042 MORGAN\CAP132 0.2 28 

153 MORGAN\CLS-UP MORGAN\CLS220 MORGAN\CLS310 0.2 24 

154 MORGAN\G02-UP MORGAN\G02000 MORGAN\G02090 0.2 31 

155 MORGAN\G03-UP MORGAN\G03000 MORGAN\G03090 0.1 32 

156 MORGAN\G04-UP MORGAN\G04270 MORGAN\G04360 0.1 25 

157 MORGAN\G06-UP MORGAN\G06000 MORGAN\G06090 0.1 27 

158 MORGAN\GMR-UP MORGAN\GMR000 MORGAN\GMR090 0.1 30 

159 MORGAN\HVR-UP MORGAN\HVR150 MORGAN\HVR240 0.2 26 

160 MORGAN\HCH-UP MORGAN\HCH001 MORGAN\HCH271 0.2 19 
4 Maximum high-pass frequency among the three components, and minimum low-pass frequency 
among the three components. 
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Table A.5—continued 

# Event Mechanism Year Mw Station Name Distance 

USGS 
Soil 
Type 

GM 
Soil 
Type 

161 Morgan Hill SS 1984 6.2 Hollister Diff Array #1 28.3 C D 

162 Morgan Hill SS 1984 6.2 Hollister Diff Array #3 28.3 C D 

163 Morgan Hill SS 1984 6.2 Hollister Diff Array #4 28.3 C D 

164 Morgan Hill SS 1984 6.2 Hollister Diff Array #5 28.3 C D 

165 Morgan Hill SS 1984 6.2 Hollister Diff. Array 28.3 C D 

166 Morgan Hill SS 1984 6.2 San Juan Bautista, 24 Polk St 30.3 B D 

167 N. Palm Springs RV/OB 1986 6 Cabazon 16.3 - D 

168 N. Palm Springs RV/OB 1986 6 Hesperia 75.9 B D 

169 N. Palm Springs RV/OB 1986 6 Indio 39.6 - D 

170 N. Palm Springs RV/OB 1986 6 Puerta La Cruz 71.9 B B 

171 Northridge RV 1994 6.7 Alhambra - Fremont School 35.7 B D 

172 Northridge RV 1994 6.7 Anaverde Valley - City R  38.4 C D 

173 Northridge RV 1994 6.7 Arleta - Nordhoff Fire Sta  9.2 C D 

174 Northridge RV 1994 6.7 Bell Gardens - Jaboneria 46.6 C D 

175 Northridge RV 1994 6.7 Burbank - Howard Rd. 20 B B 

176 Northridge RV 1994 6.7 Camarillo 36.5 C - 

177 Northridge RV 1994 6.7 Canoga Park - Topanga Can 15.8 C D 

178 Northridge RV 1994 6.7 Canyon Country - W Lost Cany 13 C D 

179 Northridge RV 1994 6.7 Castaic - Old Ridge Route  22.6 B B 

180 Northridge RV 1994 6.7 Downey - Co Maint Bldg  47.6 C D 

181 Northridge RV 1994 6.7 Elizabeth Lake  37.2 C D 

182 Northridge RV 1994 6.7 Hollywood - Willoughby Ave 25.7 B D 

183 Northridge RV 1994 6.7 Huntington Beach - Lake St  79.6 C D 

184 Northridge RV 1994 6.7 Inglewood - Union Oil  44.7 B D 

185 Northridge RV 1994 6.7 LA - Baldwin Hills  31.3 B B 

186 Northridge RV 1994 6.7 LA - Centinela St 30.9 C D 

187 Northridge RV 1994 6.7 LA - Century City CC North  25.7 C D 

188 Northridge RV 1994 6.7 LA - E Vernon Ave 39.3 C D 

189 Northridge RV 1994 6.7 LA - Hollywood Stor FF  25.5 C D 

190 Northridge RV 1994 6.7 LA - N Faring Rd 23.9 C B 

191 Northridge RV 1994 6.7 LA - N Westmoreland 29 B D 

192 Northridge RV 1994 6.7 LA - Pico & Sentous  32.7 C D 

193 Northridge RV 1994 6.7 LA - Saturn St 30 C D 

194 Northridge RV 1994 6.7 LA - Temple & Hope  32.3 B A 

195 Northridge RV 1994 6.7 LA - UCLA Grounds 14.9 B - 

196 Northridge RV 1994 6.7 LA - Univ. Hospital  34.6 B A 

197 Northridge RV 1994 6.7 Lake Hughes #1 36.3 B C 

198 Northridge RV 1994 6.7 Lake Hughes #12A 22.8 B C 

199 Northridge RV 1994 6.7 Lake Hughes #4 - Camp Mend 32.3 B B 

200 Northridge RV 1994 6.7 Lake Hughes #4B - Camp Mend 32.3 B B 
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Table A.5—continued 

# FileName (Vertical) Filename (Horiz. #1) Filename (Horiz. #2) HP4 LP4 

161 MORGAN\HD1-UP MORGAN\HD1255 MORGAN\HD1165 0.2 30 

162 MORGAN\HD3-UP MORGAN\HD3255 MORGAN\HD3165 0.2 30 

163 MORGAN\HD4-UP MORGAN\HD4165 MORGAN\HD4255 0.2 30 

164 MORGAN\HD5-UP MORGAN\HD5165 MORGAN\HD5255 0.2 30 

165 MORGAN\HDA-UP MORGAN\HDA165 MORGAN\HDA255 0.2 23 

166 MORGAN\SJB-UP MORGAN\SJB213 MORGAN\SJB303 0.1 21 

167 PALMSPR\CAB-UP PALMSPR\CAB180 PALMSPR\CAB270 0.2 40 

168 PALMSPR\HES-UP PALMSPR\HES002 PALMSPR\HES092 0.2 25 

169 PALMSPR\INO-UP PALMSPR\INO225 PALMSPR\INO315 0.1 35 

170 PALMSPR\PLC-UP PALMSPR\PLC258 PALMSPR\PLC348 0.2 32 

171 NORTHR\ALH-UP NORTHR\ALH090 NORTHR\ALH360 0.12 25 

172 NORTHR\ANA-UP NORTHR\ANA090 NORTHR\ANA180 0.2 46 

173 NORTHR\ARL-UP NORTHR\ARL090 NORTHR\ARL360 0.12 23 

174 NORTHR\JAB-UP NORTHR\JAB220 NORTHR\JAB310 0.13 30 

175 NORTHR\HOW-UP NORTHR\HOW060 NORTHR\HOW330 0.1 30 

176 NORTHR\CMR-UP NORTHR\CMR180 NORTHR\CMR270 0.1 25 

177 NORTHR\CNP-UP NORTHR\CNP106 NORTHR\CNP196 0.1 30 

178 NORTHR\LOS-UP NORTHR\LOS270 NORTHR\LOS000 0.2 30 

179 NORTHR\ORR-UP NORTHR\ORR090 NORTHR\ORR360 0.12 23 

180 NORTHR\DWN-UP NORTHR\DWN090 NORTHR\DWN360 0.2 23 

181 NORTHR\ELI-UP NORTHR\ELI090 NORTHR\ELI180 0.16 46 

182 NORTHR\WIL-UP NORTHR\WIL180 NORTHR\WIL090 0.2 30 

183 NORTHR\HNT-UP NORTHR\HNT000 NORTHR\HNT090 0.2 23 

184 NORTHR\ING-UP NORTHR\ING000 NORTHR\ING090 0.16 23 

185 NORTHR\BLD-UP NORTHR\BLD090 NORTHR\BLD360 0.16 23 

186 NORTHR\CEN-UP NORTHR\CEN155 NORTHR\CEN245 0.2 30 

187 NORTHR\CCN-UP NORTHR\CCN090 NORTHR\CCN360 0.14 23 

188 NORTHR\VER-UP NORTHR\VER090 NORTHR\VER180 0.2 30 

189 NORTHR\PEL-UP NORTHR\PEL090 NORTHR\PEL360 0.2 23 

190 NORTHR\FAR-UP NORTHR\FAR000 NORTHR\FAR090 0.2 30 

191 NORTHR\WST-UP NORTHR\WST000 NORTHR\WST270 0.2 30 

192 NORTHR\PIC-UP NORTHR\PIC090 NORTHR\PIC180 0.2 46 

193 NORTHR\STN-UP NORTHR\STN020 NORTHR\STN110 0.13 30 

194 NORTHR\TEM-UP NORTHR\TEM090 NORTHR\TEM180 0.2 46 

195 NORTHR\UCL-UP NORTHR\UCL090 NORTHR\UCL360 0.08 25 

196 NORTHR\UNI-UP NORTHR\UNI005 NORTHR\UNI095 0.2 46 

197 NORTHR\L01-UP NORTHR\L01000 NORTHR\L01090 0.12 23 

198 NORTHR\H12-UP NORTHR\H12090 NORTHR\H12180 0.13 46 

199 NORTHR\L04-UP NORTHR\L04000 NORTHR\L04090 0.12 23 

200 NORTHR\L4B-UP NORTHR\L4B000 NORTHR\L4B090 0.12 23 
4 Maximum high-pass frequency among the three components, and minimum low-pass frequency 
among the three components. 
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Table A.5—continued 

# Event Mechanism Year Mw Station Name Distance 

USGS 
Soil 
Type 

GM 
Soil 
Type 

201 Northridge RV 1994 6.7 Lawndale - Osage Ave 42.4 C D 

202 Northridge RV 1994 6.7 LB - Rancho Los Cerritos  54.3 - D 

203 Northridge RV 1994 6.7 Leona Valley #2 37.7 C - 

204 Northridge RV 1994 6.7 Leona Valley #4 38.1 C - 

205 Northridge RV 1994 6.7 Leona Valley #5 - Ritter 38.3 C C 

206 Northridge RV 1994 6.7 Leona Valley #6 38.5 C D 

207 Northridge RV 1994 6.7 N Hollywood - Coldwater Can 14.6 B C 

208 Northridge RV 1994 6.7 Neenach - Sacatara Ck  53.2 B D 

209 Northridge RV 1994 6.7 Newhall - Fire Sta  7.1 C D 

210 Northridge RV 1994 6.7 Newhall - W Pico Canyon Rd. 7.1 B C 

211 Northridge RV 1994 6.7 Newport Bch - Irvine Ave. F.S 87.6 B - 

212 Northridge RV 1994 6.7 Newport Bch - Newp & Coast  84.6 B B 

213 Northridge RV 1994 6.7 Pacific Palisades - Sunset 26.2 B B 

214 Northridge RV 1994 6.7 Pacoima Kagel Canyon  8.2 B B 

215 Northridge RV 1994 6.7 Palmdale - Hwy 14 & Palmdale 43.6 C C 

216 Northridge RV 1994 6.7 Phelan - Wilson Ranch  86.1 B D 

217 Northridge RV 1994 6.7 Playa Del Rey - Saran 34.2 B D 

218 Northridge RV 1994 6.7 Port Hueneme - Naval Lab.  54.3 C D 

219 Northridge RV 1994 6.7 Rolling Hills Est-Rancho Vista 46.6 B - 

220 Northridge RV 1994 6.7 Santa Monica City Hall  27.6 C D 

221 Northridge RV 1994 6.7 Seal Beach - Office Bldg  64.9 B D 

222 Northridge RV 1994 6.7 Sun Valley - Roscoe Blvd 12.3 C D 

223 Northridge RV 1994 6.7 Sunland - Mt Gleason Ave 17.7 B C 

224 Northridge RV 1994 6.7 Sylmar - Olive View Med FF  6.4 C D 

225 Northridge RV 1994 6.7 Tarzana - Cedar Hill  17.5 C B 

226 Northridge RV 1994 6.7 Terminal Island - S Seaside 60 C D 

227 Northridge RV 1994 6.7 West Covina - S Orange Ave 54.1 C B 

228 Parkfield SS 1966 6.1 Cholame #12 14.7 B B 

229 Parkfield SS 1966 6.1 Cholame #8 9.2 C B 

230 Point Mugu RV 1973 5.8 Port Hueneme 25 C D 

231 San Fernando RV 1971 6.6 2516 Via Tejon PV 65.1 - C 

232 San Fernando RV 1971 6.6 Cedar Springs Pumphouse 87.6 - B 

233 San Fernando RV 1971 6.6 Fort Tejon 64.1 B B 

234 San Fernando RV 1971 6.6 Gormon - Oso Pump Plant 48.1 C C 

235 San Fernando RV 1971 6.6 LB - Terminal Island 69.2 C D 

236 San Fernando RV 1971 6.6 Pearblossom Pump 38.9 B B 

237 San Fernando RV 1971 6.6 Wheeler Ridge - Ground 81.6 C D 

238 San Fernando RV 1971 6.6 Wrightwood - 6074 Park Dr 60.3 B B 

239 Santa Barbara RV/OB 1978 6 Santa Barbara Courthouse 14 B D 

240 Superstitn Hills(A SS NaN 6.3 Wildlife Liquef. Array 24.7 - D 
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Table A.5—continued 

# FileName (Vertical) Filename (Horiz. #1) Filename (Horiz. #2) HP4 LP4 

201 NORTHR\LOA-UP NORTHR\LOA092 NORTHR\LOA182 0.13 30 

202 NORTHR\LBR-UP NORTHR\LBR000 NORTHR\LBR090 0.16 23 

203 NORTHR\LV2-UP NORTHR\LV2000 NORTHR\LV2090 0.2 23 

204 NORTHR\LV4-UP NORTHR\LV4000 NORTHR\LV4090 0.2 23 

205 NORTHR\LV5-UP NORTHR\LV5000 NORTHR\LV5090 0.2 23 

206 NORTHR\LV6-UP NORTHR\LV6090 NORTHR\LV6360 0.2 23 

207 NORTHR\CWC-UP NORTHR\CWC180 NORTHR\CWC270 0.13 30 

208 NORTHR\NEE-UP NORTHR\NEE090 NORTHR\NEE180 0.12 46 

209 NORTHR\NWH-UP NORTHR\NWH090 NORTHR\NWH360 0.12 23 

210 NORTHR\WPI-UP NORTHR\WPI046 NORTHR\WPI316 0.1 30 

211 NORTHR\NBI-UP NORTHR\NBI000 NORTHR\NBI090 0.2 23 

212 NORTHR\NEW-UP NORTHR\NEW090 NORTHR\NEW180 0.17 46 

213 NORTHR\SUN-UP NORTHR\SUN190 NORTHR\SUN280 0.1 30 

214 NORTHR\PKC-UP NORTHR\PKC090 NORTHR\PKC360 0.2 23 

215 NORTHR\PHP-UP NORTHR\PHP000 NORTHR\PHP270 0.2 46 

216 NORTHR\PHE-UP NORTHR\PHE090 NORTHR\PHE180 0.2 46 

217 NORTHR\SAR-UP NORTHR\SAR000 NORTHR\SAR270 0.1 30 

218 NORTHR\PTH-UP NORTHR\PTH090 NORTHR\PTH180 0.14 23 

219 NORTHR\RHE-UP NORTHR\RHE090 NORTHR\RHE360 0.15 25 

220 NORTHR\STM-UP NORTHR\STM090 NORTHR\STM360 0.14 23 

221 NORTHR\SEA-UP NORTHR\SEA000 NORTHR\SEA090 0.16 46 

222 NORTHR\RO3-UP NORTHR\RO3000 NORTHR\RO3090 0.1 30 

223 NORTHR\GLE-UP NORTHR\GLE170 NORTHR\GLE260 0.1 30 

224 NORTHR\SYL-UP NORTHR\SYL090 NORTHR\SYL360 0.12 23 

225 NORTHR\TAR-UP NORTHR\TAR090 NORTHR\TAR360 0.1 23 

226 NORTHR\SSE-UP NORTHR\SSE240 NORTHR\SSE330 0.13 30 

227 NORTHR\SOR-UP NORTHR\SOR225 NORTHR\SOR315 0.2 30 

228 PARKF\C12DWN PARKF\C12050 PARKF\C12320 0.2 20 

229 PARKF\C08DWN PARKF\C08050 PARKF\C08320 0.2 20 

230 PTMUGU\PHN-UP PTMUGU\PHN180 PTMUGU\PHN270 0.2 25 

231 SFERN\PVEDWN SFERN\PVE065 SFERN\PVE155 0.2 20 

232 SFERN\CSPDWN SFERN\CSP126 SFERN\CSP216 0.1 20 

233 SFERN\FTJ-UP SFERN\FTJ000 SFERN\FTJ090 0.1 20 

234 SFERN\OPP-UP SFERN\OPP000 SFERN\OPP270 0.1 23 

235 SFERN\TLI-UP SFERN\TLI249 SFERN\TLI339 0.1 20 

236 SFERN\PPPDWN SFERN\PPP000 SFERN\PPP270 0.2 35 

237 SFERN\WRP-UP SFERN\WRP090 SFERN\WRP180 0.1 23 

238 SFERN\WTWDWN SFERN\WTW025 SFERN\WTW295 0.2 30 

239 SBARB\SBA-UP SBARB\SBA132 SBARB\SBA222 0.1 26 

240 SUPERST\A-IVW-UP SUPERST\A-IVW090 SUPERST\A-IVW360 0.2 50 
4 Maximum high-pass frequency among the three components, and minimum low-pass frequency 
among the three components. 
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Table A.5—continued 

# Event Mechanism Year Mw Station Name Distance 

USGS 
Soil 
Type 

GM 
Soil 
Type 

241 Superstitn Hills(B SS NaN 6.7 El Centro Imp. Co. Cent 13.9 C D 

242 Superstitn Hills(B SS NaN 6.7 Westmorland Fire Sta 13.3 C D 

243 Superstitn Hills(B SS NaN 6.7 Wildlife Liquef. Array 24.4 - D 

244 Taiwan SMART1(40) RV/OB 1986 6.4 SMART1 C00 64 - D 

245 Taiwan SMART1(40) RV/OB 1986 6.4 SMART1 E01 64 - D 

246 Taiwan SMART1(40) RV/OB 1986 6.4 SMART1 I01 64 - D 

247 Taiwan SMART1(40) RV/OB 1986 6.4 SMART1 I07 64 - D 

248 Taiwan SMART1(40) RV/OB 1986 6.4 SMART1 M01 64 - D 

249 Taiwan SMART1(40) RV/OB 1986 6.4 SMART1 M07 64 - D 

250 Taiwan SMART1(40) RV/OB 1986 6.4 SMART1 O01 64 - D 

251 Taiwan SMART1(40) RV/OB 1986 6.4 SMART1 O07 64 - D 

252 Taiwan SMART1(45) RV 1986 7.3 SMART1 C00 39 - D 

253 Taiwan SMART1(45) RV 1986 7.3 SMART1 E01 39 - D 

254 Taiwan SMART1(45) RV 1986 7.3 SMART1 E02 39 - D 

255 Taiwan SMART1(45) RV 1986 7.3 SMART1 I01 39 - D 

256 Taiwan SMART1(45) RV 1986 7.3 SMART1 I07 39 - D 

257 Taiwan SMART1(45) RV 1986 7.3 SMART1 M01 39 - D 

258 Taiwan SMART1(45) RV 1986 7.3 SMART1 M07 39 - D 

259 Taiwan SMART1(45) RV 1986 7.3 SMART1 O01 39 - D 

260 Taiwan SMART1(45) RV 1986 7.3 SMART1 O02 39 - D 

261 Taiwan SMART1(45) RV 1986 7.3 SMART1 O04 39 - D 

262 Taiwan SMART1(45) RV 1986 7.3 SMART1 O06 39 - D 

263 Taiwan SMART1(45) RV 1986 7.3 SMART1 O07 39 - D 

264 Taiwan SMART1(45) RV 1986 7.3 SMART1 O08 39 - D 

265 Taiwan SMART1(45) RV 1986 7.3 SMART1 O10 39 - D 

266 Taiwan SMART1(45) RV 1986 7.3 SMART1 O12 39 - D 

267 Whittier Narrows RV 1987 6 LA - 116th St School 22.5 B D 
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Table A.5—continued 

# FileName (Vertical) Filename (Horiz. #1) Filename (Horiz. #2) HP4 LP4 

241 SUPERST\B-ICC-UP SUPERST\B-ICC000 SUPERST\B-ICC090 0.1 38 

242 SUPERST\B-WSM-UP SUPERST\B-WSM090 SUPERST\B-WSM180 0.1 35 

243 SUPERST\B-IVW-UP SUPERST\B-IVW090 SUPERST\B-IVW360 0.1 40 

244 SMART1\40C00DN SMART1\40C00EW SMART1\40C00NS 0.2 25 

245 SMART1\40E01DN SMART1\40E01EW SMART1\40E01NS 0.2 25 

246 SMART1\40I01DN SMART1\40I01EW SMART1\40I01NS 0.2 25 

247 SMART1\40I07DN SMART1\40I07EW SMART1\40I07NS 0.2 25 

248 SMART1\40M01DN SMART1\40M01EW SMART1\40M01NS 0.2 25 

249 SMART1\40M07DN SMART1\40M07EW SMART1\40M07NS 0.2 25 

250 SMART1\40O01DN SMART1\40O01EW SMART1\40O01NS 0.2 25 

251 SMART1\40O07DN SMART1\40O07EW SMART1\40O07NS 0.2 25 

252 SMART1\45C00DN SMART1\45C00EW SMART1\45C00NS 0.1 25 

253 SMART1\45E01DN SMART1\45E01EW SMART1\45E01NS 0.1 25 

254 SMART1\45E02DN SMART1\45E02EW SMART1\45E02NS 0.1 25 

255 SMART1\45I01DN SMART1\45I01EW SMART1\45I01NS 0.1 25 

256 SMART1\45I07DN SMART1\45I07EW SMART1\45I07NS 0.1 25 

257 SMART1\45M01DN SMART1\45M01EW SMART1\45M01NS 0.1 25 

258 SMART1\45M07DN SMART1\45M07NS SMART1\45M07EW 0.2 25 

259 SMART1\45O01DN SMART1\45O01EW SMART1\45O01NS 0.1 25 

260 SMART1\45O02DN SMART1\45O02EW SMART1\45O02NS 0.1 25 

261 SMART1\45O04DN SMART1\45O04EW SMART1\45O04NS 0.1 25 

262 SMART1\45O06DN SMART1\45O06EW SMART1\45O06NS 0.1 25 

263 SMART1\45O07DN SMART1\45O07EW SMART1\45O07NS 0.1 25 

264 SMART1\45O08DN SMART1\45O08EW SMART1\45O08NS 0.1 25 

265 SMART1\45O10DN SMART1\45O10EW SMART1\45O10NS 0.1 25 

266 SMART1\45O12DN SMART1\45O12EW SMART1\45O12NS 0.2 25 

267 WHITTIER\A-116-UP WHITTIER\A-116270 WHITTIER\A-116360 0.2 30 
4 Maximum high-pass frequency among the three components, and minimum low-pass frequency 
among the three components. 
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Table A.6  M,R-based records for Chapter 6. Selected to match Van Nuys 
disaggregation with IM=Sa(0.8s). 

# 0.1g 0.2g 0.4g 0.6g 0.8g 1g 1.4g 1.8g 2.4g 3g 4g 

1   2 (1)   2 (1)   2 (1)   2 (1)   2 (1)   2 (1)   2 (1)   2 (1)   2 (1)   2 (1)   2 (1) 

2   4 (1)   4 (1)   4 (1)   4 (1)   4 (1)   4 (1)   4 (1)   4 (1)   4 (1)   4 (1)   4 (1) 

3   7 (2)   7 (2)   7 (2)   7 (2)   7 (2)   7 (2)   7 (2)   7 (2)   7 (2)   7 (2)   7 (2) 

4   9 (1)   9 (1)   9 (1)   9 (1)   9 (1)   9 (1)   9 (1)   9 (1)   9 (1)   9 (1)   9 (1) 

5  10 (1)  10 (1)  10 (1)  10 (1)  10 (1)  10 (1)  10 (1)  10 (1)  10 (1)  10 (1)  10 (1) 

6  13 (1)  13 (1)  13 (1)  13 (1)  13 (1)  13 (1)  13 (1)  13 (1)  13 (1)  13 (1)  13 (1) 

7  18 (1)  18 (1)  18 (1)  18 (1)  18 (1)  18 (1)  18 (1)  18 (1)  18 (1)  18 (1)  18 (1) 

8  26 (1)  26 (1)  26 (1)  26 (1)  26 (1)  26 (1)  26 (1)  26 (1)  26 (1)  26 (1)  26 (1) 

9  35 (1)  35 (1)  35 (1)  35 (1)  35 (1)  35 (1)  35 (1)  35 (1)  35 (1)  35 (1)  35 (1) 

10  41 (1)  41 (1)  41 (1)  41 (1)  41 (1)  41 (1)  41 (1)  41 (1)  41 (1)  41 (1)  41 (1) 

11  59 (2)  59 (2)  59 (2)  59 (2)  59 (2)  59 (2)  59 (2)  59 (2)  59 (2)  59 (2)  59 (2) 

12  69 (1)  69 (1)  69 (1)  69 (1)  69 (1)  69 (1)  69 (1)  69 (1)  69 (1)  69 (1)  69 (1) 

13  77 (2)  77 (2)  77 (2)  77 (2)  77 (2)  77 (2)  77 (2)  77 (2)  77 (2)  77 (2)  77 (2) 

14  79 (1)  79 (1)  79 (1)  79 (1)  79 (1)  79 (1)  79 (1)  79 (1)  79 (1)  79 (1)  79 (1) 

15  87 (2)  87 (2)  87 (2)  87 (2)  87 (2)  87 (2)  87 (2)  87 (2)  87 (2)  87 (2)  87 (2) 

16  88 (2)  88 (2)  88 (2)  88 (2)  88 (2)  88 (2)  88 (2)  88 (2)  88 (2)  88 (2)  88 (2) 

17  89 (2)  89 (2)  89 (2)  89 (2)  89 (2)  89 (2)  89 (2)  89 (2)  89 (2)  89 (2)  89 (2) 

18  92 (1)  92 (1)  92 (1)  92 (1)  92 (1)  92 (1)  92 (1)  92 (1)  92 (1)  92 (1)  92 (1) 

19  97 (1)  97 (1)  97 (1)  97 (1)  97 (1)  97 (1)  97 (1)  97 (1)  97 (1)  97 (1)  97 (1) 

20  98 (2)  98 (2)  98 (2)  98 (2)  98 (2)  98 (2)  98 (2)  98 (2)  98 (2)  98 (2)  98 (2) 

21 108 (1) 108 (1) 108 (1) 108 (1) 108 (1) 108 (1) 108 (1) 108 (1) 108 (1) 108 (1) 108 (1) 

22 114 (1) 114 (1) 114 (1) 114 (1) 114 (1) 114 (1) 114 (1) 114 (1) 114 (1) 114 (1) 114 (1) 

23 115 (1) 115 (1) 115 (1) 115 (1) 115 (1) 115 (1) 115 (1) 115 (1) 115 (1) 115 (1) 115 (1) 

24 116 (2) 116 (2) 116 (2) 116 (2) 116 (2) 116 (2) 116 (2) 116 (2) 116 (2) 116 (2) 116 (2) 

25 133 (2) 133 (2) 133 (2) 133 (2) 133 (2) 133 (2) 133 (2) 133 (2) 133 (2) 133 (2) 133 (2) 

26 140 (2) 140 (2) 140 (2) 140 (2) 140 (2) 140 (2) 140 (2) 140 (2) 140 (2) 140 (2) 140 (2) 

27 150 (2) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2) 

28 152 (1) 152 (1) 152 (1) 152 (1) 152 (1) 152 (1) 152 (1) 152 (1) 152 (1) 152 (1) 152 (1) 

29 159 (1) 159 (1) 159 (1) 159 (1) 159 (1) 159 (1) 159 (1) 159 (1) 159 (1) 159 (1) 159 (1) 

30 174 (1) 174 (1) 174 (1) 174 (1) 174 (1) 174 (1) 174 (1) 174 (1) 174 (1) 174 (1) 174 (1) 

31 181 (2) 181 (2) 181 (2) 181 (2) 181 (2) 181 (2) 181 (2) 181 (2) 181 (2) 181 (2) 181 (2) 

32 193 (1) 193 (1) 193 (1) 193 (1) 193 (1) 193 (1) 193 (1) 193 (1) 193 (1) 193 (1) 193 (1) 

33 218 (2) 218 (2) 218 (2) 218 (2) 218 (2) 218 (2) 218 (2) 218 (2) 218 (2) 218 (2) 218 (2) 

34 230 (1) 230 (1) 230 (1) 230 (1) 230 (1) 230 (1) 230 (1) 230 (1) 230 (1) 230 (1) 230 (1) 

35 231 (1) 231 (1) 231 (1) 231 (1) 231 (1) 231 (1) 231 (1) 231 (1) 231 (1) 231 (1) 231 (1) 

36 250 (2) 250 (2) 250 (2) 250 (2) 250 (2) 250 (2) 250 (2) 250 (2) 250 (2) 250 (2) 250 (2) 

37 251 (2) 251 (2) 251 (2) 251 (2) 251 (2) 251 (2) 251 (2) 251 (2) 251 (2) 251 (2) 251 (2) 

38 256 (2) 256 (2) 256 (2) 256 (2) 256 (2) 256 (2) 256 (2) 256 (2) 256 (2) 256 (2) 256 (2) 

39 260 (1) 260 (1) 260 (1) 260 (1) 260 (1) 260 (1) 260 (1) 260 (1) 260 (1) 260 (1) 260 (1) 

40 266 (1) 266 (1) 266 (1) 266 (1) 266 (1) 266 (1) 266 (1) 266 (1) 266 (1) 266 (1) 266 (1) 

The column specifies the Sa(0.8s) “stripe” level in units of g. The row refers to 
the record number within that stripe. For each row and column, the first 
number specifies the record (as numbered in Table A.5) and the number in 
parentheses specifies the horizontal component number (as numbered in Table 
A.5). 
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Table A.7  ε-based records for Chapter 6. Selected to match Van Nuys 
disaggregation with IM=Sa(0.8s). 

# 0.1g 0.2g 0.4g 0.6g 0.8g 1g 1.4g 1.8g 2.4g 3g 4g 

1   4 (2)   4 (1)   5 (2)   3 (1)   3 (1)   3 (1)   3 (2)   3 (2)   3 (2)   3 (2)   3 (2) 

2   7 (1)  10 (1)  12 (1)   3 (2)   3 (2)   3 (2)  11 (1)  11 (1)  11 (1)  11 (1)  11 (1) 

3  10 (2)  17 (2)  15 (1)  12 (1)  11 (1)  11 (1)  12 (2)  11 (2)  11 (2)  11 (2)  11 (2) 

4  14 (2)  28 (1)  15 (2)  12 (2)  12 (1)  12 (2)  18 (1)  18 (1)  18 (1)  18 (1)  18 (1) 

5  38 (1)  28 (2)  16 (2)  18 (1)  12 (2)  18 (1)  22 (1)  22 (1)  22 (1)  22 (1)  22 (1) 

6  64 (2)  44 (2)  21 (2)  21 (2)  18 (1)  22 (1)  22 (2)  22 (2)  22 (2)  22 (2)  22 (2) 

7  68 (2)  48 (1)  31 (1)  25 (2)  22 (2)  22 (2)  96 (1)  96 (1)  96 (1)  96 (1)  96 (1) 

8  76 (1)  48 (2)  39 (1)  45 (1)  25 (2)  25 (2) 130 (1) 130 (1) 130 (1) 130 (1) 130 (1) 

9  76 (2)  57 (1)  39 (2)  46 (2)  45 (1)  45 (1) 131 (1) 131 (1) 131 (1) 131 (1) 131 (1) 

10  83 (1)  59 (1)  46 (2)  49 (2)  49 (2)  96 (1) 132 (1) 132 (1) 132 (1) 132 (1) 132 (1) 

11  86 (2)  74 (2)  49 (2)  63 (2)  96 (1) 129 (1) 132 (2) 132 (2) 132 (2) 132 (2) 132 (2) 

12  91 (2)  89 (1)  63 (2) 105 (1) 129 (1) 130 (1) 133 (1) 133 (1) 133 (1) 133 (1) 133 (1) 

13  93 (1)  93 (2)  84 (1) 129 (1) 130 (1) 132 (1) 133 (2) 133 (2) 133 (2) 133 (2) 133 (2) 

14  95 (2) 102 (2)  97 (2) 130 (1) 132 (1) 132 (2) 134 (1) 134 (1) 134 (1) 134 (1) 134 (1) 

15 101 (1) 106 (1) 105 (1) 132 (2) 132 (2) 133 (1) 134 (2) 134 (2) 134 (2) 134 (2) 134 (2) 

16 105 (2) 123 (1) 117 (1) 133 (1) 133 (1) 133 (2) 135 (2) 135 (2) 135 (2) 135 (2) 135 (2) 

17 107 (2) 124 (1) 117 (2) 133 (2) 133 (2) 134 (1) 137 (1) 137 (1) 137 (1) 137 (1) 137 (1) 

18 108 (1) 131 (2) 148 (1) 135 (2) 135 (2) 135 (2) 143 (1) 143 (1) 143 (1) 143 (1) 143 (1) 

19 108 (2) 152 (2) 160 (2) 137 (2) 137 (2) 137 (2) 143 (2) 143 (2) 143 (2) 143 (2) 143 (2) 

20 111 (2) 162 (1) 161 (2) 160 (2) 143 (1) 143 (1) 182 (1) 182 (1) 182 (1) 182 (1) 182 (1) 

21 129 (2) 163 (1) 164 (2) 182 (1) 160 (2) 143 (2) 186 (2) 186 (2) 186 (2) 186 (2) 186 (2) 

22 140 (1) 164 (1) 165 (1) 186 (2) 182 (1) 160 (2) 189 (2) 189 (2) 189 (2) 189 (2) 189 (2) 

23 144 (2) 173 (1) 177 (2) 189 (2) 186 (2) 182 (1) 193 (1) 193 (2) 193 (2) 193 (2) 193 (2) 

24 147 (1) 177 (1) 178 (1) 191 (2) 189 (2) 186 (2) 193 (2) 209 (2) 209 (2) 209 (2) 209 (2) 

25 181 (1) 178 (2) 180 (2) 193 (1) 193 (1) 189 (2) 209 (2) 244 (1) 244 (1) 244 (1) 244 (1) 

26 183 (1) 181 (2) 187 (2) 193 (2) 193 (2) 193 (1) 244 (1) 244 (2) 244 (2) 244 (2) 244 (2) 

27 186 (1) 182 (2) 191 (2) 205 (1) 205 (1) 193 (2) 244 (2) 245 (1) 245 (1) 245 (1) 245 (1) 

28 206 (1) 184 (2) 205 (1) 209 (2) 209 (2) 209 (2) 245 (2) 245 (2) 245 (2) 245 (2) 245 (2) 

29 216 (1) 189 (1) 217 (1) 217 (1) 220 (1) 220 (1) 246 (1) 246 (1) 246 (1) 246 (1) 246 (1) 

30 216 (2) 192 (2) 222 (2) 220 (1) 222 (2) 243 (2) 246 (2) 246 (2) 246 (2) 246 (2) 246 (2) 

31 217 (2) 205 (2) 224 (1) 222 (2) 226 (2) 244 (2) 247 (1) 247 (1) 247 (1) 247 (1) 247 (1) 

32 221 (2) 208 (2) 224 (2) 226 (1) 243 (2) 245 (2) 247 (2) 247 (2) 247 (2) 247 (2) 247 (2) 

33 230 (2) 209 (1) 226 (1) 226 (2) 245 (2) 246 (2) 248 (1) 248 (1) 248 (1) 248 (1) 248 (1) 

34 240 (1) 252 (2) 226 (2) 243 (2) 250 (1) 247 (2) 248 (2) 248 (2) 248 (2) 248 (2) 248 (2) 

35 240 (2) 255 (2) 253 (2) 253 (2) 251 (2) 250 (1) 249 (2) 249 (1) 249 (1) 249 (1) 249 (1) 

36 253 (1) 256 (1) 256 (2) 258 (2) 253 (2) 251 (2) 250 (1) 249 (2) 249 (2) 249 (2) 249 (2) 

37 254 (2) 257 (2) 258 (2) 261 (1) 261 (1) 253 (2) 250 (2) 250 (1) 250 (1) 250 (1) 250 (1) 

38 261 (2) 264 (1) 261 (1) 262 (2) 262 (2) 262 (2) 251 (1) 250 (2) 250 (2) 250 (2) 250 (2) 

39 262 (1) 265 (1) 266 (1) 264 (2) 264 (2) 264 (2) 251 (2) 251 (1) 251 (1) 251 (1) 251 (1) 

40 265 (2) 266 (2) 267 (2) 267 (1) 267 (1) 267 (1) 267 (1) 251 (2) 251 (2) 251 (2) 251 (2) 

The column specifies the Sa(0.8s) “stripe” level in units of g. The row refers to 
the record number within that stripe. For each row and column, the first 
number specifies the record (as numbered in Table A.5) and the number in 
parentheses specifies the horizontal component number (as numbered in Table 
A.5). 
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Table A.8  CMS-ε records for Chapter 6. Selected to match spectral shape based 
on Van Nuys disaggregation with IM=Sa(0.8s). 

# 0.1g 0.2g 0.4g 0.6g 0.8g 1g 1.4g 1.8g 2.4g 3g 4g 

1 201 (2) 201 (2) 209 (2) 241 (1) 266 (1)  39 (1)  95 (2)  57 (1)  57 (1)  57 (1) 246 (2) 

2 240 (1) 242 (1) 215 (1) 266 (1)  39 (1)  95 (2)  39 (1)  95 (2) 249 (2) 246 (2) 247 (2) 

3  38 (1) 215 (1) 241 (1) 184 (2)  95 (2) 266 (1)  57 (1) 249 (2) 246 (2) 249 (2) 251 (1) 

4 187 (1) 255 (2) 184 (2) 209 (2) 259 (1) 259 (1) 222 (2)  39 (1)  95 (2) 257 (1)  57 (1) 

5 245 (2) 209 (2) 174 (2) 259 (1) 241 (1) 252 (1) 252 (1) 222 (2)  39 (1) 244 (2) 258 (2) 

6 166 (2) 240 (1) 187 (2) 101 (1) 101 (1) 222 (2) 249 (2) 252 (1) 257 (1) 258 (2) 257 (1) 

7 252 (2)  98 (2) 100 (2) 100 (2) 252 (1)  57 (1) 259 (1) 192 (2) 244 (2) 247 (2) 244 (2) 

8 231 (2) 166 (2)  98 (2)  39 (1) 184 (2) 131 (1) 131 (1) 166 (1) 222 (2)  95 (2) 249 (2) 

9 235 (1) 173 (2) 255 (2) 187 (2) 131 (1) 241 (1) 266 (1) 246 (2)   3 (2)  39 (1) 250 (1) 

10 242 (1) 174 (2) 201 (1) 174 (2) 222 (2) 101 (1) 192 (2)   3 (2) 252 (1) 251 (1) 182 (1) 

11   4 (1) 163 (1)  83 (1) 215 (1) 209 (2) 263 (1) 166 (1) 131 (1) 258 (2)   3 (2) 133 (1) 

12 221 (1)   5 (2) 123 (1)  95 (2) 263 (1) 192 (2) 263 (1) 257 (1) 166 (1) 246 (1) 246 (1) 

13 173 (2) 123 (1) 242 (1) 201 (1)  57 (1) 102 (1)   3 (2) 244 (2) 192 (2) 222 (2) 248 (2) 

14 208 (1) 187 (2) 266 (1) 252 (1) 102 (1) 184 (2) 257 (1)  22 (1)  22 (1)  22 (1) 245 (1) 

15 177 (2) 177 (2)  71 (1)  83 (1) 100 (2) 249 (2) 102 (1) 259 (1) 246 (1) 166 (1)   3 (2) 

16 108 (2) 100 (2) 101 (1) 131 (1) 255 (1) 166 (1) 253 (2) 266 (1) 131 (1) 252 (1) 265 (1) 

17 215 (1)  83 (1)  93 (1) 255 (1) 192 (2) 255 (1) 101 (1) 263 (1) 247 (2) 133 (1) 132 (1) 

18 163 (1) 201 (1) 259 (1) 102 (1) 187 (2) 173 (1)  22 (1) 253 (2)  74 (1) 248 (2)  39 (1) 

19 255 (2)  16 (1) 201 (2)  98 (2) 174 (2) 224 (1) 161 (2) 161 (2) 251 (1) 192 (2)  22 (1) 

20  42 (2) 184 (2) 255 (1) 123 (1) 173 (1) 100 (2)  74 (1)  74 (1) 159 (2) 265 (1) 244 (1) 

21 172 (2)  71 (1)  39 (1)  71 (1) 224 (1) 209 (2) 246 (2) 159 (2) 161 (2)  74 (1)  74 (1) 

22   7 (2)  93 (1) 173 (2) 263 (1) 166 (1)  96 (2) 241 (1) 246 (1) 253 (2) 182 (1) 264 (2) 

23 240 (2)  38 (1)  16 (1) 222 (2) 201 (1) 253 (2)  65 (1) 258 (2) 133 (1)  49 (2)  95 (2) 

24  32 (1) 245 (2)   2 (2) 255 (2) 249 (2) 261 (1) 244 (2)  65 (1)  49 (2) 250 (1) 166 (1) 

25   5 (2) 241 (1) 163 (1)  93 (1) 215 (1)  74 (1) 173 (1)  49 (2) 265 (1) 159 (2) 222 (2) 

26  75 (2) 252 (2)   5 (2) 197 (1)  83 (1) 161 (2)  96 (2) 102 (1) 248 (2) 131 (1)  49 (2) 

27  98 (2) 187 (1) 164 (1) 224 (1) 197 (1) 256 (1) 159 (2) 265 (1) 263 (1) 161 (2) 256 (2) 

28 257 (2) 164 (1) 197 (1) 173 (1) 261 (1) 264 (1) 246 (1) 264 (1)  65 (1) 245 (1) 252 (1) 

29  15 (1) 221 (1)   6 (1) 137 (2)  96 (2) 257 (1) 256 (1) 256 (1) 182 (1) 253 (2) 192 (2) 

30 218 (1) 144 (1)  95 (2)  57 (1) 137 (2)  65 (1) 264 (1) 133 (1) 266 (1)  65 (1) 159 (2) 

31 260 (2)  75 (2) 102 (1)  95 (1)  71 (1)   3 (2) 224 (1)  96 (2) 259 (1) 132 (1)  65 (1) 

32 139 (1) 108 (2) 252 (1) 192 (2) 256 (1) 187 (2) 261 (1)  21 (2) 264 (1) 264 (2) 130 (1) 

33  16 (1)   2 (2) 131 (1) 261 (1) 264 (1) 197 (1)  49 (2) 101 (1)  21 (2) 263 (1) 161 (2) 

34 209 (2)  15 (2) 137 (2) 242 (1) 123 (1) 174 (2) 255 (1) 173 (1) 264 (2) 256 (2) 250 (2) 

35  15 (2) 172 (2) 100 (1)   6 (1)  95 (1)  22 (1)  21 (2) 251 (1)  16 (2) 264 (1) 131 (1) 

36 147 (1)   2 (1)   2 (1)  96 (2) 253 (2) 137 (2) 184 (2) 247 (2) 256 (1) 244 (1) 253 (2) 

37 123 (1)  28 (1) 216 (1) 216 (1)  74 (1) 201 (1) 265 (1)  16 (2) 250 (1)  21 (2) 264 (1) 

38 189 (1)  76 (1)  95 (1) 166 (1) 230 (1)  83 (1) 258 (2) 261 (1) 132 (1) 130 (1)  74 (2) 

39 222 (1)  42 (2) 263 (1) 230 (1)  98 (2) 230 (1)  16 (2) 248 (2) 245 (1) 223 (2)  21 (2) 

40 174 (2) 218 (1) 224 (1) 256 (1)  65 (1) 164 (2) 164 (2) 224 (1) 256 (2) 165 (1) 223 (2) 

The column specifies the Sa(0.8s) “stripe” level in units of g. The row refers to the 
record number within that stripe. For each row and column, the first number 
specifies the record (as numbered in Table A.5) and the number in parentheses 
specifies the horizontal component number (as numbered in Table A.5). 



 

   
 
 

 

Appendix B Supporting Details for Correlation 
Model of Chapter 8 

In Chapter 8, several statements were made about properties of spectral acceleration correlations 

that were not explained in detail in the text. In this Appendix, details to support those statements 

are presented for interested readers. 

B.1 CORRELATIONS OF GEOMETRIC MEAN SPECTRAL ACCELERATION 
VALUES 

It was stated in Chapter 8 that the correlation coefficient prediction for lnSa values of arbitrary 

components with the same orientation could also be used to model correlation coefficients for 

geometric mean lnSa values. Geometric mean spectral acceleration values are computed using 

the equation 

 . .( ) ( ) ( )g m x ySa T Sa T Sa T=   (B.1) 

or equivalently 

 . .
ln ( ) ln ( )

ln ( )
2

x y
g m

Sa T Sa T
Sa T

+
=   (B.2) 

where . .( )g mSa T  is the geometric mean spectral acceleration at period T and ( ) and ( )x ySa T Sa T  

are the spectral acceleration values of the two horizontal components (denoted the x and y 

components) at period T. 

In this section, we will show that the correlation coefficient between . . 1ln ( )g mSa T  and 

. . 2ln ( )g mSa T  is approximately equal to the correlation coefficient between 

1 2ln ( ) and ln ( )x xSa T Sa T , where T1 and T2 are two periods of interest. 
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B.1.1 Mathematical Derivation 

Let spectral acceleration values of the two horizontal components be defined as follows 

 
ln ( ) ( ) ( ) ( )
ln ( ) ( ) ( ) ( )

x x

y y

Sa T T T T
Sa T T T T

μ σ ε
μ σ ε

= +
= +

  (B.3) 

where ( )Tμ  and ( )Tσ  are deterministic functions from a ground motion prediction model that 

represent the mean and standard deviation, respectively, of lnSa. The variables ( )x Tε  and ( )y Tε  

are random variables with zero mean and unit standard deviation that represent the record-to-

record variability of ground motions, given their magnitude, distance, etc. Then the geometric 

mean of spectral acceleration is defined as 

 
( ) ( )ln ( ) ln ( )ln ( ) ( ) ( )

2 2
x yx x

gm
T TSa T Sa TSa T T T

ε ε
μ σ

++= = +  (B.4) 

The correlation coefficient of ln ( )gmSa T  at two periods is then 
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 (B.5) 

Recognizing that [ ]1 2 1 2 , 1 2( ), ( ) ( ), ( ) ( , )
x xx x y yCov T T Cov T T T Tε εε ε ε ε ρ⎡ ⎤= =⎣ ⎦  and that 

1 2 1 2 , 1 2( ), ( ) ( ), ( ) ( , )
x yx y y xCov T T Cov T T T Tε εε ε ε ε ρ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ , Equation B.5 simplifies to 
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 (B.6) 

Using the approximation that , 1( )
x y

Tε ερ  is a linear function of lnT1 (per Eq. 8.7), the denominator 

of Equation B.6 can be approximated by  

 ( )( ) ( )2

, 1 , 2 , 1 21 ( ) 1 ( ) 1 ( )
x y x y x y

T T T Tε ε ε ε ε ερ ρ ρ+ + ≅ +  (B.7) 

Substituting B.7 into B.6 gives 
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2 2
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Then we use the approximation  

 , 1 2 , 1 2 , 1 2( , ) ( ) ( , )
x y x y x x

T T T T T Tε ε ε ε ε ερ ρ ρ≅ ⋅  (B.9) 

as was found to be valid for fitting Equation 8.11. Substituting B.9 into B.8 gives 
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 (B.10) 

Canceling terms and recognizing that , 1 2 ln ,ln 1 2( , ) ( , )
x x x xSa SaT T T Tε ερ ρ= , we have 

 
2 2ln ( ),ln ( ) ln ,ln 1 2( , )

gm gm x xSa T Sa T Sa Sa T Tρ ρ≅  (B.11) 

Thus, given two assumptions that were found to be reasonable in Chapter 8, we can show that 

the correlation coefficient between . . 1ln ( )g mSa T  and . . 2ln ( )g mSa T  is approximately equal to the 

correlation coefficient between 1 2ln ( ) and ln ( )x xSa T Sa T . 

B.1.2 Empirical Evidence 

To support the mathematical result of Section B.1.1, we also see empirically that correlation 

coefficients between . . 1ln ( )g mSa T  and . . 2ln ( )g mSa T  are approximately equal to the correlation 

coefficients between 1 2ln ( ) and ln ( )x xSa T Sa T . The contours of the correlation coefficients of a 

single ground motion component as a function of T1 and T2 are displayed in Figure B.1 (this is 

the same as Figure 8.4a, but is repeated here to facilitate comparison with the figure to follow). 

The contours for correlation coefficients of geometric mean spectral acceleration values are 

displayed in Figure B.2. The two figures are nearly identical.  
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Fig. B.1  Empirical spectral acceleration correlation contours for single ground 
motion components at two periods 

 

0.05 0.1 0.5 1 5
0.05

0.1

0.5

1

5

T1

T
2

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

 

Fig. B.2  Empirical spectral acceleration correlation contours for geometric 
means at two periods 
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Another comparison of the correlation coefficient estimates for arbitrary component and 

geometric mean spectral acceleration values is seen in Figure B.3. For each period pair 

considered (i.e., each location on Figs. B.1 and B.2), the two empirical correlation coefficients 

are plotted versus each other. We see that the agreement is very good. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Geometric mean ε correlation

A
rb

itr
a

ry
 c

om
po

ne
n

t ε
 c

o
rr

e
la

tio
n

 

Fig. B.3  Comparison of correlation coefficients for geometric mean ε values 
versus correlation coefficients for arbitrary component ε values 

Given the results of Sections B.1.1 and B.1.2, it seems likely that any minor differences 

between estimated correlation coefficients are due to the finite samples of data used for the 

estimates, rather than any underlying differences. 

B.2 CORRELATIONS OF INTER-EVENT EPSILON VALUES 

In Chapter 8 it was also stated that the equation for correlations of spectral acceleration values of 

a single component can be used to approximate the correlation of interevent ε values. This 

statement will now be examined in more detail. For this study, the interevent terms from the 

Abrahamson and Silva (1997) attenuation model were used, as provided by Abrahamson (2004). 

The original set of interevent terms provided by Abrahamson included events with magnitudes 

beween 4.4 and 7.4, but only the events with magnitude greater than 5.5 were retained here (no 
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events with magnitude less than 5.5 were used for the other correlation computations, so for 

consistency they are not used here either). 

Contours of the correlation matrix for these terms are shown in Figure B.4. It is clear that 

there are differences between Figures B.4 and B.1.  
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Fig. B.4  Empirical correlation contours for interevent ε values 

Another comparison of the empirical correlation coefficient estimates is seen in Figure 

B.5. For each period pair considered, the correlation coefficient estimates for the two ε values are 

plotted versus each other. We see that the agreement between the two is not perfect and is 

certainly not as good as the agreement for geometric mean Sa values seen earlier in Figure B.3. 

There are several possible explanations for this. First, while the same record sets were used 

earlier for both the geometric mean and arbitrary component correlations, here we do not have 

that luxury. The interevent ε values were provided by Abrahamson, and so the events used are 

not identical. Second, there are a much smaller number of data points available for estimating 

correlations of interevent ε values (only 36 events are available, versus 534 total horizontal 

components used for arbitrary component ε values), which decreases the confidence with which 

the correlation coefficients can be estimated. Third, and perhaps most importantly, there may be 

physical reasons why the two sets of correlations are in fact different. 
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Fig. B.5  Comparison of correlation coefficients for interevent ε values versus 
correlation coefficients for total ε values 

To determine the true extent of the differences seen in Figure B.5, statistical hypothesis 

testing was used to determine the significance of apparent differences in the two correlation 

coefficient estimates (Neter et al. 1996, p644). First the z-transform was taken for each 

correlation coefficient estimate, in order to stabilize its variance (see Eq. 8.5). The test statistic is 

then 

 1 2

1 2

*
1 1

3 3

z zz

n n

−=
+

− −

 (B.12) 

where z1 and z2 are the z-transformed correlation coefficients for the interevent ε values and the 

arbitrary component ε values, respectively, and n1 and n2 are the number of data points used for 

estimating each (usually 36 and 534, although the number is slightly lower for the interevent ε 

values at a few periods because not all events were used at all periods due to filter-frequency 

limitations). If the two correlation coefficients are equal, and as long as n1 and n2 are greater than 

about 25 (which is true here), then z* is distributed approximately as a standard normal random 

variable. Hence, if | *| 1.96z > , we can conclude that the two correlation coefficients differ with a 
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5% significance level21. This criterion allows us to identify the region of Figure B.5 where 

apparent differences in the two correlation coefficients are not statistically significant. Setting 

n1=36 and n2=534, we have the criteria 

 

1 2

1 2

1 1 1 1ln ln
2 1 2 1

1.96
1 1

36 3 534 3

ρ ρ
ρ ρ

⎛ ⎞ ⎛ ⎞+ +−⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ <
+

− −

 (B.13) 

which simplifies to 

 1 2

1 2

1 1ln 0.703
1 1

ρ ρ
ρ ρ

⎛ ⎞+ − <⎜ ⎟− +⎝ ⎠
 (B.14) 

The region where this inequality holds is shown in Figure B.6, with the data from Figure 

B.5 superimposed. If the correlation coefficients for interevent ε values were in fact equal to 

correlation coefficients for total ε values, we would expect to see 95% of the points inside the 

shaded region and 5% outside. In the figure, however, 58% of the points are inside the shaded 

region, with 42% outside, indicating that significant differences between the two occur more 

often than expected. However, many of the statistically significant differences occur in the top 

right corner of the plot, where the difference in absolute correlation values is not large. For 

example, the difference between correlation coefficients of 0.9 and 0.95 is statistically 

significant, but may or may not have practical significance in application.  

                                                 
21 Lack of statistical significance does not necessarily imply that the correlation coefficients are equal. It merely 
indicates that, given the limited data available, it is difficult to detect a significant difference between the two.  
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Fig. B.6  Comparison of correlation coefficients for interevent ε values versus 
correlation coefficients for total ε values, and region with no statistical 
significance (at 5% level) superimposed 

Given the small number of interevent ε data available, no attempt was made to fit a new 

correlation model for the interevent ε data. Using Equation 8.9 as an approximation for the 

correlation of interevent ε values may be a reasonable approach in the absence of other models. 

In the future, a model specific to the interevent ε data could be fit that would likely provide 

improved predictions. 

B.3 POSITIVE DEFINITENESS OF CORRELATION MATRICES 

The correlation coefficient model of Chapter 8, when combined with marginal variances 

provided by the ground motion prediction (attenuation) model, specifies the covariance matrix of 

a vector of spectral acceleration values with varying periods and orientations. It is necessary that 

the variance of any linear combination of these spectral acceleration values be non-negative, 

which leads to the requirement that the covariance matrix be positive definite. It can be shown 

that the covariance matrix is positive definite if and only if the correlation matrix is positive 

definite. So to confirm that the specified correlation model is permissible, it suffices to show that 

corresponding correlation matrices are positive definite. 
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A common method for determining the positive-definiteness of a matrix A involves 

attempting to factor the matrix into the form T=A R R , where R is an upper triangular matrix 

with positive diagonal entries. The factorization is called a Cholesky decomposition, and is 

possible if and only if A is positive definite (Lay 1997, p456).  

Correlation matrices were created for each of the correlation models proposed in Chapter 

8. For each model (e.g., horizontal/horizontal in the same direction, horizontal/vertical, etc.), a 

75x75 correlation matrix was formed by evaluating the appropriate predictive equation at 75 

periods between 0.05 and 5 sec. The Cholesky decomposition was performed for each of these 

matrices and was found to exist. Further, a 225x225 correlation matrix was constructed 

consisting of correlations for spectral values at 75 periods in all three directions (two horizontal 

and one vertical) simultaneously. The Cholesky decomposition also exists for this matrix. 

The Cholesky decomposition was attempted and found to exist for the correlation matrix 

computed using the model of Inoue and Cornell (1990), but it does not exist for the correlation 

matrix computed using the model of Abrahamson et al. (2003). 

B.4 CORRELATION AS FUNCTION OF MAGNITUDE OR DISTANCE 

The proposed correlation coefficient predictions are functions of the two periods considered and 

the orientations of the ground motion components considered. The possibility exists that they are 

also functions of the magnitude or distance of the ground motion. In order to consider this 

possibility, records were selected within magnitude or distance bins, and the calculated 

correlation coefficient from each bin was compared to the original correlation coefficient 

calculated using all of the records.  

The results are displayed graphically in Figure B.7 below. Here, correlation coefficients 

are computed at a period of 1s for opposite horizontal components and for horizontal versus 

vertical components. The correlation coefficients are computed using all records, and this 

coefficient is compared to correlation coefficients selected using only those records that fall 

within a magnitude or distance bin (+/-0.2 magnitude units or +/-10 km are used as the bin 

limits). In Figures B.8 and B.9, correlation coefficients are displayed for opposite horizontal 

components versus magnitude and distance, respectively, for a range of considered periods. No 

systematic trends are seen in any of these figures, indicating that the predictive equations do not 

need to include terms for the magnitude or distance of the event. 
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(d) 

 

Fig. B.7  Correlation coefficients for ε values at a period of 1 sec as function of 
magnitude and distance. (a) Opposite horizontal components versus 
magnitude. (b) Opposite horizontal components versus distance. (c) 
Horizontal/vertical components versus magnitude. (d) Horizontal/vertical 
components versus distance. 
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(d) 

 

Fig. B.8  Correlation coefficients for  ε values between opposite horizontal components 
as function of magnitude for several periods. (a) Period = 0.05s. (b) Period = 
0.2s. (c) Period = 1s. (d) Period = 5s. 
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(d) 

 

Fig. B.9  Correlation coefficients for  ε values between opposite horizontal 
components as function of distance for several periods. (a) Period = 0.05s. 
(b) Period = 0.2s. (c) Period = 1s. (d) Period = 5s. 

The above computations were performed for the case when the two periods of interest are 

equal. The same computations could be repeated for correlation coefficients at two differing 

periods. However, the number of possible combinations is very large. The procedure was 

repeated for a small number of period combinations, and again no trends were seen. Because of 

the lack of trends seen in any of these tests, no systematic investigation of all period pairs was 

performed. At this point it was concluded that there is no detectible trend in correlation 

coefficients as a function of either magnitude or distance. 
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B.5 MODIFICATION OF GROUND MOTION PREDICTION (ATTENUATION) 
MODELS 

Throughout this report, it was stated that typical ground motion predictions for geometric mean 

spectral accelerations can be converted into predictions for arbitrary components of ground 

motion, given knowledge of correlations of the two horizontal components. The importance of 

distinguishing between the two was discussed in Chapter 6, and the equation for the conversion 

was given in (Eq. 8.19) 

 
2

. .2

,

2 ( , )
( , )

1
x y

g m
H

M T
M T

ε ε

σ
σ

ρ
=

+
  

where ( , )H M Tσ  is the standard deviation of a single component spectral acceleration (that is 

typically a function of magnitude and the period considered), . .( , )g m M Tσ  is the standard 

deviation of geometric mean spectral acceleration, and ,x yε ερ  is the correlation between two 

orthogonal horizontal components at the period T. 

Given this equation for conversion, the Abrahamson and Silva (1997) ground motion 

prediction model can easily be modified for prediction of arbitrary components. The only change 

necessary is the modification of the b5 and b6 components for the standard deviations, presented 

in Table 4 of Abrahamson and Silva (1997). The replacement values for these coefficients are 

given in Table 3.1, based on the correlation model of Chapter 8. 
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Table B.1  Coefficients for standard deviation of arbitrary component 
standard deviations, to be used with Abrahamson and Silva 
(1997) ground motion prediction model 

Period b5 b6 
       0.01 0.72 0.139 
       0.02 0.72 0.139 
       0.03 0.72 0.139 
       0.04 0.73 0.139 
       0.05 0.74 0.139 
       0.06 0.75 0.139 
     0.075 0.76 0.139 
       0.09 0.76 0.139 
       0.10 0.77 0.140 
       0.12 0.78 0.140 
       0.15 0.79 0.140 
       0.17 0.80 0.140 
       0.20 0.80 0.141 
       0.24 0.81 0.141 
       0.30 0.82 0.141 
       0.36 0.83 0.142 
       0.40 0.84 0.139 
       0.46 0.84 0.137 
       0.50 0.85 0.134 
       0.60 0.85 0.134 
       0.75 0.86 0.130 
       0.85 0.87 0.128 
       1.00 0.87 0.125 
       1.50 0.89 0.117 
       2.00 0.91 0.112 
       3.00 0.93 0.104 
       4.00 0.94 0.099 
       5.00 0.96 0.094  

 



 

   
 
 

Appendix C Accounting for Near-Fault Effects 
in Ground Motion Prediction 

C.1 MODIFICATION OF MEAN PREDICTIONS 

As discussed in Section 5.5.1, ε values should be computed with care for pulse-like ground 

motions. Particularly when one is concerned about the occurency of velocity pulses, one should 

use a ground motion prediction model that accounts for pulse-like ground motions explicitly. 

Most prediction models in use today do not account for this effect, unfortunately. However, 

Somerville et al. (1997)22 have proposed a modification to the Abrahamson and Silva (1997) 

prediction model that accounts for near-fault effects. The Somerville et al. model includes 

modifications for both fault-normal ground motion components and average components. Here 

the modification for fault-normal components is used because all of the records used here are 

known to be oriented in the fault-normal direction. 

In Figure C.1, the effect of the near-fault modification is illustrated. The 5% damped 

response spectrum of the Lucerne recording from the 1992 Landers earthquake is shown. In 

addition, the predicted median response spectra are plotted using the Abrahamson and Silva 

(1997) model, both with and without near-fault modifications. It can be seen that for this ground 

motion, the near-fault modification has the effect of raising the median prediction for periods 

greater than 0.6s. It should be noted that this near-fault modification may also lower the median 

prediction if, for example, the fault geometry suggests that the rupture is moving away from the 

site and negative directivity effects are likely to be present. For the record set considered here, 

however, the modification typically increases the median prediction because the records that 

                                                 
22 For this work, the model of Bozorgnia (Bozorgnia and Bertero 2004, Chapter 5) is used, which is based on the 
Somerville 1997 model. The Somerville 1997 model was originally adapted for prediction by Abrahamson (2000), 
who tapered the modification off as the magnitude decreased or the distance increased. Bozorgnia repeats a 
description of the Abrahamson model, but corrects mistakes that are present in the Abrahamson manuscript. 
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have been preferentially selected have positive directivity effects. The modification also modifies 

the standard deviation of the prediction. Because ε values are computed as deviations of the 

record response spectrum from the predicted response spectrum, it can be seen that the Lucerne 

record’s ε values will change at periods larger than 0.6 sec. 
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Fig. C.1  Response spectrum of Lucerne recording from 1992 Landers 
earthquake, along with predicted median spectra from ground motion 
prediction models with and without near-fault effects accounted for. 

The near-fault modification should improve the accuracy of the ground motion 

predictions. This can be tested by looking at the residual (ε) values computed from the 

predictions with and without the near-fault modification. The ε values should theoretically have a 

standard normal distribution. This can be checked by examining histograms of the ε values from 

the 70 pulse-like ground motions. These histograms are shown in Figure C.2. Epsilon values are 

computed for each record using the model of Abrahamson and Silva (1997), both with and 

without modification for near-fault effects. For each record, ε values were computed from 0.6 to 

5.0 sec, in increments of 0.01 sec. The ε values for all records and all periods are pooled and 

used to generate the histograms of Figure C.2. The theoretical distribution is also superimposed 

for comparison. In Figure C.2b, the histogram tends to fall to the right of the theoretical 

distribution, suggesting that the unmodified prediction equation is biased for this specific class of 

records (it tends to underpredict the spectral acceleration values of these pulse-like records). In 
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Figure C.2a, the match between the theoretical distribution and the empirical histogram is 

improved, indicating that much of the bias has been removed. Although the match is not perfect 

in Figure C.2a, it is certainly better than in Figure C.2b. Thus, the near-fault modification has 

improved the fit of the ground motion prediction for near-fault records. 
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Fig. C.2  Histograms of ε values computed for 70 near-fault ground motions at 
periods from 0.6 sec to 5.0 sec, both (a) with and (b) without 
modification to account for near-fault effects 
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C.2 CORRELATIONS AMONG SPECTRAL VALUES AT VARYING PERIODS 

In order to perform vector-valued hazard analysis for the vector IM consisting of Sa(T1) and 

RT1,T2, it is not enough to modify the mean and standard deviations to account for near-fault 

effects. One must also know the correlation coefficient between lnSa(T1) and lnSa(T2) values for 

near-fault ground motions. A correlation coefficient model for ordinary ground motions is 

presented in Chapter 8, but the unique characteristics of pulse-like ground motions suggest that 

perhaps their spectral values have different correlation coefficients than ordinary ground 

motions.  

Empirical correlation coefficients were estimated for the 70 near-fault ground motions 

used in Chapter 5, using the method of Chapter 8 and using the ground motion prediction model 

discussed in the previous section. Contours of these correlation coefficients as a function of the 

two periods are shown in Figure C.3, along with the correlation coefficients from ordinary 

ground motions, for comparison. The near-fault ground motions appear to have lower correlation 

coefficients for a given T1 and T2, and even have negative correlation coefficients for some 

widely separated period pairs. However, for period ratios likely to be considered (e.g., the 

T2=T1*2 suggestion in Chapter 5), the correlations are in fact not significantly different. This 

suggests that if the period pairs are not widely separated, the correlation model of Chapter 8 may 

be a reasonable approximation. The preferred approach for pulse-like ground motions, however, 

would be to take correlations from the empirical results shown here (this is especially important 

when the period pairs are widely separated). In the future, a predictive equation could be fit to 

this data from pulse-like records by using the method of Chapter 8. 
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Fig. C.3  Empirical correlation contours for horizontal spectral acceleration values 
in same direction at two periods (T1 and T2) for (a) pulse-like and (b) 
ordinary ground motions 



 

   
 
 

Appendix D Fitting a Lognormal Distribution 
for Collapse Capacity, When 
Different Records Are Used at 
Each IM level 

A useful structural response quantity to estimate from dynamic analyses is the probability of 

collapse as a function of IM (typically Sa at the first-mode period of the structure). This result 

can then be combined with a ground motion hazard to compute the mean annual rate of structural 

collapse (e.g., Shome and Cornell 1999; FEMA 2000a; Ibarra 2003). 

In most work using this method, the collapse capacity can be found by repeatedly scaling 

a ground motion (i.e., using incremental dynamic analysis) until the ground motion causes 

collapse of the structure. Using this method, each ground motion has a single Sa value associated 

with its collapse. By repeating this process for a set of ground motions, one can obtain a set of Sa 

values associated with the onset of collapse, as illustrated in Figure D.1. The probability of 

collapse at a given Sa level, Sa*, can then be estimated as the fraction of records for which 

collapse occurs at a level lower than Sa*. A plot of this estimate is shown in Figure D.2. The 

distribution of Sa levels which cause the structure to collapse is often assumed to be lognormal, 

and so a lognormal distribution is fitted to the results. This can be done by taking logarithms of 

each Sa value associated with collapse of a record. The mean and standard deviation of the log 

Sa values can then be calculated, using e.g., the method of moments (Rice 1995) and converted 

in the parameters of the lognormal distribution (see, e.g., Ibarra 2003). Alternatively, counted 

fractiles could be used to estimate the mean and standard deviation. The resulting fitted 

distribution is also shown in Figure D.2. 
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Fig. D.1  Incremental dynamic analyses of Van Nuys building, used to identify 
Sa values associated with collapse for each record  
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Fig. D.2  Probability of collapse using empirical CCDF and fitted lognormal 
CCDF, for a set of records 
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The above method is straightforward, but it cannot be used to estimate the probability of 

collapse for Figure 6.11 of Chapter 6. This is because different records are used at each Sa level, 

and so the incremental dynamic analysis approach illustrated in Figure D.1 cannot be used. 

Instead of an Sa value associated with the onset of collapse for each record, we have, for each Sa 

level, the fraction of records at that level that caused collapse. This is illustrated in Figure D.3. 

For this figure, probabilities of collapse were obtained from records specially selected to match 

target epsilon values at each Sa level (i.e., the records selected using  method 3 in Chapter 6). 
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Fig. D.3  Empirical probability of collapse for set of Sa values, obtained from 
records selected to match target epsilon values at each Sa level 

It is possible to fit a lognormal distribution to the observations of Figure D.3, but the 

process is slightly more difficult. The goal is to identify the lognormal distribution parameters so 

that the fitted distribution predicts probabilities and is as close to the observed probabilities of 

collapse as possible. To illustrate, consider the following. The observed probability of collapse at 

level Sai is  

 # of collapses at  level ( | )
total number of records

i
i observed

Sa SaP C Sa =  (D.1) 

and the predicted probabilities of collapse are 

 ln
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ˆln
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where lnˆ
iSaμ  and lnˆ

iSaσ  are the parameters of the estimated lognormal distribution. In the basic 

case above, lnˆ
iSaμ  and lnˆ

iSaσ  could be estimated directly from the IDA results (i.e., the data of 

Fig. D.1). When the records are changing at each Sa level, however, another method is needed. 

One method for estimating these parameters would be to minimize the total squared 

errors between the estimated probability of collapse and the observed probability of collapse 

over all of the Sa levels considered. That is, 
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 (D.3) 

This is a straightforward nonlinear optimization that can easily be performed with a variety of 

algorithms, taking care to verify (usually visually) that the minimum is actually a global 

minimum (and not just a local minimum). 

However, the least-squares method ignores a fundamental property of the data: the 

variance of the observations is non-constant. That is, if zero collapses are observed at a given Sa 

level and the fitted probability of collapse is 0.1, then this error is much larger than fitting a 

probability of collapse of 0.6 at an Sa level where 50% collapses are observed. In order to 

account for the non-constant variance, the method of maximum likelihood can be applied (e.g., 

Rice 1995). This estimate is then 

 ln ln ,

ln lnˆ ˆ{ , } max 1
i i

Cap Cap

n N n
i i

Sa Sa
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Sa Sa
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μ μμ σ
σ σ
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where ni is the number of collapses observed at Sa level Sai, and N is the total number of records 

analyzed at level Sai. This method was observed by the author to be more sensitive to local 

minima than the above least squares method, at least for the examples considered in this report. 

However, an equivalent way to estimate the lognormal distribution using maximum likelihood is 

to use generalized linear regression with a Probit link function (Agresti 2002). This is because 

generalized linear regression uses maximum likelihood as its optimization scheme. This 

regression function is available in many statistical software packages. The inputs to the function 

are the number of records at each Sa level and number of collapses at each Sa level (the “y” data 

from Fig. D.3), along with the associated Sa level (the “x” data). The Probit model fits a normal 

CDF, and so the Sa values should actually be input as lnSa values in order to obtain a lognormal 

CDF in terms of Sa. Estimates obtained using this scheme were observed to always be at the 
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global minimum, unlike the manually implemented maximum likelihood method. An illustration 

of the fitted distribution is displayed in Figure D.4. 
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Fig. D.4  Empirical probability of collapse and lognormal distribution fitted 
using generalized linear regression with Probit link function 

This method was used to obtain the estimated the probabilities of collapse in Figure 6.11 

of this report. Note that although this method is slightly more complicated than the standard 

method used elsewhere, it is also more flexible. For example, if one is primarily interested in the 

lower tail of the distribution (as is often the case, because lower Sa values occur much more 

frequently), then only this portion of the data need be obtained for fitting. For example, Sa 

“stripes” could be analyzed for increasing Sa levels until a certain fraction (e.g., 40% or 50%) of 

the records cause collapse. Then the analysis can be stopped, and the distribution fitted without 

knowledge of the effect of larger Sa values. This may be advantageous when structural analyses 

are expensive. 

 



 

   
 
 

Appendix E Use of Mean Disaggregation 
Values to Model Target Spectra 

The mean values of M, R, and ε (referred to here as M , R , and ε ) from disaggregation have 

been used to develop target spectra in Chapter 6. Strictly speaking, however, there are a range of 

(M, R, ε) values that could result in occurrence of the target Sa(T1) value. For example, a 

disaggregation obtained from the U.S. Geological Survey (2002) is shown in Figure E.1 for the 

Van Nuys, California, site used as an example throughout this report; this disaggregation is for 

the Sa(1s) value exceeded with 2% probability in 50 years. A description of the seismicity at this 

site is provided by Somerville (2001b). The mean (M, R, ε) values are (6.8, 9.1 km, 1.44), but the 

plot indicates that a range magnitude, distance, and ε values contribute. 
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Fig. E.1  Example disaggregation for Sa(1.0s) at Van Nuys site discussed in 
Chapter 6 (USGS 2002) 

In order to develop the true distribution of conditional spectra, one should consider a 

weighted combination of conditional spectra from each possible (M, R, ε) triplet, where the 

weights are assigned according to the probability of that triplet causing the target Sa(T1) value to 

be exceeded (these probabilities are readily available from standard PSHA disaggregation). 

Consider n possible (M, R, ε) values, denoted (Mi, Ri, εi), with associated probability pi. That is 
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=

= = = = =∑  (E.1) 

We can then use conditional means and variances, and the total probability theorem (Benjamin 

and Cornell 1970) to compute the mean and variance of the resulting spectrum. The conditional 

mean of lnSa(T2) given lnSa(T1)=x is  

 ( )2 1 1 2ln ( )|ln ( ) ln 2 ln 2 ln ( ),ln ( ) 1
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where ln 2( , , )Sa i iM R Tμ  and ln 2( , )Sa iM Tσ  are the mean and standard deviation from a ground 

motion prediction model, following the notation of Chapter 6. The term 
1 2ln ( ),ln ( )Sa T Sa Tρ  is the 

correlation of spectral values from Chapter 8 (Eq. 8.9). Note that 
1 2ln ( ),ln ( )Sa T Sa Tρ  is specified for a 

given magnitude and distance, but it is found empirically to be insensitive to (i.e., independent 

of) the actual magnitude or distance value (see Section B.4). Similarly, the conditional variance 

of lnSa(T2) given lnSa(T1)=x is 
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In order to achieve practical approximations, we make the first-order approximation that the 

marginal mean and standard deviation ln ( , , )Sa M R Tμ  and ln ( , )Sa M Tσ  are linear functions of M 

and R. Then, using Taylor expansions about M  and R , we obtain the first-order, second 

moment (Melchers 1999) approximation of the conditional mean and variance of the target 

spectrum, given lnSa(T1)=x. The conditional mean is 
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and Equation E.2 simplifies to Equation 6.1. We make the additional approximation that the 

variance in conditional lnSa(T2) values is primarily due to ε rather than variations in causal 

magnitudes and distances. That is, 
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Under this approximation, then Equation E.3 simplifies to Equation 6.2. These 

approximations are convenient because it is much simpler to consider the spectrum at only the 

mean (M, R, ε) values. 

To test the validity of this approximation, consider the following examples. For the site of 

interest here, the conditional spectral shape developed from M , R , ε  was very close to the 

conditional spectral shape developed using the rigorous procedure (the conditional means and 
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variances nearly always differed by less than a few percent between the two methods). Note that 

when the ground motion hazard is dominated by a single magnitude and distance, Equation E.4 

is exact (the site in Fig. E.1 looks like this, as will many coastal California sites and certain 

central and eastern U.S. sites near Charleston or New Madrid).  

A more difficult test can be performed by considering a hypothetical site where multiple 

earthquake events contribute to the hazard at a given Sa(T1) level, and these events have very 

different mean spectral shapes. Such a site is considered here. The hypothetical site is near two 

faults, each of which produces only a single characteristic earthquake, as illustrated 

schematically in Figure E.2. 

 

Fig. E.2  Schematic illustration of hypothetical site considered 

The two faults produce earthquake events with the following properties: Fault A produces 

only magnitude 6 earthquakes at a distance of 10 km from the site. This is referred to as “Event 

A.” Event A has a mean annual frequency of occurrence of 0.01 (i.e., a mean return period of 

100 years). Fault B produces only magnitude 8 events at a distance of 25 km from the site. This 

event is referred to as Event B, and has a mean annual frequency of occurrence of 0.002 (i.e., a 

mean return period of 500 years). These two events have very different mean spectra, as 

predicted by the attenuation model of Abrahamson and Silva (1997) and displayed in Figure E.3. 

Site 

Fault A 

Fault B 

10 km 

25 km 
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Fig. E.3  Predicted mean spectra from two possible events 

The ground motion intensity resulting from these faults is a random variable due to 

variation in the earthquakes’ stress drop, slip distribution, etc., even given multiple earthquakes 

with the same magnitude and distance. The uncertainty in spectral acceleration values is 

illustrated in Figure E.4, which displays the mean spectra and the mean spectra +/- one standard 

deviation. Given that the ground motion spectral acceleration is a random variable, the 

possibility exists that the spectral acceleration resulting from an earthquake is much larger than 

the mean ground motion associated with the earthquake’s magnitude and distance (this would be 

a “positive epsilon” ground motion). Consider the exceedance of an Sa(1s) value of 0.9g. (This 

level of intensity is chosen because it has a 4*10-4 annual rate of exceedance at the given site, as 

will be calculated below. If a Poisson model for earthquake recurrence is assumed, this 

corresponds to the Sa(1s) ground motion level exceeded with 2% probability in 50 years—a 

common design level in structural engineering.) This Sa(0.1s)=0.9g ground motion is also 

displayed in Figure E.4. It is clear from this figure that the target Sa level is slightly more than 

one standard deviation larger than the mean Sa from Event B. It is approximately two standard 

deviations larger than the mean Sa from Event A. However, Event A has a much higher rate of 

occurrence, and so it will still make a significant contribution to the ground motion hazard at this 

Sa level. 
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Fig. E.4  Predicted mean spectra from two possible events along with +/- one 
standard deviation. Target Sa(1s) value also noted. 

In fact, the contribution of each event to the hazard at this Sa level can be computed using 

disaggregation (McGuire 1995; Bazzurro and Cornell 1999). Given the rates of occurrence of the 

two events given above, and the mean and standard deviation of log Sa(1s) given each of the 

events (log Sa values, given magnitude and distance, have been seen to be well-represented by 

Gaussian distributions), disaggregation can be performed. Some of the relevant data are 

summarized below. 

Event A: 
Mean of lnSa(1s) given Event A = -1.7356 

Standard deviation of lnSa (1s) given Event A = 0.7494 

Probability of exceeding Sa(1s)=0.9g, given Event A = 0.0148 

Mean annual rate of Sa(1s)>0.9g due to earthquakes from Fault A = 0.01*0.0148=1.48*10-4 

Event B: 
Mean of lnSa (1s) given Event B = -0.8329 

Standard deviation of lnSa (1s) given Event B = 0.6243  

Probability of exceeding Sa(1s)=0.9g, given Event B = 0.1219 

Mean annual rate of Sa(1s)>0.9g due to earthquakes from Fault B = 0.002*0.1219= 2.44*10-4 
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By summing the mean annual frequencies of Sa(1s)>0.9g due to the two events, we get a 

total mean annual frequency of ~4*10-4, as noted above23. We can now use disaggregation to 

determine the contribution of each event to exceedance of 0.9g, along with the associated ε 

value. Using PSHA disaggregation, we find that given occurrence of a ground motion with 

Sa(1s)>0.9g, the probability is 0.38 that the ground motion came from Event A, and the 

probability is 0.62 that the ground motion came from Event B (these are the “pi” probabilities 

needed in the equations throughout this Appendix). Note that these probabilities are just the 

relative contributions of the two events to the total mean annual frequency of exceeding 0.9g. 

Further, the disaggregation values associated with these two events can also be determined. 

Given Event A, the causal magnitude, distance, and ε values are 6, 10 and 2.18, respectively24. 

Given Event B, the causal magnitude, distance, and ε values are 8, 25, and 1.17, respectively. 

These are the Mi, Ri,, and εi values needed in the equations throughout this Appendix. Further, we 

can weight these two M, R,ε triples by their associated probabilities of causing Sa(1s)>0.9g to 

determine the mean M, R, and ε. In this example, they are M =7.25, R =19.3 km, and ε =1.55. 

These are the values used for the approximation of Equations 6.1 and 6.2. Note that these values 

are not associated with either of the two earthquakes that can physically occur at the site; 

however, they will produce a reasonable approximation of the conditional mean spectrum, 

considering ε, as will now be demonstrated.  

In Figure E.5, the conditional mean spectra considering ε are plotted for several 

situations. The conditional mean spectra are plotted given Sa(1s)=0.9g and occurrence of either 

Event A or B. These two spectra are then combined using Equation E.2 to compute the CMS-ε, 

which is also shown in Figure E.5. 

                                                 
23 As can be observed in Fig. E.4, the ground motion level associated with the 2%-in-50-years hazard is much larger 
than the mean ground motion from any possible earthquake. Although not always emphasized, this is often the case 
in real sites as well, particularly in seismically active areas such as the western United States. 
24 Here the McGuire (1995) disaggregation method is used to obtain ε rather the alternative method considered by 
the Bazzurro and Cornell (1999) study. As mentioned in Chapter 6, the McGuire method is more appropriate for this 
record-selection problem. 
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Fig. E.5  Conditional mean spectra given occurrence of individual events, and 
then combined CMS-ε spectrum proposed as target spectrum for 
record selection 

The CMS-ε spectrum shown in Figure E.5 is the exact spectrum for this site to use in the 

record selection procedure proposed in Chapter 6. As an alternative, the M , R , and ε  values 

from this site can be used to approximate the CMS-ε spectrum, using Equation 6.1. The two 

CMS-ε spectra are shown in Figure E.6, and the agreement is seen to be reasonable. 
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Fig. E.6  Exact (using Eq. E.2) and approximate (using Eq. 6.1) CMS-ε spectra 
for given hypothetical site 

Further, one could compare the exact and approximate conditional standard deviations of 

the response spectrum given Sa(1s)=0.9g. These are displayed graphically in Figure E.7.  
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Fig. E.7  (a) Exact conditional mean and standard deviation of response spectrum, 
given Sa(1s)=0.9g. (using Eqs. E.2 and E.3). (b) Approximate conditional 
mean and standard deviation of response spectrum, given Sa(1s)=0.9g. 
(using Eqs. E.2 and E.3). 

Visually, the results from Figure E.7 look comparable. Within the range T/3 to T*3 (the 

range of the response spectrum that might be expected to affect a structure with fundamental 

period T, which is equal to 1s in this example), the approximate mean differs from the exact 
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mean by no more than 12%. The conditional standard deviations differ by no more than 20% 

over this range.  

These errors could be considered upper-bound errors that might occur at a real site. This 

site was specifically constructed to have significant contributions from two events with 

dramatically different magnitudes. In some situations, this might approximately represent the 

hazard at a site (e.g., Sa(1s) at the 2%-in-50-year hazard level for Atlanta, shown in Figure E.8, 

has significant contributions from two different sources), and by idealizing this as two sources, 

one could repeat the calculation performed above to compute a more exact CMS-ε spectrum. 

Otherwise, at sites where the hazard is dominated by events with very similar magnitudes and 

distances (such as the one displayed in Fig. E.1), there will be much less difference between the 

exact and approximate CMS-ε spectra. For this reason, the approximations used in Chapter 6 are 

believed to be reasonable in many situations. 

 

 

Fig. E.8  Disaggregation for Sa(1.0s) at 2% in 50-year hazard level for Atlanta, 
Georgia (USGS 2002) 
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The success of this approximation depends on the observation that the conditional 

variance in ε values at other periods has a much greater effect on variations in spectral shape 

than differences in mean spectra due to variations in magnitude and distance (because the 

variance of ε is large, and because Sa is sensitive to changing values of ε) . Given the close 

match of the two procedures, the much simpler procedure of using M , R , ε  is recommended 

for most practice (the exact answer in the above example was easy to compute because there 

were only two possible events, but this is not the case at real sites). However, if the analyst has 

any concern about the accuracy of the approximate result for a given site, there is no obstacle 

other than programming time and computational effort preventing one from obtaining the exact 

conditional spectra (within the limits of the discrete disaggregation, which can often be fairly 

coarse). It should also be mentioned that M , R  values from disaggregation sometimes 

correspond to values that do not occur from any fault in the area surrounding the site (e.g., 

Bazzurro and Cornell (1999)); note that R  is sometimes intermediate between the distances to 

two major faults, as was the case in the example above), causing some to express concern about 

using M , R  as target values for record selection. This concern should be lessened here, because 

we are only using M  and R  to identify a target response spectrum distribution and not to 

identify target M and R values. The response spectra of records coming from magnitudes and 

distances that actually occur at the site and have the specified Sa(T)* level will agree well with 

the conditional response spectra based on M  and R  given Sa(T)*.  

One final concern that should be noted with this simplification is that when M , R , and 

ε  obtained from disaggregation of Sa(T1) are used to predict Sa(T1), one does not necessarily 

obtain the target value of Sa(T1) back again. Although each (Mi, Ri, εi) triplet will produce an 

Sa(T1) value equal to the target, when one obtains the mean values of M, R, and ε marginally, 

they do not necessarily produce this target Sa(T1) value. This results in the mean conditional 

spectra predicted by Equation 6.1 not actually passing through the Sa(T1) value that it was 

conditioned on. There are two simple fixes for this. One is to re-assign ε  to the ε value that 

results in a prediction of the Sa(T1) target value; the modification will be small and this is 

consistent with the treatment of ε by McGuire (1995). The second option is to slightly re-scale 

the target spectrum so that it passes through the target Sa(T1) value. The second option has been 

adopted in this work, although the modification is so small that the first option will produce 

essentially identical results. 



 

   
 
 

Appendix F Response Results for Two 
Additional Structures, Using Four 
Methods for Selecting Ground 
Motions 

To support the conclusions of Chapter 6, the four record-selection methods proposed in that 

chapter were used to analyze two additional structures. Both structures were considered to be 

located at the same Van Nuys, California, site used in Chapter 6. Several summary figures and 

tables are shown in this appendix, and the equivalent figures and tables from Chapter 6 are noted. 

F.1 FIRST STRUCTURE 

The first structure considered is a generic frame structure designed by Ibarra (2003), which has 

also been used in Chapters 3, 4, and 5. It has the following properties: 3 stories, T1 = 0.3s, 

ductility capacity (δc/δy) = 4, post-capping stiffness coefficient (αc)= -50%, V/W = 0.75 (i.e., 

Sayield(0.3s) = 0.75g). 

This first-mode dominated structure has a fundamental period of 0.3 sec, making it 

sensitive to shorter periods than the structure tested in Chapter 6. The hazard disaggregation 

values for Sa(0.3s) are given in Tables F.1–F.3, which correspond to Tables 6.1–6.3 in the body 

of the report. At this shorter period, the hazard tends to be controlled by smaller magnitude 

events at closer distances than for the 0.8s period considered in Chapter 6. 
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Table F.1  Mean magnitude values from disaggregation of Van Nuys site, 
and mean magnitude values of records selected using each of four 
proposed methods. Mean magnitude value of record library was 
6.7. 

    Magnitude 

Sa(0.3s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  6.0 6.7 6.3 6.7 6.6 
0.4  6.0 6.7 6.1 6.5 6.5 
0.8  6.0 6.7 6.1 6.6 6.5 
1.2  6.0 6.7 6.1 6.7 6.6 
1.6  6.1 6.7 6.2 6.7 6.5 
2.2  6.1 6.7 6.2 6.7 6.5 
3.0  6.2 6.7 6.3 6.7 6.6 
4.0  6.3 6.7 6.4 6.7 6.6 
5.0   6.4 6.7 6.5 6.7 6.7  

 

 

Table F.2  Mean distance values from disaggregation of Van Nuys site, and 
mean distance values of records selected using each of four 
proposed methods. Mean distance value of record library was 33 
km. 

    Distance 

Sa(0.3s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  44.8 35.5 37.0 30.3 27.0 
0.4  20.5 35.5 20.0 32.0 26.2 
0.8  14.7 35.5 14.2 34.9 27.4 
1.2  12.7 35.5 12.7 36.3 27.0 
1.6  11.7 35.5 12.5 38.0 27.3 
2.2  10.7 35.5 11.7 37.1 28.4 
3.0  9.6 35.5 10.6 37.1 30.4 
4.0  8.8 35.5 9.0 37.1 31.6 
5.0   8.8 35.5 7.3 37.1 33.5  
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Table F.3  Mean ε values (at 0.3s) from disaggregation of Van Nuys site, 
and mean ε values of records selected using each of four 
proposed methods. Mean ε value of record library was 0.2. 

    Epsilon (ε) 

Sa(0.3s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  -0.2 0.2 0.2 -0.2 0.2 
0.4  0.6 0.2 0.4 0.6 0.3 
0.8  1.2 0.2 0.2 1.1 0.4 
1.2  1.5 0.2 0.5 1.4 0.6 
1.6  1.8 0.2 0.5 1.7 0.6 
2.2  2.1 0.2 0.5 1.7 0.5 
3.0  2.4 0.2 0.2 1.8 0.7 
4.0  2.6 0.2 0.0 1.8 0.7 
5.0   2.8 0.2 -0.2 1.8 0.7  

 
 

The conditional mean spectra at the Sa(0.3s) level corresponding to a 2%-in-50-years 

hazard are shown in Figure F.1 (corresponding to Fig. 6.7). The spectra from the Arbitrary 

Records and M, R-Based Records again tend to be larger at most periods. Note, however, that the 

mean spectrum from the MR-BR records has a slight “valley” at 0.4 sec, which might cause 

these records to produce lower levels of nonlinear response than might otherwise be expected (a 

result which will be observed below). The valley observed here is believed to be a chance 

observation due to the finite sample size—there is no reason to expect a spectral shape like this 

to occur consistently. Note also that the trends in spectra become less clear at periods greater 

than 1 second; however, this period range will have little or no effect on the short-period 

structure considered here. In fact, the variation of the spectra at these long periods occurs 

precisely because we have conditioned on spectral acceleration at a much shorter period. 
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Fig. F.1  Conditional mean spectra at Sa(0.3s)=2.2g (given M =6.1, 
R =10.7 km and ε =2.1) and mean response spectra of record sets 
selected using each of four proposed record selection methods 

 

The geometric mean of EDP as a function of IM is shown in Figure F.2 (corresponding to 

Fig. 6.9), using the results from the four record-selection methods. The CMS-ε records produce 

smaller responses than the other methods. This may be because the record-selection method 

preferentially selects records with spectra that are somewhat smooth, in order to match the target 

spectrum; Carballo (2000) observed that records which were artificially processed to have very 

smooth spectra tend to produce lower levels of structural response, and the same effect may be 

occuring here to a lesser extent with the partially smooth records. The MR-BR records produce 

responses comparable to the ε-BR records, possibly due to the valley in the MR-BR record 

spectra noticed earlier. Given the results from similar tests on the other structures, it is expected 

that the MR-BR records will typically produce larger responses (comparable to the AR-records’ 

responses). 
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Fig. F.2  Geometric mean of maximum interstory drift ratio vs. Sa(T1) for four 
record-selection methods considered 

The standard deviations of log maximum interstory drift ratio from the three record sets 

are shown in Figure F.3 (comparable to Fig. 6.10). These results are quite similar to Figure 6.10. 

The standard deviations are only reported for Sa levels where fewer than 50% of records caused 

collapse: when a large fraction of records cause collapse, then the standard deviation of non-

collapse responses becomes a less meaningful statistic. 
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Fig. F.3  Standard deviation of log maximum interstory drift ratio vs. Sa(T1) for 
four record-selection methods considered, at Sa(T1) levels where less 
than 50% of records cause collapse 

The probability of collapse as a function of Sa is shown in Figure F.4 (which is 

comparable to Fig. 6.11). The MR-BR records have relatively lower probabilities of causing 

collapse than in the other two test cases (Figs. 6.11 and F.10), possibly because of the valley in 

the spectra observed in Figure F.1. If more records were available to generate another sample of 

MR-BR records, it would be expected that they would have similar probabilities of causing 

collapse as the AR records. 
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Fig. F.4  Estimated probability of collapse vs. Sa(T1) (i.e., the collapse “fragility 
curve”) using four record-selection methods considered 

The Sa(0.3s)-based drift hazard curves are shown in Figure F.5. The trends here are 

comparable to those observed in Figure 6.13, except that the MR-BR records produce lower 

mean annual rates of exceedance. 



 

   
 
 

326

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

Maximum Interstory Drift Ratio

M
ea

n
 A

nn
ua

l R
at

e 
of

 E
xc

ee
d

an
ce

Method 1 (AR) records
Method 2 (MR-BR) records
Method 3 (ε-BR) records
Method 4 (CMS-ε) records

 

Fig. F.5  Mean annual frequency of exceeding various levels of maximum 
interstory drift ratio, as computed using scalar intensity measure 
Sa(T1) 

When a vector IM incorporating ε is incorporated with the AR records, the resulting drift 

hazard curve agrees more closely with the (scalar-based) drift hazard curves estimated using ε-

BR records or CMS-ε records. However, when the MR-BR records are used with the vector IM, 

the result becomes too low. Again, it should be noted that with another sample of M,R-Based 

records, this behavior from the MR-BR records would likely not occur. 
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Fig. F.6  Mean annual frequency of exceeding various levels of maximum 
interstory drift ratio, as computed using either scalar intensity 
measure Sa(T1) or vector intensity measure Sa(T1) and ε  

None of the four record selection methods showed a statistically significant bias with 

record scaling. In Table F.5 (analogous to Table 6.4), p-values for maximum interstory drift 

versus scale factor are given, and no characteristics of statistical significance are evident. This is 

in contrast to results from Chapter 6 and the structure analyzed below, where methods 1 and 2 

display a statistically significant bias with scale factor. Even if this scaling bias is present with 

Methods 1 and 2 in only two of the three structures considered, it is preferable to select records 

using  methods 3 or 4, which displayed no scaling bias in any of the three cases considered.  
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Table F.4  P-values from regression prediction of max interstory drift ratio 
as function of scale factor for four methods of record selection, at 
seven levels of Sa(0.3s). P-values of less than 0.05 marked in 
boldface.  

Sa(0.3s) 

Method 1: 
Arbitrary 
Records 

Method 2: M, 
R-Based 
Records 

Method 3:  
ε-Based 
Records 

Method 4: 
CMS-ε 
Method 

0.1 0.69 0.23 0.35 0.71 

0.4 0.69 0.28 0.36 0.87 

0.8 0.68 0.32 0.98 0.80 

1.2 0.07 0.47 0.11 0.07 

1.6 0.78 0.21 0.01 0.58 

2.2 0.66 0.83 0.05 0.70 

3 0.43 0.24 0.90 1.00 

median  
p-value 0.68 0.28 0.35 0.71  

 

F.2 SECOND STRUCTURE  

The second structure considered is also a generic frame structure designed by Ibarra (2003). It 

has the following properties: 6 stories, T1 = 1.2s, ductility capacity (δc/δy) = 4, post-capping 

stiffness coefficient (αc)= -50%, V/W = 0.2 (i.e., Sayield(1.2s) = 0.2g). 

This structure has a fundamental period of 1.2 sec. The hazard disaggregation values for 

Sa(1.2s) are given in Tables F.5–F.7, which correspond to Tables 6.1–6.3 in the body of the 

report. The general trends in these tables are very similar to the trends observed in Tables 6.1–

6.3. 
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Table F.5  Mean magnitude values from disaggregation of Van Nuys site, 
and mean magnitude values of records selected using each of four 
proposed methods. Mean magnitude value of record library was 
6.7. 

    Magnitude 

Sa(1.2s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  6.5 6.7 6.5 6.7 6.8 
0.2  6.6 6.7 6.6 6.8 6.8 
0.4  6.7 6.7 6.6 6.5 6.8 
0.6  6.7 6.7 6.6 6.5 6.8 
0.8  6.6 6.7 6.7 6.5 6.8 
1.2  6.6 6.7 6.6 6.6 6.7 
1.6  6.6 6.7 6.5 6.6 6.7 
2.0  6.6 6.7 6.6 6.6 6.7 
2.4   6.7 6.7 6.6 6.6 6.7  

 

Table F.6  Mean distance values from disaggregation of Van Nuys site, and 
mean distance values of records selected using each of four 
proposed methods. Mean distance value of record library was 33 
km. 

    Distance 

Sa(1.2s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  62.1 35.5 59.0 31.6 28.3 
0.2  45.2 35.5 42.7 30.8 30.2 
0.4  31.8 35.5 31.9 34.1 34.3 
0.6  25.6 35.5 27.2 41.2 38.5 
0.8  21.6 35.5 20.9 46.5 42.8 
1.2  15.8 35.5 14.9 51.2 42.4 
1.6  11.9 35.5 10.4 51.2 42.6 
2.0  9.6 35.5 9.7 51.2 42.5 
2.4   9.0 35.5 10.0 51.2 42.5  
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Table F.7  Mean ε values (at 1.2s) from disaggregation of Van Nuys site, and 
mean ε values of records selected using each of four proposed 
methods. Mean ε value of record library was 0.1. 

    Epsilon (ε) 

Sa(1.2s) 
[g]   

Target 
from 

disagg 
1. AR 

Method 
2. MR-BR 
Method 

3. ε-BR 
Method 

4. CMS-ε 
Method 

0.1  0.2 -0.1 0.8 0.2 0.1 
0.2  0.7 -0.1 0.0 0.7 0.4 
0.4  1.2 -0.1 0.0 1.2 0.7 
0.6  1.6 -0.1 0.2 1.5 0.9 
0.8  1.8 -0.1 0.0 1.7 1.0 
1.2  2.1 -0.1 -0.2 1.9 1.2 
1.6  2.4 -0.1 -0.2 1.9 1.4 
2.0  2.5 -0.1 -0.1 1.9 1.4 
2.4   2.6 -0.1 0.1 1.9 1.4  

 

The conditional mean spectra at the Sa(1.2s) level corresponding to a 2%-in-50-years 

hazard are shown in Figure F.7 (corresponding to Fig. 6.7). The spectra from the Arbitrary 

Records and M,R-Based Records again tend to be larger than the ε-BR and CMS-ε spectra at all 

periods. Note that the target spectrum does not match the ε-BR and CMS-ε spectra near 2 sec. 

Research in progress by the author suggests that the attenuation model used here (Abrahamson 

and Silva 1997) tends to overpredict Sa values in this period range, and thus leads to target 

spectra which are larger than the observed spectra. This does not significantly affect the results 

below, and no special effort was made to correct the difference, but it is interesting to note. 
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Fig. F.7  Conditional mean spectrum at Sa(1.2s)=1.2g (given M =6.6, R =15.8 km 
and ε =2.1) and mean response spectra of record sets selected using 
each of four proposed record selection methods 

The geometric mean of EDP as a function of IM is shown in Figure F.8 (corresponding to 

Fig. 6.9), for the Sa levels at which less than 50% of records caused collapse. The ε-BR and 

CMS-ε records produce smaller responses, as was observed in Figure 6.9. 
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Fig. F.8  Geometric mean of maximum interstory drift ratio vs. Sa(T1) for four 
record-selection methods considered 

The standard deviations of log maximum interstory drift ratio from the three record sets 

are shown in Figure F.9 (comparable to Fig. 6.10). These results are quite similar to Figure 6.10. 
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Fig. F.9  Standard deviation of log maximum interstory drift ratio vs. Sa(T1) for 
four record-selection methods considered, at Sa(T1) levels where less 
than 50% of records cause collapse  
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The probability of collapse as a function of Sa is shown in Figure F.10 (which corresponds to 

Fig. 6.11). These results are also quite similar to Figure 6.11. 
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Fig. F.10  Estimated probability of collapse vs. Sa(T1) (i.e., the collapse “fragility 
curve”) using four record-selection methods considered 

The Sa(1.2s)-based drift hazard curves are shown in Figure F.11. As in Figure 6.13, the 

MR-BR and AR records produces higher mean annual rates of exceedance because of the higher 

median responses and probabilities of collapse shown above. In fact, the difference is as great as 

an order of magnitude in mean rates at for max interstory drift ratios near 0.1. However, when ε 

is incorporated in a vector IM for the MR-BR and AR records, their resulting estimated drift 

hazard curves are in much closer agreement with the lower two drift hazard curves, as is seen in 

Figure F.12. 
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Fig. F.11  Mean annual frequency of exceeding various levels of maximum 
interstory drift ratio, as computed using scalar intensity measure 
Sa(T1). 
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Fig. F.12  Mean annual frequency of exceeding various levels of maximum 
interstory drift ratio, as computed using either scalar intensity 
measure Sa(T1) or vector intensity measure Sa(T1) and ε. 
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In Table F.8 (analogous to Table 6.4), p-values for maximum interstory drift as a function 

of scale factor are given. As in Table 6.4, methods 1 and 2 show a statistically significant trend 

as a function of scale factor. To illustrate this trend graphically, plots of max interstory drift ratio 

as a function of scale factor are shown in Figure F.13 (analogous to Fig. 6.16) for the Sa(1.2s) 

level of 0.6g. 

Table F.8  P-values from regression prediction of max interstory drift ratio as 
function of scale factor for four methods of record selection, at 
seven levels of Sa(1.2s). P-values of less than 0.05 marked in 
boldface.  

Sa(1.2s) 

Method 1: 
Arbitrary 
Records 

Method 2: M, 
R-Based 
Records 

Method 3:  
ε-Based 
Records 

Method 4: 
CMS-ε 
Method 

0.1 0.00 0.02 0.43 0.72 

0.2 0.00 0.00 0.12 0.27 

0.4 0.01 0.00 0.42 0.80 

0.6 0.02 0.01 0.40 0.66 

0.8 0.10 0.01 0.22 0.78 

1.2 0.22 0.32 0.01 0.03 

1.6 0.47 0.31 0.01 0.21 
median  
p-value 0.02 0.01 0.22 0.66  
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(d) 

Fig. F.13  Maximum interstory drift ratio versus record scale factor for each of four 
selection methods considered, at Sa(1.2s) level of 0.6g. Regression fits based 
on scale factor shown with solid lines. Dashed horizontal lines 
corresponding to mean prediction at a scale factor of one shown for 
comparison. (a) Records using AR  method. (b) Records using MR-BR 
method. (c) Records using ε-BR method. (d) Records using CMS-ε method.  

The conclusions drawn in Chapter 6 appear to hold for these two structures as well. There 

will still be some variation in estimated structural response because of the finite number of 

records used (this might be the source of the MR-BR records causing smaller levels of response 

in the 0.3s structure than had been expected). On average, however, the ε-BR and CMS-ε records 

tend to produce smaller mean responses and smaller probabilities of collapse for a given Sa(T1) 

level than do the AR and MR-BR records. As was argued in Chapter 6, the smaller responses 

from the ε-BR and CMS-ε records are more accurate than responses from the other records 

because they account for the effect of ε, which has been observed to be a useful predictor of 

structural response. 
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