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ABSTRACT 

In performance-based earthquake engineering (PBEE), evaluating the seismic performance (or 

seismic risk) of a structure at a designated site has gained major attention, especially in the past 

decade. One of the objectives in PBEE is to quantify the seismic reliability of a structure due to 

future random earthquakes at a site. For that purpose, probabilistic seismic demand analysis 

(PSDA) is utilized as a tool to estimate the mean annual frequency of exceeding a specified value 

of a structural demand parameter (e.g., interstory drift ratio).  

This report focuses on applying advanced scalar ground motion intensity measures (IMs), 

specifically inelastic spectral displacement (Sdi) and Sdi with a higher-mode factor denoted as 

IM1I&2E, when assessing the seismic performance of structures. The results obtained by using 

these advanced IMs are compared with a conventional elastic-based scalar IM (i.e., pseudo-

spectral acceleration, Sa) and the vector IM (i.e., Sa with epsilon, denoted as <Sa, !>). The 

advantages of applying advanced IMs are (1) “sufficiency” or more accurate evaluations of 

seismic performance, while eliminating the need to perform detailed ground motion record 

selection for the nonlinear dynamic structural analyses, (2) “efficiency” or smaller variability of 

structural responses, and (3) “scaling robustness,” which implies that ground motion records can 

be scaled without introducing a bias in the structural responses. For ordinary records, using the 

advanced IMs (Sdi and IM1I&2E) leads to the same conclusions obtained using the vector IM, <Sa, 

!>. However, using advanced IMs to evaluate the structural performance for near-source pulse-

like records is found to be more accurate than using the elastic-based IMs (i.e., Sa and <Sa, !>). 

For structural demands that are dominated by the first mode of vibration, using Sdi can be 

advantageous relative to the conventionally used Sa and <Sa, !>. We demonstrate that this is true 

for ordinary and for near-source pulse-like earthquake records; the latter cannot be adequately 

characterized by either Sa alone or <Sa, !>. For structural demands with significant higher-mode 

contributions (under either of the two types of ground motions), an advanced scalar IM that 

incorporates higher modes needs to be utilized. 
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1 Introduction 

1.1 OVERVIEW 

Performance-based earthquake engineering (PBEE) has recently gained significant attention, 

especially after past earthquakes (1989 Loma Prieta and 1994 Northridge, California, and 1995 

Kobe, Japan) in which the affected communities realized that sometimes building only to prevent 

collapse (or just life safety) is simply insufficient. In these events, there was significant damage 

to buildings as well as to contents, creating substantial losses both financial (including business 

interruption) and human (fatalities and casualties). As a result, there is a need for better-designed 

structures to minimize damage and to ensure that buildings remain functional after earthquakes. 

PBEE has been documented in recent guidelines (e.g., ATC-40 1996; FEMA-273 1997; Vision-

2000 1995; and SAC/FEMA-350 2000). These documents require that a building be designed to 

assure specific performance objectives under frequent earthquakes typically resulting in little or 

no damage, and in rare but potentially catastrophic seismic events that may occur during its 

service life. In the context of PBEE, the seismic demands of structures need to be evaluated 

accurately for comparison with the target (i.e., acceptable) performance objectives. 

Earthquakes are low-probability, large-consequence, and large-uncertainty hazards (Wen 

2000). Due to the randomness of earthquakes and the many uncertainties involved in evaluating 

a structure’s seismic performance, estimations of future earthquakes can be completed only in a 

probabilistic way. According to modern guidelines (cited above) and in work by the Pacific 

Earthquake Engineering Research (PEER) Center (Cornell and Krawinkler 2000; Moehle and 

Deierlein 2004), evaluations of structural performance (or seismic risks) can be expressed in 

terms of the mean annual frequency (MAF) of exceeding a given level of response, for example, 

x, denoted as ( )EDP xλ  (in the PEER context, the response parameter is termed an engineering 

demand parameter, EDP). ( )EDP xλ  is a direct measure of a structure’s seismic performance 
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because it is related to the probability of experiencing the event EDP > x within the lifetime of a 

structure (e.g., 50 years). This will be briefly described in the next subsection. Note that attention 

in this report is limited to predicting probabilities of structural responses, and it is presumed that 

their translation to loss estimations is a direct, sufficiently accurate, and straight-forward task. 

1.1.1 Brief Review of Probabilistic Seismic Demand Analysis 

To evaluate the seismic performance of structures at a designated site, the uncertainties in the 

ground motions and nonlinear structural responses need to be considered. Monte-Carlo 

simulation can be utilized, but this approach requires computationally intensive analyses to 

evaluate ( )EDP xλ  (e.g., Collins et al. 1996; Han and Wen 1997; Jalayer et al. 2004; Wen 2000). 

For a given fault i, this method requires a computation of [ ]|i P EDP x fault iν ⋅ > , where iν  is the 

mean annual rate of occurrence of an earthquake above a threshold magnitude of fault i, and 

[ ]|P EDP x fault i>  is the probability of exceeding the response or EDP level x given an event on 

fault i. This term can be calculated from nonlinear dynamic analysis results from, for example, 

synthetic records of random magnitude and location on the fault. The summation from all the 

sources in the region is (assuming that earthquake faults occur independently) 

 ( ) [ ]|EDP i
i

x P EDP x fault iλ ν= ⋅ >!  (1.1) 

Given that the dispersion of responses for a fault (or simply given magnitude, Mw, and 

source-to-site distance, R) is about 0.8 or more, the required sample size is (0.8/0.1)2= 64 to 

estimate the median EDP within a standard error of 10%. The computation also requires at least 

20 or more Mw and R pairs (i.e., collectively exhaustive and mutually exclusive) to adequately 

cover the seismic source contributions in the region. This procedure ultimately requires 

thousands of records to be simulated and analyzed through the structure in order to obtain 

accurate estimates of the extreme responses and ground motions. To improve the efficiency in 

the calculation, Wen and co-workers utilize a “de-aggregation” method, which selects only 

magnitudes, Mw, and sources-to-site distances, R, that contribute most to the EDPλ . 

Another approach to calculate the seismic performance of structures is to use a structure- 

and response-specific attenuation relationship as a function of Mw and R. The concept is similar 

to the conventional probabilistic seismic hazard analysis (PSHA); merely the ground motion 

attenuation relationship is replaced with the more structure-specific one, i.e., 
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 ( ) [ ] ( ),| , ,
wEDP i w M R

i
x P EDP x m r f m r dr dmλ ν= ⋅ > ⋅ ⋅ ⋅! ""  (1.2) 

where ( ), ,
wM R wf m r is the joint probability density function of Mw and R of a given fault. Many 

suites of records (from various Mw, R, fault mechanisms, etc.) are needed to obtain an accurate 

structure-specific attenuation model, which is found by regression analysis of EDP upon Mw and 

R. The implicit assumptions in this method are (1) the functional form of the regression equation, 

(2) the lack of dependence of EDP on the source characteristics not contained in the vector of 

independent variables (e.g., rupture duration), and (3) the lack of dependence of EDP on the 

geometry of the fault relative to the site (Cornell 1996b; McGuire and Cornell 1974; Sewell 

1989). Drawbacks are that this method still needs hundreds of analyses to obtain a reliable 

estimate for the structure- and response-specific attenuation model. On the other hand, the 

number of records is relatively small as compared to those of the simulation-based method. 

There are, however, sufficient real records in the catalogs to avoid the use of synthetic records.  

Cornell and co-workers (e.g., Bazzurro 1998; Luco 2002; Shome 1999) simplified the 

problem further by decoupling the ground motion hazard and nonlinear dynamic analyses via the 

intermediate variable known as the ground motion intensity measure (IM). A conventional IM is 

the peak ground acceleration (PGA) or, a little more structure-specific, the pseudo-spectral 

acceleration at the first-mode period (denoted as Sa(T1) or simply Sa). The benefit of this method 

is that the number of records needed can be substantially reduced because most of the 

uncertainties in EDP are concentrated in IMλ , which is found by conventional PSHA, leaving a 

small variation of EDP given IM to be estimated from the dynamic analyses (while still 

obtaining the accurate estimates for the marginal EDP distribution of the structure at a site). The 

typical value for the dispersion of an EDP-conditioned IM associated with large ductility levels 

is about 0.3–0.4, implying that the necessary sample size is in the order of 10 (i.e., 0.35/0.1)2 

records to estimate the median EDP within a standard error of 10%. Assuming that 5 to 6 IM 

levels need to be analyzed, the total number of analyses required is about 50–60. By using the 

total probability theorem (Benjamin and Cornell 1970), ( )EDP xλ  representing all Mw and R 

scenarios from the causative faults can be expressed as 

 ( ) [ ] ( )|EDP IMx P EDP x im d imλ λ= > ⋅"  (1.3) 
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where ( ) ( ) ( )IM IM IMd im im im dimλ λ λ= − +  is the differential of the ground motion hazard curve in 

terms of IM. IMλ  is typically carried out by seismologists. It is approximately the MAF of IM = 

im, where dim is a small increment in the ground motion intensity. Note that this site-specific 

seismic hazard reflects all of the Mw and R scenarios. Therefore, it captures a major portion of 

the specific nature at the site. Still to be determined are which IM to select and its ground motion 

hazard computability. These topics will be discussed further in following chapters. This seismic 

performance assessment approach is known as the IM-based probabilistic seismic demand 

analysis (PSDA).  

Note that this PSDA has been applied in various fields in diverse degrees. For example, 

the U.S. nuclear power industry has applied the seismic probabilistic risk assessments (PRAs) for 

more than two decades to all plants (Hickman 1983). This framework is also implemented in the 

probabilistic assessment of steel moment-resisting frames (SAC/FEMA-350) and in other recent 

guidelines (e.g., ATC-40; Vision-2000). 

The principal assumption (for the IM-based PSDA) is the “sufficiency” property of the 

IM (Luco 2002), which requires that the probability distribution of the structural response of 

interest given an IM is conditionally independent of the other ground motion parameters (i.e., 

Mw, distance, epsilon, fault mechanism, etc.). This assumption ultimately implies that a detailed 

record selection is not necessary (i.e., any ground motion records from any Mw, distance, epsilon, 

fault mechanism, etc., can be selected). If the selected IM is not sufficient, a full conditional 

probability distribution of EDP needs to be used to ensure the accuracy of PSDA. 

 
( ) [ ]

( ) ( ) ( ), , , .|

| , , , , . ...

, , , . | , , , .
w

EDP w

M R etc IM w w IM

x P EDP x im m r etc

f m r etc im d m r etc d imε

λ ε

ε ε λ

= > ⋅

⋅ ⋅
""  (1.4) 

where ground motion epsilon (!) is a proxy for the deviation of an IM (e.g., Sa) of as-recorded 

ground motion relative to the predicted (median) value calculated from the attenuation model. 

, , , .|wM R etc IMf ε  is the joint probability distribution function of Mw, R, !, and other ground motion 

parameters at a given IM level, which can be obtained from the result of PSHA disaggregation. If 

an insufficient IM is used, and the selected records do not represent the hazard at the site, the 

seismic performance estimation will be biased. Therefore, the choice of an appropriate IM is 

essential in obtaining an accurate estimate for the seismic performance of structures. The 

efficiency, the sufficiency, and the bias in the responses when scaling records depend upon the 

chosen IM. With a sufficient IM, however, evaluating the seismic performance of a structure can 
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be estimated using Equation 1.3, simply because [ ]| , , , , .wP EDP x im m r etcε>  is functionally 

independent of the ground motion parameters (e.g., Mw, distance, epsilon, fault mechanism, etc.). 

Two other important properties of an IM are the “efficiency” and “scaling robustness.” 

The former implies that a more efficient IM can reduce the number of nonlinear dynamic 

analyses but still achieve the same accuracy in seismic performance estimation. The latter 

implies that no statistically strong relationship exists between the structural responses and the 

scale factors used in scaling the amplitude of the records. By definition extreme ground motions 

are scarce. The real (as-recorded) ground motions will, instead, be used and scaled. The effect of 

scaling records on the responses of structures will be studied in Chapters 2 and 5. 

An IM is introduced to quantify the scaling of ground motion records. Scaling records to 

a common elastic value (i.e., using elastic-based IMs) can result in the spectral shape being 

largely influenced by !, Mw, soil type, etc., which impact the nonlinear responses of structures 

(see Chapters 2 and 3). If scaling factors are, however, determined using inelastic-based IMs 

(i.e., inelastic spectral displacement), the influence from the spectral shape (vis-à-vis ! and Mw) 

will be less prominent. This is mainly because the positive slope (relative to the median spectra) 

of more aggressive records will be scaled less than the negative slope (more benign) records1 

(see, e.g., Chapters 2, 3, and 5) to achieve a common structural response level. 

It should be noted here that with structural capacity information, the PSDA results can be 

used to compute the MAF of exceeding a specified limit state (LS). Typically, a limit state is 

composed of the capacity and demand random variables with the same units. A limit state is 

simply the probability that the (random) capacity is less than the (random) demand, and can be 

expressed as 

 [ ] ( )|LS EDPP LS EDP x d xλ λ= = ⋅"  (1.5) 

where ( )EDPd xλ  is defined similar to the ( )IMd imλ , but in terms of EDP. P[LS| EDP = x] is 

simply P[EDPCapacity< EDPDemand| EDP = x] vis-à-vis P[EDPCapacity< x]. Estimating the dynamic 

capacities is not within the scope of this study. The limit states considered are simply the 

deterministic values of EDPCapacity; as a result, the P[LS| EDP = x] is simply a binary function 

(
CapacityEDP xI < , equal to unity if x is greater than the specified deterministic capacity and zero 

                                                 
1  Ground motion records with positive slope (aggressive) spectral shape (relative to the median shape determined 

from an attenuation model), on average impose stronger inelastic responses than those having negative slope 
(benign) spectral shape. 
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otherwise). This process simplifies Equation 1.5 from LSλ to an equivalent EDPλ  at a specified 

EDP level. 

1.2 FOCUS OF THIS STUDY 

In this report, the approach known as probabilistic seismic demand analysis (PSDA) is applied 

and used as a framework to study and estimate the seismic risk of the structures at a designated 

site using advanced IMs. The studies are focused on the effects of “ordinary” and “near-source” 

pulse-like earthquake ground motions records on single-degree-of-freedom (SDOF) and multi-

degree-of-freedom (MDOF) structures. 

This report focuses on applying advanced ground motion IMs (specifically, inelastic 

spectral displacement (Sdi) and Sdi with a higher-mode factor, denoted as IM1I&2E) to assess the 

seismic performance of structures. The results are compared with conventional elastic-based IMs 

(such as Sa) and the vector IM (Sa with epsilon denoted as <Sa, !>). The latter has been known to 

improve the PSDA results for ordinary (non-near-source) ground motions. The use of <Sa, !> is 

driven by the insufficiency of the basic IM, Sa. As will be shown, for ordinary records, the 

advanced IMs (i.e., Sdi and IM1I&2E) provide statistically identical results to those computed using 

a vector IM. Use of advanced IMs to evaluate the structural performance for near-source pulse-

like records is shown to be more accurate than using the elastic-based IMs (i.e., Sa and <Sa, !>).  

The shortcoming of using an advanced IM in the past has been the computability of the 

ground motion hazard in terms of this IM. To be able to implement the IM-based PSDA using an 

advanced IM, the ground motion prediction model (i.e., attenuation relationship) for Sdi and 

IM1I&2E are developed. The attenuation relationships for Sdi and IM1I&2E can be easily 

implemented in the PSHA programs to generate site-specific results or the national seismic 

hazard maps (similar to those of Sa from the U.S. Geological Survey; 

http://earthquake.usgs.gov/research/hazmaps/).  

Lastly, the seismic performance of structures using an IM-based PSDA is compared with 

the simulation-based results to validate its effectiveness and accuracy. The results are statistically 

equivalent. The main advantage of the IM-based method is then confirmed and its accuracy is 

verified. 
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1.3 ORGANIZATION 

All chapters are intended to be self-contained because they have been or will be published as 

individual journal papers. As a result, there may be some repetition of background material, and 

apologies are made for any distraction this may cause. 

Chapters 2 and 3 of this report discuss structural performance evaluation under ordinary 

ground motions. The efficiency, sufficiency, and scaling robustness are discussed for the 

advanced IMs and compared to the results of the elastic-based IMs (i.e., Sa and Sa with epsilon, 

denoted as <Sa, !>). One important aspect of using the advanced IMs is the computability of the 

ground motion hazard in terms of the IM. This is illustrated in Chapter 3. The second half of the 

report focuses on the effect of pulse-like ground motions on both structural behavior and ground 

motion hazard. Due to the lack of proper hazard estimation and identification for sites located 

close to faults, the seismic risk evaluation of a structure may be over- or underestimated. The last 

chapter of this report validates the IM-based PSDA results with the simulation-based approach, 

which is considered to be an “exact” result and serves as a basis for comparison. Details of 

earthquake records used in this report are explained in the final Appendix. 

In Chapter 2, PSDA is utilized as a tool to investigate and demonstrate the efficiency, 

sufficiency, and scaling robustness of the advanced IMs subjected to ordinary ground motions. 

The advanced IMs considered are the inelastic spectral displacement (Sdi) and Sdi incorporating a 

higher-mode factor (denoted as IM1I&2E). The results are compared with the elastic-based IMs, 

i.e., Sa and <Sa, !>. The former was shown to be biased for tall, long-period structures (Shome 

1999). The latter was shown to improve the PSDA results for ordinary ground motions (Baker 

and Cornell 2005a). Sixteen generic frames are used to draw a general conclusion. The 

advantages of using the advanced IMs compared to the vector IM are demonstrated and 

discussed. 

One of the concerns in implementing the advanced IMs in the past has been the 

computability of the ground motion hazard curves in terms of the IMs. In Chapter 3, ground 

motion prediction models (i.e., attenuation relationships) for Sdi and IM1I&2E are developed in 

order to construct their ground motion hazard curves via a conventional PSHA. The attenuation 

relationship for Sdi is developed based on the inelastic displacement ratio (Sdi/Sde) concept. This 

is largely because (1) this ratio is a proxy for the spectral-shape information and (2) the ratio 

should depend less on ground motion properties (i.e., Mw, distance, soil type, etc.) as compared 
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to Sde or Sdi itself. The ground motion hazard developed in this chapter is applied with the PSDA 

demonstrated in Chapters 2 and 5. 

In Chapter 4, a new dimension to PSHA is introduced to estimate the seismic hazard at 

sites located close to the faults to directly incorporate the effect of near-source pulse-like ground 

motions. The new concept of assigning the probability of expecting a pulse-like record based on 

a site-source configuration is introduced and implemented in the proposed PSHA framework. 

The importance of the relative values for the modal periods of the structure and the pulse period 

are shown to be significant parameters that affect inelastic responses (see Chapter 5). It would be 

meaningful to be able to capture this information in the seismic hazard identification. To do this, 

first, the ground motion hazard analysis is separated into non-near-source and near-source cases 

based on the distance parameter. Then for the near-source case, the analysis is further divided 

into two pieces: hazards (1) with and (2) without pulse-like ground motions via attenuation 

relationships. An example for a characteristic event is presented to demonstrate the effect of sites 

located near/close to the faults. The seismic hazard disaggregation on the probability of 

expecting a pulse and pulse period (in addition to Mw, distance, and !) can be directly estimated. 

In Chapter 5, advanced IMs are applied to estimate the seismic performance of structures 

under pulse-like ground motions. This type of ground motion is known to cause severe damage 

in structures. In the situation where low-hazard (i.e., extreme) ground motions are of interest, 

pulse-like records may be selected. Their effects on the behavior of structures are briefly 

illustrated. The results are compared with the elastic-based IMs (Sa and <Sa, !>), which have 

been shown to be ineffective to capture pulse-like ground motion effects (Baker and Cornell 

2005b; Luco 2002). Using inelastic-based IMs can ensure the accuracy of seismic performance 

evaluation of a structure susceptible to near-source pulse-like ground motions. The results from 

pulse-like records are further compared with those of ordinary records to illustrate that the 

sufficiency property of the IM is preserved. 

In Chapter 6, the PSDA results using the IM-based approach are validated with the results 

of simulation. A stochastic-method simulation (SMSIM) (Boore 1983, 2003) is utilized to 

generate ground motions for a scenario earthquake. PSDA results using Sa, <Sa, !>, and Sdi are 

compared and discussed. The ground motion hazard is computed directly using the simulated 

ground motions for a scenario earthquake (i.e., Mw 6.9 and a distance parameter of about 18 km). 

A total of 55,000 records have been simulated and utilized to obtain the “exact” results, while a 

subset of only 40 records have been used for the IM-based PSDA. The IM-based results are 
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compared directly with the results of nonlinear dynamic analyses obtained from the simulated 

ground motions. The chapter ends with interesting findings on how the spectral (auto-) 

correlation function of lnSa at two periods influences the effectiveness of <Sa, !>, and how this 

correlation function can be used to determine the goodness of the simulated ground motions as 

compared to the real (as-recorded) ground motions. 

Chapter 7 summarizes the most important contributions and findings of this report. It also 

provides the overall conclusions and the limitations of this study. Future research directions are 

discussed at the end. 

 

 



 

2 Probabilistic Seismic Demand Analysis 
Using Advanced Ground Motion Intensity 
Measure 

2.1 SUMMARY 

One of the objectives in performance-based earthquake engineering is to quantify the seismic 

reliability of a structure at a site. For that purpose, PSDA is utilized as a tool to estimate the  

MAF of exceeding a specified value of a structural demand parameter (e.g., interstory drift ratio). 

This chapter compares and contrasts the use, in PSDA, of certain advanced scalar versus vector 

and conventional scalar ground motion intensity measures (IMs). One of the benefits of using a 

well-chosen IM is that more accurate evaluations of seismic performance are achieved without 

the need to perform detailed ground motion record selection for the nonlinear dynamic structural 

analyses involved in PSDA (e.g., record selection with respect to seismic parameters such as 

earthquake magnitude, source-to-site distance, and ground motion epsilon). For structural 

demands that are dominated by a first mode of vibration, using inelastic spectral displacement 

(Sdi) can be advantageous relative to the conventionally used elastic spectral acceleration (Sa) and 

the vector IM consisting of Sa and epsilon (!). We demonstrate that this is true for ordinary and 

for near-source pulse-like earthquake records. The latter ground motions cannot be adequately 

characterized by either Sa alone or the vector of Sa and !. For structural demands with significant 

higher-mode contributions (under either of the two types of ground motions), using Sdi alone is 

not sufficient, so we use an advanced scalar IM that additionally incorporates higher modes. 
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2.2 INTRODUCTION 

Performance-based seismic evaluation is a process that results in a realistic understanding of the 

quantified risk due to future earthquakes for a proposed design/upgrade of a new/existing 

structure. One of the objectives in performance-based seismic evaluation can be to estimate the 

MAF of exceeding a specified structural demand (or response) level of interest for a given 

structure and site. Probabilistic seismic demand analysis (e.g., Cornell 1996a; Cornell and 

Krawinkler 2000; FEMA-355 2000; Luco 2002; Shome 1999; Younan et al. 2001) is an 

approach for estimating this MAF quantity and for assessing the structural performance under 

future seismic hazards. As described in more detail later in this chapter, PSDA combines a site-

specific ground motion hazard curve with structural responses of interest from nonlinear 

dynamic analyses of the given structure. Analogous to a ground motion hazard curve computed 

by PSHA (Cornell 1968; Frankel et al. 2000), the final result of PSDA is a structural response 

hazard curve for multiple levels of seismic demands (i.e., from elastic to collapse behavior), 

which is useful for multi-objective structural performance evaluations, for example. The ground 

motion intensity measure (IM) used in PSDA is, from the engineering perspective, the 

quantification of the characteristics of a ground motion that are important to the nonlinear 

structural response, e.g., the amplitude and frequency content, or spectral shape (response 

spectral ordinates at multiple periods), of the ground motion. Therefore, an advanced IM that 

contains information about spectral shape, as well as information about the structure, can be 

expected to be preferable and to lead to more appropriate scale factors when scaling (in 

amplitude) ground motions to target values of the IM, as discussed further below. (Note that 

scaling earthquake records is often needed because, by definition, the rare earthquake events 

considered in structural design and evaluation are scarce, and therefore few of them have been 

recorded by seismometers.) From a seismology perspective, on the other hand, the IM is used to 

quantify the ground motion hazard at a site due to seismicity in the region; hence, the feasibility 

of computing this seismic hazard in terms of an advanced IM must also be considered. 

A commonly used IM is the pseudo-spectral acceleration at or near the first-mode period 

of the structure for a damping ratio of 5% (Sa(T1), or simply Sa here for the sake of brevity). Sa is 

widely used because hazard curves in terms of spectral acceleration are available from the U.S. 

Geological Survey (USGS; http://earthquake.usgs.gov/research/hazmaps/) and the Southern 

California Earthquake Center (SCEC); http://www.opensha.org/). However, due to the limited 
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spectral-shape information in Sa alone, structural responses to ground motion records scaled to 

target Sa levels have been identified to depend on how the records are selected, i.e., on their 

characteristics such as earthquake magnitude (Mw) and ground motion epsilon (!), etc. (e.g., 

Baker and Cornell 2005b; Luco and Bazzurro 2004; Luco and Cornell 2006). Note that epsilon, 

!, measures the number of the standard deviation of Sa for an as-recorded ground motion from 

the median (geometric mean) Sa calculated from an attenuation relationship, or ground motion 

prediction equation (e.g., Abrahamson and Silva 1997).  

A vector IM consisting of Sa and response spectral values at other-than-first-mode periods 

has been shown to improve structural response prediction and hence to reduce the dependence on 

other ground motion record characteristics (Baker and Cornell 2005b; Bazzurro and Cornell 

2002; Luco et al. 2005; Shome 1999; Vamvatsikos and Cornell 2004); however, for use in 

PSDA, this vector IM requires a vector-valued probabilistic seismic hazard analysis (Bazzurro 

and Cornell 2002) to obtain the joint hazard information, an analysis tool which has not yet been 

commonly applied. In contrast, the joint hazard between Sa and ! — i.e., the components of a 

vector IM denoted hereafter as <Sa, !> — can be obtained by using the conventional 

disaggregation results of PSHA (Baker and Cornell 2005a; Bazzurro and Cornell 2002; Luco and 

Cornell 2006). This vector IM, <Sa, !>, has been thoroughly investigated by Baker and Cornell 

(2005a). The effectiveness of using ! when selecting ground motion records and predicting 

inelastic responses of multi-degree-of-freedom (MDOF) structures has been shown to be 

significantly greater than that of Sa alone for ordinary ground motions, as discussed further 

below. 

Because of their simplicity relative to vector IMs, this chapter focuses on applying PSDA 

using advanced scalar IMs, specifically (1) inelastic spectral displacement (Sdi) and (2) Sdi with 

higher-mode modification (IM1I&2E) (Luco 2002; Luco and Cornell 2006). The latter is needed 

for structural responses with significant higher-mode contributions. An attenuation relationship 

for Sdi that is now available (Chapter 3; see also Tothong and Cornell 2006) is used in this 

chapter to construct the Sdi hazard curves needed for PSDA. The approximate attenuation 

relationship for IM1I&2E that is used can be found in Chapter 3. The PSDA results using these 

advanced IMs are compared with those using the conventional IM, Sa, and the vector IM, <Sa, !>. 
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2.3 REVIEW OF PROBABILISTIC SEISMIC DEMAND ANALYSIS 

As mentioned above, PSDA assesses the performance of a structure by probabilistically 

predicting the structural response under future (random) earthquake ground motions, and 

combining this information with seismic hazard analysis results. Borrowing from the 

terminology of the Pacific Earthquake Engineering Research Center, in PSDA the structural 

response is quantified via an engineering demand parameter (EDP). The EDP values for future 

(random) ground motions can be predicted via incremental dynamic analysis (IDA) 

(Vamvatsikos and Cornell 2002a), i.e., by nonlinear dynamic analysis of the structure under 

records that are incrementally scaled to different levels of the IM. The ground motion hazard at 

the site is typically calculated using PSHA (Cornell 1968; Frankel et al. 2000). This site-specific 

ground motion hazard curve for an IM ('IM) — whether it be Sa, Sdi, or IM1I&2E — can then be 

combined with the structural response information to obtain the MAF of exceeding a specified 

level of response, or EDP value ('EDP), calculated as 

 ( ) [ ] ( )|EDP IM
all ims

x P EDP x IM im d imλ λ= > = ⋅"  (2.1) 

where P[EDP > x| IM = im] is the probability of exceeding a specified EDP level x, given a level 

of IM = im. Throughout this chapter, uppercase denotes random variables, and lowercase 

indicates realizations or specific values of those random variables. The differential of the ground 

motion hazard curve, d'IM(im) = 'IM(im) – 'IM(im + dim), is approximately the MAF of IM = im, 

where dim is a small increment in the ground motion intensity. 'EDP(x) is a direct measure of the 

performance of a structure because it relates to the probability of experiencing the event EDP > x 

within the next, approximately, 50 years. Note that the IM provides a connection between site-

specific seismic hazard (from seismologists) and structural analyses (by engineers). Next, a 

methodology to predict structural responses using a scalar IM will be demonstrated. 

By using IDA (Vamvatsikos and Cornell 2002a), i.e., scaling the amplitudes of ground 

motions to a target ground motion intensity (e.g., IM = im), and performing nonlinear dynamic 

analyses of a structure to obtain the structural response of interest, the variation of responses due 

to earthquake excitations at each im level can be obtained. At a specified intensity level, a 

fraction of ground motions will cause collapse in a structure. For non-collapse data (denoted 

NC), the conditional responses on im have been shown to follow a lognormal distribution 

(Shome 1999). The sample (from the sample earthquake records) mean and standard deviation of 
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lnEDP (denoted ln |ˆ EDP imµ  and ln |ˆ EDP imσ , respectively) can be estimated from the responses of 

records scaled to an im level using a method of moments (Benjamin and Cornell 1970); note that 

ln(·) denotes the natural logarithm of (·) throughout). The probability of an EDP exceeding a 

given level x at a given intensity level, e.g., im, for non-collapse data is 

 [ ] ln |

ln |

ˆln
| , 1

ˆ
EDP im

EDP im

x
P EDP x IM im NC

µ
σ

# $−
> = = −Φ % &% &

' (
 (2.2) 

where ( )Φ ⋅  is the standard Gaussian cumulative distribution function. 

Next consider the collapse data (denoted C), indicated by non-convergence of dynamic 

analysis or a large increment in structural deformations with a small increment in intensity. If a 

relatively large number of records are used, the probability of collapse at each im level ( |C IMP ) 

can be empirically estimated as 

 |
no.of recordscausing collapseat

totalno.of recordsC IM im
IM imP =

≤=  (2.3) 

This estimated probability of collapse (which can be represented with a collapse fragility curve) 

can also be calculated from a parametric distribution by fitting a lognormal distribution to the 

intensity levels of ground motions that cause the collapse of a structure (IMCAP). 

 ln
|

ln

ˆln
ˆ

CAP

CAP

IM
C IM im

IM

im
P

µ
σ=

# $−
= Φ % &% &

' (
 (2.4) 

where 
ln

ˆ CAPIM
µ  and 

ln
ˆ CAPIM
σ  are the estimated mean and standard deviation of the collapse capacity 

in terms of IM (lnIMCAP). Using the total probability theorem (Benjamin and Cornell 1970) to 

combine non-collapse and collapse data, the probability of an EDP exceeding a specified 

intensity level is  

 [ ] ( )ln |
| |

ln |

ˆln
| 1 1

ˆ
EDP im

C im C im
EDP im

x
P EDP x IM im P P

µ
σ

# $# $−
> = = −Φ ⋅ − +% &% &% &% &' (' (

 (2.5) 

Equation 2.5 can then be substituted into Equation 2.1 to estimate the seismic performance of a 

structure (i.e., 'EDP). 

As alluded to in the introduction, recent research (e.g., Baker and Cornell 2005a; Luco 

and Cornell 2006; Luco et al. 2005) has shown that using Sa (or equivalently Sde
1, where Sde = 

                                                 
1  Throughout this chapter, Sde is used interchangeably with Sa, simply for direct comparison with Sdi. The results and 

conclusions are the same. 
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(T/2-)2×Sa) alone as the IM is not optimal in characterizing the ground motion intensity, as 

evidenced by the variability in structural responses for a given Sa. This is because Sa does not 

take into consideration the spectral ordinates at other periods (i.e., spectral shape), which have an 

impact on inelastic (due to period lengthening) as well as higher-mode responses of MDOF 

structures. Baker and Cornell (2005a) have found that ! (defined above) is a proxy for spectral 

shape and thereby an effective IM when coupled with Sa. Hence, Baker and Cornell proposed 

using the vector IM <Sa, !> to estimate 'EDP via the following modified version of Equation 2.1:  

 ( ) [ ] ( ),| , ,
a

a

EDP a a S a
all s all e

x P EDP x S s e d s eελ ε λ= > = = ⋅" "   (2.6) 

where ,aSd ελ  is the joint MAF of the Sa and ! values (within some small increment). Using the 

definition of conditional probability, ( ), ,
aS ad s eελ  can be expressed as ( )| a a ae S s S af de d sε λ= = ⋅ ⋅ , where 

| a ae S sfε = =  reflects the likelihood of observing different ! values at the sa level, and de is a small 

increment in epsilon value. Conveniently, | a ae S sfε = =  can be obtained from PSHA disaggregation 

results. To estimate the first factor in Equation 2.6, one needs to first scale records to a given Sa = 

sa level, then perform nonlinear dynamic analysis. The additional steps, which take into account 

the effect of ! on response prediction, are separated into two: for collapse and non-collapse data. 

To estimate the probability of collapse given a Sa level and !, a logistic regression (McCullagh 

and Nelder 1990) can be utilized. The estimated probability of collapse is 

 
( )| ,

0, 1,

1
ˆ ˆ1 expa aC S s e

C C

P
e

ε
β β

= = =
) *+ − + ⋅+ ,

 (2.7) 

where 0,
ˆ

Cβ  and 1,
ˆ

Cβ  are estimated regression coefficients using logistic regression on binary 

(collapse and non-collapse) responses of records scaled to Sa = sa intensity level. Collapse and 

non-collapse data (indicated by 1 and 0, respectively, in the figure) along with the estimated 

probability of collapse are shown, for example, in Figure 2.1a. 
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(a) (b) 

Fig. 2.1  Analysis of data of 40 records using Sa (or Sde) IM: (a) prediction of probability of 
collapse using logistic regression applied to binary (collapse and non-collapse) data 
as a function of epsilon; (b) prediction of responses for non-collapse data using 
linear regression. 

For non-collapse data, at a given Sa level, the distribution of responses can be modeled 

using linear regression analysis to estimate lnEDP. The estimated mean of lnEDP on ! ( ln |ˆ EDP εµ ) 

is shown to be well represented by 0, 1,
ˆ ˆ

NC NCβ β ε+ ⋅  (Baker and Cornell 2005a), where 0,
ˆ

NCβ  and 

1,
ˆ

NCβ  are the estimated regression coefficients from the regression analysis shown in Figure 2.1b.  

The p-values shown in the figures indicate the significance of the estimated parameter 

1,
ˆ

Cβ  and 1,
ˆ

NCβ . The p-value is defined here as the likelihood of observing the slope coefficient 

equal to or greater than (in absolute value) 1,
ˆ

Cβ  or 1,
ˆ

NCβ  if the underlying (true) value of 1,Cβ  or 

1,NCβ  is in fact zero (Benjamin and Cornell 1970). Hence, a small p-value (e.g., less than a 5% 

significant level) indicates that it is very unlikely to observe 1,
ˆ

Cβ  or 1,
ˆ

NCβ  to be different from 

zero (if the true value is zero); therefore, ! is statistically significant in predicting the responses. 

The estimated dispersion (standard deviation of the natural logarithm) of EDP given ! ( ln |ˆ EDP εσ ) 

can be calculated from the residuals between observed data and predicted values (i.e., 

). The residuals have been shown to follow a normal distribution. With the 

assumed lognormal distribution, the probability of EDP exceeding a specified value x, given Sa = 

sa, ! = e, and non-collapse can be expressed as 

 [ ] ( )0, 1,

ln |

ˆ ˆln
| , , 1

ˆ
NC NC

a a
EDP

x e
P EDP x S s e NC

ε

β β
ε

σ

# $− + ⋅
% &> = = = −Φ
% &
' (

 (2.8) 
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The collapse and non-collapse data can then be combined via the total probability theorem 

(Benjamin and Cornell 1970), shown as follows: 

 [ ] ( ) ( )0, 1,

| , | ,
ln |

ˆ ˆln
| , 1 1

ˆ a a

NC NC

a a C s e C s e
EDP

x e
P EDP x S s e P P

ε

β β
ε

σ

# $# $− + ⋅% &% &> = = = −Φ ⋅ − +% &% &% &' (' (

 (2.9) 

where ( )( )| , 0, 1,
ˆ ˆ1 1 exp

a aC S s e C CP eε β β= =
) *= + − + ⋅+ , . Note that the estimated regression coefficients 

( 0,
ˆ

NCβ , 1,
ˆ

NCβ , 0,
ˆ

Cβ , 1,
ˆ

Cβ , and ln |ˆ EDP εσ ) are calculated from responses of records scaled to Sa = sa. 

Equation 2.9 can then be substituted into Equation 2.6 to calculate the MAF of exceeding a 

specified value of EDP. A more detailed explanation of how to estimate 'EDP using <Sa, !> can 

be found in Baker and Cornell (2005a, b); also described there is how the double integration for 

this vector IM (Eq. 2.6) can be avoided by properly selecting ground motions with ! values that 

match its conditional probability distribution (from PSHA disaggregation) at specified Sa levels. 

The selection must be redone for each Sa level. This disaggregation-based method has also been 

used to reduce the number of analyses when performing simulation-based PSDA, where 

thousands of earthquake records are generated to represent seismicity at a site and used to 

analyze the structural response probabilistically (Collins et al. 1996; Wen 2000). 

2.4 STRUCTURES, GROUND MOTION RECORDS, AND INELASTIC SPECTRAL 
DISPLACEMENT PARAMETERS CONSIDERED 

2.4.1 Structures and Ground Motion Records 

Sixteen generic moment-resisting frames with a variety of structural properties are considered in 

this study. The structures were modeled and analyzed by Ibarra and Krawinkler (2005). They 

vary in number of stories, first-mode period, and hysteretic model parameters. The peak-oriented 

hysteretic model considered (used at the beam ends and at the bases of columns) incorporates 

stiffness and strength deterioration (Ibarra et al. 2005; see Fig. 2.2). 
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Fig. 2.2  Backbone curve for hysteretic models (adapted from Ibarra et al. 2005). 

The model utilizes energy-based deterioration through a cyclic deterioration parameter 

("s,c,k,a), as well as the following backbone curve parameters: the strain-hardening stiffness ratio 

(set equal to 3%), which is relative to the elastic stiffness (Ke); the capping ductility ($c/$y) (set 

equal to four), which is defined as the displacement at the peak strength ($c) divided by the yield 

displacement ($y); and the post-capping stiffness ratio (%c), relative to Ke. A detailed description 

of this hysteretic model can be found in Ibarra et al. (2005).  

The 16 structures considered are summarized in Table 2.1. To distinguish between these 

structures, a four-number code is adopted. The first two numbers indicate the number of stories, 

and the last two numbers indicate the first-mode period of vibration. Each structure has a single 

bay with story stiffnesses and strengths chosen to be representative of typical structures. 

Accounting for P-% effects, Ibarra and Krawinkler (2005) subjected each structural model to 40 

historical earthquake ground motion records (or “records,” for short) with magnitudes from 6.5 

to 6.9 and distances from 13 to 40 km. This set of records was compiled by Medina and 

Krawinkler (2003). The resulting structural demand parameter considered in this chapter is the 

peak maximum interstory drift ratio (#max; peak over response time and maximum over the 

height of the structure). 



 20 
 

Table 2.1  Generic frames considered and their hysteretic model properties: first-mode 
period of vibration (T1); capping ductility (!c/!y), defined as displacement at 
peak strength (!c) divided by yield displacement (!y); post-capping stiffness ratio 
("c); and cyclic deterioration parameter (#s,c,k,a). 

Structure 
Code

Number of 
Stories

T 1 δ c / δ y α c γ s,c,k,a

0303 3 0.3 4 -0.05 50
0303 3 0.3 4 -0.10 &
0306 3 0.6 4 -0.05 50
0306 3 0.6 4 -0.10 &
0606 6 0.6 4 -0.05 50
0606 6 0.6 4 -0.10 &
0612 6 1.2 4 -0.05 50
0612 6 1.2 4 -0.10 &
0909 9 0.9 4 -0.05 50
0909 9 0.9 4 -0.10 &
0918 9 1.8 4 -0.05 50
0918 9 1.8 4 -0.10 &
1515 15 1.5 4 -0.05 50
1515 15 1.5 4 -0.10 &
1530 15 3.0 4 -0.05 50
1530 15 3.0 4 -0.10 &  

 
The primary structure considered in this chapter has nine stories and a first-mode period 

of vibration equal to 0.9 sec, with "s,c,k,a= 50; it is referred to as structure 0909. The base shear 

strength coefficient for this structure is 15% of its total weight. To illustrate higher-mode effects, 

the 1515 structure with "s,c,k,a=∞  (and base shear strength equal to 20% of its weight) is also 

used. These generic frames are especially sensitive to higher-mode excitations due to the way in 

which they have been designed, i.e., to have a straight-line first-mode shape. 

2.5 INELASTIC SPECTRAL DISPLACEMENT PARAMETERS 

For computing the inelastic spectral displacement, Sdi, the single-degree-of-freedom (SDOF) 

hysteretic model used in this study is bilinear with a 5% post-yield hardening stiffness ratio and a 

5% damping ratio. This bilinear hysteresis model is used because it has been previously utilized 

to develop an attenuation relationship for Sdi (Chapter 3 and also Tothong and Cornell 2006); as 

a result, site-specific ground motion hazard curves for the Sdi of this hysteresis model can be 

calculated, which is necessary for PSDA. The period (T) and yield displacement (dy) of the 

bilinear SDOF system used to compute Sdi can be estimated from the results of a nonlinear static 
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pushover analysis of the MDOF structure under evaluation (Fajfar 2000; Goel and Chopra 2004); 

however, for structures with degrading strength (either from post-capping stiffness or cyclic 

deterioration), these estimates of the parameters will result in a well-suited Sdi only when the 

structure behaves linearly or mildly inelastically (i.e., when strength degradation does not 

contribute significantly). In order to maintain the effectiveness of Sdi near linear elastic behavior, 

we set the period parameter equal to the first-mode period of vibration, T1. In order to relate 

better to structural responses up to global dynamic instability, the yield displacement is 

established by minimizing the dispersion of the IM values at which the structure exhausts its 

capacity to resist global dynamic instability (
ln CAPIM

σ ), determined via incremental dynamic 

analysis of the structure for the set of 40 records considered. Interestingly, for each of the 16 

MDOF structures considered in this study, the dy that minimizes 
ln CAPIM

σ  ( *
yd , where *  indicates 

the optimal value) is about half the dy estimated via static pushover analysis. Given that the 

strength at or right before collapse is less than the initial yield strength of each of these strength-

degrading MDOF structures, it is intuitive to choose an SDOF system with a reduced dy (i.e., *
yd ) 

to capture the MDOF response at or near collapse. The corresponding inelastic spectral 

displacement *
1( , )di yS T d , or Sdi for short, is used throughout this chapter.  

For the 0909 structure, the bilinear backbone curve used for Sdi is shown in Figure 2.3a. 

Also shown is the static pushover curve of the 0909 structure, along with the bilinear backbone 

curve that would be used if the conventional method of establishing T and dy based on the 

pushover analysis were applied. Figure 2.3b is a contour plot of 
ln CAPIM

σ  for the 0909 structure 

(and the set of 40 records considered) as a function of T and dy for a range of bilinear SDOF 

systems that could be used for Sdi. The values of 
ln CAPIM

σ  for Sde(T1) and for Sdi with parameters 

based on pushover analysis (i.e., T = T1 and dy = 1.6 in. from Fig. 2.3a) are 0.39 and 0.31, 

respectively, meaning that not much dispersion reduction is gained when using the pushover-

based parameters. In fact, 
ln CAPIM

σ  for the optimal elastic SDOF system, or *( )deS T , is 0.30 (at T* 

= 1.8 sec, twice the first-mode period, a factor consistent with other studies, e.g., Haselton and 

Baker 2006).  
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(a) (b) 

Fig. 2.3  For the “0909 structure” (#s,c,k,a= 50), (a) nonlinear static pushover curve (solid 
line) and two options for bilinear backbone curve used for Sdi, and (b) contours of 
dispersion of IMCAP for different T and dy combinations. 

The bilinear SDOF system used in this chapter (i.e., *
1( , 0.75 in.)di yS T d = , as shown in Fig. 

2.3a) results in 
ln CAPIM

σ = 0.22, an approximately 50% reduction in capacity dispersion compared 

to using Sde(T1). The minimum 
ln CAPIM

σ  is only 0.21 at T* = 1.5 sec and dy
* = 2 inches. While 

these parameters obtained by simultaneously optimizing T and dy result in the smallest 
ln CAPIM

σ , 

the inelastic spectral displacement * *( , )di yS T d  will poorly explain the variation of MDOF 

responses near the elastic regime (i.e., at low ground motion intensities) because T* is different 

than T1. By maintaining T1 and only optimizing dy, *
1( , )di yS T d  captures both the elastic and 

collapse-level responses of structures. Note that all of the optimized SDOF systems described 

above seem to work in such a way that they aim to intersect a reduced strength on the static 

pushover curve, possibly the point at which the structure has (on average) lost its lateral capacity 

and incipient collapse is reached. 

It should be noted that with respect to the bilinear SDOF model used here for Sdi, the 

strength-limited bilinear model developed by Ibarra et al. (2005) would further reduce 
ln CAPIM

σ , 

based on the fact that its application by Han and Chopra (2006) dramatically improved the modal 

pushover analysis procedure (Chopra and Goel 2002). In order to use the strength-limited 

bilinear model for an IM, however, one would need to determine how the inelastic spectral 

displacement of the strength-limited bilinear model depends on attenuation relationship 

parameters such as Mw and Rrup. Furthermore, if the seismic hazard in terms of the strength-

limited bilinear model were to be made as readily available as the current spectral acceleration 



 23 
 

hazard curves, the USGS would need to compute the hazard for a much larger number of model 

parameters, i.e., many combinations of ductility, post-capping stiffness, strength-deterioration 

rate, etc., in addition to the current periods. The simple bilinear model appears to be a good 

compromise, especially if the dy is chosen to be at or near the optimal value. 

2.6 REVIEW OF EPSILON AND HOW IT AFFECTS STRUCTURAL RESPONSES 

Epsilon, !, measures the deviation of Sa for an as-recorded ground motion from the median 

(geometric mean) Sa calculated from an attenuation relationship (e.g., Abrahamson and Silva 

1997). More specifically, ! is the difference between the natural logarithms of the two Sa values, 

normalized by the standard deviation of ln(Sa) from the attenuation relationship. Note that in this 

chapter the standard deviation of ln(Sa) is for a randomly oriented horizontal component of 

ground motion, which is larger than the dispersion reported by Abrahamson and Silva (1997) for 

the geometric mean of the two horizontal components of a ground motion. In addition to 

calculating ! values, this inflated dispersion is used in generating the ground motion hazard 

curves. The latter is done to ensure consistency when combining, via PSDA, the hazard curves 

with structural responses. The responses are calculated based on individual randomly oriented 

record properties, not the geometric mean across two horizontal components (Baker and Cornell 

2006c). 

Baker and Cornell (2005a) have shown that records with the same Sa level (at the same 

period, T1) but different ! values can excite an MDOF structure differently, causing different 

inelastic responses. This is because ! is a proxy for average spectral shape (where the average is 

over a number of records with the same ! value) despite that, strictly speaking, it contains only 

local spectral-shape information at T1 (where local refers to not only the proximity to T1, but also 

that ! is calculated for a particular record). Among records with a given ! value, there are 

variations in their individual spectral shapes, but the average spectral shape for positive versus 

negative ! values is systematically different. Around T1, positive ! records tend to have a “peak” 

spectral shape (e.g., Fig. 2.4a) whereas negative ! records tend to have a “valley” spectral shape 

(e.g., Fig. 2.4b). When these two different types of records have (or are scaled to) the same Sa 

level, those with the valley spectral shape will, on average, have higher spectral ordinates at 

periods other than T1 (e.g., Fig. 2.4c). The higher spectral values at shorter periods will more 

strongly excite higher-mode responses of MDOF structures. Likewise, the higher spectral values 
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at longer periods will cause stronger inelastic responses of MDOF structures (because when 

structures behave nonlinearly, the lateral stiffness will soften, thus resulting effectively in period 

elongation). In other words, the structural responses resulting from records that have a common 

(i.e., the same) Sa value will depend on the ! values of the selected records, i.e., the numbers of 

peak records versus valley records. Baker and Cornell (2005a) capture this dependence by 

including ! in the vector IM < Sa, ! >. As will be discussed in the next section, using Sdi as the IM 

eliminates the need to add this additional element to the vector. 
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(a)

  
(b)

  
(c) (d)

  
(e) (f)

Fig. 2.4  Response spectra of (a) two “peak” records and (b) two “valley” records, and their 
response spectra when scaled to common value of (c) Sa (or Sde), (d) Sdi (or *

1( , )di yS T d , 
(e) * *( , )di yS T d , or (f) *( )deS T . Vertical dotted lines indicate first- and second-mode 
periods of 0909 structure, 0.9 and 0.36 sec, respectively. 
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2.7 HOW INELASTIC SPECTRAL DISPLACEMENT REDUCES EFFECT OF 
EPSILON 

In contrast to Sa, Sdi implicitly captures the spectral shape at periods longer than T1 because the 

spectral values at those periods directly affect Sdi (due to period elongation). As a result, the 

response spectra of records that have (or are scaled to) a common value of Sdi can be expected to 

produce less record-to-record variability in the response spectra at T > T1. Figure 2.4d illustrates 

this greater similarity in the response spectra of the aforementioned peak (Fig. 2.4a) and valley 

(Fig. 2.4b) records after they are scaled to a common value of Sdi. (Note: For all of the figures in 

this chapter that show results for records scaled to a common value of an IM, the value is that 

associated with a (counted-median) #max value of about 1.3%, as obtained from the incremental 

dynamic analysis results for the structure.) By using Sdi as the IM, higher-scale factors are 

assigned to the peak (positive epsilon) records and vice versa for the valley (negative epsilon) 

records, both relative to the scale factors that are assigned when Sa is used as the IM. With a 

common value of Sdi and thereby smaller record-to-record variability among response spectra at 

T > T1, the (scaled) records can be expected to result in comparable inelastic responses of MDOF 

structures that are independent of the ! values of the records. Such independence with respect to 

! (or “sufficiency” of Sdi) is demonstrated quantitatively in the next section for the first-mode-

dominated 0909 structure. Because Sdi does not capture the ground motion frequency content at 

higher-mode periods, however, a modification factor that accounts for the second mode of 

vibration (and results in IM1I&2E, as discussed later) is needed in order to achieve more accurate 

PSDA results for higher-mode-sensitive structures. 

To further illustrate the effectiveness of Sdi, Figure 2.5a displays ( )ln aS Tσ , the conditional 

(on a given value of each IM) dispersion, of the response spectra scaled like those shown in 

Figure 2.4c–f, but now for all 40 of the records. (The heavy solid lines show the dispersion for 

only the 7 largest ! records scaled to a common Sa. These results represent the use of the <Sa, !> 

with special record selection to reflect the ! component.) First note that in Figure 2.5a and 

elsewhere in this chapter, Sde is used interchangeably with Sa, simply for direct comparison with 

Sdi. Since they are proportional to each other, the results and conclusions for the two IMs (i.e., Sde 

and Sa) are the same. As revealed by the figure, using Sdi can reduce the variation in the response 

spectra at T > T1, as can <Sa, !> but not (to the same extent) Sa. This reduction in ( )ln aS Tσ  is 

indicative of the relative efficiency (Luco 2002; Luco and Cornell 2006) of Sdi and <Sa, !> for 
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first-mode-dominated structures, as discussed in the next section. The relatively large ( )ln aS Tσ  at 

shorter (than first-mode) periods when Sdi is the IM, on the other hand, is indicative of its relative 

inefficiency for higher-mode-sensitive structures. As mentioned above, this weakness can be 

alleviated by using IM1I&2E. Also note from Figure 2.5a that the two largest dispersions at T1 

result from using * *( , )di yS T d  and *( )deS T , which capture inelastic structural responses well, but 

not the responses of near-elastic behavior (as mentioned earlier in the chapter). As seen in Figure 

2.4e and f, the records have been scaled to a nearly exact common spectral ordinate for 
* *( , )di yS T d  and *( )deS T  respectively, creating large amplitudes deviation at T1.  

(a) (b) 

Fig. 2.5  Dispersions of response spectra of 40 records (7 largest $ records for <Sa, !> 
results) scaled to a common value of each IM. Vertical dotted lines show first- and 
second-mode periods for (a) 0909 structure, namely 0.9 and 0.36 sec, respectively, 
and (b) 1515 structure, namely 1.5 and 0.61 sec. 

As can be seen in Figure 2.5a, ( )ln aS Tσ  of these two systems shows the two largest values 

at T1. The large ( )ln aS Tσ  at shorter periods will make the IM inefficient and insufficient for 

structures sensitive to higher-mode frequencies. The IM1I&2E needs to be used in such a case, 

discussed further in the next section. On the other hand, the proposed system, *
1( , )di yS T d  performs 

relatively well at T > T1 (for large responses) as well as near the elastic response regions (for 

smaller seismic demands). 
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2.8 DESIRABLE GROUND MOTION IM  PROPERTIES 

For ensuring accuracy in assessing structural performance via PSDA (Eq. 2.1), desirable IM 

properties include efficiency, sufficiency, (Luco 2002; Luco and Cornell 2006), and scaling 

robustness, each which are discussed in this section. An IM that exhibits these properties will 

tend to be structure specific, recognizing both the important modes of vibration and effects of 

nonlinear behavior as well as the relative frequency content of the earthquake records. At the 

limit, the IM itself would be the structural response of interest. In this extreme case, however, 

computing the ground motion hazard curve (which would also be the structural response hazard 

curve) would require hundreds, if not thousands, of nonlinear dynamic analyses under ground 

motions that are (1) simulated to represent the seismicity at the site (Collins et al. 1996; Wen 

2000) or (2) used to develop an attenuation relationship for the structural response. Hence, a 

desirable IM is also one for which it is feasible to compute the seismic hazard. In this section, the 

above three properties of the conventional IM, Sa, the vector IM, <Sa, !>, and the advanced IM, 

Sdi, are compared for the first-mode-dominated 0909 structure. The desirable properties of 

IM1I&2E for higher-mode-sensitive structures will be discussed later in the chapter. 

2.8.1 Efficiency 

An efficient IM is defined as one that results in relatively small variability of structural responses 

for a given IM level ( ln |EDP IMσ ), as well as relatively small 
ln CAPIM

σ . A small ln |EDP IMσ  (or 

analogously, 
ln CAPIM

σ ) is desirable because the standard error of the sample mean of lnEDP for a 

specified IM level ( ln |EDP IM nσ , where n is the number of records that have been sampled; 

Benjamin and Cornell 1970) is proportional to ln |EDP IMσ , and the sample mean of lnEDP|IM is 

typically the first-order information used in quantifying the first integrand in the PSDA integral 

(Eq. 2.1).  
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(a) (b) 

Fig. 2.6  Incremental dynamic analysis results using (a) Sde (or equivalently Sa) or (b) Sdi  as 
IM for 40 records and 0909 structure. Dashed vertical line represents drift level at 
yielding, determined from static pushover analysis. Circles indicate where global 
dynamic instability of structure is reached. Counted-median and 16% and 84% 
fractiles shown with solid and dashed-dotted lines, respectively. 

Since the standard error is inversely proportional to n , a reduction in ln |EDP IMσ  also reduces the 

number of records needed to achieve an accurate estimate of the mean lnEDP|IM and thereby 

reliable PSDA results. For first-mode-dominated structures like 0909, the use of Sdi as the IM can 

substantially reduce ln |EDP IMσ  and 
ln CAPIM

σ . Figure 2.6 indicates that 
ln CAPIM

σ  is reduced by about 

50% when using Sdi in lieu of Sa, implying that the number of records needed to achieve the same 

accuracy in estimating the mean lnEDP|IM can be reduced by a factor of four. The 

corresponding reductions in ln |EDP IMσ  can also be observed in Figure 2.6, by comparing the 

distances between the 16th and 84th percentiles of #max (the peak maximum interstory drift ratio, 

recall) for a given Sdi versus Sa level, both obtained via incremental dynamic analysis 

(Vamvatsikos and Cornell 2002a). As one might expect, including ! in the vector IM <Sa, !> also 

increases the efficiency (i.e., reduces ln |EDP IMσ ) relative to Sa alone (Baker and Cornell 2005a). 

2.8.2 Sufficiency 

A sufficient IM is one for which the conditional probability distribution of EDP given IM (i.e., 

the first integrand in Eq. 2.1, denoted here as GEDP|IM) is independent of the other parameters 

involved in computing the seismic hazard, mainly !, Mw, and Rrup. A sufficient IM is desirable 

because it implies that any set of ground motions selected for nonlinear dynamic analysis of the 
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structure will result in approximately the same GEDP|IM (i.e., GEDP|IM | , , ,w rupEDP IM M RG ε≅ ). If an IM is 

not sufficient, the estimate of GEDP|IM will depend to some degree on which earthquake records 

are selected, thus ultimately altering the estimated seismic performance of the structure (i.e., 

maxθλ ).  

Previous research has demonstrated that Sa can be insufficient (in addition to inefficient) 

with respect to Mw and/or Rrup for tall, long-period structures (Shome 1999) and for near-source 

ground motions (Luco 2002; Luco and Cornell 2006). Baker and Cornell (2005a) have found that 

Sa can be particularly insufficient with respect to the ground motion parameter !, as demonstrated 

here in Figure 2.7a, a plot of ln#max versus ! for the 0909 structure subjected to records scaled to 

a given Sa level. Note that the slope of the linear trend between ln#max and ! is statistically 

significant, as indicated by the small (0.9%) p-value for the estimated slope coefficient ( 1,
ˆ

NCβ ). 

The p-value is defined as the likelihood of observing a slope coefficient equal to or greater than 

(in absolute value) 1,
ˆ

NCβ  if the underlying (true) value of 1,NCβ  is in fact zero (Benjamin and 

Cornell 1970). 

(a) (b) 

Fig. 2.7  Dependence of maximum interstory drift ratio ("max; for non-collapse cases) on 
ground motion $ for common value of (a) Sa or (b) Sdi. Solid lines show the 
regression fits. Example is for 0909 structure. 

Hence, a small p-value (e.g., less than a 5% significance level) indicates that it is very 

unlikely that the true value of 1,NCβ  is zero. Here this means that ! has a statistically significant 

effect on the structural responses. By replacing Sa with Sdi (i.e., scaling to a comparable Sdi level 

instead), the linear trend between maxlnθ and ! is rendered statistically insignificant in Figure 
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2.7b. Although not shown here, Sdi has also been demonstrated to be sufficient with respect to 

Mw and Rrup, as has <Sa, !> (Baker and Cornell 2005b). 

(a) (b) 

Fig. 2.8  Counted-median incremental dynamic analysis curves for 0909 structure using 
records grouped by epsilon and (a) Sde (or equivalently Sa) or (b) Sdi as IM. 

To further demonstrate the sufficiency of Sdi with respect to ! for other (higher and lower) 

levels of the IM, the ground motion records are partitioned into three epsilon bins: (1) |!| < 0.5, 

(2) ! < -1.0, and (3) ! > 0.7; representing the median, the valley-like, and the peak-like spectral 

shapes, respectively. (The bin widths are chosen to provide separation in the ! values and to 

maintain an adequate number of records in each bin.) The results of incremental dynamic 

analysis of the 0909 structure for these three epsilon bins are shown in Figure 2.8a for Sa and 

Figure 2.8b for Sdi. Once again, the dependence of the structural responses (#max medians) on ! is 

substantially reduced by using Sdi, rather than Sa, as the IM. Thus, Sdi avoids the need to include ! 

in a vector IM, unlike Sa. 

2.8.3 Scaling Robustness 

Another desirable IM property is that scaling records to a value of the IM results in unbiased 

structural responses compared to the analogous responses obtained from as-recorded (unscaled) 

ground motions. That is, the responses for records scaled to different amounts but to the same 

resulting IM level should not show a trend in responses versus scale factors. Such scaling 

robustness is important because scaled records are often (including in this chapter) used in PSDA 

to establish the first integrand in Equation 2.1 via incremental dynamic analysis. An example of 

an IM that does not exhibit scaling robustness is Sa (Luco and Bazzurro 2004).  



 32 
 

(a) (b) 

Fig. 2.9  Maximum interstory drift ratio (%max) versus scale factor for records scaled to 
common value of (a) Sa or (b) Sdi. Solid lines show the regression fits, and dashed 
lines pinpoint median %max predicted for unscaled records. Example is for 0909 
structure. 

For the first-mode-dominated 0909 structure, Figure 2.9 demonstrates that scaling records 

to a value of Sa tends to result in biased structural responses that increase with increasing scale 

factors. In contrast, when using Sdi as the IM (Fig. 2.9b), no statistically significant trend exists 

between ln#max and ln(Scale factor), indicating that Sdi is robust with respect to scaling. This 

observation can be explained by the fact that records with large-scale factors tend to be smaller 

epsilon cases, and the effect of epsilon on responses has been shown above (Fig. 2.7). Baker and 

Cornell (2006b) have demonstrated that by considering epsilon-binned sets of records like those 

described in the preceding subsection, <Sa, !> also exhibits scaling robustness (at least for 

ordinary records). 

2.8.4 PSDA Results Using Inelastic Spectral Displacement as IM 

As previously mentioned, the desirable IM properties of efficiency, sufficiency, and scaling 

robustness help to ensure the accuracy of a PSDA structural performance assessment. To 

demonstrate this, PSDA results using the conventional IM, Sa, the vector IM, <Sa, !>, and the 

advanced IM, Sdi, are compared in this section for the first-mode-dominated 0909 structure 

hypothetically located at a site in Van Nuys, California. First the collapse fragility curves needed 

(as the first factor in the PSDA integral, Eq. 2.1) to compute the MAF of structural collapse are 

compared, followed by the structural response (drift) hazard curves that demonstrate the end 

result of PSDA. Note that the latter results involve PSHA (in order to compute the second factor 
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in the PSDA integral). The PSHA for the site was conducted using software provided by Dr. 

Norman Abrahamson and modified to compute ground motion hazard curves in terms of Sdi 

(using a Sdi attenuation model explained in Chapter 3) and <Sa, !>, in addition to Sa. Since the 

attenuation relationship used for Sdi (and for IM1I&2E, which will be discussed in a subsequent 

section) is an extension of the existing attenuation relationship for Sa (specifically Abrahamson 

and Silva 1997), the computed Sdi hazard curve is consistent with those for Sa and <Sa, !>. 

2.8.5 Collapse Fragility 

In order to compute the MAF of collapse of a given structure at a specified site, PSDA (Eq. 2.1) 

couples the IM seismic hazard curve for the site with the collapse fragility for the structure. The 

collapse limit state fragility function (or curve) is defined as the conditional probability of 

structural collapse for a given IM level, denoted here as PC|IM. Based on incremental dynamic 

analysis results for the structure subjected to a selected set of ground motion records, PC|IM can 

be estimated via a logistic regression (McCullagh and Nelder 1990; Shome 1999) of a 

collapse/no collapse binary indicator variable on IM (Eq. 2.7). Using the vector IM, <Sa, !>, 

Figure 2.10a shows the collapse fragility surface (as a function of the two dimensions Sa and !) 

for the 0909 structure. As revealed by the graph, the collapse fragility curves that are a function 

of Sa only (i.e., | aC SP ) can be strongly dependent on !. This observation demonstrates that Sa is not 

a sufficient IM for collapse estimation. 

 
(a) (b) 

Fig. 2.10  Collapse fragility for 0909 structure as function of (a) Sde (or equivalently Sa) and 
$ or (b) Sdi and $. 
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In contrast, Figure 2.10b demonstrates that collapse fragility curves that are a function of 

Sdi (i.e., | diC SP ) rather than Sa are not significantly dependent (statistically) on ! — i.e., that Sdi is 

sufficient with respect to !. Hence, using Sdi as the IM in PSDA would result in practically the 

same estimate of the MAF of collapse regardless of the ! values of the selected earthquake 

records. The same can be said for <Sa, !>, although in that case the MAF of collapse is computed 

by coupling the fragility surface with a vector seismic hazard (Eq. 2.6). 

2.8.6 Structural Response (Drift) Hazard Curve 

To evaluate multi-objective structural performance (i.e., more than collapse prevention alone), 

the MAF of exceeding structural drift levels (denoted here as 
maxθλ , the so-called drift hazard 

curve) can be calculated via PSDA, i.e., Equations 2.1 and 2.6 using Sdi or Sa and <Sa, !>, 

respectively. Recall that this involves (1) computing a ground motion hazard curve in terms of 

Sdi, Sa, or <Sa, !> via PSHA and (2) performing incremental dynamic analysis of the structure 

using the respective IM. Drift hazard curves, 
maxθλ , computed using Sdi (dashed line), the 

conventional Sa (thin solid line), and the vector <Sa, !> (thick solid line) are shown in Figure 

2.11.  

(a) (b) 

Fig. 2.11  Structural response hazard curves for (a) first-mode-dominated 0909 and (b) 
higher-mode-sensitive 1515 structure computed using various IMs. 
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Table 2.2  PSDA results, namely (1) MAF of exceeding a %max value that corresponds to a 
ductility of about four and (2) MAF of collapse, computed using different IMs. 
Percentage reductions with respect to results using Sa as IM. MAF values in 
table are normalized by 10-4. Blank line separates first-mode-dominated 
structures from those more sensitive to higher modes. 

Structure        MAF (% Reduction) at ductility of four   MAF (% Reduction) at collapse
Analyzed      S a  & ε         S di      IM 1I&2E      S a  & ε         S di      IM 1I&2E

0303 γ s,c,k,a  = 50 6.7 (-66) 8.1 (-59) 7.7 (-61) 2.3 (-84) 4.0 (-73) 3.7 (-74)
0303 γ s,c,k,a  = Inf 10.5 (-58) 9.4 (-62) 9.1 (-64) 3.4 (-81) 4.0 (-78) 3.8 (-79)
0306 γ s,c,k,a  = 50 6.6 (-59) 10.2 (-37) 8.2 (-50) 1.3 (-86) 4.8 (-49) 3.6 (-62)
0306 γ s,c,k,a  = Inf 5.3 (-62) 9.1 (-34) 6.4 (-54) 2.5 (-72) 3.8 (-58) 2.6 (-70)
0606 γ s,c,k,a  = 50 5.0 (-57) 9.7 (-16) 6.0 (-49) 0.3 (-91) 0.9 (-72) 0.4 (-87)
0606 γ s,c,k,a  = Inf 4.7 (-50) 6.4 (-32) 4.2 (-55) 0.3 (-88) 0.5 (-77) 0.2 (-89)
0612 γ s,c,k,a  = 50 41.5 (-41) 61.0 (-13) 42.6 (-39) 4.1 (-74) 7.0 (-55) 4.3 (-73)
0612 γ s,c,k,a  = Inf 35.2 (-43) 47.8 (-22) 32.0 (-48) 4.4 (-71) 5.1 (-67) 3.0 (-80)
0909 γ s,c,k,a  = 50 192 (-21) 182 (-25) 163 (-33) 16.4 (-65) 17.0 (-63) 12.5 (-73)
0909 γ s,c,k,a  = Inf 153 (-24) 141 (-29) 120 (-40) 19.2 (-58) 15.3 (-66) 12.1 (-73)

0918 γ s,c,k,a  = 50 27.0 (-47) 56.4 (11) 20.3 (-60) 2.9 (-54) 4.1 (-35) 2.2 (-65)
0918 γ s,c,k,a  = Inf 24.0 (-44) 47.6 (10) 16.4 (-62) 4.8 (-24) 4.1 (-35) 3.1 (-51)
1515 γ s,c,k,a  = 50 181 (-34) 292 (06) 142 (-48) 2.2 (-81) 4.8 (-58) 3.2 (-72)
1515 γ s,c,k,a  = Inf 165 (-35) 269 (06) 123 (-52) 3.1 (-73) 5.1 (-56) 3.4 (-71)
1530 γ s,c,k,a  = 50 24.5 (-74) 94.6 (-2) 46.8 (-50) 0.7 (-88) 5.7 (-8) 4.9 (-22)
1530 γ s,c,k,a  = Inf 21.1 (-75) 89.0 (-7) 41.1 (-51) 1.8 (-70) 6.1 (0) 5.7 (-8)

 

For the first-mode-dominated 0909 structure (Fig. 2.11a), this 
maxθλ  comparison confirms 

that using Sdi as the IM results in a drift hazard curve that is comparable to that obtained by using 

the vector IM, <Sa, !>, which are both different than the Sa-based result at larger structural 

response levels. To further support this conclusion, PSDA results for the other 15 structures 

considered in this study are computed, with the results shown in Table 2.2. For the first-mode-

dominated structures and a large nonlinearity level (collapse), the tabulated MAF values 

computed using <Sa, !> and Sdi are not statistically significantly different. The statistical 

significant test is performed via the bootstrap technique (explained below) to evaluate the 

difference in the logarithmic values of 
maxθλ  using either Sdi or IM1I&2E relative to those of <Sa, !>. 

Table 2.3 reports such p-values for all of the structures considered using advanced IMs relative to 

<Sa, !>.  

For the first-mode-dominated structures and a lower nonlinearity level (ductility of about 

four), the MAF values calculated using Sdi are only statistically different from those using <Sa, 

!> for one of the first-mode-dominated structures (i.e., the 0612 structure with "s,c,k,a=50). This is 

likely due to the fact that the higher-mode contributions to the response at the lower nonlinearity 
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level are relatively strong for this structure. As discussed further later in the chapter, Sdi modified 

by a higher-mode factor (i.e., IM1I&2E) can be employed to obtain comparable drift hazard curve 

results for higher-mode-sensitive structures (e.g., preview Table 2.3 and Fig. 2.11b for the 1515 

structure). 

To compare the standard error (S.E.) of each of the 
maxθλ  estimates obtained using the 

different IMs, the bootstrap method (Efron and Tibshirani 1993) can be applied. The bootstrap 

method is used here at the ground motion selection step, to generate “bootstrap samples” of the 

record set that is used for nonlinear dynamic analysis. The 40 records in each bootstrap sample 

are selected randomly with replacement (such that a record may be sampled more than once or 

not at all) from the original 40 ground motions. With each of these new record sets, 
maxθλ  is 

calculated as usual (via PSDA), generating a series of 
maxθλ  curves for the bootstrap samples. The 

median and the median plus/minus one standard deviation (i.e., the S.E.) of 
maxθλ  across the 

samples are shown in Figure 2.12. 

Table 2.3  P-values from t-test to test hypothesis that using advanced IMs results in 
(statistically) same structural response hazard curves as those of <Sa, $>. Blank 
line separates first-mode-dominated structures from those more sensitive to 
higher modes. Bold values indicate statistically significant results (at 5% 
significant level).  

Structure P-values at ductility of four       P-values at collapse
Analyzed       S di   IM 1I&2E       S di   IM 1I&2E

0303 γ s,c,k,a  = 50 0.53 0.56 0.95 0.96
0303 γ s,c,k,a  = Inf 0.65 0.67 0.89 0.92
0306 γ s,c,k,a  = 50 0.30 0.46 0.06 0.11
0306 γ s,c,k,a  = Inf 0.23 0.42 0.45 0.69
0606 γ s,c,k,a  = 50 0.13 0.48 0.06 0.55
0606 γ s,c,k,a  = Inf 0.44 0.92 0.55 0.78
0612 γ s,c,k,a  = 50 0.01 0.19 0.46 0.22
0612 γ s,c,k,a  = Inf 0.06 0.18 0.46 0.49
0909 γ s,c,k,a  = 50 0.85 0.57 0.36 0.96
0909 γ s,c,k,a  = Inf 0.94 0.10 0.94 0.42

0918 γ s,c,k,a  = 50 0.04 0.30 0.72 0.60
0918 γ s,c,k,a  = Inf 0.05 0.76 0.72 0.63
1515 γ s,c,k,a  = 50 0.02 0.25 0.94 0.87
1515 γ s,c,k,a  = Inf 0.01 0.03 0.28 0.97
1530 γ s,c,k,a  = 50 0.00 0.02 0.57 0.60
1530 γ s,c,k,a  = Inf 0.00 0.01 0.53 0.55
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Fig. 2.12  Bootstrap results estimating median (heavier lines) and its plus/minus one 
standard error bands (lighter lines) for drift hazard curves computed using 
various IMs. Example is for 0909 structure. 

The larger S.E. when using <Sa, !> is due to the larger number of parameters in the IM, 

which results in “over-fitting” of the structural response data, or a bias-variance tradeoff (Hastie 

et al. 2001). The relatively large S.E. when using <Sa, !> becomes even larger when, due to, e.g., 

many records causing collapse, a smaller number of records are used to determine the 

relationship between structural responses (here #max) and the IM. 

2.8.7 Drift Hazard Curves for Epsilon-Binned Records 

Using the records that (as introduced earlier in the chapter) are partitioned into three epsilon 

bins: (1) |!| < 0.5, (2) ! < -1.0, and (3) ! > 0.7; representing the median, valley-like, and peak-like 

spectral shapes, respectively — the corresponding drift hazard curves, 
maxθλ , obtained using Sa, 

<Sa, !>, and Sdi are shown in Figure 2.13a, b, and c, respectively (all for the first-mode-

dominated 0909 structure).  
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(a) (b) 

 
(c) 

Fig. 2.13  Structural response hazard curves for 0909 structure computed using 
records grouped by epsilon and (a) Sa, (b) <Sa, $>, or (c) Sdi as IM. 

When using Sa as the IM, the drift hazard curves for the three epsilon bins are 

significantly different, due primarily to the insufficiency of Sa. The differences observed when 

using the vector <Sa, !> (Fig. 2.13b), on the other hand, are primarily due to the relatively large 

statistical uncertainty that results from using an additional parameter in the IM in conjunction 

with the small number of records within each narrow range of epsilon values. Otherwise, using 

<Sa, !> or Sdi, results in approximately the same structural performance, 
maxθλ , for the three 

subsets of these ordinary ground motions (compare Fig. 2.13b and c). We conclude that the 

results obtained using Sdi are more stable (with respect to record selection) than those for the 

vector <Sa, !>, especially when a small number of records is used. 
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2.8.8 Drift Hazard Curves for Pulse-Like Records 

To demonstrate an additional advantage of Sdi relative to <Sa, !> (not to mention Sa), the seismic 

performance of the 0909 structure is evaluated using a set of 70 near-source pulse-like ground 

motions described in Chapters 4 and 5 (see also, Tothong et al. 2007). Past research (e.g., Alavi 

and Krawinkler 2001; Fu 2005; Mavroeidis et al. 2004; Tothong et al. 2007; and also Chapters 4 

and 5) has shown that pulse-like records with Tp/T1 ≅ 2 (where Tp is the pulse period of the near-

source record) tend to cause relatively severe damage in MDOF structures, whereas records with 

Tp/T1 ≅ 1 do not.  

(a) (b) 

Fig. 2.14  Structural response hazard curves for 0909 structure computed using three 
different sets of pulse-like records and (a) <Sa, $> or (b) Sdi as IM. 

Therefore, three sets of the pulse-like records are considered: (1) all 70 of the records, (2) 

only the records with 1.42<Tp/T1<3.33 (the "aggressive" set), and (3) the records with 

0.75<Tp/T1<1.50 (the "benign" set). The drift hazard curves, 
maxθλ , calculated using <Sa, !> and 

Sdi are shown in Figure 2.14a and Figure 2.14b, respectively. As seen in Figure 2.14a, using <Sa, 

!> as the IM yields significantly different 
maxθλ  results for the three pulse-like record sets; in 

contrast, 
maxθλ calculated using Sdi is comparable for the three different pulse-like record sets (Fig. 

2.14b), and the results roughly match those using ordinary ground motions (recall Fig. 2.11a). 

Again, we conclude that the use of Sdi leads to results which are insensitive to the record set 

used, even in this extreme case of pulse-like records. The discrepancy for <Sa, !> can be 

explained by the fact that, while this IM does encapsulate the average spectral shape (as reviewed 

earlier in the chapter), it does not necessarily contain information about the local (for each 

record) spectral shape near Tp, especially if Tp is far from T1. Sdi, on the other hand, implicitly 
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captures the local spectral shape at the periods longer than T1 that directly affect the inelastic 

response (through period elongation), including Tp (if Tp > T1). Note that this is possible because 

Sdi, unlike <Sa, !>, takes into account the strength of the MDOF structure being evaluated 

(through dy); as such, Sdi can distinguish the amount of period elongation (or the level of 

inelasticity) induced by the record, e.g., that the effective period of a weak structure might 

elongate to Tp, whereas that of a stronger structure might not (Bazzurro and Luco 2006). PSDA 

results for pulse-like ground motions using Sdi as the IM are discussed in more detail in  

Chapter 5. 

2.9 PSDA RESULTS USING IM1I&2E 

For higher-mode-sensitive structures such as the 0918, 1515, and 1530 frames considered in this 

chapter (or other tall, long-period buildings), Sdi is not as efficient and sufficient as it is for first-

mode-dominated structures like the 0909 frame (Luco 2002; Luco and Cornell 2006), nor is it 

likely to be as robust with respect to scaling. These shortcomings (i.e., undesirable IM properties) 

are largely due to the fact that using Sdi alone does not capture the ground motion frequency 

content at higher-mode periods, as demonstrated in Figure 2.5b for example, where the 

dispersion of Sa(T2) for the 1515 structure is relatively large when the record set is scaled to a 

common value of Sdi. The shortcomings of Sdi explain why, as shown in Figure 2.11b, the 

structural drift hazard curve computed (via PSDA) using Sdi for the 1515 structure is different 

than that computed using <Sa, !> (especially at a lower nonlinearity level, see Tables 2.2 and 

2.3), which reflects spectral shape not only at longer-than-first-mode periods but at shorter 

periods (higher modes) as well. Presented in this section are results of PSDA using IM1I&2E, 

which (as explained below) incorporates second-mode effects via a scalar modification of Sdi. 

As developed by Luco (2002) and Luco and Cornell (2006) and furthered by Mori et al. 

(2004) (who approach the problem from a predictor or simplified analysis perspective, rather 

than an IM perspective), the ground motion intensity measure IM1I&2E is calculated from a 

square-root-of-sum-of-squares (SRSS) modal combination reasoning as a function of Sdi(T, dy) 

(where T = T1 and dy = dy
* here, but other options can be used), Sde(T2), and the elastic 

participation factors of the first two modes of the structure of interest, i.e.,  
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where [2]
nPF is the nth-mode effective participation factor for interstory drift ratio (i.e., 

, , 1n i n i
n

ih
φ φ −−

Γ ⋅ ) that corresponds to the story of the structure at which 

( ) ( )2 2[2] [2]
1 2 2,di y dePF S T d PF S T) * ) *⋅ + ⋅+ ,+ ,  is maximized (for #max; Luco 2002; Luco and Cornell 2006). 

In the expression for [2]
nPF , hi is the height of the ith story (above the ith floor), ,n iφ  is the ith-floor 

element of the nth-mode shape vector, and $n is the nth-mode participation factor, as defined in 

Chopra (2001). Note that here we have adopted the equation for IM1I&2E put forth by Mori et al. 

(2004), which is slightly different than the original equation proposed by Luco (2002) and Luco 

and Cornell (2006); the latter uses Sde(T1) in the denominator of the square root term, thereby 

involving three different spectral displacement parameters. In either case, the square root term 

serves as a higher-mode modification factor for Sdi.  

Using a first-order mean-centered Taylor’s series expansion of the natural logarithm of 

Equation 2.10 in conjunction with existing attenuation relationships for Sdi (Tothong and Cornell 

2006, see also Chapter 3) and Sde (e.g., Abrahamson and Silva 1997), an attenuation relationship 

for IM1I&2E is described in Chapter 3. Here we use this attenuation relationship to compute (via 

PSHA) ground motion hazard curves in terms of IM1I&2E. Still for the same Van Nuys site 

considered throughout the chapter, but now for the higher-mode-sensitive 1515 structure, the 

drift hazard curve computed (via PSDA) using IM1I&2E is shown in Figure 2.11b. Via comparison 

with the results of using <Sa, !> as the IM, the figure illustrates that the accuracy of using IM1I&2E 

in PSDA for higher-mode-sensitive structures is about the same as that using <Sa, !>, at least at 

the larger drift levels. Although not shown here (see Chapter 5), the standard error of the drift 

hazard curve obtained using IM1I&2E is comparable to that for Sdi (and Sde), and less than that for 

<Sa, !> (see Fig. 2.12). 

For comparison purposes, the corresponding drift hazard curve computed using IM1E&2E, 

which is similar to IM1I&2E but does not reflect inelasticity (i.e., Sdi is replaced with Sde), is also 

shown in Figure 2.11b. Note that like Sdi alone the fully elastic but second-mode-inclusive 

IM1E&2E does not lead to an accurate (relative to using IM1I&2E) drift hazard curve at larger drift 

levels, although it does at smaller drifts; it appears that the combination, namely IM1I&2E, is 

needed to ensure the accuracy of the drift hazard curve at all drift levels. Similar conclusions can 

be drawn from the results shown in Tables 2.2 and 2.3 for other higher-mode-sensitive 

structures, at least relative to <Sa, !>. The second-mode modification factor included in IM1I&2E 
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helps characterize responses at low-drift levels (sensitive to the higher modes), whereas Sdi 

improves the PSDA result at near-collapse levels, perhaps because the collapse behavior is 

governed by a first-mode-like pattern (i.e., collapse at or near the bottom story). This is 

consistent with the often-seen behavior of #max migrating from the top story down to the bottom 

story as the ground motion intensity increases. For one of the 1515 and the two 1530 structures 

that are the most (of the structures considered) sensitive to higher modes, though, note that in 

Table 2.2 the MAF values at the ductility of four calculated using IM1I&2E are statistically 

significantly different than that using <Sa, !> (see Table 2.3). This difference (for a lower 

nonlinearity level) might imply a need to incorporate the third mode into IM1I&2E, which is 

conceptually straightforward (Mori et al. 2004).  

The apparent accuracy of the PSDA results described above bolsters previous findings 

(Luco 2002; Luco and Cornell 2006) that IM1I&2E is efficient and sufficient, and suggests that 

IM1I&2E is also likely robust with respect to scaling (likewise for IM1E&2E at low #max levels). 

Briefly, Figure 2.5b demonstrates why incorporating the second-mode term in IM1I&2E (or 

IM1E&2E) leads to an increase in the efficiency, i.e., because it reduces the conditional dispersion 

of the response spectra, ( )ln aS Tσ , at lower (than the first-mode) periods. In Figure 2.5b neither 

IM1E&2E nor IM1I&2E results in smaller ( )ln aS Tσ  at higher periods because the level of nonlinearity 

(drift) considered in the figure is relatively low. As discussed in the preceding paragraph, the 

#max response is more sensitive to higher modes in this case, and therefore the second-mode 

portion of IM1I&2E dominates (due to the effective participation factors). Although not shown 

here, at larger levels of nonlinearity using IM1I&2E will result in smaller ( )ln aS Tσ . This is reflected 

in Figure 2.11b, where using IM1I&2E results in a relatively accurate 
maxθλ  at larger drift levels, as 

does using IM1E&2E at lower drifts levels. 

Even for first-mode-dominated structures (e.g., the 0909 generic frame), we speculate 

that computing 
maxθλ using IM1I&2E may be more accurate than using either Sdi or <Sa, !> (we 

speculate because we lack an absolute, correct value for 
maxθλ ). We suspect this because, first, 

using IM1I&2E changes the 
maxθλ  computed using Sdi by about the same amount that using IM1E&2E 

changes the results for Sa (see Fig. 2.11a), suggesting that the second mode may indeed be 

contributing (e.g., due to some records causing collapse in the higher-mode-sensitive upper 

stories). Secondly, 
maxθλ  computed using IM1I&2E for the (40) ordinary records (Fig. 2.11a) is 
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similar to that for the (70) pulse-like records (not shown here, but not significantly different than 

the 
maxθλ  computed using Sdi, shown in Fig. 2.14b), more so than when using Sdi (comparing Figs. 

2.11a and 2.14b). Lastly, the PSDA results in Table 2.2 and Table 2.3 indicate that for most of 

the first-mode-dominated structures considered the MAF values using IM1I&2E are more similar 

(although perhaps not statistically speaking) to those using <Sa, !> than are the Sdi results. Direct 

computations of 
maxθλ  by means of Monte Carlo simulation (e.g., Collins et al. 1996; Wen 2000) 

will identify which of the IMs yields the most accurate estimates of 
maxθλ . This comparison will 

be investigated in Chapter 6. 

2.10 CONCLUSIONS 

We have demonstrated the feasibility and relative accuracy of using advanced scalar IMs, namely 

Sdi and IM1I&2E, in probabilistic evaluations of the seismic performance of structures (PSDA). 

Using Sdi for first-mode-dominated structures (e.g., the 0909 generic frame) and IM1I&2E for 

higher-mode-sensitive structures (e.g., 1515) results in both IDAs and structural response (drift) 

hazard curves that are comparable to those obtained using the vector IM, <Sa, !>, for ordinary 

(i.e., non-near-source) ground motions — e.g., see Figure 2.11, and Tables 2.2–2.3. 

For near-source pulse-like ground motions, using Sdi (or perhaps even more so, IM1I&2E) 

again results in comparable IDAs and drift hazard curves for the 0909 structure (and other 

structures in Chapter 5), whereas using <Sa, "> as the IM leads to drift hazard curves that are 

dependent on which (of three considered) set of pulse-like ground motion records is used for the 

incremental dynamic analyses of the structure — see Figure 2.14. This insensitivity of the 

response versus IM curves to the records used ensures that the results will not be sensitive to the 

record selection and scaling. Another observed advantage of Sdi (and IM1I&2E, although not 

shown explicitly in this chapter, see Chapter 5) is a smaller standard error of the drift hazard 

curve computed using the scalar IM versus the vector <Sa, !>, as demonstrated in Figure 2.12 for 

the 0909 structure and ordinary ground motions. Using the conventional IM, Sa, results in drift 

hazard curves that are different than those for Sdi, IM1I&2E, and <Sa, !> (again, see Fig. 2.11), and 

dependent on the ground motion ! values of the records used, unlike Sdi and <Sa, !> (see Fig. 

2.13 for the 0909 structure). Note that each of these PSDA applications involves a PSHA for the 

site in terms of the IM used. The requisite (for PSHA) attenuation relationship for Sdi is already 
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available (e.g., Chapter 3 and Tothong and Cornell 2006) and an attenuation for IM1I&2E is 

described in Chapter 3.  

The relative accuracy of the PSDA results summarized above, and of PSDA results in 

general, is linked to the efficiency and sufficiency of the IM used (Luco 2002; Luco and Cornell 

2006), as well as to its robustness with respect to scaling. An IM that exhibits these three 

desirable properties will tend to be structure specific, recognizing in a compact way the 

important modes of vibration and effects of nonlinear behavior, in addition to the frequency 

content of the earthquake records. In this chapter we have explicitly demonstrated that Sdi, unlike 

Sa, exhibits all three of these desirable IM properties for the first-mode-dominated 0909 structure 

subjected to the ordinary ground motions. As documented by Baker and Cornell (2005b), the 

same can be said for <Sa, !> because like Sdi (and IM1I&2E), it contains spectral-shape information 

(as evidenced by Fig. 2.5, which shows a reduced variability in the response spectra upon scaling 

to a value of each IM). For the pulse-like ground motions, however, the aforementioned likeness 

between the drift hazard curves for the 0909 structure computed using Sdi, and their differences 

when using <Sa, !>, suggests that Sdi does, but <Sa, !> does not, exhibit the three desirable IM 

properties. (Indeed, Baker and Cornell 2005b have noted a residual dependence on pulse period 

when using <Sa, !> for near-source records, implying insufficiency of the IM.) This is because 

Sdi, unlike Sa or <Sa, !>, takes into account the strength of the MDOF structure being evaluated; 

therefore, Sdi can distinguish the amount of period elongation (i.e., the level of inelasticity) 

induced by a record. For example, the effective period of a weak structure might elongate to Tp, 

whereas that of a stronger structure might not. 

Making use of an advanced scalar IM like Sdi or IM1I&2E in PSDA requires minimal effort 

in switching from the conventional IM, Sa. The record scaling process in incremental dynamic 

analysis is changed to handle the two inelastic IMs, but conceptually it remains the same. The 

selection of records for these analyses is actually simplified, with random selection (e.g., of 

records with any !, Mw, Rrup) becoming an option that maintains accurate PSDA results. Provided 

that an attenuation relationship for the advanced IM is available, the PSHA component of PSDA 

remains virtually unchanged as compared to when Sa is employed. In this case, for example, the 

USGS could simply apply Sdi or IM1I&2E attenuation models in lieu of those for Sa (Frankel et al. 

2000), thereby generating national seismic hazard maps for Sdi or IM1I&2E. The demonstrated 

advantages of the advanced IMs in probabilistic structural performance evaluations serve as 

motivation for doing so. 
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2.11 APPENDIX: GROUND MOTION ATTENUATION RELATIONSHIP FOR 
IM1I&2E 

Using the first-order mean-centered Taylor’s series expansion of the natural logarithm of 

Equation 2.10 for IM1I&2E, an attenuation relationship for lnIM1I&2E is developed by combining 

existing attenuation models for lnSdi(T, dy) (Chapter 3; see also Tothong and Cornell 2006) and 

lnSde(T2) (e.g., Abrahamson and Silva 1997); recall that an attenuation relationship gives the 

mean value and variance of the random variable as a function of seismic parameters such as Mw 

and Rrup, etc. The mean value of lnIM1I&2E is obtained by simply evaluating the natural logarithm 

of Equation 2.10, i.e.,  
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at the mean values of the two log spectral displacement random variables. The variance of 

lnIM1I&2E is as follows: 
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 and Y = 

exp[lnSde(T2) – lnSdi(T, dy)] but evaluated at the mean values of the two log spectral 

displacements. The variances ( )ln ,di yS T d
σ  and ( )2ln deS Tσ , like the mean values, are obtained from the 

attenuation models. Strictly speaking, ( ) ( )2ln , ,lndi y deS T d S T
ρ  is the correlation between lnSdi(T, dy) and 

lnSde(T2). This correlation has, however, been approximated by taking advantage of the well-

known equal displacement rule (Veletsos and Newmark 1960) for moderate- to long-period 

structures, which are also the structures for which higher-mode contributions become significant 

and IM1I&2E is needed. ( ) ( )2ln , ,lndi y deS T d S T
ρ  is simply approximated with ( ) ( )2ln ,lnde deS T S Tρ  because models 

for ( ) ( )2ln ,lnde deS T S Tρ  are available (e.g., Baker and Cornell 2006a; Inoue and Cornell 1990). As can 

be seen in Chapter 3, the difference between these two correlations is at most 0.13, and the effect 

on the total variance is negligible. Note that, the variance of lnIM1I&2E (Eq. 2.12) approaches the 
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variance of lnSdi(T, dy) for first-mode-dominated structures and vice versa for purely second-

mode-dominated structures, as easily shown by taking the limit of Equation 2.12 as b approaches 

zero and infinity, respectively. 



 

3 Empirical Ground Motion Attenuation 
Relationship for Inelastic Spectral 
Displacement and IM1I&2E 

3.1 ABSTRACT 

This chapter presents an empirical ground motion prediction model (attenuation relationship) for 

inelastic (as opposed to elastic) spectral displacement (Sdi) for ground motions without forward-

directivity effects. It is a function of two earthquake parameters, moment magnitude (Mw) and 

the closest distance to rupture (Rrup), and two bilinear oscillator parameters, an undamped elastic 

period (T) and a yield displacement (dy). The latter, dy, is introduced via the predicted median 

strength-reduction factor ( R̂ ), a proxy for the ratio of elastic spectral displacement (Sde) to dy, 

which is identical to the familiar strength-reduction factor (R). The proxy R̂  recognizes that R 

can only be estimated indirectly because it implicitly contains the random variable, Sde, which 

cannot be known a priori; therefore, the median estimate or predicted median ( )ˆ
deS  from a 

conventional (elastic) ground motion prediction model is used instead to calculate ˆˆ
de yR S d= . 

For enhanced generality, the inelastic spectral displacement prediction model here is based on a 

ratio concept, that is, the total model is a (any) conventional elastic prediction model coupled 

with a new inelastic displacement ratio prediction model, with proper statistical correlation 

between the two. We empirically consider the dependence of this ratio on source and path effects 

(i.e., Mw and Rrup) and find that Mw is significant, but Rrup is not. The resulting prediction model 

can easily be added to existing probabilistic seismic hazard analysis (PSHA) software packages 

with only one extra structure-specific parameter, dy of the oscillator. In practical engineering 

applications, this will likely have been estimated from the conventional static pushover analysis 

of the multi-degree-of-freedom (MDOF) structure under consideration. 
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The resulting PSHA product is a hazard curve for Sdi, the inelastic spectral displacement 

of a nonlinear oscillator. Such a curve can provide a more direct hazard-based “target 

displacement” for nonlinear static procedures (FEMA-356 2000) and/or a basic input function 

for new probabilistic seismic demand analyses that is based on Sdi (as opposed to Sde) as an 

efficient and sufficient intensity measure (IM). This new attenuation relationship will be 

particularly useful in evaluating the performance of existing structures and specified designs with 

known lateral strength. In particular, unlike most past studies, it does not pre-fix the ductility 

level. 

3.2 INTRODUCTION 

Most ground motion prediction models (“attenuation relations”) today are used to predict the 

pseudo-spectral acceleration (Sa) of an elastic oscillator. However, Sa or Sde does not correlate 

well with inelastic responses of multi-degree-of-freedom (MDOF) structures (Bazzurro and Luco 

2004; Luco and Cornell 2006; Luco et al. 2005), resulting in highly uncertain seismic demand 

prediction. The objective of this chapter is to present an empirical attenuation model for inelastic 

spectral displacement (Sdi) for bilinear oscillators with a given natural period (T) and yield 

displacement (dy). The prediction is made as a function of earthquake parameters such as 

magnitude (Mw) and distance between site and rupture zone (Rrup). This model can be used to 

produce Sdi hazard curves and “uniform hazard spectra” (UHS) for such oscillators. These in turn 

can be used to provide an improved input into the deterministic and probabilistic assessment of 

structures. This chapter focuses on the latter role. 

One approach to this problem would be simply to provide an array of attenuation models 

for Sdi for a very large number of (T, dy) combinations (McGuire and Cornell 1974). The 

approach adopted here focuses on developing a new prediction model for the ratio of inelastic to 

elastic spectral displacement, or “inelastic displacement ratio” (Sdi/Sde). This approach is used 

because many attenuation relationships already exist for elastic spectral displacement. Usually 

these models are prepared in terms of the elastic pseudo-spectral acceleration, Sa. However, Sa is 

simply a constant, (2-/T)2, multiplied by Sde. Further, it can be anticipated from many previous 

studies that the inelastic displacement ratio will have comparatively mild dependence on 

independent variables such as Mw and Rrup, simplifying the development of the net Sdi prediction 

model.  



 49 
 

In this study of the inelastic displacement ratio, Sdi/Sde, the authors also use the well-

known strength-reduction factor (R) to introduce, in a continuous manner, the structural 

parameter dy. R is defined here as the ratio of elastic spectral displacement to the yield 

displacement, dy. This ratio is identical to the ratio of the strength required for the oscillator to 

remain elastic (Fe) to the yield strength (Fy) of the oscillator (Chopra 2001; see Fig. 3.1). Note as 

defined herein, R is similar to but distinct from the strength-reduction factor defined in building 

codes to define the design seismic base shear as a fraction of the spectral acceleration associated 

with the design earthquake. 

 

Fig. 3.1  Force displacement behavior of  bilinear oscillator with 5% hardening stiffness 
ratio. 

This effective normalization of dy by Sde permits us to focus on a limited parameter range, 

for example 1!R!8. Further, past research (Chintanapakdee and Chopra 2003; Miranda 2000; 

Miranda and Bertero 1994; Nassar and Krawinkler 1991; Qi and Moehle 1991; Ruiz-García and 

Miranda 2003) has carefully investigated how Sdi/Sde depends on R  for all period ranges. As a 

result, the dependence of Sdi/Sde versus R and T is well understood. This ratio is, on average, 

close to unity for moderate periods where the “equal displacement rule” applies (Veletsos and 

Newmark 1960), greater than unity for shorter periods, where it grows with R, and somewhat 

less than unity for longer periods. This information can be used when developing empirical 

attenuation relationships. 

The Sdi attenuation relationship developed here differs from previous models. First, most 

of these are models for constant-ductility oscillators (Bozorgnia et al. 2006; Chakraborti and 
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Gupta 2005; Lawson 1996; Miranda 2000; Miranda and Bertero 1994; Nassar and Krawinkler 

1991; Sewell 1989). By contrast, the objective here is not to achieve a given ductility level in 

design, but rather to evaluate the behavior of oscillators with given structural properties, in 

particular dy. Ruiz-García and Miranda (2003) note that using the constant-ductility inelastic 

displacement ratio to estimate Sdi for systems with known lateral strengths or yield displacements 

will underestimate the peak responses as well as the statistical variation. This last observation is 

intuitively clear because in the first case Sdi is constrained to certain values in order to achieve 

specified target ductilities, whereas in the second case Sdi itself is random. Second, although 

previous studies (Chintanapakdee and Chopra 2003; Chopra and Chintanapakdee 2004; Ruiz-

García and Miranda 2003) have developed predictions of Sdi/Sde for oscillators for a specified dy 

(for known Sde), they have assumed that Sdi/Sde is independent of ground motion record 

properties (i.e., independent of Mw and distance). Even though these models can be used to 

estimate an Sdi hazard curve (Ruiz-García and Miranda 2005) by using the total probability 

theorem to convolve the conventional Sde hazard curve and the probability distribution of Sdi/Sde, 

this approach will be inaccurate to the degree that this ratio displays, for example, magnitude 

dependence because it fails to distinguish between hazard generated by small versus large 

earthquake magnitude events. As seen in the following section, we do detect this Mw 

dependence. Using the proposed ground motion prediction models, one can produce the Sdi 

hazard curve directly by conventional PSHA software, avoiding the need for a subsequent 

convolution.  

Our use of the R factor, Sde/dy, to assist in the prediction of Sdi/Sde is not as 

straightforward as it might appear, however. In contrast to the studies of Sdi/Sde versus R, where 

the ground motion records are available and known, in the prediction mode only earthquake 

parameters such as Mw and distance are known, whereas the value of Sde of the future record is 

unknown. As a result, one does not know a priori what the value of R = Sde/dy will be. Therefore, 

a new variable called the predicted strength-reduction factor ( R̂ , the hat denoting predicted 

median value throughout) is defined, which is based on the predicted value of Sde (denoted ˆ
deS ) 

rather than on Sde. This predicted value, ˆ
deS , is the median value from a standard attenuation 

model for Sde versus Mw, Rrup, and other source and site parameters (e.g., Abrahamson and Silva 

1997). Therefore, ˆ
deS  and R̂  are known a priori. One other repercussion is that past results for 
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Sdi/Sde versus R cannot be directly applied. Instead, a new relationship for Sdi/Sde versus R̂  must 

be developed. The implications of this change will be illustrated subsequently. 

Once the model for the geometric mean of Sdi/Sde versus earthquake parameters is 

obtained, the ratio can be multiplied by that for ˆ
deS  to obtain the median value for Sdi. In 

applications, models are based on the means of the natural logarithms of Sde and Sdi/Sde, implying 

simple addition of the two coefficients on the independent variables, for example, magnitude.  

To complete the description of attenuation relationship, a model for dispersion (the 

standard deviation of the natural logarithm) of Sdi ( ln diSσ ) must be developed. This model must 

reflect both dispersion in the prediction of Sde and dispersion in the inelastic displacement ratio, 

Sdi/Sde. Further, it must consider the correlation between these two random variables. As a result, 

we have chosen to develop an empirical model for the total standard deviation for lnSdi ( ln diSσ ). 

This ln diSσ  model approaches ln deSσ  for large values of dy or small values of R̂ .  

The need for a Sdi attenuation relationship is based on recent research. Earlier studies 

(Bazzurro and Luco 2004; Luco 2002; Luco and Cornell 2006; Luco et al. 2005) have shown that 

Sdi provides better nonlinear response prediction of MDOF structures than a prediction based on 

the elastic pseudo-spectral acceleration (Sa(T1)) at the fundamental period, T1, of a structure or a 

prediction based on the structure-independent peak ground acceleration (PGA). In addition, Sdi 

should intuitively reduce the so-called peak-valley effects (Baker and Cornell 2005a). These 

authors show that records with a spectral peak at the first-mode period tend to cause less than the 

average nonlinear response induced by all records with the same Sa(T1). This happens because 

the effectively elongated period of the oscillators “drifts” off the spectral peak into a weaker 

valley. They also found that this effect can largely be “corrected” by coupling ! with Sa(T1) in a 

vector intensity measure (IM) for seismic demand prediction, where ! is the number of standard 

deviations that the ground motion deviates from the predicted elastic median attenuation 

relationship. Sdi is also capable of resolving the peak-valley problem because it captures the 

period drift as structures behave inelastically. As a result, Sdi “senses” which ground motions will 

tend to cause benign or aggressive inelastic responses on structures, in contrast to Sde. In fact, it 

has been shown that scaling a ground motion with respect to Sdi reduces the predictive power of 

!, at least for first-mode-dominated structures (see Chapter 2, and also Tothong and Luco 2007); 

therefore, the predictor ! is not statistically significant when Sdi is employed as an IM. 

Importantly too, using Sdi can reduce the potential bias in scaling the amplitude of ground 
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motions (see Chapter 2, and also Tothong and Luco 2007), thus simplifying the record selection 

by avoiding strong emphasis on other ground motion record properties such as !, Mw, and 

distance, etc. 

A Sdi attenuation relationship will be particularly useful in assessing the performance of 

existing and proposed design structures with known lateral strength both in the deterministic 

nonlinear static procedure described in FEMA-356 (2000) and in the PSDA underlying advanced 

performance-based earthquake engineering (Cornell and Krawinkler 2000; Moehle and Deierlein 

2004). If the MDOF structures are assumed to have simplified bilinear moment-rotation relations 

and to have small influence from the global P-delta effect, the empirical model here can be 

directly applied to estimate the inelastic target roof displacement needed to perform both 

conventional NSP described in FEMA-356 (2000) and modal pushover analysis, for example, in 

Chopra and Goel (2002) and Mori et al. (2004). Studies using Sdi-based PSDA include Luco 

(2002), and additional studies as illustrated in Chapter 2. All of these procedures require a Sdi 

ground motion hazard curve, which in turn requires a Sdi attenuation relationship. 

3.3 OBJECTIVE 

The objective of this chapter is to develop the Sdi ground motion prediction model via a model 

for the ratio Sdi/Sde for ground motions without forward-directivity effects. This ratio can then be 

coupled with an existing Sde attenuation relationship to “convert” the elastic spectral ordinate into 

an inelastic one. This Sdi attenuation model is constructed based on bilinear oscillator responses 

with a 5% hardening stiffness ratio (%) and 5% (of the critical) damping ratio (,). In addition to 

the natural period, T, one extra structure-specific parameter is needed to generate Sdi hazard 

curves, namely the yield displacement dy of an oscillator which can be estimated from a 

conventional static pushover analysis of a MDOF structure. Note that many references on finding 

equivalent SDOF systems exist in the literature: (e.g., Chopra 2001; Collins et al. 1996; Fajfar; 

FEMA-356 2000; Luco and Cornell 2006; Tothong and Luco 2007). 

3.4 NONLINEAR OSCILLATOR RESPONSE BACKGROUND 

The inelastic responses of oscillators have been studied for decades (Veletsos and Newmark 

1960; Veletsos et al. 1965), and more intensively in the past two decades (including Chopra and 
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Chintanapakdee 2004; Miranda 2000; Miranda 2001; Miranda and Bertero 1994; Nassar and 

Krawinkler 1991; Riddell et al. 2002; Sewell 1989; among others). With past work as guidance, 

our objective is the probability distribution of Sdi as a function of source, path, and site 

characteristics (i.e., Mw, Rrup, soil type, fault mechanism, etc.) as well as two structural 

parameters (i.e., T and dy). To limit the number of structural parameters required to define the 

hysteretic behavior of an inelastic oscillator, a simple bilinear SDOF system with 5% post-yield 

stiffness ratio (without strength and stiffness degradation) was chosen. Despite the simplicity of 

this bilinear system, it can provide improved seismic demand prediction for a broad range of 

nonlinear structures with properly chosen parameters T and dy (see Chapter 2, and also Tothong 

and Luco 2007). 

Typically, previous researchers relied on a conventional elastic-perfectly-plastic (%=0) 

system. We have chosen to use a 5% hardening stiffness ratio because of the well-known 

differences in the peak responses between elastic-perfectly-plastic and bilinear (%>0) oscillators. 

Previous work has shown that 0% hardening of an elastic-perfectly-plastic system yields a larger 

record-to-record variability as well as a more conservative inelastic response, in particular, in the 

short-period region (Chintanapakdee and Chopra 2003; Chopra and Chintanapakdee 2004; 

Riddell et al. 2002; Veletsos et al. 1965). According to Chopra and Chintanapakdee (2004), “… 

ignoring the post-yield stiffness in estimating deformation is too conservative for seismic 

evaluation of existing structures with known lateral strength in the acceleration-sensitive region.” 

We believe that the bilinear oscillator is better than the elastic-perfectly-plastic system at 

representing and estimating the inelastic seismic demand of actual MDOF structures; the 

sequence of plastic hinge formation in MDOF structures does not occur simultaneously, resulting 

in progressive softening of the lateral stiffness of the structures and more nearly bilinear-like 

behavior. 

For the limiting case in which the period approaches zero for an SDOF system, the 

difference between Sdi/Sde for the elastic-perfectly-plastic (%=0) case versus the bilinear (%>0) 

oscillator case is particularly significant even with a slight positive hardening stiffness ratio, % 

(Chintanapakdee and Chopra 2003; Veletsos et al. 1965). As shown in Equation 3.1, first derived 

by Chintanapakdee and Chopra (2003), the inelastic displacement ratio for zero period (for a 

specified R) is equal to infinity in the elastic-perfectly-plastic case and to a finite constant in the 

bilinear oscillator case. 
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Differences are also apparent in the dispersions of Sdi/Sde between elastic-perfectly-plastic and 

bilinear oscillators. Chopra and Chintanapakdee (2004) showed that this dispersion is infinite for 

the elastic-perfectly-plastic and zero for the bilinear oscillators as the period T approaches zero. 

The differences between elastic-perfectly-plastic and bilinear oscillators decrease as the period 

increases, but are still significant in the period range of structural engineering interest. For the 

value of the hardening stiffness ratio, %, past studies (Chintanapakdee and Chopra 2003; Nassar 

and Krawinkler 1991; Ruiz-García and Miranda 2003) showed that Sdi/Sde is insensitive to % in 

the 3 to 10% range. Therefore, the precise non-zero % value to be used is not critical, at least for 

periods greater than 0.2 sec. 

Past research (Farrow and Kurama 2004; Foutch and Shi 1998) has also shown that, aside 

from strength reduction, the influence of the hysteretic behavior on the peak responses of 

nonlinear oscillators and MDOF structures is minimal. Thus, because of its simplicity, the 

bilinear oscillator is a reasonable choice for a common generic oscillator for Sdi prediction 

purposes. To remain consistent with elastic attenuation models, the inelastic displacement ratio 

developed here is also based on a 5% damping ratio. The inelastic force-displacement behavior 

of the chosen bilinear oscillator is shown in Figure 3.1. 

Next, the dependence of Sdi/Sde on R and T is summarized. This information provides 

direction when later replacing R by R̂ . The median (geometric mean) values of Sdi/Sde as a 

function of R (for known Sde) for specified periods from a suite of earthquake ground motions are 

shown in Figure 3.2. The results shown in this figure are based on 291 earthquake records 

(discussed in the next section). 
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Fig. 3.2  Empirical geometric mean values of inelastic displacement ratio, Sdi/Sde, with 5% 
post-yield stiffness ratio (with known Sde) for short (0.3 sec), moderate (0.6 and 0.8 
sec), and long (2.0 sec) periods (based on total dataset). 

These results are representative of those found by past researchers cited previously. As 

shown in Figure 3.2, a central value curve for the moderate-period range (0.6 ! T < 1.2) does not 

vary monotonically as it does for short (T < 0.6) and long (T ' 1.2) periods. Note that for shorter 

periods, the median ratio increases monotonically as R increases and may reach values of two or 

greater. For longer periods, within the range R ! 8, the median ratio decreases monotonically but 

does not fall far below unity. For moderate-period (0.6 ! T < 1.2) oscillators, the median curve 

does not vary monotonically. Finding a functional form to capture both this non-monotonic 

behavior for moderate periods and the increasing and decreasing monotonic behavior for short 

and long periods with relatively few parameters becomes a challenging task. This non-monotonic 

behavior has also been reported in the software Static Pushover to Incremental Dynamic 

Analysis (Vamvatsikos and Cornell 2002b). However, past research has normally assumed the 

central value of Sdi/Sde to simply be equal to one in that problematic period range, which may be 

adequate for the mean, if not for the median. Further, some investigators have identified at least 

some degree of dependence of the central value of the ratio on magnitude (Ruiz-García and 

Miranda 2003). We too shall see that the median of Sdi/Sde depends not only on the range of 

period, but also on Mw, which adds further complexity in the fitting process. This study makes 

use of the geometric mean in order to remain consistent with standard attenuation models. For 

very large, perhaps practically unrealistic values of R, such as R>10, there tends to be a 

saturation effect. Therefore, we limit our predictions to R! 10. 
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Figure 3.3 indicates that the dispersion of Sdi/Sde for all periods increases as R (for known 

Sde) increases. Although the dispersion of Sdi/Sde increases as the nonlinearity level increases, 

ln diSσ  (for a given Mw and Rrup) does not always increase. Curiously, this dispersion decreases 

slightly (below ln deSσ ) for values of R between 1.3 and about 2.0 (this reduction in ln diSσ  implies a 

negative correlation between lnSde and lnSdi/Sde). Beyond that range it exceeds ln deSσ  and grows 

with R. ln diSσ  exceeds ln deSσ  by lesser amounts for longer periods. 

 

Fig. 3.3  Dispersion of Sdi/Sde (with known Sde) for four periods. 

3.5 GROUND MOTION RECORDS 

The Sdi attenuation relationship presented here is intended to be used for ordinary earthquake 

ground motions. The maximum Rrup was limited to 95 km to avoid potential effects of 

(regionally differing) anelastic attenuation on spectral shape, and hence Sdi/Sde, in the regime of 

less intense ground motions that are unlikely to cause significant inelastic behavior. Near-source 

ground motions with forward-directivity effects were largely excluded by restricting the closest 

distance to rupture (Rrup) to be greater than 15 km (SEAOC 1999). An Sdi attenuation model for 

the near-source environment is under development by the authors. The Sdi model is expected to 

be coupled with the anticipated narrowband modification factors for the elastic attenuation 

relationships to be developed by the Next Generation Attenuation of Ground Motions (NGA) 

project (2005). Free-field-like ground motions recorded on deep, stiff soil from all faulting styles 

were used in the analysis. More precisely, from the NGA flatfile (NGA 2005), we used 

Geomatrix-C1 (Instrument Housing) classes I, A, and B, and Geomatrix-C3 (Geotechnical 

Subsurface Characteristics) classes C and D. One randomly oriented (i.e., arbitrary) horizontal 
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component was selected. The implications of using one component rather than the geometric 

mean of both horizontal components are discussed below. The band-pass filter frequencies were 

selected to be less than 0.25 Hz and greater than 20 Hz, for high- (fHP) and low-pass (fLP) filter 

frequencies, respectively; thus, the minimum usable low frequency is 0.3125 (=0.25×1.25) Hz, 

as suggested by Dr. Walter Silva (http://peer.berkeley.edu/smcat/process.html). Therefore, for 

the total dataset, the longest usable period for elastic analysis is approximately 3.2 seconds. As 

discussed below, we use a restricted dataset (fHP≤  0.10 Hz; leaving 169 ground motions) for 

longer periods when fitting the regression model. 

Originally, ground motions outside of California were excluded from the development of 

the model. However, this constraint limits the maximum Mw to 7.3 (i.e., the Landers earthquake), 

which has an impact when extrapolating the empirical model to larger Mw events. As a result, we 

later assembled a larger dataset that includes earthquake events outside California, which 

contains a significant number of large Mw events. Figure 3.4 shows the latter ensemble of ground 

motions used in this study, which comprises 291 strong earthquake ground motions from 28 

historical earthquakes with Mw ranging from 5.65 to 7.90. Table 3.1 shows the earthquake events 

considered in this study. 

 

Fig. 3.4  Total ground motion record dataset used in this study. 
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Table 3.1  Earthquake events considered in this study. 

Earthquake ID Earthquake Name Date Time
Earthquake 

Magnitude (M w )
Fault 

Mechanism
No. of 

Records
0025 Parkfield 28-Jun-1966 04:26 6.19 Strike-Slip 1
0030 San Fernando 09-Feb-1971 14:00 6.61 Reverse 7
0040 Friuli, Italy-01 06-May-1976 20:00 6.50 Reverse 1
0043 Friuli, Italy-02 15-Sep-1976 03:15 5.91 Reverse 1
0046 Tabas, Iran 16-Sep-1978 15:35 7.35 Reverse 2
0048 Coyote Lake 06-Aug-1979 17:05 5.74 Strike-Slip 2
0050 Imperial Valley-06 15-Oct-1979 23:16 6.53 Strike-Slip 7
0064 Victoria, Mexico 09-Jun-1980 03:28 6.33 Strike-Slip 3
0068 Irpinia, Italy-01 23-Nov-1980 19:34 6.90 Normal 1
0069 Irpinia, Italy-02 23-Nov-1980 19:35 6.20 Normal 2
0073 Westmorland 26-Apr-1981 12:09 5.90 Strike-Slip 1
0076 Coalinga-01 02-May-1983 23:42 6.36 Reverse 20
0090 Morgan Hill 24-Apr-1984 21:15 6.19 Strike-Slip 7
0101 N. Palm Springs 08-Jul-1986 09:20 6.06 Reverse/Oblique 4
0102 Chalfant Valley-01 20-Jul-1986 14:29 5.77 Strike-Slip 1
0103 Chalfant Valley-02 21-Jul-1986 14:42 6.19 Strike-Slip 4
0113 Whittier Narrows-01 01-Oct-1987 14:42 5.99 Reverse/Oblique 19
0116 Superstition Hills-02 24-Nov-1987 13:16 6.54 Strike-Slip 6
0118 Loma Prieta 18-Oct-1989 00:05 6.93 Reverse/Oblique 18
0123 Cape Mendocino 25-Apr-1992 18:06 7.01 Reverse 2
0125 Landers 28-Jun-1992 11:58 7.28 Strike-Slip 11
0127 Northridge-01 17-Jan-1994 12:31 6.69 Reverse 55
0136 Kocaeli, Turkey 17-Aug-1999 00:01 7.51 Strike-Slip 3
0137 Chi-Chi, Taiwan 20-Sep-1999 17:47 7.62 Reverse/Oblique 95
0142 St Elias, Alaska 28-Feb-1979 21:27 7.54 Reverse 2
0152 Little Skull Mtn,NV 29-Jun-1992 10:14 5.65 Normal 4
0158 Hector Mine 16-Oct-1999 09:46 7.13 Strike-Slip 9
0169 Denali, Alaska 03-Nov-2002 22:12 7.90 Strike-Slip 3  

 

The full list of the 291 earthquake ground motions can be found in  Table A.3. The first, 

smaller ground motion dataset (180 ground motions from 20 earthquakes) was selected from the 

Pacific Earthquake Engineering Research (PEER) strong ground motion database as of summer 

2003 (Silva 2003). The second, larger dataset (used in the analysis) was selected from the PEER 

NGA (2005) database. The effect of the larger dataset used here and how it improves large Mw 

event prediction is discussed in Section 3.11. 

3.6 FORMAL MODEL 

The objective of our formulation is to develop a prediction model for the inelastic displacement 

ratio, Sdi/Sde, to be multiplied with an Sde attenuation model (Abrahamson and Silva 1997) as 

follows:  

 ( ) ( ) ( ), , . , , . , , .di
di w rup de w rup w rup

de

SS M R etc S M R etc M R etc
S

= ⋅  (3.2) 
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As mentioned earlier, Sdi/Sde will be constructed as a function of the familiar strength-reduction 

factor, R (=Fe/Fy = Sde/dy). R, however, requires knowledge of Sde, which is not known a priori 

because it depends on the ground motion of future earthquakes. Hence, we replace the real Sde by 

its predicted median value ˆ
deS  obtained from an existing elastic ground motion prediction model, 

yielding the predicted median strength-reduction factor ( R̂ ), as shown in Equation 3.3 where 
2ˆ ˆ1de aS Sω= ⋅  and 2 Tω π= . 

 
( )ˆ , , .ˆ de w rup

y

S M R etc
R

d
=  (3.3) 

Note that although the Abrahamson and Silva (1997) model was used in the quantitative 

analysis that follows, we believe that the resulting model for Sdi/Sde can be used effectively with 

any other such modern or future Sde attenuation model (in Eq. 3.2 and R̂  in Eq. 3.3). The net 

model for the random predicted value of Sdi is given by  

 
� ( ) ( )ln /ln

ˆ ˆln ln ln
di dede

di
di de S SS

de

SS S R
S

ε ε= + + +  (3.4) 

In this equation, where the dependence on ground motion parameters (i.e., Mw, distance, etc.) is 

suppressed in the notation, the median or predicted value of lnSdi is given by 
� ( )ˆ ˆln ln di

de
de

SS R
S

+ , 

where R̂  is ˆ
de yS d . Both Sde and Sdi/Sde have associated random terms 

ln deS
ε  and ( )ln /di deS Sε . The 

random variables 
ln deS

ε  and ( )ln /di deS Sε  shown in Equation 3.4 have zero means and variances equal 

to 2
ln deSσ  and ( )

2
ln /di deS Sσ  , respectively. Note that 

ln deS
ε  is identical to 

ln aS
ε  (i.e., 

( ) ( )2 2
ln ln

ˆ ˆln ln ln ln
de a

de de a aS S
S S S Sε ω ω ε= − = − = ). 

One implication of using ˆ
deS  instead of the real Sde is that Sdi/Sde will not necessarily be 

equal to one when R̂  is equal to one or less. This characteristic distinguishes this work from the 

previously cited studies of Sdi/Sde where the value of Sde and hence R were known. In such 

studies, the ratio always equals one when R ! 1. The effect on Sdi/Sde is discussed in the next 

section. 
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3.7 OBSERVED BEHAVIOR OF Sdi/Sde versus R̂  

The behavior of the inelastic displacement ratio, Sdi/Sde, versus R is, as discussed earlier, well 

studied (see, e.g., Figs. 3.2–3.3). But the dependence of the ratio on R̂  is not. To study this 

dependence, the following steps were taken.  

First, for a given period and accelerogram i, i = 1, 2, …, 291, the value of the predicted 

median value of ( )ˆ i
deS  was obtained from the elastic attenuation (i.e., ground motion prediction) 

model for the magnitude, ( )i
wM , rupture distance, ( )i

rupR , faulting style(i), site condition(i), and other 

ground motion parameters associated with the event causing the recorded accelerogram. Next, a 

set of bilinear oscillators with yield displacements, ( ),i j
yd , for j = 1, 2, …, n, were established such 

that n pre-selected values of ( )ˆ jR  were obtained, that is ( ) ( ) ( ), ˆ ˆi j i j
y ded S R= . The ( )i

deS  of each record is 

known from a linear dynamic analysis. Finally, nonlinear dynamic analyses of all these oscillator 

and record pairs were carried out, resulting in 291 values of Sdi/Sde for each selected ( )ˆ jR  value. 

The results form a set of “stripes” of ln(Sdi/Sde) values at each ( )ˆ jR  value, as shown in Figure 3.5 

(for T = 0.6 sec).  

 

Fig. 3.5  Predicted mean values and ln(Sdi/Sde) data for T =  0.6 sec.  

The sample mean and the standard deviation of ln(Sdi/Sde) were calculated for each stripe, as 

shown. We will discuss these and other results systematically next, but one sees at first glance 

that the geometric mean and dispersion of Sdi/Sde versus R̂  are not qualitatively different from 

those of Sdi/Sde versus R (Figs. 3.2–3.3) except in one area near ˆ 1R = . 
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As stated previously the inelastic displacement ratio, Sdi/Sde, does not need to be unity for 
ˆ 1R ≤  (as it is for R ! 1) because, owing to the uncertainty in Sde, ˆ 1de yS d ≤  does not imply that 

Sde/dy!1. Note that, first, inelastic displacement, Sdi, can be smaller or greater than elastic 

displacement, Sde, when structures behave inelastically. Second, ˆ 1R ≤  implies ˆ
de yS d≤  or, using 

the more familiar strength concept, ê yF F≤  where êF  is the predicted median elastic strength 

required for the oscillator to remain elastic. In reality when ˆ
y eF F= , about 50% of earthquake 

records will have its Fe smaller or larger than this êF  value. Ground motions with Fe values 

larger than Fy will cause an oscillator to behave inelastically. For Fe values smaller than Fy, an 

oscillator will remain elastic. The probability distribution of Sdi/Sde near ˆ 1R =  is, in fact, very 

unusual but quite understandable (see Fig. 3.6). For illustration, consider the case where R̂  is 

precisely one, implying that ˆ
de yS d=  (or ê yF F= ). As ˆ

deS  ( êF ) is the predicted median value of 

Sde (Fe), we anticipate that about 50% of observed values of Sde (Fe) will lie below dy (Fy), 

leading to elastic behavior, and Sdi/Sde will equal one. On the other hand about 50% of observed 

Sde (Fe) will lie above dy (Fy), leading to inelastic behavior, in which case Sdi/Sde may be greater 

or less than one. Indeed, given the dispersion values of typical attenuation models, which may be 

0.6 or larger, the observed values of Sde (Fe) may be as high as twice yd  (Fy) or more. The 

resulting observed histogram and the predicted probability distribution of ln(Sdi/Sde) values for 
ˆ 1R =  will have, in short, a “spike” of 50% probability mass at zero and 50% of the mass spread 

over an  interval about zero (see Fig. 3.6b). The resulting mean value of ln(Sdi/Sde) may be above 

or below zero. For values of R̂  less than one (larger Fy), we expect a larger fraction of the Sde 

(Fe) values to be less than dy (Fy) leading to a spike of ln(Sdi/Sde) at zero greater than 50% in 

value (Fig. 3.6a), and approaching unity as R̂  approaches zero. For R̂  values greater than unity, 

the spike will fade to zero (Fig. 3.6c–d). The observed frequency of data points with ln(Sdi/Sde)= 

0 (i.e., linear behavior) is 271, 175, 96, and 48 for ˆ 0.5, 1.0,R = 1.5, and 2.0, respectively, for T = 

0.3 sec.  
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(a) (b) 

  
(c) (d) 

Fig. 3.6  Observed histograms of ln(Sdi/Sde) for (a) R̂ = 0.5, (b) R̂ = 1.0, (c) R̂ = 1.5, and (d) 
R̂ = 2.0 for a 0.3 second oscillator. In each plot, solid line represents observed 
frequencies of ln(Sdi/Sde) when Sde/dy & 1 (elastic behavior), and histogram bars 
represent the frequencies of ln(Sdi/Sde) when Sde/dy > 1 (inelastic behavior). 

This unusual behavior of the sample data and probability distribution of Sdi/Sde are 

perhaps reasons why it has been difficult and uncommon to study and to model Sdi/Sde as a 

function of magnitude and distance for the case of fixed dy (Fy) (rather than fixed ductility, µ, or 

fixed R for known Sde). The unique nature of the probability distribution of Sdi/Sde can be largely 

ignored in what follows, a benefit of modeling the distribution of Sdi itself, and not that of the 

ratio. Note here (from Fig. 3.6) that the histogram of ln(Sdi/Sde), especially for ˆ 1R ≤ , will 

predominantly have Sdi/Sde values less than unity for ground motion records with Sde (Fe) greater 

than dy (Fy). This occurs because these ground motion records are positive ! ground motions, 

which on average tend to cause comparatively benign inelastic response. After this point, the 

strength notation (i.e., êF , Fe , and Fy) will be omitted for the sake of brevity. 
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Before turning our attention to the geometric mean of Sdi/Sde, it is worth noting a second, 

quantitative difference between Sdi/Sde versus R̂  (Fig. 3.5) and Sdi/Sde versus R (Figs. 3.2–3.3): 

the dispersion is substantially larger for the former case, especially for lower values of R̂ . For 

example at ˆ 2R =  (Fig. 3.5), the dispersion is about 0.5, whereas at R = 2 (Fig. 3.3) the dispersion 

is less than 0.3. For R ! 1 the dispersion is naturally zero, whereas this is not the case for ˆ 1R ≤ . 

The cause of this larger dispersion is simply the additional uncertainty caused by not knowing Sde 

precisely in the R̂  ( ˆ
de yS d= ) case. 

  
(a) (b) 

  
(c) (d) 

Fig. 3.7  Geometric mean of inelastic displacement ratio, Sdi/Sde, as a function of R̂  grouped 
into three Mw bins for (a) T = 0.3, (b) T = 0.6, (c) T = 0.8, and (d) T = 2.0 sec (based 
on total dataset). 

Fortunately the characteristic of the geometric mean of Sdi/Sde versus R̂  is not ill-

behaved, although it is no longer expected to be precisely unity for ˆ 1R ≤ . We discuss the 

empirically observed geometric mean of Sdi/Sde versus R̂  next and return to the dispersion and 

probability distribution in a following section. Based on the numerical data, we observed three 
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characteristic behavior patterns of Sdi/Sde versus R̂  in three different period ranges discussed 

subsequently. Further, within each period range, it was observed that Sdi/Sde generally depends on 

Mw (see Fig. 3.7). 

3.7.1 For Short-Period Structures: (0.2 < T < 0.6 sec) 

For the short-period range, as the level of nonlinearity ( R̂ ) increases, the inelastic displacement 

ratio also increases (see Fig. 3.7a). This “short-period effect” has been attributed to the inability 

of such oscillators to dissipate energy efficiently (Foutch and Shi 1998). As the nonlinearity 

increases past a certain value of R̂ , however, Sdi/Sde stays approximately constant (i.e., there 

tends to be saturation as R̂  increases). The dependence of the geometric mean of Sdi/Sde versus R̂  

is similar to that anticipated by the observations of this ratio versus R (as discussed earlier). 

Within this short-period range, the authors also observed that the geometric mean of 

Sdi/Sde depends strongly on Mw for values of R̂ >  4. In Figure 3.7, the geometric mean of Sdi/Sde is 

plotted for records from three distinct Mw bins. This dependence can likely be explained by the 

differing slopes of the response spectrum.  

 
Fig. 3.8  Median elastic response spectra grouped by Mw bins of ensemble ground motions. 

As seen from Figure 3.8, the slope of the elastic spectral velocity (Sv) of a large Mw bin is 

steeper than that for moderate and for small Mw bins. By using the observation that Sdi/Sde 

depends on the slope of the elastic response spectrum (Kennedy et al. 1984; Sewell 1989), we 

can anticipate Sdi/Sde to be largest for the large Mw bin and smallest for the small Mw bin (for the 

same R̂  value). Figure 3.7a confirms that Sdi/Sde increases with increasing Mw. 
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3.7.2 For Moderate-Period Structures: (0.6 & T < 1.2 sec)  

We may expect the “equal displacement rule” to apply in this moderate-period range (Veletsos 

and Newmark 1960). Although this rule is roughly true, more precisely, oscillators in this period 

range, in general, will first experience “hardening” at a low-nonlinearity level and then “soften” 

at a higher nonlinearity level, where hardening means Sdi<Sde and softening means Sdi>Sde. This 

is the same non-monotonic dependence of Sdi/Sde on the degree of nonlinearity that we discussed 

previously. Figure 3.7b–c shows this effect in plots of the geometric mean of Sdi/Sde versus R̂ . 

As seen from Figure 3.7b–c, in this period range, Sdi/Sde also depends strongly on the Mw level 

for ˆ 4R > . Response spectrum slopes may again explain this observation. Figure 3.8 shows that 

the effective slope of the response spectrum (Kennedy et al. 1984) associated with the nonlinear 

oscillator in this moderate-period range increases with magnitude largely because the corner 

period (i.e., the period at which the elastic response spectrum changes from the constant spectral 

acceleration domain to the constant spectral velocity domain) increases with Mw. The assumption 

of previous studies (e.g., Chopra and Chintanapakdee 2004; Miranda and Bertero 1994; Ruiz-

García and Miranda 2003) that Sdi/Sde is independent of Mw oversimplifies the model. 

Maintaining this Mw dependence is important when a site is dominated by earthquake 

magnitudes different from the average Mw in the dataset. 

3.7.3 For Long-Period Structures: (1.2 & T < 5.0 sec)  

In general for a simple long-period bilinear oscillator (with no influence from the global P-delta 

effect and with no stiffness/strength deterioration), as R̂  increases, the geometric mean of Sdi/Sde 

decreases (see Fig. 3.7d). As R̂  increases to a certain value, the geometric mean of Sdi/Sde stays 

approximately constant (i.e., it experiences “saturation” as R̂  increases). This can be explained 

by the fact that as R̂  increases, the “effective” period (roughly speaking T µ , for which 

ductility, di yS dµ = , and the stiffness of an effective period, Keff, shown in Fig. 3.1) of the 

structure will elongate and eventually approach a point where di deS S= =  peak ground 

displacement.  

For the same reason, in this period range, the spectral slope is less significant when 

compared with that of short- and moderate-period ranges. Therefore, there is relatively little 

dependence on Mw. 
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3.8 EMPIRICAL MODEL FOR GEOMETRIC MEAN OF INELASTIC 
DISPLACEMENT RATIO 

An empirical functional form for each oscillator period has been developed that is designed to be 

flexible enough to capture the three different behaviors for the three different period ranges 

presented previously, as well as the spectral slope effect from different magnitudes. The final 

model was chosen after many trial functional forms, some of which had been used in past 

research. For example, to estimate the geometric mean of Sdi/Sde, we considered the cubic 

polynomials, the Gumbel complementary cumulative distribution function (CCDF), power laws, 

and functional forms developed by Nassar and Krawinkler (1991) and Ruiz-García and Miranda 

(2003). However, these functional forms do not capture all three different period-range 

characteristics. 

Only the cubic polynomial and the model developed by Nassar and Krawinkler (1991) 

can capture the hardening effect of bilinear oscillators that we observed in the moderate-period 

range. However, these general forms do not capture the “fine detail” that can be observed from 

the empirical data, where oscillators experience first “hardening” and then “softening” behavior 

as ground motion intensity increases. The final functional form we have developed is robust 

enough to capture the three characteristic period-range behaviors and the Mw dependencies. 

An empirical function for the predicted geometric mean value of Sdi/Sde was developed 

using a two-stage regression (Joyner and Boore 1982; Sewell 1989). The two-stage approach was 

used in order to reduce the potential bias due to uneven numbers of ground motion records for 

each earthquake. In the first stage (for a given Mw event), ridge regression (Hastie et al. 2001) 

was used with a weighting scheme on ln(Sdi/Sde) for a given structural period. This type of biased 

estimation effectively reduces the potential correlation between independent variables, whereas 

the weighting scheme was used to reduce the non-constant variance of ln(Sdi/Sde) versus R̂  (see 

Fig. 3.5). This weighting scheme was necessary to ensure that the homoscedasticity assumption 

is not severely violated, thus allowing valid conclusions to be drawn from hypothesis testing 

(Hastie et al. 2001). Using this method in the first stage, the estimated jα  coefficients can be 

obtained for each ,w jM  event on R̂  and ˆ ˆlnR R⋅  without including the predictor Mw: 

 ( ) 2.5
5

1 1

ˆ ˆ ˆ ˆln ln
EQ EQN N

di
j ij j ij

j jde

S E R E R R R
S

α α β ε
= =

# $ # $
′= ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ +% & % &% & % &

' ( ' (
! ! !  (3.5) 
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where ε!  is the random error term in the prediction of ln(Sdi/Sde), NEQ is the number of 

earthquakes in the ensemble database, and Eij is defined as follows: 

 1 ;
0 ;ij

if record i is fromearthquake j
E

otherwise
/= 0
1

 

The power 2.5 on the last predictor in Equation 3.5 was initially determined from nonlinear 

regression using Levenberg-Marquardt algorithms (Bates and Watts 1988), which combines the 

steepest descent (at early iterations) and the Newton’s method (near the solution point). 

In the second stage, all of the estimated α  coefficients from the first stage are regressed 

on Mw to obtain coefficients 1 2 3, , ,β β β  and 4β  in Equation 3.6: 

 1 2 ,

3 4 ,

; 1

; 1
j w j EQ

j w j EQ

M for j to N
M for j to N

α β β ε
α β β ε

′= + ⋅ + =
′ ′′= + ⋅ + =

 (3.6) 

where ε ′  and ε ′′  are the random error terms. A quadratic form for the second-stage regression 

was found to be statistically insignificant, so only a linear form was used. Finally, we refit the 

data using 1 2 3, , ,β β β  and 4β  from the second stage to obtain a better estimate for 5β  and an 

estimate for 6β  in Equation 3.7, using weighted regression with the same weighting scheme used 

in the first stage. 
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The third term, ( )1 0.2, wg M , ensures that the function is zero at ˆ 0.2R = . Note that if R̂  is greater 

than 10, then an R̂  value equal to 10 should be used because our results are limited to R̂ ≤10.  

The regression coefficients ( )sβ ′  are given in Table 3.2 for each period value. 

Interpolation of results for periods not in Table 3.2 can be performed, but extrapolation is not 

recommended. Preferably, this attenuation relationship should be used only for structures with 

periods less than three seconds because the effective period will lengthen as the system behaves 

nonlinearly. As a result, the effective period may be greater than the longest usable period for 
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elastic analysis (as discussed earlier). Therefore, the regression coefficients for oscillators with T 

' 1.5 sec were determined from the ground motion records with fHP ! 0.10 Hz. This is discussed 

further in the conclusion. 

Table 3.2  Regression coefficients for geometric mean value of Sdi/Sde ('1 through '6) and 
standard deviation ln Sdiσ  (a, b, and c1 through c4). 

T  (sec) & 1 & 2 & 3 & 4 & 5 & 6 c 1 c 2 c 3 c 4 a b
0.30 -0.1037 0.0138 -0.0059 0.0105 -0.0022 -0.074 0.002 -0.010 0.096 -0.077 0.9 3.8
0.40 0.1226 -0.0197 -0.0696 0.0160 -0.0008 0.013 0.008 -0.040 0.095 -0.045 0.7 3.8
0.50 0.0449 -0.0073 -0.0489 0.0106 -0.0007 0.017 0.006 -0.028 0.075 -0.036 0.9 3.0
0.60 0.1116 -0.0211 -0.0953 0.0178 -0.0003 0.037 0.008 -0.040 0.065 -0.010 1.0 2.9
0.70 -0.0759 0.0066 -0.0350 0.0076 -0.0003 0.050 0.007 -0.033 0.059 -0.013 1.8 5.0
0.75 -0.1307 0.0157 -0.0156 0.0038 0 0.030 0.006 -0.030 0.056 -0.012 1.8 4.5
0.80 -0.3233 0.0434 0.0568 -0.0069 0 -0.025 0.009 -0.047 0.048 0.016 1.2 2.0
0.85 -0.3798 0.0504 0.0971 -0.0117 -0.0004 -0.050 0.011 -0.056 0.037 0.035 1.2 1.8
0.90 -0.3791 0.0489 0.0913 -0.0102 -0.0005 -0.050 0.014 -0.072 0.046 0.041 1.2 1.4
1.00 -0.3800 0.0515 0.0660 -0.0084 -0.0005 -0.061 0.013 -0.064 0.073 0.007 1.4 3.4
1.10 -0.3324 0.0444 0.0378 -0.0051 0 -0.050 0.011 -0.056 0.078 -0.008 1.8 5.0
1.25 -0.3582 0.0463 0.0796 -0.0112 0.0006 -0.020 0.012 -0.062 0.039 0.037 1.4 2.0
1.50 -0.4244 0.0561 0.1125 -0.0157 0.0005 0 0.008 -0.040 0.020 0.038 1.0 2.2
2.00 -0.1304 0.0130 -0.0042 0.0009 0.0010 0 0.008 -0.041 0.045 0.014 1.4 3.5
2.50 -0.2275 0.0264 0.0537 -0.0072 0.0009 0 0.008 -0.038 0.053 -0.006 1.6 5.0
3.00 0.0693 -0.0195 -0.0603 0.0120 0.0001 0 0.013 -0.067 0.085 -0.009 1.2 2.0
4.00 -0.1692 0.0161 0.0348 -0.0038 0.0004 0 0.018 -0.088 0.091 -0.005 1.0 4.5
5.00 -0.4170 0.0517 0.0788 -0.0108 0 0 0.035 -0.177 0.165 0.017 0.8 5.0  

 
Originally, R̂ , Mw, lnRrup, and Mw·lnRrup, were used as predictors. After performing 

statistical analyses to test for the statistical significance of each variable, we concluded that only 

R̂  and Mw are important in the prediction of ln(Sdi/Sde). This conclusion is intuitive, because 

Sdi/Sde is expected to depend strongly only on the spectral shape. We anticipate that there will be 

little influence from a distance parameter on the spectral shape for records with distance less than 

95 km. Therefore, even though the distance parameter, Rrup, was found to be statistically 

significant for moderate periods (from 0.8 to 1.5 sec), it was excluded in order to reduce model 

complexity. For this same reason, parameters such as faulting style have also not been included 

in the regression model. Note that faulting styles on modern attenuation models can have some 

effect on changing the spectral shape. Therefore, it may have an influence on Sdi/Sde. 

3.9 EMPIRICAL FUNCTIONAL FORM FOR TOTAL STANDARD DEVIATION OF 
1nSdi 

The total residual, ln diSε , is defined as the sum of the two random variables 
ln deS

ε  and ( )ln /di deS Sε  for 

a given R̂  value and for a given period (Eq. 3.4). Therefore, the correlation between these two 

random variables is implicitly taken into account. The random variable ln diSε  is assumed to have 
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zero mean and variance equal to 2
ln diSσ . To validate the lognormality assumption for the total 

residual, ln diSε , the standardized residuals (i.e., transformed to have mean zero and unit variance) 

were plotted on standard normal probability paper (Fig. 3.9), which shows that the lognormal 

distribution assumption for ln Sdiε  is justified. 

  
(a) (b) 

  
© (d) 

Fig. 3.9  Normal probability plots of standardized ln diSε  at R̂  = 5 for (a) T = 0.3, (b) T = 0.6, 
(c) T = 0.8, and (d) T = 2.0 sec. 

The linear spline (continuous piecewise linear) functional form (Hastie et al. 2001) is 

used to model the total standard deviation of ln Sdi, ln diSσ . For simplicity, the shape of ln diSσ  (for a 

given T) with respect to R̂  is assumed to be invariant with respect to Mw, while its absolute value 

still depends on Mw. The ln diSσ  is adjusted to match the standard deviation calculated from the 

elastic attenuation relationship, ln deSσ , (at R̂  equal to 0.2) to avoid any inconsistency due to the 

differences in the ground motion datasets used in this study and those used to develop the elastic 

attenuation relationships. The functional form for the arbitrary component ln diSσ  is shown in 

Equation 3.8: 
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where ( )x +  denotes the “positive part” of x  and is defined as 

( ) ; 0
0;
x x

x
otherwise+

>/= 0
1

 

In Equation 3.8, a, b, and the 'c s  are regression coefficients.  

 

Fig. 3.10  Dispersion of Sdi and its fitted values for a 0.8 sec oscillator. 

For this Sdi attenuation relationship to be used with other elastic spectral ordinate 

empirical models (while still providing a smooth transition between elastic and inelastic spectral 

displacement), Equation 3.8 has been written with an arbitrary ln deSσ , and the values of c1 and c2 

are selected such that the equation is continuous at R̂ = 0.2. (We presume that most elastic 

ground motion prediction relationships provide roughly the same median result as that of 

Abrahamson and Silva (1997), which was used here to compute the Sde residuals.) The empirical 

dispersion of Sdi and its fitted model (for T = 0.8 sec) are shown in Figure 3.10. The coefficients 

(a, b, and 'c s ) for the total standard deviation, ln diSσ , are also provided in Table 3.2. 
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Fig. 3.11  Median ratio of ln diSσ  for geometric mean of two horizontal components to ln diSσ  
for arbitrary component (solid line) and its one standard error bands (dashed 
lines) estimated from 1000 bootstrap samples (Efron and Tibshirani 1993; based 
on total dataset). 

As stated previously, the ground motion attenuation relationship presented here was 

developed for a random horizontal component. It can also be used for predicting the geometric 

mean of the two horizontal components. The median prediction is unchanged. The ln diSσ  must be 

reduced, however. The typical Sde dispersion reduction is about 5% (Boore 2005). We have 

assumed the general form is that of Equation 3.8. The ratio results shown in Figure 3.11 can be 

used to obtain the standard deviation of the geometric mean. Standard errors of estimation are 

visually small. 

Note that the reduction of ln diSσ  is also typically about 5%. To a first approximation, we 

may simply replace the arbitrary component ln deSσ  (in Eq. 3.8) by the geometric mean ln deSσ  to 

obtain the geometric mean ln diSσ . To validate this approximation that ln , ln ,di diS geometric mean S arbitraryσ σ  is 

not statistically different from ln , ln ,de deS geometric mean S arbitraryσ σ , the median ratio of 

ln , ln ,di diS geometric mean S arbitraryσ σ  is plotted together with its one standard error (16th and 84th percentiles) 

bands; see Figure 3.11. The two percentiles were estimated from 1000 bootstrap samples (Efron 

and Tibshirani 1993). As seen from Figure 3.11, ln , ln ,di diS geometric mean S arbitraryσ σ  is not statistically 
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different from ln , ln ,de deS geometric mean S arbitraryσ σ . This implies that we need only input the geometric 

mean or arbitrary component ln deSσ  to obtain the geometric mean or arbitrary component ln diSσ , 

respectively.  

3.10 NUMERICAL EXAMPLES FOR Sdi ATTENUATION MODEL AND Sdi HAZARD 
CURVES 

Based on the empirical functional forms for lnSdi, that is, Equation 3.4, we formed the scenario-

based examples for four periods and for Mw ranging from 5.8 to 7.9, shown in Figure 3.12. These 

figures are based on strike-slip events with the Geomatrix site class C and Rrup = 30 km. Note 

that as Mw increases, ˆ
deS  also increases, resulting in increasing ground motion intensity and, 

ultimately, to nonlinear behavior. The effect of dy is also shown to contrast with the elastic case.  

  
(a) (b) 

  
(c) (d) 

Fig. 3.12  Predicted median values from Sdi ground motion prediction model for different T 
and dy pairs: (a) T = 0.3, (b) T = 0.6, (c) T = 0.8, and (d) T = 2.0 sec (for strike-slip 
mechanism, Rrup = 30 km, and Geomatrix site class C; based on fHP < 0.1 Hz 
dataset for T > 1.5 sec). 
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(a) (b) 

  
(c) (d) 

Fig. 3.13  Predicted median values from Sdi/Sde ground motion prediction model for (a) 
R̂ = 2, (b) R̂ = 4, (c) R̂ = 6, and (d) R̂ = 10 (based on fHP < 0.1 Hz dataset for T > 1.5 
sec). 

As explained earlier, the dependence of Sdi/Sde on Mw is stronger for shorter T (for the same R̂  

value), and the dependence of Sdi/Sde on Mw increases as R̂  increases (see Fig. 3.13). 

Examples of the Sdi ground motion hazard curves, computed via conventional PSHA 

(Cornell 1968; Frankel et al. 1996), for a Stanford University site surrounded by 10 major 

earthquake faults in the San Francisco Bay Area are illustrated in Figure 3.14 for different 

combinations of T and dy values. The differences between elastic and inelastic spectra are, of 

course, greater for shorter periods and smaller mean annual frequencies of exceedance. 
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(a) (b) 

 
(c) (d) 

Fig. 3.14  Representative Sdi ground motion hazard curves for different T and dy pairs at 
Stanford University site: (a) T = 0.3, (b) T = 0.6, (c) T = 0.8, and (d) T = 2.0 sec. 
MAF of exceedance versus displacement (based on fHP < 0.1 Hz dataset for T > 1.5 
sec). 

3.11 COMMENTS AND CONCLUSIONS FOR Sdi ATTENUATION MODEL 

An inelastic spectral displacement ground motion prediction model (“attenuation relationship”) 

as a function of R̂  and Mw was developed for bilinear oscillators ( 5%α =  and 5%ζ = ) for 

specified values of T and dy, the latter via a proxy R̂ . The predicted median strength-reduction 

factor, R̂ , was introduced because the real Sde is not known a priori for given ground motion 

record properties (i.e., Mw, Rrup, fault mechanism, soil type, etc.). The Sdi attenuation relationship 

developed here can be used to predict the Sdi probability distribution for free-field, non-near-fault 

earthquake ground motions on firm soil sites and of distance less than 95 km. In addition, the 

proposed Sdi attenuation relationship can also be used to obtain the probability distribution for 

either the arbitrary or the geometric mean component, provided that one has used the proper 



 75 
 

ln deSσ  for each case. In addition, we have illustrated that the lognormal assumption for the ln diSε  is 

justified even at a high-nonlinearity level. Our Sdi/Sde study is limited to R̂ ≤10. 

  
(a) (b) 

  
I (d) 

Fig. 3.15  Mean and one standard error bands of ln(Sdi/Sde) as function of R grouped into 
two fHP bins for (a) T = 2.0, (b) T = 3.0, (c) T = 4.0, and (d) T = 5.0 sec. 

The oscillator response data used here are based on the processed accelerograms made 

available by strong motion seismologists. However, seismologists face a problem in estimating 

the wave forms of accelerograms at lower frequencies. This is because the raw recorded ground 

motions need to be filtered to remove noise and correct for instrument bandwidth limitation. This 

has consequences when estimating the elastic responses of the long-period oscillators (Akkar and 

Bommer 2006; Bazzurro et al. 2004; Boore and Bommer 2005). For this same reason, it is 

difficult to obtain a reliable estimate of inelastic response, such as Sdi. To illustrate this problem, 

Figure 3.15 shows the mean of ln(Sdi/Sde) for two subsets of 291 records: one with the fHP ! 0.1 

Hz and the other with 0.20 < fHP < 0.25 Hz. The latter record set produces apparently 

unconservative results for large R values. Therefore, for T > 1.5 sec, one note of caution is made 

when using the model for “effective periods” (loosely speaking T R  for long-period systems) 
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greater than 10 sec (or 8 sec according to Silva’s recommendation). Recall, for this period range, 

we have restricted to records (when fitting the regression model) with fHP ! 0.1 Hz (leaving 169 

earthquake records). Once more broadband digitized recordings become available, these models 

may be more refined. Synthetic ground motions may also help to fill in this lack of low-

frequency ground motions. Note that this problem with respect to fHP also occurred when scaling 

the amplitude of earthquake ground motions. The scaling process is commonly performed in the 

PEER framework in performance-based earthquake engineering. 

The dependence of Sdi/Sde on Mw is significant, in particular, for short-period structures. 

As a result, assuming no dependence on Mw can lead to a biased estimate of the site Sdi seismic 

hazard, especially if the site hazard is dominated by a Mw different from the average Mw in the 

dataset used in developing the Sdi/Sde model. We assembled a larger ground motion dataset 

beyond that in the Silva (2003) database, which helped to improve the median prediction for Sdi 

for large Mw events. We observed that the difference in the predicted median value for Sdi from 

the two datasets for Mw smaller than 7 is negligible (within 3–5%). However, we observed quite 

different results when predicting the median value of Sdi for large Mw events, that is, greater than 

7. This difference is due to the extrapolation necessary when using a smaller dataset. The smaller 

dataset, because of its lack of large Mw events, tended to either over- or underestimate the 

predicted median value for Sdi by about 20–40% for short and long periods, respectively. It 

should be pointed out that this observation implies that the functional form is robust with respect 

to different datasets for small to moderate Mw cases. Note that we have not included the slight 

dependence of Sdi/Sde on lnRrup. Even though it is mildly statistically significant, it is of 

negligible practical importance because its corresponding coefficient is relatively small. 

As anticipated, the model predicts that short-period oscillators display softening (i.e., 

Sdi/Sde>1). The proposed model can also capture the “hardening” and “softening” behavior of 

Sdi/Sde observed in the moderate-period range, as well as the “hardening” behaviors for structures 

with long periods.  

Even though this Sdi ground motion prediction model was developed for bilinear 

oscillators, it can still be used as an effective intensity measure, IM, for the systems that 

experience severe stiffness and strength degradation, that are near collapse, with “smartly” 

chosen SDOF parameters based on the procedures described in Chapter 2 and in Tothong and 

Luco (2007).  
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The development of the Sdi/Sde empirical model has benefited from prior work done by 

Kennedy et al. (1984) and Sewell (1989). Their descriptions of how the inelastic displacement 

ratio, Sdi/Sde, varies from record to record as a function of the slope of the response spectrum 

guided the model development described earlier. Based on the three-period ranges, we observed 

that the dependence of Sdi/Sde on Mw becomes less significant for structures with longer periods. 

As expected, Sdi/Sde for short periods is more influenced by the response spectrum slope 

(Kennedy et al. 1984; Sewell 1989). For long-period structures, Sdi/Sde falls into the descending 

branch of the Sv spectrum; however, the spectral slope concept still holds. As can be seen from 

Figure 3.8, at the two-second period, the Sv slope of the small and moderate Mw bins is steeper 

(in absolute value) than that of the large Mw bin, resulting in lower Sdi/Sde. The influence of Mw 

on a structure with a comparatively long period (T > 2 sec) is relatively small compared with that 

for a short-period system. For example, in the case of a two-second period oscillator with ˆ 4R = , 

the difference in Sdi/Sde for large and moderate Mw is about 10%, whereas it is about 50% for a 

short period of 0.3 sec (see Fig. 3.7d and Fig. 3.7a, respectively). As a result, even though the Mw 

parameter is statistically significant for long-period systems, it may not be significant in practice. 

This Sdi ground motion prediction model can be directly and easily implemented in 

existing PSHA programs. The engineering community will then be able to develop structural 

demand hazard curves using Sdi as an IM (as opposed to Sde), which improves the accuracy of 

PSDA because the sufficiency assumption is fulfilled (Bazzurro 1998; Jalayer 2003; Luco 2002; 

Shome 1999; Vamvatsikos 2002). In addition, for deterministic response prediction approaches, 

once an Sdi hazard curve is developed, the target displacement required for NSP (FEMA-356 

2000) can be directly obtained for a specified site.  

For higher-mode sensitive structures, an IM that incorporates a higher-mode factor (see 

Chapter 2; and also Luco and Cornell 2006; Tothong and Luco 2007) is needed. This in turns 

requires developing new attenuation relations, which will be discussed in the next section. 

This chapter can be viewed as a general basis for developing such Sdi attenuation 

relationships. A more complex Sdi/Sde model, including other ground motion parameters (e.g., 

source mechanism, soil type – site shear wave velocity, surface rupture, etc.), could be developed 

which may reduce the total variation. However, such improvements may be negligible compared 

with the overall aleatory uncertainties presented in ground motions. Note that the Sdi/Sde model 

prepared here can be used with current or future Sde (or Sa) models that include dependence on 
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such factors. Finally, this model is not recommended for circumstances such as shallow soft soil 

sites or directivity-induced pulses that introduce a systematic change in the spectral shape. 

3.12 APPENDIX: GROUND MOTION ATTENUATION RELATIONSHIP FOR 
IM1I&2E 

For higher-mode-sensitive structures (i.e., tall, long-period buildings), Sdi is not as efficient and 

sufficient as it is for first-mode-dominated structures (discussed in Chapter 2; see also Luco 

2002; Luco and Cornell 2006), nor is it likely to be as robust with respect to scaling. These 

shortcomings (i.e., undesirable IM properties discussed in Chapter 2) are largely due to the fact 

that using Sdi alone does not capture the ground motion frequency content at higher-mode 

periods. As mentioned in Chapter 2 for high-mode-sensitive structures, Sdi with higher-mode 

factor (denoted as IM1I&2E) needs to be utilized (as explained below). 

As developed by Luco (2002) and Luco and Cornell (2006) and furthered by Mori et al. 

(2004) (who approach the problem from a predictor or simplified analysis perspective, rather 

than an IM perspective), the ground motion intensity measure IM1I&2E is calculated as a function 

of Sdi(T, dy), Sde(T2), and the elastic participation factors of the first two modes of the structure of 

interest (note that T2 is typically the second-mode period of the structure), i.e.,  

 ( ) ( )
( )

2
[2]

2 2
1 &2 [2]

1

, 1
,

de
I E di y

di y

PF S T
IM S T d

PF S T d

) *⋅
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where [2]
nPF is the nth-mode effective participation factor for interstory drift ratio (i.e., 

, , 1n i n i
n

ih
φ φ −−

Γ ⋅ ) that corresponds to the story of the structure at which 

( ) ( )2 2[2] [2]
1 2 2,di y dePF S T d PF S T) * ) *⋅ + ⋅+ ,+ ,  (which considers two modes) is maximized (for #max; Luco 

2002; Luco and Cornell 2006). In the expression for [2]
nPF , hi is the height of the ith story (above 

the ith floor), ,n iφ  is the ith-floor element of the nth-mode shape vector, and $n is the nth-mode 

participation factor, as defined in Chopra (2001). Note that here we have adopted the equation 

for IM1I&2E put forth by Mori et al. (2004), which is slightly different than the original equation 

proposed by Luco (2002) and Luco and Cornell (2006); the latter uses Sde(T1) in the denominator 

of the square root term, thereby involving three different spectral displacement parameters. In 

either case, the square-root term serves as a higher-mode modification factor for Sdi.  
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Applying a first-order mean-centered Taylor’s series expansion of the natural logarithm 

of Equation 3.9 in conjunction with the existing attenuation relationship for Sdi (see above and 

also Tothong and Cornell (2006) and Sde (e.g., Abrahamson and Silva 1997)), an attenuation 

relationship for lnIM1I&2E can be developed. This attenuation model can be directly utilized to 

compute (via PSHA) ground motion hazard curves in terms of IM1I&2E. Recall that an attenuation 

relationship gives the mean value and variance of the random variable as a function of seismic 

parameters such as Mw, Rrup, faulting styles, etc. The mean value of lnIM1I&2E can be estimated 

by simply evaluating the natural logarithm of Equation 3.9, i.e.,  
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at the mean values of lnSdi(T, dy) and lnSde(T2). The variance of lnIM1I&2E can be estimated as 
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 and Y = 

exp[lnSde(T2)–lnSdi(T, dy)] are evaluated at the mean values of the logarithm of the two spectral 

displacements. The variances ( )ln ,di yS T d
σ  and ( )2ln deS Tσ , like the mean values, are obtained from the 

attenuation models. 

3.12.1 Approximated Correlation Function between lnSdi and lnSde 

Strictly speaking, to estimate the variance for lnIM1I&2E (i.e., Eq. 3.11), the correlation function 

between lnSdi(T, dy) and lnSde(T2), ( ) ( )2ln , ,lndi y deS T d S T
ρ  needs to be developed. There is not yet an 

existing correlation model for this pair of random variables. We have, instead, approximated this 

function by taking advantage of the well-known equal displacement rule (Veletsos and Newmark 

1960) for moderate- to long-period structures, which are also the structures for which higher-

mode contributions become significant and IM1I&2E is needed. Assuming then that Sdi(T2, 

dy) ≅ Sde(T2), it implies that ( ) ( )2ln , ,lndi y deS T d S T
ρ  is approximated by ( ) ( )2ln ,lnde deS T S Tρ . Models for 
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( ) ( )2ln ,lnde deS T S Tρ  are available (e.g., Baker and Cornell 2006a; Inoue and Cornell 1990). The 

approximation is confirmed by selected empirical estimates in Figure 3.16. The difference 

between these two correlations is at most 0.13 for the second-mode period (Tj)—less than about 

two thirds of the first-mode period (T); as a result, the effect on the total variance (Eq. 3.11) due 

to this approximation is negligible. These empirical correlation functions are estimated from the 

291 ground motion records explained above. Note that in this figure, the correlation function is 

shown up to Tj = 10 sec. As discussed previously, because the high-pass filter frequency for this 

database is selected to be less than 0.25 Hz, the spectral ordinates (or ( ) ( )2ln ,lnde deS T S Tρ ) for periods 

longer than 3.25 sec may not be representative. 

In general, ( ) ( )2ln , ,lndi y deS T d S T
ρ  is smaller than ( ) ( )2ln ,lnde deS T S Tρ  (for Tj less than T) because once 

the systems behave inelastically, the effective period for elastic oscillator (Teff) elongates 

increasing the period ratio (Teff/Tj), hence reducing the correlation values. On the other hand for 

Tj>T, ( ) ( )2ln , ,lndi y deS T d S T
ρ  is larger than ( ) ( )2ln ,lnde deS T S Tρ  presumably because the period ratio of the 

effective period and Tj (Teff/Tj) will be closer to unity than T/Tj. The result is an asymmetric shape 

for the correlation function of lnSdi(T, dy) and lnSde(T2). Note that this correlation function of 

lnSdi(T, dy) and lnSde(T2) can be utilized to develop the conditional median (i.e., geometric mean) 

spectra given a specified level of Sdi (see Chapter 6, for example). 
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(a) (b) 

© (d) 

Fig. 3.16  Empirical spectral correlation functions for lnSdi(T, dy) and lnSde(Tj) for T equal 
to (a) 0.8 sec, (b) 1.0 sec, (c) 1.5 sec, and (d) 2.0 sec. Yield displacement, dy, is 
chosen to be same for all 291 ordinary records and associated with median Sde/dy 
of 1, 2, 4, and 8. Correlation functions between lnSde(T) and lnSde(Tj) are also 
superimposed for comparison (elastic case). Vertical dashed lines represent 
hypothetical first- and second-mode periods; latter is typically about one-third of 
first-mode period. 

3.12.2 Limiting Cases for Approximated IM1I&2E Attenuation Relationship 

The variance of lnIM1I&2E (Eq. 3.11) approaches the variance of lnSdi(T, dy) for the first-mode-

dominated structures and vice versa for purely second-mode-dominated structures. This can be 

easily shown by taking the limit of b in Equation 3.11 approaching zero and infinity, 

respectively. Note that for the statement to follow [ ]
X

⋅
!
 implies evaluating [ ]⋅  at the mean values 

of X , where X  is a vector of random variables. 
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It should also be noted here that 
1 &2ln I EIMσ  is always smaller or equal to ln diSσ . This is because 

ln deSσ  always increases from short- to long-period oscillators (e.g., Abrahamson and Silva 1997). 

Therefore with a stronger higher-mode contribution, 
1 &2ln I EIMσ  will be smaller than ln diSσ . This 

can be shown as follows.  

Given that 1.0
ln lndi deX X

g g
S S

∂ ∂+ =
∂ ∂! !

 and 
ln di X

g a
S

∂ =
∂ !

. For short, ( )2ln deS Tσ , ln ( , )di yS T dσ , and 

( ) ( )2ln , ,lndi y deS T d S T
ρ  will be simplified as ln deSσ , ln diSσ , and ρ , respectively. The total variance, 

1 2

2
ln I EIMσ , 

can then be written as ( ) ( )22 2 2
ln ln ln ln1 2 1

di de di deS S S Sa a a aσ σ ρσ σ+ − + − . By dividing this equation by 

2
ln diSσ , one can obtain ( ) ( )

2
2 ln ln2

ln ln

1 2 1de de

di di

S S

S S

a a a a
σ σ

ρ
σ σ
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. Assuming further that ρ  is unity 

(maximum), the equation can be simplified further as ( )( )( )2

ln ln1
de diS Sa a σ σ+ − . From the fact 

that 
2ln ( ) ln ( , )de di yS T S T dσ σ< , this factor is always equal to or less than unity implying 

1 2

2 2
ln lnI E diIM Sσ σ≤ . 
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3.12.3 Effect of Mw on IM1I&2E Attenuation Model 

In this section, we demonstrate the effect of Mw (i.e., spectral shape) on the IM1I&2E attenuation 

relationship. Three Mw values (i.e., 5, 6, and 8) are chosen to represent three different spectral 

shapes. Figure 3.17a shows the median spectral shape and the +/- one standard deviation bands 

for the three Mw scenarios. The source-to-site distance parameters were chosen such that the 

spectral ordinate at the first-mode period (i.e., 2 sec for this example) is approximately the same 

for all cases. As expected, smaller Mw has higher spectral ordinates at higher frequencies 

(implying stronger higher-mode contributions) than those of larger Mw. For example, shown 

below, the second-mode period is assumed to be one third of the first-mode period. The effective 

modal shape function for the first-two modes are shown in Figure 3.17b. The total number of 

stories is 10. 

  
(a) (b) 

Fig. 3.17  (a) Median response spectra for three Mw cases along with +/- one standard 
deviation bands. Vertical dashed lines indicate first- and second-mode periods, 
i.e., 2.0 and 0.67 sec (for this example). (b) Effective modal shape functions for 
example structure. 

The higher-mode contribution factors (i.e., the second factor in Eq. 3.9) are calculated for 

the three scenarios. The differences in the mean and the standard deviation ratios (between 

lnIM1I&2E and lnSdi) are calculated and shown in Figure 3.18.  
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(a) (b) 

Fig. 3.18  Influence of Mw (vis-à-vis spectral shape) on IM1I&2E attenuation model in terms 
of (a) difference in mean and (b) standard deviation of ln IM1I&2E. 

Note that the main contribution to both mean and standard deviation of lnIM1I&2E is 

primarily from the terms associated with the lnSdi itself. The stronger contribution is from the 

second mode (either from higher Sde(T2) or higher [2]
2PF ), the higher the deviation from the Sdi 

properties. Figure 3.18 shows how much the higher-mode factor due to different Mw values can 

change the median (i.e., geometric mean) and the dispersion values of Sdi. 

 

Fig. 3.19  Influence of Mw (vis-à-vis spectral shape) on ground motion hazard curves in 
terms of IM1I&2E. Results are normalized by normalized hazard for Mw 8.0. 

As expected, given the same level of Sa(T1), small Mw records contribute a stronger effect 

on the mean and standard deviation of lnIM1I&2E. For this simple case, the mean value of 

lnIM1I&2E is increased by 15% and the standard deviation is decreased by 10% (for small Mw) 

relative to the large Mw values. Figure 3.19 shows the influence of Mw on the ground motion 

hazard curves in terms of IM1I&2E. The plots are normalized with respect to that of large Mw to 
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highlight the effect of spectral shape due to Mw. As seen in the figure, IM1I&2E can capture the 

difference in the hazard at a site due to different earthquakes. 

 

 

 

 



 

4 Explicit Directivity-Pulse Inclusion in 
Probabilistic Seismic Hazard Analysis 

4.1 ABSTRACT 

Probabilistic seismic hazard analysis (PSHA) is widely used to estimate the ground motion 

intensity that should be considered when assessing a structure’s performance. Disaggregation of 

PSHA is often used to identify representative ground motions, in terms of magnitude and 

distance, for structural analysis. Forward-directivity-induced velocity pulses that may occur in 

near-fault (or near-source) motions are known to cause relatively severe elastic and inelastic 

response in structures of certain periods. Here, the principles of PSHA are extended to 

incorporate the possible occurrence of such a velocity pulse in a near-fault ground motion. For 

each magnitude and site-source geometry, the probability of occurrence of a pulse is considered 

along with the probability distribution of the pulse period given that a pulse does occur. A near-

source “narrowband” Sa modification to predict ground motion amplitude is utilized which takes 

advantage of this additional pulse period information. Further, disaggregation results provide the 

probability that a given level of ground motion intensity is caused by a pulse-like ground motion, 

as well as the conditional probability distribution of pulse periods associated with that ground 

motion. These extensions improve the accuracy of PSHA for sites located near faults, as well as 

provide a rational basis for selecting appropriate near-fault ground motions to be used in the 

dynamic analyses of a structure. 

4.2 INTRODUCTION 

In principle, when an earthquake fault ruptures and propagates toward a site at a speed close to 

the shear wave velocity, the generated waves will arrive at the site at approximately the same 
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time generating a “distinct” velocity pulse in the ground motion time history in the strike-normal 

direction (Singh 1985; Somerville et al. 1997). This intense velocity pulse usually occurs at the 

beginning of a record. This is referred to as the forward-directivity effect, which has been known 

for more than a decade to have the potential to cause severe damage in a structure (for example, 

Aagaard et al. 2000; Aagaard et al. 2001; Alavi and Krawinkler 2001; Bertero et al. 1978; Hall 

1998; Hall and Aagaard 1998; Hall et al. 1995; Iwan 1999; Iwan et al. 2000; MacRae et al. 2001; 

Singh 1985; Wald and Heaton 1998). The question of how to estimate the ground motion hazard 

for a site that may experience such a forward-directivity effect is raised because not all observed 

earthquake ground motions exhibit distinct velocity pulses when they are expected. Thus, 

probabilistic methods are used to quantify the effects of pulses in any given seismic 

environment. In the past, only a few available spectral acceleration attenuation relationships that 

account for the forward-directivity effect have been developed, e.g., Somerville et al. (1997), 

later modified by Abrahamson (2000). (It should be noted here that later, when we refer to that 

of Somerville et al. 1997, we actually mean the attenuation model modified by Abrahamson 

2000.) However, due to the limited samples of ground motions with distinct velocity pulses, such 

relationships were developed for a “broadband” rupture-directivity model. This broadband model 

simply decreases or increases the amplitudes of the spectral ordinates monotonically with respect 

to increasing period. Further, Somerville et al. (1997) used a data set consisting of both pulse-

like records and others, smearing out the effect of the former. 

Recent studies (e.g., Alavi and Krawinkler 2001; Baker and Cornell 2005b; Fu 2005; 

Mavroeidis and Papageorgiou 2003; Somerville 2003; see also Chapter 5) have shown that a 

ground motion with a distinct velocity pulse tends to cause heightened elastic response only in a 

narrow period range of structures, namely those with a natural period close to the pulse period 

(Tp). As a result, it is important to develop a “narrowband” ground motion attenuation 

relationship, in which only spectral amplitudes around Tp are modified, in order to better 

characterize this special class of ground motions and its statistical properties. This chapter 

describes and demonstrates an approach for PSHA that explicitly addresses records with such 

narrowband characteristics. Records without such pulses are treated separately. The chapter also 

highlights the information that needs to be developed and modified for this procedure. 

This chapter focuses on the pulse effect from forward directivity, and not on the 

permanent static ground motion displacement (“fling”), which is predicted to occur, for example, 

in the parallel component of a strike-slip mechanism. In reality, forward directivity and fling are 
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coupled depending on the orientation of the fault and faulting style (Bray and Rodriguez-Marek 

2004; Mavroeidis and Papageorgiou 2002). 

4.3 GROUND MOTION RECORDS 

The pulse-like ground motion recordings used in this study are a collection of the pulse motions 

identified by Mavroeidis and Papageorgiou (2003), Fu and Menun (2004), and Bazzurro and 

Luco (2004). The first two pairs of authors visually selected recordings deemed to contain a 

pulse in the velocity trace. Bazzurro and Luco (2004) selected records whose location relative to 

the fault rupture suggested that a velocity pulse was likely to occur, rather than directly 

identifying a velocity pulse in the record. As a result, we visually selected only the subset of their 

record set which appeared to contain a pulse. The first two author pairs fit a simple wave form 

with a modulating function to estimate the Tp, while Bazzurro and Luco (2004) used empirical 

mode decomposition (Loh et al. 2001) to estimate the Tp. The processed records, in the fault-

normal direction, were obtained from the Next Generation Attenuation database as of March 

2005 (NGA 2006). Ground motion records were selected from both firm soil and rock (based on 

Geomatrix site classes) for all faulting styles. This pooling of site and faulting sets is justifiable 

here because we expect that the pulse-like nature of these motions will dominate the spectral 

shape, and the spectral shape effects induced by other ground motion properties will be less 

influential. 

It should be pointed out that the identification of pulse ground motions is not unique, 

varying from one researcher to another. In the interest of obtaining a larger sample size, we have 

included the pulse-like set of any recording that at least one of these authors has identified as 

such. A total of 70 pulse-like records is contained in the resulting sample. These recordings are 

listed in Table A.2. These data are used here only to demonstrate the effects of such recordings 

and the application of the proposed PSHA procedure; the data set here does not affect the 

procedure per se. More systematic pulse identification methods (Baker 2007) are under 

development for the purpose of developing numerical estimates of the pulse probabilities and 

narrowband attenuation relationships necessary for practical implementation of this method. 
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4.4 BACKGROUND 

A near-fault (or near-source) pulse-like ground motion differs from a far-field motion by its 

“distinct” pulse in the velocity time history. Figure 4.1 shows an example ground motion 

recording that displays the forward-rupture-directivity effect in the fault-normal direction during 

the 1992 Landers earthquake. 

 

Fig. 4.1  The velocity time history at Lucerne station in the fault-normal direction during 
the 1992 Landers earthquake, demonstrating forward-rupture-directivity effect. 

This velocity record shows a clear low-frequency (long-period) wave form of the pulse. It 

should be pointed out that estimating the pulse period (Tp) is in itself a challenging problem due 

to noise present in accelerograms (Mavroeidis and Papageorgiou 2002). Rather than attempt to 

measure Tp by fitting a function to the velocity time history, we define Tp here as the period at 

the peak of the response spectral velocity (Sv) with 5% damping ratio. Past research has shown 

that this Tp value generally provides a good estimate of the period of the primary pulse present in 

the ground motion velocity time history (e.g., Alavi and Krawinkler 2001; Fu and Menun 2004; 

Sinan et al. 2005). This estimation procedure ensures a common definition of Tp for the entire 

record set. 

It has been shown that only structures within a narrow range of periods will be affected 

by a pulse record with a given Tp; thus, it is desirable to incorporate Tp in ground motion studies 

and structural analyses. It is also meaningful to know the relative value between the period of the 

structure and the pulse period of the ground motion (Alavi and Krawinkler 2001; Fu 2005; 
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Mavroeidis et al. 2004). Given this systematic behavior, it should prove valuable to incorporate 

Tp into PSHA. Including Tp as an extra variable will require some modifications in standard 

PSHA, as will be explained below. 

The pulse-like ground motions were grouped into Tp bins (e.g., 0.25!Tp<0.65, 

0.65!Tp<1.5, 1.5!Tp<2.5, 2.5!Tp<3.5, 3.5!Tp<4.5) to illustrate the narrowband characteristics. 

The estimated mean values of Tp ( pT ) in each bin are about 0.4, 1.0, 1.9, 3.1, and 4.0 sec, and the 

number of records in each bin are 13, 20, 8, 10, and 9, respectively. These periods will be used 

below to indicate the specific bin used to generate data for plots and numerical examples. Figure 

4.2 shows the estimated median (geometric mean) response spectra of the pulse-like motions 

from two different Tp bins. Also plotted in Figure 4.2 are median predictions of these spectra 

obtained from ordinary (Abrahamson and Silva 1997) and directivity-adjusted (Somerville et al. 

1997) ground motion prediction models. As can be seen from Figure 4.2, the median curves of 

the response spectra for the narrow Tp bins show peaks at periods around Tp and flatten back 

downward toward the median values of ordinary records as the periods move away from Tp, 

exhibiting the so-called narrowband effect. This is a characteristic of forward-rupture-directivity 

ground motions, as confirmed by observations from recent large earthquakes (Somerville 2003). 

In contrast, the “broadband” model for these ground motions predicts larger response spectral 

values at a wide range of periods, rather than just a narrow range around Tp. When comparing the 

median curves in Figure 4.2 with the predicted median curves using the Somerville broadband 

model (Somerville et al. 1997), where all periods are monotonically modified, it is clear that 

there is an important difference. This observation emphasizes that pulse-like ground motions 

cannot be adequately described by the monotonic broadband scaling.  
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(a) (b) 

Fig. 4.2  Empirical median response spectra of pulse-like records along with medians 
estimated from Abrahamson and Silva (1997) for ordinary records and from 
Somerville et al. (1997) for forward-directivity effect in fault-normal direction. Tp 
bins: (a) pT =1.0 and (b) pT =1.9. (Strictly, predicted median curves are median of n 
estimated medians as each record (i= 1, …, n) has its own earthquake magnitude, 
source-to-site distance, and median). 

To demonstrate the narrowband directivity spectrum, we plotted the median acceleration 

and velocity spectra of the pulse-like ground motions that have been grouped into Tp bins. Figure 

4.3 shows that only spectral periods near Tp are significantly amplified, while spectral periods 

further away from Tp are amplified less. 

  
(a) (b) 

Fig. 4.3  Median (a) acceleration spectra and (b) velocity spectra of pulse-like ground 
motions from three Tp bins. For illustration, only three of five bins shown. 

Figure 4.4 shows the estimated mean value of the normalized residuals (!) of the pulse-

like data (for four Tp bins) along with its +/- one standard deviation bands calculated using the 
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conventional attenuation relationship (i.e., Abrahamson and Silva 1997 model shown in solid 

line and shaded area, respectively) and the attenuation model accounting for the forward-

directivity effect in the fault-normal component (dotted line; Somerville et al. 1997). Epsilon, !, 

is defined as the number of standard deviations that the ground motion deviates from the 

predicted median attenuation model. The horizontal axis is the normalized period (T/Tp). The 

large deviation of ! from zero (here about 1.5 at T/Tp near unity) indicates the lack of fit when 

using a current attenuation model to estimate ground motion amplitudes of the pulse-like 

motions. The systematic deviation of ! from zero is clear, suggesting that Tp is a good indicator 

for predicting the spectral ordinates of pulse-like motions. 

(a) (b) 

(c) (d) 

Fig. 4.4  ! values plotted versus T/Tp grouped by Tp bins: (a) pT =0.4, (b) pT =1.0, (c) pT =1.9, 
and (d) pT =3.1. Solid and dotted lines are medians of normalized residuals with 
respect to Abrahamson and Silva (1997) and Somerville et al. (1997) attenuation 
models, respectively. Shaded area and thinner dotted lines are +/- one standard 
deviation bands using Abrahamson and Silva (1997) and Somerville et al. (1997) 
attenuation models, respectively. Bin with pT =4.0 sec is similar. 

The mean estimate of the normalized residuals decays to zero as oscillator periods shift 

away from Tp. It should also be pointed out that ! calculated using Somerville et al. (1997) fails 
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to capture the narrowband effect, as expected. Using Somerville’s modification factor simply 

monotonically shifts the median ! toward zero, while the shape remains virtually unchanged. 

This figure confirms what is expected from the narrowband effect as pointed out by Somerville 

(2003). The Tp bin grouping demonstrates that the effect is similar for short-, intermediate-, and 

long-period pulses.  

Figure 4.5 shows the histogram of the epsilon value, ! (cross-section of Fig. 4.4 at a 

specified T/Tp) using Abrahamson and Silva’s model (1997), of both pulse-like and ordinary 

ground motions. The latter ground motion set was compiled by Tothong and Cornell (2006) (see 

Table A.3). From Figure 4.5, we notice that pulse-like ground motions tend to have higher 

positive ! values than the ordinary records. This is because pulse-like ground motions are 

relatively strong for T/Tp=1.0 as compared to ordinary ground motions.  

  
(a) (b) 

Fig. 4.5  Histogram of epsilon at (a) T/Tp = 0.75 and (b) T/Tp = 1.0 for the pulse-like ground 
motion data set superimposed with that of ordinary earthquake records. 

It should also be pointed out here that among the records typically identified as near-

source, based on their proximity to the fault, only a fraction will display a clear-cut identifiable 

pulse-like behavior. Iervolino and Cornell (2007) find this fraction to depend upon magnitude 

and geometry but seldom to exceed 30%. Therefore recent statistical studies seeking to identify 

and quantify this narrowband effect out of the body of all near-source records have proven 

largely ineffective, i.e., the residuals show no significant T/Tp dependence. The large fraction of 

non-pulse-like records in the near-source regime, together with the broad scatter in the value of 

Tp tend to “smear out” and dampen the narrowband effect when looked at this way. In contrast, 

here we look only at the subset of records pre-identified as being pulse-like, when the effects are 

clear and quantifiable. 
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4.5 EFFECT OF PULSE-LIKE GROUND MOTIONS ON NONLINEAR 
STRUCTURAL RESPONSE 

To validate the importance of Tp and the differences between ordinary and near-field pulse-like 

motions, the inelastic displacement ratio (Sdi/Sde) of nonlinear oscillators for both ground motion 

sets versus the absolute spectral period, T, are plotted. Interested readers are referred to, for 

example, Chapter 3 or Tothong and Cornell (2006) for further explanation of Sdi/Sde and its 

significance. The bilinear oscillator (with 5% hardening stiffness and damping ratio) responses, 

given by the inelastic spectral displacement (Sdi) normalized by its elastic spectral value (Sde) at 

the same initial elastic period, are plotted in Figure 4.6 for a strength-reduction factor equal to 

four.  

  
(a) (b)

  
(c) (d)

Fig. 4.6  ln(Sdi/Sde) with strength-reduction factor equal to 4 for (a) 169 ordinary ground 
motions, (b) 70 pulse-like ground motions, (c) mean values of ordinary ground 
motions grouped by Tp, and (d) mean values of pulse-like ground motions grouped 
by Tp. 
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For inelastic responses, T/Tp=0.5 (i.e., a Tp that is twice as long as the elastic period of an 

oscillator) seems to be the most damaging case because the effectively elongated period drifts 

toward the peaks of the pulse period, Tp (e.g., Alavi and Krawinkler 2001; Fu 2005; Mavroeidis 

et al. 2004; Chapter 5). For the ordinary ground motion set, only ground motions with high-pass 

filter frequency less than or equal to 0.10 Hz are used to plot Sdi/Sde shown in Figure 4.6. In 

doing so, records with weak signals at long periods are removed, reducing the number of records 

from 291 to 169 accelerograms. 

Figure 4.6a and b shows Sdi/Sde for the ordinary and pulse-like ground motions, 

respectively. It is clear that the estimated mean (solid lines) and +/- one standard deviation 

(dotted lines) of ln(Sdi/Sde) of the pulse-like data set is higher for periods that range from 0.5 to 

3.0 sec, resulting in a broadband-like modification factor. ln(·) denotes the natural logarithm of 

(·) throughout. But Figure 4.6d (for three Tp bins) demonstrates that Sdi/Sde of a near-fault ground 

motion at a given period can be more precisely predicted if Tp is known. For example, for an 

oscillator with T = 2 sec, the estimated mean value of ln(Sdi/Sde) is approximately 0.1 for the 

broadband model (Fig. 4.6b), while it is approximately -0.2 for Tp = 1 or 2 sec and approximately 

0.7 for Tp = 4 sec (Fig. 4.6d). As shown in Figure 4.6c, knowing Tp for ordinary ground motions 

does not significantly help improve the characterization of the inelastic responses of nonlinear 

oscillators, so it is not useful to identify Tp for non-pulse-like motions (Recall that Tp, the period 

at the peak of Sv, is defined for even non-pulse-like records). 

Another example to illustrate the benefit of considering Tp in characterizing pulse-like, 

but not ordinary, ground motions is shown in Figure 4.7. The solid lines represent the correlation 

between lnSa at two periods when considering all records. The dotted lines represent the 

correlation between lnSa at two periods (T1= 2 sec and T2 versus T2) for ground motions with Tp 

values between 3.5 and 4.5 sec. For ordinary ground motions (Fig. 4.7a), we observe that the 

correlation function does not change whether using all ground motions or only ground motions 

with Tp close to 4 seconds. As seen in Figure 4.7b, however, the correlation of lnSa for all pulse-

like ground motions may differ dramatically from the correlation when using ground motions 

grouped by Tp bin. The correlation function between lnSa at two periods can be used to develop 

the vector-valued PSHA (Bazzurro and Cornell 2002) for the near-fault environment in order to 

couple with the vector intensity measure (Shome 1999) to improve the probabilistic response 

prediction of structures. 
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(a) (b) 

Fig. 4.7  Correlation of spectral acceleration between two spectral periods, T1= 2 sec and T2 
versus T2, when using records with Tp values between 3.5 to 4.5 seconds:  
(a) ordinary ground motions and (b) pulse-like ground motions. 

4.6 PSHA METHOD 

4.6.1 PSHA Considering Near-Source Effects 

Given the above results that indicate differences between near-source and ordinary ground 

motions, it would be desirable to modify the PSHA to incorporate these effects in a hazard 

analysis. In order to clarify the effort needed and to outline the differences for the pulse-like 

PSHA with the conventional PSHA (Cornell 1968; Frankel et al. 1996; Reiter 1990), we start 

with the following equation, which underlies the current standard approach for computing the 

mean annual frequency (MAF, ( )
aS xλ ) of exceeding a ground motion parameter, e.g., elastic-

pseudo-spectral acceleration (Sa) exceeding an intensity level x: 

 ( ) ( )( ) ( )
#

| , ,
1 ,

| , ,i i i ia a w rup w rup
w rup

faults

S i w rup w rup w rupS M R M R
i m r

x G x m r f m r dm drλ ν
=

= ⋅ ⋅ ⋅! "  (4.1) 

where iν  is the mean rate of occurrence of earthquakes on fault i above a minimum threshold 

magnitude. Uppercase denotes random variables, and lowercase indicates realizations of those 

random variables throughout this chapter. Mw is the moment magnitude and Rrup is the closest 

distance from the site to the rupture plane. ( ),
,i i

w rup
w rupM R

f m r  is the joint probability density function 

(PDF) of Mw and Rrup on fault i. 
aSG  is the Gaussian complementary cumulative distribution 

function (CCDF) of the lognormally distributed random variable Sa, which is defined as 
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where ( )Φ ⋅  is the standard Gaussian CDF, and ln | ,a w rupS m rµ  and ln | ,a w rupS m rσ  are the conditional mean 

and standard deviation of the natural logarithm of Sa, as obtained from a ground motion 

attenuation model (e.g., Abrahamson and Silva 1997). 

Building upon the above standard implementation of PSHA, it is now necessary to make 

several modifications to incorporate the effect of near-fault directivity. As in Somerville et al. 

(1997), we introduce a directivity parameter (X (or S)·cos#), where X = S/L; S is the projected 

distance (along the rupture plane) from the epicenter toward the site; L is the fault rupture length; 

and # is the azimuth angle between the fault rupture plane and the direction between the 

epicenter location and the site (Somerville et al. 1997). A similar definition is also available for 

the non-strike-slip case. In current near-source PSHA software, the location of the hypocenter is 

treated as random, inducing a distribution on S·cos# and requiring in effect an additional level of 

integration. Below for notational simplicity, we denote S·cos# as Z. In addition, we now propose 

to condition the prediction of Sa on Tp, and then to integrate over the distribution of possible Tp 

realizations. In addition, we chose to narrow our attention to pulse-like records because, as we 

have seen above, they impact linear and nonlinear structural response in predictable ways. 

Ultimately, this additional integration implies the need to develop an empirical relationship for 

the likelihood of observing a pulse-like ground motion given ground motion record properties, 

e.g., Mw, distance, directivity parameters, faulting styles, etc. (P[pulse| Mw, distance, directivity 

parameters, etc.]). This piece of information is currently under development by Iervolino and 

Cornell (2007). Once all of the pieces of information have been established, we can incorporate 

the near-source pulse-like effect into the PSHA using the following equation:  

 ( ) ( ) ( ), ,a a aS S non NS S NSx x xλ λ λ−= +  (4.3) 

where ,aS non NSλ −  is simply that shown in Equation 4.1 for distance greater than (approximately) 20 

km. The MAF of Sa for the near-source case ( ,aS NSλ ) is given as follows, where ,aS NSλ  is separated 

into two parts: the near-source hazard from the narrowband pulse-like ground motion events 

( , &aS NS pulseλ ), and the near-source hazard due to non-pulse-like records ( , &aS NS no pulseλ ). 

For a given fault within Rrup < 20 km, 

 ( ) ( ) ( ), , & , &a a aS NS S NS pulse S NS no pulsex x xλ λ λ= +  (4.4) 
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in which (assuming for simplicity only a single fault): 
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Note that [ ] ( ) [ ], ,
,

,
w rup w rup

w rup w rup

M R w rup M R w rup
m r m r

d m r f dm drλ ν⋅ = ⋅ ⋅ ⋅ ⋅" " "� � , where ( ), ,
w rupM R rup wd r mλ  is the 

absolute value of the joint mean rate of occurrence of events with (loosely speaking) Mw= mw and 

Rrup= rrup on this near-by fault. dtp and dz are the integration intervals of the realization values of 

variable Tp and Z (= S·cos#), respectively. | , , , ,a w rup pS pulse M R Z TG  is the Gaussian CCDF of aS  

conditioned on Mw, Rrup, Z, and Tp (or T/Tp), where T is the period of the oscillator. This 

narrowband Sa attenuation model is under development by NGA (e.g., Youngs and Chiou 2006). 

, , ,w rup pM R Z Tf  is the joint PDF of Mw, Rrup, Z, and Tp. Similarly, , ,w rupM R Zf  is the joint PDF of Mw, Rrup, 

and Z. Using the definition of conditional probability, the joint distribution , , ,w rup pM R Z Tf  in Equation 

4.5 can be broken down as | , , | , ,p w rup w rup w rupT M R Z Z M R M Rf f f⋅ ⋅ . However, Tp was shown to depend only on 

Mw (as cited above); therefore the function | , ,p w rupT M R Zf  is reduced to simply |p wT Mf . 

To compute ( ), &aS NS no pulse xλ  in Equation 4.4, it may be possible to use the same attenuation 

relationships (for the ordinary ground motions) for Rrup < 20 km and Rrup ' 20 km, but this must 

be confirmed as these Rrup < 20 km non-pulse-like motions are likely to have smaller median and 

standard deviation values than the current Sa attenuation models because they exclude the ground 

motions within 20 km with the severe pulse-like motions. Youngs and Chiou (2006) are also 

investigating this issue. 

For a fault with Rrup ' 20 km, the conventional PSHA (shown in Eq. 4.1) can be used to 

compute ( ),aS non NS xλ −  because large amplitude pulse-like ground motions, while not impossible 
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are not likely there. In effect, we carry out the above three PSHAs—namely 

( ) ( ), , &, ,
a aS non NS S NS pulsex xλ λ− and ( ), &aS NS no pulse xλ —and sum them to obtain the site-specific ground 

motion hazard. 

4.6.2 PSHA Disaggregation 

In addition to the hazard curves considered above, another common calculation in PSHA is 

disaggregation (Bazzurro and Cornell 1999; McGuire 1995). Typically, this calculation is used to 

compute the distribution of magnitudes, distances, and epsilon values contributing to occurrence 

or exceedance of some ground motion intensity level. In this section, disaggregation equations 

are developed to also provide the probability that a ground motion intensity level is caused by a 

pulse-like ground motion, and to provide the distribution of pulse periods associated with those 

ground motions. This disaggregation is important to structural engineers because it provides a 

rational basis for selecting representative ground motions (near-fault and non-near-source) to be 

used in dynamic analyses of a structure. 

To compute the probability that a ground motion with Sa equaling x is caused by a pulse-

like ground motion, the following application of Bayes’ theorem can be used. 

 [ ] ( )
( )

, &| a

a

S NS pulse
a

S

x
P pulse S x

x
λ

λ
∆

= =
∆

 (4.7) 

where ( ) ( ) ( )
a a aS S Sx x x xλ λ λ∆ = − + ∆  and %x is a small increment of Sa. 

Once the probability of experiencing pulse-like motions is known (P[pulse| Sa]), it would 

be helpful to know the distribution of associated pulse periods because (as mentioned above) the 

pulse period will affect the resulting structural responses. The following equation can be used to 

obtain the PDF of Tp conditioned on Sa equaling x and experiencing pulse motions. 
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where .  
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4.7 EXAMPLE 

We demonstrate the proposed PSHA framework and the potential effects of near-source effects 

by considering two hypothetical seismic cases, a firm soil site located Rrup= 3 km from a strike-

slip fault that produces only characteristic Mw 6.0 events, and another separate example in which 

the site is 14 km from a fault that produces only Mw 7.5 events. The mean annual rate of the 

characteristic earthquakes for both cases is assumed to be unity. In both cases, the site location 

projected onto the fault rupture plane is assumed to be in the middle of the fault. To incorporate 

directivity parameters, we assume that the epicenter location follows a uniform distribution along 

the fault. The fault lengths are 8 and 100 kilometers. For non-pulse-like records, we used the 

Abrahamson and Silva (1997) attenuation relationship. For pulse-like ground motions, a 

narrowband modification function was estimated from data shown in Figure 4.4. The Harversed 

sine function was used to fit the normalized residuals by increasing the median value (for 

0.5!T/Tp!1.5); the dispersion was assumed to remain unchanged. The empirical model used to 

estimate |p wT Mf  follows a lognormal distribution, which is similar to the one shown in Somerville 

(2003). The estimated median values of Tp ( ˆ
pT ) for the Mw 6.0 and 7.5 events are 0.7 and 4.7 sec, 

respectively. The standard deviation of lnTp given Mw ( ln |p wT Mσ ) is 0.7 in both cases. To 

approximate a continuous distribution, the realizations of Tp are varied from 0.1 to 15 sec using 

small 0.1 second intervals. Finally, the probability of a pulse occurring at the site given an event 

that, as used here, was based on early exploratory analyses by Iervolino and Cornell (2007), who 

found empirically that P[pulse| Mw, Rrup, S, #]= 1/(1+ exp(-( b0 + b1·Rrup + b2·S + b3·# 

+b4·(Rrup×#) +b5·(S×#)))), with b0= -4.589, b1= -3.914, b2= 4.046, b3= -4.923, b4= -2.883, b5= 

4.190. 

4.7.1 Uniform Hazard Spectra (UHS) 

The target MAF of exceeding Sa is chosen to be 1% in 100 years. The UHS of the two cases are 

shown in Figure 4.8. The thick solid line represents the UHS using Abrahamson and Silva 

(1997). The thick dotted line represents the total hazard using the proposed narrowband Equation 

4.3. The dashed and dashed-dotted lines represent MAF using Equations 4.5 and 4.6, 

respectively, i.e., they are the two contributions to the near-source hazard. The broadband 

directivity attenuation model (Somerville et al. 1997) is also shown (thin dotted lines). When 
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compared to the models of Abrahamson and Silva (1997) and Somerville et al. (1997), the 

proposed PSHA framework demonstrates a more intuitive picture of how narrowband pulse-like 

motions will affect the computed ground motion hazard.  

 
(a) (b) 

Fig. 4.8  UHS at MAF of exceeding Sv at 1% in 100 years for (a) Mw 6.0 and (b) Mw 7.5. 

Note that in Figure 4.8a the narrowband UHS is equal to the Abrahamson and Silva–

based UHS at shorter and longer periods, amplifying it only in a region of T centered on 0.5 to 2 

sec. This narrowband effect exists but is not so obvious in Figure 4.8b because the UHS 

computations are restricted by current attenuation law limitations to T < 5 sec. Periods 

significantly longer than the expected Tp of 4.7 sec; therefore, they cannot be shown. The UHS 

shows its largest amplification relative to Abrahamson and Silva (1997) at the T close to ˆ
pT , i.e., 

0.7 and 4.7 seconds for Mw 6.0 and 7.5, respectively. 

4.7.2 Effect of Tp| Mw Distribution 

As the introduction of Tp is what distinguishes this narrowband model from previous broadband 

models, in this section we explore the role of the conditional distribution of Tp given Mw on the 

near-source UHS. In the previous section we saw the effect of changes in the median of Tp due to 

changes in the causative magnitude. In Figure 4.9, we show (for the Mw= 6.0 case) the ratio 

(amplification factor) of the UHS for the narrowband approach versus that from the simple 

Abrahamson and Silva (1997) prediction. Note that as ln |p wT Mσ  increases this amplification 

broadens, has a lower peak, and has a peak at a longer period.  
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Fig. 4.9  Amplification factor for Mw 6.0 event. 

To illustrate more graphically the effect of ln |p wT Mσ on the UHS, we assume next two 

different ln |p wT Mσ  values: 0.7 and 0.2. The median value of Tp is 4.7 (for the Mw 7.5 case). In order 

to help visualize the effect of the narrowband modification, we use here a coarse, discrete, three-

mass approximation of the Tp distribution (Tp= 2.3, 4.7, and 7.0 sec). These three Tp values are 

assigned the appropriate probability mass function obtained from |p wT Mf . For ln |p wT Mσ = 0.7, the 

probability mass function for each Tp realization is 0.34, 0.28, and 0.38, respectively. The 

probability mass function is 0.08, 0.79, and 0.13, respectively, for ln |p wT Mσ = 0.2.  

Noticeably, the smallest Tp realization will be given a very different weight according to 

how large ln |p wT Mσ  is. This will affect the narrowband amplification at those periods. The UHS 

using these two three-mass Tp approximations are shown below in Figure 4.10 for the case of one 

fault producing only Mw 7.5 events. 

  
(a) (b) 

Fig. 4.10  Sv UHS using three Tp realizations for Mw 7.5: (a) with ln |p wT Mσ = 0.7 (b) with 
ln |p wT Mσ = 0.2. 
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The Sa or Sv amplification relative to Abrahamson and Silva (1997) is shown in Figure 

4.11 for three different cases: the Sv amplification for (1) Figure 4.8b, (2) Figure 4.10a, and (3) 

Figure 4.10b. 

 

Fig. 4.11  Amplification factor for Mw 7.5 event. 

The amplification is calculated as the ratio of Sv from the UHS based on the narrowband 

modification (Eq. 4.3) to Sv from the UHS that uses only Abrahamson and Silva (1997) for all 

periods and events. Note that the three-mass representation with ln |p wT Mσ = 0.7 produces a 

“lumpy” approximation to the continuous result. As shown in Figures 4.9 and 4.11, the peak 

amplification value is dictated by the effect of ln |p wT Mσ . The larger the ln |p wT Mσ , the more the shift 

in the peak amplification to the right (longer period). The smaller the ln |p wT Mσ , the narrower the 

amplification and the higher the peak. Even with ln |p wT Mσ = 0.2 there remains, however, a 

significant amplification of the UHS at T ( 2 sec. Indeed it must be remembered that the UHS is 

a weighted combination of possible future events. No matter what ln |p wT Mσ may be, individual 

spectra observed during these future events will have comparatively narrow response spectra 

with, potentially, a peak near, approximately, 2 seconds. The lowering and widening of the UHS 

with increased ln |p wT Mσ is a product of the UHS “averaging” process. 
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4.7.3 Disaggregation of PSHA Results  

Here we use Equations 4.7 and 4.8 to compute the probability of a pulse and the distribution of 

Tp values, conditional upon Sa = x. In Figure 4.12a, conditional distribution of Tp results (Eq. 4.8) 

are shown for Sa = 0.4g at T = 2 sec using the Mw 7.5 source example case. Similar results are 

shown in Figure 4.12b for an Sa level of 3.0g. These values of x correspond to annual 

probabilities of exceedance of 32% and 0.24% for this example case. The probabilities that these 

values occurred “due to” a pulse are 0.75 and 0.97, respectively (Eq. 4.7). The former Sa level 

(0.4g) represents an epsilon of about 0.6 relative to the median spectral acceleration predicted by 

Abrahamson and Silva (1997), which in effect assumes no pulse, while the latter value represents 

an epsilon of 3.5 if there were no pulse. Figure 4.13 presents similar results for the Mw 6.0 

illustration. The levels of 2-second Sa being conditioned upon here are 0.2 and 1.5g. These levels 

correspond to annual probabilities of 3.6% and 0.086%, respectively; the probabilities that they 

were associated with a pulse occurrence are 0.08 and 0.23, respectively, and the epsilons are 0.3 

and 2.8 relative to Abrahamson and Silva (1997). 

 

  
(a) (b) 

Fig. 4.12  Conditional probability density functions for Tp, given Sa= x and a pulse-like 
ground motion for 7.5 Mw: (a) Sa= 0.4g and (b) Sa= 3.0g for T= 2 sec. 

Based on these no-pulse epsilons, the lower values are not exceedingly rare (given an 

event), whereas the higher two values are — unless a pulse occurs and its period is such that it 

induces larger median ground motion amplitudes at the T of interest. Therefore, the occurrence 

of a larger ground motion amplitude “suggests” that a pulse occurred and increased the median 

prediction, i.e., the pulse period was not far from the period of interest. 
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(a) (b) 

Fig. 4.13  Conditional probability density functions for Tp, given Sa = x and a pulse-like 
ground motion for 6.0 Mw: (a) Sa= 0.2g and (b) Sa= 1.5g for T= 2 sec. 

These effects dictate in Figures 4.12–4.13 the shapes of the disaggregated Tp 

distributions, i.e., the conditional distributions given Sa = x. The left-hand sides (lower Sa values) 

are similar in shape to the marginal distributions of Tp (i.e., here, the lognormal distributions 

given Mw 7.5 or 6.0). The right-hand sides (higher Sa values), on the other hand, show sharp 

conditional probability mass increases near the period of interest. 

It is anticipated that these disaggregation results will be of particular use in guiding the 

selection of sample ground motion recordings for use in nonlinear dynamic foundation and 

structural analysis.  

4.8 DISCUSSION 

This chapter has presented an explicit-pulse-based PSHA method in terms of Sa, elastic spectral 

acceleration, as the scalar ground motion intensity measure. It appears in the development of the 

equations as well as in the illustrations. This intensity measure was chosen because it is the 

conventional and most familiar one. The PSHA then provides conventional uniform hazard 

spectra as well as insights from the disaggregation by pulse and pulse period that supplement the 

conventional Mw, Rrup, and epsilon disaggregation results. Together these results can be used as 

much as they are now for near-source sites to aid in the selection and scaling of recordings for 

use in foundation and structural dynamic analyses, e.g., to estimate the probability distribution of 

response given an Sa value with a specified mean annual frequency. This may mean scaling to 

that Sa level a sample of records chosen to reflect the causative magnitude, distance, and epsilon 
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range, plus, now, to reflect the correct fraction of pulse-like records together with their 

appropriate range of Tp values. In this way the effects of pulse-like records on, for example, 

nonlinear response (Section 4.5) will be captured and their contribution to the seismic threat 

ascertained. Analogous to the procedures that have been developed to deal with the (local) peak-

valley or “epsilon” effect (Baker and Cornell 2005b; Baker and Cornell 2006b), careful record 

selection, and/or weighting and/or local regression techniques may all help make the assessment 

of structural response distributions easier in the near-source case as well, although the 

dimensionality has been increased to include Tp. These procedures all require disaggregation 

results. For example at 3.0g intensity with Mw 7.5, if the total ground motions needed are 30 

records, engineers will then select 29 (i.e., 0.97×30) pulse-like ground motions with Tp values 

that approximately match the distribution in Figure 4.12b, and one non-pulse ground motion 

matching the Sa disaggregation on ! (probably the mean value in this case). 

While written for Sa, the PSHA equations (e.g., Eq. 4.3) also hold if Sa is replaced by 

virtually any other candidate scalar intensity measure (IM). In particular, they hold if elastic Sa is 

replaced by Sdi, which has been shown (Chapters 2 and 5; see also Luco 2002; Luco and Cornell 

2007; Tothong and Luco 2007) to be a very effective IM. With Sdi as the IM in the explicit-pulse 

PSHA, again an attenuation law for pulse-like ground motions would need to be created. The 

robustness that Sdi has shown with respect to pulse-like ground motions in the past (e.g., Tothong 

and Luco 2007) suggests that the (Sdi-based) epsilon versus T/Tp plots parallel to Figure 4.4 

would be significantly different, with the mean lying closer to zero for all T/Tp. This robustness 

also suggests that the shape of | ,p diT pulse Sf  would be less sensitive to the ground motion amplitude 

level and to Tp. All this muting of the pulse effects implies that record selection and scaling 

should be simpler if Sdi is used as the IM. Some of these same conclusions may also prove true 

for IMs such as Sa-AVG, the spectral acceleration averaged over a relevant frequency band. Finally, 

extension of the explicit-pulse PSHA to a vector IM such as <Sa, !> or <Sa, !, Tp > is also 

straightforward in principle. 

4.9 CONCLUSIONS 

A framework is proposed to incorporate accurately the effect of near-source pulse-like ground 

motions into PSHA. The framework explicitly incorporates the likelihood of experiencing pulse 

motions and the corresponding distribution of pulse periods, Tp, into the analysis. The PSHA is 
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separated into two parts: non-near-source contribution and the near-source contribution. The 

former is simply a conventional PSHA. The latter or near-source-contribution is separated 

further into that due to the event of experiencing a pulse-like motion and that when a pulse is not 

in evidence. For the pulse case, a new narrowband modification for the ground motion 

attenuation model needs to be developed. For the non-pulse, but near-source case, the available 

attenuation models may prove to be adequate. 

The direct output of the analysis includes intensity measure hazard curves and uniform 

hazard spectra, UHS. To improve seismic hazard assessments, disaggregation results provide the 

conditional distributions of the causative event variables (i.e., !, Mw, distance, P[pulse], Tp, etc.) 

that are associated with a ground motion at a given intensity level. In the same way that Mw, 

distance, and ! disaggregation is provided in standard PSHA, the near-source PSHA framework 

can provide disaggregation information for P[pulse] and Tp distribution for a specified ground 

motion intensity level. This disaggregation information is important in selecting historical 

earthquake ground motions for structural analyses because it improves the understanding of 

earthquakes and their effects on structures. The method is illustrated with elastic spectral 

acceleration as the intensity measure using a simplified, preliminary model for the narrowband, 

pulse-like ground motion model. The disaggregation results of P[pulse] and the conditional Tp 

distribution are shown to vary with the intensity level. 

Once a PSHA analysis using the proposed procedure is complete and implemented, it will 

not require additional effort from the engineers. It is simply a modification to, e.g., the USGS 

hazard maps, together with supplementary information provided by disaggregation regarding the 

contribution of pulse-like ground motions to the seismic hazard. This extension will improve the 

usefulness and accuracy of PSHA results at sites that might be subjected to near-source ground 

motions with pulse-like forward-directivity effects. 

 

 

 

 



 

5 Structural Performance Assessment under 
Near-Source Pulse-Like Ground Motions 
Using Advanced Ground Motion Intensity 
Measures 

5.1 INTRODUCTION 

Performance-based seismic evaluation is a process that results in a realistic understanding of the 

quantified risk due to future earthquakes for a proposed new structure or the upgrade of an 

existing structure. To evaluate the seismic performance of a structure at a designated site 

susceptible to near-source (or near-fault) and/or ordinary ground motion records, probabilistic 

seismic demand analysis (PSDA) can be used to calculate the structural performance information 

(i.e., mean annual frequency of exceeding a given level of structural responses). PSDA combines 

a site-specific ground motion hazard curve of a ground motion intensity measure (IM) with 

structural responses from nonlinear dynamic analyses of the given structure. An advanced IM, 

which contains spectral-shape information as well as information about the structure, can be 

expected to be suitable for selection and scaling records. The desirable properties of an IM are 

the efficiency, the sufficiency, and the scaling robustness. An efficient IM is defined as one that 

results in a relatively small dispersion of structural responses given the level of ground motion 

intensity (IM). A sufficient IM is defined as one that renders structural responses conditionally 

independent of ground motion properties (e.g., earthquake moment magnitude (Mw), distance, 

epsilon, pulse period, etc.) at a given intensity level (epsilon and pulse period are defined below). 

A sufficient IM implies robustness with respect to record selection and scaling. Sufficiency of an 

IM is desirable because it reduces the complexity in both the PSDA calculation as well as the 

record selection procedure. Lastly, scaling robustness is defined as producing no bias in the 
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responses of scaled records relative to as-recorded ground motions (defined in Chapter 2; see 

also Luco and Bazzurro 2004; Tothong and Luco 2007).  

Pulse-like ground motions are typically very intense and are known to cause severe 

damage in structures. The characteristics of these motions are different from ordinary records in 

that they often exhibit a long-period pulse in the velocity-time histories, causing an unusual 

shape in the response spectrum. Elastic-based IMs have been shown to be inefficient and 

insufficient, and, in particular, to introduce biases when used as a basis for scaling the near-

source (or near-fault) pulse-like ground motions (Baker and Cornell 2005b; Luco 2002; Luco 

and Cornell 2006; Tothong and Luco 2007). This is mainly due to the lack of spectral-shape 

information (for pseudo-spectral acceleration at or near the first-mode period of the structure, 

denoted as Sa(T1) or Sa for short) and the fact that only the local shape at the fundamental period 

of the structure is contained for Sa and epsilon (denoted here as <Sa, !>). Note that in this 

chapter, Sde is used interchangeably with Sa, simply for direct comparison with Sdi. Epsilon (!) is 

a proxy for measuring the deviation between the Sa of an as-recorded ground motion and the 

predicted median value from the a ground motion prediction model (i.e., attenuation relationship; 

for example, Abrahamson and Silva 1997). An inefficient IM introduces a large dispersion in 

responses. In addition, an insufficient IM suggests that the conditional probability distribution of 

responses will depend on how the records are selected, and if this fact is neglected, the results 

may well be biased.  

This study investigates the effectiveness of advanced ground motion IMs such as Sdi 

(inelastic spectral displacement) and IM1I&2E (a SRSS combination of inelastic spectral 

displacement at the first-mode period and the elastic spectral displacement at the second-mode 

period (Luco 2002; Luco and Cornell 2006). We shall show that the use of these advanced IMs 

leads to efficient and sufficient estimates of the seismic performance of structures (from elastic 

behavior to global collapse of a structure) even when pulse-like records are used inadvertently; 

for example, when the site is located away from faults and such records are not anticipated to 

occur at the site. This apparent missed-selection of record types is intentionally done to 

investigate the strength of the sufficiency property of an IM with respect to the pulse period (Tp, 

defined below) of the pulse-like record. 

The ground motion intensity measure IM1I&2E is calculated as a function of Sdi(T, dy) 

(where T = T1 and dy is the yield displacement of an oscillator), Sde(T2), and the elastic 

participation factors of the first two modes of the structure of interest, i.e., 
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where [2]
nPF is the nth-mode effective participation factor for interstory drift ratio (i.e., 
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( ) ( )2 2[2] [2]
1 2 2,di y dePF S T d PF S T) * ) *⋅ + ⋅+ ,+ ,  is maximized (for #max; Luco 2002; Luco and Cornell 2006). 

In the expression for [2]
nPF , hi is the height of the ith story (above the ith floor), ,n iφ  is the ith-floor 

element of the nth-mode shape vector, and nΓ  is the nth-mode participation factor, as defined in 

Chopra (2001). Note that here we have adopted the equation for IM1I&2E put forth by Mori et al. 

(2004), which is slightly different than the original equation proposed by Luco and Cornell 

(2002; 2006); the latter uses Sde(T1) in the denominator of the square root term, thereby involving 

three different spectral displacement parameters. In either case, the square root term serves as a 

higher-mode modification factor for Sdi. 

5.2 MOTIVATION 

Near-source pulse-like ground motions, in general, have two characteristics: forward directivity 

and fling. Forward directivity occurs when a fault rupture propagates toward a site with a rupture 

velocity close to the shear wave velocity. This phenomenon causes most of the seismic energy 

from the rupture process to arrive in a single, large, long-period pulse at the beginning of the 

record in a short span of time (Chen 1995; Hall and Aagaard 1998; Singh 1985; Somerville et al. 

1997). The intense velocity pulse is mostly oriented in the fault-normal direction due to the 

radiation pattern of the shear dislocation on the fault plane (Singh 1985; Somerville et al. 1997). 

In some cases, the most severe direction can be different from the fault-normal direction (e.g., 

the ideal fault plane may not locally coincide with the actual fault direction; Mavroeidis and 

Papageorgiou 2002). 

Another important aspect of near-fault ground motions is fling, which is the permanent 

static displacement in the fault-parallel direction for strike-slip faults or in the fault-normal 

direction for dip-slip faults (Chen 1995; Hall and Aagaard 1998; Singh 1985). Fling is a result of 

a permanent ground displacement that generates one-sided velocity pulses, whereas forward 

directivity is a dynamic phenomenon that produces no permanent ground displacement, and 
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hence two-sided (reversing) velocity pulses (Bray and Rodriguez-Marek 2004; Hall and Aagaard 

1998; Hall et al. 1995; Singh 1985). The reversing pulse motion in a fault-normal component is 

potentially more damaging than the one-sided pulse (Hall and Aagaard 1998; Hall et al. 1995; 

Ryan and Hall 1998). The standard processing techniques of “raw” strong motions remove parts 

of the peak shear-wave displacement and essentially the whole static displacement through 

filtering (Chen 1995; Mavroeidis and Papageorgiou 2002). Given the difference between forward 

directivity and fling as well as the difficulty in processing the data, it is desirable to treat them 

separately. This study focuses on the forward directivity from the fault-normal component of 

near-fault ground motions. 

The response of structures subjected to pulse-like motions may be much more damaging 

than that to ordinary records. The damage due to pulse-like motions is from only a few large 

displacement excursions (at the beginning of the records of short duration) rather than from a 

large number of oscillations (Bertero et al. 1978). Hence, records will transmit impulse energy 

into the structures in a short period of time. Past studies (e.g., Alavi and Krawinkler 2001; 

Anderson and Bertero 1987; Anderson et al. 1999; Bertero et al. 1978; Cuesta and Aschheim 

2001; Fu 2005; Hall and Aagaard 1998; Hall et al. 1995; Iwan 1997; Iwan 1999; Iwan et al. 

2000; Luco and Cornell 2006; MacRae et al. 2001; Mavroeidis et al. 2004; Sasani and Bertero 

2000; Sinan et al. 2005; Veletsos et al. 1965; Zhang and Iwan 2002a; Zhang and Iwan 2002b) 

have extensively studied the effects of pulses on structures (either using actual near-fault records 

or simplified waveforms representing the typical pulse-like nature of near-fault ground motions). 

Interested readers may find these cited references helpful to provide the fundamental behavior of 

structures subjected to pulse-like records. 

Due to the interest in strong earthquake ground motions (i.e., at a low ground motion 

hazard level vis-à-vis long-return period motions), pulse-like motions are selected and used as a 

sufficiency test for the advanced IMs considered. This study investigates the effectiveness of the 

advanced IMs and whether or not they can sufficiently characterize the pulse-like motions. 

5.3 NEAR-SOURCE PULSE-LIKE GROUND MOTIONS 

Near-source pulse-like ground motions are often characterized by intense velocity or 

displacement pulses with relatively long periods that clearly distinguish them from typical far-

field ground motions. Pulse-like records are much different from ordinary records especially 
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when they are observed in the velocity- or displacement- rather than acceleration-time histories. 

Note though, that not all ground motions at sites that satisfy site-source geometrical 

configurations exhibit intense velocity pulses. Conversely, forward directivity may occur when 

geometrical conditions are not satisfied (Bray and Rodriguez-Marek 2004; Mavroeidis and 

Papageorgiou 2002). It should be noted that, as a result, it is rational to utilize the probability of 

experiencing a pulse for a near-fault site to quantify the future earthquake hazard. This concept is 

illustrated in Chapter 4 (see also Tothong et al. 2007) where we perform a site-specific seismic 

hazard analysis for a site located close to faults.  

A particularly important property of pulse-like motions is the pulse period (Tp). Some 

past investigators (e.g., Bazzurro and Luco 2004; Bray and Rodriguez-Marek 2004; Sinan et al. 

2005) have estimated Tp from the duration at which velocity is equal to 10% of the peak velocity. 

Alavi and Krawinkler (2001) define it as the period associated with the global peak of the 

velocity spectrum (Sv). Mavroeidis and Papageorgiou (2003) determine Tp such that the Sv of 

their synthetic records exhibit a peak at about the same peak period observed in the recorded 

pulse motions. In this study, the Tp is defined as the period associated with the peak of Sv. Note 

that the correlation between the two Tp definitions is about 0.85 (Bray and Rodriguez-Marek 

2004; Sinan et al. 2005). 

A database of 70 pulse-like earthquake ground motion records rotated to the fault-normal 

direction are compiled from records that have been identified as having “distinct” velocity pulses 

by Mavroeidis and Papageorgiou (2003), Fu and Menun (2004), and Bazzurro and Luco (2004). 

Bazzurro and Luco (2004) selected records whose location relative to the fault rupture suggested 

that a velocity pulse is likely to occur, rather than directly identifying a velocity pulse in the 

record. Accordingly, records have been visually identified based on whether they contained a 

pulse before including the records in the database. The processed records, in the fault-normal 

direction, are obtained from the Next Generation Attenuation (NGA) database as of March 2005. 

All ground motions are recorded on firm soil or rock based on Geomatrix site classes for all 

faulting styles. The earthquake magnitude, Mw, ranges from 5.6 to 7.6, and the closest distance to 

rupture ranges from 0.07 to 22 km. The set of 70 pulse-like records is listed in Table A.2. 
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5.4 STRUCTURES ANALYZED 

To study the effect of pulse-like motions, four generic moment-resisting frames designed by 

Ibarra and Krawinkler (2005) are used for analysis. Each generic frame has a single bay with 

story stiffnesses and strengths chosen to be representative of typical structures. The peak-

oriented hysteretic model considered (Ibarra et al. 2005) is used at the beam ends and at the bases 

of columns. This model utilizes energy-based deterioration through a cyclic deterioration 

parameter ( , , ,s c k aγ ), as well as the following backbone curve parameters: the strain-hardening 

stiffness ratio (set equal to 3%), which is relative to the elastic stiffness (Ke); the capping 

ductility ($c/$y) (set equal to four), which is defined as the displacement at the peak strength ($c) 

divided by the yield displacement ($y); and the post-capping stiffness ratio ( cα ), relative to Ke. A 

detailed description of this hysteretic model can be found in (Ibarra et al. 2005). Their hysteretic 

properties are summarized in Table 5.1 (the backbone for this hysteretic model is illustrated in 

Chapter 2). 

To distinguish among these structures, a four-number code is adopted. The first two 

numbers indicate the number of stories, and the last two numbers indicate the first-mode period 

of vibration. The primary structure considered in this chapter has six stories and a first-mode 

period equal to 1.2 sec; it is referred to as structure 0612. The base shear strength coefficient for 

this structure is 20% of its total weight. The structural demand parameter considered in this 

chapter is the peak maximum interstory drift ratio (#max; peak response over time and maximum 

over the height of the structure) because #max has been shown to correlate well with the structural 

(i.e., joint rotations) and non-structural damage (e.g., partition walls). 

Table 5.1  Hysteretic model parameters for generic frames considered in chapter. 

Structure 
code

Number 
of stories T 1 [sec]

Ductility 
capacity 
()c/)y)

Post-capping 
stiffness ratio 

(*c)

Cyclic 
deterioration 

parameter 
(#s,c,k,a)

0303 3 0.3 4 -5% 50
0606 6 0.6 4 -10% ∞
0612 6 1.2 4 -5% 50
0909 9 0.9 4 -5% 50  

 
Note that these generic frames are especially sensitive to higher modes because they have 

been designed to achieve the same story drift ductility under the parabolic lateral load pattern 

specified in FEMA-356 (2000). This design objective results in a straight-line, first-mode shape 
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function, i.e., the structure will be very flexible in the upper stories. This makes them sensitive to 

higher-mode excitations. Typically, engineering designed buildings are much stiffer in upper 

stories, and therefore will be less sensitive to higher modes. The pushover analysis using this 

parabolic lateral load pattern exhibits a kink at the yield drift level because of the simultaneous 

yielding of the pre-defined plastic hinges. 

5.5 SHORTCOMINGS OF ELASTIC-BASED IMs: Sa AND <Sa, $> 

For tall, long-period structures, Sa is neither efficient nor sufficient in explaining the variability 

in the responses of structures for both ordinary (Shome 1999) and near-source pulse-like records 

(Luco 2002; Luco and Cornell 2006; Tothong and Luco 2007). For ordinary records, the bias 

associated with scaling the amplitude of records using Sa can be explained by the effect of peaks 

and valleys in the response spectrum vis-à-vis !. The insufficiency of Sa can be corrected by 

incorporating ! via either a vector IM or detailed record selection (Baker and Cornell 2005a; 

Baker and Cornell 2006b). Given a level of Sa, epsilon has been shown to capture the average 

(over a number of records) local spectral shape at T1. Epsilon is efficient and sufficient for only 

ordinary ground motions, largely because the correlation between lnSa at T1 and other periods 

decays slowly as the period shifts away from T1 (discussed further in Chapter 6). Therefore, 

much information (about Sa at other periods) can be gained from knowing Sa and ! at T1. 

Near-source pulse-like ground motions, on the other hand, exhibit “narrowband” spectral 

shape (Somerville 2003; Tothong et al. 2007, see also Chapter 4). The correlation function 

between lnSa, for example, at Tp and other periods drops off rapidly as the period ratio increases 

for pulse-like records (as compared to ordinary records). For pulse-like motions, Baker and 

Cornell (2005b) have shown that ! is particularly insufficient with respect to the period ratio 

between Tp and the modal periods of the structure (Tp/T). Previous studies (e.g., Alavi and 

Krawinkler 2001; Cuesta and Aschheim 2001; Fu 2005; Mavroeidis et al. 2004; and others cited 

above) have pointed out that the responses of structures subjected to pulse-like motions will 

depend on Tp/T1, peak amplitude of the ground motion velocity, number of half-cycle pulses, 

strength of the structure, and the response of interest. 

Given this insufficiency of the elastic-based IMs (i.e., Sa, <Sa, !>), it is interesting to 

investigate how the advanced IMs (such as Sdi and IM1I&2E) perform under narrowband spectral 

shape ground motions. The study here considers structural behavior from the elastic range to 
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global dynamic instability (i.e., collapse) of the structures. Collapse is defined as the point at 

which the IDA (Vamvatsikos and Cornell 2002a) curve of a record becomes flat. 

  
(a) (b) 

Fig. 5.1  Dependency of maximum interstory drift ratio, "max, on Tp/T1 when records scaled 
to specified Sde (or equivalently Sa) level. Records scaled to produce counted-
median story ductility of about (a) 2 and (b) 4. Horizontal lines indicate median 
(i.e., geometric mean) "max values. 

Figure 5.1 demonstrates the dependency of #max on Tp/T1 (i.e., it shows that Sa is 

insufficient with respect to Tp/T1). Each circle denotes the response of each pulse-like record after 

scaling to a specified intensity level. The thick solid lines indicate the average #max values within 

a specified window of data (the average is redone at different values of Tp/T1). This moving-

window average (Hastie et al. 2001) is utilized to illustrate the dependency of responses and 

Tp/T1. At a low-ductility level, responses are more sensitive to higher modes than at a higher 

ductility level, and are more influenced by Tp/T1 less than unity (likely when Tp is close to the T2 

of the structure; see the peak at about Tp/T1=0.5 in Fig. 5.1a). At a higher ductility level, the 

nonlinearity of the first-mode contribution becomes significant, and the influence from Tp/T1>1 

is the range of interest. 

The sufficiency of <Sa, !> with respect to Tp/T1 was investigated by Baker and Cornell 

(2005b). They found that <Sa, !> is not sufficient, and other vector IMs (i.e., Sa with spectral 

ordinate at other periods; Bazzurro and Cornell 2002; Vamvatsikos and Cornell 2004) need to be 

used. The illustration below shows the insufficiency of <Sa, !> with respect to Tp/T1. The vertical 

axes show the residuals of ln#max when records are first scaled to a given Sa level, then the 

responses of the scaled motions are regressed against the ! of each record using linear regression. 

The residuals are simply the observed minus the predicted values of ln#max. If ! is effective in 
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predicting the responses of pulse-like motions, there should be no trend as observed in the Sa. A 

similar trend (as compared to Sa alone) can, however, be observed when using <Sa, !>. 

  
(a) (b) 

Fig. 5.2  Residuals of "max (on Sa and !) versus Tp/T1 when records scaled based on Sde (or 
equivalently Sa). Records scaled to produce counted-median story ductility of 
about (a) 2 and (b) 4. 

Again, the responses of a structure conditioned on <Sa, !> show a dependency on Tp/T1. 

This is clearly an undesirable feature for the IM. This is largely because, for pulse-like motions, 

response spectra usually exhibit a sharp change in the spectrum making it difficult to simply 

estimate spectral shape using Sa and the local spectral shape at T1 (vis-à-vis !). This insufficiency 

of Sa and <Sa, !> with respect to Tp/T1 (Fig. 5.1 and Fig. 5.2, respectively) implies that the 

responses of structures will depend on how records are selected. For example, if records are 

selected from Tp/T1 close to unity, the responses will be, on average, smaller than the overall 

average responses, and vice versa if records are selected from Tp/T1 of about two (i.e., responses 

will be, on average, larger than the overall average responses).  

5.6 STRUCTURAL RESPONSES USING ADVANCED GROUND MOTION IMs 

In this section, advanced IMs are investigated for their efficiency and sufficiency with respect to 

pulse-like ground motions. The results are compared with the conventional elastic-based IM (i.e., 

Sa). By design, Sdi can simply “sense” aggressive or benign1 behavior of an individual record. 

Inelastic spectral displacement, Sdi, can also distinguish between weak and strong structures 

                                                 
1  Aggressive or benign behavior refers to inelastic displacement ratio (Sdi/Sde, a proxy for spectral shape; discussed 

in detail in Chapter 3) of ground motion record. Aggressive behavior refers to case when Sdi is greater than Sde, 
and vice versa for benign behavior. 
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because the strength will affect the degree of nonlinearity, i.e., whether the effective period of 

the structure will climb up or down the pulse-like velocity spectra (e.g., Alavi and Krawinkler 

2001; Bazzurro and Luco 2006). 

Similar to Figure 5.1, records are scaled using Sdi, IM1E&2E (which, recall in Chapter 2, is 

similar to IM1I&2E but does not reflect inelasticity, i.e., Sdi is replaced with Sde), and IM1I&2E. The 

results are displayed in Figure 5.3. At the ductility levels of two and four, for example, Sdi and 

IM1I&2E demonstrate their efficiency (smaller dispersion as compared to Figs. 5.1–5.2) and 

sufficiency with respect to Tp/T1 (i.e., there is no obvious trend between #max and Tp/T1, at least 

for Tp/T1 greater than unity for Sdi). An exception may be made at a low-ductility level (with 

Tp/T1 less than unity) where higher-mode responses may contribute to #max (Fig. 5.3a). As a 

result, Sdi may not be sufficient. This insufficiency can be improved by simply using an IM that 

incorporates a higher mode, such as IM1E&2E and IM1I&2E (see the reduction in the area of Tp/T1<1 

in Fig. 5.3c and d, respectively). 
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(a) Sdi (b) Sdi 

  
(c) IM1E&2E (d) IM1E&2E 

 
(e) IM1I&2E (f) IM1I&2E 

Fig. 5.3  Maximum interstory drift ratio versus Tp/T1 for 0612 structure. Records are 
scaled using Sdi (a and b), IM1E&2E (c and d), and IM1I&2E (e and f) to produce 
counted-median "max ductility of about 2 and 4 for each IM, respectively. 
Horizontal lines indicate median (i.e., geometric mean) "max values. 

IM1E&2E, by design, does not help reduce the systematic bias at Tp/T1>1, especially at 

higher ductility levels because of the significant contribution from the first-mode inelasticity to 

the #max (compare Fig. 5.1b–Sdi with Fig. 5.3d–IM1E&2E). 
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Table 5.2  Percentages for area reduction (as a proxy for total bias reduction) for Sdi, 
IM1E&2E, and IM1I&2E relative to that of Sde at different counted-median ductility 
levels. 

Structure code 0303 0606
Median drift 

ductility S di IM 1E&2E IM 1I&2E S di IM 1E&2E IM 1I&2E

1 35 12 39 -10 74 43
2 61 3 60 35 -31 50
4 48 16 47 65 -8 52
6 -28 4 -33 62 -8 47
8 21 8 18 64 9 54

Structure code 0612 0909
Median drift 

ductility S di IM 1E&2E IM 1I&2E S di IM 1E&2E IM 1I&2E

1 11 57 65 0 53 52
2 37 17 37 -50 11 -25
4 38 4 18 46 -35 46
6 8 -13 28 62 0 46
8 39 37 40 57 -2 39  

 

Table 5.3  Percentages for dispersion reduction in responses for Sdi, IM1E&2E, and IM1I&2E 
relative to that of Sde at different counted-median ductility levels. 

Structure code 0303 0606
Median drift 

ductility S di IM 1E&2E IM 1I&2E S di IM 1E&2E IM 1I&2E

1 5 4 12 -8 36 22
2 42 1 43 26 6 39
4 42 4 43 38 3 47
6 26 0 26 36 1 30
8 37 -1 38 39 15 38

Structure code 0612 0909
Median drift 

ductility S di IM 1E&2E IM 1I&2E S di IM 1E&2E IM 1I&2E

1 -4 48 47 -16 48 35
2 -1 17 26 -20 14 6
4 17 7 26 16 8 26
6 32 -3 11 6 -3 14
8 46 3 11 22 8 24  

 
In terms of the overall bias reduction, Baker and Cornell (2005b) utilize the area (in 

absolute values) between the moving-average and the median #max value as a statistic. The 

percentages for the area reduction (relative to that of Sa for Sdi, IM1E&2E, and IM1I&2E) are 37, 17, 

and 37% for the median ductility of two and 38, 4, and 18% for the median ductility of four. 

Overall, the same explanation holds true for other considered structures (see Table 5.2). 
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In general, Sdi and IM1I&2E demonstrate their efficiency (smaller dispersion of the 

responses) relative to that of Sde. At low-ductility levels where higher-mode contributions are 

considerable, an IM incorporating higher mode parameters is necessary, and Sdi alone is not 

efficient. Averaging over the buildings, scaling records using Sdi and IM1I&2E can reduce 

dispersion of the response (relative to that of Sde) by about -1% (i.e., no reduction is gained) and 

26% at the ductility of two and by 17 and 26% at the ductility of four (see Table 5.3). Commonly 

at low-ductility levels (less than 2), IM1E&2E shows the largest percentage reduction in the 

dispersion (except for the 0303 structure where higher modes may not be significant). This 

dispersion reduction decreases (for IM1E&2E) as the median ductility increases, as expected. The 

percentage reduction for Sdi, in general, increases as the median ductility increases. IM1I&2E tends 

to reduce the dispersion at both low- and high-ductility levels. 

5.6.1 Incremental Dynamic Analyses and Collapse Fragility of Structure Subjected to 
Pulse-Like Ground Motions 

Given the importance of the modal periods of the structure relative to the pulse period, Tp, the 

records with Tp/T1'2 are labeled “aggressive case,” and the records with Tp/T1 of about unity are 

labeled “benign case.” Similarly, records with Tp/T1 of about 0.5 (reflecting the strong higher-

mode contribution, see Fig. 5.1) are labeled “higher-mode case.” The numbers of records in each 

case are 28, 13, and 13, respectively. The median response spectra for these records are 

illustrated in Figure 5.4. In Figure 5.5, the counted-median IDA curves are plotted for the 

different IMs (i.e., Sde, Sdi, IM1E&2E, and IM1I&2E) for the three cases. Collapse fragility curves 

(i.e., probability of collapse at a given ground motion intensity level, denoted as P[C|IM]) of 

these records are also illustrated in Figure 5.6.  
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Fig. 5.4  Median response spectra for aggressive, benign, and higher-mode records. Median 
response spectra of all 70 pulse-like records are also shown for comparison. 
Vertical dashed lines indicate first- and second-mode periods of structure (i.e., 1.2 
and 0.46 sec, respectively). 

Note that in this section records (for 3 record sets) are scaled to the same intensity level 

associated with the counted-median #max of 70 records (and not based on individual record set). 

Records are scaled to the same intensity level for the ease of comparison among the three record 

sets (for a given IM), as well as the same counted-median #max of 70 records for comparison 

among IMs. 

The trend between the median IDA curves and Tp/T1 for Sde, in most cases, is apparent at 

elastic to global dynamic instability (i.e., collapse) of the structure. First, the benign case shows 

the smallest counted-median #max values, and the aggressive case shows the largest values at a 

given intensity level (especially for Sde greater than 10). At low Sde levels (less than 10), the 

higher-mode case results in the largest counted-median #max values due to the strong higher-

mode contribution. As expected (even in the elastic range), scaling records using Sde cannot 

account for the higher mode responses (Shome 1999). Secondly, the discrepancy between IDA 

curves (Fig. 5.5a) indicates a larger dispersion in the response when records are scaled using the 

elastic-based IM, i.e., Sde. 
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(a) (b) 

  
(c) (d) 

Fig. 5.5  Counted-median IDA curves for aggressive, benign, and higher-mode records 
when using (a) Sde, (b) Sdi, (c) IM1E&2E, and (d) IM1I&2E as IM (for 0612 structure). 
Vertical dashed line indicates (first) yield drift level as determined from static 
pushover analysis. 

As shown in Figure 5.5c, IM1E&2E can help characterize higher-mode responses at low-

intensity levels (i.e., less discrepancy between IDA curves from each case as compared to Sde and 

Sdi shown in Fig. 5.5a and b, respectively). The median IDA curves, however, diverge as the 

intensity level increases. This is primarily because IM1E&2E does not capture the inelasticity of 

the first mode. Sdi and IM1I&2E (Fig. 5.5b and d), on the other hand, can characterize pulse-like 

effects at high-intensity levels. IDA curves using Sdi and IM1I&2E diverge less than in the Sde case. 

Only IM1I&2E, however, can capture both higher-mode contribution at low-intensity and first-

mode inelasticity at higher intensity levels. The smaller discrepancy between IDA curves implies 

the efficiency gained by using these advanced IMs (IM1E&2E at low-intensity levels, Sdi at high-

intensity levels, and IM1I&2E from elastic behavior to collapse of the structure). 
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(a) (b) 

 
(c) (d) 

Fig. 5.6  Empirical collapse fragility curves for aggressive, benign, and higher-mode 
records when using (a) Sde, (b) Sdi, (c) IM1E&2E, and (d) IM1I&2E as the IM. 

The dependency of the empirical collapse fragility curves2, P[C|IM], on Tp/T1 is also 

evident when Sde is used. The benign set shows the smallest P[C|Sde] and the aggressive set 

shows the largest P[C|Sde] at a given intensity level. In contrast to Sde, scaling records using Sdi 

and IM1I&2E is normally found to be sufficient relative to Tp/T1 (less discrepancy between 

P[C|IM] for different Tp/T1 record sets). As expected, IM1E&2E cannot capture the strong 

inelasticity imposed by the aggressive records (Fig. 5.6c), resulting in P[C|IM1E&2E] of these 

records to be different from the other two record sets. Including the first-mode inelastic 

parameter (i.e., Sdi) helps ensure the sufficiency property for the aggressive records (see Fig. 

5.6d). 

By using advanced IMs (Sdi and IM1I&2E), the dependency of responses on Tp/T1 is less 

pronounced because these IMs will assign a proper scale factor to each pulse-like record. 

                                                 
2 Empirical collapse fragility curves estimated by smoothing data using a normal kernel function (Hastie et al. 2001). 
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Aggressive records will be scaled less than the benign records at a specified IM level (i.e., 

median #max level); see Tables 5.4–5.5 for the comparison of the median scale factors of Sdi and 

IM1I&2E relative to those of Sde. For higher-mode records, using Sdi alone can overscale the 

records (as compared to IM1E&2E and IM1I&2E). Incorporating the higher-mode factor can help 

improve the scaling factor assignment to each case of records. These proper scale factors are 

determined (by using advanced IMs) such that records with different spectral shape produce 

comparable inelastic responses (i.e., achieving approximately the same median drift level). As a 

result, Sdi (for first-mode-dominated structures) and IM1I&2E are efficient, sufficient, and have 

scaling robustness with respect to pulse-like motions. This scaling robustness of Sdi and IM1I&2E 

relative to pulse-like motions will ultimately simplify the record selection procedure. 

Table 5.4  Median (i.e., geometric mean) scaling factor for aggressive, benign, and higher-
mode records scaled to target median (of 70 records) "max ductilities for 0612 
structure. 

Median drift      Benign case   Aggressive case Higher-mode case
ductility 2 4 2 4 2 4

S de 0.64 1.14 0.97 1.74 1.30 2.33
S di 0.83 1.85 0.91 1.57 1.54 2.95

IM 1E&2E 0.69 1.28 1.01 1.87 1.05 1.96
IM 1I&2E 0.88 1.83 0.98 1.64 1.18 2.20  

 

Table 5.5  Ratio of (median) scale factor relative to Sde for aggressive, benign, and higher-
mode records scaled to target median (of 70 records) "max ductilities for 0612 
structure. 

Median drift      Benign case   Aggressive case Higher-mode case
ductility 2 4 2 4 2 4

S di 1.30 1.63 0.93 0.90 1.18 1.26
IM 1E&2E 1.08 1.12 1.03 1.07 0.81 0.84
IM 1I&2E 1.38 1.61 1.00 0.94 0.90 0.94  

 

This efficient scaling assignment is illustrated in Figure 5.7 (in terms of peak interstory 

drift ratio, #i, for each record set), which shows that benign and aggressive records generate, on 

average, #max at the bottom story, while higher-mode records produce #max in the upper story. The 

#max of the aggressive and benign records are captured by Sdi because #max are generated at the 

bottom story (primarily from the first-mode contribution). Therefore, they are scaled such that 

the median values are close to the target drift level. As expected, Sdi provides no improvement 
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for the higher-mode records, i.e., #i at the top story is larger than the target drift levels (see Fig. 

5.7c–d). Note that (for a given IM) the target drift levels are determined as the counted-median 

#max (of 70 records) associated with the median ductility of 2 and 4. The records in each set are 

then scaled to the same intensity levels associated with these counted-median #max levels. 

To capture higher modes, IM1E&2E and IM1I&2E are used to scale these records. Both IMs 

seem to capture the responses from the higher mode records effectively (see Fig. 5.7e–f). The 

median responses (i.e., #i) of the higher-mode case are close to the target drift levels.  



 127 
 

 

  
(a) Sde (b) Sde 

  
(c) Sdi (d) Sdi 

  
(e) IM1E&2E (f) IM1E&2E 

Fig. 5.7  Median interstory drift ratio ("i) for aggressive, benign, and higher-
mode records when using: Sde (a and b), Sdi (c and d), IM1E&2E (e and f), 
and IM1I&2E (g and h) scaled to counted-median "max ductility of 2 and 4. 
Vertical dashed lines indicate drift ("max) levels associated with specified 
target ductility. 
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(g) IM1I&2E (h) IM1I&2E 

Fig. 5.7—continued 
 

Only the IM1I&2E , however, can capture the responses from the first-mode inelasticity, 

which can be seen in Figure 5.7g–h where we find that the medians of #max for all three cases are 

about the same and close to the median (of 70 records) target drift levels. To demonstrate that 

results displayed previously imply the unbiased response prediction, #max versus the scale factors 

are plotted in Figure 5.8. Records are scaled to the intensity levels associated with the counted-

median (of all 70 records) #max to produce the median ductility of 4. As mentioned previously, 

using Sdi or IM1I&2E can result in scaling robustness (i.e., no statistically significant slope between 

#max and scale factors). Ground motion records will be scaled more or less (to achieve, on 

average, the same responses) depending upon their frequency contents relative to important 

modes of vibration of the structure. As illustrated in Figure 5.8a, structural responses scaled 

using Sde can be biased for aggressive records imposing strong inelasticity on the structure. 
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(a) Sde (b) Sdi 

  
(c) IM1E&2E (d) IM1I&2E 

Fig. 5.8  Maximum interstory drift ratio ("max) versus scale factor for records scaled to 
common value of (a) Sde, (b) Sdi, (c) IM1E&2E, and (d) IM1I&2E. Linear lines show the 
regression fits. Intersections of dashed vertical lines and fitted lines pinpoint 
median "max predicted for unscaled records. Example is for 0612 structure scaled 
to counted-median ductility (for 70 records) of 4. 

On the other hand, using Sdi alone cannot capture the higher-mode contributions imposed 

by higher-mode records. Similar to previous findings, a higher-mode factor (i.e., IM1E&2E and 

IM1I&2E) is needed to capture higher-mode records in order not to introduce biases in the 

responses. IM1I&2E appears to produce unbiased responses when records are scaled to the same 

intensity level for both first- and higher-mode dominated records. The results shown here 

bolsters the previous findings on the scaling robustness for Sdi (for first-mode-dominated 

responses) and IM1I&2E for near-source pulse-like records as well as ordinary records (e.g., 

Chapter 2; see also Tothong and Luco 2007). 
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5.6.2 Structural Response Hazard Curves 

5.6.2.1 PSDA Results Using Aggressive, Benign, and Higher-Mode Records 

To completely illustrate the probabilistic response prediction using advanced ground motion IMs, 

the pulse-like records are used to estimate the structural response hazard curves. Probabilistic 

seismic demand analysis (Chapter 2; see also Tothong and Luco 2007) is utilized as a tool to 

estimate the MAF of exceeding a specified value of a maximum interstory drift ratio (denoted as 

maxθλ ).  

  
(a) Sde (b) Sdi 

  
(c) IM1E&2E (d) IM1I&2E 

Fig. 5.9  Structural response hazard curves for aggressive, benign, and higher-mode 
records when using (a) Sde, (b) Sdi, (c) IM1E&2E, and (d) IM1I&2E as IM. 

The ground motion hazard is estimated from the Van Nuys site located in Southern California. 

The directivity effect is not expected at this site, but pulse-like records are intentionally used to 

illustrate the effectiveness of the advanced IMs. 

For Sde, the structural response hazard curves, 
maxθλ , vary depending upon which record 

sets are utilized. Typically, the benign records cause smaller responses and hence may 
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underestimate the MAF of exceeding a specified drift level. Likewise, the aggressive records 

result in overestimation of the MAF of exceeding a drift level (at least for #max>2%, see Fig. 

5.9a). As mentioned above, the shortcomings of Sde and Sdi are evident when higher-mode 

contribution is considerable, for example at a low-drift level for long-period structures. Sde and 

Sdi cannot explain the variability in the responses due to higher modes (see Fig. 5.5a and b, 

respectively). This insufficient IM relative to higher mode in this case will ultimately result in the 

overestimation of 
maxθλ , especially at low-drift levels (see Fig. 5.9a–b). Including a higher-mode 

factor can improve the response prediction. IM1E&2E can capture the higher-mode responses but 

not the inelastic behavior of the first mode. As a result, 
maxθλ  using IM1E&2E subjected to the 

aggressive records is different (i.e., higher) from the other two sets (Fig. 5.9c). 

As can be seen in Figure 5.9b and d, the variation of 
maxθλ  among the aggressive, benign, 

and higher-mode records can be reduced when Sdi and IM1I&2E are utilized, as compared to that of 

Sde (Fig. 5.9a). The small differences seen in the figures are merely from the random sampling of 

a small sample size. The standard error (S.E.) of 
maxθλ (due to random sampling) can be estimated 

using the bootstrap technique (Efron and Tibshirani 1993). This is done by re-sampling records 

from the sample dataset repeatedly with replacement to generate bootstrap samples. Then, each 

bootstrap sample set will be used to calculate 
maxθλ . The S.E. of 

maxθλ is simply the standard 

deviation of the replicated 
maxθλ . The S.E. for 

maxθλ  of these records is simply proportional (by a 

factor of 40 .no records ) to those shown in Chapter 2. 
maxθλ  for the three sets of records are not 

statistically different when using Sdi (at least not for the higher-mode records) and IM1I&2E. 

5.6.2.2 PSDA Results Using 70 Pulse-Like Records 

The following comparison is performed when pool (i.e., 70) records are utilized. First, the 

structural response hazard curves using various IMs for ordinary and pulse-like records are 

compared in Figure 5.10. The structural response hazard curve using <Sde, !> is also 

superimposed for comparison. For ordinary records, 
maxθλ using either the advanced IMs (Sdi and 

IM1I&2E) or the vector IM, <Sde, !>, result in approximately the same curve. This statement is also 

valid for the other structures (see Chapter 2; and also Tothong and Luco 2007). 
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(a) (b) 

Fig. 5.10  Structural response hazard curves for 0612 structure using Sde, <Sde, $>, Sdi, 
IM1E&2E, and IM1I&2E  as IM for (a) 40 ordinary and (b) 70 pulse-like records. 

For near-source pulse-like records, <Sde, !> is not effective when using records from only 

a specific Tp/T1 bin. However, using a broad range of Tp/T1 records averages out the benign and 

aggressive responses, resulting in a similar 
maxθλ  result as that of ordinary motions (Fig. 5.10b). 

The result, in general, may not be accurate because selection of Tp/T1 records should be dictated 

by the hazard at the site, and using all pools of Tp/T1 records in that case may not be appropriate. 

It should be noted that (for Sde and < Sde, ! >) the result of pool pulse-like records will depend 

upon the relative number of aggressive and benign records in the dataset. Including parameter Tp 

with <Sde, !> could help improve the probabilistic response prediction. The conditional (joint) 

probability density function of Tp and ! at a specified Sde level is needed, which can be estimated 

from the proposed PSHA framework explained in Chapter 4 (see also Tothong et al. 2007). It 

also explained how one should select records for a site close to faults when Sde–based is 

employed. 

To effectively compare the results between ordinary and pulse-like records, the bootstrap 

technique (explained previously) is performed and illustrated in Figure 5.11. The results can be 

considered satisfactory when (1) the median value for the MAF of collapse is in the range of 2-

3×10-4 (based on Fig. 5.10) and (2) the plus/minus one standard error bands of the two sets 

overlap (or are close) to each other (as a first-order significance test; Hastie et al. 2001). 
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(a) Sde (b) Sdi 

  
(c) IM1E&2E (d) IM1I&2E 

Fig. 5.11  Bootstrap results estimating median (heavier lines) and its plus/minus one 
standard error bands (lighter lines) for structural response hazard curves 
computed using (a) Sde, (b) Sdi, (c) IM1E&2E, and (d) IM1I&2E as IM. Example is for 
0612 structure. 

A statistically significant test is reported by the p-values of the difference between the 

median 
maxθλ for the ordinary and pulse-like records. The hypothesis testing on whether the results 

are indeed an effect of using insufficient IMs or simply a variability of record-to-record is due to 

the small sample size estimation. P-values are determined simply from the bootstrap results 

determined previously. The statistics here are simply the median ratio of 
maxθλ  (or simply the 

mean value of the difference in replicated 
max

ln θλ ) for near-source and ordinary records. P-values 

are determined as the probability of t-statistics to be as large as or greater than the observed 

value (in absolute term) assuming that the underlying mean values of both set are the same. The 

parameters for the observed statistics are determined from the bootstrap results. 

P-values (for all IM considered) reporting the difference in the median ratio of 
maxθλ  

between ordinary and pulse-like records are mostly greater than the 5% significant level for the 
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0612 structure. A small p-value (at 5% significant level) indicates that 
maxθλ  of the ordinary and 

pulse-like records are statistically significantly different (assuming the underlying 
maxθλ is the 

same for both record sets). A large p-value (i.e., greater than 5%) indicates the opposite effect, 

implying the effectiveness (i.e., sufficiency) of the IM. Therefore, using either ordinary or pulse-

like records produces statistically equivalent nonlinear dynamic analysis results of the structures. 

This coincidence does not, however, mean that the estimated responses are correct or unbiased, 

i.e., results using either ordinary or pulse-like records can both be biased when a poor choice of 

(insufficient) IM is used (i.e., Sde and < Sde, ! > subjected to pulse-like motions). The IDA results 

or drift hazard curves using Sde or < Sde, ! > will typically depend upon the relative number of 

aggressive or benign pulse-like records used in the record set. Only the 70 pulse-like record set 

used in this study coincidently produce such (the same) results as ordinary motions (for the Sde–

based IMs). As shown in previous sections with a careful study on the effect of pulse-like 

motions by Tp/T1 bin, the nonlinear dynamic analysis results are significantly different depending 

upon the relative periods of Tp and the modal periods of the structure. This section deserves 

noting that selecting the pulse-like motions for a structure can be misleading if records are not 

selected carefully. It is likely that investigators may conclude the results (subjected to a broad 

range of Tp/T1 pulse-like motions) to be approximately the same nonlinear dynamic analysis 

results as those using ordinary motions when Sde or < Sde, ! > are used. Using the advanced IMs 

(i.e., Sdi and IM1I&2E) can produce the same nonlinear dynamic analysis results regardless of the 

relative number of aggressive or benign records in the pool record set (as illustrated in the 

previous section).  

Overall, using Sdi (for first-mode-dominated structures) and IM1I&2E (for structures with 

significant higher-mode cases) can sufficiently characterize the response due to ordinary and 

pulse-like records. The higher-mode factor appears to be significant especially at low levels of 

nonlinearity. The bootstrap results of 
maxθλ  for ordinary and pulse-like motions indicate that the 

results are not statistically different (at 5% significant level). P-values are greater than 5% for 

almost all cases, implying the insignificant difference between ordinary and pulse-like cases. The 

difference seen is merely the variability of using a small sample size. However, this may be 

misleading in a case, for example, that 
maxθλ  of both record sets tend to bias (not correct) the 

response prediction in the same way, at least for Sde and IM1E&2E. For example, Sde and IM1E&2E 
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overestimate the 
maxθλ  for both ordinary and pulse-like sets, and they are not statistically different 

from each other. 

5.7 DISCUSSIONS 

To perform seismic risk analysis of a structure located either close to or away from a fault, the 

structural analysis results and ground motion hazard at the site need to be combined using PSDA. 

Even for the close-to-fault case, for Sdi or any IM that is sufficient with respect to the pulse-like 

property of certain near-field records, only the marginal probability distribution of the IM (i.e., 

ground motion hazard) is needed. For the sufficient IM, the structural analysis results (e.g., the 

IDA statistics or the conditional distribution of #max versus IM) using either ordinary or near-

source pulse-like records are statistically equivalent. In principle, ordinary or pulse-like records 

can be selected and used to perform nonlinear dynamic analyses. This property is a clear 

advantage of using sufficient (with respect to Mw, Rrup, !, and Tp) IMs. This, perhaps, unintuitive 

conclusion does not mean that a site with the potential for experiencing severe pulse-like near-

field records is not different from another site where pulses are not expected. For these sufficient 

IMs, the differences between the two sites will show up in the PSHA IM hazard curves and not in 

the response distributions. The challenge becomes to carefully estimate the hazard curves in 

these two cases. For a non-near-source site, it is necessary to have only the Sdi attenuation 

models such as those presented in Chapter 3. For near-source sites where directivity may be an 

issue, a more extreme modification to familiar PSHA is necessary. This PSHA is described in 

Chapter 4. 

In terms of Sa or other such insufficient IMs (as mentioned previously), for near-field sites 

the larger vector IM (Sa, !, and Tp) could be used in conjunction with the disaggregation results 

of Sa on !, Tp, and the probability of expecting pulse at a given intensity level. In addition, a 

detailed record selection would need to be made and nonlinear dynamic analysis performed 

separately for ordinary motions and for pulse-like motions with different Tp values. This is 

because the hazard for the site close to faults will be separated into non-near-source and near-

source cases. Therefore, the results need to be combined separately according to the probability 

of experiencing pulse (analogous to the approach described in Chapter 4). This approach is 

tedious and likely impractical in all but very special cases. Further selecting records based on ! 

and Tp would today still be very difficult if not impossible; selecting records based on ! for 
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ordinary ground motions is already problematic when extreme ground motions (i.e., low-hazard 

ground motions) are needed and scarce. There are not many two or two-plus epsilon records 

available from the current NGA ground motion databases (http://peer.berkeley.edu/nga/). 

Elastic-based IMs (such as Sa and <Sa, !>) cannot capture the sharp change exhibited in 

the spectral shape of pulse-like motions. Sa and <Sa, !> are not sufficient because they predict 

responses based on the local spectral shape at or near T1. This is acceptable for ordinary records 

due to the slow decay of the correlation function of lnSa between the two periods decays slowly, 

and the slope of the conditional median spectra of two or more epsilon does not change until the 

period ratio is about three or more. This issue will be discussed in more detail in Chapter 6. 

5.8 CONCLUSIONS 

Pulse-like motions are known to cause severe damage to structures depending upon the strength 

of the structure as well as the relative modal vibration periods of the structure and the dominant 

period of the pulse-like records (Tp/T1). To describe strong earthquake records at low-hazard 

levels, pulse-like records may be selected. This study investigates the effect of pulse-like on 

structures using advanced IMs. 

By investigating the relationship between the responses conditioned on Sa or <Sa, ! > 

versus Tp/T1, it is clear that the response of a structure depends on Tp/T1. Which Tp/T1 records 

should be used depends on the seismic hazard at the site. This information varies from site to site 

and structure to structure. Ignoring the effects of pulse-like records, Tp/T1, will ultimately bias 

the results. For example, if the seismic hazard disaggregation suggests that extreme motions are 

associated with records having Tp/T1 of about two, but records are selected from a wide range of 

Tp/T1, the Sa-based result will underestimate the seismic risk imposed by the hazards. 

The results of structural response hazard curves using the elastic-based IMs (e.g., Sa and 

<Sa, !>) will depend on how records are selected — i.e., conservative results when using 

aggressive records and unconservative results when using benign records (aggressive records are 

defined as records tending to cause relatively severe inelastic displacement ratio, Sdi/Sde, and vice 

versa for benign records). In general, engineers and/or earth scientists do not know in advance 

whether or not the future record will contain a pulse; thus, ultimately using such records will 

alter the seismic performance of structures. For example, the median collapse capacity (in terms 
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of IM) can be systematically dictated by including a few aggressive or benign pulse-like records 

into the record set used for analyzing the capacity of the structure. 

The results of this study demonstrate that scaling earthquake records using advanced IMs 

(such as Sdi and IM1I&2E; the latter is for the significant higher-mode contribution structures) 

subjected to pulse-like records is efficient, sufficient, and robust relative to scaling records. The 

results are statistically equivalent to the seismic performance values, 
maxθλ , carried out by using 

ordinary records. This is mainly because Sdi can directly capture the sharp change in the pulse-

like spectral shape of each record directly. Therefore, the degree of nonlinearity is captured 

automatically. By scaling records using Sdi or IM1I&2E to achieve the same median displacement 

level (i.e., the same ground motion intensity level), the aggressive records will be scaled less 

than the benign records, resulting in comparable (median) drift values. The main reason is that 

Sdi contains a proxy for the strength of the structure (Alavi and Krawinkler 2001; Bazzurro and 

Luco 2006).  

In addition to Mw, Rrup, and !, inelastic-based IMs (i.e., Sdi or IM1I&2E) are also sufficient 

with respect to the Tp, an important characteristic of the pulse-like records. This is a clear benefit 

of implementing the inelastic-based IMs. This ultimately implies that a detailed record selection 

is not necessary. Any ground motion records (any Mw, Rrup, !, or Tp) can be selected and scaled; 

the conditional response distribution is statistically the same (in other words, the IDA results are 

the same). The conditional probability distribution of response on Mw, Rrup, !, Tp, and IM is 

statistically equivalent to simply the probability distribution of response conditioned on IM 

alone. The only difference between a site located near a fault or away from a fault is only the 

(marginal) ground motion hazard curve (this information is illustrated in Chapter 4). With 

sufficient IMs, only the seismic hazard needs to be determined appropriately for a designated 

site. The conclusions drawn here are based on the generic-frame structures considered, which 

cover a range of structural configurations (i.e., number of stories, the first-mode period, first- or 

higher-mode dominated structures). To make a more general conclusion, a number of structures 

can be analyzed in the same fashion. 

 

 



 

6 PSDA:  Validation of IM-Based Approach by 
Simulation 

6.1 INTRODUCTION 

Estimating the seismic risk of a structure at a designated site would be relatively straightforward 

if earthquake records from all seismic sources in the region had been recorded there for millions 

of years. With unlimited computational resources, the seismic performance of a structure could 

be determined easily. Following the same basis, a simulation approach has been utilized to 

investigate the seismic performance of a structure at a designated site. The approach simply 

generates earthquake ground motions (thousands or more) from causative earthquake faults in 

the region for a site of interest. Nonlinear dynamic analyses of the structure are then performed 

using those simulated records. Assuming that the simulated records are representative of real (as-

recorded) motions, the seismic performance evaluation can be easily determined and considered 

to be the “exact” results. (In this chapter, the term “exact” refers to the results determined using 

simulated ground motions, and not necessarily the results determined using real ground motions.) 

Clearly, without sufficient computational power (e.g., super computer), this method seems 

impractical for practicing engineers (and hence will likely remain within the research 

community). 

Another approach to estimate the seismic performance (in a more efficient way) is to use 

the ground motion intensity-based (IM-based) approach. This approach has been utilized 

extensively by Cornell and co-workers and is referred to as probabilistic seismic demand 

analysis (PSDA). The U.S. Nuclear power industry has also used a similar method known as 

seismic PRAs (probabilistic risk assessments) for more than two decades (Hickman 1983). The 

advantage of this approach is that it requires far less intensive computing power. The seismic 

hazard at a site and the nonlinear dynamic analyses of the structures are decoupled. The effects 
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of ground motion characteristics on the structures are assumed to be dependent only on the IM. 

Structural responses at a specified IM level are assumed to be conditionally independent of 

ground motion characteristics (i.e., earthquake magnitude (Mw), source-to-site distance (R), 

ground motion epsilon, faulting styles, etc.). As a result, the chosen IM is a crucial parameter for 

this approach.  

Various ground motion IMs have been proposed in the past, for example, the advanced 

scalar IMs (i.e., the inelastic-based IM, Luco 2002) and the vector IMs (e.g., Bazzurro 1998; 

Bazzurro and Cornell 2002). The need for the vector IM is largely due to the use of the 

insufficient basis-IM, meaning the responses of a structure conditioned on IM depend upon 

ground motion record properties (Luco 2002). Using an insufficient IM, the results of nonlinear 

dynamic analysis will depend on how records are selected.  

For ordinary records, a vector IM of Sa and ! (denoted as <Sa, !>) has been shown to be 

an improved IM as compared to the basis Sa alone in probabilistic response prediction of 

nonlinear structures (Baker and Cornell 2005a). Note that ground motion epsilon (!) is a proxy 

for measuring the deviation between the elastic spectral acceleration (Sa) of an as-recorded 

ground motion and the predicted (median) value from the ground motion prediction model at a 

given period (i.e., the attenuation relationship; for example, Abrahamson and Silva 1997). 

Advanced IMs (such as inelastic spectral displacement, Sdi, and Sdi with higher-mode mode 

factor, IM1I&2E) have been shown to be accurate in estimating the seismic performance of 

structures for both ordinary (see Chapter 2, and also Luco and Cornell 2006; Tothong and Luco 

2007) and near-source pulse-like ground motions (Chapter 5, and also Luco and Cornell 2006; 

Tothong and Luco 2007). However, the question that remains unanswered is whether the final 

PSDA results using sufficient IMs are the “correct” values. In this study, this question will be 

investigated by means of simulation. Simulated ground motions will be generated and used as 

representative realizations of a scenario earthquake.  

The objective of this chapter is to validate the structural performance evaluated using the 

IM-based approach (i.e., Sa, <Sa, !>, and Sdi) with the results of the simulation approach. The 

results from the simulation are considered to be “exact” and used as benchmark values against 

the IM-based approach. 
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6.2 SIMULATED GROUND MOTIONS AND GROUND MOTION HAZARD 

6.2.1 Stochastic Ground Motion Model 

To simulate earthquake ground motions for this study, a stochastic ground motion model 

(Stochastic-Method Simulation also known as SMSIM; http://quake.wr.usgs.gov/~boore/) 

developed by Boore (1983; 2003) is adopted. Other models (e.g., Atkinson and Silva 2000; Wen 

and Wu 2001) also exist. It is not the focus of this study to compare the results among different 

models; only Boore’s model is considered. This stochastic approach is intended to simulate 

earthquake time series (accelerograms) using a point-source model with a desired (deterministic) 

Fourier amplitude spectrum determined from the empirical functional forms in terms of 

earthquake source, path, site, and instrument or types of motions. A detailed explanation of how 

to calculate the desired Fourier amplitude can be found in (Boore 2003).  

To generate a ground motion, a white noise sequence (independent and identically 

distributed with a Gaussian distribution) of random variables is generated for a specified duration 

at a set of discrete time points. The noise is then windowed by applying a modulating function 

(in Boore’s model an exponential window is utilized because Saragoni and Hart (1974) found 

that it is a good representation of the envelope of accelerograms). The windowed noise is 

transformed to the frequency domain using a discrete Fourier transform. The noise spectrum is 

then normalized by the square-root of the mean square amplitude to have, on average, unit 

amplitude. The normalized spectrum is then multiplied with the desired (or target) amplitude 

spectrum. The simulated ground motion in the time domain can then be obtained by performing 

inverse Fourier transform of the modified spectrum. The steps can be repeated to simulate as 

many ground motions as desired. 

6.2.2 Seismic Hazard Analysis 

For this exercise, we simplify the seismic threat to a single source that produces earthquakes on a 

common magnitude. This characteristic earthquake with Mw 6.8 occurs at a source-to-site 

distance of 18 km from a soil site. The mean rate of occurrence for this characteristic event 

( ,wM Rν ) is assumed to be 1% per annum. The ground motion records for this scenario event are 

generated using the stochastic simulation method explained previously. 
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A total of 55,000 records are simulated using the SMSIM program. The ground motion 

hazard in terms of IM ( IMλ , i.e., MAF of exceeding an IM level) at this site can be simply 

determined as 

 ( ) [ ] ,|
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where 
iIM xI >  is an indicator variable of the ith-record in terms of the IM. It is equal to unity if IMi 

is greater than x, and zero otherwise. Figure 6.1 illustrates the ground motion hazard curves 

calculated in terms of Sde (at T1) and Sdi (T=T1, dy=0.364+) which will be used in seismic 

performance evaluations of a structure in a later section. 

 

Fig. 6.1  Ground motion hazard curves in terms of Sde and Sdi for structure considered. 

6.3 PROBABILISTIC RESPONSE PREDICTION FOR A STRUCTURE 

6.3.1 Simulation Approach 

To evaluate the seismic performance of structures at a designated site, the uncertainties in the 

ground motions and nonlinear structures must be considered. Monte-Carlo simulation can be 

utilized, but this approach requires computationally intensive analyses to evaluate the seismic 

performance of a structure (e.g., Collins et al. 1996; Han and Wen 1997; Jalayer et al. 2004; Wen 

2000). The marginal probability distribution of the response for a site can be directly estimated 

from nonlinear dynamic analysis results from records generated from the faults in the region. 

This procedure requires thousands of records to be simulated and analyzed through the structure 

in order to obtain accurate estimates of the extreme responses and ground motions. To improve 
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the efficiency in the calculation, Wen and co-workers utilize a “de-aggregation” method, which 

selects only the magnitudes (Mw) and source-to-site distances (R) that contribute most to the 

performance limit states of interest, but this method is not applicable here as there is only a 

single magnitude and distance. 

An oscillator with a strength-limited bilinear model (Ibarra et al. 2005) is used as an 

example structure for this study. The chosen structure has a period (T) of 0.9 sec with a yield 

displacement (dy) of 0.364 in. The yield displacement is chosen such that the median strength-

reduction factor (i.e., ˆ /de yS d ) is about 41. The hardening stiffness ratio is 5%, the capping 

ductility ratio (defined as the displacement at peak strength divided by the yield displacement) is 

4, and the post-capping stiffness ratio of -10% is used. The damping ratio equal to 5% is also 

used for the system. The nonlinear dynamic analyses were performed using Ibarra’s model 

described in Ibarra and Krawinkler (2005) and Ibarra et al. (2005).  

Similar to ground motion hazard curves, the structural performance evaluation (i.e., 

structural response hazard curves, denoted as EDPλ ) of a structure can be determined using the 

55,000 records directly (EDP stands for an engineering demand parameter, the context used at 

the Pacific Earthquake Engineering Research Center; see e.g., Cornell and Krawinkler (2000); 

Moehle and Deierlein (2004)). Each simulated record is processed through the structure via 

nonlinear time-history analysis. The indicator variable, 
iIM xI > , shown in Equation 6.1 is simply 

replaced with 
iEDP xI >  to estimate EDPλ .  

Due to the limited number of simulated ground motions, the exact EDPλ  is also uncertain 

because we are interested in very low probabilities. To estimate this variation, at each specified 

EDP value, x, the standard error (S.E.) for EDPλ  can be estimated as (as with Bernoulli trials) 

 ( )( ) ( )
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where p̂  is simply / . .
iEDP x

i
I Total no of records>!  The exact seismic demand hazard curve is shown 

in Figure 6.2 along with its +/- one standard error bands. 

                                                 
1 The median strength-reduction factor is determined as the median Sde values (at the period of the structure) of the 

record set divided by the yield displacement. 
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Fig. 6.2  Seismic demand hazard curves determined from simulation approach. 

The flat line shown in Figure 6.2 indicates the MAF of collapse for the considered 

oscillator. The collapse limit state corresponds to a displacement larger than 4 inches (or 

ductility, Sdi/dy, of about 11). This number is based on inspection of the incremental dynamic 

analysis (IDA) results (shown later) where most IDA curves appear to be flat. In this chapter, this 

displacement-based collapse limit state is used because a clear definition of collapse needs to be 

set in order to be consistent when the IM-based results are compared with simulation. Out of 

55,000 records, there are 384 ground motions that cause the oscillator to collapse (i.e., that cause 

a displacement greater than 4 in). Hence (Eq. 6.1) the estimated hazard curve becomes flat at 

0.01×384/55,000= 0.0000698. This result will be discussed further in the following section. The 

standard error of estimation of this estimate is approximately (Eq. 6.2) 0.01× 2384 / 55000 = 

0.0000036, or about 5% of the MAF of collapse. Note that this percentage is independent of 

,wM Rν ; it depends only on the total number of records and P[EDP>x| event], which here is about 

0.7%. A rule of thumb is that one needs a sample of size n = 100/p to obtain a standard error of 

10% of p; therefore even if 10% of all events were collapses, the requisite sample size would be 

1000. 

6.3.2 IM-Based Approach 

As seen above, estimation of seismic performance of structures using the simulation method is 

not efficient (i.e., a large number of records are required). To estimate seismic performance with 
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a relatively small number of records, the IM-based PSDA can be utilized. ( )EDP xλ  can be 

calculated as 

 ( ) ( ) ( )| |EDP EDP IM IMx G x im d imλ λ= ⋅"  (6.3) 

where |EDP IMG  is the Gaussian complementary cumulative distribution function of EDP 

conditioned on IM defined as 
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= −Φ % &% &

' (
 (6.4) 

The estimated (conditional) mean and standard deviation of lnEDP (denoted ln |EDP imµ  and 

ln |EDP imσ , respectively) can be estimated from the IDA results at a specified IM level. ( )IMd imλ  is 

the successive difference of the seismic hazard curve, which is equal to ( ) ( ) ,IM IMim im dimλ λ− +  

which is approximately the MAF of IM = im. dim is a small increment in the ground motion 

intensity. Details for this method can be found in Chapter 2 and in Tothong and Luco (2007). 

A relatively small number of records (40) is randomly selected from the 55,000 motions. 

Its median spectra and individual records are shown in Figure 6.3. The median spectra obtained 

from 55,000 records are also shown for comparison. 

 

Fig. 6.3  Median and individual response spectra for 40 randomly selected records. Median 
spectrum for 55,000 records is also shown for comparison. 

These 40 records are used to perform nonlinear dynamic analysis using the structure 

considered. IDA results using Sde (or equivalently Sa, where Sa = (2-/T)2×Sde) and Sdi are shown 
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in Figure 6.4. The circles indicate the intensity levels associated with global dynamic instability 

of the structure. These IDA results are combined with their seismic hazards to estimate .EDPλ   

  
(a) (b) 

Fig. 6.4  Median IDA (solid lines) curves and +/- one standard deviation bands (dashed-
dotted lines) of 40 records using (a) Sde (or equivalently Sa) and (b) Sdi. Vertical 
dashed lines indicate yield displacement, dy, of structure.  

For Sde or Sa subjected to ordinary records, Baker and Cornell (2005a) have shown that 

simply using Sa alone in probabilistic response prediction is not sufficient because of the spectral 

shape associated with !. At a specified Sde or Sa level, positive ! records create weaker responses 

than negative ! records. Therefore, response estimation using Sde or Sa alone may be biased 

depending upon which records are selected. Indeed, in principle, to produce IDA using Sde as the 

IM, different records are needed at each level because the appropriate epsilon levels are 

increasing as the IM level increases. To overcome this biased estimation, a vector IM (i.e., <Sa, 

!>) needs to be utilized. The exact EDPλ  is used as a basis against that of <Sa, !>. Using <Sa, !> to 

estimate EDPλ , a slight modification to Equation 6.3 is needed and is shown as follows: 

 ( ) ( ) ( ) ( )| , || , |EDP EDP IM IM IMx G x im e f e im de d imε ελ λ= ⋅ ⋅ ⋅" "  (6.5) 

where |IMfε  is the conditional probability density function of ! at a specified IM level. This 

probability density function can be directly obtained from seismic hazard disaggregation results. 

To implement <Sa, !> in estimating EDPλ , two techniques can be utilized: (1) by using 

regression analysis (via Eq. 6.5) or (2) by selecting records to match the ! distribution at a given 

Sa level. To illustrate the similarity of these techniques, the collapse fragility surfaces (as a 

function of Sa and !) are shown in Figure 6.5. The collapse fragility surface for the !-based 

selection is demonstrated for an ! value of about 3 (the darker color). As seen in Figure 6.5, the 
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two techniques yield approximately the same prediction for the probability of collapse versus Sde 

(Note, though, that the collapse fragility surface for the regression analysis is extrapolated when 

Sde is greater than 5 in.)  

 

Fig. 6.5  Collapse fragility surface using <Sde, !>: (1) regression analysis (transparent color) 
and (2) !-based selection technique with 3! (solid color). 

The probabilistic response prediction using <Sa, !> is then combined with the hazard 

curve to estimate the MAF of exceeding a level of responses, ,EDPλ  (see Fig. 6.6). At a glance, 

structural performance using Sde (Sa) seems to be conservatively estimated, while using <Sa, !>, 

in this case, underestimates EDPλ  (i.e., unconservative). Only the estimated EDPλ  using Sdi is 

shown to be accurate. 

 

Fig. 6.6  Seismic demand hazard curves, ,EDPλ  using various methods. 
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The differences seen between the exact and the estimated EDPλ  using Sdi are merely due to 

the effect of random sampling with a finite sample size. The standard error (S.E.) bands for EDPλ  

using the IM approach can be estimated using the bootstrap technique (Efron and Tibshirani 

1993). The S.E. can be estimated by re-sampling records from the sample dataset repeatedly with 

replacement to generate bootstrap samples. Then, each bootstrap sample set will be used to 

calculate EDPλ . The S.E. of EDPλ is simply the standard deviation of the replicate EDPλ . 

As mentioned previously, the structure is considered to collapse when the inelastic 

displacement of the structure is greater than 4 inches. The collapse limit state is crucial for 

comparing the results between the simulation and IM-based approach. 

 

Fig. 6.7  Structural response hazard curves using (1) flat IDA curves as collapse limit state 
definition and (2) with specified collapse displacement with truncate distribution. 

Figure 6.7 demonstrates the structural response hazard curve using Equation 6.3 when 

collapse is defined as the intensity such that the IDA curve becomes flat (dashed line). The gap 

between the MAF of collapse (i.e., 10-4) and EDPλ  at displacement of, for example, 10 inches is 

basically the MAF (or probability) of EDP exceeding 10 inches and not collapsing. However, 

from the simulation results, the largest displacement that converges (without collapse) is about 

5.3 inches. As a result, an inconsistency may exist when the collapse definition is not explicitly 

stated. Second, with a specified collapse displacement, the probabilistic response prediction at a 

specified IM level needs to be truncated at that collapse displacement. The truncated Gaussian 

complementary cumulative distribution function of EDP conditioned on IM ( *
|EDP IMG ) can be 

calculated as 
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*
|EDP IMG  is used in Equations 6.3 and 6.5 for the scalar and vector IMs, respectively, to estimate 

EDPλ  in Figure 6.6. The estimated statistical parameters (mean and standard deviation) are still 

determined from all of the data at a specified IM level. 

6.4 WHY IS <Sa, $> NOT EFFECTIVE IN PREDICTING STRUCTURAL 
RESPONSES FROM SIMULATED GROUND MOTIONS? 

The results shown in Figure 6.6 for <Sa, !> contradicts the conclusion by Baker and Cornell 

(2005a) for ordinary ground motions. This may be explained by closely investigating the 

response spectra of simulated records, especially those of the positive ! records (see Fig. 6.8).  

  
(a) (b) 

Fig. 6.8  Median and individual  response spectra of 10 positive ! (of about 2) records for 
(a) ordinary and (b) simulated ground motions. Median spectra of all records are 
also shown for comparison (lower solid lines). Vertical dashed lines indicate 
natural period of structure, T1. 

The dramatic difference in the spectra of these high positive epsilon spectra can be observed in 

their (1) median (geometric mean) values of Sa, (2) the standard deviation of lnSa, and (3) the 

spectral shape. For as-recorded ground motions, the spectral ordinates decrease slowly as the 

period ratio from the reference period (T1 in this case) increases or decreases (as a result, the 

slope of the spectra from T1 is approximately the same until the period ratio is about three). For 

the simulated records, the spectral values drop rapidly with increasing or decreasing period ratio 

(as a result the slope of the spectra change relatively quickly as the period ratio increases). This 
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rapid change in the slope for the spectra may be the reason why <Sa, !> is not so effective here in 

estimating severe nonlinear behavior. Recall that <Sa, !> predicts the responses based on the 

local slope at T1. The sharp change in the slope for median spectra of the record set can reduce 

its effectiveness, a problem of <Sa, !> also seen with near-source pulse-like ground motions. The 

conditional median spectral shape for the positive ! can also be viewed from the spectral (auto-) 

correlation function of lnSa at two periods ( ( ) ( )ln ,lna i a jS T S T
ρ ). As seen in Figure 6.9, ( ) ( )ln ,lna i a jS T S T

ρ  of 

as-recorded motions is calculated from the 291 ordinary ground motions used in Chapter 3 (see 

also Table A.3), and ( ) ( )ln ,lna i a jS T S T
ρ  for simulated records is determined from the 55,000 simulated 

motions. The correlation function estimated from recorded motions by Baker and Cornell 

(2006a) is also shown for comparison. 

 

Fig. 6.9  Empirical spectral correlation functions of lnSa at two periods. Reference period is 
0.9 sec (period of structure considered). 

The correlation function is valuable because (with a mild assumption that lnSa(Ti) and 

lnSa(Tj) are jointly lognormal) the conditional median spectral shape is a function of the spectral 

correlation function, which is the exponential of 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ln lnln ln ,ln
ln | ln

a i a ia j a i a j
a j a jS T S TS T S T S T

E S T E S Tε σ ρ ε) * ) *= + ⋅ ⋅+ ,+ ,  (6.7) 

where E[·] is the expected value of [·]. ( )ln a jS T
σ  is the standard deviation of lnSa(Tj). The 

narrowbanded ( ) ( )ln ,lna i a jS T S T
ρ  seen for the simulated records has also been observed for near-source 

pulse-like records (see Chapter 4). For this type of ground motion, ! has been shown to be 
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ineffective in predicting the responses of the structures (Baker and Cornell 2005b). To 

demonstrate this ineffectiveness of ! for narrowband-spectral type records, records with ! values 

of about two are selected for both as-recorded (ordinary) and simulated ground motions at 12 

different periods (10 records for each period). The selected Ti’s are associated with Ti/T1 equal to 

0.7–1.2 with 0.1 intervals and 1.4–2.4 with 0.2 intervals. The conditional median spectra of these 

motions are illustrated in Figure 6.10.  

  
(a) (b) 

Fig. 6.10  Conditional median spectra for positive $ records at different periods for (a) as-
recorded and (b) simulated ground motions. Median spectra of all records also 
shown for comparison (lower solid lines). Vertical dashed lines indicate period of 
structure. 

The motivation here arises from the near-source pulse-like study (in Chapters 4 and 5) 

that showed that the responses of a structure depend on the relative periods between the pulse 

period and the modal periods of the structure (Tp/T1). Since the simulated records exhibit the 

narrowband ( ) ( )ln ,lna i a jS T S T
ρ , the responses of the structure may also depend on the relative periods2. 

If so, then <Sa, !> may not be effective, and the results should provide the explanation seen in 

Figure 6.6. 

Structural responses as a function of (Ti/T1) for as-recorded and simulated ground 

motions are shown in the following figures when using Sa and <Sa, !> (the records are scaled to a 

counted-median ductility of about four). The moving-window average (Hastie et al. 2001) is 

superimposed in the figures to emphasize the dependency of responses on Ti/T1 (solid lines). 

There is no obvious trend between the residuals of the responses given Sa or <Sa, !> for as-

                                                 
2  Records with the period ratio (Ti/T1) of about unity tend to create the responses smaller than the average values 

and vice versa for the period ratio of about two. 
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recorded ground motions. The strong trend (for the simulated records) between the residuals of 

EDP given Sa or <Sa, !> can be clearly observed (see Fig. 6.11b and d, respectively). 

(a) (b) 

(c) (d) 

Fig. 6.11  Residuals of responses when using either Sa for (a) as-recorded and (b) simulated 
ground motions, or <Sa, !> for (c) as-recorded and (d) simulated ground motions. 

The behavior is similar to that of near-source ground motions (see Chapter 5). As seen in 

Figure 6.11b and d, the responses obtained from records with periods close to the fundamental 

period of the structure will, in general, produce responses smaller than records with peaks at 

periods of about 1.5T1 or longer. This observation implies mainly that the inelastic responses of 

the structures would depend on how the records are selected. Since the Sa and <Sa, !> approach 

will select records with Ti/T1 of exactly unity, the observed response prediction will be, on 

average, smaller than it should be (consistent with the results shown in Fig. 6.6). This 

explanation confirms the ineffectiveness (specifically insufficiency) of Sa and <Sa, !> with 

respect to simulated ground motions (with narrowband ( ) ( )ln ,lna i a jS T S T
ρ ). 

As a result, the spectral correlation function, ( ) ( )ln ,lna i a jS T S T
ρ , or the CMS for positive ! may 

be used as a guideline to determine the effectiveness of the vector IM, <Sa, !> for different types 
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of ground motions (e.g., soft-soil, near-source, etc.). For example, if the slope of the ( ) ( )ln ,lna i a jS T S T
ρ  

from T1 is approximately constant until the period ratio of about two or more, then <Sa, !> may 

be expected to be effective (e.g., for the ordinary records). With a sharp change in the 

( ) ( )ln ,lna i a jS T S T
ρ  near T1 (or the period ratio less than two), <Sa, !> may not be effective in predicting 

the responses of a structure (discussed above and also see Chapter 5). 

6.5 DISCUSSIONS 

6.5.1 Use of Spectral Correlation Function to Validate Simulated Records and Its Impacts 
on Engineering Practice 

In this section, the possible application of ( ) ( )ln ,lna i a jS T S T
ρ  in practice will be briefly discussed. Often 

when earthquake records are not available or are limited in number, simulated ground motions 

will be utilized for the nonlinear dynamic analysis of a structure. Typically, the simulated records 

will be scaled to the target ground motion intensity level associated with a certain hazard level 

(e.g., Sa at 2% in 50 years). Presumably, the record set will have epsilon values, on average, of 

about zero. Simply scaling records to the low-hazard (high-intensity) level, the inelastic 

responses of a structure are likely to be overestimated due to the effect of peak and valley (vis-à-

vis !) in the spectral shape at T1. Ground motion records associated with low hazard usually 

exhibit a peak in the spectrum by definition (i.e., extreme elastic Sa at T1). Using non-

representative records can bias the probabilistic response prediction of a structure (Baker and 

Cornell 2005a; see also Chapter 2).  

To avoid this systematic bias in the response prediction, recent advanced research 

projects (e.g., Baker and Cornell 2006b) have focused on selecting records based on the 

likelihood of ! at a specified ground motion hazard level (i.e., disaggregation of Sa on !). This 

approach is applicable only to ordinary (as-recorded) motions. For simulated records (with 

narrow ( ) ( )ln ,lna i a jS T S T
ρ ), considering only !, however, may not be sufficient. Careful attention to the 

characteristics of the simulated records must be considered. In addition to the marginal mean and 

standard deviation of lnSa at a given period, the correlation between lnSa (at different periods) 

seems to be even more important because the conditional median spectra, CMS, of the low-

hazard ground motions is a function of ( ) ( )ln ,lna i a jS T S T
ρ  (see Eq. 6.7). The effect of ( ) ( )ln ,lna i a jS T S T

ρ  on 

the inelastic responses of the structures will be illustrated next. 
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The response parameter considered is the inelastic displacement ratio (Sdi/Sde) defined as 

the inelastic displacement, Sdi, of a bilinear oscillator with a 5% hardening stiffness and damping 

ratios normalized by the elastic displacement, Sde, of the same elastic period. This ratio has been 

shown to provide some information about the shape of the response spectrum (see Chapter 3).  

  
(a) (b) 

  
(c) (d) 

Fig. 6.12  Median response spectra of records with epsilon values of about 1.8 for ordinary 
and simulated ground motions at (a) 0.3, (b) 0.6, (c) 1.0, and (b) 3.0 sec. 

To demonstrate the importance of ( ) ( )ln ,lna i a jS T S T
ρ , 20 records with epsilon values of about 

1.8 are selected from ordinary and simulated records for 4 periods (i.e., 0.3, 0.6, 1, and 3 sec). 

The median response spectra of these records (after scaling to approximately the same intensity 

level) are shown in Figure 6.12. The difference in median spectral shape between ordinary and 

simulated records can be easily distinguished. Correspondingly, Sdi/Sde for these sets of records is 

performed at different yield displacements (dy). The results are plotted in terms of the median 

strength reduction ( R̂ , defined as the median Sde at the oscillator period divided by dy). At a 
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specified R̂  value, the same dy is used for all records (for both ordinary and simulated motions). 

Note that relatively large R values are evaluated to exaggerate the results. 

 
(a) (b) 

  
(c) (d) 

Fig. 6.13  Median inelastic displacement ratio for ordinary and simulated motions as 
function of R̂  for (a) 0.3, (b) 0.6, (c) 1.0, and (d) 3.0 sec. 

Comparing Figures 6.12 and 6.13, it is clear that Sdi/Sde captures the (conditional) median 

spectral shape of the ground motions. The inelastic responses of the structures depend upon the 

shape of the selected records for nonlinear dynamic analysis. If the CMS of simulated records is 

narrower than the real (i.e., as-recorded) motions, it is anticipated that its Sdi/Sde should be 

smaller. Another significant parameter is the difference in the dispersion of ground motions (i.e., 

ln aSσ ). Because simulated records have smaller ln aSσ  than the real records, its CMS will curve 

back to the median spectra (zero epsilon) faster, resulting in overestimation of Sdi/Sde for 

relatively weak systems. For example, for a short-period system (T=0.3 sec), the CMS of 

simulated records has a narrower shape (Fig. 6.12a), thus estimating smaller Sdi/Sde (Fig. 6.13a). 

For T=0.6 sec, the CMS of simulated records is also narrower than the real ones; therefore, 

Sdi/Sde for strong systems (small R̂  values) is underestimated. However, because of the smaller 
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ln aSσ  of simulated records, its CMS exceeds that of real motions at periods of 1.3 sec or longer 

(Fig. 6.12b). As a result, Sdi/Sde of simulated motions becomes larger (overestimates) than that of 

the real records for relatively weak systems (i.e., large R̂  values, see Fig. 6.13b). For T=1.0 sec, 

the CMS of simulated and real records is relatively close for periods shorter than 1.5 sec (Fig. 

6.12c), but the CMS of simulated records exceeds the CMS of the real records, again, because of 

the smaller ln aSσ . As seen in Figure 6.13c, Sdi/Sde between simulated and real records is very 

similar for strong systems (small R̂  values), but Sdi/Sde obtained from simulated records is larger 

than that of the real motions for weak systems (large R̂  values), consistent with CMS seen in 

Figure 6.12c. The same explanation holds true for an oscillator with T=3.0 sec. Other 

possibilities exist, for example, when only the marginal mean and standard deviation of lnSa are 

approximately the same, but not the correlation function. It is likely to be the case that the 

( ) ( )ln ,lna i a jS T S T
ρ  of simulated motions may be narrower, resulting in underestimation of (i.e., not 

conservative) the inelastic responses of the structures. The user of simulated records should be 

aware in those situations where as-recorded motions are not available and the low-hazard ground 

motions are of interest. 

As shown above, the median spectra for the positive ! records depend strongly on the 

shape of the ( ) ( )ln ,lna i a jS T S T
ρ , which can ultimately influence the inelastic responses of the structures. 

As demonstrated in this section, the influence of the ( ) ( )ln ,lna i a jS T S T
ρ  and ln aSσ  of simulated records 

can have a large impact on the conditional median spectra, which ultimately influence the Sdi/Sde 

estimation of the structures. Therefore, in order to use the simulated ground motions in practice, 

not only should the marginal mean and standard deviation of lnSa be checked against the real 

records, but also the ( ) ( )ln ,lna i a jS T S T
ρ  should be validated (which governs the CMS of low-hazard 

ground motions). As a result, we suggest that the spectral (auto-) correlation function of 

simulated records should be validated with that of the real records, i.e., an empirical spectral 

correlation derived from as-recorded ground motions can simply be used (e.g., Baker and Cornell 

2006a; Inoue and Cornell 1990). 
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6.5.2 Definition for Extreme Ground Motions and Considered IM 

What are rare seismic ground motions? What are their characteristics (i.e., response spectra)? 

These questions have often been raised by earth scientists and engineers. What should be noted is 

that the answers to these questions will primarily depend on the IM used to determine seismic 

hazard analysis. For example, the response spectra for the extreme (3!) elastic response and 

inelastic responses are shown in Figure 6.14. With an assumption that lnSde and lnSdi are jointly 

lognormal, the conditional median elastic spectra on Sdi can be calculated as the exponential of  

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ln , ln ln , ,ln ln ,
ln | ln

di y a j di y a j di y
a j a jS T d S T S T d S T S T d

E S T E S Tε σ ρ ε) * ) *= + ⋅ ⋅+ ,- .+ ,
 (6.8) 

 

Fig. 6.14  Median response spectra for extreme (i.e., low) hazard ground motion based on 
Sde and Sdi hazard definition. 

Both median spectra are extreme in the sense that they are associated with the same MAF 

of exceeding a specified intensity level (in terms of Sa or Sdi). To determine the conditional 

median spectra for Sdi, the (cross-) correlation function between lnSdi and lnSde (or equivalently 

lnSa) needs to be estimated. The median response spectra of records causing collapse (i.e., EDP 

> 4 in.; dashed line) and of 55,000 records (thin solid line) are shown for comparison. The 

median spectra for the extreme Sdi are similar to those causing collapse in the structure. 
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Fig. 6.15  Empirical correlation function between lnSdi and lnSa to be used to derive 
conditional median (response) spectra for Sdi IM. 

The spectral correlation function between lnSdi and lnSde (for Boore records) is illustrated 

in Figure 6.15. It appears that its function is asymmetric because the effective period of the 

system lengthens as the system behaves inelastically. Therefore, Sdi is more highly correlated 

with Sde at periods longer than the period of the structure. Another observation is that 

( ) ( )ln ,lna i a jS T S T
ρ  is approximately the same as ( ) ( )ln , ,lndi y de jS T d S T

ρ  for periods shorter than the two-thirds 

period of the inelastic system. This similarity obviously depends on the degree of nonlinearity of 

Sdi (see Chapter 3 for more detailed explanation). 

6.6 CONCLUSIONS 

This chapter focuses on validating seismic response estimation using the IM-based approach by 

comparing such estimates with the results from simulation, which are considered to be the 

“exact” results. For the simulated ground motions used in this study, only Sdi is shown to be an 

unbiased estimator. The seismic performances of the structure, ,EDPλ  are shown to be statistically 

equivalent to those of the simulation approach. Using Sa or <Sa, !>, however, yields statistically 

different results from the simulation method. The former is shown to be bias-high and the latter 

is bias-low. The bias-high results found when using Sa is due to failure, when the records are 

chosen randomly to properly represent the ground motion characteristics of records at low 

ground motion hazard levels. On the other hand, <Sa, !> underestimates the response prediction 

largely because the shape of the positive ! records (vis-à-vis the shape of the spectral correlation 
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function) is different from that of typical as-recorded ground motions. The spectral ordinates for 

positive epsilon records of the simulated records drop off rapidly as the period ratio increases or 

decreases as compared to the as-recorded motions. This changes the median spectral shape of 

positive epsilon records rapidly. Given that <Sa, !> utilizes the shape or the local slope at the 

fundamental period to estimate the responses, it cannot predict well the inelastic responses of a 

structure with a sharp change in the spectral shape (e.g., near-source pulse-like records; see 

Chapter 5 and simulated motions with a narrowband spectral correlation function). Only Sdi is 

shown to be robust in estimating the seismic performance of a structure in any type of earthquake 

ground motions (at least for the first-mode-dominated structure).  

Note that the findings and conclusions drawn in this chapter are primarily based on 

records generated from a stochastic ground motion model (Boore 1983; Boore 2003). These 

simulated records have different characteristics, especially the spectral correlation function of 

lnSa, as compared to the real (as-recorded) ground motions. The readers should not be 

discouraged from using <Sa, !> for actual ground motions. We believe that using Sdi is, however, 

a better approach because it is shown to be robust with any type of ground motion considered. 

 

 

 

 

 



 

7 Concluding Remarks 

7.1 OVERVIEW 

This research focused on estimating the seismic performance (or seismic risk) of structures via 

probabilistic seismic demand analysis (PSDA), i.e., in terms of the MAF of exceeding a specified 

limit state. The key feature of this method is the choice of the ground motion intensity measure. 

The selected IM can impact the accuracy in estimating the structural response hazard curve, 

which should be unbiased. In this research, the PSDA framework is applied to study the 

effectiveness of advanced IMs. The results are compared with the elastic-based IMs for ordinary 

and near-source pulse-like ground motions. Using advanced IMs for tall, long-period structures, 

the probabilistic response prediction shows no dependence on record characteristics (i.e., 

earthquake magnitude (Mw), closest distance to rupture (Rrup), ground motion epsilon (!), pulse 

period (Tp), etc.) as well as unbiased estimation when scaling ground motions. One of the 

disadvantages in implementing the advanced IMs in the past has been the computability of the 

ground motion hazards in terms of these IMs. For this reason, one of the focuses of this report 

was the calculation of ground motion hazards for advanced IMs (Chapter 3). The next section 

summarizes the important findings of this research. 

Note that attention in this report has been limited to the prediction of probabilities of 

structural responses. It will be presumed that many of the conclusions regarding the prediction of 

structural parameters will carry over to loss estimations (i.e., life-cycle cost analysis). 
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7.2 PRACTICAL IMPLICATIONS 

7.2.1 PSDA Using Advanced Ground Motion IMs 

PSDA using the inelastic-based IMs (i.e., Sdi and IM1I&2E) is implemented in Chapter 2 to 

demonstrate their effectiveness relative to ground motion parameters such as Mw, source-to-site 

distance, and !. Unlike the elastic-based IMs (such as Sa and a vector IM, <Sa, !>), one of the 

advantages in using these advanced IMs is that ground motion record selection criteria become 

less important to achieve accuracy in estimating the seismic performance of a structure. Sixteen 

generic frames are used to compare the results between elastic- and inelastic-based IMs. Overall, 

using Sdi or IM1I&2E (the latter is needed for a structure with significant higher-mode 

contribution) yields statistically the same seismic performance estimations as compared to those 

of <Sa, !> for ordinary records. In addition, the PSDA results using the advanced IMs are more 

stable than the results obtained using <Sa, !> from the standpoint that the standard error of the 

structural performance values subjected to different record sets is much smaller than those of the 

vector IM. All of the problems related to scaling records, biased estimates, responses dependent 

on record characteristics, etc. are due to the use of elastic-based information to estimate inelastic 

results. Only the PSDA results using advanced IMs are relatively accurate in terms of 

probabilistic response prediction subjected to near-source pulse-like motions. The elastic-based 

IMs cannot capture the sharp change in the spectral shape of pulse-like motions; as a result, they 

should not be used to estimate the seismic performance of structures threatened by such records. 

7.2.2 Attenuation Relationships for Advanced Ground Motion IMs 

To ensure accuracy in estimating the seismic performance of a structure at a designated site, 

advanced IMs (i.e., Sdi and IM1I&2E) are shown to be efficient, sufficient, and robust with respect 

to scaling ground motions. Ground motion hazard in terms of the advanced IMs, however, needs 

to be developed. In Chapter 3, ground motion prediction models (i.e., attenuation relationships) 

in terms of Sdi and IM1I&2E as a function of Mw, Rrup, fault mechanism, etc. are developed. 

Currently, the national seismic hazard maps available from the U.S. Geological Survey (USGS; 

http://earthquake.usgs.gov/research/hazmaps/) and the Southern California Earthquake Center 

(SCEC; http://www.opensha.org/) only consider Sa. Use of the advanced IMs will require that the 

USGS or SCEC implement attenuation relationships for the advanced IMs into the national 

seismic hazard maps. 
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7.2.3 PSHA Accounting for Directivity Effect 

Due to the concern in estimating seismic hazards at sites located close to faults, past studies (e.g., 

Somerville et al. 1997) have tried to incorporate directivity effects using a simple monotonic 

modification (i.e., no significant change in the spectral shape) to existing Sa attenuation models. 

The proposed framework in Chapter 4 would allow the use of narrowband (i.e., where only 

spectral ordinates near the pulse period, Tp, are modified) attenuation models to be directly 

implemented in the PSHA. The significance of directly incorporating pulses and Tp explicitly 

into PSHA is that disaggregation can be performed in terms of the probability of expecting a 

pulse (given an intensity level) and the probability distribution of the pulse period in addition to 

Mw, Rrup, and !. The disaggregation results on the probability of experiencing a pulse and Tp can 

provide basic guidelines for engineers and/or earth scientists to select representative records, as 

well as the number of pulse motions relative to ordinary motions for a particular site hazard. 

With increased accuracy in identifying the seismic hazard, seismic risk estimation at a site due to 

future earthquakes appears to be more accurate. Note though that this detailed record selection is 

unnecessary if sufficient IMs (i.e., Sdi and IM1I&2E) are employed as a basis for scaling records 

for ordinary and near-source pulse-like ground motions (see Chapter 2 and 5, respectively). 

However, the hazard analysis for such IMs in the near-source awaits their appropriate attenuation 

law development and this again will require explicit introduction of pulses and Tp to achieve 

accuracy. 

7.2.4 Seismic Performance of Structures Subjected to Pulse-like Ground Motions 

As alluded to above, one of the primary goals of this report is to ensure the accuracy of PSDA 

results subjected to ordinary and near-source pulse-like ground motions. As demonstrated in 

Chapter 5, PSDA results can be very inaccurate (i.e., biased) if the chosen IM is inefficient, 

insufficient, and not robust relative to scaling records. Generally for ordinary records, Sa has been 

shown to be insufficient for tall, long-period structures due to its lack of spectral-shape 

information (Shome 1999). This is due mainly to the effects of peaks and valleys in the spectrum 

(vis-à-vis !). Incorporating ! with Sa for near-source records, however, is neither efficient nor 

sufficient. Using Sdi and IM1I&2E has been shown to be accurate in estimating the seismic 

performance of structures for both ordinary and near-source pulse-like ground motions. This 

effectiveness largely implies that detailed record selection is not necessary, and records with any 
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Mw, Rrup, !, and Tp can be selected for nonlinear dynamic analyses. The difference in the 

structural performance assessment (using advanced IMs) for sites located close to and away from 

the causative faults is solely the marginal ground motion hazard at a site (which varies from site 

to site and structure to structure). The structural analysis results, e.g., the IDAs, are statistically 

the same whether ordinary or pulse-like records are applied to the structures when advanced IMs 

are employed. 

The inelastic-based IMs are very effective because they recognize (1) the relationship 

between the modal periods of the structures and the pulse period and (2) the strength of the 

structures. By design for inelastic-based IMs, the effective period of the oscillator is then 

determined naturally on a record-to-record basis. As can be seen in Chapter 5, records imposing 

strong inelasticity to structures will be scaled less than the records imposing weak inelasticity to 

achieve the same median target displacement level (i.e., the same ground motion intensity level). 

7.2.5 Validating the IM-Based PSDA with Simulation 

In Chapters 2 and 5, PSDA results using inelastic-based IMs have been shown to ensure the 

relative accuracy in estimating the seismic performance of structures for both ordinary and pulse-

like ground motions. The “exact” performance values are, however, not known. To overcome 

this problem, simulated ground motions are generated and used to perform nonlinear dynamic 

analyses. Determination of the “exact” structural response hazard curve can then be carried out 

directly and can be used for comparison with the results using the IM-based PSDA. 

Using Sdi (as the IM) yields results statistically the same as the exact values, but this is 

not the case for <Sa, !>. This is largely due to the fact that the spectral autocorrelation function of 

lnSa at two periods of the simulated records drops rapidly (as seen in near-source pulse-like 

records) as compared to that of real (as-recorded) ground motions. This implies that a spectral 

autocorrelation function may be used to (1) determine the effectiveness of <Sa, !> subjected to 

certain types of ground motions (e.g., soft soil) and (2) to determine how similar the simulated 

ground motions are as compared to the real records (in addition to the mean and standard 

deviation at each period marginally). This condition is crucial when extreme ground motion 

records are of interest because the conditional median (i.e., geometric mean) spectrum of rare 

records is a function of the spectral autocorrelation function.  
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One of the key observations from this study is the use of the spectral autocorrelation 

function as a way (1) to determine how realistic the simulated ground motions are (as compared 

to real ground motions) and (2) to determine the effectiveness of <Sa, !> for different types of 

ground motions. This should be implemented as a means to validate the simulated ground motion 

records. 

In recent guidelines (e.g., ATC-40; FEMA-273; Vision-2000; and SAC/FEMA-350), the 

term "rare seismic events" has been used. What is a rare ground motion? This rare (or extreme) 

seismic ground motion is typically defined as the 2% in 50 years ground motion intensity level 

(intensity associated with 2% probability of being exceeded in 50 years). Where alternative IMs 

are used, definition of the extreme ground motions will depend on the IM used to determine the 

seismic hazard, i.e., whether it is an extreme elastic (i.e., Sa) or inelastic (i.e., Sdi) intensity. The 

ground motion characteristics will be different depending upon which IM is utilized to determine 

the seismic hazard. Using inelastic-based IMs is shown to be accurate in estimating the seismic 

performance of structures subjected to ordinary and near-source ground motions as well as the 

proper extreme motions for inelastic responses of the first-mode-dominated structures.  

7.3 LIMITATIONS AND FUTURE RESEARCH 

The research presented in this report is based on a number of limiting assumptions and a limited 

scope. Some of the relevant research areas that should be performed in the future are discussed in 

the following subsections. 

7.3.1 Types of Structures Considered and Modeling Simplification 

This research focuses only on the methodology for probabilistic response prediction of a 

structure considering uncertainties in the ground motions but not in the structural modeling 

parameters. Although we anticipate that the conclusions would remain unchanged with improved 

structural modeling and analyses, the following factors should be considered to improve the final 

predictions of building response:  

• This research has not considered (1) the incorporation of partition walls, stairwells, floor 

slabs, etc., which may increase the stiffness of the structures, (2) improved element 

models to incorporate axial and shear failure in the column and beam elements, or even 
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local buckling of the web and flange of the element. Consideration of these effects can 

alter the strength and stiffness of the system especially at or near collapse. 

• Other types of structural systems need to be considered in order to draw further 

conclusions (e.g., braced-frames, shear-wall systems, dual systems, base-isolated 

structures). The influence of vertical irregularities (due to mass and stiffnesses variation) 

is not considered.  

• Reinforced concrete versus steel structural models: The initial stiffness of reinforced 

concrete structures is known to be highly uncertain, which may influence the 

effectiveness of period dependent IMs. This may affect the optimal parameters for the 

chosen IM. 

• The effect of soil-structure interaction is not considered. The effects of earthquake 

motion on soil liquefaction and the change in soil properties during strong shaking are not 

considered. The assumption of a fixed-based foundation may not be appropriate. 

Settlement of the foundation during strong shaking is not considered. 

• The effect of soft-soil sites was not studied. Ground motions in soft-soil sites have been 

shown to exhibit a narrowband spectrum similar to the spectrum of near-source pulse-like 

records, which can affect the hazard assessment and structural response. 

• The research is limited to analyses of two-dimensional structural models. By modeling 

structures in 2D, the torsion effect on the responses of interest (e.g., interstory drift of the 

corner columns) is ignored. It is unclear how a simple IM can capture the responses with 

a significant torsion effect. How records should be scaled and selected remains an open 

question for 3D structures subjected to bi-directional or even tri-directional shaking. 

There is no consensus on what response parameters are essential for 3D structures. More 

research is needed in this area. 

7.3.2 Uncertainty in Structural Models and Ground Motion Hazard 

In this study, only the aleatory uncertainty in ground motion is considered. This uncertainty is 

intrinsic in nature and cannot be reduced. Only the best estimates (the mean values) of the 

structural model and hazard are used. The result is the mean (with respect to epistemic 

uncertainties from the structural and hazard sides) structural response hazard curve. Epistemic 
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uncertainties in the responses of structures and ground motion hazard are not considered. In 

reality, epistemic uncertainty should also be included to represent the limited accuracy of the 

structural and hazard analysis procedures and imperfect knowledge of the parameters, modeling, 

and analyses used in the estimation process. Epistemic uncertainties in both ground motion 

hazard and structural response parameters can be incorporated with the expense of performing 

computational intensive analyses (e.g., Monte-Carlo simulations). With a first-order 

approximation where there is epistemic uncertainty only in the mean estimate and not in that of 

the variance, a reliability approach may be used to estimate the (first-order) impact of these 

uncertainties (see e.g., Shome 1999); only the total (aleatory and epistemic in the mean) variance 

of the model is increased. This epistemic uncertainty can be reduced with more detailed 

investigations of the problems.  

7.3.3 Structural Response of Interest and Loss Estimation 

In this research, only the peak maximum interstory drift ratio (#max; peak over time and 

maximum over the height of the structure) is considered, mainly because it is a good indicator of 

estimating the collapse capacity and maximum plastic deformations in the structure. The 

interstory drift ratio of each story (#i) is, of course, better correlated with the damage (e.g., in 

partition walls) in a given story. Using #max to estimate the damage in each story may not be 

suitable. Other structural responses such as peak floor acceleration, residual displacement, and a 

broader response selection may change the final conclusion. An effective IM for displacement-

sensitive responses may not be the same as that for acceleration-sensitive responses (Taghavi and 

Miranda 2003).  

In probabilistic loss estimation, a vector of response parameters is often required to 

accurately predict the total loss exceeding a certain value for multiple components. An optimal 

IM for a component EDP may not be so for the other EDPs. If only the expected annual loss is of 

interest (and the total losses are a sum of element losses), a separate IM for each component can 

be used to separate the mean annual losses of each component. The results can then be summed. 

However, if the objective is to compute an estimate of the distribution of the total losses, a joint 

prediction of all response parameters is needed. Using a vector (i.e., series) IM in this case is 

necessary (i.e., at least two IMs are needed: one for acceleration- and the other for displacement-

sensitive responses). This implies the need of joint ground motion hazard in terms of the vector 
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IM. Similar to the joint ground motion hazard, a joint EDP hazard can be developed and utilized 

to estimate each of the component losses as well as the total loss probability distribution.  

A search for a robust scalar IM for predicting a vector of responses needs to be 

investigated based on the objective/loss function, which ultimately will vary from structure to 

structure and site to site. The optimal IM will depend on the objective/loss function, which 

depends on the functionality of the building itself, for example, whether the building will be used 

for residential, office space, research facilities, storage, hospital, government agency, etc. The 

optimal IM to estimate the total losses for a residential building may not be so for a research 

facility building equipped with expensive instruments. The IM that can predict acceleration-

sensitive responses well may be the optimal choice for a building equipped with research 

facilities. 

7.3.4 Ground Motion Attenuation Models and Hazard Analysis 

Although the ground motion prediction models (attenuation relationships) for Sdi and IM1I&2E (for 

ordinary records) have been developed in this report, it is desirable to have more than one 

attenuation model in order to capture the epistemic uncertainty due to the database selection and 

modeling process. These two IMs should also be implemented in the national seismic hazard 

maps as well as in the openSHA program (http://www.opensha.org/) to make it publicly 

available. 

Based on observations from modal pushover analyses (MPA) and research by the Chopra 

group (e.g., Chopra and Goel 2002; Han and Chopra 2006), an Sdi attenuation model for the 

strength-limited bilinear model developed by the Krawinkler group (e.g., Ibarra et al. 2005) 

should be developed. It would require two or three additional oscillator parameters, however, 

making the construction of the attenuation relationship a challenge. By using this hysteresis 

model to estimate the target displacement in MPA, the response prediction from simplified 

analysis to estimate severe nonlinear dynamic analysis is considerably improved even at the 

point of the global dynamic instability (i.e., collapse) of a structure. 

In Chapter 4, a PSHA framework incorporating the directivity effect has been proposed. 

For this framework to be used in practice, a narrowband model of an IM (e.g., Sa or Sdi) needs to 

be developed. An elastic Sa narrowband model is the subject of ongoing research by the Next 

Generation Attenuation (NGA 2006) project (e.g., Youngs and Chiou 2006). Ongoing research 
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by the authors is exploring the narrowband model for the inelastic-based IMs, i.e., Sdi and 

IM1I&2E. With the proposed framework and the narrowband attenuation models, the estimation of 

seismic hazard and identification at a site is potentially more accurate. This will have an impact 

in seismic risk analysis, loss estimation, decision-making policy, and future urban planning, 

which largely depend on the uncertainty inherent in the ground motions. 

7.3.5 Multi-Mode-Dominated Structures 

For high-rise buildings, there is no consensus on the IM for probabilistic response prediction for 

multi-mode-dominated responses. Using a scalar IM for multi-mode dominated structures may 

not yield a reasonable result. A vector IM of the spectral ordinates (i.e., Sdi for each mode or for 

each direction of ground shaking) may be more appropriate. If so, the joint ground motion hazard 

in terms of either multi-mode frequencies (2D) or two-directional shaking (3D) needs to be 

developed. Due to its superior response prediction, Sdi may be used as a basis IM. The correlation 

function for lnSdi, however, must be developed (either for the average horizontal, randomly 

oriented horizontal, or orthogonal component). The empirical correlation function for lnSdi has 

been briefly explored in Chapters 3 and 6 of this report. The simplification from a vector to a 

scalar IM may be made if the loss or objective function is known a priori, which depends on the 

building occupancy type (such as residential buildings, office space, hospital, research facilities 

with expensive equipment, government agencies, etc.).  

7.3.6 Optimal Parameters for Bilinear SDOF Models 

In this report, the optimal parameters for a bilinear SDOF model are estimated based on 

minimizing the dispersion of the collapse capacity of the structure in terms of IM. Based on the 

preliminary study, the optimal choice is the first-mode period of the structure and a yield 

displacement of about half of the yield displacement estimated from a conventional static 

pushover analysis. This information is based only on the generic frame structures considered, 

which all have a global ductility capacity of about 4. The optimal yield displacement, 

theoretically, should be a function of this global ductility. In the limit case, where the ductility 

capacity is infinite, the optimal yield displacement may simply be the one estimated from the 

pushover analysis (assuming the P-% effect is small). Future research based on a larger database 

by the Krawinkler group may help parameterize the optimal yield displacement as a function of 
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structural element properties (e.g., global ductility, post-capping stiffness, cyclic deterioration 

parameters, etc.). 

7.4 OVERALL CONCLUSIONS 

It appears that the problems from selecting and scaling ground motions are due mainly to the use 

of elastic information as a basis IM to predict nonlinear MDOF responses. By switching to the 

inelastic-based IMs, the assumptions (efficiency, sufficiency, and scaling robustness) used in 

PSDA are not violated. Advanced (inelastic-based) IMs have been shown to be efficient, 

sufficient, and unbiased when used in estimating the seismic performance of structures 

susceptible to both ordinary and near-source pulse-like ground motions. 

 



 

Appendix: Earthquake Ground Motion Records 

All earthquake ground motion records used in this report come from the Next Generation 

Attenuation (NGA) project (http://peer.berkeley.edu/nga/). Column headings match fields 

provided by NGA. Empty fields are either not available or not applicable for a given record. 

A.1 LMSR-N RECORD SET 

This record set was compiled by Medina and Krawinkler (2003). 

 

Fig. A.1  Earthquake magnitude and distance range for LMSR-N record set. 
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Table A.1  Earthquake ground motion properties for LMSR-N record set compiled by 
Medina and Krawinkler (2003). 

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

1 68 3an Hernan0o 9-HeK-1971 LA - Hollywoo0 3tor HH 6.61 22.77
2 163 Rmperial Valley-06 15-Oct-1979 Calipatria Hire 3tation 6.53 24.60
3 165 Rmperial Valley-06 15-Oct-1979 Chihuahua 6.53 7.29
4 167 Rmperial Valley-06 15-Oct-1979 Compuertas 6.53 15.30
5 168 Rmperial Valley-06 15-Oct-1979 Cucapah 6.53 1.11
6 172 Rmperial Valley-06 15-Oct-1979 1l Centro Array #1 6.53 21.68
7 175 Rmperial Valley-06 15-Oct-1979 1l Centro Array #12 6.53 17.94
8 176 Rmperial Valley-06 15-Oct-1979 1l Centro Array #13 6.53 21.98
9 186 Rmperial Valley-06 15-Oct-1979 Xilan0 Hire 3tation 6.53 36.92
10 188 Rmperial Valley-06 15-Oct-1979 Plaster City 6.53 30.33
11 192 Rmperial Valley-06 15-Oct-1979 Westmorlan0 Hire 3ta 6.53 15.25
12 719 3uperstition Hills-02 24-Xov-1987 Brawley Airport 6.54 17.03
13 721 3uperstition Hills-02 24-Xov-1987 1l Centro Rmp. Co. Cent 6.54 18.20
14 724 3uperstition Hills-02 24-Xov-1987 Plaster City 6.54 22.24
15 728 3uperstition Hills-02 24-Xov-1987 Westmorlan0 Hire 3ta 6.54 13.03
16 737 Loma Prieta 18-Oct-1989 A2news 3tate Hospital 6.93 24.57
17 752 Loma Prieta 18-Oct-1989 Capitola 6.93 15.23
18 767 Loma Prieta 18-Oct-1989 Gilroy Array #3 6.93 12.82
19 768 Loma Prieta 18-Oct-1989 Gilroy Array #4 6.93 14.34
20 770 Loma Prieta 18-Oct-1989 Gilroy Array #7 6.93 22.68
21 772 Loma Prieta 18-Oct-1989 Halls Valley 6.93 30.49
22 777 Loma Prieta 18-Oct-1989 Hollister City Hall 6.93 27.60
23 778 Loma Prieta 18-Oct-1989 Hollister Diff. Array 6.93 24.82
24 787 Loma Prieta 18-Oct-1989 Palo Alto - 3LAC LaK 6.93 30.86
25 800 Loma Prieta 18-Oct-1989 3alinas - John \ Work 6.93 32.78
26 806 Loma Prieta 18-Oct-1989 3unnyvale - Colton Ave. 6.93 24.23
27 959 Xorthri02e-01 17-Jan-1994 Cano2a Park - Topan2a Can 6.69 14.70
28 974 Xorthri02e-01 17-Jan-1994 Glen0ale - Las Palmas 6.69 22.21
29 987 Xorthri02e-01 17-Jan-1994 LA - Centinela 3t 6.69 28.30
30 992 Xorthri02e-01 17-Jan-1994 LA - 1 Vernon Ave 6.69 36.75
31 993 Xorthri02e-01 17-Jan-1994 LA - Hletcher Dr 6.69 27.26
32 995 Xorthri02e-01 17-Jan-1994 LA - Hollywoo0 3tor HH 6.69 24.03
33 996 Xorthri02e-01 17-Jan-1994 LA - X Harin2 R0 6.69 20.81
34 1000 Xorthri02e-01 17-Jan-1994 LA - Pico \ 3entous 6.69 31.33
35 1003 Xorthri02e-01 17-Jan-1994 LA - 3aturn 3t 6.69 27.01
36 1016 Xorthri02e-01 17-Jan-1994 La Crescenta - Xew ^ork 6.69 18.50
37 1019 Xorthri02e-01 17-Jan-1994 Lake Hu2hes #1 6.69 35.81
38 1028 Xorthri02e-01 17-Jan-1994 Leona Valley #2 6.69 37.24
39 1032 Xorthri02e-01 17-Jan-1994 Leona Valley #6 6.69 38.03
40 1048 Xorthri02e-01 17-Jan-1994 Xorthri02e - 17645 3aticoy 3t 6.69 12.09  
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Table A.1—(continued) 

# Mech
GMX's 

C3 Max fHP Min fLP FileName

1 RV D 0.20 35.00 3H1RX_P1L180
2 33 D 0.10 40.00 RMPVALL_H-CAL315
3 33 D 0.05 0.00 RMPVALL_H-CHR012
4 33 D 0.20 0.00 RMPVALL_H-CMP015
5 33 D 0.05 0.00 RMPVALL_H-`aP085
6 33 D 0.10 40.00 RMPVALL_H-101140
7 33 D 0.10 40.00 RMPVALL_H-112230
8 33 D 0.20 40.00 RMPVALL_H-113230
9 33 D 0.10 30.00 RMPVALL_H-XRL090
10 33 D 0.10 40.00 RMPVALL_H-PL3135
11 33 D 0.10 40.00 RMPVALL_H-W3M180
12 33 D 0.10 23.00 3UP1R3T_B-BRA225
13 33 D 0.10 40.00 3UP1R3T_B-RCC000
14 33 D 0.20 18.00 3UP1R3T_B-PL3135
15 33 D 0.10 35.00 3UP1R3T_B-W3M090
16 RV/OB D 0.20 30.00 LOMAP_AGW000
17 RV/OB B 0.20 40.00 LOMAP_CAP090
18 RV/OB D 0.10 40.00 LOMAP_G03090
19 RV/OB D 0.20 30.00 LOMAP_G04090
20 RV/OB B 0.20 40.00 LOMAP_GMR000
21 RV/OB C 0.20 22.00 LOMAP_HVR000
22 RV/OB D 0.10 29.00 LOMAP_HCH090
23 RV/OB D 0.10 33.00 LOMAP_HDA255
24 RV/OB A 0.20 33.00 LOMAP_3LC270
25 RV/OB D 0.10 28.00 LOMAP_3JW250
26 RV/OB D 0.10 40.00 LOMAP_3VL270
27 RV D 0.05 30.00 XORTHR_CXP196
28 RV C 0.10 30.00 XORTHR_GLP267
29 RV D 0.20 30.00 XORTHR_C1X245
30 RV D 0.10 30.00 XORTHR_V1R180
31 RV D 0.15 30.00 XORTHR_HL1234
32 RV D 0.20 23.00 XORTHR_P1L090
33 RV B 0.13 30.00 XORTHR_HAR000
34 RV D 0.20 46.00 XORTHR_PRC180
35 RV D 0.10 30.00 XORTHR_3TX020
36 RV C 0.10 30.00 XORTHR_X^A180
37 RV B 0.12 23.00 XORTHR_L01000
38 RV B 0.20 23.00 XORTHR_LV2090
39 RV D 0.20 23.00 XORTHR_LV6090
40 RV D 0.10 30.00 XORTHR_3TC090  
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A.2 NEAR-SOURCE PULSE-LIKE GROUND MOTION RECORD SET 

A database of 70 pulse-like earthquake ground motion records rotated to the fault-normal 

direction are compiled from records that have been identified as having “distinct” velocity pulses 

by Mavroeidis and Papageorgiou (2003), Fu and Menun (2004), and Bazzurro and Luco (2004). 

Bazzurro and Luco (2004) selected records whose location relative to the fault rupture suggested 

that a velocity pulse is likely to occur, rather than directly identifying a velocity pulse in the 

record. Accordingly, records have been visually identified based on whether they contained a 

pulse before including the records into the database. The processed records, in the fault-normal 

direction, are obtained from the Next Generation Attenuation (NGA) database as of March 2005. 

All ground motions are recorded on firm soil or rock based on Geomatrix site classes for all 

faulting styles. The earthquake magnitude, Mw, ranges from 5.6 to 7.6, and the closest distance to 

rupture ranges from 0.07 to 22 km. 

 

Fig. A.2  Earthquake magnitude and distance range for near-source pulse-like record set. 
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Table A.2  Earthquake ground motion properties for near-source pulse-like record set. 

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km) Mech

1 29 Parkfiel0 28-Jun-1966 Cholame - 3han0on Array #2 6.19 6.28 33   
2 33 Parkfiel0 28-Jun-1966 TemKlor pre-1969 6.19 15.96 33   
3 77 3an Hernan0o 09-HeK-1971 Pacoima Dam bupper left aKutc 6.61 1.81 RV   
4 126 Gadli, U33R 17-May-1976 aarakyr 6.80 5.46 RV   
5 143 TaKas, Rran 16-3ep-1978 TaKas 7.35 2.05 RV   
6 150 Coyote Lake 06-Au2-1979 Gilroy Array #6 5.74 3.11 33   
7 161 Rmperial Valley-06 15-Oct-1979 Brawley Airport 6.53 10.42 33   
8 170 Rmperial Valley-06 15-Oct-1979 1C County Center HH 6.53 7.31 33   
9 171 Rmperial Valley-06 15-Oct-1979 1C Melolan0 Overpass HH 6.53 0.07 33   
10 173 Rmperial Valley-06 15-Oct-1979 1l Centro Array #10 6.53 6.17 33   
11 179 Rmperial Valley-06 15-Oct-1979 1l Centro Array #4 6.53 7.05 33   
12 180 Rmperial Valley-06 15-Oct-1979 1l Centro Array #5 6.53 3.95 33   
13 181 Rmperial Valley-06 15-Oct-1979 1l Centro Array #6 6.53 1.35 33   
14 182 Rmperial Valley-06 15-Oct-1979 1l Centro Array #7 6.53 0.56 33   
15 183 Rmperial Valley-06 15-Oct-1979 1l Centro Array #8 6.53 3.86 33   
16 184 Rmperial Valley-06 15-Oct-1979 1l Centro Differential Array 6.53 5.09 33   
17 192 Rmperial Valley-06 15-Oct-1979 Westmorlan0 Hire 3ta 6.53 15.25 33   
18 367 Coalin2a-01 02-May-1983 Pleasant Valley P.P. - Kl02 6.36 8.41 RV   
19 448 Mor2an Hill 24-Apr-1984 An0erson Dam bDownstreamc 6.19 3.26 33   
20 451 Mor2an Hill 24-Apr-1984 Coyote Lake Dam b3W AKutc 6.19 0.53 33   
21 459 Mor2an Hill 24-Apr-1984 Gilroy Array #6 6.19 9.86 33   
22 461 Mor2an Hill 24-Apr-1984 Halls Valley 6.19 3.48 33   
23 495 Xahanni, Cana0a 23-Dec-1985 3ite 1 6.76 9.60 RV   
24 496 Xahanni, Cana0a 23-Dec-1985 3ite 2 6.76 4.93 RV   
25 517 X. Palm 3prin2s 08-Jul-1986 Desert Hot 3prin2s 6.06 6.82 RV/OB
26 529 X. Palm 3prin2s 08-Jul-1986 Xorth Palm 3prin2s 6.06 4.04 RV/OB
27 540 X. Palm 3prin2s 08-Jul-1986 Whitewater Trout Harm 6.06 6.04 RV/OB
28 595 Whittier Xarrows-01 01-Oct-1987 Bell Gar0ens - JaKoneria 5.99 17.79 RV/OB
29 615 Whittier Xarrows-01 01-Oct-1987 Downey - Co Maint Bl02 5.99 20.82 RV/OB
30 668 Whittier Xarrows-01 01-Oct-1987 Xorwalk - Rmp Hwy, 3 Grn0 5.99 20.42 RV/OB
31 692 Whittier Xarrows-01 01-Oct-1987 3anta He 3prin2s - 1.Joslin 5.99 18.49 RV/OB
32 721 3uperstition Hills-02 24-Xov-1987 1l Centro Rmp. Co. Cent 6.54 18.20 33   
33 723 3uperstition Hills-02 24-Xov-1987 Parachute Test 3ite 6.54 0.95 33   
34 763 Loma Prieta 18-Oct-1989 Gilroy - Gavilan Coll. 6.93 9.96 RV/OB
35 764 Loma Prieta 18-Oct-1989 Gilroy - Historic Bl02. 6.93 10.97 RV/OB
36 765 Loma Prieta 18-Oct-1989 Gilroy Array #1 6.93 9.64 RV/OB
37 766 Loma Prieta 18-Oct-1989 Gilroy Array #2 6.93 11.07 RV/OB
38 767 Loma Prieta 18-Oct-1989 Gilroy Array #3 6.93 12.82 RV/OB
39 768 Loma Prieta 18-Oct-1989 Gilroy Array #4 6.93 14.34 RV/OB
40 779 Loma Prieta 18-Oct-1989 LGPC 6.93 3.88 RV/OB  
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Table A.2—(continued) 

#
GMX's 

C3 X or Y

θ or φ  

[degree] Tp [sec] Max fHP Min fLP FileName

1 D 1.00 4.74 0.67 PARaH_C02065         
2 A 1.00 10.43 0.40 0.20 14.70 PARaH_TMBe051eHX     
3 A 0.80 7.53 1.34 0.50 35.00 3H1RX_PULe195eHX     
4 A 1.00 3.15 1.06 0.05 38.00 GAfLR_GAfe177eHX     
5 A 0.32 0.58 4.70 0.05 TABA3_TAB-TR         
6 A 0.62 16.99 0.91 0.20 25.00 CO^OT1La_G06e246eHX  
7 D 0.76 10.54 4.80 0.10 40.00 RMPVALL_H-BRAe233eHX 
8 D 0.55 18.15 3.70 0.10 35.00 RMPVALL_H-1CCe233eHX 
9 D 0.39 5.37 3.00 0.10 40.00 RMPVALL_H-1MOe233eHX 
10 D 0.50 17.53 6.10 0.10 40.00 RMPVALL_H-110e233eHX 
11 D 0.53 11.49 3.70 0.10 40.00 RMPVALL_H-104e233eHX 
12 D 0.55 4.68 3.40 0.10 40.00 RMPVALL_H-105e233eHX 
13 D 0.55 0.78 3.30 0.10 40.00 RMPVALL_H-106e233eHX 
14 D 0.55 4.80 3.20 0.10 40.00 RMPVALL_H-107e233eHX 
15 D 0.55 11.52 4.20 0.10 40.00 RMPVALL_H-108e233eHX 
16 D 0.53 14.55 3.70 0.10 40.00 RMPVALL_H-1DAe233eHX 
17 D 0.76 3.04 4.60 0.10 40.00 RMPVALL_H-W3Me233eHX 
18 D 0.21 4.61 1.10 0.20 20.00 COALRXGA_H-PVBe047eHX
19 D 0.61 11.12 0.45 0.10 30.00 MORGAX_AXDe058eHX    
20 A 0.91 0.40 0.75 0.10 39.00 MORGAX_C^Ce058eHX    
21 A 0.98 0.95 1.15 0.10 27.00 MORGAX_G06e058eHX    
22 C 0.02 6.74 0.84 0.20 26.00 MORGAX_HVRe058eHX    
23 A 0.10 79.91 3.40 0.05 62.50 XAHAXXR_31e070eHX    
24 A 0.47 30.77 0.55 0.10 62.50 XAHAXXR_32e070eHX    
25 D 0.66 37.43 0.42 0.50 40.00 PALM3PR_D3Pe197eHX   
26 D 0.73 14.47 0.91 0.23 20.00 PALM3PR_XP3e197eHX   
27 C 0.71 32.40 0.53 0.15 40.00 PALM3PR_WWTe197eHX   
28 D 0.03 24.36 0.62 0.25 25.00 WHRTTR1R_A-JABe190eHX
29 D 0.03 14.02 0.81 0.25 30.00 WHRTTR1R_A-DWXe190eHX
30 D 0.03 15.12 0.60 0.15 40.00 WHRTTR1R_A-XORe190eHX
31 D 0.03 21.45 0.26 0.35 25.00 WHRTTR1R_A-1J3e190eHX
32 D 0.90 8.31 1.50 0.10 38.00 3UP1R3T_B-RCCe037eHX 
33 D 0.80 3.40 1.90 0.12 20.00 3UP1R3T_B-PT3e037eHX 
34 B 0.81 12.96 0.39 0.20 35.00 LOMAP_GRLe038eHX     
35 D 0.81 19.54 1.29 0.20 38.00 LOMAP_GOHe038eHX     
36 A 0.81 12.45 0.40 0.20 50.00 LOMAP_G01e038eHX     
37 D 0.81 16.18 1.56 0.20 31.00 LOMAP_G02e038eHX     
38 D 0.81 19.32 0.47 0.10 33.00 LOMAP_G03e038eHX     
39 D 0.81 23.02 1.50 0.20 28.00 LOMAP_G04e038eHX     
40 A 0.81 5.32 0.75 0.10 80.00 LOMAP_LGPe038eHX      
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Table A.2—(continued) 

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km) Mech

41 802 Loma Prieta 18-Oct-1989 3arato2a - Aloha Ave 6.93 8.50 RV/OB
42 803 Loma Prieta 18-Oct-1989 3arato2a - W Valley Coll. 6.93 9.31 RV/OB
43 1642 3ierra Ma0re 28-Jun-1991 Co2swell Dam - Ri2ht AKutment 5.61 22.00 RV   
44 821 1rdican, Turkey 13-Mar-1992 1rdincan 6.69 4.38 33   
45 879 Lan0ers 28-Jun-1992 Lucerne 7.28 2.19 33   
46 959 Xorthri02e-01 17-Jan-1994 Cano2a Park - Topan2a Can 6.69 14.70 RV   
47 960 Xorthri02e-01 17-Jan-1994 Canyon Country - W Lost Cany 6.69 12.44 RV   
48 982 Xorthri02e-01 17-Jan-1994 Jensen Hilter Plant 6.69 5.43 RV   
49 1004 Xorthri02e-01 17-Jan-1994 LA - 3epulve0a VA Hospital 6.69 8.44 RV   
50 1013 Xorthri02e-01 17-Jan-1994 LA Dam 6.69 5.92 RV   
51 1044 Xorthri02e-01 17-Jan-1994 Xewhall - Hire 3ta 6.69 5.92 RV   
52 1045 Xorthri02e-01 17-Jan-1994 Xewhall - W Pico Canyon R0. 6.69 5.48 RV   
53 1050 Xorthri02e-01 17-Jan-1994 Pacoima Dam b0ownstrc 6.69 7.01 RV   
54 1052 Xorthri02e-01 17-Jan-1994 Pacoima aa2el Canyon 6.69 7.26 RV   
55 1063 Xorthri02e-01 17-Jan-1994 Rinal0i Receivin2 3ta 6.69 6.50 RV   
56 1084 Xorthri02e-01 17-Jan-1994 3ylmar - Converter 3ta 6.69 5.35 RV   
57 1085 Xorthri02e-01 17-Jan-1994 3ylmar - Converter 3ta 1ast 6.69 5.19 RV   
58 1086 Xorthri02e-01 17-Jan-1994 3ylmar - Olive View Me0 HH 6.69 5.30 RV   
59 1106 aoKe, Japan 16-Jan-1995 aJMA 6.90 0.96 33   
60 1148 aocaeli, Turkey 17-Au2-1999 Arcelik 7.51 13.49 33   
61 1158 aocaeli, Turkey 17-Au2-1999 Dudce 7.51 15.37 33   
62 1161 aocaeli, Turkey 17-Au2-1999 GeKde 7.51 10.92 33   
63 1171 aocaeli, Turkey 17-Au2-1999 3akarya 7.51 3.12 33   
64 1176 aocaeli, Turkey 17-Au2-1999 ^arimca 7.51 4.83 33   
65 1492 Chi-Chi, Taiwan 20-3ep-1999 TCU052 7.62 0.66 RV/OB
66 1503 Chi-Chi, Taiwan 20-3ep-1999 TCU065 7.62 0.59 RV/OB
67 1505 Chi-Chi, Taiwan 20-3ep-1999 TCU068 7.62 0.32 RV/OB
68 1510 Chi-Chi, Taiwan 20-3ep-1999 TCU075 7.62 0.91 RV/OB
69 1511 Chi-Chi, Taiwan 20-3ep-1999 TCU076 7.62 2.76 RV/OB
70 1549 Chi-Chi, Taiwan 20-3ep-1999 TCU129 7.62 1.84 RV/OB  
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Table A.2—(continued)   

#
GMX's 

C3 X or Y

θ or φ  

[degree] Tp [sec] Max fHP Min fLP FileName

41 D 0.81 11.53 1.69 0.10 38.00 LOMAP_3TGe038eHX     
42 D 0.81 15.65 1.15 0.10 38.00 LOMAP_WVCe038eHX     
43 A 0.07 89.22 0.29 0.50 23.00 3MADR1_chan1e152eHX  
44 D 0.31 1.95 2.30 0.10 1RfRaAX_1Rfe032eHX   
45 A 0.66 20.24 4.50 0.08 60.00 LAXD1R3_LCXe239eHX   
46 D 0.41 56.34 2.05 0.05 30.00 XORTHR_CXPe032eHX    
47 C 0.81 6.42 0.67 0.10 30.00 XORTHR_LO3e032eHX    
48 B 0.81 13.70 2.90 0.20 XORTHR_J1Xe032eHX    
49 D 0.72 26.01 0.85 0.08 50.00 XORTHR_0637e032eHX   
50 A 0.81 16.04 1.34 0.12 XORTHR_LDMe032eHX    
51 D 0.81 3.99 1.25 0.12 23.00 XORTHR_XWHe032eHX    
52 B 0.81 10.99 2.30 0.10 30.00 XORTHR_WPRe032eHX    
53 A 0.81 1.46 0.44 0.16 23.00 XORTHR_PACe032eHX    
54 B 0.81 5.41 0.88 0.14 23.00 XORTHR_PaCe032eHX    
55 B 0.81 18.30 1.06 0.09 30.00 XORTHR_RR3e032eHX    
56 D 0.81 13.29 3.00 XORTHR_3C3e032eHX    
57 B 0.81 12.18 3.10 XORTHR_3C1e032eHX    
58 D 0.81 6.32 2.58 0.12 23.00 XORTHR_3^Le032eHX    
59 B 0.30 7.83 0.85 0.05 aOB1_aJMe140eHX      
60 B 0.35 19.92 9.20 0.07 50.00 aOCA1LR_ARCe184eHX   
61 D 0.65 17.40 3.80 15.00 aOCA1LR_DfCe163eHX   
62 A 0.34 23.87 4.30 0.08 25.00 aOCA1LR_GBfe184eHX   
63 B 0.24 3.56 5.70 aOCA1LR_3aR090       
64 D 0.14 13.92 3.80 0.07 50.00 aOCA1LR_^PTe180eHX   
65 A 0.39 6.59 6.70 0.04 50.00 CHRCHR_TCU052e278eHX 
66 D 0.38 5.99 4.50 0.06 50.00 CHRCHR_TCU065e272eHX 
67 A 0.39 7.01 9.00 0.03 50.00 CHRCHR_TCU068e280eHX 
68 D 0.36 4.05 4.40 0.04 50.00 CHRCHR_TCU075e271eHX 
69 D 0.32 0.05 3.20 0.10 50.00 CHRCHR_TCU076e271eHX 
70 D 0.29 3.75 4.10 0.03 50.00 CHRCHR_TCU129e271eHX  
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A.3 ORDINARY GROUND MOTION RECORD SET 

These earthquake ground motion records were to develop a Sdi attenuation relationship in 

Chapter 3. The maximum closest distance to rupture (Rrup) was limited to 95 km to avoid the 

potential effects of (regionally differing) anelastic attenuation on spectral shape. Near-source 

ground motions with forward-directivity effects were largely excluded by restricting the Rrup to 

be greater than 15 km (SEAOC 1999). Free-field-like ground motions recorded on deep, stiff soil 

from all faulting styles were collected from the NGA database; we used Geomatrix-C1 

(Instrument Housing) classes I, A, and B, and Geomatrix-C3 (Geotechnical Subsurface 

Characteristics) classes C and D. One randomly oriented (i.e., arbitrary) horizontal component 

was selected. This record set comprises 291 strong earthquake ground motions from 28 historical 

earthquakes with Mw ranging from 5.65 to 7.90. 

 

Fig. A.3  Earthquake magnitude and distance range for ordinary record set. 
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Table A.3  Earthquake ground motion properties for ordinary record set. 

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

1 28  Parkfiel0             28-Jun-1966  Cholame - 3han0on Array #12     6.19 17.64
2 51  3an Hernan0o          09-HeK-1971  2516 Via Tejon PV               6.61 55.20
3 58  3an Hernan0o          09-HeK-1971  Ce0ar 3prin2s Pumphouse         6.61 92.59
4 65  3an Hernan0o          09-HeK-1971  Gormon - Oso Pump Plant         6.61 46.78
5 68  3an Hernan0o          09-HeK-1971  LA - Hollywoo0 3tor HH          6.61 22.77
6 92  3an Hernan0o          09-HeK-1971  Wheeler Ri02e - Groun0          6.61 70.23
7 93  3an Hernan0o          09-HeK-1971  Whittier Xarrows Dam            6.61 39.45
8 94  3an Hernan0o          09-HeK-1971  Wri2htwoo0 - 6074 Park Dr       6.61 62.23
9 122  Hriuli, Rtaly-01      06-May-1976  Co0roipo                        6.50 33.40
10 131  Hriuli, Rtaly-02      15-3ep-1976  Co0roipo                        5.91 41.39
11 138  TaKas, Rran           16-3ep-1978  Boshrooyeh                      7.35 28.79
12 140  TaKas, Rran           16-3ep-1978  Her0ows                         7.35 91.14
13 152  Coyote Lake           06-Au2-1979  3JB Overpass, Bent 3 2.l.       5.74 20.67
14 154  Coyote Lake           06-Au2-1979  3an Juan Bautista, 24 Polk 3t   5.74 19.70
15 163  Rmperial Valley-06    15-Oct-1979  Calipatria Hire 3tation         6.53 24.60
16 166  Rmperial Valley-06    15-Oct-1979  Coachella Canal #4              6.53 50.10
17 172  Rmperial Valley-06    15-Oct-1979  1l Centro Array #1              6.53 21.68
18 175  Rmperial Valley-06    15-Oct-1979  1l Centro Array #12             6.53 17.94
19 176  Rmperial Valley-06    15-Oct-1979  1l Centro Array #13             6.53 21.98
20 186  Rmperial Valley-06    15-Oct-1979  Xilan0 Hire 3tation             6.53 36.92
21 188  Rmperial Valley-06    15-Oct-1979  Plaster City                    6.53 30.33
22 266  Victoria, Mehico      09-Jun-1980  Chihuahua                       6.33 18.96
23 267  Victoria, Mehico      09-Jun-1980  Cucapah                         6.33 25.57
24 268  Victoria, Mehico      09-Jun-1980  3AHOP Casa Hlores               6.33 39.30
25 288  Rrpinia, Rtaly-01     23-Xov-1980  Brienda                         6.90 22.56
26 302  Rrpinia, Rtaly-02     23-Xov-1980  Rionero Rn Vulture              6.20 22.69
27 303  Rrpinia, Rtaly-02     23-Xov-1980  3turno                          6.20 20.39
28 316  Westmorlan0           26-Apr-1981  Parachute Test 3ite             5.90 16.66
29 322  Coalin2a-01           02-May-1983  Cantua Creek 3chool             6.36 24.02
30 323  Coalin2a-01           02-May-1983  Parkfiel0 - Cholame 12W         6.36 55.77
31 324  Coalin2a-01           02-May-1983  Parkfiel0 - Cholame 11          6.36 43.68
32 326  Coalin2a-01           02-May-1983  Parkfiel0 - Cholame 2WA         6.36 44.72
33 328  Coalin2a-01           02-May-1983  Parkfiel0 - Cholame 3W          6.36 45.70
34 329  Coalin2a-01           02-May-1983  Parkfiel0 - Cholame 4AW         6.36 47.57
35 334  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 1        6.36 41.99
36 335  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 10       6.36 31.62
37 336  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 11       6.36 28.52
38 337  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 12       6.36 29.34
39 338  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 14       6.36 29.48
40 339  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 15       6.36 29.38  
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Table A.3—(continued)  

# Mech
GMX's 

C3 Max fHP Min fLP FileName

1  33     D 0.20 20.00  PARaH_C12050     
2  RV     C 0.20 20.00  3H1RX_PV1065     
3  RV     C 0.10 20.00  3H1RX_C3P216     
4  RV     C 0.10 23.00  3H1RX_OPP000     
5  RV     D 0.20 35.00  3H1RX_P1L180     
6  RV     D 0.10 23.00  3H1RX_WRP090     
7  RV     D 0.10 20.00  3H1RX_WXD143     
8  RV     D 0.20 30.00  3H1RX_WTW025     
9  RV     D 0.10 25.00  HRRULR_A-COD000  
10  RV     D 0.10 25.00  HRRULR_B-COD270  
11  RV     C 0.13 20.00  TABA3_BO3-T1     
12  RV     D 0.13 20.00  TABA3_H1R-T1     
13  33     D 0.23 60.00  CO^OT1La_3J3337  
14  33     D 0.20 20.00  CO^OT1La_3JB303  
15  33     D 0.10 40.00  RMPVALL_H-CAL315 
16  33     D 0.20 40.00  RMPVALL_H-CC4135 
17  33     D 0.10 40.00  RMPVALL_H-101230 
18  33     D 0.10 40.00  RMPVALL_H-112140 
19  33     D 0.20 40.00  RMPVALL_H-113140 
20  33     D 0.10 40.00  RMPVALL_H-XRL360 
21  33     D 0.10 40.00  RMPVALL_H-PL3045 
22  33     D 0.20 27.00  VRCT_CHR192      
23  33     D 0.20 44.00  VRCT_`aP085      
24  33     C 0.20 28.00  VRCT_3HP010      
25  XORMAL  D 0.20 30.00  RTAL^_A-BRf270   
26  XORMAL  C 0.20 30.00  RTAL^_B-VLT000   
27  XORMAL  C 0.21 23.00  RTAL^_B-3TU000   
28  33     D 0.10 33.00  W13TMORL_PT3315  
29  RV     D 0.20 23.00  COALRXGA_H-CAa360
30  RV     D 0.20 21.00  COALRXGA_H-C12360
31  RV     D 0.20 20.00  COALRXGA_H-C01000
32  RV     D 0.20 22.00  COALRXGA_H-C02000
33  RV     C 0.20 21.00  COALRXGA_H-C03000
34  RV     C 0.20 20.00  COALRXGA_H-C4A090
35  RV     D 0.20 21.00  COALRXGA_H-COW090
36  RV     D 0.20 24.00  COALRXGA_H-f10000
37  RV     D 0.20 21.00  COALRXGA_H-f11000
38  RV     C 0.20 20.00  COALRXGA_H-PRa180
39  RV     C 0.10 23.00  COALRXGA_H-f14090
40  RV     D 0.20 20.00  COALRXGA_H-f15000  
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Table A.3—(continued)  

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

41 340  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 16       6.36 27.67
42 341  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 2        6.36 38.95
43 342  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 3        6.36 37.22
44 345  Coalin2a-01           02-May-1983  Parkfiel0 - Hault fone 7        6.36 31.21
45 348  Coalin2a-01           02-May-1983  Parkfiel0 - Gol0 Hill 1W        6.36 36.15
46 355  Coalin2a-01           02-May-1983  Parkfiel0 - Gol0 Hill 6W        6.36 47.88
47 359  Coalin2a-01           02-May-1983  Parkfiel0 - Vineyar0 Cany 11    6.36 26.38
48 366  Coalin2a-01           02-May-1983  Parkfiel0 - Vineyar0 Cany 6W    6.36 40.92
49 463  Mor2an Hill           24-Apr-1984  Hollister Diff Array #1         6.19 26.43
50 464  Mor2an Hill           24-Apr-1984  Hollister Diff Array #3         6.19 26.43
51 465  Mor2an Hill           24-Apr-1984  Hollister Diff Array #4         6.19 26.43
52 466  Mor2an Hill           24-Apr-1984  Hollister Diff Array #5         6.19 26.43
53 467  Mor2an Hill           24-Apr-1984  Hollister Diff. Array           6.19 26.43
54 470  Mor2an Hill           24-Apr-1984  3an Juan Bautista, 24 Polk 3t   6.19 27.15
55 474  Mor2an Hill           24-Apr-1984  3arato2a - WVC X1 Corner        6.19 28.06
56 520  X. Palm 3prin2s       08-Jul-1986  Hesperia                        6.06 72.97
57 522  X. Palm 3prin2s       08-Jul-1986  Rn0io                           6.06 35.57
58 532  X. Palm 3prin2s       08-Jul-1986  Rancho Cucamon2a - HH           6.06 78.09
59 535  X. Palm 3prin2s       08-Jul-1986  3an Jacinto - Valley Cemetary   6.06 30.97
60 544  Chalfant Valley-01    20-Jul-1986  Bishop - LADWP 3outh 3t         5.77 23.47
61 548  Chalfant Valley-02    21-Jul-1986  Benton                          6.19 21.92
62 549  Chalfant Valley-02    21-Jul-1986  Bishop - LADWP 3outh 3t         6.19 17.17
63 551  Chalfant Valley-02    21-Jul-1986  Convict Creek                   6.19 31.19
64 556  Chalfant Valley-02    21-Jul-1986  McGee Creek - 3urface           6.19 30.11
65 595  Whittier Xarrows-01   01-Oct-1987  Bell Gar0ens - JaKoneria        5.99 17.79
66 605  Whittier Xarrows-01   01-Oct-1987  Canyon Country - W Lost Cany    5.99 48.18
67 607  Whittier Xarrows-01   01-Oct-1987  Carson - Catskill Ave           5.99 33.19
68 608  Whittier Xarrows-01   01-Oct-1987  Carson - Water 3t               5.99 30.03
69 615  Whittier Xarrows-01   01-Oct-1987  Downey - Co Maint Bl02          5.99 20.82
70 616  Whittier Xarrows-01   01-Oct-1987  1l Monte - Hairview Av          5.99 15.67
71 621  Whittier Xarrows-01   01-Oct-1987  Glen0ora - X OakKank            5.99 22.11
72 624  Whittier Xarrows-01   01-Oct-1987  Huntin2ton Beach - Lake 3t      5.99 44.58
73 626  Whittier Xarrows-01   01-Oct-1987  LA - 116th 3t 3chool            5.99 23.29
74 645  Whittier Xarrows-01   01-Oct-1987  LB - Oran2e Ave                 5.99 24.54
75 650  Whittier Xarrows-01   01-Oct-1987  La Puente - Rim2rove Av         5.99 17.75
76 664  Whittier Xarrows-01   01-Oct-1987  X Hollywoo0 - Col0water Can     5.99 33.11
77 667  Whittier Xarrows-01   01-Oct-1987  Xorthri02e - 17645 3aticoy 3t   5.99 41.69
78 668  Whittier Xarrows-01   01-Oct-1987  Xorwalk - Rmp Hwy, 3 Grn0       5.99 20.42
79 672  Whittier Xarrows-01   01-Oct-1987  Pacoima aa2el Canyon U3C        5.99 36.29
80 673  Whittier Xarrows-01   01-Oct-1987  Panorama City - Roscoe          5.99 36.55  
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Table A.3—(continued)   

# Mech
GMX's 

C3 Max fHP Min fLP FileName

41  RV     C 0.20 26.00  COALRXGA_H-f16000
42  RV     D 0.20 25.00  COALRXGA_H-f02090
43  RV     D 0.10 22.00  COALRXGA_H-COH090
44  RV     C 0.20 30.00  COALRXGA_H-f07090
45  RV     D 0.20 22.00  COALRXGA_H-PG1090
46  RV     C 0.20 30.00  COALRXGA_H-PG6000
47  RV     C 0.20 24.00  COALRXGA_H-PV1000
48  RV     C 0.20 27.00  COALRXGA_H-VC6090
49  33     D 0.20 30.00  MORGAX_HD1255    
50  33     D 0.10 30.00  MORGAX_HD3345    
51  33     D 0.10 30.00  MORGAX_HD4345    
52  33     D 0.20 30.00  MORGAX_HD5255    
53  33     D 0.20 23.00  MORGAX_HDA255    
54  33     D 0.10 21.00  MORGAX_3JB213    
55  33     D 0.20 30.00  MORGAX_WX1270    
56  RV/OB  D 0.20 25.00  PALM3PR_H13002   
57  RV/OB  D 0.10 35.00  PALM3PR_RXO225   
58  RV/OB  D 0.20 40.00  PALM3PR_CLJ000   
59  RV/OB  D 0.20 31.00  PALM3PR_H06360   
60  33     D 0.10 20.00  CHALHAXT_B-LAD270
61  33     D 0.10 40.00  CHALHAXT_A-B1X270
62  33     D 0.10 40.00  CHALHAXT_A-LAD180
63  33     C 0.10 30.00  CHALHAXT_A-CVa000
64  33     C 0.10 50.00  CHALHAXT_A-MCG270
65  RV/OB  D 0.10 25.00  WHRTTR1R_A-JAB297
66  RV/OB  C 0.23 22.50  WHRTTR1R_A-LO3270
67  RV/OB  D 0.18 25.00  WHRTTR1R_A-CAT090
68  RV/OB  D 0.20 25.00  WHRTTR1R_A-WAT180
69  RV/OB  D 0.20 30.00  WHRTTR1R_A-DWX180
70  RV/OB  D 0.13 25.00  WHRTTR1R_A-HAR270
71  RV/OB  D 0.23 25.00  WHRTTR1R_A-OAa170
72  RV/OB  D 0.17 25.00  WHRTTR1R_A-HXT360
73  RV/OB  D 0.20 30.00  WHRTTR1R_A-116270
74  RV/OB  D 0.12 25.00  WHRTTR1R_A-OR2010
75  RV/OB  D 0.18 25.00  WHRTTR1R_A-RRM015
76  RV/OB  C 0.20 25.00  WHRTTR1R_A-CWC180
77  RV/OB  D 0.23 25.00  WHRTTR1R_A-3TC090
78  RV/OB  D 0.15 45.00  WHRTTR1R_A-XOR360
79  RV/OB  D 0.23 25.00  WHRTTR1R_A-aAG315
80  RV/OB  D 0.20 25.00  WHRTTR1R_A-RO2180  
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Table A.3—(continued)   

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

81 683  Whittier Xarrows-01   01-Oct-1987  Pasa0ena - Ol0 House R0         5.99 19.17
82 701  Whittier Xarrows-01   01-Oct-1987  Terminal Rslan0 - 3 3easi0e     5.99 40.36
83 705  Whittier Xarrows-01   01-Oct-1987  West Covina - 3 Oran2e Ave      5.99 16.32
84 719  3uperstition Hills-02  24-Xov-1987  Brawley Airport                 6.54 17.03
85 720  3uperstition Hills-02  24-Xov-1987  Calipatria Hire 3tation         6.54 27.00
86 721  3uperstition Hills-02  24-Xov-1987  1l Centro Rmp. Co. Cent         6.54 18.20
87 722  3uperstition Hills-02  24-Xov-1987  aornKloom Roa0 btempc           6.54 18.48
88 726  3uperstition Hills-02  24-Xov-1987  3alton 3ea Wil0life Refu2e      6.54 25.88
89 729  3uperstition Hills-02  24-Xov-1987  Wil0life Li@uef. Array          6.54 23.85
90 733  Loma Prieta           18-Oct-1989  AP11L 21 Haywar0 Muir 3ch       6.93 52.68
91 736  Loma Prieta           18-Oct-1989  AP11L 9 - Crystal 3prin2s Res   6.93 41.03
92 737  Loma Prieta           18-Oct-1989  A2news 3tate Hospital           6.93 24.57
93 739  Loma Prieta           18-Oct-1989  An0erson Dam bDownstreamc       6.93 20.26
94 754  Loma Prieta           18-Oct-1989  Coyote Lake Dam bDownstc        6.93 20.80
95 757  Loma Prieta           18-Oct-1989  DumKarton Bri02e West 1n0 HH    6.93 35.52
96 761  Loma Prieta           18-Oct-1989  Hremont - 1merson Court         6.93 39.85
97 772  Loma Prieta           18-Oct-1989  Halls Valley                    6.93 30.49
98 773  Loma Prieta           18-Oct-1989  Haywar0 - BART 3ta              6.93 54.15
99 776  Loma Prieta           18-Oct-1989  Hollister - 3outh \ Pine        6.93 27.93

100 778  Loma Prieta           18-Oct-1989  Hollister Diff. Array           6.93 24.82
101 783  Loma Prieta           18-Oct-1989  Oaklan0 - Outer HarKor Wharf    6.93 74.26
102 784  Loma Prieta           18-Oct-1989  Oaklan0 - Title \ Trust         6.93 72.20
103 786  Loma Prieta           18-Oct-1989  Palo Alto - 1900 1mKarc.        6.93 30.81
104 790  Loma Prieta           18-Oct-1989  Richmon0 City Hall              6.93 87.87
105 799  Loma Prieta           18-Oct-1989  3H Rntern. Airport              6.93 58.65
106 800  Loma Prieta           18-Oct-1989  3alinas - John \ Work           6.93 32.78
107 806  Loma Prieta           18-Oct-1989  3unnyvale - Colton Ave.         6.93 24.23
108 826  Cape Men0ocino        25-Apr-1992  1ureka - Myrtle \ West          7.01 41.97
109 827  Cape Men0ocino        25-Apr-1992  Hortuna - Hortuna Blv0          7.01 19.95
110 836  Lan0ers               28-Jun-1992  Baker Hire 3tation              7.28 87.94
111 838  Lan0ers               28-Jun-1992  Barstow                         7.28 34.86
112 841  Lan0ers               28-Jun-1992  Boron Hire 3tation              7.28 89.69
113 848  Lan0ers               28-Jun-1992  Coolwater                       7.28 19.74
114 850  Lan0ers               28-Jun-1992  Desert Hot 3prin2s              7.28 21.78
115 855  Lan0ers               28-Jun-1992  Hort Rrwin                      7.28 62.98
116 860  Lan0ers               28-Jun-1992  Hemet Hire 3tation              7.28 68.66
117 862  Lan0ers               28-Jun-1992  Rn0io - Coachella Canal         7.28 54.25
118 884  Lan0ers               28-Jun-1992  Palm 3prin2s Airport            7.28 36.15
119 888  Lan0ers               28-Jun-1992  3an Bernar0ino - 1 \ Hospitality 7.28 79.76
120 900  Lan0ers               28-Jun-1992  ^ermo Hire 3tation              7.28 23.62  
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Table A.3—(continued)   

# Mech
GMX's 

C3 Max fHP Min fLP FileName

81  RV/OB  C 0.23 25.00  WHRTTR1R_A-OLD090
82  RV/OB  D 0.20 25.00  WHRTTR1R_A-331252
83  RV/OB  D 0.23 25.00  WHRTTR1R_A-3OR225
84  33     D 0.10 23.00  3UP1R3T_B-BRA225 
85  33     D 0.23 20.00  3UP1R3T_B-CAL225 
86  33     D 0.10 38.00  3UP1R3T_B-RCC090 
87  33     D 0.15 23.00  3UP1R3T_B-aRX360 
88  33     D 0.20 30.00  3UP1R3T_B-WLH315 
89  33     D 0.10 50.00  3UP1R3T_B-RVW090 
90  RV/OB  D 0.20 30.00  LOMAP_A21000     
91  RV/OB  C 0.20 40.00  LOMAP_A09137     
92  RV/OB  D 0.20 30.00  LOMAP_AGW000     
93  RV/OB  D 0.20 40.00  LOMAP_AXD340     
94  RV/OB  C 0.10 30.00  LOMAP_CLD195     
95  RV/OB  D 0.05 23.00  LOMAP_DUMB357    
96  RV/OB  D 0.10 31.00  LOMAP_HM3090     
97  RV/OB  C 0.20 22.00  LOMAP_HVR090     
98  RV/OB  D 0.20 36.00  LOMAP_HWB310     
99  RV/OB  D 0.10 23.00  LOMAP_H3P090     

100  RV/OB  D 0.10 33.00  LOMAP_HDA255     
101  RV/OB  D 0.10 23.00  LOMAP_CH12000    
102  RV/OB  D 0.20 44.00  LOMAP_TRB290     
103  RV/OB  D 0.20 30.00  LOMAP_PA1055     
104  RV/OB  D 0.20 29.00  LOMAP_RCH280     
105  RV/OB  D 0.20 31.00  LOMAP_3HO000     
106  RV/OB  D 0.10 28.00  LOMAP_3JW250     
107  RV/OB  D 0.10 32.00  LOMAP_3VL360     
108  RV     D 0.16 23.00  CAP1M1XD_1UR090  
109  RV     D 0.07 23.00  CAP1M1XD_HOR090  
110  33     D 0.10 23.00  LAXD1R3_BAa050   
111  33     D 0.07 23.00  LAXD1R3_BR3000   
112  33     D 0.07 23.00  LAXD1R3_BH3090   
113  33     D 0.10 30.00  LAXD1R3_CLW-LX   
114  33     D 0.07 23.00  LAXD1R3_D3P000   
115  33     C 0.07 23.00  LAXD1R3_HTR090   
116  33     D 0.16 23.00  LAXD1R3_H05000   
117  33     D 0.10 23.00  LAXD1R3_RXD000   
118  33     D 0.07 23.00  LAXD1R3_P3A090   
119  33     D 0.10 50.00  LAXD1R3_HO3090   
120  33     D 0.07 23.00  LAXD1R3_^1R360    
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Table A.3—(continued)  

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

121 942  Xorthri02e-01         17-Jan-1994  AlhamKra - Hremont 3chool       6.69 36.77
122 944  Xorthri02e-01         17-Jan-1994  Anaheim - W Ball R0             6.69 68.62
123 945  Xorthri02e-01         17-Jan-1994  Anaver0e Valley - City R        6.69 38.00
124 948  Xorthri02e-01         17-Jan-1994  Arca0ia - Campus Dr             6.69 41.41
125 950  Xorthri02e-01         17-Jan-1994  Bal0win Park - X Holly          6.69 47.98
126 951  Xorthri02e-01         17-Jan-1994  Bell Gar0ens - JaKoneria        6.69 44.11
127 961  Xorthri02e-01         17-Jan-1994  Carson - Catskill Ave           6.69 50.38
128 964  Xorthri02e-01         17-Jan-1994  Compton - Castle2ate 3t         6.69 47.04
129 965  Xorthri02e-01         17-Jan-1994  Covina - 3 Gran0 Ave            6.69 57.51
130 966  Xorthri02e-01         17-Jan-1994  Covina - W Ba0illo              6.69 53.45
131 968  Xorthri02e-01         17-Jan-1994  Downey - Co Maint Bl02          6.69 46.74
132 971  Xorthri02e-01         17-Jan-1994  1lidaKeth Lake                  6.69 36.55
133 974  Xorthri02e-01         17-Jan-1994  Glen0ale - Las Palmas           6.69 22.21
134 978  Xorthri02e-01         17-Jan-1994  Hollywoo0 - Willou2hKy Ave      6.69 23.07
135 979  Xorthri02e-01         17-Jan-1994  Huntin2ton Bch - Waikiki        6.69 69.50
136 980  Xorthri02e-01         17-Jan-1994  Huntin2ton Beach - Lake 3t      6.69 77.45
137 981  Xorthri02e-01         17-Jan-1994  Rn2lewoo0 - Union Oil           6.69 42.20
138 984  Xorthri02e-01         17-Jan-1994  LA - 116th 3t 3chool            6.69 41.17
139 986  Xorthri02e-01         17-Jan-1994  LA - Brentwoo0 VA Hospital      6.69 22.50
140 987  Xorthri02e-01         17-Jan-1994  LA - Centinela 3t               6.69 28.30
141 988  Xorthri02e-01         17-Jan-1994  LA - Century City CC Xorth      6.69 23.41
142 991  Xorthri02e-01         17-Jan-1994  LA - Cypress Ave                6.69 30.70
143 993  Xorthri02e-01         17-Jan-1994  LA - Hletcher Dr                6.69 27.26
144 995  Xorthri02e-01         17-Jan-1994  LA - Hollywoo0 3tor HH          6.69 24.03
145 998  Xorthri02e-01         17-Jan-1994  LA - X Westmorelan0             6.69 26.73
146 1000  Xorthri02e-01         17-Jan-1994  LA - Pico \ 3entous             6.69 31.33
147 1003  Xorthri02e-01         17-Jan-1994  LA - 3aturn 3t                  6.69 27.01
148 1006  Xorthri02e-01         17-Jan-1994  LA - UCLA Groun0s               6.69 22.49
149 1008  Xorthri02e-01         17-Jan-1994  LA - W 15th 3t                  6.69 29.74
150 1009  Xorthri02e-01         17-Jan-1994  LA - Wa0sworth VA Hospital Xorth 6.69 23.60
151 1010  Xorthri02e-01         17-Jan-1994  LA - Wa0sworth VA Hospital 3outh 6.69 23.60
152 1015  Xorthri02e-01         17-Jan-1994  LB - Rancho Los Cerritos        6.69 51.89
153 1017  Xorthri02e-01         17-Jan-1994  La HaKra - Briarcliff           6.69 59.62
154 1024  Xorthri02e-01         17-Jan-1994  Lakewoo0 - Del Amo Blv0         6.69 56.92
155 1025  Xorthri02e-01         17-Jan-1994  Lancaster - Hoh Airfiel0 Grn0   6.69 52.12
156 1026  Xorthri02e-01         17-Jan-1994  Lawn0ale - Osa2e Ave            6.69 39.91
157 1031  Xorthri02e-01         17-Jan-1994  Leona Valley #5 - Ritter        6.69 37.80
158 1032  Xorthri02e-01         17-Jan-1994  Leona Valley #6                 6.69 38.03
159 1035  Xorthri02e-01         17-Jan-1994  Manhattan Beach - Manhattan     6.69 39.29
160 1038  Xorthri02e-01         17-Jan-1994  MonteKello - Bluff R0.          6.69 45.03  
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Table A.3—(continued)  

# Mech
GMX's 

C3 Max fHP Min fLP FileName

121  RV     D 0.12 25.00  XORTHR_ALH360    
122  RV     D 0.23 30.00  XORTHR_WBA000    
123  RV     D 0.20 46.00  XORTHR_AXA090    
124  RV     D 0.23 30.00  XORTHR_CAM279    
125  RV     D 0.23 30.00  XORTHR_XHO270    
126  RV     D 0.13 30.00  XORTHR_JAB310    
127  RV     D 0.20 30.00  XORTHR_CAT090    
128  RV     D 0.20 30.00  XORTHR_CA3270    
129  RV     C 0.20 30.00  XORTHR_GRA344    
130  RV     D 0.20 30.00  XORTHR_BAD000    
131  RV     D 0.20 23.00  XORTHR_DWX360    
132  RV     D 0.16 46.00  XORTHR_1LR180    
133  RV     C 0.10 30.00  XORTHR_GLP267    
134  RV     D 0.13 30.00  XORTHR_WRL180    
135  RV     D 0.20 30.00  XORTHR_WAR200    
136  RV     D 0.20 23.00  XORTHR_HXT090    
137  RV     D 0.16 23.00  XORTHR_RXG090    
138  RV     D 0.16 23.00  XORTHR_116360    
139  RV     D 0.08 50.00  XORTHR_0638-285  
140  RV     D 0.20 30.00  XORTHR_C1X245    
141  RV     D 0.14 23.00  XORTHR_CCX360    
142  RV     C 0.13 30.00  XORTHR_C^P143    
143  RV     D 0.15 30.00  XORTHR_HL1234    
144  RV     D 0.20 23.00  XORTHR_P1L090    
145  RV     D 0.20 30.00  XORTHR_W3T000    
146  RV     D 0.20 46.00  XORTHR_PRC090    
147  RV     D 0.10 30.00  XORTHR_3TX110    
148  RV     D 0.08 25.00  XORTHR_UCL090    
149  RV     C 0.13 30.00  XORTHR_W15090    
150  RV     D 0.08 50.00  XORTHR_5082A-325 
151  RV     D 0.08 50.00  XORTHR_5082-235  
152  RV     D 0.16 23.00  XORTHR_LBR000    
153  RV     C 0.20 30.00  XORTHR_BRC000    
154  RV     D 0.20 30.00  XORTHR_D1L090    
155  RV     D 0.15 25.00  XORTHR_LAX090    
156  RV     D 0.13 30.00  XORTHR_LOA092    
157  RV     C 0.20 23.00  XORTHR_LV5000    
158  RV     D 0.20 23.00  XORTHR_LV6360    
159  RV     C 0.05 30.00  XORTHR_MAX090    
160  RV     D 0.10 30.00  XORTHR_BLH296     
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Table A.3—(continued)   

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

161 1039  Xorthri02e-01         17-Jan-1994  Moorpark - Hire 3ta             6.69 24.76
162 1043  Xorthri02e-01         17-Jan-1994  Xeenach - 3acatara Ck           6.69 51.85
163 1047  Xorthri02e-01         17-Jan-1994  Xewport Bch - Xewp \ Coast      6.69 84.54
164 1053  Xorthri02e-01         17-Jan-1994  Palm0ale - Hwy 14 \ Palm0ale    6.69 41.67
165 1056  Xorthri02e-01         17-Jan-1994  Phelan - Wilson Ranch           6.69 85.90
166 1057  Xorthri02e-01         17-Jan-1994  Playa Del Rey - 3aran           6.69 31.74
167 1059  Xorthri02e-01         17-Jan-1994  Port Hueneme - Xaval LaK.       6.69 51.79
168 1070  Xorthri02e-01         17-Jan-1994  3an GaKriel - 1 Gran0 Ave       6.69 39.31
169 1077  Xorthri02e-01         17-Jan-1994  3anta Monica City Hall          6.69 26.45
170 1079  Xorthri02e-01         17-Jan-1994  3eal Beach - Office Bl02        6.69 64.76
171 1088  Xorthri02e-01         17-Jan-1994  Terminal Rslan0 - 3 3easi0e     6.69 57.20
172 1092  Xorthri02e-01         17-Jan-1994  Ventura - HarKor \ California   6.69 58.00
173 1093  Xorthri02e-01         17-Jan-1994  Villa Park - 3errano Ave        6.69 77.56
174 1094  Xorthri02e-01         17-Jan-1994  West Covina - 3 Oran2e Ave      6.69 51.71
175 1097  Xorthri02e-01         17-Jan-1994  Wri2htwoo0 - Xielson Ranch      6.69 81.69
176 1155  aocaeli, Turkey       17-Au2-1999  Bursa Tofas                     7.51 60.43
177 1160  aocaeli, Turkey       17-Au2-1999  Hatih                           7.51 55.48
178 1166  aocaeli, Turkey       17-Au2-1999  Rdnik                           7.51 30.74
179 1179  Chi-Chi, Taiwan       20-3ep-1999  CHa                             7.62 63.53
180 1180  Chi-Chi, Taiwan       20-3ep-1999  CH^002                          7.62 24.98
181 1181  Chi-Chi, Taiwan       20-3ep-1999  CH^004                          7.62 47.34
182 1183  Chi-Chi, Taiwan       20-3ep-1999  CH^008                          7.62 40.44
183 1192  Chi-Chi, Taiwan       20-3ep-1999  CH^023                          7.62 81.28
184 1203  Chi-Chi, Taiwan       20-3ep-1999  CH^036                          7.62 16.06
185 1204  Chi-Chi, Taiwan       20-3ep-1999  CH^039                          7.62 31.88
186 1209  Chi-Chi, Taiwan       20-3ep-1999  CH^047                          7.62 24.14
187 1215  Chi-Chi, Taiwan       20-3ep-1999  CH^058                          7.62 59.80
188 1217  Chi-Chi, Taiwan       20-3ep-1999  CH^060                          7.62 68.86
189 1221  Chi-Chi, Taiwan       20-3ep-1999  CH^065                          7.62 83.43
190 1223  Chi-Chi, Taiwan       20-3ep-1999  CH^067                          7.62 83.56
191 1225  Chi-Chi, Taiwan       20-3ep-1999  CH^070                          7.62 83.61
192 1228  Chi-Chi, Taiwan       20-3ep-1999  CH^076                          7.62 42.16
193 1233  Chi-Chi, Taiwan       20-3ep-1999  CH^082                          7.62 36.11
194 1236  Chi-Chi, Taiwan       20-3ep-1999  CH^088                          7.62 37.48
195 1238  Chi-Chi, Taiwan       20-3ep-1999  CH^092                          7.62 22.70
196 1241  Chi-Chi, Taiwan       20-3ep-1999  CH^096                          7.62 82.26
197 1243  Chi-Chi, Taiwan       20-3ep-1999  CH^100                          7.62 53.46
198 1246  Chi-Chi, Taiwan       20-3ep-1999  CH^104                          7.62 18.04
199 1247  Chi-Chi, Taiwan       20-3ep-1999  CH^107                          7.62 50.62
200 1252  Chi-Chi, Taiwan       20-3ep-1999  13L                             7.62 44.54  
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Table A.3—(continued)  

# Mech
GMX's 

C3 Max fHP Min fLP FileName

161  RV     D 0.16 23.00  XORTHR_MRP180    
162  RV     D 0.12 46.00  XORTHR_X11180    
163  RV     D 0.12 46.00  XORTHR_X1W090    
164  RV     C 0.20 46.00  XORTHR_PHP000    
165  RV     D 0.20 46.00  XORTHR_PH1090    
166  RV     D 0.10 30.00  XORTHR_3AR000    
167  RV     D 0.14 23.00  XORTHR_PTH090    
168  RV     D 0.10 30.00  XORTHR_GRX270    
169  RV     D 0.14 23.00  XORTHR_3TM360    
170  RV     D 0.16 46.00  XORTHR_31A000    
171  RV     D 0.13 30.00  XORTHR_331330    
172  RV     D 0.10 25.00  XORTHR_V1X360    
173  RV     D 0.10 30.00  XORTHR_31R270    
174  RV     D 0.10 30.00  XORTHR_3OR315    
175  RV     C 0.24 46.00  XORTHR_WWX180    
176  33     D 0.02 50.00  aOCA1LR_BUR000   
177  33     C 0.01 50.00  aOCA1LR_HAT090   
178  33     D 0.07 25.00  aOCA1LR_RfX090   
179  RV/OB  D 0.14 20.00  CHRCHR_CHa-X     
180  RV/OB  D 0.03 50.00  CHRCHR_CH^002-W  
181  RV/OB  D 0.03 40.00  CHRCHR_CH^004-W  
182  RV/OB  D 0.03 40.00  CHRCHR_CH^008-W  
183  RV/OB  D 0.03 30.00  CHRCHR_CH^023-W  
184  RV/OB  D 0.03 50.00  CHRCHR_CH^036-X  
185  RV/OB  D 0.02 40.00  CHRCHR_CH^039-1  
186  RV/OB  D 0.03 50.00  CHRCHR_CH^047-X  
187  RV/OB  D 0.03 23.00  CHRCHR_CH^058-X  
188  RV/OB  D 0.03 30.00  CHRCHR_CH^060-1  
189  RV/OB  D 0.02 33.00  CHRCHR_CH^065-1  
190  RV/OB  D 0.02 40.00  CHRCHR_CH^067-W  
191  RV/OB  D 0.02 24.00  CHRCHR_CH^070-X  
192  RV/OB  D 0.03 50.00  CHRCHR_CH^076-1  
193  RV/OB  D 0.03 50.00  CHRCHR_CH^082-X  
194  RV/OB  D 0.04 33.00  CHRCHR_CH^088-1  
195  RV/OB  D 0.05 50.00  CHRCHR_CH^092-W  
196  RV/OB  D 0.03 50.00  CHRCHR_CH^096-W  
197  RV/OB  D 0.02 50.00  CHRCHR_CH^100-W  
198  RV/OB  D 0.05 50.00  CHRCHR_CH^104-X  
199  RV/OB  D 0.02 50.00  CHRCHR_CH^107-W  
200  RV/OB  C 0.15 25.00  CHRCHR_13L-1      
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Table A.3—(continued)   

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

201 1255  Chi-Chi, Taiwan       20-3ep-1999  HWA                             7.62 55.59
202 1258  Chi-Chi, Taiwan       20-3ep-1999  HWA005                          7.62 47.58
203 1259  Chi-Chi, Taiwan       20-3ep-1999  HWA006                          7.62 47.86
204 1260  Chi-Chi, Taiwan       20-3ep-1999  HWA007                          7.62 56.30
205 1261  Chi-Chi, Taiwan       20-3ep-1999  HWA009                          7.62 56.06
206 1262  Chi-Chi, Taiwan       20-3ep-1999  HWA011                          7.62 53.19
207 1263  Chi-Chi, Taiwan       20-3ep-1999  HWA012                          7.62 56.65
208 1264  Chi-Chi, Taiwan       20-3ep-1999  HWA013                          7.62 54.32
209 1265  Chi-Chi, Taiwan       20-3ep-1999  HWA014                          7.62 55.24
210 1266  Chi-Chi, Taiwan       20-3ep-1999  HWA015                          7.62 51.12
211 1267  Chi-Chi, Taiwan       20-3ep-1999  HWA016                          7.62 52.18
212 1268  Chi-Chi, Taiwan       20-3ep-1999  HWA017                          7.62 51.11
213 1269  Chi-Chi, Taiwan       20-3ep-1999  HWA019                          7.62 55.59
214 1270  Chi-Chi, Taiwan       20-3ep-1999  HWA020                          7.62 44.54
215 1276  Chi-Chi, Taiwan       20-3ep-1999  HWA027                          7.62 51.62
216 1277  Chi-Chi, Taiwan       20-3ep-1999  HWA028                          7.62 53.84
217 1278  Chi-Chi, Taiwan       20-3ep-1999  HWA029                          7.62 54.29
218 1279  Chi-Chi, Taiwan       20-3ep-1999  HWA030                          7.62 46.95
219 1285  Chi-Chi, Taiwan       20-3ep-1999  HWA036                          7.62 43.80
220 1286  Chi-Chi, Taiwan       20-3ep-1999  HWA037                          7.62 46.20
221 1288  Chi-Chi, Taiwan       20-3ep-1999  HWA039                          7.62 45.89
222 1289  Chi-Chi, Taiwan       20-3ep-1999  HWA041                          7.62 47.76
223 1290  Chi-Chi, Taiwan       20-3ep-1999  HWA043                          7.62 58.05
224 1292  Chi-Chi, Taiwan       20-3ep-1999  HWA045                          7.62 63.43
225 1294  Chi-Chi, Taiwan       20-3ep-1999  HWA048                          7.62 51.41
226 1295  Chi-Chi, Taiwan       20-3ep-1999  HWA049                          7.62 50.76
227 1296  Chi-Chi, Taiwan       20-3ep-1999  HWA050                          7.62 53.27
228 1297  Chi-Chi, Taiwan       20-3ep-1999  HWA051                          7.62 53.56
229 1299  Chi-Chi, Taiwan       20-3ep-1999  HWA054                          7.62 43.01
230 1300  Chi-Chi, Taiwan       20-3ep-1999  HWA055                          7.62 47.46
231 1306  Chi-Chi, Taiwan       20-3ep-1999  HWA2                            7.62 55.59
232 1311  Chi-Chi, Taiwan       20-3ep-1999  RLA005                          7.62 87.20
233 1312  Chi-Chi, Taiwan       20-3ep-1999  RLA006                          7.62 85.07
234 1316  Chi-Chi, Taiwan       20-3ep-1999  RLA012                          7.62 88.18
235 1318  Chi-Chi, Taiwan       20-3ep-1999  RLA014                          7.62 80.67
236 1324  Chi-Chi, Taiwan       20-3ep-1999  RLA030                          7.62 85.62
237 1327  Chi-Chi, Taiwan       20-3ep-1999  RLA035                          7.62 93.43
238 1328  Chi-Chi, Taiwan       20-3ep-1999  RLA036                          7.62 89.98
239 1330  Chi-Chi, Taiwan       20-3ep-1999  RLA039                          7.62 86.11
240 1342  Chi-Chi, Taiwan       20-3ep-1999  RLA055                          7.62 90.30  
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Table A.3—(continued)   

# Mech
GMX's 

C3 Max fHP Min fLP FileName

201  RV/OB  D 0.15 50.00  CHRCHR_HWA-X     
202  RV/OB  D 0.05 40.00  CHRCHR_HWA005-W  
203  RV/OB  D 0.06 50.00  CHRCHR_HWA006-X  
204  RV/OB  D 0.02 30.00  CHRCHR_HWA007-1  
205  RV/OB  D 0.05 50.00  CHRCHR_HWA009-X  
206  RV/OB  D 0.02 30.00  CHRCHR_HWA011-X  
207  RV/OB  D 0.06 40.00  CHRCHR_HWA012-X  
208  RV/OB  D 0.02 50.00  CHRCHR_HWA013-1  
209  RV/OB  D 0.02 20.00  CHRCHR_HWA014-X  
210  RV/OB  D 0.02 50.00  CHRCHR_HWA015-X  
211  RV/OB  D 0.05 50.00  CHRCHR_HWA016-X  
212  RV/OB  D 0.02 50.00  CHRCHR_HWA017-X  
213  RV/OB  D 0.02 50.00  CHRCHR_HWA019-1  
214  RV/OB  C 0.02 50.00  CHRCHR_HWA020-X  
215  RV/OB  D 0.03 40.00  CHRCHR_HWA027-X  
216  RV/OB  D 0.02 50.00  CHRCHR_HWA028-X  
217  RV/OB  D 0.12 50.00  CHRCHR_HWA029-X  
218  RV/OB  D 0.02 50.00  CHRCHR_HWA030-1  
219  RV/OB  D 0.02 30.00  CHRCHR_HWA036-X  
220  RV/OB  D 0.04 30.00  CHRCHR_HWA037-1  
221  RV/OB  C 0.03 40.00  CHRCHR_HWA039-1  
222  RV/OB  D 0.02 30.00  CHRCHR_HWA041-1  
223  RV/OB  D 0.05 40.00  CHRCHR_HWA043-1  
224  RV/OB  C 0.02 40.00  CHRCHR_HWA045-X  
225  RV/OB  D 0.05 50.00  CHRCHR_HWA048-W  
226  RV/OB  D 0.02 40.00  CHRCHR_HWA049-W  
227  RV/OB  D 0.05 50.00  CHRCHR_HWA050-X  
228  RV/OB  D 0.02 40.00  CHRCHR_HWA051-W  
229  RV/OB  D 0.06 30.00  CHRCHR_HWA054-X  
230  RV/OB  D 0.04 40.00  CHRCHR_HWA055-W  
231  RV/OB  D 0.20 50.00  CHRCHR_HWA2-1    
232  RV/OB  D 0.02 30.00  CHRCHR_RLA005-X  
233  RV/OB  D 0.02 30.00  CHRCHR_RLA006-X  
234  RV/OB  D 0.05 20.00  CHRCHR_RLA012-X  
235  RV/OB  D 0.03 30.00  CHRCHR_RLA014-X  
236  RV/OB  D 0.02 20.00  CHRCHR_RLA030-X  
237  RV/OB  D 0.05 20.00  CHRCHR_RLA035-1  
238  RV/OB  D 0.05 40.00  CHRCHR_RLA036-X  
239  RV/OB  D 0.03 20.00  CHRCHR_RLA039-1  
240  RV/OB  D 0.05 30.00  CHRCHR_RLA055-X   
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Table A.3—(continued)   

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

241 1343  Chi-Chi, Taiwan       20-3ep-1999  RLA056                          7.62 92.04
242 1345  Chi-Chi, Taiwan       20-3ep-1999  RLA061                          7.62 78.55
243 1346  Chi-Chi, Taiwan       20-3ep-1999  RLA062                          7.62 73.22
244 1348  Chi-Chi, Taiwan       20-3ep-1999  RLA064                          7.62 72.33
245 1349  Chi-Chi, Taiwan       20-3ep-1999  RLA066                          7.62 70.35
246 1402  Chi-Chi, Taiwan       20-3ep-1999  X3T                             7.62 38.43
247 1431  Chi-Chi, Taiwan       20-3ep-1999  TAP043                          7.62 91.19
248 1433  Chi-Chi, Taiwan       20-3ep-1999  TAP047                          7.62 84.46
249 1469  Chi-Chi, Taiwan       20-3ep-1999  TCU011                          7.62 75.17
250 1470  Chi-Chi, Taiwan       20-3ep-1999  TCU014                          7.62 92.70
251 1480  Chi-Chi, Taiwan       20-3ep-1999  TCU036                          7.62 19.84
252 1481  Chi-Chi, Taiwan       20-3ep-1999  TCU038                          7.62 25.44
253 1482  Chi-Chi, Taiwan       20-3ep-1999  TCU039                          7.62 19.90
254 1484  Chi-Chi, Taiwan       20-3ep-1999  TCU042                          7.62 26.32
255 1498  Chi-Chi, Taiwan       20-3ep-1999  TCU059                          7.62 17.13
256 1500  Chi-Chi, Taiwan       20-3ep-1999  TCU061                          7.62 17.19
257 1502  Chi-Chi, Taiwan       20-3ep-1999  TCU064                          7.62 16.62
258 1526  Chi-Chi, Taiwan       20-3ep-1999  TCU098                          7.62 47.67
259 1539  Chi-Chi, Taiwan       20-3ep-1999  TCU113                          7.62 31.07
260 1557  Chi-Chi, Taiwan       20-3ep-1999  TTX001                          7.62 56.56
261 1559  Chi-Chi, Taiwan       20-3ep-1999  TTX003                          7.62 94.99
262 1560  Chi-Chi, Taiwan       20-3ep-1999  TTX004                          7.62 66.87
263 1567  Chi-Chi, Taiwan       20-3ep-1999  TTX012                          7.62 81.67
264 1569  Chi-Chi, Taiwan       20-3ep-1999  TTX014                          7.62 63.53
265 1573  Chi-Chi, Taiwan       20-3ep-1999  TTX020                          7.62 50.69
266 1574  Chi-Chi, Taiwan       20-3ep-1999  TTX022                          7.62 53.34
267 1575  Chi-Chi, Taiwan       20-3ep-1999  TTX023                          7.62 54.29
268 1579  Chi-Chi, Taiwan       20-3ep-1999  TTX027                          7.62 76.13
269 1581  Chi-Chi, Taiwan       20-3ep-1999  TTX031                          7.62 56.30
270 1583  Chi-Chi, Taiwan       20-3ep-1999  TTX033                          7.62 59.43
271 1586  Chi-Chi, Taiwan       20-3ep-1999  TTX041                          7.62 45.35
272 1589  Chi-Chi, Taiwan       20-3ep-1999  TTX045                          7.62 61.16
273 1592  Chi-Chi, Taiwan       20-3ep-1999  TTX048                          7.62 79.69
274 1628  3t 1lias, Alaska      28-HeK-1979  Rcy Bay                         7.54 26.46
275 1629  3t 1lias, Alaska      28-HeK-1979  ^akutat                         7.54 80.00
276 1740  Little 3kull Mtn,XV   29-Jun-1992  3tation #1-Lathrop Wells        5.65 16.06
277 1742  Little 3kull Mtn,XV   29-Jun-1992  3tation #3-Beaty                5.65 45.59
278 1743  Little 3kull Mtn,XV   29-Jun-1992  3tation #4-Pahrump 2            5.65 62.21
279 1744  Little 3kull Mtn,XV   29-Jun-1992  3tation #5-Pahrump 1            5.65 64.94
280 1766  Hector Mine           16-Oct-1999  Baker Hire 3tation              7.13 64.79  
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Table A.3—(continued)   

# Mech
GMX's 

C3 Max fHP Min fLP FileName

241  RV/OB  D 0.05 30.00  CHRCHR_RLA056-X  
242  RV/OB  C 0.02 40.00  CHRCHR_RLA061-X  
243  RV/OB  C 0.02 40.00  CHRCHR_RLA062-W  
244  RV/OB  C 0.02 40.00  CHRCHR_RLA064-W  
245  RV/OB  C 0.02 50.00  CHRCHR_RLA066-W  
246  RV/OB  C 0.03 50.00  CHRCHR_X3T-1     
247  RV/OB  D 0.02 20.00  CHRCHR_TAP043-1  
248  RV/OB  D 0.02 22.00  CHRCHR_TAP047-X  
249  RV/OB  C 0.03 30.00  CHRCHR_TCU011-X  
250  RV/OB  D 0.02 25.00  CHRCHR_TCU014-X  
251  RV/OB  D 0.02 40.00  CHRCHR_TCU036-X  
252  RV/OB  D 0.05 20.00  CHRCHR_TCU038-X  
253  RV/OB  D 0.02 50.00  CHRCHR_TCU039-X  
254  RV/OB  D 0.05 50.00  CHRCHR_TCU042-X  
255  RV/OB  D 0.03 30.00  CHRCHR_TCU059-1  
256  RV/OB  D 0.04 50.00  CHRCHR_TCU061-1  
257  RV/OB  D 0.02 50.00  CHRCHR_TCU064-1  
258  RV/OB  C 0.02 50.00  CHRCHR_TCU098-1  
259  RV/OB  D 0.03 50.00  CHRCHR_TCU113-X  
260  RV/OB  D 0.03 30.00  CHRCHR_TTX001-X  
261  RV/OB  D 0.03 20.00  CHRCHR_TTX003-X  
262  RV/OB  D 0.04 20.00  CHRCHR_TTX004-X  
263  RV/OB  D 0.02 20.00  CHRCHR_TTX012-1  
264  RV/OB  D 0.02 20.00  CHRCHR_TTX014-X  
265  RV/OB  D 0.02 23.00  CHRCHR_TTX020-X  
266  RV/OB  D 0.02 20.00  CHRCHR_TTX022-X  
267  RV/OB  D 0.02 30.00  CHRCHR_TTX023-1  
268  RV/OB  C 0.03 30.00  CHRCHR_TTX027-X  
269  RV/OB  D 0.03 30.00  CHRCHR_TTX031-1  
270  RV/OB  D 0.02 30.00  CHRCHR_TTX033-X  
271  RV/OB  D 0.03 40.00  CHRCHR_TTX041-W  
272  RV/OB  D 0.05 30.00  CHRCHR_TTX045-X  
273  RV/OB  D 0.03 20.00  CHRCHR_TTX048-X  
274  RV     D 0.04 23.00  3T1LRA3_059v2180 
275  RV     D 0.04 23.00  3T1LRA3_059v2279 
276  XORMAL  D 0.10 33.00  3aULLMT_Lsm1000  
277  XORMAL  C 0.10 33.00  3aULLMT_Lsm3270  
278  XORMAL  D 0.10 33.00  3aULLMT_Lsm4000  
279  XORMAL  D 0.10 33.00  3aULLMT_Lsm5270  
280  33     D 0.07 23.00  H1CTOR_32075140   
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Table A.3—(continued)    

#

Record 
Sequence 
Number Earthquake Name Date Station Name Mw

ClstD 
(km)

281 1768  Hector Mine           16-Oct-1999  Barstow                         7.13 61.20
282 1776  Hector Mine           16-Oct-1999  Desert Hot 3prin2s              7.13 56.40
283 1783  Hector Mine           16-Oct-1999  Hort Rrwin                      7.13 65.89
284 1789  Hector Mine           16-Oct-1999  Hesperia - 4th \ Palm           7.13 89.87
285 1791  Hector Mine           16-Oct-1999  Rn0io - Coachella Canal         7.13 73.55
286 1792  Hector Mine           16-Oct-1999  Rn0io - Riversi0e Co Hair Grn0s 7.13 74.00
287 1794  Hector Mine           16-Oct-1999  Joshua Tree                     7.13 31.06
288 1810  Hector Mine           16-Oct-1999  Mecca - CVWD ^ar0               7.13 91.96
289 2107  Denali, Alaska        03-Xov-2002  Carlo btempc                    7.90 50.94
290 2111  Denali, Alaska        03-Xov-2002  R109 btempc                     7.90 43.00
291 2113  Denali, Alaska        03-Xov-2002  TAP3 Pump 3tation #09           7.90 54.78  
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Table A.3—(continued)  

# Mech
GMX's 

C3 Max fHP Min fLP FileName

281  33     D 0.08 46.00  H1CTOR_23559090  
282  33     D 0.10 46.00  H1CTOR_12149360  
283  33     C 0.07 23.00  H1CTOR_32577090  
284  33     C 0.10 46.00  H1CTOR_23583090  
285  33     D 0.12 23.00  H1CTOR_12026090  
286  33     D 0.10 46.00  H1CTOR_12543090  
287  33     C 0.07 46.00  H1CTOR_22170090  
288  33     C 0.07 46.00  H1CTOR_11625090  
289  33     C 0.04 30.00  D1XALR_5595-090  
290  33     D 0.05 40.00  D1XALR_5596-090  
291  33     D 0.10 40.00  D1XALR_ps09013    
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