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ABSTRACT

It is important to characterize the performance of bridges during earthquakes because they are

integral components of transportation networks. Loss of bridge function can have severe eco-

nomic consequences, and consequences to life safety when bridges are critical links in lifelines to

emergency facilities, which are particularly important after a disasters. Although damage to other

elements can have economic and life-safety impacts, reinforced concrete columns are often the

most vulnerable elements in a bridge, and column failure can have catastrophic consequences.

The objective of this project was to develop column-modeling strategies to accurately model

column behavior under seismic loading, including global and local forces and deformations, as well

as progression of damage. The models were calibrated using the observed cyclic force-deformation

responses and damage progression observations of 37 tests of spiral-reinforced columns represen-

tative of modern bridge construction. This research resulted in (1) a standardized discretization

scheme for fiber cross sections; (2) a calibrated distributed-plasticity column modeling strategy

including deformation components for bond-slip and shear deformations; (3) a calibrated lumped-

plasticity column modeling strategy with recommendations for effective elastic-stiffness properties

and plastic-hinge lengths; (4) the identification of inaccuracies of standard cyclic material models;

(5) the implementation and evaluation of improved cyclic material models; (6) a series of dam-

age equations to predict two flexural damage states with three engineering demand parameters;

(7) the evaluation of the proposed modeling strategies when applied to complex structural models

(two-column bent, and biaxial shake-table specimen).

This effort is an important step toward implementing performance-based earthquake engi-

neering for modern reinforced concrete bridges.
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1 Introduction

1.1 CONTEXT

Current building codes and modern engineering practice address the issues of collapse prevention

and life safety by conservatively predicting nominal demands and strengths of structural members,

but provide little indication of the actual state of a structure after an earthquake. After an earth-

quake, a building or bridge may still be standing, but structural and nonstructural members may be

damaged, resulting in costly repairs. The economic losses due to downtime may even be larger.

In contrast to current codes, performance-based earthquake engineering (PBEE) attempts

to explicitly predict damage states and assess the probability of reaching multiple levels of dam-

age. PBEE has the potential to improve structural engineering practice by providing engineers

the capability of designing structures to achieve a variety of performance levels. The impact of

implementing PBEE goes beyond improving engineering practice and extends to a wide range of

decision making. The potential impact of PBEE is summarized in Pacific Earthquake Engineering

Research Center’s (PEER) mission statement.

This approach is aimed at improving decision-making about seismic risk by making

the choice of performance goals and the tradeoffs that they entail apparent to facility

owners and society at large. The approach has gained worldwide attention in the

past ten years with the realization that urban earthquakes in developed countries -

Loma Prieta, Northridge, and Kobe - impose substantial economic and societal risks

above and beyond potential loss of life and injuries. By providing quantitative tools for

characterizing and managing these risks, performance-based earthquake engineering

serves to address diverse economic and safety needs. (http://peer.berkeley.edu)
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Reinforced concrete structures are particularly vulnerable to earthquakes. Excessive defor-

mations can result in spalling of cover concrete, buckling of longitudinal reinforcement, reduction

of flexural capacity, bar fracture, and eventually, structural collapse. Although damage to other ele-

ments can have economic and life-safety impacts, columns are often the most vulnerable elements

in a structure, and column failure can have catastrophic consequences.

To quantitatively implement PBEE for reinforced concrete columns, it is necessary to predict

deformation demands on columns at the onset of particular damage states. Berry and Eberhard

(2003) developed practical empirical models that predict the drift ratios at which cover concrete

spalls and longitudinal bars buckle in reinforced concrete columns, given a column geometry,

transverse reinforcement, and axial load. The models were calibrated with existing experimental

results from the UW-PEER reinforced concrete column performance database, which documents

the performance of over 400 columns (Berry et al. 2004).

The drift-ratio approach provides a simple means of estimating damage displacements (which

is essential to engineering practice), but it has significant limitations. This approach neglects the

effects of cycling on damage and it is difficult to implement for columns with biaxial bending,

variable axial loads or variable shear spans. More versatile and detailed models are needed to

overcome these limitations.

The availability of increasingly powerful computers provides researchers and engineers with

the opportunity to implement numerically intensive modeling strategies that could not have been

considered until recently. In particular, enhanced fiber beam-column elements have been developed

to model the nonlinear behavior of reinforced concrete structures under cyclic loads. Previous re-

searchers have used these simulation models to predict the response of ductile reinforced concrete

columns, but none of these modeling strategies have been calibrated with a large database to repro-

duce force-deformation behavior and damage progression. The absence of model calibration has

made it difficult to evaluate the impact of proposed improvements in modeling methodologies.

1.2 OBJECTIVE

The objective of this project is to develop, calibrate, and evaluate column-modeling strategies that

are capable of accurately modeling column behavior under seismic loading, including global and

local deformations, as well as progression of damage. The focus of this research will be on ductile
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spiral-reinforced bridge columns, for which shear failure is not a consideration.

1.3 BRIDGE COLUMN DATA

The UW-PEER reinforced concrete column test database (Berry et al. 2004) provides a unique

opportunity to evaluate and calibrate column-modeling strategies. The database documents col-

umn geometry, material properties, and reinforcement details. It also includes the digital force-

displacement histories, and the observed displacements at the onset of multiple damage states.

For this study on ductile spiral-reinforced columns, the columns from the database were

screened to eliminate columns that are not representative of modern bridge construction. The

database was screened using the following criteria.

· P/Ag f ′c ≤ 0.30

· ρe f f = ρs fys/ f ′c ≥ 0.05

· ρl ≤ 0.04

· S/db ≤ 6

· cover/D≤ 0.10

· Availability of observed displacements at onset of cover spalling, bar buckling, or bar frac-

ture

where: P is the axial load, Ag is the gross cross-sectional area, f ′c is the concrete compressive

strength, ρs is the transverse reinforcement ratio, fys is the yield stress of the spiral reinforcement,

ρl is the longitudinal-reinforcement ratio, S is the spacing of the spiral reinforcement, db is the

diameter of the longitudinal reinforcement, cover is the distance from column face to the transverse

reinforcement, and D is the diameter of the column.

The 37 column tests considered in this study are listed in Table 1.1. The reported drift ratios

at the onset of cover spalling (∆sp/L), bar buckling (∆bb/L), bar fracture (∆b f /L) are included in

the table along with key properties of the columns.
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Table 1.1 Bridge column dataset

Reference Designation L L/D ρe f f P/Ag f ′c ρl S/db ∆sp/L ∆bb/L ∆b f /L
(mm) (%) (%) (%)

Munro et al. (1976) No. 1 2730 5.5 0.13 0.00 0.026 1.85 1.39 - -
Ghee et al. (1981) No. 1 1600 4.0 0.09 0.20 0.024 2.50 0.94 3.75 3.75
Pontangaroa et al. (1979) No. 1 1200 2.0 0.08 0.23 0.024 3.13 0.83 - -
Wong et al. (1990) No. 1 800 2.0 0.11 0.19 0.032 3.75 0.75 5.18 -
Stone and Cheok (1989) Flexure 9140 6.0 0.09 0.07 0.020 2.07 1.96 5.89 5.89
Stone and Cheok (1989) Shear 4570 3.0 0.19 0.07 0.020 1.26 - 6.24 7.79
Cheok and Stone (1986) N1 750 3.0 0.26 0.10 0.020 1.27 2.57 11.00 10.29
Cheok and Stone (1986) N2 750 3.0 0.27 0.21 0.020 1.27 - 6.21 7.45
Cheok and Stone (1986) N3 1500 6.0 0.13 0.10 0.020 2.07 3.41 7.38 6.83
Cheok and Stone (1986) N4 750 3.0 0.26 0.10 0.020 1.27 2.84 7.11 7.11
Cheok and Stone (1986) N5 750 3.0 0.26 0.20 0.020 1.27 2.58 6.96 6.44
Cheok and Stone (1986) N6 1500 6.0 0.14 0.10 0.020 2.07 2.24 4.77 6.72
Kunnath et al. (1997) No. A2 1372 4.5 0.14 0.09 0.020 2.00 - 4.70 -
Kunnath et al. (1997) No. A3 1372 4.5 0.14 0.09 0.020 2.00 1.97 - -
Kunnath et al. (1997) No. A7 1372 4.5 0.13 0.09 0.020 2.00 1.46 5.83 -
Kunnath et al. (1997) No. A8 1372 4.5 0.13 0.09 0.020 2.00 2.33 5.83 -
Kunnath et al. (1997) No. A9 1372 4.5 0.13 0.09 0.020 2.00 - 4.59 -
Kunnath et al. (1997) No. A10 1372 4.5 0.15 0.10 0.020 2.00 2.33 6.61 -
Kunnath et al. (1997) No. A11 1372 4.5 0.15 0.10 0.020 2.00 3.64 - 7.65
Kunnath et al. (1997) No. A12 1372 4.5 0.15 0.10 0.020 2.00 3.64 5.90 -
Hose et al. (1997) No. SRPH1 3660 6.0 0.09 0.15 0.027 2.56 1.64 8.74 8.74
Vu et al. (1998) No. NH3 910 2.0 0.13 0.15 0.024 3.78 2.06 5.49 -
Kowalsky et al. (1999) No. FL3 3656 8.0 0.12 0.30 0.036 4.79 - 9.08 9.08
Lehman and Moehle (2000) No.415 2438 4.0 0.14 0.07 0.015 2.00 1.56 5.29 7.30
Lehman and Moehle (2000) No.815 4877 8.0 0.14 0.07 0.015 2.00 2.73 9.12 9.12
Lehman and Moehle (2000) No.1015 6096 10.0 0.14 0.07 0.015 2.00 3.13 10.42 10.42
Lehman and Moehle (2000) No.407 2438 4.0 0.14 0.07 0.008 2.00 1.56 5.21 5.21
Lehman and Moehle (2000) No.430 2438 4.0 0.14 0.07 0.030 2.00 1.56 7.30 -
Lehman and Moehle (2000) No.328 1829 3.0 0.16 0.09 0.027 1.33 1.64 7.27 7.22
Lehman and Moehle (2000) No.828 4877 8.0 0.16 0.09 0.027 1.33 3.65 12.30 -
Lehman and Moehle (2000) No.1028 6096 10.0 0.16 0.09 0.027 1.33 4.17 14.58 -
Henry and Mahin (1999) No. 415p 2438 4.0 0.12 0.12 0.015 2.00 - 5.21 5.54
Henry and Mahin (1999) No. 415s 2438 4.0 0.06 0.06 0.015 4.00 - 5.21 -
Moyer and Kowalsky (2001) No.1 2438 5.3 0.12 0.04 0.020 4.00 3.02 6.15 7.66
Moyer and Kowalsky (2001) No.2 2438 5.3 0.11 0.04 0.020 4.00 2.29 10.73 12.29
Moyer and Kowalsky (2001) No.3 2438 5.3 0.12 0.04 0.020 4.00 3.02 10.74 -
Moyer and Kowalsky (2001) No.4 2438 5.3 0.11 0.04 0.020 4.00 3.02 13.14 -

Statistics n 37 37 37 37 37 37 31 33 31
Mean 2458 4.8 0.14 0.11 0.021 2.35 2.33 7.39 7.62
COV 0.75 0.4 0.35 0.57 0.25 0.42 0.39 0.37 0.26
Min 750 2.0 0.06 0.00 0.008 1.26 0.75 3.75 3.75
Max 9140 10.0 0.27 0.30 0.036 4.79 4.17 14.58 12.29

1.4 SCOPE OF PROJECT

Two column-modeling strategies are developed, calibrated, and evaluated in this report. One

method utilizes the combination of a force-based beam-column element (flexural deformations)

with elastic shear deformations and a zero-length bond-slip section. A second method utilizes

lumped-plasticity theory in which nonlinear deformations are concentrated in a plastic hinge. The

following describes the key aspects of the section modelling strategy, the distributed-plasticity

modeling strategy, and the lumped-plasticity modeling strategy addressed in this research.

1.4.1 Discretization Strategies for Fiber Cross Sections

Both column-modeling strategies use fiber sections to model section response. Two aspects of

fiber-section modeling are discussed in Chapter 2.
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Material Models. Numerous material constitutive models are available to model the monotonic

and cyclic responses of the concrete and steel components of a reinforced concrete column.

In this study, key modeling parameters are calibrated for the Giuffre-Menegotto-Pinto steel

model (Taucer et al. 1991), the Mander et al. (1988) concrete model, and a new steel

model proposed by Mohle and Kunnath (2006), which includes softening due to fracture and

cycling.

Fiber-Section Discretization. Column cross sections can be discretized into small fibers using a

variety of schemes (e.g., unilateral discretization, radial discretization) to varying degrees of

mesh density. Two discretization strategies are evaluated, and recommendations are made

on the number of fibers needed to accurately model column section behavior.

1.4.2 Distributed-Plasticity Modeling Strategy

The distributed-plasticity modeling strategy is described and calibrated in chapters 3 and 4, respec-

tively. The following are key aspects of the proposed spread-plasticity column-modeling strategy

addressed by this study.

Number of integration points. The spread-plasticity column-modeling strategy requires the user to

select the number of integration points to use in the analysis. The effect of the number of

integration points on column model accuracy is studied and documented, and recommenda-

tions are made that balance model accuracy and efficiency.

Bond Slip Deformations and Shear Deformations. A standard fiber beam-column element formula-

tion assumes perfect bond between concrete and steel. To address this issues, a new zero-

length bond-slip model is developed for use with the spread-plasticity modeling strategy.

Shear Deformations. Shear deformations are neglected with a standard fiber beam-column element

formulation. Additional flexibility was added to the cross sections of the fiber beam-column

element to address this issue.

Strain Localization. The distributed-plasticity formulation is susceptible to strain localizations,

which lead to model inaccuracies when the column being modeled has a perfectly-plastic

or softening behavior. The limitations of this modeling strategy are highlighted, and recom-

mendations are made to assist in overcoming them.

5



1.4.3 Lumped-Plasticity Modeling Strategy

The lumped-plasticity column model is considered in chapters 5 and 6. The following are key

aspects of the lumped-plasticity column-modeling strategy addressed by this study.

Elastic Properties of Lumped-Plasticity Model. The use of lumped-plasticity models requires the

selection of effective section properties for the elastic portion of the column (e.g., EI). Rec-

ommendations are made for estimating these elastic properties, based on the accuracy of the

calculated column stiffness.

Plastic-Hinge Length of Lumped-Plasticity Model. Lumped-plasticity theory assumes that nonlin-

ear deformations are concentrated in plastic hinges. With this methodology, the length of

the plastic hinge is assumed to account for bond slip and shear deformations. A plastic-

hinge length that accurately predicts column force-deformation response as well as damage

progression is developed and evaluated.

1.4.4 Evaluation of Cyclic Response

The calculated cyclic response of the modeling strategies depend on the cyclic response of the

concrete and steel material constitutive models. The cyclic response of the proposed column-

modeling strategies, utilizing standard concrete and steel material models, are evaluated in Chapter

7. The cyclic response of the concrete was modeled according to a model proposed by Karsan and

Jirsa, whereas the steel was modeled according to a model proposed by Giuffre-Menegotto-Pinto.

1.4.5 Improved Cyclic Material Models

The cyclic modeling inaccuracies identified in Chapter 7 are addressed in Chapter 8. A steel

material model proposed by Mohle and Kunnath (2006), which accounts for degradation due to

cycling, is presented, calibrated, and evaluated. A concrete model that accounts for imperfect

crack closure is also developed and evaluated in this chapter.

1.4.6 Column Flexural Damage

A necessary step in implementing performance-based design in bridge columns is relating engi-

neering demand parameters (e.g., drift ratio, plastic rotation, longitudinal strain) to damage mea-
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sures (e.g., cover spalling, longitudinal bar buckling, and bar fracture). Several methods for es-

timating the progression of damage in flexural columns are developed, evaluated, and compared

in Chapter 9. This chapter presents accuracy statistics and fragility curves for the various damage

states and engineering demand parameters.

1.4.7 Application of Column-Modeling Strategy to More Complex Structures

In chapters 4 and 6, the proposed column-modeling strategies were calibrated and evaluated by

comparing measured and calculated responses of single cantilever columns subjected to pseudo-

static, unidirectional loads. In Chapter 10, the proposed modeling strategies are implemented and

evaluated in the following situations.

Bridge-Bent. The proposed column-modeling strategies are used to model the response of a pseudo-

static, unidirectional bridge bent test (Makido 2006).

Shake-Table Tests. The proposed column-modeling strategies are utilized to model four columns

subjected to unidirectional and bidirectional dynamic loading (Hachem et al. 2003). The

modeling strategies will be evaluated based on their ability to model, among other things,

maximum displacement, maximum shear force, maximum moment, and residual displace-

ment.

1.4.8 Summary and Conclusions

Chapter 11 summarizes the report and provides key conclusions.
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2 Discretization Strategies for Fiber Sections

In order to accurately model the behavior of a reinforced concrete column, the response of the col-

umn cross section must be captured. In this chapter, the fiber model and material models employed

in this report are presented, and a section discretization scheme is calibrated. Recommendations

are then made to accurately and efficiently model moment-curvature behavior.

2.1 FIBER MODEL

For this report, column cross sections were discretized into small fibers in which each fiber had a

prescribed uniaxial stress-strain relationship. For example, a typical circular column cross-section

discretization is shown in Figure 2.1. This cross section is discretized with a radial discretization

scheme with 7 radial core divisions (nr
c = 7), 18 transverse core divisions (nt

c = 18), 2 radial un-

confined cover divisions (nr
u = 2), and 18 transverse cover divisions (nt

u = 18). The core concrete,

cover concrete, and longitudinal steel fibers each have a uniaxial stress-strain model associated

with them corresponding to the material they represent.

2.2 MATERIAL CONSTITUTIVE RELATIONSHIPS

Accurate material models are needed to predict reinforced concrete column behavior. The follow-

ing sections discuss the material models used in this study to model the longitudinal reinforcing

steel, the confined concrete, and the unconfined concrete.
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Fig. 2.1 Typical fiber discretization, nr
c = 7,nt

c = 18,nr
u = 2,nt

u = 18

2.2.1 Reinforcing Steel

The reinforcing steel is modeled using the Giufre-Menegotto-Pinto constitutive model (Taucer

et al. 1991) available in OpenSees (OpenSees Development Team 2002). The model has a bilinear

backbone curve with a post-yield stiffness proportional to the modulus of elasticity of the steel,

Esh = b · E, and accounts for the Bauschinger effect in the cyclic response of the material. Figure

2.2a compares the monotonic analytical model (for b = 0.01 and b = 0.001) to the measured stress-

strain response of a typical reinforcing bar (Lehman and Moehle 2000). The calculated cyclic

response of the steel is shown in Figure 2.2b.

Despite the simplicity of the model, the bilinear model predicts the measured material re-

sponse accurately over most of the strain range, but it does not account for the yield plateau of

the reinforcing steel or the degradation of the steel strength due to bar buckling or rupture. The

post-yield slope factor 0.001 underestimates the amount of strain hardening. The slope factor of

0.01 overestimates the stress at strains below 0.03.

The strain-hardening ratio (b) affects the accuracy of the column-modeling strategy proposed

in this report. This parameter is calibrated in Chapter 4.
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Fig. 2.2 Reinforcing steel material model

2.2.2 Concrete

The Popovics curve with model parameters proposed by Mander et al. (1988) was used to model

the responses of both the confined and unconfined concrete in compression. Mander et. al. pro-

posed that the maximum compressive stress of the concrete ( f ′cc) and the strain at the maximum

compressive stress (εcc) should be calculated as follows.

f ′cc = f ′c

(
2.254

√

1+7.94
fpl

f ′c
−2

fpl

f ′c
−1.254

)
(2.1)

εcc = 0.002
(

1+5
(

f ′cc
f ′c
−1

))
(2.2)

where:

fpl =
1
2

ρsc fytke (2.3)

ke = 1−
s′

2dc

1−ρlc
(2.4)

s′ = s−dtrans (2.5)

ρsc = 4
(

Ats

dcs

)
(2.6)
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where f ′c is the compressive strength of the concrete, dc is the diameter of the core, and Ats, dtrans,

s and fyt are the area, diameter, spacing and yield stress of the spiral reinforcement. The calculated

stress-strain responses of the confined and unconfined concrete for a typical column are shown in

Figure 2.3.

The concrete was assumed to have strength in tension up to the cracking strength ft . Beyond

this, the strength of the concrete was assumed to decay exponentially to 0.1 ft at εtu. A detailed

view of the response of the concrete in tension is shown in Figure 2.3b, and the equation governing

the response is as follows.

σ(ε) =

{ Ecε ε≤ εt

ft 1
10

(ε−εt )
(εtu−εt ) εt < ε≤ εtu

0.0 ε > εtu

(2.7)

where εt = ft
Ec

. This response was developed as part of this project with collaboration with Nilanjan

Mitra.

For the purpose of the development of a cross-section discretization scheme, the concrete was

assumed to crack at a tensile stress of 0.0. For the calibration of the proposed column-modeling

strategies (sections 4 and 6), the concrete was assumed to crack at a tensile stress of ft = 0.625
√

f ′c
( f ′c in MPa).
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Fig. 2.3 Concrete material models
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2.3 UNIFORM RADIAL SECTION-DISCRETIZATION STRATEGY

The accuracy and efficiency of moment-curvature analyses depend heavily on the discretization

of the core and cover concrete. A parametric study was performed in order to select the optimal

number of radial and tangential subdivisions of both the confined core concrete (nr
c and nt

c) and

unconfined cover concrete (nr
u and nt

u). In this study, the moment-curvature relationships generated

with the fiber model were compared to the results of a typical moment-curvature analysis program

developed at the University of Washington (Parish 2001). The UW moment-curvature program

uses a unidirectional strip discretization scheme in which the concrete is divided into numerous

unidirectional strips, as seen in Figure 2.4. The results of the UW program (utilizing a highly

refined mesh, 100 strips) was used to represent the optimal solution.

Fig. 2.4 Unidirectional section discretization

Increasing the number of fibers increases the accuracy of the moment-curvature analysis but

increases the computational demand. A discretization scheme in which accuracy and efficiency are

balanced is needed. Because there is not a unique solution to this problem, typical optimization

methods cannot be applied without assigning an arbitrary cost to computational time. In order to

find a balanced discretization scheme, a highly refined uniform radial discretization scheme was

compared to the highly refined unidirectional discretization scheme, then the number of radial

section divisions (i.e. nr
c, nt

c, nr
u, nt

u) were decreased until a balanced scheme was determined.

The uniform radial discretization scheme was compared to the unidirectional scheme by

comparing the calculated moment-curvature responses of 75 columns from the UW-PEER column

database (Berry et al. 2004). The 75 circular columns were all the columns in the database that
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failed in shear or flexure-shear, and had circular spiral reinforcement. This study used a bilinear

steel model (b = 0.01, Section 2.2.1) and the Mander concrete model for both the confined and

unconfined concrete (Section 2.2.2). The moment-curvature response was evaluated based on three

parameters.

φy Ratio, The ratio of curvature at first yielding of the tension steel calculated with the unidirec-

tional scheme to those calculated with the uniform radial scheme, φunid
y

φradial
y

M5εy Ratio, The ratio of calculated moment at a tensile strain of 5 times εy calculated with the

unidirectional scheme to the moment calculated with the uniform radial scheme,
Munid

5εy
Mradial

5εy

M10εy Ratio, The ratio of calculated moment at a tensile strain of 20 times εy calculated with the

unidirectional scheme to the moment calculated with the uniform radial scheme,
Munid

20εy
Mradial

20εy

Based on the results of this analysis, the following recommendations are made in order to

efficiently and accurately model the moment-curvature response of a column cross section using a

uniformly distributed radial discretization scheme,

· 20 core transverse subdivisions, nt
c = 20

· 10 core radial subdivisions, nr
c = 10

· 20 cover transverse subdivisions, nt
u = 20

· 1 cover radial subdivision nr
u = 1

The mean φy ratio using this scheme is 1.000 with a coefficient of variation (c.o.v.) of

0.110%. The mean M5εy ratio is 0.996 with a coefficient of variation of 0.128% and the mean

M20εy ratio is 0.996 with a coefficient of variation of 0.233%. This configuration is shown in

Figure 2.5.

A parametric study was performed to verify that the recommended discretization scheme ac-

curately and efficiently models moment-curvature response. The parametric study used a bilinear

steel model (b = 0.01) and the Mander concrete model for both the confined and unconfined con-

crete. The recommended scheme was used as the base discretization scheme, and the number of

radial divisions were systematically varied to demonstrate the analyses dependency on the varied

parameter.
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Recommended Configuration 
200 Core Fibers

Fig. 2.5 Recommended configuration, nt
c = 20, nr

c = 10, nt
u = 20 and nr

u = 1

Figures 2.6 and 2.7 show the effects of varying the number of confined concrete radial and

tangential subdivisions. The mean values of the φy, M5εy , and M10εy ratios are plotted versus nr
c in

Figure 2.6 and nt
c in Figure 2.7. Also shown in the figures are the maximum and minimum values

and the coefficient of variation of the ratios. Figure 2.6 shows that an unbiased results can be

obtained by using at least 10 radial subdivisions and that using more than 10 does not significantly

improve results. It can be seen in Figure 2.7 that although the mean values vary slightly between

20 and 40 tangential subdivisions, the coefficients of variation of the ratios are the same. Using

more than 20 subdivisions is unnecessary, since the mean value of the ratios using 20 subdivisions

is 0.996 and the coefficient of variation does not improve by using more divisions.

Similarly, the effects of varying the number of unconfined concrete radial and tangential sub-

divisions on moment-curvature accuracy is illustrated in figures 2.8 and 2.9. Figure 2.8 shows that

varying the number of radial unconfined subdivisions does not affect the accuracy of the moment-

curvature analysis significantly. In Figure 2.9, it can be seen that the solutions converge when

nt
u = 20 and that using a finer mesh does not significantly improve the accuracy of the moment-

curvature analyses.
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Fig. 2.6 Effect of nr
c on m-φ accuracy

 5 10 15 20 30 40
0.95

1

1.05

n
c
t

φ y R
at

io

mean
max
min

 5 10 15 20 30 40
0

0.5

1

1.5

2

n
c
t

C
O

V
.(%

)

 5 10 15 20 30 40
0.95

1

1.05

n
c
t

M
o

m
en

t 
R

at
io

 a
t 

5 
ε y

mean
max
min

 5 10 15 20 30 40
0

0.5

1

1.5

2

n
c
t

C
O

V
.(%

)

 5 10 15 20 30 40
0.95

1

1.05

n
c
t

M
o

m
en

t 
R

at
io

 a
t 

20
 ε

y

mean
max
min

 5 10 15 20 30 40
0

0.5

1

1.5

2

n
c
t

C
O

V
.(%

)

Fig. 2.7 Effect of nt
c on m-φ accuracy

16



 1  2  3  4  5  7 10
0.95

1

1.05

n
u
r

φ y R
at

io

mean
max
min

 1  2  3  4  5  7 10
0

0.5

1

1.5

2

n
u
r

C
O

V
.(%

)

 1  2  3  4  5  7 10
0.95

1

1.05

n
u
r

M
o

m
en

t 
R

at
io

 a
t 

5 
ε y

mean
max
min

 1  2  3  4  5  7 10
0

0.5

1

1.5

2

n
u
r

C
O

V
.(%

)

 1  2  3  4  5  7 10
0.95

1

1.05

n
u
r

M
o

m
en

t 
R

at
io

 a
t 

20
 ε

y

mean
max
min

 1  2  3  4  5  7 10
0

0.5

1

1.5

2

n
u
r

C
O

V
.(%

)

Fig. 2.8 Effect of nr
u on m-φ accuracy

 5 10 15 20 30 40
0.95

1

1.05

n
u
t

φ y R
at

io

mean
max
min

 5 10 15 20 30 40
0

0.5

1

1.5

2

n
u
t

C
O

V
.(%

)

 5 10 15 20 30 40
0.95

1

1.05

n
u
t

M
o

m
en

t 
R

at
io

 a
t 

5 
ε y

mean
max
min

 5 10 15 20 30 40
0

0.5

1

1.5

2

n
u
t

C
O

V
.(%

)

 5 10 15 20 30 40
0.95

1

1.05

n
u
t

M
o

m
en

t 
R

at
io

 a
t 

20
 ε

y

mean
max
min

 5 10 15 20 30 40
0

0.5

1

1.5

2

n
u
t

C
O

V
.(%

)

Fig. 2.9 Effect of nt
u on m-φ accuracy

17



2.4 NONUNIFORM RADIAL DISCRETIZATION STRATEGY

Because the area nearest the column-neutral axis does not significantly affect moment-curvature

response, it may sometimes be efficient to use a coarser fiber mesh in this region. Utilizing this

scheme would reduce the number of fiber sections required to model the moment-curvature re-

sponse significantly, thus reducing the computational demand of the analysis. It should be noted

that the amount of axial load will affect the location of the neutral axis, and the location will not al-

ways be at the center of the column. The dataset used in the following analysis contained columns

with a wide range of axial-load ratios ( P
Ag f ′c

= 0 to 70%). In this section the effect of using a coarser

mesh near the center of the cross section is studied and recommendations are proposed for utilizing

this methodology.

A parametric study was performed in which the diameter of a coarse mesh in the center of a

cross section was varied from 50% - 70% of the core diameter (i.e., dcoarse
dcore

= 0.5, 0.6 and 0.7) and

the number of coarse mesh fibers (ncoarse) was varied between 10 and 20 fibers. The density of the

fine mesh near the exterior of the core remained the same regardless of the coarse mesh diameter;

therefore an increase in the diameter of coarse mesh resulted in a decrease in the total number

of core fibers (ntotal). The nonuniform configurations were also compared to the recommended

uniform configuration from the previous section (Figure 2.5). Table 2.1 describes the parameter

study matrix and Figure 2.10 illustrates the various configurations. As seen in the table and the

figures, the total number of core fibers was varied from 200 to 70.

The accuracy of the moment-curvature analysis was evaluated using the φy, M5εy and M20εy

ratios as defined in the previous section, and the same 75 columns from the UW-PEER database.

The study used a bilinear steel model (b = 0.01, Section 2.2.1) and the Mander concrete model for

both the confined and unconfined concrete (Section 2.2.2).

As expected, the accuracy of the moment-curvature analysis decreases as the size of the

coarse mesh increases. Decreasing the number of coarse fibers has a similar effect. Utilizing any

of these schemes reduces the number of fibers, but some accuracy is lost. The accuracy lost by

utilizing configuration 1 is within acceptable bounds. With configuration 1, the mean, minimum,

and maximum values of the φy, M5εy , and M20εy ratios are all within 0.01 of 1.00 and the coefficients

of variation are all less than 0.25%. The loss in accuracy from configurations 2-6 are significant

enough to outweigh the resulting gains in efficiency.
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Table 2.1 Discretization study matrix

Configuration Unif. 1 2 3 4 5 6

dcoarse

dcore
0 0.5 0.5 0.6 0.6 0.7 0.7

nt
f ine 20 20 20 20 20 20 20

nr
f ine 10 5 5 4 4 3 3

nt
coarse 0 10 10 10 10 10 10

nr
coarse 0 2 1 2 1 2 1
ntotal 200 120 110 100 90 80 70

2.5 SUMMARY

The constitutive material models used in this report were presented. The reinforcing steel was

modeled using the Giufre-Menegotto-Pinto constitutive model, and the confined and unconfined

concrete was modeled using a model proposed by Mander, Priestley, and Park. The following

parameter was identified for calibration with experimental results.

Strain-Hardening Ratio (b). The ratio of post-yield stiffness of the reinforcing steel to the mod-

ulus of elasticity of the steel, b = Esh
E .

This parameter is calibrated in Chapter 4. A second parameter was identified, but will not be part

of the optimization study. The effect of the following parameter is studied in 4.6.

Transverse Reinforcement Effectiveness Ratio (η). The ratio of the effective core transverse re-

inforcement ratio to the calculated transverse reinforcement ratio to be used in the calculation

of f ′cc and ecc, η = ρe f f
sc

ρsc
.

A parametric study was performed to determine the best uniform radial discretization scheme

to use for modeling column cross-section response. Based on the results of these analyses, the

following recommendations are made in order to efficiently and accurately model the moment-

curvature response of a column cross section using a fiber model: nt
c = 20, nr

c = 10, nt
u = 20 and

nr
u = 1. This configuration is shown in Figure 2.5.

Because the area nearest the center of the column influences the column section response

little, a coarser mesh may be used near the center of the column. The effect of using a coarser
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Configuration 1
120 Core Fibers

Configuration 3
100 Core Fibers

Configuration 5
80 Core Fibers

Configuration 2
110 Core Fibers

Configuration 4
90 Core Fibers

Configuration 6
70 Core Fibers

Fig. 2.10 Configuration types

mesh near the center of the cross section was also studied in this chapter. Since some accuracy is

lost by utilizing this methodology, it is recommended that a uniform discretization with 200 core

fibers (Fig. 2.5) be used when accuracy is the top priority. In cases where efficiency is a concern,

configuration 1 (120 core fibers) could be used also.
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3 Development of Distributed-Plasticity
Column Model

In this chapter, a column-modeling strategy is presented, and key modeling parameters are identi-

fied for calibration. In the proposed modeling strategy, a force-based fiber beam-column element,

a zero-length bond section, and an elastic shear component are combined to model the flexural,

bond slip, and shear components of the total column deflection. A graphical interpretation of the

model is shown in Figure 3.1. The following sections describe each of these components in detail.

Fig. 3.1 Distributed-plasticity model with bond slip and shear components
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3.1 NONLINEAR FORCE-BASED BEAM-COLUMN ELEMENT (FLEXURE)

The flexural component of the column deflection was modeled with a distributed-plasticity, flexibility-

based, fiber beam-column element. A fiber beam-column element is a line element in which the

moment-curvature response at each integration point is determined from the fiber section assigned

to that integration point.

A flexibility-based formulation assumes a moment-distribution along the length of the col-

umn, and the curvatures at each integration point are subsequently estimated for the moment at

that section. The column response is then obtained through weighted integration of the section

responses (Taucer et al. 1991). Because most inelastic behavior occurs near the base of the col-

umn, the element used in this report utilizes the Gauss-Labotto integration scheme, in which the

integration points are placed at the ends of the element, as well as along the column length.

A force-based fiber beam-column element utilizing a Gauss-Labotto integration scheme was

implemented in MATLAB (2005) to evaluate the effects of strain localization (Section 3.1.1) and

to verify the implementation of the force-based beam-column element in OpenSees (OpenSees

Development Team 2002) (Section 3.4). The MATLAB implementation utilized the section dis-

cretization scheme and material constitutive models discussed in sections 2.1 and 2.2, in which

each fiber was assigned a particular stress-strain response.

3.1.1 Concentration of Local Deformations

The force-based formulation is attractive because it can model the spread of plasticity along the

length of the column using only one element and a number of integration points (Np). However,

force-based elements lose objectivity at the local and/or global level depending on the section

hardening behavior (Coleman and Spacone 2001).

For example, figures 3.2 and 3.3 show the calculated force-deformation responses and the

calculated strain distribution along the height of the column for a column with a hardening section

behavior (b = 0.015). The included plot shows the strain distribution at various levels of deforma-

tion. For these figures, pushover analyses were performed on a typical column from the UW-PEER

database (Lehman et. al. 2000, No. 415). One force-based fiber element was used, and the number

of integration points and the strain-hardening ratios were varied systematically. Both the force-
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deformation envelope (Fig. 3.2) and the average strains (Fig. 3.3) are insensitive to the number of

integration points used in the analysis. The inelastic strains spread up the height of the column as

the deformation is increased.

In contrast, figures 3.4 and 3.5 show the calculated force-deformation responses and the

calculated strain distributions along the height of the column for a column with nearly a plastic

section response (b = 0.001). The force-deformation response (Fig. 3.4) does not vary with the

number of integration points, but the local strains (Fig. 3.5) vary drastically. Inelastic strains

localized at the base of the column and did not spread to any of the other integration points. This

occurs because the column reaches its load carrying capacity when the when the integration point at

the base reaches the yield moment. As the total deflection increases, the base curvature increases

with constant moment, while the other integration points do not see any change in moment or

curvature (Coleman and Spacone 2001). As seen in Figure 3.5, as the number of integration points

increases, the length of the plastic hinge decreases, resulting in larger base curvatures for a given

tip displacement.

Figures 3.6 and 3.7 show similar plots for a column with softening properties (b = − 0.002).

Both the global and local responses are sensitive to the number of integration points used in the

analysis. As in the column with the plastic section response, strains localize at the base of the

column and increasing the number of integration points decreases the length over which these

strains localize. This decrease in length increases the curvature and strains for a given tip deflection.

For the softening section, the increase in strain causes the column force-deformation response to

degrade quickly (Coleman and Spacone 2001).
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Fig. 3.2 Force-deformation envelope with varying np (hardening)
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Fig. 3.3 Strain distributions for varying np (hardening)
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Fig. 3.4 Force-deformation envelope with varying np (plateau)
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Fig. 3.5 Strain distributions for varying np (plateau)
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Fig. 3.6 Force-deformation envelope with varying np (softening)

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

Max Tensile Strain, ε
s

%
 o

f 
C

o
lu

m
n

 H
ei

g
h

t

0 % of Max Displacement

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

%
 o

f 
C

o
lu

m
n

 H
ei

g
h

t

Max Tensile Strain, ε
s

20 % of Max Displacement

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

%
 o

f 
C

o
lu

m
n

 H
ei

g
h

t

Max Tensile Strain, ε
s

40 % of Max Displacement

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

%
 o

f 
C

o
lu

m
n

 H
ei

g
h

t

Max Tensile Strain, ε
s

60 % of Max Displacement

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

%
 o

f 
C

o
lu

m
n

 H
ei

g
h

t

Max Tensile Strain, ε
s

80 % of Max Displacement

0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

%
 o

f 
C

o
lu

m
n

 H
ei

g
h

t

Max Tensile Strain, ε
s

100 % of Max Displacement

N
p
 = 5

N
p
 = 6

N
p
 = 7

Fig. 3.7 Strain distributions for varying np (softening)
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For elements with perfectly plastic section behavior, the calculated curvatures and strains are

sensitive to the number of integration points. For elements with softening section behavior, the

local and global responses of the element are sensitive to the number of integration points. Figure

3.8 summarizes these findings. For this figure, pushover analyses were performed on the 8 columns

tested by Lehman and Moehle (2000). One force-based fiber element was used for each column,

and the number of integration points and the strain-hardening ratios were varied systematically. In

this figure, the average values of the following parameters were plotted versus Np.

Moment at ∆max Ratio. The moment at maximum displacement (∆max) for varying Np normalized

by the moment at maximum displacement for Np = 5,

(
MNp

∆max

M5
∆max

)
.

Max Strain at ∆max Ratio. The maximum tensile steel strain at maximum displacement for vary-

ing Np normalized by the maximum strain at maximum displacement for Np = 5,

(
εNp

∆max

ε5
∆max

)
.

As seen in Figure 3.8, the global and local responses of the column with the hardening

sections are insensitive to Np if at least four integration points are used. For the column with

the plastic section, the global response is insensitive to Np, but the local response is not. As the

number of integration points is increased, the strain at maximum displacement also increases. For

the column with a softening section, both the global and local responses are sensitive to Np. As Np

is increased, the moments at maximum displacement decrease and the strains increase.

Similarly, Figure 3.9 illustrates the effect of Np on columns under double curvature for the

three section behaviors. In this figure, the maximum moments and strains are normalized by the

results at 6 Np. As seen in the figure, at least 6 integration points are needed for unbiased global

and local results for columns with hardening sections under double curvature.
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Fig. 3.8 Force-deformation and strain dependency on np (cantilever)
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The issue of the concentration of local deformations in distributed-plasticity elements was

addressed by Coleman and Spacone (2001). The researchers developed a method of post-processing

plastic curvatures to obtain nonbiased curvatures based on assumed plastic-hinge lengths (Lp).

The post-processing method was developed by equating equations for tip displacements from tra-

ditional plastic-hinge analysis (δlumped
p ) to the tip displacements calculated from the distributed-

plasticity element (δdistributed
p ), and then adjusting the distributed-plasticity plastic curvatures to

match the curvatures from the lumped-plasticity formulation. This process is described in more

detail in the following discussion.

The plastic tip displacement for a cantilever column calculated from traditional plastic-hinge

analysis is as follows.

δlumped
p = φpLp

(
L−

Lp

2

)
(3.1)

where φp is the plastic curvature in the hinge, and L is the column length. The plastic-displacement

for a cantilever column calculated with the distributed-plasticity element can be simplified to the

following equation.

δdistributed
p = φp1Lip1

(
L−

Lip1

2

)
+φp2Lip2

(
L−Lip1−

Lip2

2

)
+ ... (3.2)

where φp1 and φp2 are the plastic curvatures calculated at the first and second integration points in

the element. Lip1 and Lip2 are the equivalent plastic-hinge lengths of the first and second integration

points. In this formulation, the plastic-hinge lengths for the integration points are calculated as

Lip1 = wip1L and Lip2 = wip2L. wip1 and wip2 are the weights of the respective integration points

according to the integration scheme. The traditional implementation of the force-based element

uses Gauss-Labotto integration.

Equation 3.2 can be carried out to include the other integration points; however the plastic

deformations rarely spread to the other integration points. In fact, in the case of a softening section

response, the plastic deformations will not spread to the second integration point, and will be

concentration in the first integration point at the base of the column, as illustrated in Figure 3.7.

The post-processing method developed by Coleman and Spacone (2001) was formulated for

a softening section, and therefore the second integration point terms in Equation 3.2 are ignored. By

equating the first integration point terms of Equation 3.2 to Equation 3.1, the following relationship
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is obtained for the nonbiased, adjusted plastic curvature (φad j1
p ) as a function of the weight of the

integration point, plastic-hinge length, and calculated curvature.

φad j1
p = φp1

wip1L2 (2−wip1)
Lp (2L−Lp)

(3.3)

This formulation is correct for softening sections; however if there is any hardening in the section,

and plastic deformations spread to the second integration point, it will no longer be valid. In the

case of a hardening section, the calculated curvatures from the distributed-plasticity element will

be nonbiased, but will not match the curvatures calculated with the traditional lumped-plasticity

formulation.

A similar relationship for the nonbiased adjusted plastic curvature can be obtained for hard-

ening sections by including the higher integration points. The following relationship is obtained

by including the second integration point in 3.2.

φad j2
p = φp1

wip1L2 (2−wip1)
Lp (2L−Lp)

+φp2
wip2L2 (2−2wip1−wip2)

Lp (2L−Lp)
(3.4)

This relationship will be valid as long as plastic deformations do not spread to the third integration

point. The following figures (figures 3.10-3.12) demonstrate the concepts discussed above.

In Figure 3.10 the post-yield strain-hardening ratio (b) of the steel in the distributed-plasticity

element is varied between -1.0 % and 5.0% for a typical column in the database using 5 integration

points and neglecting bar slip and shear deformations. The first axes in this figure illustrates the

recorded curvatures at the first integration point. The second axes is a plot of the adjusted plastic

curvatures calculated with one integration point (Equation 3.3) versus displacement ductility. The

third axes is a plot of the adjusted-plastic curvature calculated with two integration points (Equa-

tion 3.4) versus displacement ductility. The fourth axes is a plot of the ratio of plastic curvature

calculated at the second integration point to the curvatures at the first integration point. This axes is

included to demonstrate the amount of plastic deformation that has spread to the second integration

point.

As seen in the figure, the recorded curvature at the first integration point is dependent on

the amount of hardening or softening in the column, and the curvatures do not match the curva-

tures calculated with plastic-hinge analysis. In the case of the softening section response, utilizing
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one integration point in the calculation of the adjusted plastic curvature is sufficient, however the

method is inaccurate for the hardening section responses, as expected. As seen in the third axes,

the adjusted curvatures using two integration points match the target curvatures of the lumped-

plasticity formulation for both the hardening and softening section responses.

Similarly, in Figure 3.11 the number of integration points is varied between 5 and 8 for

a typical column in the database with a softening section response (b = −1.00%). As seen in

the first axes, the curvatures recorded at the base of the column are dependent on the number of

integration points used in the calculation. As shown in the second and third axes, both nonbiased

curvatures calculated with both methods are identical to the target curvatures from the lumped-

plasticity formulation.

In Figure 3.12, the number of integration points is varied between 5 and 8 for a typical col-

umn in the database with a hardening section response (b = 5.00%). As seen in the first axes, the

curvatures at the base of the column are not dependent on the number of integration points used in

the calculation; however, these curvatures do not match those calculated with the lumped-plasticity

formulation. The second axes illustrates the inability of Equation 3.3 to calculated unbiased curva-

tures for hardening sections. The third axes demonstrates that Equation 3.4 is accurate (in particu-

lar case) for 5, 6, and 7 integration points, but begins to stray at higher ductilities for 8 integration

points. This is because the plastic curvatures begin to spread to the third integration point.
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Fig. 3.10 Curvature response for typical column with varying strain-hardening ratio, np = 5
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Fig. 3.12 Curvature response for typical column with hardening section response, b = 5.00%
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3.2 BOND SLIP DISPLACEMENT MODEL

The fiber-based beam-column element is based on the assumption that plane sections remain plane,

which implies perfect bond between the longitudinal reinforcement and the surrounding concrete

(Hachem et al. 2003). The force-based beam-column element does not include the component of

deformation due to bond slip, and the column appears stiffer than it actually is. In the proposed

modeling strategy, a zero-length section at the base of the column is used to model the bond slip

of the anchorage reinforcement. The zero-length section is a fiber section in which each fiber is

assigned a stress-displacement relationship instead of a stress-strain relationship. This formulation

is beneficial because it allows for biaxial, cyclic lateral loading and variable axial loads.

3.2.1 Tensile Stress-Displacement Relationship of Reinforcement

The steel stress-displacement relationship was based on a two-component bond-stress model

(Lehman and Moehle 2000). The model was modified by Ranf (2006) to account for development

of bond stress at low bar strains. An illustration of the model is presented in Fig. 3.13. In this

τ(σ)

σ

τe(σ)

τi(σ)

τd(σ)

σ σd y

Fig. 3.13 Bond model illustration

figure, σ is the axial stress in the longitudinal reinforcement, τi(σ) is the bond stress above the

yield stress of the reinforcement σy, τe(σ) is the bond stress above the bar stress that is needed to

fully develop the bond (σd) but below the yield stress. τd(σ) is the bond stress for stress in the

reinforcement below the development stress. For this model, the elastic and inelastic bond stresses

were assumed to be constant with stress, while the development bond stress was assumed to be
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linearly related to the stress in the reinforcement. The components of the model are described in

Equation 3.5,

τ(σ) =

{ τe
σ
σd

= a
σ
σd

√
f ′c σ≤ σd

τe = λe
√

f ′c σd ≤ σ≤ σy

τi = λi
√

f ′c σy ≤ σ

(3.5)

where λe and λi are the elastic and inelastic bond-stress coefficients respectively. Using the bond

stress defined in Eq. 3.5, the change in strain (change in stress) along the length of the reinforce-

ment is described by the differential equation, Equation. 3.6.

dF
dx

=
πd2

b
4

dσ
dx

= τ(σ)πdb

dσ
dx

=
4τ(σ)

db

(3.6)

By integrating the strains along the development length, the tensile stress-displacement en-

velope of an anchorage bar can be calculated for a column. The stress-displacement envelope for a

typical column is shown in Figure 3.14. For this study, the nonlinear stress-displacement relation-

ships calculated with this method were simplified by assuming a linear relationship from σ = 0 to

σ = fy and a second linear relationship between fy and fu as seen in the figure.

0 5 10 15 20
0

0.5

1

1.5

∆ (mm)

σ
 / 

f y

Lehman Model
Simplified Model

Fig. 3.14 Stress-displacement envelope for typical anchor bar
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The three parameters of the bond model (σd , λe, and λi) are calibrated by comparing the

strains measured in the columns at the anchorage-column interface with the strains measured 8

inches within the anchorage in Section 4.3.

3.2.2 Compressive Stress-Displacement Relationships

The compressive stress-displacement relationship of the concrete was calculated from the stress-

strain relationship by assuming an effective depth over which the compressive strains act (dcomp),

and multiplying the strains by this assumed depth to obtain a displacement. The assumed depth is

illustrated in Figure 4.11.

Fig. 3.15 Assumed compressive depth

3.2.3 Calibration Parameters

Because of the complexity of bond slip, the proposed bond slip model needs to be calibrated with

experimental results. The key model parameters that need to be calibrated are the bond-strength

ratios λe and λi, and the depth of the compressive strains dcomp. These parameters are calibrated in

Chapter 4.

3.3 SHEAR-DISPLACEMENT MODEL

The shear component (∆v) of the total deflection of the column was modeled in accordance with

elastic theory:

∆v =
k ·V · L
G · AG

(3.7)
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where k is a shape factor to account for the shape of the cross section (k = 4
3 for circular sections),

V is the transverse shear force, and AG is the gross cross-sectional area. G is the modulus of rigidity

of the concrete and can be estimated as the concrete modulus of elasticity multiplied by a scalar,

G = γEc, where Ec can be calculated as Ec = 4730
√

f ′c, (ACI 318 2002). Park and Paulay (1975)

recommend a value of γ = 0.4 (MPa).

3.4 OPENSEES IMPLEMENTATION

The MATLAB implementation of the force-based beam-column element was developed for mono-

tonic loading. Since both the monotonic and cyclic behavior of a column are important in seis-

mic regions, OpenSees (which is capable of modeling cyclic loading) was used to implement the

proposed distributed-plasticity modeling strategy for the remainder of this report. This section dis-

cusses the implementation of the three major components of column deformation into OpenSees.

3.4.1 Flexural Component

The force-based beam-column element in OpenSees was implemented using the nonlinearBeam-

Column command. The OpenSees implementation was verified by comparing the calculated force-

deformation responses from OpenSees with the calculated force-deformation responses from the

MATLAB implementation for 8 columns (Lehman and Moehle 2000) (Figure 3.16). As seen in

the figure, the force-deformation envelopes calculated with OpenSees are indistinguishable with

the force-deformation envelopes calculated with the stand-alone MATLAB implementation.

3.4.2 Bond Slip Deformation

The bond slip deformation model described in Section 3.2 was implemented in OpenSees using a

zero-length section (zeroLengthSection) placed at the base of the column. The zero-length section

consisted of a fiber section (Section 2.1) in which the stress-deformation response of the steel was

determined in accordance with Section 3.2.1, and the compressive stress-displacement response of

the concrete was determined in accordance with Section 3.2.2. The stress-displacement response

of the steel was modeled with steel02 material model in OpenSees, and the stress-displacement

response of the concrete was modeled with concrete04.
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3.4.3 Shear Deformation

The shear-deformation model was implemented in OpenSees by aggregating lateral

force-deformation sections into the fiber sections of the beam-column element, as seen in Figure

3.1. The properties of the lateral force-deformation response were determined in accordance with

elastic theory, as described in Section 3.3.

3.4.4 Calculation of Average Strains

The calculated average tensile strain values at two levels of column height are used in the calibra-

tion of the proposed modeling strategy (Section 4.4). Specifically, the measured and calculated

average tensile steel strains are compared from the base of the column to a quarter of the column

depth (0-D/4) and a quarter of the column depth to the total column depth (D/4-D/2). In a fiber

beam-column element, the stresses and strains of any fiber in a section can be recorded. However,

the sections are only located at integration points, and the location of the integration points are

determined from the Gauss-Labotto integration scheme. In order to obtain the average strains from

0-D/4 and D/4-D/2, zero-weight integration points were added to the elements at D/4 and D/2. The

added integration points do not affect the results of the analyses, but provide a means of recording

section and fiber behavior at their locations. The average flexural tensile steel strain values from

0-D/4 were obtained by averaging the strain values recorded at the base of the column and at D/4.

The average strain values were obtained for the D/4-D/2 segment in a similar manner.

The measured average strains from 0-D/4 also include the strains associated with bond slip of

the anchorage reinforcement. In order to compare these strain values with calculated strain values,

a calculated bond slip component was included in the calculated strains. The calculated vertical

displacement of the anchorage steel was recorded from the zero-length bond slip section (Section

3.2). This vertical displacement was then divided by the length D/4 to obtain an average strain, and

then added onto the calculated flexural steel strain.

3.5 SUMMARY

In the proposed modeling strategy, a nonlinear force-based fiber beam-column element, a zero-

length bond section, and an aggregated elastic shear section are combined to model the flexural,
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bond slip, and shear components of the total tip deflection of a column. The following key model-

ing parameters were identified:

Number of Integration Points (Np). The number of integration points used in the flexibility-based,

fiber beam- column element.

Bond-Strength Ratios (λe and λi). The ratio of bond strength to the square root of the compres-

sive strength of the concrete, λe = τbe√
f ′c

and λi = τbi√
f ′c

.

Development Bar Stress (σd). The bar stress required to fully develop the bond.

Bond-Model Compression Depth (dcomp). The effective depth of the compression strains for the

concrete in the zero-length bond-slip element.

Shear-Stiffness Ratio (γ). The ratio of the modulus of rigidity of the concrete to the modulus of

elasticity of the concrete, γ = G
Ec

.
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Fig. 3.16 Comparison of calculated f-∆ envelopes
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4 Calibration of Distributed-Plasticity
Column Model

To accurately model reinforced concrete column behavior, the distributed-plasticity modeling strat-

egy proposed in Chapter 3 was calibrated with experimental results. The modeling parameters

identified for calibration in chapters 2 and 3 are:

Strain-Hardening Ratio (b). The ratio of post-yield stiffness of the reinforcing steel to the mod-

ulus of elasticity of the steel, b = Esh
E (Section 2.2.1).

Bond-Strength Ratios (λe and λi). The ratio of bond strength to the square root of the compres-

sive strength of the concrete, λe = τbe√
f ′c

and λi = τbi√
f ′c

.

Development Bar Stress (σd). The bar stress required to fully develop the bond.

Number of Integration Points (Np). The number of integration points used in the flexibility-based,

fiber beam-column element (Section 3.1).

Bond-Model Compression Depth (dcomp). The effective depth of the compression strains for the

concrete in the zero-length bond-slip element (Section 3.2).

Shear-Stiffness Ratio (γ). The ratio of the modulus of rigidity of the concrete to the modulus of

elasticity of the concrete, γ = G
Ec

(Section 3.3).

This chapter discusses the calibration strategy used in this report and presents the results

of this analysis. The results of a sensitivity analysis are then presented to identify the effects of

varying key parameters.
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4.1 COLUMN DATA

A subset of eight columns from the bridge column dataset designated in Section 1.3 was used to

calibrate the distributed-plasticity column-modeling strategy. The eight columns were the experi-

ments documented in Lehman and Moehle (2000), and are included in Table 1.1. These columns

were selected because they met Caltrans/AASHTO detailing requirements and the following data

were available.

· Force-displacement histories

· Strain-gage histories

· Relative-rotation histories (average curvature)

· Observations of damage

This data were not available for all columns in the database, specifically the strain-gage data and

average rotations.

Because estimating both global and local deformations are important, the force-displacement

envelopes and the average strains in the tensile reinforcement were used in the calibration of the

distributed-plasticity model. The force-displacement envelopes and average strain-displacement

envelopes were extracted from the recorded digital force-displacement histories of the column with

the algorithm described in Parish (2001). The average strains were calculated from the average

rotations measured with the potentiometers as described in Appendix C of Lehman and Moehle

(2000).

The average strains at two different levels of the column height were used in the calibration

of the distributed-plasticity model, the average strains from the base of the column to one quarter

of the column depth, 0−D/4, and the strains from one quarter of the column depth to half the

column depth, D/4−D/2. It should be noted that the average strains at the base of the column

include deformations from bar slip since the potentiometers at the base of the column measure both

the flexural displacement and the displacement due to bond slip of the anchorage reinforcement.

The average strains were used in this study instead of the strain gages, because potentiome-

ters are able to accurately measure deformation at higher levels of deformation. The average strain

measurements were verified with the strain gages attached to the reinforcement, and at low levels

of deformation, the measurements were similar.
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4.2 STEEL STRAIN-HARDENING RATIO CALIBRATION

The strain-hardening ratio was calibrated by minimizing the square root of the sum of the squares

of the difference between the calculated response of the steel under monotonic loading to the

measured response from coupon tests up to a strain of 0.1. The measured stress-strain response

used for this calibration was the average response of the coupon tests performed by Lehman and

Moehle (2000). A value of b = 0.0097 minimized the normalized error with a value of 3.91%.

However, for simplicity, b = 0.01 was selected as the optimal value, (normalized error = 3.93%).

The measured and calculated material responses are shown in Figure 4.1.

Fig. 4.1 Measured and calculated stress-strain response of steel

4.3 BOND-STRENGTH MODEL CALIBRATION

Three parameters of the bond model (σd , λe, and λi, defined in Figure 3.13) were calibrated by

comparing the strains measured in the column tests at the anchorage-column interface with the

strains measured six inches within the anchorage. Of the 16 possible strain-gage sets (north and

south locations for the 8 columns), measurements from both of the strain gages were reliable up

to an interface strain of 0.015 for 8 sets. The envelopes of the interface gage strains versus the

anchorage gage strains for the 8 strain-gage sets are shown in Figure 4.2.

The best fit of the envelopes from the 8 strain-gage sets shown in Figure 4.2 was realized

using elastic and inelastic bond-stress coefficients of λe = 0.9 and λi = 0.45, and a development
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stress of σd = 0.25σy. These values would vary if the steel were modified from the bilinear ap-

proximation, b = 0.01.

0 1 2 3 4 5
0

0.5

1

1.5

2

ε
0

ε −
D

/3
 (

x 
10

−3
)

Measured
Calculated

Fig. 4.2 Bond-strength calibration

4.4 OPTIMIZATION STRATEGY FOR REMAINING MODEL PARAMETERS

4.4.1 Measures of Accuracy

In order to successfully predict the response of a column under seismic loading (including damage

prediction) both the global force-deformation response, and the local curvatures and strains must

be predicted accurately. The calibration of the proposed modeling strategy considered the accuracy

of both the global and local responses. The parameters used in this chapter to measure the accuracy

of the modeling strategy are as follows.

Pushover Error (Epush). The accuracy of the force-displacement envelope was accounted for with

the pushover error, which is defined as

Epush =

√√√√∑n
i=1

(
Fi

meas−Fi
calc

)2

(max(Fmeas))2 n
(4.1)
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where Fmeas and Fcalc are the measured and calculated forces at corresponding displacements

up to a drift ratio of 4%, and n is the number of datapoints in the envelope (n = 100 for this

study).

Strain Error (Estrain). The accuracy of the models ability to predict average strains was accounted

for with the strain error, which is defined as

Estrain =

√√√√∑n
i=1

(
εi

meas− εi
calc

)2

(max(εmeas))2 n
(4.2)

where εmeas and εcalc are the measured and calculated average strains at corresponding dis-

placements up to a drift ratio of 4%. The strain error was accounted for at two ranges of

column height, from the base of the column to a quarter of the column depth
(

E(0−D/4)
strain

)

and from a quarter of the column depth to half the column depth
(

E(D/4−D/2)
strain

)
. The method

used to calculate the average strains over the two heights is described in Section 3.4.4.

Stiffness Ratio (S.R.) is the ratio of measured stiffness to calculated stiffness Kmeas
Kcalc

, where Kmeas =
Fy

∆meas
y

and Kcalc = Fy
∆calc

y
. Fy is the smaller of the calculated lateral force at first yield of the

tensile reinforcement, and the lateral, effective force calculated at a concrete strain of 0.002.

∆meas
y and ∆calc

y are the measured and calculated displacements associated with Fy.

Moment Ratio (M.R) is the ratio of the maximum measured moment at or before 4% drift to the

calculated moment at or before 4% drift, Mmeas
max

Mcalc
max

.

Degradation Error Ratio (D.R.) is a parameter that captures the effectiveness of the model in

predicting column degradation.

D.R. =

((
F4%

calc−F3%
calc

)

F3%
calc

−
(
F4%

meas−F3%
meas

)

F3%
meas

)
∗100 (4.3)

A degradation error ratio close to zero means that the model accurately models degradation.

4.4.2 Optimization Procedure

The MATLAB function, fmincon, was originally used to perform the constrained nonlinear op-

timization. The function fmincon finds the constrained minimum of a scalar function of several

variables starting at an initial estimate by using the Sequential Quadratic Programming (SQP)
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method (MATLAB 2000). However, this method was abandoned because the presence of multiple

local minimums hindered the methods ability to obtain the global minimum.

The optimization was performed by running a pushover analysis for a broad range of mod-

eling parameters and then selecting the scheme in which the mean total error (Etotal , Equation 4.4)

was minimized and the additional modeling accuracy terms (e.g., stiffness ratio) were reasonable.

The range of values used for each calibration parameter are shown in Table 4.1, along with the step

size between consecutive values within the range. The analysis consisted of every combination of

the optimization parameters. Where c is equal to the column’s neutral axis depth at a maximum

Table 4.1 Calibration parameter ranges for initial run

parameter Np dcomp γ

min 4 0.1 c 0.10
max 7 2.0 c 0.80

step size 1 0.1 c 0.10

compressive strain of 0.002 (c). In addition to the parameter values indicated in the table, the model

without shear deformation was also considered in the optimization (i.e., γ = ∞).

The objective function for the optimization was a combination of the average pushover error

and average strain errors at the two ranges of the column height. The total error, Etotal , is defined

as

Etotal =
1
2

mean
(
Epush

)
+

κ1

4
mean

(
E(0−D/4)

strain

)
+

α2

4
mean

(
E(D/4−D/2)

strain

)
(4.4)

where:

κ1 =
min

(
mean

(
Epush

))

min
(

mean
(

E(0−D/4)
strain

)) (4.5)

κ2 =
min

(
mean

(
Epush

))

min
(

mean
(

E(D/4−D/2)
strain

)) (4.6)

where mean entails the average value over the eight Lehman and Moehle (2000) columns, and min

entails the minimum value out of the total number of combinations. The α terms are included to

ensure that the error terms are of similar magnitude.
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4.5 OPTIMIZATION RESULTS

The optimization study described in the previous section was performed for the eight columns

described by Lehman and Moehle (2000). The top 20 combinations from the optimization study

are reported in Table 4.2. The accuracy measures reported in this table (e.g., Etotal and S.R.) are

average values for the eight columns.

Table 4.2 Distributed-plasticity optimization results

Parameter Values Measures of Accuracy

Rank N p dcomp γ Etotal Epush E0−D/4
strain ED/4−D/2

strain S.R. M.R. D.R
1 6 0.8 c 0.1 7.02 6.62 6.83 16.94 0.91 1.03 0.87
2 6 0.7 c 0.1 7.02 6.60 6.95 16.77 0.90 1.03 0.86
3 6 1 c 0.1 7.03 6.63 6.78 17.07 0.92 1.03 0.92
4 6 0.9 c 0.1 7.04 6.63 6.82 17.06 0.91 1.03 0.90
5 6 1.1 c 0.1 7.05 6.65 6.70 17.32 0.92 1.04 0.94
6 6 1.2 c 0.1 7.05 6.65 6.59 17.58 0.93 1.04 0.93
7 6 0.6 c 0.1 7.06 6.62 7.15 16.51 0.89 1.03 0.78
8 6 1.3 c 0.1 7.07 6.67 6.50 17.87 0.93 1.04 1.02
9 6 1.4 c 0.1 7.07 6.67 6.47 17.98 0.94 1.04 1.06

10 6 1.6 c 0.1 7.08 6.69 6.43 18.08 0.94 1.04 1.10
11 6 1.5 c 0.1 7.08 6.68 6.45 18.07 0.94 1.04 1.11
12 6 0.9 c 0.2 7.11 6.72 6.97 16.94 0.89 1.03 0.91
13 6 0.9 c 0.3 7.11 6.72 6.97 16.94 0.89 1.03 0.91
14 6 0.9 c 0.5 7.11 6.72 6.97 16.94 0.89 1.03 0.91
15 6 0.9 c 0.6 7.11 6.72 6.97 16.94 0.89 1.03 0.91
16 6 0.9 c 0.7 7.11 6.72 6.97 16.94 0.89 1.03 0.91
17 6 1.7 c 0.1 7.11 6.70 6.43 18.33 0.95 1.04 1.12
18 6 1.1 c 0.2 7.12 6.75 6.80 17.29 0.90 1.03 0.94
19 6 1.1 c 0.3 7.12 6.75 6.80 17.29 0.90 1.03 0.94
20 6 1.1 c 0.5 7.12 6.75 6.80 17.29 0.90 1.03 0.94

It was difficult to objectively select an optimal solution from this analysis because many

combinations of parameters resulted in nearly identical values of Etotal . The proposed modeling

strategy was not sensitive to several of the optimization parameters, and the optimization results

were dominated by several combinations that differed only by those parameters. For example, the

only parameter that differs between the top 11 ranked combinations is the bond penetration depth

(dcomp).

The effect of Np on the optimization surface can be observed by sorting the optimization

results first by Np and then by Etotal , and then plotting the normalized error
(

Etotal
Emin

total
−1

)
versus

the normalized rank order (i.e., the ranking divided by the total number of combinations) (Figure

4.3). The normalized error varied from 0 (Etotal = 7.02) to 0.92 (Etotal = 13.46). As seen in the

figure, the best results are obtained for Np = 6. Nonetheless, as long as five integration points are

used, similar minimum values of Etotal can be obtained. This result can be explained by noting
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Fig. 4.3 Effect of np on optimization surface

that the columns being studied are well-confined columns with hardening section behavior. For

such sections the number of integration points should not significantly affect the calculated global

or local responses (Section 3.1.1). For modeling efficiency, the combinations with five integration

points will be used to select the optimal solution.

Table 4.3 provides the top 20 combinations in which Np = 5. As seen in the table, the

combination that minimizes the total error (Etotal = 7.13) is dcomp = 0.4c and γ = 0.1. As seen in

Table 4.3, γ does not significantly affect the accuracy of the model. The combination with γ = 0.4

(# 16, dcomp = 0.5c, Etotal = 7.21) will be chosen as the optimal solution to remain consistent with

previous research Park and Paulay (1975).
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Table 4.3 Distributed-plasticity optimization results (np = 5, γ = 0.4 and dcomp = c)

Parameter Values Measures of Accuracy

Rank N p dcomp γ Etotal Epush E0−D/4
strain ED/4−D/2

strain S.R. M.R. D.R
1 5 0.4 c 0.1 7.13 6.85 6.57 17.52 0.87 1.04 0.35
2 5 0.5 c 0.1 7.15 6.83 6.52 17.87 0.88 1.04 0.42
3 5 0.3 c 0.1 7.16 6.91 6.78 17.02 0.86 1.04 0.31
4 5 0.6 c 0.1 7.17 6.82 6.49 18.22 0.89 1.04 0.44
5 5 0.4 c 0.2 7.19 6.96 6.62 17.37 0.85 1.04 0.36
6 5 0.4 c 0.3 7.19 6.96 6.62 17.37 0.85 1.04 0.36
7 5 0.4 c 0.5 7.19 6.96 6.62 17.37 0.85 1.04 0.36
8 5 0.4 c 0.6 7.19 6.96 6.62 17.37 0.85 1.04 0.36
9 5 0.4 c 0.7 7.19 6.96 6.62 17.37 0.85 1.04 0.36

10 5 0.5 c 0.2 7.20 6.96 6.52 17.73 0.86 1.04 0.40
11 5 0.5 c 0.3 7.20 6.96 6.52 17.73 0.86 1.04 0.40
12 5 0.5 c 0.5 7.20 6.96 6.52 17.73 0.86 1.04 0.40
13 5 0.5 c 0.6 7.20 6.96 6.52 17.73 0.86 1.04 0.40
14 5 0.5 c 0.7 7.20 6.96 6.52 17.73 0.86 1.04 0.40
15 5 0.7 c 0.1 7.20 6.84 6.46 18.47 0.90 1.04 0.48
16 5 0.5 c 0.4 7.21 7.02 6.51 17.61 0.85 1.04 0.38
17 5 0.6 c 0.2 7.21 6.94 6.44 18.14 0.87 1.04 0.43
18 5 0.6 c 0.3 7.21 6.94 6.44 18.14 0.87 1.04 0.43
19 5 0.6 c 0.5 7.21 6.94 6.44 18.14 0.87 1.04 0.43
20 5 0.6 c 0.6 7.21 6.94 6.44 18.14 0.87 1.04 0.43

The selected optimal solution is as follows.

Strain-Hardening Ratio, b = 0.01.

Bond-Strength Ratios, λe = 0.9 and λi = 0.45.

Development Bar Stress, σd = 0.25σy .

Number of Integration Points, Np = 5.

Bond-Model Compression Depth, dcomp = 0.5c (Half the N.A. Depth at εc = 0.002).

Shear-Stiffness Ratio, γ = 0.4.

This combination of parameters resulted in the following mean measures of accuracy: Etotal =

7.22, Epush = 7.02, E(0−D/4)
strain = 6.51, E(D/4−D/2)

strain = 17.73, stiffness ratio = 0.85, moment ratio =

1.04 and degradation error ratio = 0.38. The corresponding coefficients of variation (%) for these

measures were 20, 43, 44, 44, 11, 8, and -.

In a pilot study, a similar optimization was run without including the tensile strength of the

concrete, and using the bond-strength ratios proposed by Lehman and Moehle (2000) (λe = 1.0,

λi = 0.5). This optimization resulted in dcomp = 1.0c, γ = 0.4, and Np = 5. This combination

of parameters resulted in the following mean measures of accuracy: Etotal = 7.45, Epush = 6.73,

E(0−D/4)
strain = 7.78, E(D/4−D/2)

strain = 14.40, stiffness ratio = 1.02, moment ratio = 1.03, and degradation

error ratio = 2.04.
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4.6 MODEL EVALUATION

The selected optimal solution from the previous section will be evaluated in this section. First, the

measured and calculated force-displacement envelopes are compared, and the various components

of the total calculated deflection are studied. Then, the measured and calculated tensile steel strain-

displacement envelopes are compared.

4.6.1 Force-Displacement Envelopes

The measured and calculated (using the optimal solution) force-displacement envelopes are shown

in Figure 4.4. The proposed modeling strategy accurately predicts the stiffness ratio for all eight

columns. However, the proposed modeling strategy overestimates the stiffness of all eight of the

columns beyond 3% drift. It is difficult to observe trends in model accuracy with only these plots.

Trends in the accuracy of the proposed modeling strategy is studied in greater detail later in this

report.

The percentage of total deflection due to flexure, bond slip, and shear are plotted versus

displacement ductility in Figure 4.5. As seen in Figure 4.5, the calculated shear component of total

deflection is negligible, ranging from 2.5% to 0.3% of the total column deflection. Additionally, as

expected, the component of total deflection due to bond slip decreases with increasing aspect ratio,

and increases slightly with the level of column deformation.

4.6.2 Strain-Displacement Envelopes

The measured and average calculated strains for two ranges of column height are compared up

to a displacement ductility ( ∆
∆y

) of 8 in Figure 4.6, and up to a displacement ductility of 3 in

Figure 4.7. The vertical lines in figures 4.6 and 4.7 represent the ductility level at which the

researchers reported the onset of cover spalling. As seen in the figures, the proposed modeling

strategy accurately predicts the strains at low levels of column deformation, but is less accurate at

higher levels. In general, shortly after the onset of spalling, the measured strain values at D/4−

D/2 increase rapidly and the measured strain values at 0−D/4 dip below the calculated values

and begin approaching the strains at D/4−D/2. This pattern, which was observed for 6 of the

8 columns, suggests that the discrepancies in measured and calculated strains at higher levels of

column deformation may be due to the debonding of the longitudinal reinforcement up the height
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of the column.
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Fig. 4.5 Components of total deflection
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Fig. 4.6 Measured and calculated average strains (up to ∆
∆y

= 8)
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Fig. 4.7 Measured and calculated average strains (up to ∆
∆y

= 3)
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4.7 SENSITIVITY ANALYSES

A parametric study was performed to verify the results of the optimization analysis and to demon-

strate the effect of the key modeling parameters on model accuracy. In this study, the measures

of accuracy were plotted versus the five modeling parameters to demonstrate the effect of each

parameter (figures 4.8 through 4.12). The optimal solution (b = 0.01, Np = 5, dcomp = c, λ = 1.0,

and γ = 0.4) was used as a basis, and each parameter was varied individually.

In Figure 4.8 the effect of the strain hardening ratio is studied by plotting the maximum,

minimum, and mean values of Etotal , S.R., M.R., and D.R. versus the strain-hardening ratio (b).

As seen in the figure, a b value near 1% minimizes the mean Etotal . This result is consistent with

the results of the previous section. As expected, increasing b does not affect the stiffness ratio, but

decreases the M.R. and increases the D.R.

Similarly, the effect of the number of integration points is shown in Figure 4.9. As seen here,

slightly better values of Etotal , M.R., and D.R can be obtained by using 6 or 7 integration points,

but the increase in accuracy does not outweigh the loss of efficiency. As expected, the stiffness

ratio is not affected by Np.

The effect of the bond-strength ratio (λ) on pushover accuracy is shown in Figure 4.10. As

expected, as λ increases, the stiffness ratios and moment ratios decrease and the degradation error

ratios increase. A negligibly better value of Etotal can be obtained by using λ = 0.5 than λ = 1.0;

however, the stiffness ratio and moment ratio are better using λ = 1.0. The best moment ratio is

obtained by using λ = ∞, which represents no bar slip.

The effect of the bond compression depth (dcomp) on pushover accuracy is shown in Figure

4.11. The stiffness ratios, moment ratios, and degradation error ratios increase as dcomp increases.

The best Etotal value was obtained for dcomp = c, but similar values were obtained for dcomp = 0.1

and 0.2.

Finally, the effect of the shear-deformation ratio (γ) is shown in Figure 4.12. As discussed

earlier, the shear ratio influences the accuracy little.
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4.8 EVALUATION WITH DATABASE OF BRIDGE COLUMNS

The proposed modeling strategy was used to model the 37 bridge columns identified in Section

1.3. Key accuracy statistics of this evaluation are provided in Table 4.4. The mean value of the

pushover error Epush was 7.4%. The mean values of the stiffness ratios (S.R.) and moment ratios

(M.R.) were 0.85 and 1.03, with corresponding c.o.v.’s of 15.6% and 7.9%. The mean value of the

degradation ratios (D.R. ) was -0.51.

Table 4.4 Accuracy statistics for envelope response of distributed-plasticity model

Statistic Epush(%) S.R. M.R. D.R.

Mean 7.4 0.84 1.03 -0.51
c.o.v. (%) - 15.6 7.9 -

The measures of modeling accuracy are plotted versus key column properties to determine

if the accuracy of the model is sensitive to these properties. In Figure 4.13, Epush is plotted versus,

aspect ratio (L/D), longitudinal-reinforcement ratio (ρl), axial-load ratio (P/ f ′cAg), effective con-

finement ratio, concrete compressive strength, and the ratio of spiral spacing to longitudinal bar

diameter (s/db). Included in the figure are the R2 values, which indicate the magnitude of corre-

lation between Epush and the property. As seen in the figure, there are no significant trends in the

data.

Similarly, the stiffness ratio is plotted versus the key column properties in Figure 4.14. Slight

trends can be observed in S.R. versus L/D and f ′c, with R2 values of 0.11 and 0.12.

The maximum moment ratio (M.R.) is plotted versus the key properties in Figure 4.15. As

seen in the figure, only one trend can be observed. The moment ratio decreases with ab increase in

effective confinement ratio.

The degradation ratio (D.R.) is plotted versus the key properties in Figure 4.16. There are no

significant trends in the data.
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Fig. 4.13 Effect of key properties on pushover error
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Fig. 4.14 Effect of key properties on stiffness ratio
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4.9 SUMMARY

The measures of accuracy and optimization scheme utilized to calibrate the distributed-plasticity

column model were presented in this chapter. The results of the optimization study were then

presented and an optimal solution was selected. The optimal model parameters were as follows.

· Strain-Hardening Ratio, b = 0.01.
· Bond-Strength Ratios, λe = 0.9 and λi = 0.45.
· Development Bar Stress, σd = 0.25σy.
· Number of Integration Points, Np = 5.
· Bond-Model Compression Depth, dcomp =1/2 neutral axis depth at εc = 0.002.
· Shear-Stiffness Ratio, γ = 0.4.

This combination of parameters resulted in the following mean measures of accuracy when

applied to the dataset of 8 column tests by Lehman and Moehle (2000): Etotal = 7.22, Epush = 7.02,

E(0−D/4)
strain = 6.51, E(D/4−D/2)

strain = 17.73, stiffness ratio = 0.85, moment ratio = 1.04 and degradation

error ratio = 0.38. The corresponding coefficients of variation for the stiffness ratio and moment

ratio were 11% and 8%. When applied to the bridge dataset, the mean value of Epush was 7.4%.

The mean values of the stiffness ratios and moment ratios were 0.85 and 1.03 with corresponding

c.o.v.’s of 15.6% and 7.9%. The mean value of the degradation ratios (D.R. ) was -0.51.
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5 Development of Lumped-Plasticity
Column Model

The spread-plasticity, force-based fiber beam-column element is susceptible to strain localiza-

tion and loss of objectivity in degrading members (Section 3.1.1). A lumped-plasticity column-

modeling strategy is developed to overcome this limitation, and to provide a less complex model-

ing strategy. In this chapter, a lumped-plasticity model formulation is presented, and key modeling

parameters are identified for calibration.

5.1 MODEL FORMULATIONS

The widespread implementation of nonlinear analysis methods in software to support analysis

and design has led to the development of a variety of plastic-hinge model formulations. In this

chapter, two model formulations are presented, one that is commonly employed in design, and a

more complicated formulation that can be implemented in a standard displacement-based finite

element framework (e.g., OpenSees). Figure 5.1 shows a typical cantilever column subjected to a

lateral load. The figure also shows the moment and actual curvature distributions, and the idealized

curvature distributions that are the basis for the two lumped-plasticity models presented in this

chapter.

The formulation of the plastic-hinge model employed in design uses the idealized distribution

shown in Figure 5.1(d) to develop an expression for the post-yield displacement at the top of

the column, ∆. The curvature is assumed to be linear above the plastic hinge, and the plastic

curvature is assumed to be constant over the height of the plastic hinge. The resulting post-yield
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Fig. 5.1 Moment and curvature distributions

total displacement can be expressed as follows.

∆ = ∆y +(φbase−φy)Lp

(
L−

Lp

2

)
(5.1)

where: φy is the column curvature at first yield, φbase is the curvature associated with the moment at

the base of the column, L is the distance from the base of the column to the point of contraflexure,

Lp is the plastic-hinge length, and ∆y is the yield displacement of the column.

Scott and Fenves (2006) developed a lumped-plasticity formulation suitable for implemen-

tation in a standard displacement-based finite-element environment. The formulation utilizes the

force-based fiber beam-column element formulation, and introduces a modified integration scheme

in which inelastic deformations are confined to an assigned plastic-hinge length. This formulation,

which is available in OpenSees, results in the curvature distribution shown in Figure 5.1(e). The

curvature distribution is linear above the plastic hinge, and within the plastic hinge the curvature is

calculated with moment-curvature analysis. Implementation of this method for a cantilever column

results in the following expression for the post-yield tip displacement.

∆ =
Mbase

(EI)e f f

(
L2

3
−LLp

)
+φbaseLLp (5.2)

where: Mbase and φbase are the moment and associated curvature at the base of the column, and
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(EI)e f f is the effective section stiffness of the elastic portion of the column. If (EI)e f f = My
φy

is

substituted into Equation 5.2, the following equation can be obtained.

∆ = φy

(
Mbase

My

)(
L2

3
−LLp

)
+φbaseLLp (5.3)

where My is the moment at first yield.

The OpenSees environment was used in this report to model column behavior because it

is capable of modeling cyclic and bidirectional loading, and variable axial loads. The lumped-

plasticity model formulation proposed by Scott and Fenves (2006) was used within OpenSees. The

OpenSees implementation is discussed in greater detail in Section 5.5.

Computing the tip displacement with either of these methods requires estimating the yield

displacement, computing the moment-curvature response of the column cross section (i.e., φbase

and φy), and an expression for the plastic-hinge length. The following sections discuss each of

these parameters individually.

5.2 YIELD DISPLACEMENT

The calculated yield displacement (∆calc
y ) is typically computed in accordance to elastic theory as

∆calc
y =

FyL3

3(EI)e f f
(5.4)

where (EI)e f f is the effective stiffness of the cross section, which can be calculated with several

methods. Two methods are discussed in the following subsections.

5.2.1 Gross Section Properties

A simple approach for calculating (EI)e f f is to use the gross-section stiffness as follows.

(EI)e f f = EcIg (5.5)

where Ec is the modulus of elasticity of the concrete and Ig is the second moment of inertia of the

gross cross-sectional area (Ig = πD4

64 ).

Equations 5.4 and 5.5 provide a convenient means of predicting the yield displacement, but
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they neglect the effects of shear deformation, anchorage slip, and axial load (cracking). A factor

can be introduced to account for these shortcomings of this methodology.

∆calc
y =

1
αg

FyL3

3EIg
(5.6)

where αg is the stiffness modification ratio that is to be calibrated with experimental results. This

parameter is studied and calibrated in Section 6.2.

5.2.2 Section Secant Stiffness

Alternatively, (EI)e f f can also be taken as the secant stiffness ((EI)sec) of the column cross section.

The secant stiffness is the slope of the moment-curvature plot up to the yield moment, My.

(EI)e f f = (EI)sec =
My

φy
(5.7)

This method accounts for the cracking of the column cross section, but assumes that the column is

cracked over the entire height of the column.

Equations 5.4 and 5.7 provide a convenient means of predicting the yield displacement, but

they neglect the effects of shear deformation and anchorage slip. A factor is introduced to account

for these shortcomings of this methodology.

∆calc
y =

1
αsec

FyL3

3(EI)sec
(5.8)

where αsec is a stiffness modification ratio that is calibrated with the experimental data described

in Section 6.2.

5.2.3 Expected Trends in αg and αsec

The component of total deformation due to shear is dependent on the aspect ratio of the column,
L
D . Therefore, αg and αsec are expected to depend on the aspect ratio. The following calculations

are carried out to demonstrate how shear deformation varies with aspect ratio.
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The flexural component of the yield displacement (∆ f
y ) for a circular cantilever column (Ig =

πD4

64 ) can be calculated as

∆ f
y =

φyL2

3
=

MyL2

EcIg
=

MyL2

Ec
πD4

64

=
64L2My

3D4Ecπ
(5.9)

where L is the length of the column and φy is the yield curvature of the section. The component of

the yield displacement due to shear (∆v
y) can be calculated as

∆v
y =

4FyL
3GAG

=
4My

3GAG
=

4My

3GπD2

4

(5.10)

where G is the modulus of rigidity of the concrete, Fy is the lateral shear force, and AG is the gross

area of the section. The ratio of ∆v
y to ∆ f

y can be simplified to the following expression.

∆v
y

∆ f
y

=
Ec

4G
( L

D
)2 (5.11)

The ratio decreases with increasing aspect ratio, indicating that the fraction of deformation due to

shear decreases with increasing aspect ratio. Therefore, the stiffness modification ratios (αg and

αsec) are expected to increase with increasing aspect ratio.

The following calculations are carried out to study the component of total deformation due

to bond slip. The component of deflection due to bond slip can be approximated as follows.

∆b
y = θbL (5.12)

where: θb is base rotation of the column due to bond slip, which can be calculated as

θb
y =

(ue +u′e)
γD

(5.13)

where γ is the ratio of the core diameter (D′) to total column diameter (D), γ = D′

D . ue and u′e are

the vertical displacements of the tensile steel and compressive steel, which can be calculated as

follows (Section 3.2.1).

ue =
Ldεy

2
(5.14)
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u′e =
L′dε′y

2
(5.15)

where: Lp and L′p are the development lengths for the compressive and tensile steel, respectively.

εy is the tensile strain of the reinforcement, and ε′y is the strain in the compression reinforcement

when the tensile reinforcement yields, that is

ε′y = φyγD− εy (5.16)

The development lengths (Ld and L′d) of equations 5.14 and 5.15 can be calculated as follows.

Ld =
db fy

4τ
(5.17)

L′d =
db f ′y
4τ

(5.18)

where: τ is the bond stress (τ≈ 1.0
√

f ′c , f ′c in MPa), and db and fy are the diameter and yield stress

of the longitudinal reinforcement, respectively. The yield strain εy in a column can be approximated

as a function of yield curvature and column depth as follows (Priestley et al. 1996).

εy =
Dφy

λ
(5.19)

where: λ = 2.45 for spiral-reinforced columns and 2.14 for rectangular-reinforced columns. If

equations 5.13-5.19 are substituted into Equation 5.12 with the identities fy = Esεy and f ′y = Esε′y,

the following expression is obtained for displacement due to bond slip.

∆b
y =

(γλ(γλ−2)+2)DEsLdbφ2
y

8γλ2τ
(5.20)

The ratio of the component of yield displacement due to bond slip to that from flexural deformation

(Equation 5.9) can be calculated as follows.

∆b
y

∆ f
y

=
3(γλ(γλ−2)+2)

8γλ
db fy

τ L
(5.21a)

=
3(γλ(γλ−2)+2)

2γλ
Ld

L
(5.21b)

76



This ratio increases with an increase in fydb
τL ; therefore the fraction of total deformation due to

anchorage slip should increase with this parameter. αg and αsec are therefore expected to decrease

with increasing fydb
τL .

In addition to the expected trends discussed above, αg is expected to vary with varying axial-

load ratio ( P
Ag f ′c

) and longitudinal-reinforcement ratio (ρl). EcIg assumes that there is no cracking

in the section, and overestimates the section stiffness. Therefore, αg will be less than 1.0 to reduce

this stiffness. At higher axial loads, αg would not need to reduce EcIg as much because at high

axial loads, the neutral axis depth will be large, and there will be less cracking. Therefore αg is

expected to increase with an increase in axial load. Similarly, there will be less cracking with

higher longitudinal-reinforcement ratios, therefore al phag is expected to increase with increase in

ρl .

Table 5.1 summarizes the expected trends in the stiffness modification ratios.

Table 5.1 Expected trends in α

L
D

P
Ag f ′c

fydb
Lτ ρl

αg ↑ ↑ ↓ ↑
αsec ↑ - ↓ -

5.3 MOMENT-CURVATURE RESPONSE

For this study, the cross sections of the columns were modeled with fiber sections (Section 2.1).

With a fiber section, the column cross section is divided into small fibers in which each fiber is

assigned a particular stress-strain response depending on the material the fiber represents. The

fiber-section discretization strategies developed in Section 2.3 and the material models described

in Section 2.2 were used to model the moment-curvature response of the lumped-plasticity models.

5.4 PLASTIC-HINGE LENGTHS

Many models have been proposed to estimate the plastic-hinge length based on the column prop-

erties. Previous researchers (e.g., Priestley et al. (1996); Mattock (1967)) have proposed that the

plastic-hinge length is proportional to the column length, L, column depth, D, and the longitudinal
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reinforcement properties, as in the following equation:

Lp = ξ1L+ξ2D+ξ3 fydb (5.22)

where fy and db are the yield stress and bar diameter of the tension reinforcement, respectively. The

column length is included in Equation 5.22 to account for the moment gradient along the length of

the cantilever, and the column depth is included to account for the influence of shear on the size

of the plastic region. The properties of the longitudinal bars are included to account for additional

rotation at the plastic hinge resulting from anchorage bond slip.

Priestley et al. (1996) proposed an equation to calculate the plastic-hinge length in columns,

in which ξ1 = 0.08, ξ2 = 0, and ξ3 = 0.022 (fy in MPa) with an upper limit on Lp of 0.044 fydb.

Mattock (1967) proposed an equation to calculate the plastic-hinge length in beams, in which

ξ1 = 1
20 , ξ2 = 1

2 , and ξ3 = 0.0.

Equation 5.23 provides a reasonable estimate of column plastic-hinge length; however it can

be shown that the amount of deformation due to bond slip is expected to vary with fydb√
f ′c

and not

just fydb. Therefore, the following modification to Equation 5.22 is proposed.

Lp = ξ1L+ξ2D+ξ3
fydb√

f ′c
(5.23)

Equation 5.23 is used in this research to represent the length of plastic hinges. The unknown

parameters (ξ1, ξ2, and ξ3) are calibrated with experimental results in Chapter 6. Upon completion

of the calibration, the effect of using the general form of plastic-hinge length proposed by Equation

5.22 will be evaluated.

5.5 OPENSEES IMPLEMENTATION

The OpenSees implementation of the lumped-plasticity model was used in this report because

OpenSees is capable of modeling cyclic and bidirectional loading, and variable axial loads. For

this research, the lumped-plasticity integration scheme proposed by Scott and Fenves (2006) is

used within OpenSees. The current version of OpenSees (version 1.6.2.f) has three formulations

of lumped-plasticity models. The formulation discussed in Section 5.1 (Scott and Fenves 2006)

is used with the beamWithHinges3 command in OpenSees. This command takes as input the
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column’s fiber section, plastic-hinge length, and the properties of the elastic portion of the column

(i.e., E, I, and A).

The application of the stiffness modification ratios (αg and αsec) to the Scott and Fenves

(2006) formulation of the lumped-plasticity model is complex. With this formulation, the pre-

yield lateral stiffness of the column varies discretely along the length of the column. In the elastic

portion of the column, the stiffness is defined by the user-assigned section stiffness value (i.e.,

(EI)e f f ). In the plastic hinge, the pre-yield stiffness is determined from the moment-curvature

response of the fiber element assigned to the plastic hinge. In this region, the pre-yield section

stiffness will be close to (EI)sec. Because of the two stiffnesses, and because the pre-yield stiffness

of the plastic hinge is a product of moment-curvature analysis, the stiffness modification ratios

cannot be applied directly to modify the pre-yield response of the column. However, it is possible

to modify the elastic properties of the column ((EI)e f f ) in such a way that the yield displacements

calculated with this method are identical to the yield displacements calculated with equations 5.6

and 5.8. The following discusses this procedure.

Stiffness modification ratios were introduced in equations 5.6 and 5.8 to account for several

shortcomings of elastic bending theory . For convenience, a similar equation is given here. α in

this equation, could be αg or αsec depending on which (EI)e f f value is used.

∆α
y =

1
α

FyL3

3(EI)e f f
=

1
α

MyL2

3(EI)e f f
(5.24)

The yield displacement calculated with the Scott and Fenves (2006) formulation can be calculated

with Equation 5.2 as in the following equation:

∆OS
y =

My

(EI)e f f

(
L2

3
−LLp

)
+φyLLp (5.25)

In this equation, (EI)e f f is supplied by the user and φy is a product of the moment-curvature

analysis of the cross section assigned to the plastic hinge. A new stiffness modification ratio, (α̂)

is proposed to modify the user-supplied section stiffness properties as in the following equation.

∆OS α̂
y =

My

α̂(EI)e f f

(
L2

3
−LLp

)
+φyLLp (5.26)
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An expression for α̂ can be obtained by setting equations 5.24 and 5.26 equal to each other and

simplifying. The resulting equation is as follows.

α̂ =
α(L−3Lp)My

LMy−3α(EI)e f f Lpφy
(5.27)

This expression can be used for α = αg and (EI)e f f = EcIg, as well as for α = αsec and (EI)e f f =

(EI)sec. The expression for α̂sec can be simplified further by substituting the identities φy = My
(EI)sec

(see Equation 5.7) and (EI)e f f = (EI)sec into Equation 5.27.

α̂sec =
α(L−3Lp)
L−3αLp

(5.28)

5.6 SUMMARY

In this chapter, two formulations of the lumped-plasticity column-modeling strategy were pre-

sented, and key modeling parameters were identified for calibration with experimental results. The

following parameters were identified for calibration and are calibrated in Chapter 6.

Stiffness Modification Ratios, αg, αsec. The parameters that account for several shortcomings of

elastic theory at predicting yield displacement, ∆calc
y = ∆elastic

y
αg/sec

(Section 5.2).

Plastic-Hinge-Length Parameters, ξ1, ξ2, and ξ3. The parameters used in the plastic-hinge-length

equation; Lp = ξ1L+ξ2D+ξ3
fydb√

f ′c
(Section 5.4).
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6 Calibration of Lumped-Plasticity
Column Model

To accurately model the force-deformation response of reinforced concrete columns with the lumped-

plasticity modeling strategy, the modeling parameters identified in Chapter 5 were calibrated with

experimental results. The modeling parameters identified for calibration were:

Stiffness Modification Ratios, αg, αsec. The parameters that account for several shortcomings of

elastic theory at predicting yield displacement, ∆calc
y = ∆elastic

y
αg/sec

(Section 5.2).

Plastic-Hinge-Length Parameters, ξ1, ξ2, and ξ3. The parameters used in the plastic-hinge-length

equation: Lp = ξ1L+ξ2D+ξ3
fydb√

f ′c
(Section 5.4).

This chapter discusses the calibration of the stiffness modification ratios and presents the

results of this study. The optimization strategy used to calibrate the plastic-hinge-length equation

is then presented, and the results of the calibration are summarized. The results of a sensitivity

analysis are then presented to identify the effects of varying key parameters.

6.1 MEASURES OF ACCURACY

The parameters used in this chapter to measure the accuracy of the lumped-plasticity modeling

strategy are identical to the measures used for the distributed-plasticity model, with the exception

that the distributed-plasticity model accounted for the strain error Estrain. The measures are as

follows:
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Pushover Error (Epush). The accuracy of the force-displacement envelope was accounted for with

the pushover error, which is defined as

Epush =

√√√√∑n
i=1

(
Fi

meas−Fi
calc

)2

(max(Fmeas))2 n
(6.1)

where Fmeas and Fcalc are the measured and calculated forces at corresponding displacements

up to a drift ratio of 4%, and n is the number of datapoints in the envelope (n = 100 for this

study).

Stiffness Ratio (S.R.) is the ratio of measured stiffness to calculated stiffness Kmeas
Kcalc

, where Kmeas =
Fy

∆meas
y

and Kcalc = Fy
∆calc

y
. Fy is the smaller of the calculated lateral force at first first yield of the

tensile reinforcement and the lateral, effective force calculated at a concrete strain of 0.002.

∆meas
y and ∆calc

y are the measured and calculated displacements associated with Fy.

Moment Ratio (M.R) is the ratio of the maximum measured moment at or before 4% drift to the

calculated moment at or before 4% drift, Mmeas
max

Mcalc
max

.

Degradation Error Ratio (D.R.) is a parameter that captures the effectiveness of the model in

predicting column degradation.

D.R. =

((
F4%

calc−F3%
calc

)

F3%
calc

−
(
F4%

meas−F3%
meas

)

F3%
meas

)
∗100 (6.2)

A degradation error ratio close to zero means that the model accurately models degradation.

6.2 COLUMN STIFFNESS

The accuracy of Equation 5.4 at estimating column stiffness was studied by calculating the stiffness

ratio for 37 well-confined columns from the UW-PEER database (Section 1.3). Table 6.1 presents

the means, minimums, maximums, and coefficients of variation of the stiffness ratios calculated

using elastic theory (Equation 5.4) in combination with EcIg and (EI)sec.

Using EcIg in Equation 5.4 significantly overestimates the stiffness of the column, as ex-

pected. This method neglects the effects of axial-load ratio, shear deformation, and anchorage slip

on yield displacement. The mean value of the S.R. equals 0.39 with a coefficient of variation of

0.30. (EI)sec provides a better estimate of yield displacement because it accounts for the effects
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Table 6.1 Statistics of s.r.

mean cov min max
Kmeas

Kg
0.40 0.26 0.24 0.68

Kmeas
Ksec

0.80 0.22 0.51 1.14

of axial-load ratio and longitudinal-reinforcement ratio, but still overestimates the stiffness of the

column. The mean value of the S.R. equals 0.85 and the coefficient of variation is 0.20.

Because Equation 5.4 inaccurately predicts column stiffness using either effective stiffness

method, stiffness modification ratios (αg and αsec) were introduced to account for the effects of

axial-load ratio, longitudinal-reinforcement ratio, shear deformation, and anchorage slip. Expres-

sions for αg and αsec can be derived by setting equations 5.6 and 5.8 equal to the measured yield

displacement ∆meas
y , and solving for α as follows.

αg =
1

∆meas
y

FyL3

3EIg
=

∆g
y

∆meas
y

=
Kmeas

Kg
(6.3a)

αsec =
1

∆meas
y

FyL3

3(EI)sec
=

∆sec
y

∆meas
y

=
Kmeas

Ksec
(6.3b)

As seen in Equation 6.3, αg and αsec are equivalent to the stiffness ratios. The key statistics of

these parameters are reported in Table 6.1.

The mean values of αg and αsec could be used with equations 5.6 and 5.8 to calculate yield

displacement. This approach would adjust the mean values of the stiffness ratios, but would not

decrease the coefficients of variation of the stiffness ratios. In order to provide a better estimate of

yield displacement, the expected trends in αg and αsec with respect to aspect ratio, axial-load ratio,

and fydb
Lτ are considered (Table 5.1).

To verify the expected trends, αg is plotted versus axial-load ratio, aspect ratio, longitudinal-

reinforcement ratio, and fydb
Lτ in Figure 6.1. The least-squares-best-fit lines are shown in the figures,

and the R2 values are reported. As expected, αg increases with increasing axial-load ratio, aspect

ratio, and longitudinal-reinforcement ratio, and decreases with increasing fydb
Lτ .

Similarly, αsec is plotted versus the key properties to verify the parameters sensitivity to the

properties (Figure 6.2). As expected, αsec is not significantly affected by increasing axial load
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Fig. 6.1 αg versus key column properties

and longitudinal-reinforcement ratio because (EI)sec already accounts for the effects of cracking.

However, as expected, αsec increases with increasing aspect ratio and decreases with increasing
fydb
Lτ .

Based on these trends, simple expressions were developed for αg and αsec as functions of

aspect ratio, axial-load ratio, longitudinal-reinforcement ratio, and fydb
Lτ . The general form of the

expressions were as follows:

αcalc
g/sec = λ1 +λ2

L
D

+λ3
P

Ag f ′c
+λ4

fydb

Lτ
+λ5ρl ≤ 1.0 (6.4)

The parameters λ1-λ5 were calibrated for both cross-section stiffness methods using the 37
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columns from the UW-PEER database. The parameters were calibrated by minimizing the coeffi-

cients of variation of the stiffness ratios calculated with equations 5.6, 5.8, and 6.4. Additionally,

the mean value of the stiffness ratios were constrained to 1.0. For αsec, λ3 and λ5 were fixed to 0.0

because αsec is not affected by axial-load ratio and longitudinal-reinforcement ratio. The resulting

equations for αcalc
g and αcalc

sec follow (equations 6.5 and 6.6), and the key statistics of the stiffness

ratios calculated using these expressions are reported in Table 6.2.

αcalc
g = 0.35+0.01

L
D

+1.05
P

Ag f ′c
−0.20

fydb

Lτ
+0.1ρl ≤ 1.0 (6.5)

αcalc
sec = 0.85+0.03

L
D
−0.3

fydb

Lτ
≤ 1.0 (6.6)
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Table 6.2 Statistics of s.r. using α expressions

Eqn # mean cov min max

Kmeas
Kg

6.5 1.00 0.17 0.65 1.43
6.7 1.00 0.19 0.70 1.49

Kmeas
Ksec

6.6 1.00 0.14 0.77 1.30
6.8 1.00 0.16 0.76 1.38

As seen in Table 6.2, equations 6.5 and 6.6 increase the accuracy of the yield displacement calcu-

lation. The mean values of the stiffness ratios are adjusted to 1.0, and the coefficients of variation

have been reduced from 0.26 to 0.17 for Kmeas
Kg

, and from 0.22 to 0.14 for Kmeas
Ksec

.

Simpler equations can be obtained by considering the correlation between aspect ratio and
fydb
Lτ . In Figure 6.2, L

D is plotted versus fydb
Lτ to demonstrate the correlation. Since these parameters

have such a strong correlation, little is gained by including both effects in equations 6.5 and 6.6.

The optimizations of αcalc
g and αcalc

sec were rerun using equation 6.4 with λ4 = 0.0. The resulting

equations follow (6.7 and 6.8), and the key statistics of using these simplified equations are reported

in Table 6.2.

αcalc
g = 0.15+0.03

L
D

+0.95
P

Ag f ′c
+0.08ρl ≤ 1.0 (6.7)

αcalc
sec = 0.35+0.1

L
D
≤ 1.0 (6.8)

Equations 6.7 and 6.8 are simpler than equations 6.5 and 6.6, and little accuracy is lost using these

equations. Using the simplified equations results in only a 0.02 increase in the coefficients of

variation of Kmeas
Kg

and Kmeas
Ksec

.
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6.3 CALIBRATION OF PLASTIC-HINGE LENGTH

The general form of an expression to estimate plastic-hinge length was proposed in Section 5.4

(Equation 5.23). The expression is given again here with a limit of L
4 . The limit on the plastic-hinge

length is from the lumped-plasticity model formulation proposed by Scott and Fenves (2006).

Lp = ξ1L+ξ2D+ξ3
fydb√

f ′c
<=

L
4

(6.9)

The parameters ξ1, ξ2, and ξ3 are calibrated with experimental results in this section.

6.3.1 Optimization Scheme

The optimization was performed by running pushover analyses for a broad range of calibration

parameters (ξ1, ξ2, ξ3) and then selecting the scheme in which the total error (Etotal , Equation 6.10)

was minimized and the additional modeling accuracy terms (e.g., stiffness ratio) were reasonable.

The range of values used for each calibration parameter are shown in Table 6.3, along with the step

size between consecutive values within the range. The analysis consisted of every combination of

the optimization parameters, which amounted to ∼5,000 combinations.

The optimization scheme used for this modeling strategy couples the accuracy of force-

deformation predictions with the accuracy damage progression predictions. The total error, Etotal ,
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Table 6.3 Calibration parameter ranges for plastic-hinge length

parameter ξ1 ξ2 ξ3

min 0 0 0
max 0.2 0.8 0.15
step size 0.0125 0.0500 0.01

is defined as

Etotal =
mean

(
Epush

)

2
+

κ1

4
cov

(
∆meas

bb
∆calc

bb

)
+

κ2

4
cov

(
∆meas

sp

∆calc
sp

)
(6.10)

where: ∆meas
sp is the observed displacement at the onset of cover spalling, and ∆calc

sp is the calculated

displacement associated with the mean value of the maximum compressive strain in the concrete

at cover spalling, εmean
sp . ∆meas

bb is the observed displacement at the onset of bar buckling, and

∆calc
bb is the calculated displacement associated with the calculated tensile strain in the longitudinal

reinforcement at the onset of bar buckling, εcalc
bb . This buckling strain is to be calculated as a

function of the effective confinement ratio (ρe f f ) to account for the effect of spiral reinforcement

on bar buckling, as in the following equation (Berry and Eberhard 2005).

εcalc
bb = χ1 +χ2ρe f f ≤ 0.15 (6.11)

where: ρe f f = ρs fys
f ′c

, and χ1 and χ2 are to be calibrated by minimizing the coefficient of variation

of εbb
εcalc

bb
. εbb is the calculated tensile strain at the onset of bar buckling associated with the observed

displacement of bar buckling.

The κ terms in Equation 6.10 are included to ensure that the error terms are of similar mag-

nitude.

κ1 =
min

(
mean

(
Epush

))

min
(

cov
(

∆meas
bb

∆calc
bb

)) (6.12)

κ2 =
min

(
mean

(
Epush

))

min
(

cov
(∆meas

sp
∆calc

sp

)) (6.13)

In equations 6.10, 6.12, and 6.13 mean entails the average value for the 37 bridge columns, cov is

the coefficient of variation of for the columns in which the particular damage state is available (i.e.,

33 columns for bar buckling and 31 columns for spalling), and min entails the minimum value out
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of the total number of combinations.

This optimization scheme did not account for the accuracy of the local deformations in the

same manner as the optimization scheme used for the distributed-plasticity modeling strategy. This

is because the local deformations in the plastic hinge are average values over the height of the

plastic hinge. These average values do not correlate to available measured strain and rotation data.

OpenSees was used to model the the columns using the lumped-plasticity formulation pro-

posed by Scott and Fenves (2006) (Section 5.1). The plastic hinges in this study were assigned

fiber sections with the uniform-radial section discretization scheme described in Section 2.3. The

steel was modeled with the Giufre-Menegotto-Pinto model described in Section 2.2.1. The strain-

hardening ratio, b was set to 0.01. The Popovics curve with model parameters proposed by Mander

et al. (1988) was used to model both the confined and unconfined concrete (Section 2.2.2). Addi-

tionally, the section stiffnesses of the elastic portion of the columns were calculated as the secant

stiffnesses multiplied by the stiffness modification ratios (i.e., (EI)e f f = α̂sec(EI)sec, Section 6.2).

αsec was calculated with Equation 6.8, and α̂sec was then calculated with Equation 5.28.

6.3.2 Optimization Results

The optimization study described in the previous section was performed for 37 columns from

the UW-PEER database (Section 4.1). The top 20 combinations from the optimization study are

reported in Table 6.4. It should be noted that the stiffness ratios for all plastic-hinge lengths were

1.0 because the stiffness modification ratio α̂sec was used in this study to adjust the elastic stiffness

properties of the column ((EI)e f f ).

The combination that minimized Etotal was ξ1 = 0.0375, ξ2 = 0, and ξ3 = 0.12 (Etotal =

8.05). However, for simplicity, the combination in which ξ1 = 0.05, ξ2 = 0, and ξ3 = 0.1 (Etotal =

8.09) was chosen as the optimal solution (combination #13). In Table 6.5, the chosen optimal

solution is compared to the overall optimal solution, and the plastic-hinge models proposed by

Priestley et al. (1996), Mattock (1967), and Corley (1966).
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As seen in the table, the measures of accuracy of the selected optimal solution are nearly

identical to those of the overall optimal solution. Additionally, the selected optimal solution is

more accurate than that of Priestley et al. (1996) and Corley (1966) for all measures of modeling

accuracy, and is more accurate than Mattock (1967) for all measures of modeling accuracy except

cover-spalling predictions.

6.4 MODEL EVALUATION

The proposed lumped-plasticity column-modeling strategy (including the selected optimal plastic-

hinge length) is evaluated in this section. The measures of modeling accuracy are plotted versus

key column properties to determine if the accuracy of the model is sensitive to these properties. In

figure 6.4, Epush is plotted versus aspect ratio (L/D), longitudinal-reinforcement ratio (ρl), axial-

load ratio (P/ f ′cAg), effective confinement ratio, concrete compressive strength, and the ratio of

spiral spacing to longitudinal bar diameter (s/db). Included in the figure are the R2 values, which

indicate the magnitude of correlation between Epush and the property. As seen in the figure, there

are no significant trends in the data.

Similarly, the stiffness ratio is plotted versus the key column properties in Figure 6.5. Slight

trends can be observed in S.R. versus ρl , f ′c, and s/db, with R2 values of 0.12, 0.11, and 0.15

respectively.

The maximum moment ratio (M.R.) is plotted versus the key properties in Figure 6.6. As

seen in the figure, only one trend can be observed. The moment ratio decreases with an increase

in effective-confinement ratio. The degradation ratio (D.R.) is plotted versus the key properties in

Figure 6.7. There are no significant trends in the data.

The damage predictions from this modeling strategy will be studied later in this report.

Trends in the predictions will be studied and the estimates will be compared to the predictions

of other methods.
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93



0 5 10
0

0.5

1

1.5

2
R2 = 0.0036

L/D

S
.R
.

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2
R2 = 0.12

ρ
l

S
.R
.

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2
R2 = 0.0023

P/f
c
A
g

S
.R
.

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2
R2 = 1.1e−006

ρ
eff

S
.R
.

0 20 40 60 80
0

0.5

1

1.5

2
R2 = 0.11

f
c

S
.R
.

0 1 2 3 4 5
0

0.5

1

1.5

2
R2 = 0.15

S/d
b

S
.R
.

Fig. 6.5 Effect of key properties on stiffness ratio

94



0 5 10
0

0.5

1

1.5

2

R2 = 0.0035

L/D

M
.R
.

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

R2 = 0.0038

ρ
l

M
.R
.

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

R2 = 0.0047

P/f
c
A
g

M
.R
.

0 0.1 0.2
0

0.5

1

1.5

2

R2 = 0.16

ρ
eff

M
.R
.

0 20 40 60
0

0.5

1

1.5

2

R2 = 0.027

f
c

M
.R
.

0 1 2 3 4 5
0

0.5

1

1.5

2

R2 = 0.042

S/d
b

M
.R
.

Fig. 6.6 Effect of key properties on moment ratio

95



0 5 10
−10

−5

0

5

10

R2 = 0.011

L/D

D
.R

0 0.01 0.02 0.03 0.04
−10

−5

0

5

10

R2 = 0.029

ρ
l

D
.R

0 0.1 0.2 0.3 0.4
−10

−5

0

5

10

R2 = 0.042

P/f
c
A
g

D
.R

0 0.1 0.2
−10

−5

0

5

10

R2 = 0.058

ρ
eff

D
.R

0 20 40 60
−10

−5

0

5

10

R2 = 0.022

f
c

D
.R

0 1 2 3 4 5
−10

−5

0

5

10

R2 = 0.083

S/d
b

D
.R

Fig. 6.7 Effect of key properties on degradation error ratio

96



6.5 SUMMARY

Elastic beam bending theory (Equation 5.4) with EcIg or (EI)sec alone inaccurately predicts column

stiffness. The mean values of the stiffness ratios for 37 columns from the UW-PEER database were

0.39 using Equation 5.4 with EcIg, and 0.85 with (EI)sec. The coefficients of variation were 0.30

and 0.20, respectively. Elastic theory neglects the effects of shear deformation and bond slip, and

the use of EcIg will neglect the effects of axial load. A modification to traditional elastic theory is

proposed in which stiffness modification ratios (α and αsec) are included in the calculations (equa-

tions 5.6 and 5.8). Using the mean values of αg (0.39) and αsec (0.85) in these equations, adjusts

the mean values of the stiffness ratios to 1.0, but does not reduce the coefficients of variation of the

stiffness ratios. By accounting for the expected trends in αg and αsec, more accurate predictions

of column stiffness can be obtained (equations 6.7 and 6.8). The coefficient of variation of the

stiffness ratios can be reduced from 0.30 to 0.19 using αcalc
g , and from 0.20 to 0.16 using αcalc

sec .

The plastic-hinge-length proposed in Section 5.4 was calibrated in this chapter. The calibra-

tion considered the accuracy of the pushover analyses as well as the accuracy of damage predic-

tions, namely bar buckling and cover spalling. The resulting plastic-hinge-length equation was

Lp = 0.05L+0.1
fydb√

f ′c
≤ L

4
(6.14)

The mean compressive strain in the cover at the onset of cover spalling was 0.008.

εsp = 0.008 (6.15)

The strain at the onset of bar buckling can be predicted with the following equation.

εcalc
bb = 0.046+0.25ρe f f ≤ 0.15 (6.16)

where: L is the column length, fy and db are the yield stress and bar diameter of the longitudinal

reinforcement, f ′c is the concrete compressive strength, ρe f f = ρs fys
f ′c

, ρs is the spiral-reinforcement

ratio, and fys is the yield stress of the spiral reinforcement.
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7 Evaluation of Cyclic Response

The calibration of the proposed modeling strategies (chapters 4 and 6) considered only the envelope

response of the columns. The full cyclic response must be considered for earthquake engineering

applications. In this chapter, the cyclic response of the proposed modeling strategies are evaluated

with experimental results from the UW-PEER database.

7.1 CYCLIC RESPONSE OF MATERIALS

The cyclic response of the proposed fiber-modeling strategies depend on the cyclic response of

the material constitutive models. In this section, the cyclic responses of the concrete and steel are

presented.

The cyclic response of the steel was defined by the Giuffre-Menegotto-Pinto steel model

(Taucer et al. 1991), which accounts for the Bauschinger effect, but does not account for strength

and stiffness degradation due to bar buckling and cycling. The cyclic response of the steel is

illustrated in Figure 7.1.

The concrete model’s stress-strain envelope is discussed in Section 2.2. As discussed in

that section, the envelope response of the concrete includes the Popovic’s curve in compression

and a linear stress-strain response in tension until rupture. The cyclic response of the concrete

in compression was defined by a model proposed by Karsan and Jirsa and modified by Professor

Filippou at UC Berkeley (Mazzoni et al. 2006). As part of this report, this model was modified

to incorporate tension. Upon unloading from tension, the stress-strain relationship passes through

the origin. The cyclic responses of the concrete in both tension and compression are illustrated in

Figure 7.2(a). A detailed view of the cyclic response of the concrete in tension is shown in Fig-
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Fig. 7.2 Cyclic response of concrete

7.2 MEASURES OF ACCURACY

The cyclic response of the proposed modeling strategies will be evaluated with the following mea-

sures of model accuracy.

Normalized Hysteretic Force Error, E f orce. The error between measured and calculated forces
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at corresponding displacements, as in the following equation.

E f orce =

√√√√∑n
i=1

(
Fi

meas−Fi
calc

)2

(max(Fmeas))2 n
(7.1)

where Fmeas and Fcalc are the measured and calculated lateral forces at corresponding dis-

placements, and n is the number of datapoints in the history.

Normalized Hysteretic Energy Error, Eenergy. The error between measured and calculated hys-

teretic energies, Ωmeas and Ωcalc.

Eenergy =
Ωmeas−Ωcalc

Ωmeas
(7.2)

Hysteretic energy is the area within the hysteresis loops and is calculated with the trapezoid

numerical integration scheme as follows.

Ω =
n−1

∑
i=1

Fi+1−Fi

2
(∆i+1−∆i) (7.3)

where: Fi and ∆i are the lateral force and displacement associated with the ith step, and n

is the total number of datapoints in the history. The closer to 0, the better the fit. The sign

of Eenergy is important. If Eenergy < 0, the calculated response overestimates the amount of

energy dissipated in the test, and in turn, if Eenergy > 0 the amount of dissipated energy is

underestimated.

7.3 EVALUATION OF DISTRIBUTED-PLASTICITY
COLUMN-MODELING STRATEGY

7.3.1 Model Description

The total hysteretic response of the distributed-plasticity modeling strategy depends on the hys-

teretic responses of its various components (flexural, bond slip, shear). For this study, the shear

component of the total deformation was assumed to remain elastic (linear). The hysteretic response

of the flexural component (force-based beam-column element) relied on the cyclic response of the

fiber section, which in turn depended on the material constitutive models (Section 7.1).
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The hysteretic response of the zero-length bond-slip section also relied on the cyclic response

of its material components. The cyclic responses of the concrete and anchorage steel were the same

as those used in the flexural component of the model, with the exception that the relationships for

the bond section were stress-displacement relationships and not stress-strain relationships. The

details of the stress-displacement envelopes used for the cyclic response of the bond section are

discussed in Section 3.2.

7.3.2 Evaluation with Lehman and Moehle (2000) Dataset

The ability of the proposed distributed-plasticity modeling strategy (Chapter 4) to model the cyclic

response of columns was first evaluated by comparing the measured and calculated responses of the

well-confined column tests performed by Lehman and Moehle (2000) (Section 4.1). Key statistics

of this evaluation are provided in Table 7.1.

Table 7.1 Cyclic response statistics for distributed-plasticity model

Lehman Subset Bridge Columns
E f orce abs(Eenergy) Eenergy E f orce abs(Eenergy) Eenergy

mean (%) 13.44 22.23 -19.09 16.13 26.02 -23.69
min (%) 7.69 3.11 -57.63 6.63 1.34 -109.97
max (%) 20.16 57.63 12.56 44.71 109.97 13.36
n 8 8 8 37 37 37

The measured and calculated force-deformation responses for the 8 columns tests in this

dataset are shown in Figure 7.3. As seen in the figure, the calculated response accurately models

column behavior at lower ductilities and low cycles. However, at larger deformations and increased

cycling, the calculated response fails to capture the effect of column softening. In the standard

implementation there is no parameter to account for this degradation. The influence of degradation

is illustrated further in Figure 7.4. In this figure, the percentage of the total force error (E f orce)

attributed to cycles at various ductilities is plotted for the eight columns in the dataset. As seen

in the figure, most of the error is attributed to the cycles beyond a ductility of 7. The total error

could be significantly reduced by adding a modeling component that accounts for degradation due

to cycling at high levels of ductility.
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Fig. 7.3 Force-deformation responses for Lehman and Moehle dataset using
distributed-plasticity column model and Giuffre-Menegotto-Pinto steel model
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7.3.3 Evaluation with Bridge Column Dataset

The ability of the proposed distributed-plasticity (Chapter 4) modeling strategy to model the cyclic

response of columns was evaluated by comparing the measured and calculated responses of the

bridge columns discussed in Section 1.3. The measures of model accuracy used in this evaluation

are described in Section 7.2. Key statistics of this evaluation are provided in Table 7.1. The

measured and calculated force-deformation histories for the the column tests with the minimum

and maximum E f orce values are provided in Figure 7.5.

To evaluate the effectiveness of the distributed-plasticity modeling strategy further, the error

values (E f orce and Eenergy) were plotted versus maximum displacement ductility in Figure 7.6. Six

outliers can be observed in the figure, and are highlighted by using a filled-in symbol. The outliers

have E f orce values greater than 25%, and are all from the same test series conducted by Cheok

and Stone (1986). The force-displacement response of one of the outliers is presented in Figure

7.5. These column tests were subjected to cycling at high levels of ductility, resulting in significant

strength and stiffness degradation. As discussed earlier, the proposed modeling strategy does not

capture this effect.
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Fig. 7.5 Force-deformation histories for column tests with minimum and maximum E f orce
values using distributed-plasticity model

The accuracy measures were plotted versus key column properties to determine the influence

of these parameters on model accuracy (figures 7.7 and 7.8). As seen in the figures, E f orce appears

to increase with an increase in ρe f f and decrease with an increase in f ′c. The opposite trends

are observed in the Eenergy terms. However, these trends are governed by the outliers and are

significantly less pronounced when the outliers are removed.

7.4 EVALUATION OF LUMPED-PLASTICITY COLUMN-MODELING STRATEGY

7.4.1 Model Description

The total hysteretic response of the lumped-plasticity modeling strategy (Chapter 6) depends on the

cyclic response of the fiber section assigned to the plastic hinge. The response of the fiber section

depends on the cyclic response of the material models (i.e., Giuffre-Menegotto-Pinto for steel, and

Karsan and Jirsa for concrete) described in Section 7.1. The proposed lumped-plasticity column-

modeling strategy does not include a zero-length bond-slip section or an added shear-deformation

component; therefore the entire cyclic response of the column depends on the cyclic response of

the material constitutive models.
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Fig. 7.6 Effect of maximum ductility on E f orce and Eenergy for distributed-plasticity model

7.4.2 Evaluation with Lehman and Moehle (2000) Dataset

The ability of the proposed lumped-plasticity modeling strategy to model the cyclic response of

columns was first evaluated by comparing the measured and calculated responses of the well-

confined column tests performed by Lehman and Moehle (2000) (Section 4.1). Key statistics of

this evaluation are provided in Table 7.2.

Table 7.2 Cyclic response statistics for lumped-plasticity model

Lehman Subset Bridge Columns
E f orce abs(Eenergy) Eenergy E f orce abs(Eenergy) Eenergy

mean (%) 13.17 21.36 -18.34 15.66 24.34 -21.37
min (%) 7.52 3.40 -50.26 6.47 0.42 -114.85
max (%) 20.11 50.26 8.68 46.05 114.85 20.14
n 8 8 8 37 37 37
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Fig. 7.7 Effect of key column properties on E f orce using distributed-plasticity model
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The measured and calculated force-deformation responses for the 8 columns tests in this

dataset are shown in Figure 7.9. Similar to the distributed-plasticity modeling strategy, the calcu-

lated response accurately models column behavior at lower ductilities and low cycles. However,

at larger deformations and increased cycling, the calculated response fails to capture the effect

of column softening. In the standard implementation there is no parameter to account for this

degradation.

The model inaccuracy is illustrated further in Figure 7.10. In this figure, the percentage of

the total force error (E f orce) attributed to displacement cycles at various ductilities is plotted for the

eight columns in the dataset. As seen in the figure, for all but one of the columns, most of Etotal is

attributed to the cycles beyond a ductility of 7. This suggests that the total error could be reduced

if a modeling component was added that accounts for degradation due to cycling at high levels of

ductility. The outlying column test (No. 407) did not degrade significantly, so the majority of the

error was associated with initial cycles because the initial stiffness of this column is not accurately

modeled.
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Fig. 7.9 Force-deformation responses for Lehman and Moehle dataset using
lumped-plasticity column model and Giuffre-Menegotto-Pinto steel model
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7.4.3 Evaluation with Bridge Column Dataset

The ability of the proposed lumped-plasticity modeling strategy (Chapter 6) to model the cyclic

response of columns was evaluated by comparing the measured and calculated responses of the

bridge column dataset discussed in Section 1.3. Key statistics of this evaluation are provided in

Table 7.2. The measured and calculated force-deformation histories for the the columns tests with

the minimum and maximum E f orce values are provided in Figure 7.11.

To evaluate the effectiveness of the lumped-plasticity modeling strategy further, the error

values (E f orce and Eenergy) were plotted versus maximum displacement ductility in Figure 7.12.

Six outliers can be observed in the figure, and are highlighted by using a filled-in symbol. The

outliers have E f orce values greater than 25%, and are all from the same test series conducted by

Cheok and Stone (1986). The force-displacement response of one of the outliers is presented in

Figure 7.11. These column tests were subjected to cycling at high levels of ductility, resulting in

significant strength and stiffness degradation. As discussed earlier, the proposed modeling strategy

does not capture this effect.
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Fig. 7.11 Force-deformation histories for column tests with min and max E f orce values using
lumped-plasticity model

The accuracy measures were plotted versus key column properties to determine the influence

of these parameters on model accuracy (figures 7.13 and 7.14). As seen in the figures, several trends

can be observed. E f orce appears to increase with an increase in ρe f f and decrease with an increase

in f ′c. The opposite trends are observed in the Eenergy terms. However, these trends are governed

by the outliers and are significantly less pronounced when the outliers are removed.

7.5 SUMMARY

The cyclic response of the proposed column-modeling strategies was considered in this chapter.

The cyclic responses of the materials were presented first because the cyclic responses of the col-

umn models are governed by the cyclic responses of the material constitutive models. The cyclic

response of the steel was modeled according to Giuffre-Menegotto-Pinto (Taucer et al. 1991), and

the cyclic response of the compressive concrete was modeled according Karsan and Jirsa. These

constitutive models do not model degradation due to repeated deformations at high ductility, and

this is reflected in the accuracy of the column-modeling strategies at larger deformations. Modifi-

cations to the standard cyclic response of the steel are considered in Chapter 8.

The cyclic responses of the proposed column-modeling strategies were then evaluated by

comparing the measured and calculated responses of the columns in the bridge column dataset
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Fig. 7.12 Effect of maximum ductility on cyclic accuracy for lumped-plasticity model

(Section 1.3). Similar accuracy can be obtained using either of the distributed-plasticity or lumped-

plasticity column-modeling strategies with standard cyclic material models. The mean values of

the force errors (E f orce) were 16.1% and 15.7% for the distributed-plasticity and lumped-plasticity

models, respectively. The mean values of the energy errors (Eenergy) were -23.7% and -19.9% for

the distributed-plasticity and lumped-plasticity models, respectively.
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8 Improved Cyclic Material Models

The cyclic responses of the fiber-model column-modeling strategies developed in this report de-

pend on the cyclic responses of the material models. The proposed modeling strategies with stan-

dard cyclic material models (Karsan and Jirsa concrete, and Giuffre-Menegotto-Pinto steel) were

evaluated in Chapter 7, and insufficiencies were identified. The cyclic response of the Giuffre-

Menegotto-Pinto steel does not model degradation due to bar fracture and cycling, while the Karsan

and Jirsa concrete model does not model imperfect crack closure.

In this chapter, a new steel model proposed by Mohle and Kunnath (2006) will be calibrated

and evaluated. The Karsan and Jirsa concrete model will be modified to model imperfect crack

closure, and a parametric study will be carried out to demonstrate the effects of this modification.

8.1 CALIBRATION OF MOHLE AND KUNNATH (2006) STEEL MODEL

To enhance the calculated cyclic response of the proposed modeling strategies, a more complex

steel constitutive model that accounts for cyclic degradation (Mohle and Kunnath 2006) was im-

plemented. In this section, the cyclic response of the Mohle and Kunnath (2006) steel model is

demonstrated, and key cyclic modeling parameters are identified and calibrated. The response of

the Mohle and Kunnath (2006) model depends on the calculated plastic-strain history of the bar,

and the strains calculated with the distributed-plasticity strategy are inaccurate in columns with

perfectly-plastic or degrading section behavior (Section 3.1.1). Therefore, the calibration and eval-

uation of this model was only carried out using the lumped-plasticity modeling strategy.
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8.1.1 Cyclic Response of Model

The Mohle and Kunnath (2006) steel constitutive model is based on the steel model proposed by

Chang and Mander (1994). The model can be used to account for isotropic hardening, diminishing

yield plateau, the Bauschinger effect, degrading strength and stiffness due to bar buckling, and

degrading strength and stiffness due to cycling. Within the model, bar buckling can be modeled

according to models proposed by Dhakal and Maekawa (2002), or Gomes and Appleton (1997).

The degradation of strength and stiffness due to cycling was calculated according to the Coffin and

Manson fatigue model.

Because of numerical errors in the current implementation of the steel model in OpenSees

(v.1.7.0), the isotropic hardening component and bar-buckling components were neglected. How-

ever, the Bauschinger effect and the degradation of the steel due to cycling were modeled. The

Bauschinger effect was modeled using the model parameters suggested by Mohle and Kunnath

(2006).

The Mohle and Kunnath (2006) steel model uses a cyclic fatigue model proposed by Coffin

and Manson to model the effects of cycling on bar fracture. According to the Coffin and Manson

theory, a bar is assumed to fracture when the damage factor D reaches a value of 1.0. The damage

factor D is defined below.

D = ∑
(

εp

Cf

) 1
α

(8.1)

where: the half-cycle plastic-strain is defined as

εp = εt −
σt

E
(8.2)

εt and σt are the total change in half-cycle strain and stress as illustrated in Figure 8.1(a). Cf and α

are factors used to relate the number of half cycles till fracture to εp. This relationship is illustrated

in Figure 8.1(b).

In addition to fracture fatigue, the Mohle and Kunnath (2006) model accounts for loss in

strength due to cumulative damage. This degradation is controlled by the degradation parameter,

φSR, as illustrated in Figure 8.1(c). This parameter is defined in the following equation, where Cd
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Fig. 8.1 Coffin and Manson parameters (based on Mohle and Kunnath, 2006)

is a factor that is calibrated with experimental results.

φSR = ∑
(

εp

Cd

) 1
α

(8.3)

The key modeling parameters identified in the previous discussion are presented below, and

the effects of these parameters are demonstrated in Figure 8.2.

Damage Strain Range Constant, α is used to relate damage from one strain range to an equiv-

alent damage at another strain range. This parameter is obtained from the calibration with

material tests, and is usually constant for a material type. For this research the value proposed

by Mohle and Kunnath (2006) is used, α = 0.506.

Ductility Constant, Cf adjusts the number of cycles to bar failure. The effect of this parameter
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Fig. 8.2 Effect of Coffin and Manson parameters on cyclic response of steel

is demonstrated by comparing figures 8.2(a) with 8.2(c), and 8.2(b) with 8.2(d). A higher

value for Cf results in a larger number of cycles to failure.

Strength Reduction Constant, Cd controls the amount of degradation per cycle. The effect of

this parameter is demonstrated by comparing figures 8.2(a) with 8.2(b), and 8.2(c) with

8.2(d). A higher Cd value will result in a lower reduction of strength for each cycle.

8.1.2 Optimization Strategy and Results

The Mohle and Kunnath (2006) steel model assumes that bar fracture occurs when the damage

index, D (Equation 8.1) reaches a value of 1.0. The bar-fracture component of the Mohle and
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Kunnath (2006) steel model was calibrated with a subset of 20 columns from the bridge column

dataset in which bar fractures were reported. Cf was calibrated with this dataset by (1) calculating

the cyclic force-deformation responses of the 20 columns in the dataset for Cd = ∞ and a given Cf

value, (2) calculating the mean value of the damage indices at the observed displacements at the

onset of bar fracture, (3) adjusting Cf accordingly and repeating procedure until the mean value of

the damage indices at the onset of bar fracture is 1.0. This procedure resulted in an optimal value

of Cf = 0.255. This value is nearly identical to the value recommended by Mohle and Kunnath

(2006), Cf = 0.26.

The strength reduction constant (Cd) was calibrated with the 37 column tests in the bridge

column dataset by minimizing the mean value of the force error term E f orce with Cf = 0.26. This

procedure resulted in an optimal value of Cd = 0.45.

Key accuracy statistics of the lumped-plasticity modeling strategy with the optimized Mohle

and Kunnath (2006) model, are provided in Table 8.1 for the 8 column tests performed by Lehman

and Moehle (2000), and for the 37 bridge columns. For illustration, the measured and calculated

cyclic force-deformation responses of the 8 columns are shown in Figure 8.3. The accuracy of the

lumped-plasticity column-modeling strategy using the Mohle and Kunnath (2006) steel model is

compared to the accuracy using the standard steel model in the summary of this chapter (Section

8.3).

Table 8.1 Cyclic response statistics (Kunnath steel with lumped-plasticity model)

Lehman Subset Bridge Columns
E f orce abs(Eenergy) Eenergy E f orce abs(Eenergy) Eenergy

mean (%) 11.06 14.75 -7.42 11.98 12.88 -9.34
min (%) 7.37 0.32 -33.84 5.15 0.14 -69.68
max (%) 16.24 33.84 24.75 29.45 69.68 24.75
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Fig. 8.3 Force-deformation response, Kunnath steel model
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8.2 IMPERFECT CRACK CLOSURE

Tension cracks in concrete can become partially filled with small particles of concrete sediments

and shear deformations in the column may result in misaligned cracks, causing some load to be

transferred across the cracks before they fully close. The standard concrete model developed as

part of this project (Popovic’s curve with Mander constants, and Karsan and Jirsa cyclic properties)

does not account for this phenomenon. The standard concrete model was modified to account for

this increase in strength and stiffness. The component of the model that accounts for the early

increase in strength is based on the model proposed by Stanton (1979).

8.2.1 Modified Concrete Model

The stress-strain response of the modified concrete model is illustrated in Figure 8.4, along with

the strain history used for the demonstration, and the resulting stiffness history. This response is

defined by the following rules.

1. The cyclic stress-strain curves in compression are contained within an envelope defined by

the Popovic’s curve. The concrete is assumed to have tension strength with exponentially

decreasing strength beyond ultimate tensile stress. This envelope response is described in

Section 2.2.2.

2. The unloading and reloading response of the concrete in tension is not modified from the

standard implementation. This response is defined in Section 7.1.

3. The unloading and reloading response of the concrete in compression is governed by stiff-

nesses Eu and Er, and strains ε1, ε2, ε3, and ε4. Each of these is illustrated in Figure 8.4(a),

and described below.

· Eu is the unloading stiffness defined by the Karsan and Jirsa concrete model.

· Er is the reloading stiffness. This value is calculated such that reloading follows a

straight line from the reloading strain to (ε1, f1). This stiffness can be calculated as

follows.

Er =
f1

ε1− ε4
(8.4)
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· ε1 and f1 are the strain and stress at which the unloading curve departs from the enve-

lope curve.

· ε2 is the strain at which the stress becomes zero.

· ε3 is the maximum strain reached during the unload-reload cycle.

· ε4 is the strain at which reloading starts.

Opening and closing of cracks both occur at zero stress. When strains exceed ε2, cracks are

assumed to open. With perfect crack closure, they would close again when the strain returned

to ε2. However, with imperfect crack closure, compression would begin to be transmitted at

a lower strain, ε4. This reloading stress is calculated as follows.

ε4 = ε2 + r(ε3− ε2) (8.5)

where: r is the proportion of the crack filled by sediment, 0≤ r ≤ 1.0, (ε3− ε2)≤ cmax, and

ε3 ≤ 0.0.

If reloading stops before reaching the envelope (Figure 8.4(a), point F), unloading occurs at

a stiffness equal to the latest value of Eu. If unloading stops before the stress has reached

zero (point G), then reloading follows a straight line from the reversal point to (ε1, f1).

The modeling parameters that can be varied to influence the reloading response of the con-

crete are r and cmax. The effect of varying r is illustrated in Figure 8.6. In this figure r is varied

from 0.0 to 1.0, while cmax is held constant. A value of r = 0.0 assumes perfect crack closure and

results in a model identical to the model described in Section 7.1. An increase in r assumes that

cracks will begin closing sooner upon reversal. The crack is assumed to close immediately upon

reversal when r = 1.0. Similarly, the effects of cmax are demonstrated in Figure 8.7. A value of

cmax = 0.0 also assumes perfect crack closure.
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Fig. 8.4 Cyclic response of concrete with imperfect crack closure
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Fig. 8.5 Strain history for demonstration of imperfect crack closure properties
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Fig. 8.7 Effect effect cmax on concrete stress-strain response

8.2.2 Parametric Study of Imperfect Crack Closure Parameters

For this project, a parametric study was carried out to demonstrate the effects of r and cmax on

model accuracy. For this study, the lumped-plasticity column-modeling strategy was used with the

Mohle and Kunnath (2006) steel to model the 8 column tests performed by Lehman and Moehle

(2000). The modified concrete model was used, and the parameters r and cmax were systematically

varied to demonstrate their influence. The effect of r is demonstrated in Figure 8.8. For this

analyses cmax was set to 0.005. In this figure, the mean values of E f orce and Eenergy are plotted

versus multiple values of r. As seen in this figure, r does not significantly affect E f orce. In contrast,

r does seem to affect Eenergy. As r increases, Eenergy gets further away from 0.0. At r = 1.0, Eenergy

is nearly 15% smaller (i.e., less accurate) than when r = 0.0.
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In a similar fashion, the mean values of E f orce and Eenergy are plotted versus cmax. For this

analysis r = 0.5. The parameter cmax does not significantly influence E f orce; however it slightly

affects Eenergy. As cmax increases from 0.0 to 0.005, Eenergy decreases by 15%.
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Fig. 8.8 Effect of r on overall model accuracy (lumped-plasticity, Kunnath steel)

This study indicates that imperfect crack closure does not have a significant effect on the

accuracy of pseudo-static reinforced concrete column models. However, this phenomenon may

affect the calculated dynamic response of columns more significantly. This will be studied further

in a later chapter (Chapter 10).

8.3 SUMMARY

The cyclic modeling inaccuracies identified in Chapter 7 were addressed in this chapter. A steel

material model proposed by Mohle and Kunnath (2006), which accounts for degradation due to

cycling, was presented, calibrated, and evaluated. The use of this more complex steel constitutive

model improved the accuracy of the lumped-plasticity column-modeling strategy. The mean force

error (E f orce) decreased from 15.7% with the standard steel model to 12.6% with the Mohle and

Kunnath (2006) steel model and calibrated parameters (Cf = 0.26 and Cd = 0.45). The mean

energy error (Eenergy) was improved from -19.9% to -4.5%.
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Fig. 8.9 Effect of cmax on overall model accuracy (lumped-plasticity, Kunnath steel)

A concrete model that accounts for imperfect crack closure was also developed and evalu-

ated. The modifications to the standard Karsan and Jirsa cyclic material behavior to account for

imperfect crack closure did not significantly affect the accuracy of the lumped-plasticity modeling

strategy. It is possible that these modifications will affect the calculated residual displacements for

shake-table tests (Chapter 10).
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9 Column Flexural Damage

To implement performance-based earthquake engineering for reinforced concrete bridges, it is

necessary to accurately predict column damage and assess the probability of reaching particular

levels of damage. This chapter develops and evaluates several methods that correlate engineering

demand parameters to damage measures. The engineering demand parameters considered in this

chapter are drift ratio, plastic rotation, and longitudinal strain.

The damage measures considered in this report are cover spalling, longitudinal bar buckling,

and longitudinal bar fracture. This report considered concrete cover spalling (Figure 9.1(a)) be-

cause it represents the first flexural damage state in which there are marginal safety implications,

there may be a possible short-term loss of function, and the cost to repair concrete spalling could be

significant. Buckling and fracture of the longitudinal bars (Figure 9.1(b)) were also considered be-

cause these levels of damage represent damage states in which safety implications are significant,

partial replacement may be required, and a longer-term loss of function may occur.

9.1 ESTIMATES BASED ON DRIFT RATIO

Berry and Eberhard (2003) developed empirical equations to estimate deformations at bar buckling

and cover concrete spalling based on theoretically expected trends in drift ratios, displacement

ductilities, plastic rotations, and longitudinal strains. Because the drift-ratio equations are the

simplest to use (e.g., no estimate of yield displacement), and because these equations were as

accurate as the more complex methods, the drift-ratio equations were chosen as the most suitable

for many practical situations. The bar-buckling equations were modified in Berry and Eberhard

(2005). The resulting equations for the drift ratio at the onset of cover spalling (∆spall
L ) and bar
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(a) Spalling of cover concrete (b) Longitudinal bar buckling

(c) Longitudinal bar fracture

Fig. 9.1 Key flexural damage states (Ranf, 2006)

buckling (∆bb
L ) are provided below.

∆calc
sp

L
(%)∼= 1.6

(
1− P

Ag f ′c

) (
1+

L
10D

)
(9.1)

∆calc
bb
L

(%) = 3.25
(

1+ keρe f f
db

D

)(
1− P

Ag f ′c

) (
1+

L
10D

)
(9.2)

where ke = 40 for rectangular columns and 150 for spiral-reinforced columns, ρe f f = ρs
fys
f ′c

, ρs is

the volumetric transverse reinforcement ratio, fys is the yield stress of the transverse reinforcement,

f ′c is the concrete compressive strength, db is the diameter of the longitudinal reinforcement, D is

the column depth, P is the axial load, Ag is the gross area of the cross section, and L is the distance
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from the column base to the point of contraflexure.

The dataset originally used in the calibration of the spalling equation contained 102 rectangular-

reinforced columns and 40 spiral-reinforced columns. The ratios of the measured displacements at

cover spalling to the displacements calculated with the proposed model (Equation 9.1) had a mean

of 0.97 for rectangular columns with a c.o.v. of 43%, and a mean of 1.07 with a c.o.v. 35% for

spiral-reinforced columns (Berry and Eberhard 2003).

The dataset originally used in the calibration of the buckling equation contained 62 rectangular-

reinforced columns and 42 spiral-reinforced columns. The ratios of the measured displacements at

bar buckling to the displacements calculated with the proposed model (Equation 9.2) had a mean

of 1.01 and a coefficient of variation of 25% for rectangular-reinforced concrete columns. The

corresponding mean and coefficient of variation for spiral-reinforced columns were 0.97 and 24%,

respectively (Berry and Eberhard 2005).

The bridge column dataset used in this report is a subset of the dataset originally used to

calibrate the drift-ratio equations described above. The accuracy statistics of the drift-ratio equa-

tions (9.1 and 9.2) applied to the bridge column dataset used in this report (29 observations of

cover spalling and 33 observations of bar buckling) are presented in Table 9.1. In this table and

throughout this chapter, the subscript dam is used to indicate a general damage state. For exam-

ple, ∆meas
dam would be ∆meas

sp for the cover-spalling damage state. For the bridge dataset, the ratios

Table 9.1 Key accuracy statistics of drift-ratio equations with bridge column dataset

Statistics of ∆meas
dam /L% Statistics of ∆meas

dam /∆calc
dam

Dataset Damage State min max mean cov (%) min max mean cov (%)

Original Dataset Cover Spalling 0.61 4.51 2.30 44.2 0.48 1.75 1.07 34.9
Bar Buckling 2.31 14.62 6.59 43.2 0.46 1.62 0.97 24.0

Bridge Columns
Cover Spalling 0.75 4.17 2.34 38.9 0.48 1.75 1.07 34.9
Bar Buckling 3.75 14.58 7.39 37.1 0.64 1.62 1.01 24.7
Bar Fracture 3.75 12.30 7.63 25.9 0.60 1.48 0.97 20.0

of the measured displacements at cover spalling to the displacements calculated with the proposed

model (Equation 9.1) have a mean of 1.07 and a coefficient of variation of 35%. The corresponding

mean and coefficient of variation for bar buckling is 1.01 and 25%, respectively. The accuracy of

equations 9.1 and 9.2 are nearly identical when applied to the smaller bridge column dataset.

As part of this project, an equation was developed to predict the drift ratio at the onset of
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bar buckling by recalibrating the coefficients of Equation 9.2 with the bridge column subset. The

resulting equation is as follows.

∆calc
b f

L
(%) = 3.5

(
1+150ρe f f

db

D

)(
1− P

Ag f ′c

) (
1+

L
10D

)
(9.3)

The coefficient of variation of the ratios of measured to calculated (from Equation 9.3) displace-

ments at the onset of bar fracture was 20.0% (Table 9.1).

Fragility curves are helpful in the design and assessment in performance-based earthquake

engineering. Fragility curves help a designer answer the following question:

For a particular level of column deformation, what is the likelihood that the longitudi-

nal reinforcement will have begun to buckle?

Figure 9.2 shows the fragility curves for cover spalling, bar buckling, and bar fracture in spiral-

reinforced columns for the dataset used in this project. In these figures, the Y-axis is the cumulative

probability of cover spalling or bar buckling, and the X-axis is the ratio of ∆meas
dam

∆calc
dam

. If the database is

assumed to be representative of the entire population of spiral-reinforced columns, this ratio can be

interpreted as ∆demand
dam
∆calc

dam
. These plots also show the normal cumulative distribution functions (CDF)

and the lognormal cumulative distribution functions.

In some situations, the normal CDF may fit the data better than the lognormal CDF. However,

the normal CDF allows negative values of ∆demand
dam /∆calc

dam at low probabilities.

The ratios of measured to calculated displacements at the onset of cover spalling, bar buck-

ling, and bar fracture are plotted versus key column properties in figures 9.3 and 9.5 to evaluate

the effect of these properties on the accuracy of the proposed equations. As seen in Figure 9.3, the

ratios of measured to calculated displacements increase with an increase in effective confinement

ratio and decrease with an increase in concrete compressive strength. The effect of confinement

on cover spalling is addressed later in this chapter. With respect to bar buckling (Figure 9.4),

the ratios increase slightly with an increase in aspect ratio, longitudinal-reinforcement ratio, and

concrete compressive strength. No significant trends are observed in the bar-fracture ratios.
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Fig. 9.2 Fragility curves for cover spalling, bar buckling, and bar fracture using drift-ratio
equations
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Fig. 9.3 Effect of key column properties on accuracy of drift-ratio cover-spalling equations
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Fig. 9.4 Effect of key column properties on accuracy of drift-ratio bar-buckling equations
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Fig. 9.5 Effect of key column properties on accuracy of drift-ratio bar-fracture equations
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The drift-ratio equations provide a practical correlation between an engineering demand pa-

rameter and key damage states. However, the drift-ratio equations may not always be applicable,

such as cases in which the distance to the point of contraflexure is unknown or varies. Therefore,

similar damage estimates will be developed for other, more versatile engineering damage parame-

ters: plastic rotations and longitudinal strain.

9.2 DAMAGE ESTIMATES BASED ON PLASTIC ROTATION

Empirical equations, similar to the drift-ratio equations, can be developed for the plastic rotation

at the onset of particular damage states. This engineering demand parameter may be more ver-

satile than drift ratio because plastic rotations can be calculated in a complex model more easily.

The plastic rotations calculated with the distributed-plasticity modeling strategy (with no bond slip

component) should be identical to the plastic rotations calculated with the lumped-plasticity for-

mulation if the plastic curvatures calculated from the distributed-plasticity strategy are adjusted to

account for localization in accordance to the method presented in Section 3.1.1. If the zero-length

bond-slip section is used in the distributed-plasticity modeling strategy, the rotation due to bond

slip must be added to the rotations recorded at the integration points, because these rotations will

be relative rotations, and the following equations were developed for total rotations.

Berry and Eberhard (2003) demonstrated that the plastic rotation at the onset of damage

(θcalc
p dam) should increase with an increase in aspect ratio (L/D) and key longitudinal-reinforcement

properties ( fydb/D), and decrease with an increase in axial-load ratio (P/Ag f ′c), as indicated in

Equation 9.4.

θcalc
p dam = C0 (εdam)

(
1+C1

P
Ag f ′c

)−1 (
1+C2

L
D

+C3
fydb

D

)
(9.4)

where εdam is the strain at the onset of cover spalling (εsp) or bar buckling (εbb), and C0−C3 are

constants to be calibrated with experimental results.

In the following subsections, Equation 9.4 will be calibrated for cover spalling, bar buckling,

and bar fracture. The corresponding equations were calibrated by obtaining values of C0−C3 such

that the coefficients of variation of the ratios of measured to calculated displacements at the onset

of the particular damage states (∆meas
dam /∆calc

dam) were minimized. The calculated displacements at the

onset of the damage states are the displacements associated with the calculated values of θcalc
p dam

from Equation 9.4.
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9.2.1 Cover Spalling

The observed plastic rotations at the onset of cover spalling, θ meas
p sp , (calculated from the observed

displacements at cover spalling) have a mean value of 1.50% with a coefficient of variation of

49.7% (Table 9.2). The mean value of the ratios of the measured displacements to the calculated

displacements associated with the mean value of θmeas
p sp is 0.98 with a coefficient of variation of

33.9%.

This estimate of the plastic rotation at the onset of cover spalling can be improved by con-

sidering the trends proposed in Equation 9.4. For cover spalling, εsp is not expected to vary with

the amount of traverse or longitudinal reinforcement; therefore the plastic rotation at the onset of

cover spalling can be approximated with the following simplified expression.

θcalc
p sp = C0

(
1+C1

P
Ag f ′c

)−1 (
1+C2

L
D

+C3
fydb

D

)
(9.5)

This equation was calibrated with the method discussed previously. The resulting coefficients and

accuracy statistics are presented in Table 9.2. For comparison, the table includes the estimates

based on the displacements calculated with the mean value of the plastic rotation at the onset of

the particular damage states. This method is equivalent to setting C0 in Equation 9.5 to the mean

value of θmeas
p sp , and setting the other coefficients to zero.

Table 9.2 Results of plastic-rotation calibration

Coefficients θmeas
p sp /θcalc

p sp ∆meas
dam /∆calc

dam

Methodology C0 C1 C2 C3 C4 mean cov (%) mean cov (%)

mean θp sp 0.015 - - - - 1.00 49.7 0.98 33.9
Eq (9.5) 0.0095 0.001 0.08 0.015 - 0.99 48.1 0.99 33.3

Little accuracy is gained by utilizing the expected trends in plastic rotation at the onset of

cover spalling (Equation 9.5). The coefficient of variation of ∆meas
sp /∆calc

sp with Equation 9.5 was

33.3%, which is only slightly more accurate than using the mean value of θp sp (1.50%) to calculate

the displacement at the onset of cover spalling, ∆mean
sp (33.9%). Additionally, a slightly smaller co-

efficient of variation can be obtained using a constant plastic rotation of 1.20% (32.5%). Therefore,

this value recommended for calculating the plastic rotation at the onset of cover spalling.

Fragility curves for estimates of the plastic rotations at the onset of cover spalling are shown
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in Figure 9.6. The figure on the left is the fragility curve for θmeas
p sp /θcalc

p sp, where θcalc
p sp = 1.20%. The

fragility curve on the right is for ∆meas
sp /∆calc

sp , where ∆calc
sp is the calculated displacement associated

with θcalc
p sp = 1.20%.
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Fig. 9.6 Fragility curves for cover spalling and bar buckling using plastic rotation

The ratios of measured to calculated displacements (at the calculated plastic rotation) at the

onset of cover spalling are plotted versus key column properties in Figure 9.7 to evaluate the effect

of these properties on the accuracy of the proposed damage estimate. As seen in the drift-ratio

estimates, the ratios of measured to calculated displacements increase with an increase in effective

confinement ratio and decrease with an increase in concrete compressive strength.
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Fig. 9.7 Effect of key column properties on accuracy of plastic-rotation cover-spalling
equations
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9.2.2 Bar Buckling

The mean value and coefficient of variation of the observed plastic rotations at the onset of bar

buckling (θ meas
p bb ) were 6.50% and 39.1%, respectively. The mean and coefficient of variation of the

ratios of measured displacements at the onset of bar buckling to the displacements associated with

the mean value of θmeas
p bb were 0.99 and 34.4%, respectively.

Estimates of the plastic rotation at the onset of bar buckling can be improved by considering

the trends proposed in Equation 9.4. The plastic-rotation equation can be extended further for bar

buckling by considering the effect of the confining steel on the strain at bar buckling. The strain

at the onset of bar buckling is expected to increase with an increase in effective confinement ratio

(ρe f f = ρs fys/ f ′c) as in the following equation.

εbb = χ1 +χ2ρe f f (9.6)

By combining Equation 9.6 with Equation 9.4, simplifying, and combining constants, the

following equation for the plastic rotation at the onset of bar buckling is obtained.

θp bb = C0
(
1+C4ρe f f

)(
1+C1

P
Ag f ′c

)−1 (
1+C2

L
D

+C3
fydb

D

)
(9.7)

The coefficients in the bar-buckling equation (Equation 9.7) were previously calibrated by

Berry and Eberhard (2005). However the coefficients obtained in their study were developed for a

different model formulation and dataset. Therefore, the equations were recalibrated as part of this

study with the bridge column dataset and new model formulation.

The resulting coefficients and accuracy statistics are presented in Table 9.3. For comparison,

the table includes the estimates based on the displacements calculated with the mean value of θmeas
p bb .

This method is equivalent to setting C0 in equation 9.7 to the mean value of θmeas
p bb , and setting the

other coefficients to zero. The coefficients for Equation 9.7 previously calibrated by Berry and

Eberhard (2005) are also included in the table.

As seen in Table 9.3, Equation 9.7 provides an accurate means of estimating bar buckling.

The coefficient of variation of the ratios of measured to calculated displacements at the onset of

bar buckling was 21.1%. This is an improvement to the 25% coefficient of variation obtained using
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Table 9.3 Results of plastic-rotation calibration

Coefficients θmeas
p bb /θcalc

p bb ∆meas
dam /∆calc

dam

Methodology C0 C1 C2 C3 C4 mean cov (%) mean cov (%)

mean θmeas
p bb 0.0650 - - - - 1.00 39.1 0.99 34.4

Berry and Eberhard, 2005 0.006 3.1 0.65 0.23 7.19 0.93 24.9 0.94 22.1
Eq (9.7) 0.0010 1.30 1.30 3.00 7.30 0.98 23.3 1.02 21.1
Eq (9.8) 0.0009 - 1.30 3.00 7.30 1.01 24.1 1.01 21.6

the drift-ratio equations in the previous section (Equation 9.2).

Equation 9.7, with the previously calibrated coefficients from Berry and Eberhard (2005),

does not accurately predict (on average) the displacement at the onset of bar buckling for the

smaller bridge column dataset used in this report. The mean value of ratios of measured to calcu-

lated displacements is 0.94 with a coefficient of variation of 22.1%. This is similar to the coefficient

of variation obtained for the recalibrated equation, but the mean is not 1.00. The reason for this

difference is because the smaller dataset used in this project does not include high axial load tests,

whereas the previous dataset did. All of the columns in the smaller dataset have P
Ag f ′c

≤ 0.30 (Sec-

tion 1.3). By removing the higher axial load tests, the previously calibrated equation is less accurate

because the influence of the axial-load ratio term was so significant. The axial-load coefficient in

the recalibrated coefficients is smaller than in the original equation, and does not significantly af-

fect the calculated rotation. Therefore, for column with axial-load ratios less than 0.30, a simpler

equation in which the axial-load term is neglected can be developed.

θp bb = C0
(
1+C4ρe f f

)(
1+C2

L
D

+C3
fydb

D

)
(9.8)

The accuracy statistics and calibrated coefficients for this equation are provided in Table 9.3. Little

accuracy is lost using this equation. The coefficient of variation of measured to calculated displace-

ments increased slightly from 21.1% using Equation 9.7 to 21.6% using Equation 9.8. Simpler

equations including only one and two column properties were also studied. The best estimate of

θcalc
p bb using only two column properties included the effects of L/D and ρe f f , as in the following

equation.

θp bb = C0
(
1+C4ρe f f

)(
1+C2

L
D

)
(9.9)

The accuracy statistics and calibrated coefficients for this equation are also provided in Table 9.3.
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As seen in the table, if only two column properties are used in the estimate, the accuracy of the

damage estimate is reduced. The coefficient of variation of the measured to calculated displace-

ments are reduced from 21.6% using Equation 9.8 to 27.3% using Equation 9.9.

The best one property estimate of θcalc
p bb included the effects of the column aspect ratio (L/D)

as in the following equation.

θp bb = C0

(
1+C2

L
D

)
(9.10)

The calibrated coefficients and accuracy statistics for this equation are also provided in Table 9.3.

In this case, the coefficient of variation of the ratios of measured to calculated displacements is

29.5%, significantly larger than the 21.6% using three column properties.

Equation 9.8 provides a practical compromise between simplicity and accuracy; this estimate

is simpler than Equation 9.7, and little accuracy is lost when using this simpler equation. However,

this equation was developed for columns with axial-load ratios less than 0.30. This should be

considered when applying this equation because previous research (Berry and Eberhard 2005)

indicates that axial load influences the plastic rotation at the onset of damage.

For comparison and simplicity, an equation was developed that has a similar form to the

simplified drift-ratio equations of the previous section (Equation 9.2). The resulting equation is as

follows.

θcalc
p bb(%) = 2.75

(
1+150ρe f f db/D

)(
1−P/Ag f ′c

)
(1+L/10D) (9.11)

Using this equation, the mean and coefficient of variation of the ratios of measured to calculated

plastic rotations were 1.01 with a coefficient of variation of 28.3%, whereas the mean and coeffi-

cient of variation of the ratios of measured displacements to calculated displacements associated

with the rotations calculated with Equation 9.12 were 1.01 with a coefficient of variation of 24.3%.

Fragility curves for estimates of the plastic rotations at the onset of bar buckling are shown

in Figure 9.8. The figure on the left is the fragility curve for θmeas
p bb /θcalc

p bb, where θcalc
p bb is calculated

with Equation 9.8 and coefficients in Table 9.3. The fragility curve on the right is for ∆meas
bb /∆calc

bb ,

where ∆calc
bb is the calculated displacement associated with θcalc

p bb.
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Fig. 9.8 Fragility curves for bar buckling using plastic rotation

The ratios of measured to calculated displacements (from the calculated plastic rotation) at

the onset of bar buckling are plotted versus key column properties in Figure 9.9 to evaluate the

effect of these properties on the accuracy of the proposed damage estimate. No significant trends

are observed in the data.

9.2.3 Bar Fracture

The plastic-rotation equations developed for the onset of bar buckling (equations 9.7 and 9.8) were

calibrated to estimate the onset of bar fracture. The results of this calibration are presented in Table

9.4.

Table 9.4 Results of plastic-rotation calibration

Coefficients θmeas
p b f /θcalc

p b f ∆meas
dam /∆calc

dam

Methodology C0 C1 C2 C3 C4 mean cov (%) mean cov (%)

mean θp b f 0.0650 - - - - 1.00 39.1 0.99 34.4
Eq (9.7) 0.0010 1.0 2.4 1.7 6.7 1.00 17.5 0.98 15.2
Eq (9.8) 0.0009 - 2.4 1.7 6.7 0.99 18.3 0.99 16.0
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Fig. 9.9 Effect of key column properties on accuracy of plastic-rotation bar-buckling
equation
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As seen in this table, estimates of plastic rotations at the onset of bar fracture are significantly

improved by considering the effects of the key column properties. The coefficient of variation of

measured to calculated displacements is reduced from 34.4% using the mean value of θmeas
p b f to

15.2% using Equation 9.7, and 16.0% using Equation 9.8. Little accuracy is gained by considering

the axial load term in the bar-fracture estimates. Therefore, Equation 9.8 is recommended for

columns with axial ratios ≤ 0.30.

A simplified equation similar to the equation developed for the drift ratio at the onset of bar

fracture (Equation 9.3) was developed for the plastic rotation as follows.

θcalc
p b f (%) = 3.0

(
1+150ρe f f db/D

)(
1−P/Ag f ′c

)
(1+L/10D) (9.12)

The mean value of the ratios of measured to calculated plastic rotations were 0.97 with a coefficient

of variation of 22.7%, whereas the corresponding mean and coefficient of variation for the ratios

of measured to calculated displacements were 0.97 and 19.6%.

Fragility curves for this damage state and engineering demand parameter are provided in

Figure 9.10, and the ratios of measured to calculated displacements are plotted versus key column

properties in Figure 9.11. The only significant trend observed in the data is a slight increase in the

ratios of measured to calculated displacements with an increase in concrete compressive strength.

9.3 DAMAGE ESTIMATES BASED ON STRAIN

Longitudinal strains introduce more information into the prediction process, and thus may provide

more versatile and accurate predictions of damage. Additionally, the empirical equations based on

drift ratio and plastic rotation developed in the previous sections may not be applicable to some

modeling situations, such as cases where the distance to the point of contraflexure varies, the axial

load varies, or there is biaxial bending. This section will focus on developing and evaluating

damage predictions based on longitudinal strain.

Tests show that the onset of cover spalling correlates to the maximum compressive strain

in the cover concrete (Lehman and Moehle 2000), therefore this parameter is chosen as the local

engineering demand parameter for this damage state. The tensile strain in the extreme reinforcing

bar was chosen as the local engineering demand parameter for longitudinal bar buckling; this
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Fig. 9.10 Fragility curves for bar fracture using plastic rotation

parameter is suggested by multiple researchers including Moyer and Kowalsky (2001), Priestley

et al. (1996), and Lehman and Moehle (2000). Tensile strain is chosen for bar fracture because bar

fracture often occurs immediately after buckling of the longitudinal reinforcement.

The lumped-plasticity modeling strategy developed in this report will be used to evaluate

the effectiveness of using maximum concrete compressive strain to estimate cover spalling, and

maximum longitudinal-reinforcement tensile strain to estimate bar buckling and bar fracture. Key

statistics and fragility curves will be presented. The calibration of the proposed plastic-hinge length

in this report considered the estimation of these damage states, and the reader is referred to Section

6.3 for details on this procedure.

The evaluation will not be carried out for both modeling strategies proposed in this report be-

cause the longitudinal strains calculated with the distributed-plasticity method are subject to strain

concentrations in columns with perfectly-plastic or degrading behavior, as indicated in Section

3.1.1. Strain estimates based on this methodology are only valid for columns with hardening re-

sponses, and all of the columns in the bridge dataset do not portray this type of response, whereas

the strains estimated with the lumped-plasticity formulation are objective for all section responses.
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Fig. 9.11 Effect of key column properties on accuracy of plastic-rotation bar-fracture
equation
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9.3.1 Cover Spalling

The mean value of the compressive strains at the onset of cover spalling (εmeas
sp ) was 0.008 with a

coefficient of variation of 48.6%. The mean value of the ratios of observed spalling displacements

to the displacement associated with the mean value of εmeas
sp was 0.99 with a coefficient of variation

of 34.7% (Table 9.5).

Table 9.5 Cover-spalling estimates based on longitudinal compressive strain

εmeas
sp /εcalc

sp ∆meas
sp /∆calc

sp

Methodology mean cov (%) mean cov (%)

mean εsp = 0.008 1.00 48.6 0.99 34.7
Eq (9.13) 0.99 39.6 1.0 27.5

The strain at the onset of cover spalling is not expected to increase with an increase of effec-

tive confinement ratio. However, if εsp is plotted versus ρe f f , a significant trend can be observed

(Figure 9.12). The best fit line for this trend is as follows.

εcalc
sp = 0.0004+0.045ρe f f (9.13)

The R2 value for this correlation is 0.42. The effective confinement ratio may be affecting the

compressive strain at the onset of cover spalling by confining the lateral expansion of the concrete

core and longitudinal reinforcement. If this trend is included in the estimate of the displacement at

the onset of cover spalling (∆calc
sp ), a significantly better estimate can be obtained. As seen in Table

9.5, the coefficient of variation of the ratios of measured to calculated displacements at the onset

of spalling can be reduced from 34.5% to 27.5%. This phenomenon requires a more thorough

investigation before this method is recommended for use.

Fragility curves for estimates of the compressive strain at the onset of cover spalling are

shown in Figure 9.13. The figure on the left is the fragility curve for εmeas
sp /εcalc

sp , where εcalc
sp is the

mean value of the observed strain 0.008. The fragility curve on the right is for ∆meas
sp /∆calc

sp , where

∆calc
sp is the calculated displacement associated with the mean value of εsp (0.008).
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Fig. 9.13 Fragility curves for cover spalling and bar buckling using longitudinal strain
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The ratios of measured to calculated displacements (from the calculated compressive strain)

at the onset of cover spalling are plotted versus key column properties in Figure 9.14 to evaluate the

effect of these properties on the accuracy of the proposed damage estimates. As mentioned earlier

in this section and in previous sections of this chapter, the ratio of measured to calculated displace-

ments increase with an increase in effective confinement ratio. As noted for the drift ratio and

plastic-rotation estimates, the ratios decrease with an increase in concrete compressive strength.

9.3.2 Bar Buckling

The mean value of the tensile strains at the onset of bar buckling (εmeas
bb ) was 0.081 with a coefficient

of variation of 30.1%. The mean and coefficient of variation of the ratios of observed displacements

to displacements associated with the mean value of εmeas
bb were 1.00 and 28.1%, respectively (Table

9.6).

Table 9.6 Buckling estimates based on longitudinal-reinforcement tensile strain

εmeas
bb /εcalc

bb ∆meas
bb /∆calc

bb

Methodology mean cov (%) mean cov (%)

mean εbb = 0.081 1.00 30.1 1.00 28.1
Eq 9.14 1.00 25.4 1.0 23.6

Berry and Eberhard (2005) proposed that the strain at the onset of bar buckling should in-

crease with an increase in effective confinement ratio, as in Equation 9.14.

εcalc
bb = χ1 +χ2ρe f f ≤ 0.15 (9.14)

To verify this expected trend, εbb is plotted versus the effective confinement ratio in Figure 9.15.

Equation 9.14 was calibrated in Section 6.3, and the following equation was obtained.

εcalc
bb = 0.045+0.25ρe f f ≤ 0.15 (9.15)

The accuracy of predicting the displacement at the onset of bar buckling as a function of

strain can be increased by including this trend in the estimate. To include this trend, the calcu-

lated displacements at the onset of bar buckling could be determined by (1) calculating εcalc
bb for
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each column using Equation 9.15, and then (2) calculating the displacements associated with these

calculated strain values (∆calc
bb ).

Key accuracy statistics for estimating the displacement at the onset of bar buckling utilizing

this method are presented in Table 9.6. The coefficient of variation of the ratios of measured to

calculated displacements can be reduced from 28.1% using the mean value of εbb (0.08) to 23.6%

using the εcalc
bb from Equation 9.15.

Fragility curves for estimates of the tensile strain at the onset of cover spalling are shown in

Figure 9.16. The figure on the left is the fragility curve for εmeas
bb /εcalc

bb , where εcalc
bb is calculated

from Equation 9.15. The fragility curve on the right is for ∆meas
bb /∆calc

bb , where ∆calc
bb is the calculated

displacement associated with εcalc
bb .

The ratios of measured to calculated displacements (from the εcalc
bb ) at the onset of bar buck-

ling are plotted versus key column properties in Figure 9.17 to evaluate the effect of these proper-

ties on the accuracy of the proposed damage estimates. As seen in the figures, the ratios decrease

slightly with an increase in axial-load ratio, and increase slightly with an increase in concrete

compressive strength.
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Fig. 9.14 Effect of key column properties on accuracy of strain estimates of cover spalling
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Fig. 9.16 Fragility curves for bar buckling using longitudinal tensile strain
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Fig. 9.17 Effect of key column properties on accuracy of strain estimates of bar buckling
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9.3.3 Bar Fracture

The mean value of the tensile strain at the onset of bar fracture (εmeas
b f ) was 0.087 with a coefficient

of variation of 28.8%. The mean value and coefficient of variation of the ratios of measured

displacements to calculated displacements associated with the mean value of εmeas
b f were 1.00 and

27.5%, respectively.

Table 9.7 Bar-fracture estimates based on longitudinal-reinforcement tensile strain

εmeas
b f /εcalc

b f ∆meas
b f /∆calc

b f

Methodology mean cov (%) mean cov (%)

mean εb f = 0.087 1.00 28.8 1.00 27.5
Eq (9.16) 1.00 22.5 1.00 21.2

The tensile strain at the onset of bar fracture is expected to increase with an increase in

effective confinement ratio. This trend is verified in Figure 9.18. In a similar fashion as the bar-
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Fig. 9.18 Effect of effective confinement ratio on εb f

buckling damage level, an equation was developed to predict the tensile strain at the onset of

longitudinal bar fracture as a function of effective confinement ratio (Equation 9.18). The resulting

equation is nearly identical to the equation developed for bar buckling; therefore the same equation

will be used for both damage states for simplicity.

εcalc
b f = 0.045+0.30ρe f f ≤ 0.15 (9.16)
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By accounting for the effect of effective confinement ratio with Equation 9.16, the accuracy

of the bar-fracture estimates are improved (Table 9.7). The coefficient of variation for εmeas
b f /εcalc

b f

is reduced from 28.8% using the mean value of εmeas
b f , to 21.8% using Equation 9.16. Similarly, the

ratio of measured to calculated displacements are reduced from 27.5% to 20.5%. Fragility curves

for this damage state and engineering demand parameter are provided in Figure 9.19.
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Fig. 9.19 Fragility curves for bar fracture using longitudinal tensile strain
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Fig. 9.20 Effect of key column properties on accuracy of strain estimates of bar fracture
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9.4 COMPARISON OF DAMAGE ESTIMATES

Damage estimates based on three engineering demand parameters (i.e., drift ratio, plastic rota-

tion, and longitudinal strain) were evaluated in the previous sections. In Table 9.8, this study is

summarized and the accuracy of using the various engineering parameters are compared.

Table 9.8 Comparison of damage estimates

∆meas
dam /∆calc

dam

Damage State E.D.P. Equation mean cov (%)

Cover Spalling
∆calc

sp /L (% ) 1.6 (1−P/Ag f ′c) (1+L/10D) 1.07 34.9

(29 columns) θcalc
p sp (%) 1.20 0.98 33.9

εsp 0.008 0.99 34.7

Bar Buckling

∆calc
bb /L (% ) 3.25

(
1+150ρe f f db/D

)
(1−P/Ag f ′c) (1+L/10D) 1.01 24.7

θcalc
p bb (%) 0.0009

(
1+7.3ρe f f

)
(1+1.3L/D+3 fydb/D) 1.01 21.6

(33 columns)
θcalc

p bb (% ) 2.75
(
1+150ρe f f db/D

)
(1−P/Ag f ′c) (1+L/10D) 1.01 24.3

εcalc
bb 0.045+0.25ρe f f ≤ 0.15 1.00 23.6

Bar Fracture

∆calc
b f /L (% ) 3.5

(
1+150ρe f f db/D

)
(1−P/Ag f ′c) (1+L/10D) 0.97 20.0

θcalc
p b f (%) 0.0009

(
1+6.7ρe f f

)
(1+2.4L/D+1.7 fydb/D) 0.99 16.0

(20 columns)
θcalc

p b f (% ) 3.0
(
1+150ρe f f db/D

)
(1−P/Ag f ′c) (1+L/10D) 0.97 19.6

εcalc
b f 0.045+0.30ρe f f ≤ 0.15 0.96 20.5

As seen in the table, similar levels of accuracy can be obtained by estimating the onset of

damage using drift ratio, plastic rotation, or longitudinal strain. The coefficient of variation for

the ratios of measured to calculated displacements at the onset of spalling was approximately 34%

for all three methods. The coefficient of variations for the onset of bar buckling using the three

methods were 22-25%. For bar fracture, slightly better accuracy can be obtained by using plastic

rotation (coefficient of variation of 16.0%) than drift ratio or longitudinal strain (≈ 21%).

The drift-ratio equations provide a practical correlation between an engineering demand pa-

rameter and key damage states. However, the application of this method is limited to tests in which

the the distance to the point of contraflexure does not vary, the axial load does not vary, and there

is only uniaxial bending. Although estimates based on plastic rotation suffer from the same limi-

tations, plastic rotation is a more versatile engineering demand parameter because it is more easily

calculated in a complex model. The damage estimates based on longitudinal strain overcome the

161



limitations of the drift-ratio and plastic-rotation equations; however they require a more detailed

model in which strains can be monitored.
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10 Application of Column-
Modeling Strategy to More Complex
Structural Models

The column-modeling strategies developed in this report were calibrated and evaluated with ex-

perimental tests of single, equivalent cantilever bridge columns, loaded pseudo-statically in one

dimension. In this chapter, the proposed column-modeling strategies are applied to two more

complex modeling situations. First, the column-modeling strategies are employed to model the

columns of a single bridge bent. The modeling strategies are then used to model shake-table tests

of columns subjected to unidirectional and bidirectional base motions.

10.1 COLUMN BENT TESTS

The proposed distributed-plasticity and lumped-plasticity modeling strategies were used to model

the response of a bridge bent test performed by Makido (2006) at Purdue University (Figure 10.1).

The geometric and material properties of the specimen are provided in tables 10.1 and 10.2, re-

spectively.

10.1.1 Distributed-Plasticity Model

The distributed-plasticity model of the column-bent is illustrated in Figure 10.2. The columns were

modeled with the proposed distributed-plasticity modeling strategy and standard material models

(Chapter 4), with a slip-section at both ends of the column and with 6 integration points, which is

recommended for columns under double curvature (Section 3.1.1). The cross-beam was modeled

as a rectangular force-based beam-column element with six integrations points. However, upon
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Courtesy of Makido (2006)

Fig. 10.1 Test setup

the completion of the analysis, it was observed that the cross member did not crack, and therefore

could have been modeled as an elastic section with gross section properties.

Accuracy statistics for this modeling strategy are provided in Table 10.3, and the calculated

envelope response is compared to the measured envelope response in Figure 10.3(a). The basic

distributed-plasticity modeling strategy accurately predicts the maximum moment (M.R. = 1.02),

but the model overestimates the initial stiffness (S.R. = 0.69), and does not model the envelope

degradation. The calculated and measured cyclic responses are compared in Figure 10.3(b). As

seen in this figure, this method does not model the strength and stiffness degradation due to cycling

at large deformations.

Ranf (2006) analyzed the same bridge bent in detail. Based on strain measurements in the

bent footing, he recommended bond-strength ratios of λe = 0.6 (compared with λe = 0.9) and λi =

0.3 (compared with λi = 0.45), and a larger bond-compression depth of dcomp = 0.5D (compared

with 1/2 the neutral axis depth at concrete compressive strain of 0.002). Using these values in

the bond-model provides a better estimate of the stiffness ratio (0.94) and therefore a better Epush
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Table 10.1 Geometric properties of the Purdue bent

Category Property

Column Dimensions

Gross Diameter (mm) 304.8
Clear Cover (mm) 26.6
Core Diameter (mm) 261.6
Column Height (mm) 1524.0
Intra-Bent Column Spacing (mm) 1828.8

Column Reinforcement

No. of Longitudinal Bars 16
Bar No. 3
Longitudinal Steel Ratio (%) 1.56
Spiral Bar W2.9
Spiral Spacing (mm) 31.8
Spiral Bar Diameter (mm) 4.9
Spiral Bar Area (mm2) 18.7
Transverse Volumetric Steel Ratio (%) 0.90

Beam Dimensions
Length (mm) 3149.6
Width (mm) 812.8
Depth (mm) 457.2
Clear Cover (mm) 25.4

Beam Reinforcement
No. of Longitudinal Bars 12
Longitudinal Bar No. 5
Transverse Bar No. 3
Transverse Spacing (mm) 152.4

Table 10.2 Measured material properties for the Purdue bent

Member Property

Column
f ′c (MPa) 29.8
fy (MPa) 482.6
Es (MPa) 2.00e5

Beam
f ′c (MPa) 46.9
fy (MPa) 434.32
Es (MPa) 2.00e5

value (8.43). The strength estimates did not change, but E f orce and Eenergy improved slightly (Table

10.3).

To capture the strength and stiffness degradation due to cycling at large deformations, a

material model that accounts for this phenomenon is needed. A steel model that accounts for

cyclic degradation is proposed in Chapter 8 (Mohle and Kunnath 2006). However, this model can

not be used reliably in combination with this modeling strategy because the distributed-plasticity

modeling strategy is susceptible to strain concentrations in columns with degrading behavior.
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Fig. 10.2 Bent model with distributed-plasticity column-modeling strategy

10.1.2 Lumped-Plasticity Model

The modeling strategy for the bridge bent using the proposed lumped-plasticity column-modeling

strategy (Chapter 6) is illustrated in Figure 10.4. A plastic hinge is assumed to form at both ends

of each column, and the length of the plastic hinge was calculated as Lp = 0.05Ls +0.1 fydb/
√

f ′c,

where Ls is the distance from column fixity to point of contraflexure (L/2). For these columns, the

calculated plastic-hinge length was 122.3 mm, which is equal to 40% of the column diameter. The

effective stiffness of the elastic portion of the columns was calculated as (EI)e f f = α̂sec(EI)sec,

Table 10.3 Accuracy statistics for column-modeling strategies

Strategy Steel Model Epush(%) S.R. M.R. D.R.(%) E f orce(%) Eenergy(%)

Distr. Standard 11.9 0.7 1.0 8.8 21.0 -63.9
Distr., Ranf Bond Standard 8.4 0.9 1.0 8.9 19.3 -50.0
Lumped Standard 7.6 0.9 1.1 8.2 19.8 -56.3
Lumped Mohle and Kunnath 8.5 0.9 1.0 8.1 13.4 -33.5
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Fig. 10.3 Force-deformation response of bridge bent with distributed-plasticity model and
standard steel

where α̂sec = α(L−3Lp)
L−3αLp

, and αsec = 0.35 + 0.1Ls/D (sections 6.2 and 5.5). For these columns

(EI)e f f ≈ 0.15EcIg. As in the distributed-plasticity model, the cross beam was modeled as a

rectangular, force-based beam-column element with six integrations points. However, upon the

completion of the analysis it was observed that the cross member did not crack, and therefore

could have been modeled as an elastic section with gross section properties.

Accuracy statistics for this modeling strategy are provided in Table 10.3, and the calculated

and measured envelopes are compared in Figure 10.5(a). The proposed modeling strategy accu-

rately models the response of the bridge bent at low levels of deformation; the initial stiffness is

calculated within 15% of the measured response, and the maximum moment is calculated within

5% of the measured response. However, as with the distributed-plasticity method, the lumped-

plasticity method does not model the degrading envelope accurately. The calculated and measured

cyclic responses are compared in Figure 10.5(b). As seen in the figure, this method does not

account for the degradation due to cycling at large deformations.

To overcome this limitation, the more complex steel model (Mohle and Kunnath 2006) de-

scribed in Chapter 8 was used to model the reinforcing steel. The envelope curves and hysteresis

loops for this analysis are presented in Figure 10.6(a) and 10.6(b), and the accuracy statistics are

provided in Table 10.3. As seen in the figures and the table, the Mohle and Kunnath (2006) steel
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Fig. 10.4 Bent model with lumped-plasticity column-modeling strategy

model significantly improves the estimates of the cyclic response of the bent. The values of E f orce

and Eenergy (13.4% and -33.5%) using the Mohle and Kunnath (2006) steel model are approxi-

mately 60% of the values using the standard steel model (19.8% and -56.3%).
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Fig. 10.5 Force-deformation response of bridge bent with lumped-plasticity model and
standard steel
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Fig. 10.6 Force-deformation response of bridge bent with lumped-plasticity model and
Mohle and Kunnath (2006) steel
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10.1.3 Flexural Damage

The estimates of cover spalling and bar buckling proposed in Chapter 9 will be applied to the

Purdue bent test in this section. The lumped-plasticity formulation with the standard steel model

was used for this study. The measured drift ratios at the onset of cover spalling and bar buckling

were 1.2%, 3.8% and 4.4% respectively. The calculated engineering demand parameters (drift

ratio, plastic rotation, and longitudinal strain) are reported in Table 10.4. The calculated drift ratios

associated with the calculated engineering demand parameters are also reported along with the

ratios of measured to calculated displacements. As seen in the table, the proposed methodologies

Table 10.4 Damage estimates for purdue bent test

Damage State E.D.P. E.D.P. (%) ∆calc
dam/L(%) ∆meas

dam /∆calc
dam

Cover Spalling
Drift Ratio 1.1 1.1 1.1
Plastic-Rotation 1.5 0.93 1.29
Compressive Strain 0.8 1.24 0.96

accurately predict the onset of cover spalling and bar buckling. For this test specimen, longitudinal

strain was the most accurate means of predicting the displacement at the onset of cover spalling

(∆meas
sp /∆calc

sp = 0.96), whereas drift ratio and plastic-rotation were the most effective means for

predicting bar buckling (∆meas
sp /∆calc

sp = 1.05 and 0.95, respectively).

10.2 SHAKE-TABLE TESTS

The proposed column-modeling strategies were used to model shake-table tests performed by

Hachem et al. (2003) at the University of California at Berkeley.

10.2.1 Test Setup and Procedure

The shake-table tests consisted of four identical columns subjected to unidirectional and bidirec-

tional earthquake excitations. The column specimens are illustrated in Figure 10.7, and key geo-

metric and material properties are provided in Table 10.5. Hachem et al. (2003) provides details of

the tests.

Specimens A1 and B1 were subjected to unidirectional excitations, whereas A2 and B2 were

subjected to excitations in two directions (Table 10.6). Two horizontal ground motion time histories
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Table 10.5 Properties of shake-table specimens

Category Property

Column
Gross Diameter (mm) 406.0
Clear Cover (mm) 13.0
Column Height (mm) 1630.0

Column Reinforcement

No. of Longitudinal Bars 16
Longitudinal Bar Diameter (mm) 12.7
Longitudinal Steel Ratio (%) 1.17
Spiral Bar Diameter 4.5
Spiral Spacing (mm) 31.8
Spiral Bar Diameter (mm) 4.9
Transverse Volumetric Steel Ratio (%) 0.53

Material Properties
f ′c (MPa) 39.3
fy (MPa) 499.9
fys (MPa) 620.5

were used in the tests, and for simplicity, no vertical accelerations were considered. Specimens A1

and A2 were subjected to variations of the Olive View record of the 1994 Northridge earthquake,

whereas columns B1 and B2 were subjected to the 1985 Chile earthquake recorded at the Llolleo

station. Each specimen was initially subjected to runs at or below the yield level to help identify the

elastic response of the specimens. The specimens were then subjected to runs with accelerations

at the design level. Following these runs, the accelerations were amplified to the maximum level,

which matched the capacity of the simulator. The amplitude of the runs at the maximum level were

1.5-2.0 times the amplitude of the design level. The design and maximum level runs were repeated

(in pairs) until failure. The base-acceleration histories of the specimens in the longitudinal and

lateral directions at the design level are presented in Figure 10.8. Table 10.6 lists the peak ground

accelerations (PGA) for the first design level and the first maximum level. The Northridge record

represents a near-fault ground motion with a high-velocity pulse, whereas the Chile record was

chosen to be representative of a long-duration earthquake. The response spectra for the four design

level excitations are presented in Figure 10.9 (damping ratio of 5%).

Table 10.6 Test matrix with pga for 1st design level and 1st maximum level

Peak Ground Accelerations (g)
Specimen History design long. design lat. max long. max lat.

A1 Northridge 0.58 - 0.9 -
A2 Northridge 0.58 0.65 0.91 0.95
B1 Chile 0.48 - 0.87 -
B2 Chile 0.47 0.36 0.9 0.67
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Fig. 10.7 Column specimen and key dimensions (Hachem et al. 2003)
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Fig. 10.8 Base-acceleration records for test specimens
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Fig. 10.9 Response spectra for base accelerations with a damping ratio of 5%

10.2.2 Modeling Strategies

The distributed-plasticity and lumped-plasticity modeling strategies for the shake-table tests are

illustrated in Figure 10.10. In both modeling strategies, the mass of the block was lumped with its

center of gravity at a distance (LCG) of 812 mm (32 in.) above the top of the column. The mass

of the block (m) was 296 Mg (0.169 kip · s2/in.), and the rotational moment of inertia of the mass

(mR) was 26 Mg · m2 (234 kip · in. · s2). A rigid beam was used to link the top of the column to

the lumped mass. The columns of the specimens were modeled with the strategies proposed in

chapters 4 (distributed-plasticity) and 6 (lumped-plasticity). Rayleigh damping was used in the

model. Based on the damping observed in the shake-table tests, the Raleigh coefficients α and β

were selected such that the damping ratio was 3.5% at periods of 0.1 and 1.0 seconds (α = 0.4 and

β = 0.001).

The models described above were evaluated at the first design level and the first maximum

level with the standard cyclic material models, and the modified material models proposed in Chap-

ter 8. To account for the effects of preliminary ground motions, all runs prior to the first design
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(a) Distributed-plasticity (b) Lumped-plasticity

Fig. 10.10 Modeling strategies for shake-table tests

level and maximum level were considered in the analysis. Table 10.7 describes the six model-

ing variations evaluated in this study. The distributed-plasticity model was evaluated with perfect

crack closure (r = 0.0) and imperfect crack closure (r = 1.0) and the standard steel model. The

lumped-plasticity method was evaluated with both variations of crack closure assumptions, and

the two proposed steel models: Menegotto-Pinto and Mohle and Kunnath (2006) (Cf = 0.26 and

Cd = 0.45).

10.2.3 Response Maxima and Hysteretic Energy

Maximum tip displacement, maximum base moment, maximum base shear, and hysteretic energy

were used to evaluate the six modeling strategies. The hysteretic energy is the area within the

hysteretic force-deformation curves and is calculated with Equation 7.3.

The accuracy of each model is shown graphically in Figure 10.11 (design level-lateral),

Figure 10.12 (design level-longitudinal), Figure 10.13 (maximum level-lateral), and Figure 10.14
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Table 10.7 Modeling variations for shake-table specimens

Modeling Strategy Steel Model Crack Closure Name

Distributed Standard r = 0.0 cmax = 0.0 DP-S-PC
Standard r = 1.0 cmax = 0.01 DP-S-IC

Lumped

Standard r = 0.0 cmax = 0.0 LP-S-PC
Standard r = 1.0 cmax = 0.01 LP-S-IC
Mohle r = 0.0 cmax = 0.0 LP-M-PC
Mohle r = 1.0 cmax = 0.01 LP-M-IC

(maximum level-longitudinal). As seen in the figures, all column-modeling variations predict the

maximum displacement, shear force, and hysteretic energy within 30% of the measured response

for both earthquake records at both levels of excitation in the longitudinal and lateral directions.

However, the modeling variations were less accurate when predicting the maximum base moments,

especially the lumped-plasticity methods in the lateral direction. Also seen in the figures, the crack

closure variations do not significantly affect any of the response maxima, which leaves two strate-

gies to compare: distributed plasticity to lumped plasticity (both with standard steel), and the

lumped-plasticity variation with standard steel to the lumped-plasticity variation with degrading

steel.

No significant trends can be observed in the maximum displacements, and hysteretic en-

ergy estimates calculated with the distributed-plasticity and lumped-plasticity estimates (both with

standard steel) at either earthquake record or excitation level. However, the ratios of measured to

calculated base moments are larger for the distributed-plasticity methodology for both earthquake

records at both levels of excitation in the longitudinal direction. However the opposite trend is

observed in the lateral direction. Similarly, the ratios of measured to calculated shear forces are

larger (on average) for the distributed-plasticity methodology for both earthquake records and both

excitation levels in both directions.

On average, the ratios of measured to calculated base moments and shear forces are greater

for the lumped-plasticity methodology with standard steel than with the degrading steel model. No

other significant trends are observed when comparing these two variations.
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10.2.4 Residual Displacements

To evaluate the accuracy of the residual displacements calculated with the six modeling variations,

the calculated residual displacements (∆rc/L) in the longitudinal direction are plotted versus the

measured residual displacements (∆rm/L) for both earthquake records at both levels of excitation

(design and maximum) in Figure 10.15.
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Fig. 10.15 Comparison of measured and calculated residual displacements

The following can be observed in the figure.

1. The model variations are more accurate at predicting the residual displacements at the design

level than at the maximum level.

2. The distributed-plasticity variations overestimate (on average) the residual displacements for

both earthquake records and both levels of excitation.

3. The imperfect crack closure variation improves the estimates of residual displacements for

the distributed-plasticity model.

4. The imperfect crack closure assumption does not improve the residual displacements calcu-

lated with the lumped-plasticity variations with standard steel or degrading steel.

The normalized residual displacement error (Erd) is used to further evaluate the effective-

ness of the modeling strategies’ abilities to predict residual displacements. This error measure is

defined as the difference between measured (∆meas
res ) and calculated (∆calc

res ) residual displacements
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normalized by the maximum measured displacement, as follows.

Erd = abs
(

∆meas
res −∆calc

res
∆meas

max

)
(10.1)

Erd is plotted for each modeling strategy and each column for the first design level and

first maximum level in Figure 10.16. As noted previously, the imperfect crack closure assumption

improves the estimate of residual displacements for the distributed-plasticity strategy. However, the

same can not be said for the lumped-plasticity methodology; there is no significant trend for this

methodology. The effect of the crack closure variations may be more evident in the distributed-

plasticity methodology because the stress-deformation response of the concrete in the bond-slip

section was modeled with the the crack closure variations, and a significant portion of the total

deformation is attributed to this section. Therefore, the model is more sensitive to this parameter.

No other significant trends can be observed in the data.

More work is needed to improve estimates of residual displacements. One possible improve-

ment would be to remove the limitation on the imperfect crack closure concrete model that does

not allow compression stress in the concrete while it still has tensile strain. This would amplify the

effect of imperfect crack closure, and may improve estimates of residual displacements.
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Fig. 10.16 Normalized residual displacement errors at first design level and first maximum
level in longitudinal and lateral directions
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10.2.5 Flexural Damage

In Chapter 9, equations were developed to predict the drift ratio (∆dam/L), plastic rotation (θp dam),

and longitudinal strain (εdam) at the onset of cover spalling and bar buckling. In this section, these

damage equations are applied to the shake-table tests to evaluate their accuracy. The following

analysis was carried out with only one model variation from the previous section: the lumped-

plasticity variation with standard steel and perfect crack closure.

Application of the drift-ratio equations to this structural model is difficult because the dis-

tance from the base of the column to the point of contraflexure varies throughout the duration of the

earthquake. This phenomenon complicates the calculation of the demand drift ratio, as well as the

calculated drift ratios at the onset of cover spalling and bar buckling (from the damage equations).

The varying inflexion point also complicates the calculation of the plastic rotation at the onset

of bar buckling. Some simplifications must be made to apply the drift-ratio and plastic-rotation

methodologies to this structural system. For a preliminary analysis, the system is assumed to act

as a cantilever system, where the distance to the point of contraflexure is constant and is equal to

the height of the column. This assumption is not accurate, but is performed here to demonstrate

the process of applying the methodologies. The damage estimates based on strain overcome this

limitation, and should provide a more effective means of estimating damage in more complicated

systems.

The results of the preliminary study are summarized in tables 10.8 (cover spalling) and 10.9

(bar buckling). In these tables the calculated engineering demand parameters (from the damage

equations) at the onset of the damage states are reported, along with the maximum calculated

engineering demand parameters before (“pre”) and immediately after (“post”) the run where the

damage state was observed. The probability (based on statistics from Chapter 9) that cover spalling

or bar buckling will have occurred before and after the observed damage run are also provided.

As seen in Table 10.8, the onset of cover spalling is accurately predicted with the proposed

drift-ratio and plastic-rotation methodologies (with current inflexion point assumption). Whereas,

the strain estimates accurately predict cover spalling in specimens A1 and A2, but only estimate a

10% probability of spalling in B1 and 30% probability in B2.

The bar buckling estimates were not as clean. Although some methods calculate a 50%

probability of bar buckling after the reported damage run, the same probability is calculated for the
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runs prior to the observed damage run. These results suggest that estimates of bar buckling may be

improved if cycling is considered.

Table 10.8 Summary of spalling estimates

∆sp/L (%) θp sp (%) εsp (%)

pre post pre post pre post

col. calc max pr. max pr. calc max pr. max pr. calc max pr. max pr.

A1 2.1 0.9 4% 4.9 100% 1.5 0.0 0% 3.8 100% 0.8 0.1 1% 1.5 100%
A2 2.1 0.9 5% 4.9 100% 1.5 0.0 0% 3.8 100% 0.8 0.1 1% 1.4 99%
B1 2.1 1.1 7% 3.0 81% 1.5 0.1 0% 1.9 78% 0.8 0.1 1% 0.4 10%
B2 2.1 1.3 12% 3.0 83% 1.5 0.3 1% 2.0 85% 0.8 0.2 1% 0.6 30%

Table 10.9 Summary of bar-buckling estimates

∆bb/L (%) θp bb (%) εbb (%)

pre post pre post pre post

col. calc max pr. max pr. calc max pr. max pr. calc max pr. max pr.

A1 6.0 6.2 54% 6.2 54% 5.9 5.2 27% 5.2 27% 6.7 4.5 8% 5.9 32%
A2 6.0 5.5 36% 5.5 36% 5.9 4.5 13% 4.5 13% 6.7 6.7 50% 6.7 50%
B1 6.0 3.0 2% 4.5 15% 5.9 1.9 0% 3.4 3% 6.7 3.4 2% 5.9 30%
B2 6.0 4.5 14% 4.5 14% 5.9 3.4 2% 3.4 2% 6.7 5.0 15% 5.0 15%
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11 Summary and Conclusions

It is important to characterize the performance of bridges during earthquakes because they are in-

tegral components of transportation networks. Loss of bridge function can have severe economic

consequences, and and consequences to life safety when bridges are critical links in lifelines to

emergency facilities, which are particularly important after a disasters. Although damage to other

bridge elements can have economic and life-safety impacts, reinforced concrete columns are often

the most vulnerable elements in a bridge, and column failure can have catastrophic consequences.

Excessive deformations can result in spalling of cover concrete, buckling of longitudinal reinforce-

ment, bar fracture, reduction of flexural capacity, and eventually, structural collapse.

The objective of this project was to develop, calibrate, and evaluate column-modeling strate-

gies to accurately model column behavior under seismic loading, including global forces and lo-

cal deformations, as well as progression of damage. The models were calibrated using the ob-

served cyclic force-deformation responses and damage progression observations of 37 tests of

spiral-reinforced columns, representative of modern bridge construction (Section 1.3). This effort

is an important step toward implementing performance-based earthquake engineering for modern

reinforced concrete bridges.

11.1 CROSS-SECTION MODELING

The accuracy of the column-modeling strategies presented in this report depend on the accuracy

of the cross-section model, and in turn the accuracy of the material constitutive models and the

cross-section discretization strategy. Uniform and nonuniform radial discretization strategies were

presented in Chapter 2. Based on convergence considerations, the following conclusions were
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drawn.

1. A uniform radial discretization scheme with 10 radial core divisions, 20 transverse core

divisions, 1 radial cover division, and 20 transverse cover divisions provides a sufficient

mesh (220 total fibers) for modeling the section response of a reinforced concrete column.

2. A nonuniform discretization scheme with a coarser mesh near the center of the column can

be used with an insignificant loss of accuracy. The recommended nonuniform discretization

strategy has 140 total fibers. The coarse mesh at the center of the column has a radius of

half the column depth with 10 transverse divisions and 2 radial divisions. The denser core

concrete mesh has 20 transverse divisions and 5 radial divisions, while the cover concrete

has 20 transverse divisions and 1 radial division.

11.2 ENVELOPE RESPONSE OF DISTRIBUTED-PLASTICITY COLUMN-MODELING
STRATEGY

A distributed-plasticity modeling strategy was described, calibrated, and evaluated based on the

envelope response of the element in chapters 3 and 4. In the proposed distributed-plasticity mod-

eling strategy, a nonlinear force-based fiber beam-column element, a zero-length bond section,

and an aggregated elastic-shear section were combined to model the flexural, bond slip and shear

components of the total tip deflection of a column. In this formulation, nonlinear deformations are

allowed to form anywhere along the height of the column. The following conclusions are made

about the envelope response of the proposed distributed-plasticity modeling strategy.

1. The proposed distributed-plasticity column-modeling strategy provided an accurate means

of estimating envelope response of the bridge columns. Key accuracy statistics are presented

in Table 11.1.

2. The optimal model parameters were as follows.

· Strain-Hardening Ratio, b = 0.01.
· Elastic and Inelastic Bond-Strength Ratios, λe = 0.9 and λi = 0.45.
· Development Bar Stress, σd = 0.25σy.
· Number of Integration Points, Np = 5 (Cantilever Columns), Np = 6 (Double Curva-

ture).
· Bond-Model Effective Compression Depth, dcomp =1/2 neutral axis depth at εc = 0.002.

188



· Shear-Stiffness Ratio, γ = 0.4.

3. The calculated response of the distributed-plasticity modeling strategy is not sensitive to the

integration scheme for columns with hardening section behavior. However, the calculated

local deformations varied with the integration scheme for columns with perfectly-plastic

section responses. For columns with degrading section responses, both the local deforma-

tions and global forces vary with the integration scheme. This subjectivity is due to strain

localizations that occur at the integration point with the maximum moment.

Table 11.1 Accuracy statistics for envelope response of column-modeling strategies

Distributed-Plasticity Lumped-Plasticity
Statistic Epush(%) S.R. M.R. D.R. Epush(%) S.R. M.R. D.R.

Mean 7.4 0.84 1.03 -0.51 7.9 1.00 1.05 -1.11
c.o.v. (%) - 15.6 7.9 - - 16.1 8.4 -

11.3 ENVELOPE RESPONSE OF LUMPED-PLASTICITY
COLUMN-MODELING STRATEGY

The envelope response of a lumped-plasticity column-modeling strategy was presented, calibrated,

and evaluated in chapters 5 and 6. In this approach, the nonlinear deformations of the lumped-

plasticity formulation are assumed to be concentrated in the prescribed plastic-hinge region of the

column. In the lumped-plasticity formulation, there are not separate model components to account

for the shear and bond slip components of the total tip deflection. The effects of these deformation

components are accounted for in the plastic-hinge length. The following conclusions were drawn

about the envelope response of the proposed lumped-plasticity formulation.

1. The envelope response of modern reinforced concrete bridge columns can modeled accu-

rately with the proposed lumped-plasticity modeling strategy. Key accuracy statistics are

provided in Table 11.1.

2. The effective cross-section stiffness, (EI)e f f , of the elastic portion of the lumped-plasticity

column model can be estimated as a function of the gross cross-section stiffness, EcIg, or

secant stiffness, (EI)sec = My/φy, with the following equations.

(EI)e f f = αcalc
g EcIg (11.1)
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(EI)e f f = αcalc
sec (EI)sec (11.2)

where Ec is the modulus of elasticity of the concrete, Ig is the moment of inertia of the gross

cross section. The parameters αg and αsec are stiffness modification ratios that account for

the effects of bar slip, shear deformation, and axial load. These parameters can be calculated

with the following equations.

αcalc
g = 0.15+0.03

L
D

+0.95
P

Ag f ′c
+0.08ρl ≤ 1.0 (11.3)

αcalc
sec = 0.35+0.1

L
D
≤ 1.0 (11.4)

where L is the distance from the point of maximum moment to the point of contraflexure,

D is the depth of the column, fy and db are the yield stress and diameter of the longitudinal

reinforcement, P is the axial load, Ag is the gross area of the cross section, f ′c is the concrete

compressive strength, and ρl is the longitudinal-reinforcement ratio.

3. The length of the plastic-hinge region of the lumped-plasticity column-modeling strategy

can be calculated with the following equation.

Lp = 0.05L+0.1
fydb√

f ′c
≤ L

4
(11.5)

11.4 CYCLIC RESPONSE OF MODELING STRATEGIES WITH STANDARD
MATERIAL MODELS

The initial calibration and evaluation of the proposed distributed-plasticity (Chapter 4) and lumped-

plasticity (Chapter 6) modeling strategies were based on the envelope response of the columns. In

Chapter 7, the cyclic response of the modeling strategies (with standard material models) was

evaluated, and inaccuracies were identified. Based on this study, the following conclusions were

made.

1. Similar accuracy can be obtained using either of the distributed-plasticity or lumped-plasticity

column-modeling strategies with standard cyclic material models (Giuffre-Menegotto-Pinto

steel and Karsan-Jirsa concrete). Key accuracy statistics are presented in Table 11.2. The

mean values of the force errors (E f orce) were 16.1% and 15.7% for both the distributed-

plasticity and lumped-plasticity models, respectively. The mean values of the energy errors
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(Eenergy) were -23.7% and -19.9% for the distributed-plasticity and lumped-plasticity mod-

els, respectively.

2. The proposed modeling strategies with standard cyclic material models accurately predict the

cyclic response of the columns at low levels of ductility and cycling. However, the models

failed to capture the effects of degradation due to cycling at high levels of ductility.

Table 11.2 Accuracy statistics for cyclic response of column-modeling strategies

E f orce (%) Eenergy (%)
Modeling Strategy (Steel Model) mean min max mean min max

Distributed-Plasticity (Standard) 16.1 6.6 44.7 -23.7 -109.7 13.4
Lumped-Plasticity (Standard) 15.7 6.5 45.1 -19.9 -112.7 20.7
Lumped-Plasticity (Mohle and Kunnath) 12.6 5.9 23.9 -4.5 -47.2 31.6

11.5 IMPROVED CYCLIC MATERIAL MODELS

The cyclic modeling inaccuracies identified in Chapter 7 were addressed in Chapter 8. A steel

material model proposed by Mohle and Kunnath (2006), which accounts for degradation due to

cycling, was presented, calibrated, and evaluated. A concrete model that accounts for imperfect

crack closure was also developed and evaluated in this chapter. The following conclusions were

made based on the results of this study.

1. The use of a more complex steel constitutive model (Mohle and Kunnath 2006), which in-

cludes degradation due to cycling, improved the accuracy of the lumped-plasticity column-

modeling strategy (Table 11.2). The mean force error (E f orce) decreased from 15.7% with

the standard steel model to 12.6% with the Mohle and Kunnath (2006) steel model and cal-

ibrated parameters (Cf = 0.26 and Cd = 0.45). The mean energy error (Eenergy) improved

from -19.9% to -4.5%.

2. The distributed-plasticity modeling strategy is susceptible to strain concentrations in perfectly-

plastic or degrading members (Section 11.2). Therefore, the Mohle and Kunnath (2006) steel

constitutive model should be used to model degradation due to cycling only in the lumped-

plasticity column-modeling strategy.

3. The modification to the standard Karsan and Jirsa cyclic material behavior to account for

imperfect crack closure did not significantly affect the accuracy of the proposed modeling
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strategies.

11.6 COLUMN FLEXURAL DAMAGE

In Chapter 9, a series of damage models were developed that link three engineering demand param-

eters (drift ratio, plastic rotation, longitudinal strain) with three damage states (cover spalling, bar

buckling, and bar fracture). Table 11.3 summarizes this study and provides key accuracy statistics.

Table 11.3 Comparison of damage estimates

∆meas
dam /∆calc

dam

Damage State E.D.P. Equation mean cov (%)

Cover Spalling
∆calc

sp /L (% ) 1.6 (1−P/Ag f ′c) (1+L/10D) 1.07 34.9

(29 columns) θcalc
p sp (%) 1.20 0.98 33.9

εsp 0.008 0.99 34.7

Bar Buckling

∆calc
bb /L (% ) 3.25

(
1+150ρe f f db/D

)
(1−P/Ag f ′c) (1+L/10D) 1.01 24.7

θcalc
p bb (% ) 2.75

(
1+150ρe f f db/D

)
(1−P/Ag f ′c) (1+L/10D) 1.01 24.3

(33 columns)
εcalc

bb 0.045+0.25ρe f f ≤ 0.15 1.00 23.6

Bar Fracture

∆calc
b f /L (% ) 3.5

(
1+150ρe f f db/D

)
(1−P/Ag f ′c) (1+L/10D) 0.97 20.0

θcalc
p b f (% ) 3.0

(
1+150ρe f f db/D

)
(1−P/Ag f ′c) (1+L/10D) 0.97 19.6

(20 columns)
εcalc

b f 0.045+0.30ρe f f ≤ 0.15 0.96 20.5

1. Similar levels of accuracy can be obtained by estimating the onset of damage using drift

ratio, plastic rotation, or longitudinal strain (Table 11.3). The coefficients of variation for the

ratios of measured to calculated displacements at the onset of spalling were approximately

35% for all three methods. The coefficients of variation for the onset of bar buckling using

the three methods were approximately 24%. For bar fracture, the coefficient of variations

were approximately 21% for all three methods.

2. The drift-ratio equations provide a practical correlation between an engineering demand pa-

rameter and key damage states. However, the application of this method is limited to tests

in which the the distance to the point of contraflexure does not vary, the axial load does not

vary, and there is only uniaxial bending. Although estimates based on plastic rotation suffer

192



from the same limitations, plastic rotation is a more versatile engineering demand parame-

ter because it is more easily calculated in a complex model. The damage estimates based

on longitudinal strain overcome the limitations of the drift-ratio and plastic-rotation equa-

tions, however they require a more detailed model in which strains can be monitored, and

the calculated strains depend on the assumed plastic-hinge length.

11.7 APPLICATION OF COLUMN-MODELING STRATEGIES TO MORE COMPLEX
STRUCTURES

The proposed modeling strategies were evaluated for use in more complex structures in Chapter 10.

The models were first used to model the columns of a two-column bent test performed at Purdue

University (Makido 2006). The modeling strategies were then used to model the dynamic response

of shake-table specimens tested at the University of California at Berkeley (Hachem, Mahin, and

Moehle 2003). The following conclusions were drawn from this study.

1. The proposed modeling strategies provided an accurate means of predicting the force-

deformation response and damage progression of the column bent tests (Table 11.4). The

stiffness estimates improved by using the bond properties identified by Ranf (2006). The

Mohle and Kunnath (2006) steel constitutive model provided a more accurate estimate of

cyclic response.

Table 11.4 Accuracy statistics for bent specimen

Strategy Steel Model Epush(%) S.R. M.R. D.R.(%) E f orce(%) Eenergy(%)

Distr. Standard 11.9 0.7 1.0 8.8 21.0 -63.9
Distr., Ranf Bond Standard 8.4 0.9 1.0 8.9 19.3 -50.0
Lumped Standard 7.6 0.9 1.1 8.2 19.8 -56.3
Lumped Mohle and Kunnath 8.5 0.9 1.0 8.1 13.4 -33.5

2. The proposed column-modeling strategies provided an accurate means of estimating re-

sponse maxima, hysteretic energy dissipation, and cover spalling in the shake-table spec-

imens tested at the University of California at Berkeley. However, the models were not

successful at predicting residual displacements nor the effect of cumulative deformation on

bar buckling.
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3. Similar accuracy can be obtained by using either the distributed-plasticity or lumped-plasticity

column-modeling strategies. It is necessary to use the distributed-plasticity modeling strat-

egy when the location of the yielding is unknown (e.g., modeling a column partially em-

bedded in the soil). In situations in which the location of the plastic hinge is known (e.g.,

cantilever column), the lumped-plasticity method is preferred. This method is more efficient

(only one nonlinear integration point) and the localization issues are governed by a calcu-

lated plastic hinge (which has a physical interpretation), rather than a selected integration

scheme.

11.8 RECOMMENDATIONS FOR FURTHER WORK

The following suggestions are made for further work.

1. The effect of cycling on cover spalling, bar buckling, and bar fracture should be evaluated

further.

2. The return drift and return strain models proposed by Freytag (2006) to estimate bar buckling

should be used to evaluate the column tests in the bridge column dataset used in this report.

3. The effect of varying the damping ratio on the calculated response of the shake-table speci-

mens should be evaluated.

4. The imperfect crack closure model proposed in Chapter 10 should be improved to allow

compressive stress while the concrete is still in the tensile strain region.
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