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ABSTRACT 

This report describes a practical analytical model that can be used for the seismic evaluation of 

unreinforced masonry (URM) infill walls located within a reinforced concrete (RC) frame. The 

model, which consists of diagonal beam-column members utilizing fiber element cross sections, 

is suitable for use in a nonlinear time history analysis. The model considers both the in-plane (IP) 

and out-of-plane (OOP) response of the infill, as well as the interaction between IP and OOP 

capacities. The behavior is elastoplastic, and limit states may be defined by deformations or 

ductilities in the two directions. These limit states may be chosen to conform to various codes 

and guidelines, or they may be developed independently by the engineer. The model is composed 

of elements that are available in commonly used structural analysis software programs, and is 

based on small displacement theory, so it is rather straightforward to implement. For each infill 

wall panel modeled, one additional degree of freedom and two beam-column members are added 

to the overall structural model. 

This report is part of a larger research program of investigation into RC frames with 

URM infill, carried out in recent years at the University of California, Berkeley. Some of the 

previous work is described, including a previously proposed strut and tie (SAT) model. The 

behavior of that SAT model is investigated, and it is found that under certain circumstances, 

problematic issues are encountered. 

The newly proposed infill wall model is idealized as a single diagonal beam-column 

member, composed of two beam-column elements, with a node at the midspan. The midspan 

node is assigned a mass in the OOP direction to account for the inertial forces in that direction. 

The beam-column elements used in this report are force-based elements with inelastic behavior 

concentrated at the hinge regions. These regions are modeled using inelastic fibers, whose 

strength and locations are calculated to produce the desired IP-OOP strength interaction 

relationship for the panel. The interaction relationship is based on previous work conducted in an 

earlier phase of the research program. Additionally, the elastic stiffness and area of the fibers are 

determined such that the IP and OOP elastic dynamic properties of the infill panel and the overall 

model strength properties are preserved. The performance of a simple one-panel model is 

demonstrated using static pushover and dynamic analyses. The performance of the model is 
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shown to be generally satisfactory. However, possible limitations and drawbacks of the model 

are discussed, as well as possible improvements. 

The proposed infill model is incorporated into a larger five-story model of a RC moment 

frame building with URM infill walls. The building model is the same as that used for earlier 

investigations in the research program. It is subjected to 20 sets of ground acceleration time 

histories, at five different levels of spectral acceleration. Collapse of the infill panel is assumed 

to occur at critical displacement ductilities in the IP and OOP directions, with interaction 

between the ductilities considered. Fragility functions, giving the probability of collapse as a 

function of spectral acceleration level, are calculated. These functions consider only the effect of 

record-to-record variability. Finally, the strength variability of the URM infill walls is considered 

using a first-order, second-moment (FOSM) analysis, and it is shown that the effect of this 

strength variability is minor compared with that of record-to-record variability. The effect of 

disregarding the interaction between IP and OOP strength, which is a common design practice, is 

discussed. The fragility functions produced in this report are found to give failure probabilities 

lower than those determined by earlier work in the research program, which assumed failure 

based on IP and OOP elastic forces rather than inelastic deformations. Conclusions and 

suggestions for further investigations are given at the end of the report. 
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1 Introduction 

1.1 GENERAL 

Reinforced concrete (RC) frames containing unreinforced masonry (URM) infill walls are a 

commonly used structural system, both in the United States and around the world.  Many 

buildings of this type have performed poorly during earthquakes. In the United States such 

construction is no longer permitted; however, many such structures still exist. Kircher et al. 

(2006) indicate that concrete frames, including those with and without infill, represent one of the 

three major sources of seismic risk in the San Francisco region (the other two sources being 

URM bearing wall buildings and soft-story wood-frame structures). Jaiswal et al. (2002) report 

that RC frames with URM infill are currently being built in India in violation of the building 

codes, and that they performed poorly during the 2001 Bhuj earthquake. The 2008 earthquake in 

Wenchuan, China, provides numerous examples of frame-wall interaction (Li et al. 2008; see 

Figs. 1.1–1.2). 

 

Fig. 1.1  Infill damage after Wenchuan, China 2008 earthquake (Li et al. 2008).  
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Fig. 1.2  Infill damage after Wenchuan, China 2008 earthquake (Mosalam and Sitar 2008). 

The general outlines of the behavior and vulnerabilities of structures with URM infill are 

well known. Paulay and Priestley (1992) point out that infill walls may have beneficial or 

detrimental effects on the behavior of the overall structure. The beneficial effects derive from the 

fact that the infill walls add, at least during the initial stages of an earthquake, to the lateral force-

resisting capacity and damping of the structure. However, the URM is brittle and prone to early 

failure due to in-plane (IP) loads, and interacts with the surrounding frame in such a way that 

column shear failure is made more likely. Also, the infill wall failure may lead to the formation 

of a soft story and consequent column failure. Failure of the URM walls in the out-of-plane 

(OOP) direction leads to life-safety hazard from falling debris. It is also known that there is an 

interaction effect between the IP strength of the wall and the OOP strength, with load in one 

direction reducing the strength in the other. This interaction is generally ignored in current 

engineering practice, such as FEMA 356 (FEMA 2000). 

A number of conceptual models have been proposed to simulate the behavior of RC 

frame and infill wall structures (Hashemi and Mosalam 2007). This diversity of models reflects 

an epistemic uncertainty, one that stems from the rather complex interaction between the flexure-

dominated frame and the shear-dominated infill wall panel. It is recognized that there is a need 

for a simple analytical model for the infill, one that can be incorporated into a model of the 

overall structure, and that will produce acceptably accurate responses. This report attempts to 

address that need. 
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1.2 BACKGROUND AND OBJECTIVES 

This report is part of a larger study of the behavior of RC frames with URM infill walls, carried 

out in recent years at the University of California, Berkeley. An overview of the program of 

study is shown in Figure 1.3, and a detailed discussion of the program is given in Hashemi and 

Mosalam (2007), Elkhoraibi and Mosalam (2007), and Talaat and Mosalam (2008). 

The subject matter of this report is contained in Block 14 and, to a lesser extent, Block 

16.  Block 14, “Development of new SAT models,” refers to the development of a simple strut 

and tie model of infill wall behavior. This work was begun by Hashemi and Mosalam (2007), 

who proposed a simple inelastic SAT model, one which simulates both the IP and the OOP 

responses of a panel, and incorporates the interaction relationship between the IP and OOP 

strength of the panel. This relationship was derived from a detailed nonlinear finite element 

analysis (FEA) of a single infill panel. Block 16, “Reliability analysis for performance evaluation 

of RC structures with URM infill walls” refers to the use of the proposed URM infill wall model 

in an overall structural model, and the calculation of fragility functions, which give the 

probability of failure as a function of the earthquake intensity measure. Hashemi and Mosalam 

(2007) have begun work on this subject also, using an elastic infill model, which therefore did 

not include the inelastic behavior of their SAT model. 

The objectives of this report are 

1. To perform a detailed evaluation of the SAT model proposed by Hashemi and Mosalam 

(2007); 

2. To improve the numerical stability and behavior of that model, and to investigate and 

demonstrate in detail the behavior of an improved model; and 

3. To incorporate the improved infill wall model into an overall model of a representative 

building, and to calculate vulnerability functions for the infill panels themselves, as well 

as for selected global responses of the building. 
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Fig. 1.3  Overview of study program for RC frames with URM infill. 

1.3 OUTLINE OF THE REPORT 

Chapter 2 contains an evaluation of the SAT infill wall model previously proposed by Hashemi 

and Mosalam (2007). This evaluation includes an application of two types of static pushover 

analysis to the proposed model. In this pushover analysis, bidirectional loading is applied in the 

IP and OOP directions. One type of the pushover analysis is the “conventional” pushover, in 

which a constant force is applied in one direction, with a monotonically increasing displacement 

applied in the other direction. The other type of the pushover analysis is a “double displacement” 

pushover, in which monotonically increasing displacements are applied in both directions. The 

results of these analyses are then discussed, and conclusions are drawn.  

Chapter 3 presents an improved infill wall model, consisting of a diagonal beam-column 

element, with a cross section composed of nonlinear fiber elements. The infill wall panel 

stiffness, strength, and limit state deformation are based on values provided by other means, such 
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as FEMA 356 (FEMA 2000) or experimental results if available. The derivations of the 

properties of the model are outlined in detail, such that the dynamic properties of the infill model 

match those calculated using a vertically spanning, distributed mass model of the infill panel. 

The behavior of a simple one-panel model is then demonstrated, using conventional pushover, 

fiber-section cyclic pushover, and time history analyses. The responses are presented, the 

characteristics of the model are discussed, and limitations and opportunities for further 

developments are outlined.  

Chapter 4 utilizes the improved infill wall model in an example vulnerability analysis. 

The model is incorporated into an overall model of a five-story RC frame building with infill 

walls, and analyzed for its response to a suite of twenty ground motion time histories. For each 

analysis, the time histories are scaled to a common spectral acceleration, Sa, measured at the 

fundamental period of the building. The analysis is performed for each of five different values of 

Sa. From the results of these analyses, the probability that a selected infill wall panel will exceed 

a threshold value, taken in this study as the FEMA 356 (FEMA 2000) “collapse prevention” (CP) 

limit state, is determined as a function of Sa. Finally, a vulnerability analysis is carried out for a 

global response of the building. For this case the interstory drift ratio (IDR) is examined. 

Since the analysis just described assumes that all the structural properties are 

deterministic with exactly defined parameters, the resulting uncertainty is a product of only the 

record-to-record uncertainty in the time histories. This is also known as ground motion profile 

(GMP) uncertainty. In order to illustrate the effects of other uncertainties, an analysis is made to 

determine the contribution to infill wall collapse uncertainty due to uncertainty in the infill 

strength. This uncertainty is calculated using a first-order, second-moment (FOSM) approach, 

and is then compared to the GMP uncertainty.   

Chapter 5 presents a summary of the report, conclusions, and opportunities for further 

improvements in the infill wall model and the vulnerability study. 

1.4 REPORT CONTRIBUTIONS  

This report takes a step forward in the practical modeling and analysis of URM infill walls. 

Three items of particular interest are: 

1. A theoretical development of the OOP properties (mass, stiffness, strength) of the model 

for the infill panel is given in Appendix D. The use of these properties ensures that the 
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global responses of the overall building model (of which the infill panel model is a 

subsystem) will be closely approximated, relative to a case in which the panels are 

modeled in detail such as using finite elements.  

2. In Chapter 3, a methodology is derived for calculating the strength properties of the 

cross-section fibers used in the beam-column element that comprises the infill panel 

model. The methodology, based on a straightforward calculation, ensures that the target 

interaction relationship between IP axial strength and OOP bending strength for the infill 

panel model will be satisfied under all conditions of load and deformation. This 

methodology has the potential for a wider field of application than is illustrated here. 

3. An example vulnerability study, using the proposed infill model as part of a larger RC 

moment frame building model, is presented in Chapter 4. The study calculates the 

probability of infill wall collapse as a function of spectral acceleration. It considers both 

the IP and OOP capacities of the infill wall, as well as interaction between them. In this 

study, the CP limit state capacities are defined as a function of the infill wall 

deformations.  
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2 Review of Previously Proposed Strut and  
Tie Model 

As discussed in Chapter 1, this report is part of a larger program, investigating the seismic 

behavior of reinforced concrete (RC) frames with unreinforced masonry (URM) infill walls. In 

previous work, Hashemi and Mosalam (2007) proposed a strut and tie (SAT) model that would 

account for both the in-plane (IP) and out-of-plane (OOP) responses of the infill, including the 

interaction between the two directions. This chapter examines the behavior of that model. 

2.1 DESCRIPTION OF STRUT AND TIE MODEL 

The SAT model proposed by Hashemi and Mosalam (2007) is shown in Figure 2.1. The model 

consists of eight compression-only struts, arranged as shown, connected with a tension-only tie 

at the center point of the infill panel. The nature of the compressive stress-strain relationship is 

indicated in the figure. From zero to peak stress the relationship is parabolic, while the post-peak 

relationship is linear, down to a constant residual resistance. The model behavior is calculated 

based on finite displacements of the degrees of freedom, and is therefore geometrically as well as 

materially nonlinear. Using monotonic pushover analyses, Hashemi and Mosalam (2007) have 

calibrated the properties of the model so that its IP, OOP, and interaction behavior matches those 

of a nonlinear finite element model of a prototype infill panel. It is this calibrated model which is 

examined in the following sections of this chapter. Detailed properties of the model are given in 

Appendix B. 
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Fig. 2.1  Strut and tie model (Hashemi and Mosalam 2007). 

2.2 COMPUTATIONAL MODELING AND ANALYSIS OF STRUT AND TIE 
MODEL 

In order to examine the behavior of the SAT model, a computational analysis model is created 

using the program MathCad (MathSoft 1997). The properties of the model are identical to those 

described by Hashemi and Mosalam (2007). The deformation and force relationships of the 

model are given in Appendix A. There are essentially two degrees of freedom (DOFs) in the 

SAT model: the IP longitudinal deflection and the OOP transverse deflection. There are also two 

methods by which static pushover analysis may be conducted. One method may be thought of as 

a more conventional approach, in which a constant force is applied to one DOF, while a 

monotonically increasing displacement is imposed on the other DOF. Another, less common 

method, is to impose deformations on both DOFs. This latter method may be called the “double 

displacement pushover” method. 

The double displacement method has the attractive feature that, given the displacements, 

the member deformations and forces may be calculated directly, without a requirement for 

iteration. The resultant forces, HP  and NP  may then be determined directly from equilibrium, 

where 

=HP  resultant IP horizontal force, and 
=NP resultant OOP horizontal force. 
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For this study the displacements are applied monotonically to the IP and OOP DOFs in a 

ratio that is held constant for a given case, from zero displacements to their maximum values. 

There are six separate cases considered, ranging from pure IP displacement to pure OOP 

displacement, with a variety of intermediate ratios.   

The maximum OOP displacement is chosen as 10 in., since this is the “snap-through” 

displacement, beyond which all eight of the struts are on one side of the wall’s midplane. The 

maximum IP displacement is chosen as 3 in., since preliminary testing of the model indicates 

that a unidirectional IP displacement of about that value will reduce the IP force capacity to zero. 

The imposed double displacement paths are shown in Figure 2.2. An example MathCad analysis, 

for the case where both the maximum IP displacement and the maximum OOP displacement are 

3 in. (Case 2), is given in Appendix B.  

 

 

Fig. 2.2  IP-OOP displacement loading paths for double-displacement pushover analysis. 

The resulting IP-OOP force paths for the six cases are shown in Figure 2.3. Also shown 

in that figure is the envelope interaction curve developed by Hashemi and Mosalam (2007). It is 

noted that the cases where the displacements are purely in-plane or out-of-plane produce 
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corresponding unidirectional forces, as expected. However, the intermediate cases produce more 

complex force paths, with some rather surprising results. A few of the unexpected results, along 

with their explanations, are discussed in the following paragraphs. 

 
Fig. 2.3  IP-OOP force paths. 

For Case 2, where the displacement vector has equal IP and OOP components, the out-of-

plane force, PN, is positive at first. This is expected, since the out-of-plane displacement, NΔ , is 

also positive. However, as the displacements increase, PN becomes negative. This behavior is 

perhaps somewhat surprising. A closer study of the analysis results indicates that the four strut 

elements that comprise the “compression diagonal” remain in compression during the entire 

duration of the displacement loading (see Fig. 2.4), since the deformed geometry of the frame is 

dominated by the in-plane displacement. All the elements in the “tension diagonal” show tensile 

strain throughout, and therefore do not contribute to the force response.  

During early stages of loading, strut elements 1 and 7 carry more load, since their strains 

are higher than elements 2 and 8, due to the fact that IP and OOP strains are additive in elements 

1 and 7 and subtractive in elements 2 and 8. Thus, PN is positive as shown. However, as the 

loading proceeds, elements 1 and 7 reach their maximum capacities (corresponding to maximum 
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stress of 2.46 ksi), and their loads thereafter decline. Elements 2 and 8 continue to increase in 

load, eventually becoming larger than elements 1 and 7.  At some point, the sign of PN reverses. 

The important point to notice is that while the forces do not exceed the interaction envelope in 

the first quadrant, they do exceed it in the second. This must be viewed as a problem with the 

model behavior. 

7

82

PN

1

Undeformed Shape

Deformed Shape

 

Fig. 2.4  Displacement relationships in compression diagonal. 

For cases where the displacement loading pattern is almost purely out-of-plane, e.g., Case 

5, another situation develops in which the in-plane force HP  is positive at first and then becomes 

negative. Here, all strut elements on one side of the model with respect to the midplane remain in 

compression throughout the loading, while the other elements remain in tension (hence they have 

zero force). As displacement loading begins, the two compression elements in the “compression 

diagonal” have higher loads than the two compression elements in the so-called “tension 

diagonal," since their strains are larger.  This produces a positive value of PH. As loading 

proceeds, the compression diagonal struts exceed their maximum strengths, lose load, and the 

resultant value of PH changes sign.  

The results of the more conventional pushover analyses, in which the OOP forces are 

held constant, while the IP displacement is increased monotonically, are shown in Figures 2.5–

2.7.  This form of analysis is somewhat more difficult to accomplish, since no solution with 

finite OOP displacements exists above a maximum IP displacement, which varies with out-of-

plane load. Attempting to exceed that maximum displacement will result in a non-convergence 

(as OOP displacement goes to infinity), so that displacement must be determined before the start 

of the analysis. Although a subroutine could be written, it was found most convenient for this 
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study to find the maximum in-plane displacement graphically, as shown in the sample MathCad 

workbook given in Appendix C. Once the maximum in-plane displacement is found, the analysis 

proceeds in a relatively straightforward manner, using an iterative procedure to find the out-of-

plane displacement corresponding to the given in-plane displacement and out-of-plane force.  

The last step is to use the displacement vector to calculate the in-plane force at each step. 

Figure 2.5 shows the conventional pushover curves for the SAT model. The IP force, PH, 

is given as a function of the IP displacement, HΔ , with the constant OOP force, PN, as noted in 

the legend. For each curve, the maximum displacement shown is the last displacement at which 

the solution is stable. Figure 2.6 shows the IP-OOP displacement path during the pushover; this 

figure corresponds to Figure 2.2 above.  Figure 2.7 shows the IP-OOP force path, and 

corresponds to Figure 2.3. 

 
Fig. 2.5  IP force vs. IP displacement, conventional pushover analysis with constant OOP 

forces as noted. 
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Fig. 2.6  IP-OOP displacement paths.  

 
Fig. 2.7  IP-OOP force paths. 
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 Again, some interesting features present themselves. On some of the displacement curves 

(e.g., Fig. 2.6, =NP 7.5 k), a break in slope is observed at fairly low displacements. The break 

also appears on the corresponding load deflection curve (Fig. 2.5, =NP 7.5 k). At first it was 

suspected that this break represents a numerical problem with the analysis. However, closer 

inspection of the analysis output (See the MathCad file, Appendix C) reveals that the break 

occurs at the load steps in which some of the struts are transitioning from compression to 

tension, or vice versa.  While an analysis based on small displacement theory would predict that 

exactly four struts would be in compression at all times, the finite displacement, i.e., “exact," 

theory used here shows that there is a point during the transition in which there are only two 

struts in compression, thus leading to lower stiffness. While this effect is theoretically 

interesting, it is not anticipated that it would have a significant effect on the overall analysis. 

2.3 CONCLUSIONS 

As discussed above, the empirically derived SAT model proposed by Hashemi and Mosalam 

(2007) exhibits some problematical behaviors under certain conditions. For instance, it is 

possible that the IP and OOP force path may violate the chosen interaction relationship. 

Additionally, the model may become unstable under combinations of high IP displacement and 

high OOP loads. Also, issues such as cyclic behavior and hysteretic damping (intended or not 

intended) need to be addressed. Based on these concerns, an alternate infill model is presented in 

Chapter 3. 
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3 Proposed Fiber-Section Interaction Model 

Given the problems associated with the strut and tie (SAT) infill model, discussed in Chapter 2, 

it is decided to develop a new model with fiber discretization. In this model the inherent 

interaction between the in-plane (IP) and out-of-plane (OOP) responses are explicitly addressed 

in the discretization process of the cross section. A sketch of this model is shown in Figure 3.1. 

For each infill panel, representing a single bay in a single story, the model consists of one 

diagonal member. That member is composed of two beam-column elements, joined at the 

midpoint node. This node is given a lumped mass in the OOP direction. The surrounding frame 

elements (dashed lines) are not part of the proposed infill panel model, and are shown in the 

figure for reference only. Such elements are handled separately using well-known modeling 

techniques of framed structures. The infill model takes advantage of the ability, e.g., using 

OpenSees (Mazzoni et al. 2006), to model a cross section as an arbitrary collection of nonlinear 

fiber elements. The procedure for constructing this model is discussed in the following sections. 

A discussion of the theory for developing the equivalent OOP properties of the model is given in 

Appendix D. Detailed calculations are given in Appendix E, and a summary of the calculation 

steps is given in Table 3.2, at the end of Section 3.5 of this chapter. The structural dimensions 

and material strengths for the infill panel and surrounding beams and columns in the example 

adopted for this chapter are identical to those used by Hashemi and Mosalam (2007) and are also 

included for completeness in Appendix E.  

It should be pointed out that the formulation of the proposed model is different from that 

used by Hashemi and Mosalam (2007), or by FEMA 356 (FEMA 2000), in that it uses only one 

diagonal member rather than the two compression-only diagonal struts used in those references. 

This is because, as will be seen later, using only one diagonal member is sufficient in order to 

satisfy the IP-OOP interaction relationship. Because of this, the proposed model uses a diagonal 

member with both tension and compression strength. This single diagonal member approach 

causes a somewhat different distribution of forces in the surrounding structure. However, if the 
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floor diaphragms are relatively stiff and strong, as is often the case, the consequences of this 

simplification are expected to be minor.    

 

Fig. 3.1  Proposed infill model using beam-column elements with fiber discretization. 

3.1 MODEL OBJECTIVES 

It is desirable for the fiber-section model to exhibit the following attributes, relative to the actual 

infill wall that it represents: 

1. For pure IP behavior, the model should provide a prescribed axial stiffness and strength 

(specified later in this chapter). 

2. For pure OOP deflections, the model should have the same natural frequency as the infill 

wall. Locally, the model should produce the same support reactions, where it is originally 

attached to the surrounding structure, for a given support motion. Moreover, it should 

exhibit initial yielding at the same level of support motion that causes the infill wall to 

yield. 

3. For combined IP and OOP behavior, the model should exhibit the specified strength 

interaction (discussed later) between IP strength and OOP strength. 

4. For simplicity, in the post-yield region, the model is designed to behave in a perfectly 

plastic manner, i.e., there is no degradation of the stress in the model materials with 

increasing strain. Although this simplification is not realistic in general circumstances, 
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for small ductilities, as expected in unreinforced masonry (URM) walls, the 

simplification is acceptable and is consistent with the assumptions of documents such as 

FEMA 356 (FEMA 2000). As will be shown, it is necessary to track the ductilities 

resulting from the analysis model, and to recognize that the member has failed when it 

exceeds a specified ductility capacity. This is performed in the post-processing phase of 

the analysis, i.e., this is not conducted internally in the model formulation. The 

consequences of this simplification will be discussed in Section 3.7. 

3.2 IN-PLANE PROPERTIES 

The in-plane behavior of the infill panel is modeled by a diagonal strut, following the procedures 

given in Section 7.5 of FEMA 356 (FEMA 2000). The strut is given a thickness (normal to the 

wall), inft , equal to the actual infill thickness [in]. The width of the strut,  a , is given by Equation 

7-14 in FEMA  356 (FEMA 2000), and reproduced below: 
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where colh  is the column height between centerlines of beams [in], infh  is the height of infill panel 

[in], feE  and meE  are the expected moduli of elasticity of the frame and infill materials, 

respectively [ksi]. colI  is the moment of inertia about the out-of-plane axis of the column cross 

section [in.4]. infL  is the length of the infill panel [in], infr  is the diagonal length of the infill panel 

[in], θ  is the angle whose tangent is the infill height-to-length aspect ratio [radians], i.e., 

infinftan Lh=θ , and 1λ  is a coefficient used to determine the equivalent width of the infill strut, 

a . Application of the above equation to the case studied in Hashemi and Mosalam (2007) 

produces a value for =a 16.8 in.. In order for the present study to be comparable to Hashemi and 

Mosalam (2007), meE  is taken as 1770 ksi, and inft  is taken as 3.75 in., matching their values. 

Based on the values of these parameters, the stiffness of the equivalent strut, infk , is calculated as  

616.7 kip/in., and the equivalent area of the diagonal element, elemA , is 67.8 in.2 (see Appendix E 

for more details of the calculations).   
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The axial strength of the equivalent strut of the infill panel for pure IP loading, 0AP , is 

determined by transforming the expected infill shear strength, ineV , determined by using the 

methodology given in Section 7.5.2.2 in FEMA 356 (FEMA 2000): 

 nmeine AvV =  (3.3) 

where nA  is the area of the net mortared/grouted horizontal section across the infill panel, and 

mev  is the expected shear strength of the masonry infill (see Appendix E for details). 

Accordingly, the axial strength of the diagonal member is obtained as follows: 

 θcos0 ineN VP =  (3.4) 

For the case studied by Hashemi and Mosalam (2007), =0NP 55.3 kips. Dividing this 

value by the axial stiffness, infk , gives an axial deflection at “yield,” ==Δ inf00 kPNAy 0.09 inch. 

The IP horizontal deflection at yield is then =Δ=Δ θcos00 AyHy 0.11 inch. 

Based on the axial strength of the strut and its inclination, θ , the resulting horizontal IP 

resistance of the infill model, === θcos00 AineH PVP 46.0 kips. Since, as discussed earlier, the 

infill panel is modeled with only one diagonal strut, but has equal capacity for loading in either 

the positive or negative IP horizontal direction, the axial capacity of the member is identical in 

tension and compression. 

FEMA 356 (FEMA 2000) also enables calculating of the IP horizontal displacement of 

the wall at the “collapse prevention” (CP) limit state. Using Table 7-9 and Section 7.5.2.3.4 of 

FEMA 356 (FEMA 2000), the IP horizontal deflection at CP (for assumed ratio of frame to infill 

strengths 7.0≤= inefre VVβ , where the frame is assumed to have small strength compared to the 

infill panel), and for infill panel aspect ratio 5.15.101150infinf ≈=hL , is calculated as 

=Δ 0Hcp 0.355 inch. From this estimate, the implied ultimate horizontal displacement ductility is 

3.311.0355.0000 ==ΔΔ= HyHcpHμ . As noted before, this CP limit state is not reflected in the 

behavior of the proposed model itself, since the fiber material does not degrade. However, 

potential attainment of the CP limit state is determined by post-processing of the calculated 

displacements. 
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3.3 OUT-OF-PLANE PROPERTIES 

The OOP strength of the URM infill wall is determined using the procedure in Section 7.5.3.2 of 

FEMA 356 (FEMA 2000). Based on arching action, the expected OOP capacity of the infill [psf] 

is given by 

 1447.0
infinf

2 ×=
th

fq me
ine

λ  (3.5) 

where mef  is the expected compressive strength of the masonry (2460 psi), and 2λ  is the 

slenderness parameter defined in Table 7.11 in FEMA 356 (FEMA 2000). For the case study 

structure from Hashemi and Mosalam (2007), 1.2775.35.101infinf ==th . The value of 2λ  is 

obtained by linear extrapolation from Table 7-11 of FEMA 356 (FEMA 2000) as 0.0087 (see 

Appendix E). Therefore, the OOP capacity is estimated as 79.3 psf. 

Since the infill weighs about 40 psf (total panel weight of approximately 4 kips), this 

represents a uniform acceleration capacity of approximately 2.0g. Using an effective cracked 

moment of inertia of one half the gross moment of inertia, the OOP first-mode natural frequency 

is estimated as 11.6 Hz. This estimate is based on assuming that the infill spans vertically with 

pinned connections at the top and bottom edges. The first-mode effective weight, 3.2 kips, is 

81% of the total weight of the infill panel (see Appendix D). This effective weight (divided by g) 

is used in the proposed model as an OOP-only horizontal mass at the midspan node. This ensures 

that the OOP reactions at the upper and lower nodes of the proposed model due to dynamic 

loading (e.g., earthquake) are consistent (within the reasonable assumption of dominance of the 

first mode of vibration) with those resulting from detailed continuum modeling of the actual 

infill wall, thus preserving the floor diaphragm displacements and accelerations. 

Knowing the concentrated mass and the frequency of the proposed model, the required 

equivalent stiffness, eqmIE , of the model beam-column member (with span equal to the infill wall 

diagonal) can be determined. For the case study structure, the value of the equivalent moment of 

inertia Ieq is determined to be 3824 in.4 (see Appendix E). Finally, the midspan yield moment of 

the member is calculated, such that the model element yields at the same level of support motion 

as the actual infill wall. This value is found to be 320.5 kip-in., corresponding to an applied OOP 

nodal force of 6.6 kips. 
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As with the IP case, the OOP “yield” displacement is calculated as the OOP load-

carrying capacity divided by the translational stiffness of the equivalent member (based on its 

bending stiffness). This value is 0.15 inch for the case study structure (see Appendix E). FEMA 

356 (FEMA 2000) provides a value of OOP displacement for the CP limit state. This value, 

taken as 5% of the infill height, results in a calculated displacement unrealistically greater than 

the thickness of the infill for the single wythe wall considered in the case study structure. As 

pointed out by Sharif et al. (2007), a rigid-body rocking model would predict that the OOP 

resistance of a URM wall would vanish at a displacement equal to its thickness. Since this value 

seems excessive, it is decided to define the OOP CP displacement ductility as 5.0. This implies 

an OOP displacement at CP of 0.75 inch, which is approximately 20% of the wall thickness. This 

value is judged to be more realistic and possibly somewhat conservative. 

3.4 CONSIDERATION OF INTERACTION EFFECTS 

The previous work by Hashemi and Mosalam (2007), based on a nonlinear finite element (FE) 

model of the infill panel, indicated that there is an interaction between IP and OOP capacities. In 

that study the interaction function was expressed as a third-degree polynomial. The polynomial 

coefficients have been derived to provide a best fit to the FE results. This has resulted in an 

interaction curve which is not convex at all points. Since the procedure used in this report for 

creating the fiber element section requires a convex curve (as discussed later), it is necessary to 

create an alternative interaction equation, one which will also provide a good match to the FE 

results.   

After some numerical experimentation, it is found that an interaction curve of the 

following form provides a good match to the FE model results, and is also convex. 
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where NP  is the OOP capacity in the presence of IP force, 0NP  is the OOP capacity without IP 

force, HP  is the IP capacity in the presence of OOP force, and 0HP  is the IP capacity without 

OOP force. The proposed relationship in Equation (3.6) is compared with the previously 

proposed third-degree polynomial, as well as the FE results, in Figure 3.2. It is clearly observed 

that the proposed relationship provides a better match to the FE results. 
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Fig. 3.2  Comparison of interaction curves for typical infill panel with FE results. 

Since the fiber-section model, as described later, has pinned connections to the 

surrounding structure, it is possible to use the ratio of the OOP bending moment strengths instead 

of the ratio of the OOP force capacities. Thus, the interaction may be expressed as a “P-M” 

interaction diagram. This fact is used in Section 3.5 when calculating the properties of the fibers 

in the model. 

Based on the results shown in Figure 3.2, it is decided to accept the proposed 3/2 power 

interaction relationship. It is to be noted that one of the limitations of the subsequent 

development is that it is assumed that the behavior of the infill wall is symmetric with respect to 

both IP and OOP behavior. Therefore, the adopted interaction curve is also doubly symmetric, as 

shown in Figure 3.3, expressed as a “P-M” interaction. 
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Fig. 3.3  P-M interaction curve of typical infill panel. 

Since the attainment of the CP limit state is defined by the maximum displacements (or 

ductilities) in the IP and OOP directions, it is necessary to postulate interaction relationships for 

the yield displacements and CP displacements. It seems reasonable to use the same 3/2 power 

curve for these as well. This is justifiable for the yield displacements, since elastic displacements 

are proportional to loads. For the CP displacement it is simply a matter of convenience; more 

research is required to better define the nature of this CP interaction. These relationships, 

normalized by the unidirectional yield displacements in the respective directions, are shown in 

Figure 3.4. Note that HΔ  is the IP horizontal displacement, NΔ  is the OOP horizontal 

displacement, and 0HyΔ  and 0NyΔ  are their respective yield values at zero load on the opposite 

direction. 

As mentioned previously, the interaction curve marked “CP” is not a property of the 

present model. Instead, it is invoked in subsequent post-processing of the analytical results. An 

analysis that shows the calculated displacement vector equaling or exceeding the CP curve will 

be deemed to have reached the collapse prevention limit state. 

 

 



  23

 
Fig. 3.4  Displacement limit-state interaction curves of typical infill panel. 

3.5 DEVELOPMENT OF THE FIBER-SECTION MODEL 

The infill model is composed of nonlinear beam-column elements that exist in many nonlinear 

structural analysis programs such as OpenSees. The nonlinear P-M hinge, which is located at the 

midspan of the diagonal, is modeled using a fiber section. A schematic layout of the cross section 

is shown in Figure 3.5. The local z-axis is horizontal, in the OOP direction, normal to the axis of 

the member, which is the local x-axis. The local y-axis is also normal to the member, and lies in 

the midplane of the infill wall. 
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Fig. 3.5  Fiber layout at plastic hinge region. 

First, the yield strength and location of each fiber is determined. This calculation is based 

on the chosen P-M interaction curve for the model (Fig. 3.3), discretized at a finite number of 

points, as shown in Figure 3.6. Consideration of the changes in the plastic axial force and 

moment that occur as the plastic neutral axis is “swept through” the section results in the 

following relationships: 
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where yiF  is the yield strength of the ith fiber, jP  is the axial (IP) load for the jth point of the 

interaction curve ( 1=j  is taken as 0P , the axial (IP) strength in the absence of applied OOP 

moment), iz  is the distance of the ith fiber from the centroid of the cross section, and jM  is the 

OOP moment strength of the cross section for the jth point of the interaction curve ( ptsNj =  is 

taken as 0M , the bending moment (OOP) strength in the absence of applied IP load). 
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Fig. 3.6  Calculating Ai and zi. 

The yield strength and location for each fiber ( i  counter) are calculated sequentially for 

different points on the interaction curve ( j  counter). These same values are then assigned to the 

symmetric fibers on the other side of the section centroid. We can obtain a unique cross-section 

discretization to represent the interaction curve by artificially making the two counters ( i  and j ) 

identical. In this way, ji = , and the total number of fibers in the cross section is equal to 

( )12 −ptsN  where ptsN  is the number of discrete points used to describe the first quadrant of the 

interaction curve. 

The sequence of calculations just described is the source of the convexity requirement. It 

is clear that by substituting Equation (3.7a) into Equation (3.7b), a convex relationship between 

P  and M  is needed to validate the underlying assumptions in the equations. 

Next, it is necessary to calculate the elastic properties of each fiber, i.e., the area and the 

elastic modulus. It is convenient to take the elastic modulus of all fibers as mE , the modulus of 

elasticity of the masonry. As discussed in Section 3.2, this value is taken as 1770 ksi for the case 

study structure, following Hashemi and Mosalam (2007). With this convenient and identical 

choice for the elastic moduli of all the fibers, the question of how much area to assign to each 

fiber becomes an underconstrained problem and hence does not have a unique solution. 

However, it is required that the areas assigned to the various fibers satisfy the following two 

conditions: 
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1. The total area of the cross section must equal the area derived in Section 3.2 based on 

the elastic axial stiffness, i.e., atA ×= inf . 

2. The section moment of inertia must equal the moment of inertia derived in Section 

3.3 based on the OOP stiffness of the model, i.e., eqI .   

These requirements may be expressed as follows: 
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 It is to be noted that while it is tempting to assign a common yield stress yf  to all fibers, 

and then calculate the area of each fiber as yyii fFA = , this will allow satisfaction of only one 

of the above conditions. Therefore, the above approach using Equations (3.8) is utilized in this 

study. 

The above two requirements may be satisfied in various ways. One way is to assume a 

relationship between the fiber area and its distance from the centroid of the cross section.  While 

a linear relationship is the simplest, no valid solution can be found. Instead, it is found that a 

power law relationship provides reasonable results. Therefore, the above two conditions are 

augmented by the following relationship (as a postulated form of the solution): 

 ηγ ii zA ×=  (3.9) 

where γ  and η  are constants to be determined such that Equations (3.8) are satisfied.  Finally, 

the yield stress for each fiber is calculated, based on the relationship iyii AFf = , and the fiber 

yield strain is determined from myiyi Ef=ε . 

A summary of the fiber properties of the case study structure used in this report is given 

in Table 3.1. It is to be noted that all the fibers are modeled in OpenSees as “Hardening” 

material, with a small post-yield modulus (less than 1% of the initial elastic modulus to promote 

numerical stability; see Fig. 3.19). Thus, the fiber properties are very close to elastic–perfectly 

plastic material.  A summary of the steps used for calculating the properties of the proposed case 

study model is given in Table 3.2. 
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Table 3.1  Summary of calculated fiber properties 

=i  
fiber 
index 

=iz distance 
from 

centerline (in) 

=iA area
(in.2) 

=yif yield 
stress (ksi)

=yiε yield 
strain 

1 19.1 2.44 0.69 0.00039 
2 10.0 4.31 0.75 0.00042 
3 7.1 5.83 0.78 0.00044 
4 5.1 7.73 0.81 0.00046 
5 2.7 13.62 0.88 0.00050 
6 -2.7 13.62 0.88 0.00050 
7 -5.1 7.73 0.81 0.00046 
8 -7.1 5.83 0.78 0.00044 
9 -10.0 4.31 0.75 0.00042 
10 -19.1 2.44 0.69 0.00039 

=mE  1770 ksi (elastic modulus for all fibers) 
=γ 32.273 in.2                          =η -0.875 

Table 3.2  Summary of calculation steps for infill fiber-section model. 

 

1. Determine the IP axial stiffness and strength of the diagonal member, based 

on FEMA 356. The ductility that will cause attainment of the Collapse 

Prevention limit state is also calculated. 

2. Calculate the OOP strength of the infill (e.g., in pounds per square foot), 

based on FEMA 356. Convert this to a bending moment strength at the 

midheight of the wall assuming a simply-supported vertical span of the infill 

wall. 

3. Calculate the fundamental OOP natural frequency of the infill wall, based on 

the same assumptions as in Step 2. Also calculate the fundamental modal 

effective mass (see Appendix D). The modal effective mass is used for 

assigning the OOP mass of the midspan node of the model. 

4. Calculate the required equivalent OOP moment of inertia of the diagonal 

beam-column elements, based on the principle that the OOP frequencies of 

the actual wall and the model must be equal. A nominal value, less than 1% 

of the OOP bending stiffness, is used for the IP bending stiffness, in order to 

provide numerical stability.  



  285

5. Calculate the OOP moment strength of the diagonal beam-column elements 

of the model, such that the model will experience incipient yielding at the 

same level of support motion as the actual infill wall panel (see Appendix 

D). 

6. Steps (1) and (5) have determined the axial strength and bending strength of 

the diagonal member without considering interaction. These values are used 

as the “anchors” for the chosen interaction relationship. 

7. Given the full interaction relationship, which is described by its anchors and 

its chosen shape (at a discrete number of points), the values of the individual 

fiber strengths, as well as their distances from the centroid, may be 

calculated, using Equations 3.7. The number of fibers used in the cross 

section is a function of the number of points in the discretized interaction 

shape. 

8. For a chosen value of fiber elastic modulus (common to all fibers), the 

required total area of fibers is calculated based on the required axial stiffness 

(see Step (1)). Similarly, the required moment of inertia is calculated, based 

on the equivalent moment of inertia (Step 4). Using a chosen relationship 

between individual fiber area and distance from the centroid (e.g., Equation 

(3.9)), the area of each individual fiber is calculated. 

9. Knowing the required strength of each fiber from Step (7) and the area from 

Step (8), the yield stress of each fiber may be calculated. The material is 

assumed to be elastoplastic, with a small post-yield stiffness to ensure 

numerical stability.   

10. The location, area, elastic modulus, and yield stress of each fiber are now 

known.  The fiber section is finally assembled using this information and 

standard procedures in many structural analysis programs such as OpenSees. 
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3.6 PERFORMANCE OF THE PROPOSED FIBER-SECTION MODEL 

In order to verify the performance of the proposed fiber section, a model similar to that shown in 

Figure 3.1 is created using OpenSees (Mazzoni et al. 2006). Dimensions and properties are given 

in Appendix E. The diagonal strut is modeled using two “Beam With Hinges” elements. The 

ends of the elements connected to the midspan node are represented by the nonlinear fiber 

section discussed in Section 3.5. The total hinge length (sum of the lengths of the hinges on both 

sides of the node) is taken as 1/10 of the total length of the diagonal. This length is chosen to be 

as short as possible in order to minimize the effect of sequential yielding of the fibers (i.e., to 

produce a relatively sharp yield point for the element), while at the same time providing a 

numerically stable solution. The central portions of the “Beams With Hinges” are elastic, and are 

assigned the elastic area and moment of inertia described previously. The ends of the elements 

that are attached to the surrounding frame are modeled as elastic hinges, and so are modeled with 

the normal elastic area, but with artificially low moments of inertia (0.001 in.4). The analysis is 

based on an assumption of small displacements. 

First, the model is analyzed for static pushover, applying a fixed static force in the OOP 

direction, then performing a displacement-controlled pushover analysis in the IP direction. An 

example result from this type of analysis is given in Figures 3.7–3.9. For the shown case, an 

OOP static force of 3 kips is applied to the model, which is then pushed in the IP direction under 

IP displacement control. Figure 3.7 shows the resulting pushover curve, i.e., IP shear force 

versus IP horizontal displacement. Figure 3.8 shows the corresponding path on the P-M diagram. 

Note that, as anticipated, the path does not exceed the prescribed interaction boundary. This is, of 

course, a consequence of the methodology of choosing the strength of the section fibers, as 

derived above.  Finally, Figure 3.9 shows the path of the displacements, normalized by the 

respective unidirectional yield displacements. As clearly observed, the shape of the displacement 

path is similar to that of the P-M path while the fibers are elastic; after crossing the yield surface 

the path bends more sharply. For the shown case, the displacement path also crosses the outer 

interaction surface, indicating that the infill wall has reached the CP limit state. 
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Fig. 3.7  In-plane pushover curve with PN = 3 kips. 

 

 
Fig. 3.8  P-M path from pushover analysis with PN = 3 kips. 
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Fig. 3.9  Displacement path from pushover analysis with PN = 3 kips. 

Next, the model is utilized for a cyclic pushover analysis. In this case, both the IP and 

OOP displacements are prescribed (i.e., this is a fiber-section controlled analysis).  The 

displacement loading regime is shown in Figure 3.10. As observed, both IP and OOP 

displacements are cycled in phase. The same information is presented, in different form, in 

Figure 3.11, which shows the prescribed displacement path on the NH Δ−Δ  plane. Figure 3.12 

presents the response path in the P-M plane. Note that although the displacements trace a straight 

line after crossing the yield interaction curve (as prescribed by the displacement control regime), 

the P-M path, rather than simply stopping at the interaction curve, changes direction and runs 

along the interaction curve. It is believed that this behavior is due to the fact that the location of 

the fully plastic neutral axis within the cross section is different from that of the elastic neutral 

axis, thus changing the MP  ratio as it shifts during loading. Eventually, the P-M path stops 

moving along the interaction curve, as seen in Figure 3.13 (the IP hysteresis curve) and in Figure 

3.14 (the OOP hysteresis curve), in the regions where the P  and M  curves are horizontal 

(constant). The P  and M  values do not leave this point until displacement unloading occurs. 
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This movement along the interaction curve also explains why the two hysteresis curves deviate 

from an elastic–perfectly plastic (EPP) shape, despite the fact that the fiber material itself is EPP. 

The implications of this non-ideal hysteresis shape from an energy-dissipation point of view are 

discussed in Section 3.7. 

 
Fig. 3.10  Displacement-controlled load regime. 

 
Fig. 3.11  Displacement path from pushover analysis with double displacement control. 
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Fig. 3.12  P-M path from pushover analysis with double displacement control. 

 
Fig. 3.13  P versus ΔH from pushover analysis with double displacement control. 
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Fig. 3.14  M versus ΔN from pushover analysis with double displacement control. 

Finally, a simple dynamic base-excitation analysis is performed. For this case the static 

model is modified by adding an IP horizontal mass at the upper node, as well as the OOP mass at 

the midspan node (see Fig. 3.15). The IP mass is sized to provide an IP natural frequency of 4 

Hz, to approximate the frequency of the five-story building investigated by Hashemi and 

Mosalam (2007), since that structure will be used in the example analysis conducted in Chapter 

4. Further discussion about the five-story building model is provided in that chapter. The upper 

node is restrained from motion in the OOP direction, while the lower node is restrained in all 

directions. An earthquake time history is applied to the restrained degrees of freedom in both the 

IP and OOP translational directions. The chosen time history is that of the Coyote Lake Dam 

(CL_clyd, see Table 4.1). The longitudinal time history component is applied in both the x- and 

y-directions. These time history components are scaled such that the peak accelerations are 0.10g 

in the x-direction and 1.9g in the y-direction. These values are chosen after several trials to 

illustrate the full range of the P-M interaction relationship for the considered case study 

structure. It is recognized that this method of applying base accelerations is not realistic; for 

more realistic analyses, see Chapter 4.      



  35

 

Fig. 3.15  Dynamic model of infill panel. 

Figure 3.16 presents the IP and OOP displacement responses as a function of time, while 

Figure 3.17 shows the same information on the NH Δ−Δ  plane. It should be noted that the 

NH Δ−Δ  path crosses the CP interaction curve, and therefore the wall has exceeded the CP limit 

state. Moreover, significant residual OOP displacement is observed from the time history plots of 

Figure 3.16. This residual displacement is about 50% of the peak OOP displacement. The P-M 

response path is shown in Figure 3.18.  As intended, the values of axial force and moment do not 

exceed the envelope interaction curve. The stress-strain response path of the inner fiber is 

presented in Figure 3.19. 
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Fig. 3.16  IP and OOP displacements from time history analysis. 

 
Fig. 3.17  Displacement response path from time history analysis. 
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Fig. 3.18  P-M path from time history analysis. 

 
Fig. 3.19  Inner fiber stress-strain path from time history analysis. 
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3.7 SUMMARY OF OBSERVATIONS AND COMMENTS 

Based on the results of the preceding section, it is concluded that the proposed fiber-section 

model generally meets the goals set out in Section 3.1. The simple one-bay, one-story model 

reproduces the elastic properties of the infill panel in the elastic range. In the nonlinear range, the 

model produces axial force and moment that conform to the prescribed interaction relationship. 

However, there are several aspects of the model that deserve closer inspection. 

One problem stems from the fact that the model cannot attain the goal of an ideally 

“sharp” yield point for all loading paths, despite the fact that the individual fibers themselves are 

EPP. This is clear from Table 3.1, which lists the yield stresses of the fibers. If, for instance, the 

model experiences pure axial load, the outer fibers will yield first, followed progressively by the 

fibers closer to the centroid of the section. This will also be the case if the model is loaded with 

pure OOP moment. A consequence of this non-sharp, “distributed” yielding is that some fibers 

experience yielding before the displacements reach the so-called “yield” surface shown on the 

displacement paths (see Fig. 3.9), or before the axial force and OOP moment reach the 

interaction surface. This, in turn, will produce some unwanted hysteretic damping at 

displacements below “yield." 

The yield under pure axial load will be sharp if all the fibers have equal yield stress; the 

yield for pure moment will be sharp if the yield stress varies linearly with distance from the 

centroid. Since it is not possible to satisfy both of these requirements simultaneously, it may be 

that the optimal model is some linear combination of these requirements, where the yield stresses 

are adjusted to minimize the unwanted damping. The fiber areas must then be changed, in order 

that the total strength (in kips) of each fiber remains unchanged. The change in area will then 

affect the elastic-range properties of the nonlinear hinge region, but the linear elastic region of 

the element can then be modified to preserve the correct overall elastic stiffness of the model. It 

should be noted that a sharp yield point does not necessarily represent the behavior of an actual 

infill wall. However, the inability to have full control over the sharpness of the yield point must 

still be viewed as a drawback in the context of the proposed model. 

Next, there is some question about whether the post-yield behavior of the proposed model 

can accurately reflect the inelastic behavior of the actual infill wall. This is illustrated by the 

hysteresis curves in Figures 3.13 and 3.14. It is noted, for instance, that the moment drops after 

yielding, while the axial force increases. This is a consequence of the fact that the plastic neutral 



  39

axis does not have the same location in the fiber section as the elastic neutral axis. It is not clear 

that this model behavior reflects the behavior of the actual infill. It has been pointed out in 

(Sharif et al. 2007) that in fact the resisting moment of the infill decreases with increasing 

displacement. However, this effect is fortuitous here, since the model does not consider the large 

displacements that are the cause of this behavior. Finally, it may be possible to modify the post-

yield properties of the fibers in order to produce post-yield model behavior closer to 

experimentally observed behavior. 

Another more serious objection stems from the fact that the model IP axial and OOP 

moment strengths do not drop to zero when the CP limit state interaction curve is exceeded. In 

the actual structure, the collapse of an element is accompanied by an increase of load in 

neighboring elements. They, in turn, may experience increased displacements, and reach CP 

themselves. This effect will not be captured with the proposed model where the collapse of the 

element by reaching the CP limit is determined in post-processing. This may not be a problem if 

the design engineer intends to redesign or retrofit the walls where collapse is predicted, thus 

preserving their ability to carry load.  However, if the objective of the analysis is a performance-

based evaluation of an existing structure, the use of the proposed model may lead to 

unrealistically optimistic conclusions. 

One crude yet (probably) conservative remedy for the problem discussed in the previous 

paragraph is to simply remove the “collapsed” infill panel elements, rerun the analysis, remove 

the collapsed panels from the new analysis, and repeat this process until no more panels collapse 

or until there is a global collapse of the structure. A more realistic, although more difficult, 

solution would be to modify the analysis program so that it removes the collapsed elements, 

when they collapse, and then proceeds with the analysis without interruption. This method of 

direct element removal has been proposed by Talaat and Mosalam (2008).  Again, it may be 

possible to adjust the stress-strain properties of the fibers, as discussed above for post-yield 

behavior, so that the post-collapse behavior may be simulated, at least in an approximate fashion. 

It should also be pointed out that, for the case of an infill wall, the question of detailed 

post-yield behavior may not be of paramount importance. Given the high natural frequency of 

the wall relative to the input seismic motion at its supports, it would be expected that the wall 

would experience large OOP inelastic displacement, as soon as the input motion exceeds the 

yield level by a small amount (Chopra 2005). Thus, the level of support spectral acceleration 

causing the wall to reach the CP limit state is not expected to be much higher than the level 
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causing yielding. Since the yield state is predicted well by the interaction relationship, the error 

in acceleration level for the CP state is not expected to be significant, at least for the first few 

walls to reach the CP state.  
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4 Example Analysis Using Proposed Infill 
Model 

In order to demonstrate its behavior and capabilities, the infill model proposed in Chapter 3 is 

incorporated into a larger model of a five-story reinforced concrete (RC) frame building with 

unreinforced masonry (URM) infill walls. This model is then subjected to seismic base 

excitation, using 20 sets of ground motion, at five different levels of spectral acceleration. The 

global responses of the structure are determined, along with the local responses of the individual 

infill panels. Next, fragility functions are calculated, giving the probability that the individual 

panels will reach the so-called “collapse prevention” (CP) limit state as a function of the spectral 

acceleration level. Fragility functions are also derived for a global response, the interstory drift 

ratio (IDR). Complete details of the building model and the input ground motions may be found 

in Hashemi and Mosalam (2007). 

4.1  DESCRIPTION OF BUILDING MODEL AND INPUT MOTIONS 

The building model used in this chapter is derived from the model previously used in the 

collaborative program of investigations into RC frames with URM infill, discussed in Chapter 1. 

The model is illustrated in Figure 4.1. The prototype building is a RC frame, five stories in 

height, with three bays in the x-direction and two bays in the y-direction. The central column line 

running in the x-direction (Column Line B) has URM infill panels in all bays at all levels. Thus, 

the x-direction is designated as the “longitudinal” direction. In the model of Hashemi and 

Mosalam (2007), each infill panel was modeled with two members, one on each diagonal. Each 

member was a compression-only elastic strut. The RC frame was modeled using nonlinear, 

force-based, beam-column elements. For this report, the diagonal members representing the infill 

panels are replaced with the infill model developed in Chapter 3. One diagonal beam-column 

with two elements is located in each panel (see Fig. 4.2).  As discussed in Chapter 3, these 

diagonal elements reproduce the IP force-displacement relationship (in both the positive and 
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negative x-directions), as well as the OOP force-displacement relationship, with the interaction 

between the IP and OOP responses also considered. The stiffness of the infill model elements is 

adjusted so that the periods of the fundamental modes of vibration of the building in the 

longitudinal and transverse directions match those obtained by Hashemi and Mosalam (2007), 

i.e., 0.24 and 0.35 sec, respectively. The properties of the infill members are the same as those 

used in Chapter 3, and the calculation of their properties is given in Appendix E.  
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Fig. 4.1  Building model (Hashemi and Mosalam 2007). 

 
Fig. 4.2  Elevation of column line B, showing arrangement of proposed infill models within 

building frame.  



  43

The seismic analysis of the model is performed using OpenSees (Mazzoni et al. 2006).  

The input base motion consists of 20 sets of recorded time histories used in a previous study (Lee 

and Mosalam 2006), each set consisting of one time history in the longitudinal direction and one 

in the transverse direction. The ground motions are listed in Table 4.1. These motions are then 

scaled so that their spectral accelerations, Sa, at the fundamental periods in each direction of the 

building model are set to five values: 0.50g, 1.00g, 1.61g (10/50), 2.05g (5/50), and 2.75g (2/50). 

The designation “1.61g (10/50)," for example, indicates that there is a 10% chance that the 

spectral acceleration will equal or exceed 1.61g during a period of 50 years. As an illustration, 

the scaled response spectra for the Sa = 1.61g level are shown in Figure 4.3. Thus, for this part of 

the investigation, the building is analyzed for 20 time history sets at five spectral accelerations 

values, for a total of 100 analyses.    

Table 4.1  Ground motion characteristics for life science addition (LSA) PEER testbed 
study (Lee and Mosalam 2006). 

Earthquake Mw Station Designation Distance Site
Coyote Lake Dam abutment CL-clyd 4.0 km C Coyote Lake, 

1979/6/8 
5.7 

Gilroy #6 CL-gil6 1.2 km C 
Erzincan, Turkey, 
1992/3/13 

6.7 Erzincan EZ-erzi 1.8 km C 

Kobe, Japan, 
1995/1/17 

6.9 Kobe JMA KB-kobj 0.5 km C 

Corralitos LP-cor 3.4 km C 
Gavilan College LP-gav 9.5 km C 
Gilroy historic LP-gilb  C 
Lexington Dam abutment LP-lex1 6.3 km C 
Los Gatos Presentation Center LP-lgpc 3.5 km C 

Loma Prieta, 
1989/10/17 

7.0 

Saratoga Aloha Ave LP-srtg 8.3 km C 
Fagundes Ranch LV-fgnr 4.1 km D Livermore, 

1980/1/27 
5.5 

Morgan Territory Park LV-mgnp 8.1 km C 
Anderson Dam Downstream MH-andd 4.5 km C 
Coyote Lake Dam abutment MH-clyd 0.1 km C 

Morgan Hill, 
1984/4/24 

6.2 

Halls Valley MH-hall 2.5 km C 
Array #5 PF-cs05 3.7 km D 
Array #8 PF-cs08 8.0 km D 

Parkfield, 
1966/6/27 

6.0 

Temblor PF-temb 4.4 km C 
Kofu TO-ttr007 10.0 km C Tottori, Japan, 

2000/10/6 
6.6 

Hino TO-ttrh02 1.0 km C 
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Fig. 4.3  Scaled earthquake spectra for Sa = 1.61g (Hashemi and Mosalam 2007). 

4.2 DISCUSSION OF ANALYSIS RESULTS  

The 100 analysis cases described above are carried out, with floor level displacements and 

accelerations in the longitudinal and transverse directions recorded as measures of the global 

response of the building model. In addition, infill model response parameters (IP axial force, 

OOP moment, IP and OOP relative displacements, and fiber stresses) are recorded for the middle 

bay of the first, third, and fifth story, to serve as sample local responses of these infill panels. 

These locations give responses that cover most of the possibilities of typical infill responses for 

the building as a whole. Had this been an actual design calculation, it would be necessary to 

verify that the chosen locations are the critical ones. 

As an example of the results obtained from the 100 analyses, Figure 4.4 shows the 

longitudinal displacement response for the roof, relative to the ground, from the analysis for the 

Coyote Lake earthquake, CL-gil6 (see Table 4.1),  with Sa = 1.0g. For the same analysis case, 

the IP and OOP displacement deformations of the infill panel at the center bay of the first story 

are given in Figures 4.5 and 4.6, respectively. For reference, the unidirectional yield 

deformations are 0.11 inch for IP, and 0.15 inch for OOP. The deformations are calculated by the 

following formulas: 
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where 

=Δ N  OOP deformation of the infill panel, calculated at each time step 
=midyu _  y-direction (OOP horizontal) deflection of the midheight node of the infill element, 

relative to ground 
=topyu _  y-direction deflection of the top node of the infill element, relative to ground 
=botyu _  y-direction deflection of the bottom node of the infill element, relative to ground 

 

 ( ) ( )topzbotz
col

col
botxtopxH uu

L
huu ____ −−−=Δ  (4.2)  

where 

=Δ H  IP deformation of the infill panel, calculated at each time step 
=topxu _  x-direction (IP horizontal) deflection of the top node of the infill element, relative to 

ground 
=botxu _  x-direction deflection of the bottom node of the infill element, relative to ground 
=topzu _  z-direction (IP vertical) deflection of the top node of the infill element, relative to 

ground 
=botzu _  z-direction (IP vertical) deflection of the bottom node of the infill element, relative to 

ground 
=colh  The column height between beam centerlines 
=colL  Horizontal distance between column lines 

 

The second term in Equation (4.2) results from the fact that a rigid body rotation of the 

diagonal does not change its length, and the purpose of the HΔ  parameter in this instance is to 

serve as a measure of the diagonal deformation. Figure 4.7 shows the deformation path of HΔ  

and NΔ , normalized by their respective unidirectional yield values, and plotted on the same 

plane. These results are also obtained from the example time history analysis of CL-gil6 ground 

motion (Table 4.1) scaled to Sa = 1.0g. The yield and the CP limit state boundaries are also 

included (see Chapter 3 for a discussion of the limit states). Since the deformation path crosses 

the CP boundary, this plot of the normalized deformation path indicates that the infill panel will 

exceed the CP limit state.  Based on the same time history analysis used for Figure 4.7, the IP 

axial force and OOP moment path in the infill model is shown in Figure 4.8. In this figure the 

axial force and OOP moment are normalized by their unidirectional plastic capacities. Note that 

the force and moment do not exceed the bounds of the P-M interaction diagram (as expected and 
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discussed in Chapter 3 during the derivation of the model), and that the axial force dominates the 

behavior.   

An interesting result may be observed in these figures. The permanent, residual inelastic 

displacement is more prominent for the OOP direction than the IP direction, despite the fact that 

the force–moment path touches the yield surface near the pure axial force vertex. This behavior 

is attributed to the fact that there is significant IP structural redundancy provided by the RC 

moment frame (which is seismically designed as discussed by Hashemi and Mosalam (2007)), 

which prevents the IP displacements from increasing rapidly after yield. In the OOP direction, 

however, there is no redundancy, and inelastic displacements are resisted only by the inelastic 

OOP moment, which has been reduced by the interaction effects. This causes the OOP 

displacements to increase rapidly after yield. 

 

 
Fig. 4.4  Longitudinal displacement of roof relative to ground. 
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Fig. 4.5  IP deformation, ΔH , time history for first-story infill. 

 
Fig. 4.6  OOP deformation, ΔN, time history for first-story infill. 
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Fig. 4.7  IP-OOP normalized deformation path for first-story infill. 

 
 

Fig. 4.8  Normalized (IP axial force)–(OOP moment) path for first-story infill. 
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4.3 FRAGILITY CURVE CALCULATIONS FOR INFILL PANELS  

It is possible to construct fragility curves, given the results of the 100 time history analyses 

discussed in the previous section. In this study, a fragility curve or function is defined as the 

probability that the response of a particular infill panel will exceed a chosen limit state, for a 

given spectral acceleration, Sa. Here, collapse prevention (CP), as defined in Chapter 3, is the 

chosen limit state (LS). For this part of the study, it is assumed that only record-to-record 

variability affects the resulting probabilities. The effect of strength variability is investigated 

later in this chapter.    

In order to facilitate calculations, define a variable known as the deformation interaction 

ratio (DIR) as follows: 
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where 

=Δ )(tH
 IP deformation of the infill panel at time t 

=Δ 0Hcp
 IP deformation to cause the panel to reach CP in the absence of OOP deflection (see 

Chapter 3) 

=Δ )(tN
 OOP deformation of the infill panel at time t 

=Δ 0Ncp
 OOP deformation to cause the panel to reach CP in the absence of IP  deflection (see 

Chapter 3) 
  

This definition is derived from the 3/2-power interaction curves discussed in Section 3.4. The CP 

limit state is reached when the value of the DIR equals 1.0. The 2/3 exponent is added for 

geometrical clarity: for an arbitrary point in the ( ) ( )00 , NcpNHcpH ΔΔΔΔ  plane  with a DIR of, e.g., 

3, a line joining it to the origin will intersect the interaction curve at 1/3 of the distance from the 

origin to the point. Thus, the DIR may be estimated directly from a normalized deformation path 

such as Figure 4.7 above.  

As discussed above, under the definition given in Equation (4.3) the infill panel will 

reach the CP limit state when the DIR equals or exceeds 1.0. Note also that this definition 

calculates the IP-OOP interaction function at each time step in the analysis, and then takes the 

maximum for the entire time record, in contrast to the previous work of Hashemi and Mosalam 
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(2007), in which the maximum IP and maximum OOP responses were used in the interaction 

check, without considering their temporal relationship.   

The calculations for the fragility functions in this study proceed as follows: 

1. At each Sa level, the maximum DIR is determined for each earthquake record. 

2. Since the distribution of the DIR’s is assumed to be lognormal, the natural logarithm, 

ln(DIR), is found for each record. 

3. Then, the mean and sample standard deviation are found for the ln(DIR)’s for each set of 

20 records. Note that the infill panel reaches the CP limit state when ln(DIR) = 0.0. 

4. Finally, the probability of reaching or exceeding the CP limit state is given by 

 

 ),,0(Pr1)( lnln DIRDIRnormCPLSP σμ−=≥  (4.4) 
where 

=DIRlnμ  mean of the ln(DIR)’s from the 20 records 

=DIRlnσ  sample standard deviations of ln(DIR)’s from the 20 records 

=),,0(Pr lnln DIRDIRnorm σμ  cumulative probability that the random variable ln(DIR) will exceed 0.0, 
given DIRlnμ  and DIRlnσ , and assuming that ln(DIR) has a normal 
distribution (i.e., DIR has a lognormal distribution) 

 

The procedure described above is performed for each of the five selected levels of Sa. As 

an example, the fragility function for the infill panel of the first story, center bay, is given in 

Figure 4.9. As shown in this example, there is approximately a 50% probability of exceeding the 

CP limit state for an earthquake with Sa = 1.0g, while at Sa = 2.5g the probability of exceedence 

is greater than 95%. 
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Fig. 4.9  Fragility function for reaching or exceeding CP limit state for first-story, center 
bay, infill panel. 

It is possible to examine the relative contributions to the fragility function from the IP 

and OOP responses. Define: 
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Thus, DIR_IP represents the deformation ratio for the IP response only, while DIR_OOP 

represents the corresponding ratio for the OOP response. It is possible to calculate fragility 

functions for these deformation ratios, using the same method as described above. The fragility 

functions for DIR, DIR_IP, and DIR_OOP are given in Figures 4.10, 4.11 and 4.12 for the center 

bay of the first, third, and fifth story, respectively.  It is noted that the response of DIR_IP is 

dominant at the first story, while the DIR_OOP is dominant at the fifth story. The two responses 

are roughly equal at the third story. This pattern can be explained by the fact that IP loads are 

cumulative, and are maximized at the first story, while OOP loads are not cumulative, but 

depend on OOP accelerations, which increase with height. 
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It is of some interest to consider the impact of ignoring the IP-OOP interaction effects on 

the CP fragility functions. The common practice is to check an infill wall for the IP force without 

considering the OOP loading, and then to check it for the OOP force, ignoring the IP loads. 

Taking Figure 4.10 as an example, it is clear that the probability of reaching the CP limit state is 

higher when the interaction effects are considered than for the case where interaction is ignored. 

Whether these differences would have significant impacts on project decisions can be determined 

only on a case-by-case basis, but the nontrivial magnitudes of the differences indicate that some 

consideration should be given for this interaction effect, at least in an informal way. 

 

 

Fig. 4.10  CP fragility functions for first-story, center bay, infill panel. 
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Fig. 4.11  CP fragility functions for third-story, center bay, infill panel. 

 

Fig. 4.12  CP fragility functions for fifth-story, center bay, infill panel. 
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It is also of some interest to compare the fragility functions developed in this chapter with 

the functions previously derived by Hashemi and Mosalam (2007). This is presented in Figure 

4.13, where the fragility function derived in this report for the center bay of the first story 

(labeled “CP fragility”) is compared with that derived by Hashemi and Mosalam (2007) (labeled 

“H&M — original”).  Although the two functions appear to be similar, this similarity is not 

meaningful. One reason for this is that the fragility function from the previous investigation by 

Hashemi and Mosalam (2007) is not defined as the probability of reaching deformations 

necessary to cause collapse, as it is in this report.  Rather, the infill struts were modeled as 

elastic, compression-only members, and were assumed to have “failed” when the loads in them 

reached their capacities (based on the interaction relationship), using the envelope of recorded 

demand IP and OOP forces. Thus, the previous fragilities may be described as force-based 

“yield” fragilities rather than CP fragilities as defined in this study. 

A second difference between the fragilities derived in the present study and those from 

Hashemi and Mosalam (2007) is the fact that this study uses an IP capacity equal to 

approximately 70% of the capacity used in the earlier investigation, and an OOP capacity that is 

approximately half that used before. This is due to a different interpretation of the FEMA 356 

provisions. In order to assess this effect, a Monte Carlo simulation (MCS) is applied to the model 

used by Hashemi and Mosalam (2007), with the exception that the IP and OOP capacities are 

taken as similar to this study (see Appendix F for more details and an example MCS). The results 

of this updated fragility evaluation are shown in Figure 4.13, labeled as “H & M — modified.”  

The difference between the updated Hashemi and Mosalam fragility and the current report 

fragility is because they are based on different limit states. The probability of exceeding the 

“yield” limit state is obviously greater than the probability of exceeding the CP limit state.  
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Fig. 4.13  Comparison of fragility functions. 

4.4  EFFECTS OF INFILL STRENGTH VARIBILITY  

The probabilities of exceedence calculated above are based on the assumption that the only 

random variable involved is that of the ground motion profile (GMP), i.e., the record-to-record 

variability. This is equivalent to assuming that the remaining parameters, such as strength, 

stiffness, and damping, are deterministic. Of course, this is not true in general structural 

engineering applications (Lee and Mosalam 2004, 2005, and 2006). As a simple extension, the 

effect of including the URM infill strength variability is investigated. It is to be noted that the 

material and geometrical properties of the bounding RC frame should also be treated as random 

variables. However, for simplicity, these are treated in this study as deterministic. 

A common method for determining the variability in response due to the variability in the 

input parameters is the first-order, second-moment (FOSM) reliability analysis [see Lee and 

Mosalam (2005) for details]. In this method the relationship between the variance of the response 

and those of the input parameters is expanded in a Taylor series, and only the first order terms 

are retained, giving a linear relationship. Since the GMP and strength are uncorrelated, the 

variance in the response, ln(DIR), is given by 
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ln )()()( strengthGMPDIR σσσ +=  (4.7) 

where 

( ) =2
GMPσ  variance in ln(DIR) due to GMP variability, calculated in Section 4.3 above, 

where it was designated ( )2
ln DIRσ  , i.e., the 20 analyses at each Sa level are 

considered to be the different realizations in hypothetical Monte Carlo 
Simulations 

( ) =2

strengthσ  variance due to the variability in strength to be obtained from the knowledge of 
the URM material variability 

 
From the FOSM theory: 
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where 

=fmσ  standard deviation of the URM prism strength, mf .  
=G  function for determining ln(DIR), i.e., ),()ln( mfGMPGDIR =  

It is assumed that both the IP and the OOP capacities of the infill are fully correlated with 

mf . The partial derivative of G  is calculated numerically using finite differences as suggested 

by Lee and Mosalam (2005), as follows: 
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where 

=0GMP  the “median” ground motion profile, taken for this study as the  time history set which 
produces the 11th-largest DIR at the location of interest 

=mef  the expected URM prism strength, taken as 2.46 ksi in this study based on material 
tests reported in (Hashemi and Mosalam 2007) 

=Δ mf  numerical variation of the prism strength 

The value of mfΔ  is taken to be equal to fmσ05.0  as recommended by Lee and Mosalam (2005). 

Following Hashemi and Mosalam (2007), 
mefm f231.0=σ . This results in 

mem ff 01155.0=Δ , i.e., 

about 1.2% numerical variation in strength for a 23.1% coefficient of variation of the strength. 

Substituting into Equations (4.8) and (4.9) gives 
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The seismic analysis is performed twice at each value of Sa, once with the fm set at  fme+Δfm, and 

the other with it set at  fme -Δfm.  

An example of calculations for input parameters, leading to new fiber element models for 

the infill panels, is given in Appendix G, which considers a positive variation in fm. Calculations 

for a negative variation in fm are similar. The ln(DIR) response is calculated for each case, and 

substituted into Equation (4.10). Then Equation (4.7) is used to calculate DIRlnσ , and Equation 

(4.4) is used to calculate the probability that the DIR exceeds the CP limit state. The resulting 

fragility function is shown in Figure 4.15 (labeled “GMP + Strength”), plotted with the fragility 

function derived in Section 4.3, where the only random variable is assumed to be the GMP 

(labeled “GMP only”). It is observed that the consideration of the variability of the strength of 

the URM infill wall increases the probability of exceedence at probability levels below 50%, and 

decreases this probability at higher levels. This is a consequence of the fact that increasing 

uncertainty does not change the median DIR but does increase its variance; thus, the fragility 

function flattens, and “spreads out” horizontally from its median point. The effect of considering 

strength variability, however, is very small. This observation agrees with the work of other 

investigators, e.g., Lee and Mosalam (2005), who have found that GMP is the major source of 

uncertainty in structural response at a given spectral acceleration. 
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Fig. 4.14  Fragility functions (probability of DIR exceeding 1.0) including effect of infill 
strength variability. 

Since the effect of strength variability is so small, it is difficult to see in Figure 4.14, 

especially for values of Sa less than the median.  Figure 4.15 plots the ratio R(Sa): 

 
)(Pr

)(Pr
)(

Sa
Sa

SaR
GMP

strengthGMP+=  (4.11) 

where 

=+ )(Pr SastrengthGMP  Vulnerability function calculated considering the variability of both the 
ground motion profile and the infill wall strength 

=)(Pr SaGMP  Vulnerability function calculated considering the variability of the ground 
motion profile only 

 

It is seen that the ratio R(Sa) is greater than unity at values of Sa less than the median, which 

occurs at about 1.0g, and less than unity when Sa is greater than the median. It is also seen that 

the vulnerability functions vary by, at most, 2.2%.  It is believed that irregularities in the shape of 

the function R(Sa) are due to randomness in the analysis results. 
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Fig. 4.15  Variation of ratio R(Sa), defined by Eq. (4.11). 

4.5 INTERSTORY DRIFT RATIO RESULTS 

As an example of the global responses of the building model, the interstory drift ratio (IDR) is 

calculated for each of the five stories. The IDR is defined as displacement of the top of a given 

story, relative to the bottom of that story, divided by the story height. The IDR is calculated for 

each time step in the dynamic analysis, and the maximum value is recorded. For example, the x-

direction (longitudinal) IDR envelopes (lines connecting maximum values irrespective of their 

possibly different temporal occurrences), calculated for the 20 analyses with Sa = 1.0g, are 

shown in Figure 4.16. This figure illustrates the scatter in responses for a single spectral 

acceleration level. The IDRs increase from the fifth story to the ground with the exception that 

the first-story IDR is smaller than that of the second story. This is believed to be because the 

building columns are fixed against rotation at the ground level, causing the first story to be stiffer 

than the second.  

As with the local infill panel responses discussed above, statistical analysis was applied 

to the IDR results. Figure 4.17 presents the average IDRs for the 20 records, as a function of the 
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five spectral acceleration levels. It is, of course, possible to derive fragility functions for the 

obtained IDRs with respect to chosen threshold values for the limit states defined for these global 

metrics. Figure 4.18 gives the probability that the IDR at a given story exceeds a value of 0.002. 

This value is chosen based on the work of Mosalam et al. (1997), in which this value was used to 

define the “heavy damage” limit state, corresponding approximately to the CP limit state used in 

this report, for RC frames with URM infill. The results imply that, for this model, the second 

story is critical (see Section 4.2). 

As an illustration of the relationship between the local and global fragilities, Figure 4.19 

compares the first-story CP fragility (taken from Fig. 4.9) with the first-story IDR = 0.002 

fragility from Figure 4.18.  It is seen that the two fragility functions are quite similar, leading to 

the conclusion that they are strongly correlated. 

 

 

Fig. 4.16  Longitudinal IDRs for Sa = 1.0. 
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Fig. 4.17  Average interstory drift ratios. 

 
Fig. 4.18  Fragility functions for IDR exceeding 0.002. 
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Fig. 4.19  Comparison of CP fragility and IDR=0.002 fragility for first story. 
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5 Summary, Conclusions, and Future 
Extensions 

5.1  SUMMARY 

This report is part of a larger study of reinforced concrete (RC) frame structures with 

unreinforced masonry (URM) infill walls. The purpose of the report is to develop a practical 

analytical model of the infill walls that can be used in a nonlinear time history analysis of the 

overall structure and that properly considers the interaction between the in-plane (IP) and out-of-

plane (OOP) strengths of the wall. The interaction function is taken from finite element analyses 

(FEA) reported by Hashemi and Mosalam (2007).  

The behavior of a strut and tie (SAT) infill model previously proposed by Hashemi and 

Mosalam (2007) is examined. That model was shown to correctly satisfy the interaction 

relationship when displaced monotonically in the IP direction while a constant force is applied in 

the OOP direction, i.e., a conventional pushover analysis. However, in this report, it is found that 

under certain circumstances this SAT model can produce forces that will violate the prescribed 

interaction boundary surface. In addition, the SAT model has a limited number of input 

parameters, and it becomes somewhat difficult to simultaneously satisfy requirements for IP and 

OOP elastic stiffness (and hence frequencies), along with the IP and OOP strengths and their 

interaction functions.   

This report proposes a new infill model, based on a beam-column element with a cross 

section consisting of a collection of nonlinear fibers. Each infill wall panel is modeled as a single 

diagonal with two members, with an OOP mass at the center to represent the OOP inertia of the 

wall. A method for calculating the properties of the individual cross-section fibers is derived, 

such that the pure “axial strut” IP capacity, the pure “bending” OOP capacity, and their 

interaction function are reproduced. A theoretical basis is established for ensuring dynamic 

equivalence between the actual infill wall panel and the panel model. It is demonstrated that with 

an OOP mass equal to the modal effective mass of the actual infill panel, and a model with an 



  64

OOP frequency equal to that of the actual panel, the reactions at the support points of the infill 

model (the floor diaphragms) will also be duplicated. Thus, the global behavior of the overall 

structural model is preserved.   

A case study single panel model is developed, with strengths for pure IP and pure OOP 

behavior based on the provisions of FEMA 356 (FEMA 2000). The model behavior is 

demonstrated by several loading configurations. One configuration is a duplication of the 

pushover analysis used by Hashemi and Mosalam (2007). Another configuration is a “double 

displacement” pushover, in which both the IP and OOP displacements are prescribed. Finally, 

the model is exposed to a time history base acceleration. It is shown that the model correctly 

satisfies the strength and interaction criteria under all circumstances. The behavior of the model 

in the inelastic region is studied, and a criteria is developed for determining when the wall panel 

reaches the “collapse prevention” (CP) limit state defined by FEMA 356 (FEMA 2000). This CP 

limit state is defined by limits on the infill model ductility, and is not an inherent property of the 

model; i.e., the model capacities do not drop to zero when it is reached. The limitations of the 

model in the post-yield and post-CP states are discussed.  

As an example of the general use of the proposed model, it is incorporated into a five-

story RC frame building model previously studied by Hashemi and Mosalam (2007), with the 

proposed infill model in this report substituted for their infill model. The building model is then 

subjected to a suite of 20 time histories of ground accelerations. The individual time histories 

within the suite are scaled so that their spectral accelerations at the fundamental natural 

frequency of the building are equal to a common value. These analyses are performed for a range 

of five different spectral acceleration values, for a total of 100 analyses. Based on the results of 

these analyses, vulnerability curves are generated, giving the probability that selected infill 

panels will reach the CP limit state, as a function of spectral acceleration level. These 

vulnerability curves are compared to those generated previously by Hashemi and Mosalam 

(2007), and it is found that they predict lower probabilities at all values of the spectral 

accelerations. This is primarily because the previous vulnerability study by Hashemi and 

Mosalam (2007) was based on strength rather than ductility, and thus represents a lower level of 

damage than CP. It is also noted that the effect of including the strength interaction function, 

relative to an analysis in which it is not considered (which is common practice in engineering 

design offices), may not be negligible.   
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Since the 100 analyses described above used deterministic (non-varying) stiffness, 

damping, and strength properties in the structural model, the uncertainty in the generated 

vulnerability curves derives solely from the record-to-record variability (also known as ground 

motion profile variability). In order to illustrate the procedure for determining the effects of other 

uncertainties, a first-order, second-moment (FOSM) analysis is conducted for uncertainty in the 

strength of the infill panels. It is found that the effect of strength uncertainty is very small 

compared to that for the ground motion profile.   

5.2  CONCLUSIONS 

Based on the results presented in this report, the following conclusions are drawn: 

1. The behavior of the infill model previously proposed by Hashemi and Mosalam (2007) is 

somewhat problematic. Under certain circumstances, the IP and OOP forces in the infill 

model may exceed the specified interaction surface. Additionally, it may be difficult to 

match the elastic properties of the model with those of the actual infill panel. 

2. Using a beam-column element with a cross section composed of nonlinear fibers, it is 

possible to capture the IP and OOP strengths of the infill panel, as well as its elastic 

stiffness properties. Based on the procedures developed in this report, it is possible to 

specify the infill model mass, strength, and stiffness properties so that the global behavior 

of the overall structural model is essentially preserved.   

3. Some undesired numerical damping may be introduced into the model while it is still in 

the nominally “elastic” range. This is due to the fact that it does not appear to be possible 

to specify fiber properties such that the transition from elastic to plastic behavior is 

“sharp," i.e., occurs over an arbitrarily small increment of deflection. This leads to early 

yielding of some of the fibers, and consequent hysteretic behavior under cyclic loading to 

displacements near the yield level. 

4. The main limitations of the model occur in the post-elastic range. First, control of the 

shape of the load-deflection curves in the post-yield state, i.e., whether the behavior is 

hardening, softening, flat, or some combination of the three, is not possible using the 

elastic–perfectly plastic fiber elements used in this report. While it may be possible to 

control the behavior by adjusting the post-yield properties of the fibers, a straightforward 

methodology for doing so is not immediately obvious.  
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5. Second, the fact that the infill panel model retains strength and stiffness after exceeding 

the CP limit state is unrealistic, and leads to errors in the calculated global responses of 

the building model. This is because the “collapsed” panels will still be carrying load in 

the analysis, which will lead to an underestimation of the load in the other panels and 

elements of the surrounding frame. It may be possible to work around this limitation, as 

discussed in Section 3.7, but this increases the complexity of the analysis.   

6. With due attention to these limitations, it is practical to use the model in vulnerability 

analyses, since it behaves in a stable fashion, and appears to give reasonable results.  

7. Based on the results of the vulnerability analyses in this report, it appears that the 

interaction between the IP and OOP strengths of the infill wall has a measurable impact 

on vulnerabilities, and may need to be considered, at least in an informal manner. This 

would represent a change in the typical evaluation procedure, e.g., using FEMA 356 

(FEMA 2000), as it is practiced today. 

8. The major source of uncertainty in the vulnerability study is the record-to-record 

variability of the input acceleration time histories, with strength uncertainties making a 

much smaller contribution.   

 5.3  FUTURE EXTENSIONS 

While the proposed URM infill model is successful in modeling the elastic stiffness and the 

strength of the wall, including interaction effects, questions remain regarding its behavior in the 

post-elastic range of deformation. Resolution of these questions would present opportunities for 

further work on this subject. 

One current limitation is the lack of knowledge concerning the actual behavior of URM 

infill panels under combined IP and OOP loads in the post-elastic range, for both monotonic and 

cyclic loads. Experimental investigations, supplemented by FEA, are needed to gain an 

understanding of this behavior, and thereby establish the goals for the practical model to meet. It 

should be noted that one goal of this study was a model in which post-yield displacements occur 

at constant loads; this goal was chosen for convenience, due to a lack of more complete 

understanding of the actual behavior. 

Once an understanding of the actual post-elastic behavior is established, it is then 

necessary to modify the proposed model to provide realistic responses. As discussed, it may be 
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possible to achieve this by modifying the post-yield properties of the cross-section fibers; such a 

solution should be attempted. If this does not prove satisfactory, then other solutions, e.g., the 

direct element removal approach (Talaat and Mosalam 2008), may be employed. Unfortunately, 

these alternative solutions increase the complexity of the analysis. 

It may be noted that while the previously-proposed SAT model (Hashemi and Mosalam 

2007) was shown in this study to exhibit some undesirable attributes, it may still be fruitful to 

pursue a model based on the SAT concept. This concept seems to best describe the physical 

processes taking place in URM infill panels under load. Such a model might be based on detailed 

nonlinear FEA, using these analyses to establish the location and properties of the constituent 

struts and ties. This is analogous to the sophisticated approach of “topology optimization.” It 

would be useful to carry out additional vulnerability studies, considering the effects of different 

strength and geometric parameters other than those used in the case study of the five-story RC 

building with URM infill walls. In particular, for this case study used in this report, it was found 

that IP deformation was the dominant mode of failure at all locations. However, it has been 

observed that OOP failure of infill panels occurs in many earthquakes, and it would be 

instructive to investigate the behavior of panels whose parameters are such that OOP failure 

dominates. 
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Appendix A: Strut and Tie Model Deformation 
and Force Relationships 

This appendix presents the geometrical relationships for the analysis of the Hashemi and 

Mosalam (2007) model.  Deformations of the model are calculated on the basis of finite 

displacement theory.  Force resultants are calculated as well. 

           

Fig. A.1  Elevation of model in undeformed state. 

In Figure A.1, 

 =nh  undeformed height of the model = 101 in., 
=nL  undeformed length of the model = 162 in., and 

=+= 22
0 nn LhD  undeformed length of the diagonals. 

 
The horizontal and vertical perimeter members are assumed rigid, and we define (Fig. A.2): 

=h  deformed (instantaneous) height (note that the boundary members are assumed rigid) 
22

Hnhh Δ−= , 
=ΔH  in-plane displacement. 
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Fig. A.2  Elevation of model in deformed configuration. 

Calculating the deformed length of the tension diagonal (Fig. A.2), 
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Similarly, for the compression diagonal, 
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Calculating the instantaneous angle of the diagonals with the horizontal plane (see Figs. A.1 and 

A.2 for angle definitions), 
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Each diagonal consists of four struts with a tie member common to both diagonals. 

            

Fig. A.3  Undeformed configuration. 

The undeformed length of a strut, from Figure A.3, is defined as 
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=efft   width of the SAT model = 20 in. 
 (Note that this is not the same definition as used by Hashemi and Mosalam (2007).  

 However, the equations have been changed to account for the difference.) 

 

 

Fig. A.4  Member struts making up compression diagonal, and OOP deformations. 

Calculating the instantaneous deformed length of the members in the compression 

diagonal (see Fig. A.4), taking into account the effect of both the OOP and IP displacement, 
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where: 

=jL    instantaneous deformed length of the jth strut 

=ΔNF   front OOP deflection of the midpoint on the side where the force is applied 
=ΔNR   rear OOP deflection of the midpoint on the side opposite where the force is  

  applied                                                                               
 

It should be noted that since the tie is a tension-only rigid element, NFNR Δ≤Δ and also 

that the struts are compression-only. Thus, none of the struts in the rear face is able to exert a 

compression force on the tie as long as the rear face has not experienced “snap-through," defined 

here as ΔNR < - teff / 2. However, if one of the rear struts is in compression (as may be caused by 

IP displacements), it will exert a tension force in the tie, which then leads to ΔNR = ΔNF.  Thus, 

there are two possibilities in the force-deflection relationship of the SAT model: 

1. There is at least one strut in the rear that is in compression, and therefore ΔNR = ΔNF. 

2. None of the rear struts is in compression, and therefore NFNR Δ≤Δ .  However, the rear 

struts will have no forces and will not contribute to the resultant resisting forces in the 

SAT model.  In this case, there is no error in calculating the forces based on the 

assumption that NFNR Δ=Δ , since this will simply increase the extension in the rear struts.   

The conclusion is that, for reasonable OOP displacements (< teff /2 = 10 in.), there will be 

no loss of accuracy in the force-displacement relationship if it is assumed that the tie is rigid in 

tension and compression, and that NNFNR Δ=Δ=Δ . This assumption will be made in the 

computational analysis, resulting in a two- degree-of-freedom system.    
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Fig. A.5  Member struts making up tension diagonal, and OOP deformations. 

Calculating the instantaneous deformed length of the struts in the tension diagonal (see Fig. A.5), 

and taking into account the effect of both the OOP and IP displacement, 
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Next, it is necessary to determine the angle that the struts make with a vertical plane located at 

the center of the SAT model. The β-angles are defined in Figure A.7. Note that the subscript of 

the β-angle matches the element number:  

 

 

 

 

 

Fig. A.7  Defining β-angles. 
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1

1
2sin

L

t
N

eff Δ−
=β    

2
2

2sin
L

t
N

eff Δ+
=β  

3
3

2sin
L

t
N

eff Δ−
=β   

 
4

4
2sin

L

t
N

eff Δ+
=β   

5
5

2sin
L

t
N

eff Δ−
=β  

6
6

2sin
L

t
N

eff Δ+
=β       (A.9) 

 
7

7
2sin

L

t
N

eff Δ−
=β     

8
8

2sin
L

t
N

eff Δ+
=β    

       

The static resultant forces on the SAT model, PH and PN, will be vector combinations of 

the forces in the individual struts.  The force in a given strut is a function of the strain, measured 

as the engineering strain, which is a function of the deformation in each strut.  The deformation 

is a function of ΔH and ΔN. Accordingly (see Fig. A.8), the force in the jth strut (compression is 

positive), is given by   

 ( ) strutNHjj AF ×ΔΔ= ),(εσ   (A.10) 

 

Fig. A.8  Static equilibrium for calculating OOP force, PN. 

 ∑
=

−−=
8

1
)1(sin

j

j
jjN FP β  (A.11)  

where the β-angles are defined in Figure A.7.  Note that the odd-numbered struts are on the same 

side as the load. 

 

 

F2, F6

F1, F5 

PN 

F4, F8

F3, F7
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Defining (see Fig. A.9), 

=CP  IP resultant of forces from struts on the compression diagonal 
=TP  IP resultant of forces from struts on the tension diagonal 
=LT  Tension in the left vertical rigid member 
=RT  Tension in the right vertical rigid member 

 
Therefore, 

 ∑
=

=
2

1
cos

j
jjC FP β  ∑

=
=

4

3
cos

j
jjT FP β  

γ
α

cos
sin C

CL PT =   
γ

α
cos

sin T
TR PT =  (A.12) 

` 

Fig. A.9  Static equilibrium for calculating IP horizontal resultant force, PH. 

Taking the horizontal component of the above four forces, and equilibrating to PH , 

⎥
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⎤
⎢
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⎛
−⎥
⎦

⎤
⎢
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H
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j
jj
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H
CC

j
jjH h

F
h

FP ααβααβ    (A.13) 

In this equation use has been made, for instance, of the fact that the horizontal component of the 

tension in the left vertical member is given by 

)(
sincostansincossin

cos
sinsin

2

1

2

1 H

H
C

j
jjC

j
jj

C
CL h

FFPT
Δ

Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== ∑∑

==
αβγαβγ

γ
αγ  (A.14) 

A similar term gives the horizontal component of the tension in the right vertical member. The 

relationships and equations in this appendix are used in calculating the force-displacement 

relationships given in Appendices B and C. 

γ PT PC 

PH 

αC αT 

h(ΔH) 

ΔH 

TR TL 
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This Appendix analyzes the in-plane out-of-plane behavior of Hashemi's infill model (Hashemi 

and Mosalam 2007). For derivations of the equations, see Appendix A. 

Case considered: Displacement Controlled Case 1 

 In-Plane Displacement = 3 in. 

 Out-of-Plane Displacement = 3 in. 

Dimensions of the model:  

 
L n 150 in:=   Length of the panel 

hn 101 in:=   Height of the panel 

D 0 Ln
2 hn

2+:=   Original, unstressed length of the diagonal 
 

D 0 180.834 in=    

teff 20 in:=   Effective thickness of the model (out-to-out) 

Astrut 21.22 in2:=   Area (assumed) for each of the eight struts 

Strength and deformation parameters of the model: 

εmo 0.0028:=   These three parameters match those from 
Hashemi and Mosalam (2007) 

fmo 2.46 ksi:=    

ε y 2 ε mo⋅:=    

Number of strut elements:   
Nelem 8:=    

i 1 N elem..:=    

Input the prescribed displacement sequence: Major points for the in-plane displacement: 

Delta H 0.0 3.0( )T in:=    

 

Appendix B: Evaluation of Hashemi's Model 
    (Displacement-Based Approach)
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Major points for the out-of-plane displacement sequence: 

Delta N 0.0 3.0( ) T in:=    

Note that the corresponding displacement points are assumed to occur together (in-phase) 
N sub 100:=   Number of subdivisions between major 

points.  Again, the corresponding subdivision 
points are assumed to occur together. 

Fill in the intermediate points:   
Npoints rows DeltaH( ) 1−( ) Nsub( )⋅ 1+:=   
Npoints 101=   

Number of rows in the full displacement 
matrix 
 

Check to make sure that there are the same number of major points for the in-plane and out-of-
plane displacements.  Make Npoints an imaginary number if not, so that the analysis will not 
continue.  
Npoints if rows DeltaH( ) rows DeltaN( ) Npoints, 1 i⋅,( ):=  Npoints 101=  

 

 

ΔH

ΔH1 k 1−( ) Nsub⋅+
DeltaHk

←

k 1 rows DeltaH( )..∈for

ΔH1 k 1−( ) Nsub⋅+ r+
ΔH1 k 1−( ) Nsub⋅+

r
Nsub

ΔH1 k Nsub⋅+
ΔH1 k 1−( ) Nsub⋅+

−⎡
⎣

⎤
⎦

⋅+←

r 1 Nsub 1−..∈for

k 1 rows DeltaH( ) 1−( )..∈for

ΔH

:=

 
 

ΔN

ΔN1 k 1−( ) Nsub⋅+
DeltaNk

←

k 1 rows DeltaN( )..∈for

ΔN1 k 1−( ) Nsub⋅+ r+
ΔN1 k 1−( ) Nsub⋅+

r
Nsub

ΔN1 k Nsub⋅+
ΔN1 k 1−( ) Nsub⋅+

−⎡
⎣

⎤
⎦

⋅+←

r 1 Nsub 1−..∈for

k 1 rows DeltaN( ) 1−( )..∈for

ΔN

:=  

j 1 N points..:=  
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0 20 40 60 80 100
0

2

4

ΔHj
in

ΔNj
in

j  
Calculate the deformations and strains in the model: 
 

h Δ H( ) hn
2 Δ H

2
−:=

 

 Instantaneous height of the panel 

DT ΔH( ) D0 1
2 Ln⋅ ΔH⋅

D0
2

+⋅:=
 Instantaneous length of the tension diagonal 

DC ΔH( ) D0 1
2 Ln⋅ ΔH⋅

D0
2

−⋅:=
 Instantaneous length of the compression diagonal 

L0
1
2

Ln
2 hn

2+ teff
2+⋅:=
 

L 0 90.968 in=

 

 Unstressed original length of an individual strut 

   

Calculate the instantaneous angle that the diagonals make with the horizontal: 
 

αT ΔH( ) asin
h ΔH( )

DT ΔH( )
⎛⎜
⎜⎝

⎞⎟
⎟⎠

:=
 α T 1 in( ) 33.776 deg=

 

αC ΔH( ) asin
h ΔH( )

DC ΔH( )
⎛⎜
⎜⎝

⎞⎟
⎟⎠

:=
 α C 1 in( ) 34.13 deg=
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Initial angle:

  

α0 asin
hn
D0

⎛
⎜
⎝

⎞
⎟
⎠

:=

 

 α 0 33.954 deg=

 

Calculate the instantaneous length of the struts, including both the in-plane and the out-of-plane 
displacements: 

f_L ΔH ΔN,( )

1
2

DC ΔH( )2
teff 2 ΔN⋅−( )2

+⋅

1
2

DC ΔH( )2
teff 2 ΔN⋅+( )2

+⋅

1
2

DT ΔH( )2
teff 2 ΔN⋅−( )2

+⋅

1
2

DT ΔH( )2
teff 2 ΔN⋅+( )2

+⋅

1
2

DT ΔH( )2
teff 2 ΔN⋅−( )2

+⋅

1
2

DT ΔH( )2
teff 2 ΔN⋅+( )2

+⋅

1
2

DC ΔH( )2
teff 2 ΔN⋅−( )2

+⋅

1
2

DC ΔH( )2
teff 2 ΔN⋅+( )2

+⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

 

Instantaneous lengths of the struts 
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f_L 1.0 in 0 in,( )T 90.555 90.555 91.38 91.38 91.38 91.38 90.555 90.555( ) in=  
Δ Nplot 0.0 in 0.01 teff⋅, 0.5 teff⋅..:=  

0 2 4 6 8 10
90

90.5

91

91.5

92

92.5

93

f_L 0in ΔNplot,( )1

in

f_L 0in ΔNplot,( )2

in

f_L 0in ΔNplot,( )3

in

f_L 0in ΔNplot,( )4

in

ΔNplot
in

 

 

0 2 4 6 8 10
90

90.5

91

91.5

92

92.5

93

f_L 0in ΔNplot,( )5

in

f_L 0in ΔNplot,( )6

in

f_L 0in ΔNplot,( )7

in

f_L 0in ΔNplot,( )8

in

ΔNplot
in

 

 

Calculate the strains in the struts.  Compressive strain is positive. 
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f_ε ΔH ΔN,( )
ε i

L0 f_L ΔH ΔN,( ) i−

L0
←

i 1 8..∈for

ε

:=  

 
Calculate the stresses in the individual struts as a function of the strains. Compressive stress is 
positive. 

f_1_σ ε( ) fmo 2
ε
εy

⎛
⎜
⎝

⎞
⎟
⎠

⋅
ε
εy

⎛
⎜
⎝

⎞
⎟
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅:=
 

 
Make the stress-strain relationship compression-only: 
f_σ ε( ) if ε 0.0ksi< 0.0, if ε 2.0 εy⋅> 0.0, f_1_σ ε( ),( ),( ):=  
 

f_β ΔH ΔN,( )

asin

teff
2

ΔN−

f_L ΔH ΔN,( )1

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

asin

teff
2

ΔN+

f_L ΔH ΔN,( )2

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

asin

teff
2

ΔN−

f_L ΔH ΔN,( )3

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

asin

teff
2

ΔN+

f_L ΔH ΔN,( )4

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

asin

teff
2

ΔN−

f_L ΔH ΔN,( )5

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

asin

teff
2

ΔN+

f_L ΔH ΔN,( )6

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

asin

teff
2

ΔN−

f_L ΔH ΔN,( )7

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

asin

teff
2

ΔN+

f_L ΔH ΔN,( )8

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

:=  Beta angles between the individual struts and the 
vertical plane. 
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Calculate the force in each strut as a function of displacement. Compression is positive. 
 
f_F ΔH ΔN,( )

Fi f_σ f_ε ΔH ΔN,( ) i( ) Astrut⋅←

i 1 Nelem..∈for

F

:=  

 

0 0.5 1 1.5 2 2.5 3
0

20

40

60

f_F ΔHj
ΔNj

,⎛
⎝

⎞
⎠

1

kip

ΔNj
in

 

Calculate the in-plane force as a function of displacements: 
 

PH ΔH ΔN,( )
1

2

i

f_F ΔH ΔN,( ) i( ) cos f_β ΔH ΔN,( )( ) i⋅⎡⎣ ⎤⎦ cos αC ΔH( )( )
sin α C ΔH( )( )

ΔH
h ΔH( )⋅+

...⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

∑
=

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

1−( )

3

4

i

f_F ΔH ΔN,( ) i cos f_β ΔH ΔN,( )( ) i⋅( ) cos αT ΔH( )( )
sin αT ΔH( )( )−

ΔH
h ΔH( )⋅+

...⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

⋅⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

∑
=

⋅+

...:=  

 
 
Calculate the out-of-plane force as a function of displacements: 
 

PN ΔH ΔN,( )
1

8

i

f_F ΔH ΔN,( ) i sin f_β ΔH ΔN,( ) i( )⋅( ) 1−( ) 1−( )i⋅⎡
⎣

⎤
⎦∑

=

:=  
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kip
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⎠

1

kip

f_F ΔHj
ΔNj
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⎠
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kip

f_F ΔHj
ΔNj
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⎝
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⎠
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kip

f_F ΔHj
ΔNj
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kip

ΔHj
in
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⎠
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kip

f_F ΔHj
ΔNj
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⎝
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⎠
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kip

f_F ΔHj
ΔNj
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⎠
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kip

ΔHj
in
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Appendix C: Evaluation of Hashemi's Model 
(In-Plane Controlled 
Displacement, Out-of-Plane 
Constant Force) 

This workbook analyzes the in-plane / out-of-plane behavior of the Hashemi Infill Model 

(Hashemi and Mosalam 2007).  For a derivation of the equations used here, see Appendix A. 

Case considered:  Displacement Controlled In-Plane, Force Controlled 
Out-of-plane Case 11 
Out-of-Plane Force = 7.5 kips 
Constant Out-of-Plane Force 

Constant out-of-plane force to be applied throughout the pushover sequence 
F N 7.5 kip:=   

N sub 100:=  Number of subdivisions between major points.   
 

Note: For brevity, input data and equations that are identical to those used in Appendix B are not 
repeated here. 

Step 1: First Calculate the maximum value of in-plane displacement which may be reached, given 
the out-of-plane force specified.  This is done graphically: 

Case considered:  Displacement Controlled In-Plane, Force Controlled 
Out-of-plane Case 11 
Out-of-Plane Force = 7.5 kips 
Constant Out-of-Plane Force 

Constant out-of-plane force to be applied throughout the pushover sequence 
F N 7.5 kip:=   

N sub 100:=  Number of subdivisions between major points.   
 

Note: For brevity, input data and equations that are identical to those used in Appendix B are not 
repeated here. 
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Step 1: First Calculate the maximum value of in-plane displacement which may be reached, given 
the out-of-plane force specified.  This is done graphically: 

0 2 4 6 8 10
10

5

0

5

10

0.0

PN 0.0in δ,( ) FN−

kip

PN 0.1in δ,( ) FN−

kip

PN 0.2in δ,( ) FN−

kip

PN .5in δ,( ) FN−

kip

PN .89in δ,( ) FN−

kip

2.9

δ
in

 

Δ H_max 0.89 in:=  Found graphically: this is the maximum value of in-
plane displacement for a given out-of-plane force, for 
which a solution exists 

Δ N_max 2.9 in:=  Found graphically: this is the highest upper estimate 
of out-of-plane displacement. 

Major Points for the in-plane displacement: 

DeltaH 0.0in ΔH_max( )T
:=   

Fill in the intermediate points: 
 

Number of rows in the full displacement matrix 
 

Npoints rows DeltaH( ) 1−( ) Nsub( )⋅ 1+:=   

Npoints 101=   
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ΔH

ΔH1 k 1−( ) Nsub⋅+
DeltaHk

←

k 1 rows DeltaH( )..∈for

ΔH1 k 1−( ) Nsub⋅+ r+
ΔH1 k 1−( ) Nsub⋅+

r
Nsub

ΔH1 k Nsub⋅+
ΔH1 k 1−( ) Nsub⋅+

−⎡
⎣

⎤
⎦

⋅+←

r 1 Nsub 1−..∈for

k 1 rows DeltaH( ) 1−( )..∈for

ΔH

:=  

j 1 N points..:=   

Step 2: Calculate the out-of-plane displacement at each value of in-plane displacement: 

ΔN

ΔNj
root PN ΔHj

ΔN,⎛
⎝

⎞
⎠

FN− ΔN, 0.0in, ΔN_max,⎛
⎝

⎞
⎠

←

j 1 Npoints..∈for

ΔN

:=   

Plot the displacement path:  

0 2 4 6 8 10

0

2

0

ΔHj
in

0

ΔNj
in

 

Plot the number of members in compression as a function of displacement: 
 
Ncomp

Ncompj
1

Nelem

i

if f_F ΔHj
ΔNj

,⎛
⎝

⎞
⎠

i 0.0> 1.0, 0.0,⎛
⎝

⎞
⎠∑

=

←

j 1 Npoints..∈for

Ncomp

:=  
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0

5Ncompj

ΔHj
in

 

0 0.2 0.4 0.6 0.8

0

20
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60

f_F ΔHj
ΔNj

,⎛
⎝

⎞
⎠

1

kip

f_F ΔHj
ΔNj

,⎛
⎝

⎞
⎠

2

kip

f_F ΔHj
ΔNj

,⎛
⎝

⎞
⎠

3

kip

f_F ΔHj
ΔNj

,⎛
⎝

⎞
⎠

4

kip

ΔHj
in

 

PN_alt ΔH ΔN,( )
1

Nelem

i

f_FN ΔH ΔN,( )
i

1−( )i 1+⋅⎡⎢⎣
⎤⎥⎦∑

=

:=  
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0
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60

PH ΔHj
ΔNj

,⎛
⎝

⎞
⎠

kip

PN_alt ΔHj
ΔNj

,⎛
⎝

⎞
⎠

kip
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kip
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kip
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Appendix D:  Development of an Equivalent 
Model for Out-of-Plane Behavior 
of URM Infill Panel 

The purpose of this appendix is to present some details of the development of the equivalent 

infill panel model used in Chapter 3. As shown in Figure D.1, a diagonal member with an out-of-

plane (OOP) mass at its midpoint is used to represent both the in-plane (IP) and OOP behavior of 

the infill panel. This appendix discusses the calculation of the OOP elastic and inelastic 

properties of the beam-column element, as well as the value of OOP mass to place at the 

midpoint. 

 
Fig. D.1  Proposed infill model using beam-column elements with fiber discretization. 

 

The purpose of introducing the OOP mass and selecting the beam-column properties is to 

accurately represent the inertial and stiffness properties of the URM infill wall panel. This is 

performed keeping in mind that the infill panel model is part of a larger model of the structure in 

which the panel is located. 
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The infill wall panel in this study is a single wythe wall with a nominal thickness of 4 in., 

and with a weight per unit area of approximately 40 psf. The wall is assumed to span in the 

vertical direction, with simple supports at the top and bottom (where it connects to the floor 

beams). It is further assumed that its dynamic response to OOP motions at the floor levels can be 

accounted for by considering only its first mode of vibration. Note that these assumptions 

already represent a significant idealization (yet reasonable for design purposes) of the actual 

behavior. 

It is desired to represent the OOP behavior of the infill wall with the OOP properties of 

the equivalent diagonal member, in which the mass is lumped at the midspan, and the member, 

instead of spanning vertically, spans diagonally. Conceptually, the two systems may be viewed 

as shown in Figure D.2. Note that the infill wall height, h, is defined elsewhere in this report as 

hinf. The subscript is omitted here for convenience. 

 

m = mass / length
EI = wall stiffness

h = infill wall height

OOP

x x

Meq = equivalent 
concentrated mass

Ldiag = length of diagonal

OOP EIeq = 
equivalent 
stiffness

a) Original system b) Equivalent system 

Fig. D.2  Original versus equivalent systems for OOP response. 

It is assumed that the support motions for the two systems are equal, despite the fact that 

they are attached to slightly different locations in the overall structure. This implies that the floor 

diaphragms are stiff, with little, i.e., negligible, torsional motion.  

There are several objectives in the development of the equivalent model. The model 

should have the same natural frequency as the infill wall. Locally, the model should produce the 

same support reactions, where it is attached to the surrounding frame, for a given support motion. 

Moreover, it should exhibit initial yielding at the same level of support motion that causes the 

original infill wall to yield. 

The natural frequency of the original system (the URM wall spanning vertically, as 

described above in Fig. D.2a) can be determined from the well-known equation of motion for a 

distributed-mass elastic system without damping, assuming non-moving supports (Chopra 2007): 
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By assuming a solution of the form: 

 ( ) ( ) ( )tqxtxu φ=,  (D.2) 
Substituting into Equation (D.1), using the method of separation of variables, the following 

equations are derived: 

 ( ) ( ) 02 =+ tqtq ω  ( ) ( ) 0
2

4

4

=+
∂

∂ x
EI

m
x

x φωφ  (D.3) 

Solving  Equation (D.3b) and applying the simple support boundary conditions leads to the mode 

shapes: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛= x

h
iCx ii
πφ sin i = 1, 2, 3,... (D.4) 

The general solution is: 

 ( ) ( ) ( )∑
∞

=
=

1
,

i
ii tqxtxu φ  (D.5) 

Assuming that the response can be described by the first mode only, the mode shape and circular 

natural frequency are: 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛= x

h
Cx πφ sin11  and  

m
EI

h 2

2

1
πω =   (D.6) 

Note that ( )x1φ  is symmetric with respect to the beam midspan. For the base excitation 

problem, consider the infill wall to experience deflections at the supports as shown in Figure D.3. 

In this figure, ( )tuL  and ( )tuR  are the absolute support motions (displacements relative to an 

inertial reference frame), of the left and right support points, respectively, and ( )txu t ,  is the 

absolute displacement of the beam at an arbitrary point x  along the wall height. 
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original position

deformed shapeu(x,t)

uL(t)

h

x

uR(t)

ut(x,t)

 

Fig. D.3  First-mode deformation of original system with base excitation. 

If we define the relative displacement, ( )txu , , of an arbitrary point on the beam as its 

displacement from the instantaneous tangent joining the left and right supports, we have: 

 ( ) ( ) ( ) ( ) ( )[ ]
h
xtutututxutxu LRL

t −++= ,,          or 

 ( ) ( ) ( )[ ] ( ) ( )[ ] ( )txu
h
xtututututxu RLRL

t ,
2
1

2
1, +⎟

⎠
⎞

⎜
⎝
⎛ −−−+=  (D.7) 

Note that the first term on the RHS is constant with respect to x , and that the second term is 

anti-symmetric about the midspan, 2hx = . In terms of the absolute accelerations, the equation 

of motion for the support excitation problem is: 

 04

4

2

2

=
∂
∂+

∂
∂

x
uEI

t
um

tt

 (D.8) 

Applying Equation (D.7) to each term in Equation (D.8) gives: 

 ( ) ( )[ ] ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−−+−=

∂
∂+

∂
∂

2
1

2
1

4

4

2

2

h
xtutututum

x
uEI

t
um RLRL  (D.9) 

Substituting Equation (D.5) into Equation (D.9), multiplying both sides by ( )x1φ  and 

integrating over the length of the beam, then applying the orthogonality conditions yields: 

 
( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] dx
h
xxmtutu

dxxmtutudxxmtqtq

h

x
RL

h

x
RL

h

x

∫

∫∫

=

==

⎟
⎠
⎞

⎜
⎝
⎛ −−+

+−=+

0
1

0
1

0

2
11

2
11

2
1)(

)(
2
1)(

φ

φφω
 (D.10) 
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The second integral on the RHS is zero, since the integrand is the product of a function which is 

symmetric about the midspan, and another function which is anti-symmetric, and the limits of 

integration are symmetric. Define the participation factor as follows: 

 

( )

( )∫

∫

=

==Γ h

x

h

x

dxxm

dxxm

0

2
1

0
1

1

φ

φ
 (D.11) 

Taking 11 =C  (i.e., the maximum ordinate of mode shape equals unity) gives 2732.11 =Γ . 

Accordingly, Equation (D.10) becomes:   

 ( ) ( ) ( ) ( )
11

2
11 2

Γ⎥⎦
⎤

⎢⎣
⎡ +−=+ tututqtq RLω       (D.12) 

Thus, we arrive at the remarkable result that the OOP response of the wall, when only the 

first mode is included in the analysis, can be determined by assuming that both the top and 

bottom supports experience the same, in-phase, acceleration time history. That time history is 

equal at each point in time to the average of the top and bottom accelerations. This is somewhat 

similar to the procedure used by Hashemi and Mosalam (2007), where the average floor-level 

accelerations were used to calculate the OOP response, although in that case the infill panel was 

considered rigid in the OOP direction. 

The maximum response of the wall may be determined using the response spectrum 

analysis method, where the maximum value of the modal coordinate ( )tq1  is: 

 
11max1 dSq Γ=  (D.13) 

where 1dS is the displacement response spectrum for a single-degree-of-freedom (SDOF) system 

excited by the average (as mentioned above) support acceleration. The bending moment and the 

shear force are then calculated from the following relationships based on elementary beam 

theory (Chopra 2007): 

 ( ) ( )
2

2 ,,
x

txuEItxM
∂

∂=  ( ) ( )
3

3 ,,
x

txuEItxV
∂

∂=     (D.14) 

First, determine the maximum total force exerted on the beam by the surrounding 

structure. This force, at time t , is equal to ( ) ( )thVtV ,,0 − , i.e., the sum of the shears at the ends 

of the beam with proper consideration of signs. 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )tqdxxmtF

dxtq
x

xEIdx
x

txuEI
x

thu
x

tuEIthVtV

h

x

h

x

h

x

⎭
⎬
⎫

⎩
⎨
⎧

−==

∂
∂−=

∂
∂−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂−

∂
∂=−

∫

∫∫

=

==

0

2

0
4

4

0
4

4

3

3

3

3 ,,,0,,0

φω

φ

 (D.15) 

where modal subscripts have been dropped, since only the first mode is considered to contribute 

to the response, and use has been made of the second equation in (D.3).  The maximum absolute 

value of the sum of the support forces is: 

 

 ( ) ( ) ( ) aa

h

x
d

h

x

h

x

SMEMSdxxmSdxxmqdxxmF ×=Γ
⎭
⎬
⎫

⎩
⎨
⎧

=Γ
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

= ∫∫∫
=== 00

2
max

0

2
max φφωφω  (D.16)  

where da SS 2ω=  is the spectral acceleration, and MEM  is the modal effective mass, defined as: 

( )
( )

( )∫

∫
∫

=

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=Γ
⎭
⎬
⎫

⎩
⎨
⎧

= h

x

h

x
h

x dxxm

dxdxxm
dxxmMEM

0

2

2

0

0 φ

φ
φ       (D.17) 

In other words, the MEM  is the mass value that, when multiplied by the spectral acceleration, 

will give the maximum total support force caused by the base acceleration.  For the first-mode 

shape given in Equation (D.6), Equation (D.17) gives: 

mhMEM 81.0=    
That is, the modal effective mass for the first mode is 81% of the total mass of the beam. 

Next, the maximum midspan moment is calculated: 

 ( ) ( )tq
x

xEIthM
hx
2

2

2

,
2 =∂

∂=⎟
⎠
⎞

⎜
⎝
⎛ φ  (D.19) 

 ( ) ( )
2

2

2

2

max

2

2

2

max

,
2 ω

φφ a

hxhx

S
x

xEIq
x

xEIthM Γ
∂

∂=
∂

∂=⎟
⎠
⎞

⎜
⎝
⎛

==

 (D.20) 

Substituting from the first equation in (D.6) and differentiating (taking 11 =C ),  

  ( )
2

2

2

2

2

hx
x

hx

πφ −=
∂

∂

=

 (D.21) 

Rearranging the second equation in (D.6), one obtains 14

42

=
EI

mh
π

ω . Therefore, from this 

rearrangement and using Equation (D.21), Equation (D.20) becomes: 
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2
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2 ππ

ω
ω

π
ω

φ mhS

EI
mhS

h
EI

S

x
xEIthM aaa

hx

Γ
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡Γ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

Γ
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂=⎟

⎠
⎞

⎜
⎝
⎛

=

 (D.22) 

Here, the absolute value is taken, particularly in the use of the result from Equation (D.21). For 

the first mode, with 2732.11 =Γ , the maximum absolute midspan moment is: 

 ( )
752.7

,
2

2

max

hmSthM a=⎟
⎠
⎞

⎜
⎝
⎛  (D.23) 

It is interesting to note that the first-mode midspan moment in Equation (D.23) is nearly 

equal to the moment that would be found by applying a uniform load of amS , for which the 

denominator would be 8 instead of 7.752, i.e., a ratio of 0.969. As a last step for the original 

system, calculate the spectral acceleration, ayS , at which the beam reaches incipient yield at 

midspan, assuming that the expected OOP strength of the infill wall, in terms of a uniform 

pressure, ineq , is known: 

 ( )
752.78

22
inf hmShLqM ayine

y ==  (D.24) 

where infL  is the horizontal length of the infill panel. Rearranging,  

 
m
LqS ine

ay
inf969.0=  (D.25) 

Next, consider the response of the equivalent system (Fig. D.4).  It has one OOP DOF, 

which is denoted OOPΔ . This is the displacement of the midspan OOP mass. First, assume that the 

midspan mass is equal to the MEM derived above for the original system. Subsequently, calculate 

the bending stiffness required to produce the same frequency as the original system. Next, show 

that the base reaction for the equivalent system is equal to the original system. Finally, calculate 

the yield moment for the equivalent system, such that both the original system and the equivalent 

system experience incipient yielding at the same spectral acceleration. 
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PN = OOP Force

original position

deformed shape
ΔOOP(t)

uL(t)

Ldiag

Ldiag / 2

uR(t)

Δ t
OOP(t)

 

Fig. D.4  First-mode deformation of equivalent system with base excitation. 

The OOP stiffness of the equivalent system, eqk , defined as the OOP force, NP , 

required to produce a unit deflection, is well known for a simply supported beam from structural 

analysis as: 

 3

48

diag

eq

OOP

N
eq L

EIPk =
Δ

=   (D.26) 

where eqI  is the equivalent moment of inertia of the section, and E  is the URM elastic modulus. 

The circular natural frequency of the equivalent system, assuming a mass at the midspan equal to 

the first-mode effective mass, MEM , is given by 

 
MEM

keq
eq =ω  or 2

eqeq MEMk ω×=  (D.27) 

Equating this frequency to the circular frequency of the original system, second equation in 

(D.6), and substituting into Equation (D.26) yields: 

 I
h

L
I

h
L

mEh
EILMEM

E
LMEM

I diagdiagdiagdiageq
eq

334

4

3432

644.1
48
81.0

4848 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=== ππω

 (D.28) 

where use has been made of Equation (D.18). This provides the moment of inertia of the 

equivalent system in terms of the moment of inertia of the original infill panel cross section, I , 

equal to ( ) 123
infinftLκ  , where inft  is the thickness of the infill, and κ  is a factor to account for 

cracking. 

From the well-known principles of structural mechanics, the equation of motion for the 

equivalent system (with OOP mass equal to MEM ) is given by 

 ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ +−=Δ+Δ

2
tutuMEMkMEM RL

OOPeqOOP  or 
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 ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ +−=Δ+Δ

2
2 tutu RL

OOPeqOOP ω  (D.29) 

The solution for maximum displacement is given by 

 dOOP S=Δ max,  (D.30) 
where dS  is the SDOF response for the average support motion, as defined for the original 

system. The maximum structural base force is then given by 

 adeqOOPeq SMEMSMEMkF ×=×=Δ= 2
max,max ω  (D.31) 

Thus, the base force for the equivalent system is equal to the equivalent force for the original 

system, as given in Equation (D.16). The maximum midspan moment is given by 

 
44

max
max

diag
a

diag L
SMEM

LF
M ××==  (D.32) 

For equivalence, the yield moment in the equivalent system beam is reached when the 

support spectral acceleration, aS , equals the yield spectral acceleration of the original system, 

ayS , defined by Equation (D.25). Thus: 

 
4_
diag

ayyeq

L
SMEMM ××=        (D.33) 

Using Equations (D.18) and (D.24), this can be simplified to the following: 

 
y

diagdiagy
yeq M

h
LL

mh

M
mhM 570.1

4
752.7

81.0 2_ =××=         (D.34) 

where yM  is the yield moment in the original system. Finally, calculate the OOP force that 

causes the equivalent beam to yield, using Equations (D.18), (D.25), and (D.31), one obtains the 

following: 

 [ ]hLq
m
LqmhSMEM

L
M

F ine
ine

ay
diag

yeq
yeq inf

inf_
_ 785.0969.081.0

4
=×=×==  (D.35) 

Note that the term in square brackets is the expected static OOP capacity (in terms of total force) 

of the infill panel, based on FEMA equations (FEMA 2000). The coefficient 0.785 is the product 

of two factors. One factor, 0.81, is the ratio between the first-mode effective mass and the total 

wall weight (see Equations (D.17) and (D.18)). It results from the fact that only the first mode is 

being used in the analysis. The second factor, 0.969, is the ratio between the moment due to a 

uniformly applied quasi-static load and the moment caused by the first mode (see Equation 

(D.24)). 

The equations derived above are applied in Appendix E to the infill panel case study used 

in Chapters 3 and 4. 
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Appendix E: Calculation of Model Parameters 

This appendix contains the detailed calculations for the model parameters.  Input data are 

highlighted.  Note: references to specific pages in Hashemi and Mosalam (2007) are shown as

"(H&M, p. xx)."    

 Input properties: 

f' me 2.46 ksi:=  Masonry expected compressive strength (from H&M, p.45). 

t inf 3.75 in:=  Thickness of infill masonry (H&M, p.133). 

h inf 101.5 in:=  Height of infill (H&M, p.133). 

L inf 150 in:=  Length of infill (H&M, p.133). 

hcol 108 in:=  Floor-to-floor height (H&M, p. 133). 

L col 13.5 ft:=  Centerline distance between columns (H&M, p.10). 

Em 550 f'me:=  FEMA 356 formula for masonry elastic modulus (expected and 
lower bound) (Tables 7-1 and 7-2). 

Em 1353.00 ksi=  

For this case, match Hashemi's Em, in order to match the frequency of his model: 

E m 1770 ksi:=  Elastic modulus from H&M, p.179 

Efe 4250 ksi:=  Expected elastic modulus of frame concrete (H&M, p. 133). 

Ig
12in 12in( )3⋅

12
:=  Gross moment of inertia of the concrete columns (H&M, p.10). 

Icol 0.5 Ig⋅:=  Effective cracked moment of inertia of the concrete columns. 
(FEMA 356, Table 6-5). 

Icol 864 in4=  
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rinf hinf

2 Linf
2+:=  Diagonal length of the infill. 

r inf 181.114 in=  

θinf atan
hinf
Linf

⎛
⎜
⎝

⎞
⎟
⎠

:=  Angle of the diagonal for the infill. 

θ inf 34.085 deg=  

Ldiag hcol
2 Lcol

2+:=  Diagonal length between column centerlines and floor 
centerlines. 

Ldiag 194.7 in=  

θdiag atan
hcol
Lcol

⎛
⎜
⎝

⎞
⎟
⎠

:=  Angle of the diagonal between beam-column workpoints. 

θ diag 33.69 deg=  

Γ 1.2732:=  First OOP mode participation factor (see Appendix D) 
--------------------------------------------------------------------------------------------------------------- 
Calculate the width of the compression strut which represents the infill, based on the method 
given in FEMA 356, Section 7.5.2: 

λ1
Em tinf⋅ sin 2 θinf⋅( )⋅

4 Efe⋅ Icol⋅ hinf⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

1
4

:=  λ1 0.045 in 1−=  

a 0.175 λ 1 hcol⋅( ) 0.4−
⋅ rinf⋅:=  Width of the compression strut. 

a 16.827 in=  
----------------------------------------------------------------------------------------------------------------- 
Calculate the axial stiffness of the infill strut: 

kinf
a tinf⋅ Em⋅

rinf
:=  Axial stiffness for a member which is located on the diagonal 

between the corners of the infilled area. 

kinf 616.662
kip
in

=  Note that this will also be the stiffness of the equivalent beam-
column member which will be located between the 
workpoints, with a length of Ldiag. 
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--------------------------------------------------------------------------------------------------------------------- 
Calculate the axial strength of the infill strut: 

(Based on FEMA 356, Section 7.5.2.2) 

P ce 41.4 kip:=  Expected gravity compressive force applied to wall panel (from 
H&M, p.133). 

v te 90 psi:=  Average bed joint shear strength (from H&M, p. 133). 

A n tinf L inf⋅:=  Net bedded area of the infill. 

A n 562.5 in2=  

Expected masonry shear strength vme

0.75 vte
Pce
An

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅

1.5
:=  

vme 81.8 psi=  

Q ce vme A n⋅:=  Expected horizontal shear capacity of infill. (Equation 7-15, 
FEMA 356). 

Q ce 46.013 kip=  

Pn0
Qce

cos θdiag( ):=  Axial capacity of the equivalent compression strut, which will run 
between workpoints in the concrete frame.  

P n0 55.3 kip=  

-------------------------------------------------------------------------------------------------------------------- 
Calculate the "yield point," i.e., the axial deformation in the equivalent strut at the point where 
the initial tangent stiffness line intersects the element capacity: 

δ Ay0
P n0
k inf

:=  (assumes no OOP load) 

δ Ay0 0.09 in=  

--------------------------------------------------------------------------------------------------------------------- 
Calculate the IP horizontal deflection of the panel at the yield point: 

uHy0
δ Ay0

cos θdiag( ):=  

u Hy0 0.108 in=  Note: assumes that the vertical deflections of the endpoints 
are zero 
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---------------------------------------------------------------------------------------------------------------------
Calculate the lateral deflection of the panel at the collapse prevention (CP) limit state: 
Based on FEMA 356, Section 7.5.3.2.4, including Table 7-9: 
                     
1) Estimate β < 0.7 Where β is defined as Vfre / Vine, the ratio of frame 

to infill expected strengths 

2) 
Linf
hinf

1.478=  

3) d .35 %:=  (Interpolated in Table 7-9.  It is assumed that the CP limit state is reached 
when the element drift reaches point "d" as shown in Figure 7-1 of FEMA 
356) 

uHcp0 d hinf⋅:=  Displacement of the panel at the CP limit state 

uHcp0 0.355 in=  

μH0
uHcp0
uHy0

:=  Implied ductility at the collapse prevention level. 

μH0 3.296=  

-------------------------------------------------------------------------------------------------------------------
Calculate the required area of the equivalent element, which will span between workpoints, and 
will have an elastic modulus equal to Em: 

Aelem
kinf Ldiag⋅

Em
:=  

A elem 67.833 in 2=  

------------------------------------------------------------------------------------------------------------------ 

Calculate the Out-of-Plane (OOP) parameters of the infill: 

γ inf 120
lbf

ft3
:=  Weight density of the infill bricks (assumed). 
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---------------------------------------------------------------------------------------------------------------- 
Calculate the OOP frequency of the infill, assuming that it spans vertically,  
with simply-supported ends: 

Iinf_g
Linf tinf

3⋅

12
:=  Moment of inertia of the uncracked infill (gross moment) 

I inf
1
2

I inf_g⋅:=  Estimated moment of inertia of the cracked infill 

Iinf 329.59 in4=  

w inf L inf tinf⋅ γ inf⋅:=  Weight per unit of length (measured vertically) of the infill. 

winf 39.063
lbf
in

=  

fss
π

2 hinf
2⋅

Em Iinf⋅ g⋅

winf
⋅:=  First natural frequency of the infill, spanning in the vertical 

direction, with top and bottom ends simply supported. 
(Blevins 1979, Table 8-1). 

fss 11.578 Hz=  
---------------------------------------------------------------------------------------------------------------- 
Calculate the OOP effective weight: 

The OOP effective weight is based on the modal effective mass of the vertically spanning, 

simply supported (assumed) infill wall.  For simple-simple conditions, the modal effective 

weight is equal to 81% of the total infill weight.  See Appendix D for a derivation of this 

value. 
W inf γ inf tinf⋅ hinf⋅ L inf⋅:=  Total weight of the infill. 

W inf 3.965 kip=  

MEW 0.81 W inf⋅:=  Modal effective weight, assuming that the wall spans 
vertically, and is simply supported top and bottom. 
(First mode).  See Appendix D. MEW 3.212 kip=  

------------------------------------------------------------------------------------------------------------------- 
Calculate the equivalent OOP spring which will provide the identical frequency. 

keq_N 2 π⋅ fss⋅( )2 MEW
g

⋅:=  

keq_N 44.018
kip
in

=  
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----------------------------------------------------------------------------------------------------------------- 
Calculate the moment of inertia of the equivalent beam element, such that it will provide the 
correct value of keq_N: 

Ieq
keq_N Ldiag

3⎛
⎝

⎞
⎠⋅

48 Em⋅
:=  

Ieq 3824.0 in4.0=  Ielem Ieq:=

Using Equation D.28 from Appendix D: 

1.644
Ldiag
hinf

⎛
⎜
⎝

⎞
⎟
⎠

3

⋅ Iinf⋅ 3824.5 in4=  (Same results) 

------------------------------------------------------------------------------------------------------------------
Calculate the OOP capacity of the infill: 
The OOP capacity is based on FEMA 356, Section 7.5.3.2. 
hinf
tinf

27.067=  

Since this value is outside the range used in FEMA 356, Table 7-11, for determining λ, perform 
an extrapolation: 
Array of values from Table 7-11: 

FEMA_Array

5

10

15

25

0.129

0.060

0.034

0.013

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

:=  

λ 2 linterp FEMA_Array 1〈 〉 FEMA_Array 2〈 〉,
hinf
tinf

,
⎛
⎜
⎝

⎞
⎟
⎠

:=  λ2 0.00866=

Check by graphing the values: 

Array

5

10

15

25

hinf
tinf

0.129

0.060

0.034

0.013

λ2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:=  

k 1 rows Array( )..:=
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0 5 10 15 20 25 30
0

0.05

0.1

Extrapolating for lambda2

h_inf / t_inf

la
m

bd
a2

qin
0.7 f'me⋅ λ2⋅

hinf
tinf

:=  Note: the expected, rather than the lower bound value, of masonry 
compressive strength is used here, since the expected OOP strength 
will be used in later calculations. 

qin 79.338
lbf

ft2
=  q in 0.551 psi=

q in hinf⋅ L inf⋅ 8.388 kip=  Total OOP force on the wall at capacity. 

------------------------------------------------------------------------------------------------------------------ 
Calculate the moment in the infill wall at the time that it reaches its capacity: 

My
qin Linf⋅ hinf

2⋅

8
:=  Assumes simple support at the top and bottom. 

M y 106.426 in kip⋅=  

-------------------------------------------------------------------------------------------------------------------- 
Calculate the required yield moment for the equivalent element, such that the same base 
motion will bring it and the original wall to incipient yield: 

Note: for derivation of this equation, see 
Appendix D. 

M eq_y 1.570
Ldiag
hinf

⋅ M y⋅:=  

M eq_y 320.515 in kip⋅=  

M n0 M eq_y:=  Defines the OOP "yield" moment for the equivalent 
member when the IP axial force is zero. 
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---------------------------------------------------------------------------------------------------------------- 
Determine the OOP point force, applied at the midspan of the equivalent element, to cause 
yielding: 

FNy0
4 Meq_y⋅

Ldiag
:=  

F Ny0 6.585 kip=  

----------------------------------------------------------------------------------------------------------------- 
Calculate the displacement of the equivalent element at first yield and at the collapse 
prevention limit state, assuming no IP axial force: 

uNy0
FNy0
keq_N

:=  
OOP "yield" displacement, assuming no IP axial force. 

u Ny0 0.15 in=  

The displacement at collapse prevention limit state: 

FEMA 356, Section 7.5.3.3 gives a maximum OOP deflection based on an OOP story drift 
ratio of 5%. 

uNcp0 0.05 hinf⋅:=  

uNcp0 5.075 in=  

This value seems too high, since it's larger than the thickness of the infill itself.  Instead, define the 
CP displacement as equal to one half the thickness of the infill. 

uNcp0 min 0.05 hinf⋅
tinf

2
,

⎛
⎜
⎝

⎞
⎟
⎠

:=  

uNcp0 1.875 in=  

The implied ductility ratio is: 

μNcp0
uNcp0
uNy0

:=  μNcp0 12.534=

This ductility seems too high.  Based on judgment, use a (conservative) ductility of 5: 

μNcp0 5:=  uNcp0 uNy0 μNcp0⋅:= uNcp0 0.748 in=
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Calculating the axial force–moment interaction curve for specific values of Pn0 and Mn0: 

Using the exponent relationship:  

f_Pn Mn Pn0, Mn0,( ) Pn0 1
Mn

Mn0

⎛
⎜
⎝

⎞
⎟
⎠

3
2

−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

2
3

⋅:=  This is the target P-M relationship for the 
equivalent member, located on the diagonal 
between structural workpoints. 

P n0 55.3 kip=  Axial capacity of the member under pure compression (calculated 
above). 

M n0 320.515 in kip⋅=  Moment capacity of the member under pure bending (calculated 
above). 

Ninteraction 6:=  Number of points on the interaction curve to be used for calculating fiber 
properties (should be an even number). 

Nfiber 2 Ninteraction 1−( )⋅:=  Nfiber 10=

Mn

Mnq
q 1−( )

Mn0
Ninteraction 1−

⋅←

q 1 Ninteraction..∈for

Mn

:= Pn

Pnq
f_Pn Mnq

Pn0, Mn0,⎛
⎝

⎞
⎠

←

q 1 Ninteraction..∈for

Pn

:=  

Mn
T 0.0 64.1 128.2 192.3 256.4 320.5( ) in kip⋅=  Pn

T 55.3 52.0 45.5 36.5 23.9 0.0( ) kip=  

q 1 N interaction..:=  

0 50 100 150 200 250 300 350
0

20

40

60

Pnq
kip

Mnq
in kip⋅

-------------------------------------------------------------------------------------------------------------------- 
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Calculate the required strength and location of the various fibers: 

Fy

Fyp

Pnp
Pnp 1+

−

2
←

p 1 Ninteraction 1−..∈for

Fyp
Fy2 Ninteraction⋅ 1− p−

←

p Ninteraction 2 Ninteraction 1−( )⋅..∈for

Fy

:=

Fy

1

1
2

3

4

5

6

7

8

9

10

1.674
3.212

4.536

6.268

11.959

11.959

6.268

4.536

3.212

1.674

kip=  

1

N fiber

p

F yp∑
=

55.3 kip=  

z

zp

Mnp 1+
Mnp

−

2 Fyp
⋅

←

p 1 Ninteraction 1−..∈for

zp z2 Ninteraction⋅ 1− p−( )−←

p Ninteraction 2 Ninteraction 1−( )⋅..∈for

z

:=

z

1

1
2

3

4

5

6

7

8

9

10

19.143
9.98

7.065

5.113

2.68

-2.68

-5.113

-7.065

-9.98

-19.143

in=  

abs x( ) if x 0.0≥ x, x−,( ):=  Absolute function (since the MathCad absolute 
function has some bugs). 

------------------------------------------------------------------------------------------------------------------ 
Solve block for the determining the values of the parameters γ and η: 

Estimate the values of the parameters: γ 30:= η .2−:=

Given 

1

Nfiber

p

γ abs
zp
in

⎛
⎜
⎝

⎞
⎟
⎠

η⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
⎡⎢
⎢⎣

⎤⎥
⎥⎦∑

=

Aelem

in2
 

1

Nfiber

p

γ abs
zp
in

⎛
⎜
⎝

⎞
⎟
⎠

η
⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

zp
in

⎛
⎜
⎝

⎞
⎟
⎠

2
⋅

⎡⎢
⎢⎣

⎤⎥
⎥⎦∑

=

Ielem

in4
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 Result Find γ η,( ):=  

γ Result 1 in2⋅:=  γ 32.273 in2=  

η Result2:=  η 0.875−=

A

Ap γ abs
zp
in

⎛
⎜
⎝

⎞
⎟
⎠

η
⋅←

p 1 Nfiber..∈for

A

:=  

AT 1 2 3 4 5 6 7

1 2.435 4.306 5.827 7.734 13.615 13.615 7.734
in2=  

Check the results above: 

1

N fiber

p

Ap∑
=

67.833 in2=  
1

Nfiber

p

Ap zp( )2⋅⎡⎣ ⎤⎦∑
=

3823.978 in4=  

------------------------------------------------------------------------------------------------------------------ 
Determine the stress at yield: 

σy

σp

Fyp
Ap

←

p 1 Nfiber..∈for

σ

:=  

σ y
T 1 2 3 4 5

1 0.688 0.746 0.779 0.811 0.878
ksi=  Yield stress for Elements 

6-10 are symmetric 

------------------------------------------------------------------------------------------------------------------ 
Calculate the strain at first yield: 

ε y

ε yp

σyp
Em

←

p 1 Nfiber..∈for

ε y

:=  
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Summary of Fiber Properties: 

Elastic Modulus: E m 1770 ksi=

Fiber yield strength: Fiber Area: Fiber location (distance from CL): 

Fy

1

1
2

3

4

5

6

7

8

9

10

1.674
3.212

4.536

6.268

11.959

11.959

6.268

4.536

3.212

1.674

kip=  A

1

1
2

3

4

5

6

7

8

9

10

2.435
4.306

5.827

7.734

13.615

13.615

7.734

5.827

4.306

2.435

in2.000=  z

1

1
2

3

4

5

6

7

8

9

10

19.143
9.98

7.065

5.113

2.68

-2.68

-5.113

-7.065

-9.98

-19.143

=

Fiber yield stress: Fiber yield strain: 

σ y

1

1
2

3

4

5

6

7

8

9

10

0.688
0.746

0.779

0.811

0.878

0.878

0.811

0.779

0.746

0.688

ksi=  εy

1

1
2

3

4

5

6

7

8

9

10

0.000389
0.000421

0.000440

0.000458

0.000496

0.000496

0.000458

0.000440

0.000421

0.000389

=  

in 
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-------------------------------------------------------------------------------------------------------------------- 
Verify that the given parameters will produce the desired section properties: 

A calc
1

N fiber

p

A p∑
=

:=  A calc 67.833 in2=  
Acalc
Aelem

1.000=  

Icalc
1

Nfiber

p

Ap zp( )2⋅⎡⎣ ⎤⎦∑
=

:=  Icalc 3823.9775in4=  
Icalc
Ieq

1.000=  

P0_calc
1

Nfiber

p

Ap σyp
⋅⎛

⎝
⎞
⎠∑

=

:=  P 0_calc 55.3 kip=
P0_calc

Pn0
1.000=  

M0_calc
1

Nfiber

p

σyp
Ap⋅ abs zp( )⋅⎛

⎝
⎞
⎠∑

=

:=  M0_calc 320.515 in kip⋅=
M0_calc

Mn0
1.000=  

----------------------------------------------------------------------------------------------------------------------- 
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Appendix F: Monte Carlo Simulations 

The purpose of this appendix is to provide examples of the Monte Carlo simulation (MCS) 

analyses used to re-calculate the fragility functions for the five-story model used by Hashemi and 

Mosalam (2007). In that model the infill panels were represented by compression-only struts, 

which were composed of linear elastic materials. 

 The Hashemi and Mosalam (2007) model was based on an infill OOP strength of 155 psf, 

as given in Appendix D of that reference.  For this report, an OOP strength of 79 psf is judged to 

be more appropriate (see Appendix E).  The ratio is 79 / 155 = 0.51.  In addition, the IP strength 

of the Hashemi and Mosalam (2007) model was 69.4 kips, while for this report it is taken as (see 

Chapter 3) 46.0 kips, based on a factor of 1/1.5.   

 It is desired to compare the fragility functions generated by the Hashemi and Mosalam 

(2007) model with the functions generated by this report.  In order to make a valid comparison, it 

is necessary to compare functions calculated on an equivalent basis, i.e., for the same IP and 

OOP force-based capacities.  Hashemi and Mosalam (2007) used a reliability analysis to 

calculate fragilities.  For this report, it is decided to use MCS.   

 First, in order to confirm the MCS validity, the fragilities are re-calculated, using 

MathCAD (MathSoft 1997), with the original IP and OOP capacities.  This analysis begins on 

the next page.  The analysis shown is for the first-story infill panel, with the spectral 

acceleration, Sa = 1.61g (5/50).  The resulting probabilities of exceedence are the same as those 

given by Hashemi and Mosalam (2007), thus confirming the validity of MCS.  Next, the MCS is 

applied to the same case, except that the OOP capacity is factored by 0.51 and the IP capacity is 

factored by 1/1.5. These results, along with the results from the other four Sa levels, are reported 

in Section 4.3. 
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Notes: 

(1) The probability equations 

used in this appendix are taken 

from Garvey (1993). 

(2) The original demand and capacity parameters are from Hashemi and Mosalam (2007). 

Worksheet for calculating points on the fragility curve: 
 
This worksheet uses a MCS to calculate the probability of failure of a wall due to in-plane 

loads, out-of-plane loads, and a combination of the two effects. The first analysis uses the

original strength values from Hashemi and Mosalam (2007). 

 Case:  First story, Sa = 1.61g 
 

N 200000:=  Number of Monte Carlo Trials 

Statistics for the in-plane and out-of-plane strengths: 

μRH 309:=  Mean in-plane strength (kN) 

σRH 71.2:=  Standard deviation of in-plane strength (kN) 

μRN 36.4:=  Mean out-of-plane strength (kN) 

σ RN 8.40:=  Standard deviation of out-of-plane strength (kN) 

ρ HN .30:=  Correlation coefficient between in-plane and out-of-plane 
strengths 

Statistics for the in-plane and out-of-plane loads: 

μ PH 558:=  Mean in-plane loads (kN) 

σ PH 234:=  Standard deviation of in-plane loads (kN) 

μ PN 3.03:=  Mean out-of-plane loads (kN) 

σ PN 1.40:=  Standard deviation of out-of-plane loads (kN) 

ρ PH_PN 0.11−:=  Correlation coefficient between in-plane and out-of-plane loads 

Sets of lognormally distributed loads and capacities are created using the MathCad random 

number generator. First, the statistics given above, which are given in the linear domain, must be 

converted to log-domain statistics: 
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For the capacities: 

β RH ln
σRH

2

μRH
2

1+
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=  β RH 0.227= Standard deviation of the LNs 

αRH ln
μRH

σRH
2

μRH
2

1+

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

:=  αRH 5.707= Mean of the LNs 

Med RH e
α RH:=  Med RH 301.11=

β RN ln
σRN

2

μRN
2

1+
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=  β RN 0.228= Standard deviation of the LNs 

αRN ln
μRN

σRN
2

μRN
2

1+

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

:=  αRN 3.569= Mean of the LNs 

Med RN e
α RN:=  Med RN 35.468=

fRN RN( ) dlnorm RN α RN, β RN,( ):=  MathCad lognormal function.  Confirm by 
plotting. 

RN plot 0.0 0.02, 1000..:=  Plot the out-of-plane strengths: 

0 20 40 60 80 100
0

0.05

0.1

fRN RNplot( )

RNplot
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 The properties may be checked as follows: 

0

10000
RNfRN RN( )

⌠
⎮
⌡

d 1.00000=  1
μRN 0

10000
RNRN fRN RN( )⋅

⌠
⎮
⌡

d⋅ 1.000=  

1

σRN
2

0

10000
RNRN μRN−( )2

fRN RN( )⋅
⌠
⎮
⌡

d⋅ 1.000=  
fRH RH( ) dlnorm RH αRH, β RH,( ):=  

Create the joint probability distribution: 

First, calculate the correlation coefficient for the log domain: 

ρ12
1

β RH β RN⋅
ln 1 ρHN e

βRH
2

1−
⎛
⎜
⎝

⎞
⎟
⎠⋅ e

βRN
2

1−
⎛
⎜
⎝

⎞
⎟
⎠⋅+

⎡
⎢
⎣

⎤
⎥
⎦⋅:=  ρ12 0.305=  

w RH RN,( )
1

1 ρ12
2

−

ln RH( ) α RH−

β RH

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2

2− ρ12⋅
ln RH( ) α RH−

β RH

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
ln RN( ) α RN−

β RN

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+

...

ln RN( ) α RN−

β RN

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2

+

...

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅:=

Create the joint lognormal distribution for the strengths: 

fRH_RN RH RN,( )
1

2 π⋅( ) β RH⋅ β RN⋅ 1 ρ12
2

−⋅ RH⋅ RN⋅
e

1−
2

w RH RN,( )⋅
⋅:=  

Creating sets of random strength values: 

First, create lognormally random values of the in-plane strength: 

RH rlnorm N α RH, β RH,( ):=  MathCad function for producing random values of RH 
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Generate the properly correlated random values for RN (out-of-plane strength): 

RN

b αRN
β RN
β RH

ρ12⋅ ln RHi( ) αRH−( )⋅+←

RNi rlnorm 1 b, β RN 1 ρ12
2

−⋅,⎛
⎝

⎞
⎠1←

i 1 N..∈for

RN

:=

(This uses the conditional lognormal 
distribution for RN, based on the value 
of RH and the correlation coefficient) 

Create the random number pairs for the loads, using the same procedure: 

β PH ln
σPH

2

μPH
2

1+
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=  β PH 0.402= Standard deviation of the LNs 

αPH ln
μPH

σPH
2

μPH
2

1+

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

:=  αPH 6.243= Mean of the LNs 

Med PH e
α PH:=  Med PH 514.584=

β PN ln
σPN

2

μPN
2

1+
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=  β PN 0.44=

αPN ln
μPN

σPN
2

μPN
2

1+

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

:=  αPN 1.012=

Med PN e
α PN:=  Med PN 2.751=

fPN PN( ) dlnorm PN α PN, β PN,( ):=
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 Create the joint probability distribution: 

ρ12
1

β PH β PN⋅
ln 1 ρPH_PN e

βPH
2

1−
⎛
⎜
⎝

⎞
⎟
⎠⋅ e

βPN
2

1−
⎛
⎜
⎝

⎞
⎟
⎠⋅+

⎡
⎢
⎣

⎤
⎥
⎦⋅:=  ρ12 0.122−=

w PH PN,( )
1

1 ρ12
2

−

ln PH( ) αPH−

β PH

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2

2− ρ12⋅
ln PH( ) αPH−

β PH

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
ln PN( ) αPN−

β PN

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+

...

ln PN( ) αPN−

β PN

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2

+

...

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅:=  

fPH_PN PH PN,( )
1

2 π⋅( ) β PH⋅ β PN⋅ 1 ρ12
2

−⋅ PH⋅ PN⋅
e

1−
2

w PH PN,( )⋅
⋅:=  

PH rlnorm N α PH, β PH,( ):=  

PHave
1
N

1

N

i

PHi∑
=

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:=  PHave 557.967=

PHsigma
1
N

1

N

i

PHi PHave−( )2∑
=

⋅:=  PHsigma 233.808=

Generate the properly correlated random values for PN: 

PN

b αPN
β PN
β PH

ρ12⋅ ln PHi( ) αPH−( )⋅+←

PNi rlnorm 1 b, β PN 1 ρ12
2

−⋅,⎛
⎝

⎞
⎠1←

i 1 N..∈for

PN

:=
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PN ave
1
N

1

N

i

PN i∑
=

⋅:=  PNave 3.029=

PN sigma
1
N

1

N

i

PN i PN ave−( )2∑
=

⋅:=  PNsigma 1.396=

Corr PH_PN
1
N

1

N

i

PHi PHave−( ) PN i PN ave−( )⋅

PHsigma PN sigma⋅

⎡
⎢
⎣

⎤
⎥
⎦

∑
=

⋅:=  Corr PH_PN 0.109848−=  

Check the g1 (IP) criterion: Note: See Hashemi and Mosalam (2007) for a complete 
discussion of the g1, g2, and g3 criteria. 

Prob_Fail_g1 failcount 0←

failcount failcount 1+←
PHi
RHi

1.00>if

i 1 N..∈for

failcount
N

:=

Prob_Fail_g1 87.713%=  

(Corresponding probability from Hashemi and Mosalam (2007): 87.70%) 

Check the g2 (OOP) criterion: 

Prob_Fail_g2 failcount 0←

failcount failcount 1+←
PNi
RNi

1.00>if

i 1 N..∈for

failcount
N

:=

Prob_Fail_g2 0.000000%=

(Corresponding probability from Hashemi and Mosalam (2007): 0.0000128%) 
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Check the g3 criterion: 

θ1 0.114−:=  Given values of the g3 interaction function (Hashemi and Mosalam (2007), p.191) 

θ2 .948:=  θ3 6.18−:=  θ4 111:= θ5 11.2:=

g3 interaction function: 

g3 PH RH, PN, RN,( ) θ1 θ5
PN
RN

⋅⎛⎜
⎝

⎞⎟
⎠

3
⋅ θ2 θ5

PN
RN

⋅⎛⎜
⎝

⎞⎟
⎠

2
⋅+ θ3 θ5

PN
RN

⋅⎛⎜
⎝

⎞⎟
⎠

⋅+ θ4+
⎡
⎢
⎣

⎤
⎥
⎦

RH
θ4

⋅ PH−:=  

Prob_Fail_g3 failcount 0←

failcount failcount 1+← g3 PHi RHi, PNi, RNi,( ) 0.0<if

i 1 N..∈for

failcount
N

:=

Prob_Fail_g3 89.70250%=  

Note: This compares well with the probability given in Hashemi and Mosalam (2007) of 
89.30%. Thus, the methodology is confirmed. 
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Calculating Points on the Fragility Curve: 
 
This worksheet uses a MCS to calculate the probability of failure of a wall due to in-plane 
loads, out-of-plane loads, and a combination of the two effects. The first analysis uses the 
original strength values from Hashemi and Mosalam (2007). 
 

Case:  First story, Sa = 1.61g 

N 200000:=  Number of Monte Carlo Trials 

Statistics for the in-plane and out-of-plane strengths: 

μRH 309 0.5097( )⋅:=  Mean in-plane strength (kN) 

σRH 71.2:=  Standard deviation of in-plane strength (kN) 

μRN 36.48
1

1.5
⎛⎜
⎝

⎞⎟
⎠

:=  Mean out-of-plane strength (kN) 

σRN 8.40:=  Standard deviation of out-of-plane strength (kN) 

ρHN .30:=  Correlation coefficient between IP and OOP strengths 

Statistics for the in-plane and out-of-plane loads: 

μPH 558:=  Mean in-plane loads (kN) 

σPH 234:=  Standard deviation of in-plane loads (kN) 

μPN 3.03:=  Mean out-of-plane loads (kN) 

σPN 1.40:=  Standard deviation of out-of-plane loads (kN) 

ρPH_PN 0.11−:=  Correlation coefficient between in-plane and out-of-plane loads 

Sets of lognormally distributed loads and capacities are created using the MathCad random 

number generator. First, the statistics given above, which are given in the linear domain, must 

be converted to log-domain statistics: 

Next, calculate the corresponding probabilities for the capacities used in this report: 
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For the capacities: 

β RH ln
σRH

2

μRH
2

1+
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=  β RH 0.431= Standard deviation of the LNs 

αRH ln
μRH

σRH
2

μRH
2

1+

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

:=  αRH 4.966= Mean of the LNs 

Med RH e
α RH:=  Med RH 143.514=

β RN ln
σRN

2

μRN
2

1+
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=  β RN 0.336= Standard deviation of the LNs 

αRN ln
μRN

σRN
2

μRN
2

1+

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

:=  αRN 3.135= Mean of the LNs 

Med RN e
α RN:=  Med RN 22.987=

fRN RN( ) dlnorm RN αRN, β RN,( ):=  MathCad lognormal function.  Confirm by 
plotting. 

RNplot 0.0 0.02, 1000..:=  Plot the out-of-plane strengths: 

0 20 40 60 80 100
0

0.05

0.1

fRN RNplot( )

RNplot
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 Create the joint probability distribution: 

First, calculate the correlation coefficient for the log domain: 

ρ 12
1

β RH β RN⋅
ln 1 ρ HN e

βRH
2

1−
⎛
⎜
⎝

⎞
⎟
⎠⋅ e

βRN
2

1−
⎛
⎜
⎝

⎞
⎟
⎠⋅+

⎡
⎢
⎣

⎤
⎥
⎦⋅:=  ρ12 0.316=  

w RH RN,( )
1

1 ρ12
2

−

ln RH( ) αRH−

β RH

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2

2− ρ12⋅
ln RH( ) αRH−

β RH

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
ln RN( ) αRN−

β RN

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅+

...

ln RN( ) αRN−

β RN

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2

+

...

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅:=  

Create the joint lognormal distribution for the strengths: 

fRH_RN RH RN,( )
1

2 π⋅( ) β RH⋅ β RN⋅ 1 ρ12
2

−⋅ RH⋅ RN⋅
e

1−
2

w RH RN,( )⋅
⋅:=

Creating sets of random strength values: 

First, create lognormally random values of the in-plane strength: 

RH rlnorm N αRH, β RH,( ):=  MathCad function for producing random 
 values of RH 

Generate the properly correlated random values for RN (out-of-plane strength): 

RN

b αRN
β RN
β RH

ρ12⋅ ln RHi( ) αRH−( )⋅+←

RNi rlnorm 1 b, β RN 1 ρ12
2

−⋅,⎛
⎝

⎞
⎠1←

i 1 N..∈for

RN

:=

(This uses the conditional lognormal 
distribution for RN, based on the value 
of RH and the correlation coefficient) 
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Create the random number pairs for the loads, using the same procedure: 
Note: Details of load generation are not repeated here, since they are identical  to those 
shown earlier in this appendix. 

PH rlnorm N αPH, β PH,( ):=  

PHave
1
N

1

N

i

PHi∑
=

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:=  PHave 558.817=

PHsigma
1
N

1

N

i

PHi PHave−( )2∑
=

⋅:=  PHsigma 234.34=

Generate the properly correlated random values for PN: 

PN

b α PN
β PN
β PH

ρ12⋅ ln PHi( ) α PH−( )⋅+←

PNi rlnorm 1 b, β PN 1 ρ12
2

−⋅,⎛
⎝

⎞
⎠1←

i 1 N..∈for

PN

:=

PNave
1
N

1

N

i

PNi∑
=

⋅:=  PNave 3.032=

PNsigma
1
N

1

N

i

PNi PNave−( )2∑
=

⋅:=  PNsigma 1.408=

CorrPH_PN
1
N

1

N

i

PHi PHave−( ) PNi PNave−( )⋅

PHsigmaPNsigma⋅

⎡
⎢
⎣

⎤
⎥
⎦

∑
=

⋅:=  CorrPH_PN 0.294122=  
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Check the g1 (IP) criterion: Note: See Hashemi and Mosalam (2007) for a complete 
discussion of the g1, g2, and g3 criteria. 

Prob_Fail_g1 failcount 0←

failcount failcount 1+←
PHi
RHi

1.00>if

i 1 N..∈for

failcount
N

:=

Prob_Fail_g1 98.492%=  

Check the g2 (OOP) criterion: 

Prob_Fail_g2 failcount 0←

failcount failcount 1+←
PNi
RNi

1.00>if

i 1 N..∈for

failcount
N

:=

Prob_Fail_g2 5.500 10 3−× %=  

Check the g3 criterion: 

θ1 0.114−:=  Given values of the g3 interaction function (Hashemi and Mosalam (2007), p. 191) 

θ2 .948:=  θ3 6.18−:=  θ4 111:= θ5 11.2:=

g3 interaction function: 

g3 PH RH, PN, RN,( ) θ1 θ5
PN
RN

⋅⎛⎜
⎝

⎞⎟
⎠

3
⋅ θ2 θ5

PN
RN

⋅⎛⎜
⎝

⎞⎟
⎠

2
⋅+ θ3 θ5

PN
RN

⋅⎛⎜
⎝

⎞⎟
⎠

⋅+ θ4+
⎡
⎢
⎣

⎤
⎥
⎦

RH
θ4

⋅ PH−:=  

Prob_Fail_g3 failcount 0←

failcount failcount 1+← g3 PHi RHi, PNi, RNi,( ) 0.0<if

i 1 N..∈for

failcount
N

:=

Prob_Fail_g3 98.77150%=  This value is used in Section 4.3 of this report. 
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Appendix G: Calculation of Model 
Parameters-FOSM Analysis 

 (+0.05σ Strength) 

This appendix presents the results of the calculations for the model parameters, following the 

procedure used in Appendix E. For this case the strength (but not stiffness) terms are 

increased by a factor, Δfac, in order to use the FOSM method to evaluate the effect of 

strength variability on the infill fragility. See Section 4.4, for a detailed description of the 

FOSM method.  

Note:  Data and calculations that are identical to those in Appendix E are omitted here, and 

only the significant results are presented below.  See Appendix E for details of the 

calculation methodology.  

 
Δ fac 1.01155=  

Pn0 55.939 kip=  

uHy0 0.109 in=  

uHcp0 0.355 in=  

μH0 3.258=  

M y 107.656 in kip⋅=  

M n0 324.217 in kip⋅=  

F Ny0 6.661 kip=  

uNy0 0.151 in=  

u Ncp0 0.757 in=  

γ 32.273 in2=  

η 0.875−=  

A summary of the fiber properties is given on the next page. 

M n0 324.217 in kip⋅=  
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 Summary of Fiber Properties: 

Elastic Modulus: Em 1770 ksi=

Fiber yield strength: Fiber Area: Fiber location (distance from CL): 

Fy

1

1
2

3

4

5

6

7

8

9

10

1.694
3.249

4.589

6.341

12.098

12.098

6.341

4.589

3.249

1.694

kip=  A

1

1
2

3

4

5

6

7

8

9

10

2.435
4.306

5.827

7.734

13.615

13.615

7.734

5.827

4.306

2.435

in2.000=  z

1

1
2

3

4

5

6

7

8

9

10

19.143
9.98

7.065

5.113

2.68

-2.68

-5.113

-7.065

-9.98

-19.143

=

Fiber yield stress: Fiber yield strain: 

σ y

1

1
2

3

4

5

6

7

8

9

10

0.696
0.754

0.788

0.820

0.889

0.889

0.820

0.788

0.754

0.696

ksi=  εy

1

1
2

3

4

5

6

7

8

9

10

0.000393
0.000426

0.000445

0.000463

0.000502

0.000502

0.000463

0.000445

0.000426

0.000393

=  

in 
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