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ABSTRACT 

Experimental testing of structures under simulated seismic loading is one of the best approaches 

to gain knowledge about the response and behavior of structures during earthquakes and to 

confirm the effectiveness of design methods for new earthquake-resistant structures and the 

retrofit of existing structures. Hybrid simulation, where a test is executed based on a step-by-step 

numerical solution of the governing equations of motion for a hybrid model formulated 

considering both the numerical and physical portions of a structural system, is one of the well-

established experimental testing techniques. 

In order for the earthquake engineering community to take full advantage of this 

technique, it is essential to conduct vigorous research to standardize the deployment of the 

method and extend its capabilities to applications where advanced numerical techniques are 

utilized; boundary conditions are imposed in real time; and dynamic loading conditions caused 

by wind, blast, impact, waves, fire, traffic, and, in particular, seismic events are considered. 

Accordingly, the objectives of this research are to investigate, develop, and validate advanced 

techniques to facilitate the broader use of local and geographically distributed hybrid simulation 

by the earthquake engineering community and to permit hybrid simulation to address a range of 

complex problems of current interest to researchers. 

Utilizing a rigorous systems analysis of the operations performed during hybrid 

simulations, an existing object-oriented software framework for experimental testing 

(OpenFresco) is evaluated, and extensions are devised and implemented to facilitate the 

standardized execution of hybrid simulations. The OpenFresco middleware is environment 

independent, robust, flexible, and easily extensible, and supports a large variety of computational 

drivers, structural testing methods, specimen types, testing configurations, control and data-

acquisition systems and communication protocols. One of the key contributions presented herein, 

is the application of a multi-tier client/server software architecture to the existing OpenFresco 

core components to support any finite element analysis software and facilitate an array of local 

and geographically distributed testing configurations. 

Time-stepping integration methods that act as the computational drivers during a hybrid 

simulation and that need to be provided by or implemented in the finite element analysis 

software are thoroughly investigated. Integration schemes from both the class of direct 

integration methods and the class of Runge-Kutta methods are examined and their applicability 
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to hybrid simulation is evaluated. It is shown that the proposed operator-splitting methods and 

Rosenbrock methods, which are unconditionally stable, relatively easy to implement, and 

computationally nearly as efficient as explicit methods, are excellent techniques for solving the 

equations of motion during hybrid simulations. 

The next part of the research focuses on the predictor-corrector algorithms that provide 

the synchronization of the integration and transfer system processes and that need to be 

implemented in a real-time environment on the control and data-acquisition system side of a 

hybrid simulation. Improved and new algorithms are proposed, which provide means for 

performing more accurate, continuous hybrid simulations, especially in situations with excessive 

delays. Event-driven solution strategies that employ the predictor-corrector algorithms are 

investigated and several new algorithms are introduced that are based on adaptive control 

concepts that automatically adjust parameters of the event-driven controller, such as time steps 

and actuator velocities, according to some suitable performance criteria. 

In order to confirm the robustness, flexibility and usability of the OpenFresco software 

framework and to validate the integration methods and the event-driven synchronization 

strategies in actual tests, two novel and challenging hybrid simulation examples are carried out. 

The first case study performs a continuous, geographically distributed hybrid simulation in soft 

real-time for the first time, and the second case demonstrates how to utilize hybrid simulation to 

conduct safe and economical tests of structural collapse. 
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1 Introduction 

1.1 MOTIVATION 

The world continues to face challenges related to the rapid growth of cities and the expansion of 

critical infrastructure systems in seismically active regions. In order to prevent catastrophic 

tragedies including extensive direct (replacement and/or repair of infrastructure) and indirect 

(business interruption) losses due to large earthquakes, it is imperative for the civil engineering 

community to improve their knowledge and understanding of the response and behavior of civil 

structures during seismic events. Experimental testing of structures under simulated seismic 

loading is one of the best ways to gain such knowledge and confirm the effectiveness of design 

methods for new earthquake-resistant structures and the retrofit of existing ones. New models 

and methodologies for simulating the behavior of complex structures and advanced structural 

components are rapidly emerging from the fields of high-performance engineering and 

computing. However, it is essential to utilize results from experimental tests to validate and 

calibrate the new models and methodologies. 

To advance the development and deployment of new and existing experimental and 

numerical methods in earthquake engineering, the National Science Foundation (NSF) in the 

United States established the George E. Brown, Jr. Network for Earthquake Engineering 

Simulation (NEES) as a networked collaboratory of geographically distributed, shared-use 

experimental research equipment sites. The resources available within this network of 15 

equipment sites provide the means for collaboration and discovery in the form of advanced 

research based on experimentation and computational simulation of the ways buildings, bridges, 

utility systems, coastal regions, and geomaterials perform during seismic events [NSF]. 

Several of the NEES equipment sites specialize in the experimental testing and evaluation 

of large-scale structural and nonstructural systems utilizing hybrid simulation. In this 

experimental testing technique, a simulation is executed based on a step-by-step numerical 

solution of the governing equations of motion for a hybrid model formulated considering both 

the numerical and physical components of a structural system. To perform advanced hybrid 
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simulations of complex structural systems, the nees@berkeley testing facility provides a range of 

state-of-the-art equipment, such as a configurable reaction wall, an array of versatile static and 

dynamic actuators, several real-time digital controllers, powerful computational resources, and a 

high-speed data-acquisition system with a variety of instrumentation devices. However, in order 

for the earthquake engineering community to take full advantage of the versatile equipment at 

the nees@berkeley testing facility and elsewhere, extensive research must be conducted to 

standardize the employment of this testing method and extend hybrid simulation capabilities to 

applications where advanced numerical techniques are utilized; boundary conditions are imposed 

in real time; and dynamic loading conditions caused by wind, blast, impact, waves, fire, traffic, 

and seismic events are considered. 

1.2 PROBLEM DEFINITION 

In the past, each implementation of hybrid simulation has been problem specific and highly 

customized for the software and hardware available at a certain laboratory. Hence, researchers 

wanting to perform a hybrid simulation had to be willing to invest considerable time and effort to 

familiarize themselves with the available control and data-acquisition systems and to implement 

the problem-specific details. Many researchers have therefore been hesitant in utilizing hybrid 

simulation to investigate the performance of structural systems under the above-mentioned 

conditions. In addition, it has been challenging or often times impossible to employ existing 

finite element software packages to execute hybrid simulations. This is due to the lack of 

middleware that provides a standardized, environment-independent approach to connecting any 

finite element software package of a user’s choice with the laboratory facilities where the 

experimental testing is performed. Furthermore, selecting the most appropriate time-stepping 

integration method, from the various for hybrid simulation specialized schemes, to solve the 

governing equations of motion of a certain problem type, has been very difficult as well. 

To take advantage of the unique capabilities of different structural testing facilities, the 

geographically distributed deployment of hybrid simulation has gained significant popularity 

over the last few years. However, because the geographical distribution of computational and 

experimental sites relies heavily on wide area networks for communication, it is necessary to 

develop approaches for dealing with network delays and breakdowns, and for improving 

communication speeds. Furthermore, it is also important to standardize the geographically 
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distributed deployment of hybrid simulation to promote the collaboration among multi-

disciplinary experts in the field of earthquake engineering, and to improve the accessibility of 

this testing technique to the researcher. 

Because structural engineers recently are using an increasing number of rate-dependent 

devices to improve the performance of structures by reducing demands and/or dissipating 

additional energy, hybrid simulations must be performed rapidly or in real time to correctly 

capture the behavior of such devices. Thus, advanced methods need to be developed that are 

capable of imposing consistent dynamic boundary conditions with the appropriate velocities and 

accelerations and that are also able to deal with sporadic delays caused by the analysis software. 

On the other hand, if the correct execution speed cannot be achieved due to hardware or other 

limitations, it may be possible to develop approaches that numerically, in a truly hybrid sense, 

compensate for the velocity dependence of the high-performance devices. 

1.3 RESEARCH OBJECTIVES AND SCOPE 

The overarching goal of this research is to investigate, develop and validate advanced techniques 

to facilitate the wider use of local and geographically distributed hybrid simulation by the 

research community and to permit hybrid simulation to address a range of more complex 

problems of current interest to the investigators. To achieve this goal, investigations are 

conducted addressing the following objectives: 

1. Review and evaluate existing concepts and frameworks in hybrid simulation and devise 

and implement an improved object-oriented software framework for experimental testing. 

2. Investigate existing time-stepping integration methods, evaluate their applicability to 

hybrid simulations, and develop and implement improved versions for several methods. 

3. Examine existing predictor-corrector algorithms and event-driven strategies for 

synchronization, and conceive and implement new and improved approaches to 

synchronize the integration and transfer system processes. 

To realize these objectives, the first and main task is to devise and implement a common 

software framework for developing and deploying hybrid simulations. This software framework 

for experimental testing, which is an improved version of the one proposed by Takahashi and 

Fenves (2006), should support a large variety of finite element analysis software, structural 

testing methods, specimen types, testing configurations, control and data-acquisition systems, 
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and network communication protocols. Furthermore, to accelerate the development and 

refinement of hybrid simulation, the object-oriented software framework should be environment 

independent, robust, transparent, scalable, and easily extensible. Because the step-by-step 

numerical integration of the semi-discrete equations of motion acts as the computational driver in 

hybrid simulations, the second task is to investigate existing integration schemes and develop 

improved versions of such methods if possible. Both the direct integration methods, common to 

structural dynamics, and the classic Runge-Kutta methods, which are popular for solving first-

order ordinary differential equations, are analyzed. The investigation of the various integration 

schemes should ultimately provide the means to make recommendations about selecting the most 

appropriate integration scheme for a certain hybrid simulation problem. To achieve continuous 

testing, especially in geographically distributed hybrid simulations, event-driven strategies with 

predictor-corrector algorithms are generally employed for synchronization. The third task is to 

develop improved and new predictor-corrector algorithms that are more accurate and that 

eliminate some of the inconsistencies of the existing methods. In addition, new event-driven 

strategies should be developed that can handle random time delays through adaptation. The last 

task is to validate the software framework, the integration methods, and the event-driven 

strategies by conducting a few demonstrative hybrid simulations that utilize the new 

developments. 

1.4 ORGANIZATION OF REPORT 

The advanced implementation of hybrid simulation is organized into seven chapters. Following 

the introduction, Chapter 2 describes the fundamental concepts of hybrid simulation, one of the 

current, well-established techniques for conducting laboratory tests. The chapter includes a brief 

summary of previous developments, the current status of hybrid simulation, a variety of 

advantages that are gained by using this testing technique, as well as the remaining challenges. In 

addition, different modes of employment, such as local versus geographically distributed and 

slow versus rapid testing are explained and compared, and errors affecting hybrid simulation 

results are summarized. 

Chapter 3 presents the development details of the object-oriented framework for hybrid 

simulation, which is environment independent, robust, transparent, scalable, and easily 

extensible. The chapter presents the fundamental building blocks of the software framework and 
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explains the interaction among them. It also introduces the multi-tier software architecture that 

was employed to support a wide range of finite element analysis software packages and discusses 

communication methods and protocols necessary for distributed computation and testing. The 

chapter concludes by describing how the Open System for Earthquake Engineering Simulation 

(OpenSees) can be used as the computational framework in combination with the newly 

developed experimental framework and the advantages attained by doing so. 

Specialized, time-stepping integration methods that are required to solve the semi-

discrete equations of motion of a hybrid simulation model are the focus of Chapter 4. The 

derivation of these semi-discrete equations of motion in terms of fundamental mechanical 

principles is explained first. The chapter then summarizes special integration scheme properties 

that are necessary for the reliable, accurate, and fast execution of hybrid simulations and 

discusses the differences between explicit, implicit, noniterative, and iterative methods. Detailed 

descriptions of a number of direct integration and Runge-Kutta methods and their modifications 

for improving performance are provided thereafter. 

Chapter 5 presents the development of improved event-driven strategies that are required 

to execute continuous local and geographically distributed hybrid simulations. The chapter first 

summarizes previous developments with an emphasis on the three-loop-architecture that was 

proposed for distributed testing. The theory and the analytical investigations of a variety of 

existing and newly developed predictor-corrector algorithms are presented thereafter. The 

chapter concludes by introducing server novel, adaptive, asynchronous, event-driven strategies 

for dealing with nondeterministic systems such as geographically distributed hybrid simulations. 

Chapter 6 presents case studies of two novel applications of hybrid simulation that are 

made possible by the new developments described in the previous chapters. The first 

experimental study consists of a rapid geographically distributed hybrid simulation, which on 

average is executed in real time. The second study demonstrates how hybrid simulation can be 

utilized to perform safely and realistically experimental tests of structural collapse. 

Finally, Chapter 7 presents a summary of the main findings and conclusions of this 

research and provides a brief list of future research directions. 

 



 

 

2 Hybrid Simulation Fundamentals 

2.1 INTRODUCTION 

At present, there are several well-established methods to conduct laboratory testing for 

evaluating the seismic behavior of structural systems and/or components thereof. The first and 

most common technique is the quasi-static testing method, where the investigated structure is 

subjected to a predefined history of loads or displacements that are applied by actuators. By 

imposing the same load or displacement history on a series of specimens, the effect of systematic 

changes in material properties, details, boundary conditions, loading rates, and other factors can 

be readily identified. While such tests are relatively easy and economical to execute, the overall 

demands imposed on the test specimens are not directly related to the damage observed, raising 

questions about whether the specimens were under- or overtested for project-specific situations. 

Furthermore, the applied load patterns are generally inadequate for resembling the constantly 

changing load distributions that a structure undergoes during an actual seismic event. 

Shaking table tests are a second form of laboratory tests. They are able to simulate 

conditions that closely resemble those that would exist during a particular earthquake. These 

tests provide important data on the dynamic response caused by specific ground motions, 

considering the inertial and energy-dissipation characteristics of the structure tested and the 

consequences of geometric nonlinearities, localized yielding and damage, and component failure 

on the structural response. However, for shaking table tests, a complete structural system is 

generally required, and the specimens need to be carefully constructed following the rules of 

dynamic similitude. On the other hand, controlling real-time dynamic component tests, which 

require additional actuators besides the shaking table, is particularly challenging and another 

topic of advanced research. So far only a few shaking tables exist with the means to apply 

accurate base motions to full-scale structures. The limited capacity and size of most available 

shaking tables place significant restrictions on the size, weight, and strength of a specimen that 

can be tested. As a result, reduced-scale or highly simplified specimens are commonly 

necessitated, which call into question the realism of many shaking table tests. 
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The third method is hybrid simulation, formerly also called the pseudo-dynamic test 

method or the online computer-controlled test method. In this experimental testing technique a 

simulation is executed based on a step-by-step numerical solution of the governing equations of 

motion for a model formulated considering both the numerical and physical components of a 

structural system. Contrary to conventional computational modeling and simulation, where the 

entire structure is analyzed analytically, the hybrid simulation method obtains the forces 

corresponding to either the stiffness, the energy-dissipation, or the mass properties of a structural 

system, from a laboratory test of the real structure or components thereof. If the hybrid 

simulation method is implemented for a typical quasi-static, displacement-based test, the mass 

and viscous damping characteristics of the specimen are numerically modeled, and the 

incremental displacement response of the structure to a specified dynamic excitation is computed 

at each step based on the current state of the physically and numerically modeled portions of the 

structure. During the simulation the physical portions of the overall hybrid model are tested in 

one or more laboratories using computer-controlled actuators, while the numerical portions are 

simultaneously analyzed on one or more computers. Since dynamic aspects of the simulation are 

handled numerically, such tests can be conducted quasi-statically using standard computer-

controlled actuators. As such, hybrid simulation may be viewed as an advanced form of actuator-

based testing, where the loading history is determined during the course of an experiment for a 

given system subjected to a specific ground motion. Alternatively, hybrid simulation can also be 

considered a conventional finite element analysis, where physical models of some portions of the 

structure are embedded in the numerical model. 

A variety of advantages that are gained by utilizing hybrid simulation, instead of the 

quasi-static or shaking table test methods, to conduct experimental investigations are discussed 

in the next section. In addition, several of the challenges that still need to be addressed in hybrid 

simulation are summarized as well. In fact, one of the main challenges, the lack of a common 

framework for the development and deployment of hybrid simulation, provides the basis for the 

work presented in the following chapters. Afterwards, a short history on the development of the 

hybrid simulation testing technique since its invention three decades ago is presented. The next 

section then outlines the basic components and the procedure that are required to perform a 

hybrid simulation. Different modes of employment, such as local versus geographically 

distributed and slow versus rapid testing are explained and compared thereafter. Finally the 



 

  9

chapter concludes by presenting a brief summary of numerical and experimental errors 

encountered in hybrid simulations and by explaining how such errors affect a test. 

2.2 ADVANTAGES AND CHALLENGES 

Advantages: 
Because the hybrid simulation testing technique combines analytical with experimental 

approaches to investigate a structural system and can be executed on expanded time-scales of up 

to two orders of magnitude slower than the actual time-scale, many advantages are gained. Some 

of the most important advantages are summarized in the following list: 

• In a hybrid simulation the loading (the right-hand side of the equations of motion) is 

defined analytically, which provides the means to investigate the behavior of a structure 

excited by a wide variety of loading conditions. Seismic events including multi-support 

excitations; hydrodynamic loading conditions created by waves; traffic and impact loads 

due to moving vehicles, aerodynamic loads generated by wind and blast loads can all be 

simulated by incorporating them the analytical portion of the hybrid model without 

changing the physical portions of the experiment. 

• The hybrid simulation method gives the researcher the ability to subdivide a large 

structure into subassemblies where the behavior is (1) well understood and can be 

modeled reliably using finite element models and (2) highly nonlinear and/or numerically 

difficult to simulate and is thus obtained from a physical test in a laboratory. This reduces 

modeling uncertainties by replacing numerical with actual physical components. Hence, 

hybrid simulation can be seen as an advanced form of component testing, which does not 

face the difficulties of imposing proper boundary conditions as in shaking table tests. 

• Dynamic testing of full-scale specimens is made possible if the hybrid simulation method 

is implemented for a typical quasi-static, displacement-based test that is executed on an 

extended time-scale. Large-scale testing additionally eliminates the scaling difficulties 

encountered in shaking table tests. 

• The sizes and the weights of the physical subassemblies are limited only by the available 

laboratory space and the strength of the strong floor and reaction frames. Furthermore, 

the strength of the experimental specimens is only limited by the capacities of the transfer 

systems (actuators) that are available at a testing facility. 
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• Because hybrid simulations can be executed on extended time-scales, quasi-static testing 

equipment including the actuators, the servo-valves, and the hydraulic power-supply are 

generally sufficient for testing. Oftentimes such equipment is also readily available at 

existing testing facilities. This and the possibility of physically testing only the critical 

components of a structural system make hybrid simulation a very economical technique 

for performing laboratory tests. 

• Slow tests allow for the careful inspection of the specimens during a hybrid simulation. 

This can provide important insight into the behavior of a test specimen as a means to 

detect the initiation and track the progress of damage throughout a simulation. 

• Hybrid simulations can be executed at rates anywhere between two orders of magnitude 

slower than the actual time scale and several times faster than the actual time scale 

depending on similitude requirements. 

• Experimental and analytical subassemblies can be geographically distributed allowing 

researchers to take advantage of the different capabilities available in different 

laboratories. 

• Effects such as geometric nonlinearities, three-dimensional effects, soil-structure 

interactions, and soil-pile interactions can all be incorporated into the analytical portion 

of the hybrid model. 

• Hybrid simulation can be utilized to execute smart shaking table tests in which a 

simulator platform is controlled in real time to investigate problems such as tuned mass 

dampers or soil-structure interaction. 

Challenges: 
Besides the many advantages and opportunities of hybrid simulation, the method also faces 

several challenges that still need to be addressed by conducting further research on the technique 

itself and by performing specific hybrid simulations to evaluate and verify the findings. Some of 

these challenges are summarized in the following list: 

• The development and the deployment of hybrid simulation have been hampered 

considerably by the absence of a common framework for conducting tests across various 

laboratories and computing environments. To date, each implementation of hybrid 

simulation is not only problem specific but also heavily dependent on the testing site and 

the control and data-acquisition systems used. Such highly customized software 
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implementations are difficult to adapt to different structural problems and even harder to 

port to different laboratories. Thus, there is a great need for an environment-independent 

software framework that is robust, transparent, and easily extensible. 

• To guarantee that the results obtained from a hybrid simulation are valid, reliable and 

accurate, it is imperative to minimize and correct for the contamination of the solution by 

errors. The following errors that occur at different stages of a hybrid simulation 

experiment can affect the solution process: (1) modeling errors due to the discretization 

process, and assumptions about energy-dissipation and analysis; (2) numerical errors 

introduced by the integration and equilibrium solution algorithms; (3) experimental errors 

generated by the control and transfer systems; and (4) experimental errors introduced by 

the instrumentation devices and the data-acquisition system. Experimental errors can 

introduce energy into the hybrid system and render it unstable and must thus be 

minimized or compensated for at all cost. 

• The execution of hybrid simulations where complex analytical subassemblies that include 

material and geometric nonlinearities are combined with complex inelastic experimental 

subassemblies is a fairly daunting task. This is because these hybrid models generally 

require implicit iterative integration methods, which can lead to convergence issues 

during the solution process. In addition, computational loads can vary significantly from 

time step to time step because of all the nonlinearities, making it difficult or impossible to 

perform rapid and real-time hybrid simulations. 

• Hybrid simulations that contain very stiff or hardening physical subassemblies are 

difficult to execute under displacement control. Hence, it is necessary to utilize force 

control, mixed force/displacement control, or switching during simulation between force 

and displacement control. However, very little research has been conducted in these 

challenging areas so far. 

• There is a need to develop approaches that consistently apply similitude laws if the 

analytical and the experimental portions of a structural system have different scales. 

• Geographically distributed hybrid simulations require the means for dealing with network 

delays and breakdowns, and for improving communication speeds. These features are 

crucial for performing soft real-time geographically distributed hybrid simulations where 
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the real-time requirements are satisfied in an average sense but not necessarily for every 

single time-step. 

• Another challenge is the development of methods for assessing the accuracy and the 

efficiency of a hybrid simulation. Such methods should allow a hybrid simulation to be 

evaluated not only after completion, but also during a simulation. 

• As hybrid models become larger (increasing number of nodes, elements, and degrees of 

freedom), more complex (increasing number of material and geometric nonlinearities), 

and are performed near or at real time, the execution of hybrid simulations in high-

performance computing (HPC) environments becomes indispensable. High-performance 

computing environments utilize multi-processor and/or multi-core parallel computing 

capabilities to distribute workloads and thus improve performance. 

• In rapid and real-time hybrid simulations inertial forces are generated by the physical 

masses of the experimental subassemblies that should not be neglected. Thus, it is 

important that methods are developed to correctly account for these force contributions. 

• To improve the accessibility of hybrid simulation to the experimental research 

community, powerful but yet comprehensible user interfaces should be developed. 

2.3 HISTORY 

While seeking new methods for experimentally evaluating the dynamic, especially seismic, 

performance of large-scale structures, several researchers initiated the development of the hybrid 

simulation testing technique in the early 1970s. The first official publication did not appear until 

1975 when Takanashi et al. proposed the hybrid simulation testing method, then referred to as 

“online test,” as an alternative experimental technique to shaking table tests. Since then a vast 

number of variations of this experimental method and the accompanying numerical algorithms 

have been developed to improve efficiency, accuracy, and performance. The remainder of this 

section presents a brief summary of such progress, which is strongly connected to the 

advancements achieved in developing faster and more reliable testing and computational 

hardware. 

Because hybrid simulation test results can significantly be affected by experimental 

errors, the propagation of random and systematic errors were thoroughly studied (Mahin and 

Williams 1980; Shing and Mahin 1983) shortly after the initial developments were concluded. In 
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addition, Thewalt and Mahin (1987) and Mosqueda et al. (2005) provide excellent explanations 

and summaries on errors in hybrid simulations, including errors based on modeling, 

implementation techniques, and the experimental setup. Around the same time the online 

computer-controlled testing method also started to be referred to as the pseudo-dynamic testing 

technique, especially in the U.S. 

In 1984, Shing and Mahin, conducted the first systematic studies in the area of numerical 

algorithms for the integration of the equations of motion in hybrid simulations. They investigated 

refinements and the implementation of stable explicit schemes, including the explicit Newmark 

method, which is based on the Newmark family of methods (Newmark 1959), and is still 

extensively used to perform hybrid simulations. It was observed that during structural testing, 

damage (and therefore the nonlinear behavior) often occurred in specific, limited regions of an 

entire structure. Hence, Dermitzakis and Mahin (1985) suggested utilizing substructuring 

techniques in order to divide a structure into experimental and numerical subassemblies and 

perform partitioned hybrid simulations. Furthermore, to overcome stability limitations imposed 

by explicit integration schemes applied to partitioned hybrid simulations, Dermitzakis and Mahin 

(1985) proposed a mixed implicit-explicit algorithm that was based on the work by Hughes and 

Liu (1978). Shortly thereafter Mahin and Shing (1985) published a paper that provided an 

excellent summary of all the U.S. activities in hybrid simulation up to that time. It presented the 

basic approach to the pseudo-dynamic testing method including numerical integration 

algorithms, implementation details, and capabilities and limitations of the technique. 

After its initial development a lot of progress was made in developing hybrid simulation 

in both the U.S. and Japan. A whole series of papers (Nakashima 1985–1989) investigated the 

stability and accuracy of the pseudo-dynamic testing method. One of these publications 

(Takanashi and Nakashima 1987), like the paper by Mahin and Shing (1985), provided a 

comprehensive summary of all the Japanese activities in hybrid simulation up to that time. 

Significant progress was made around the same time in the U.S. by Thewalt and Mahin (1987), 

who executed the first multi-directional hybrid simulations, developed force and mixed force and 

displacement control strategies, and proposed the “effective force” dynamic testing method. 

However, the employment of explicit conditionally stable integration methods quickly became 

impractical for multi-directional hybrid simulations for multi-degrees of freedom. Thus, Thewalt 

and Mahin (1987) developed the first implicit unconditionally stable integration method for 
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hybrid simulations that was based on the alpha method by Hilber et al. (1977) and utilized analog 

feedback signals of the measured resisting forces instead of numerical equilibrium iterations. 

While working on pseudo-dynamic tests using the substructuring technique, Nakashima 

also recognized the dire need for an efficient, unconditionally stable numerical algorithm to 

integrate the equations of motion of large multi-degrees-of-freedom hybrid models. He proposed 

for hybrid simulations a specialized operator-splitting (OS) method (Nakashima 1988) that was 

based on Hughes’ work on implicit-explicit predictor-corrector schemes (Hughes et al. 1979). 

The stability and accuracy properties of the OS method were investigated and published shortly 

thereafter (Nakashima et al. 1990). It was found that the OS method possessed improved stability 

and error propagation properties as compared to the existing explicit methods, while not 

requiring any equilibrium iterations. In 1989, Mahin et al. compiled an updated summary on the 

current status and the future directions of hybrid simulation. 

Due to the continuously increasing complexity of the structural systems that were being 

tested as well as the growing number of partitioned hybrid simulations, the development of 

implicit unconditionally stable integration schemes that were specialized for hybrid simulations 

was inevitable. Two researchers that developed and investigated such schemes with somewhat 

different approaches were Dorka and Shing. The former one proposed an integration scheme that 

was based on the implicit Newmark method and utilized a substepping approach in an inner loop 

of the algorithm (Dorka and Heiland 1991; Dorka 2002; Bayer et al. 2005). This substepping can 

be interpreted as a digital implementation of the force feedback, which is comparable to the 

analog implementation by Thewalt and Mahin (1987). The latter's integration method was based 

on the alpha method by Hilber et al. (1977) and employed an equilibrium solution algorithm with 

initial stiffness iterations (Shing et al. 1991; Shing and Vannan 1991). In addition, the 

equilibrium solution algorithm utilized an increment reduction factor to minimize the occurrence 

of spurious loading/unloading cycles. The algorithm was subsequently used to execute 

partitioned pseudo-dynamic tests on concentrically braced frames (Shing et al. 1994) and was 

extended to adaptively adjust time-step sizes during a hybrid simulation (Bursi et al. 1994). 

The first implementation of hybrid simulation for real-time testing was achieved by 

utilizing improved hardware such as dynamic actuators and a digital servo-mechanism 

(Nakashima et al. 1992). In addition, these researchers employed an interlaced solution strategy, 

also called staggered integration, to improve computational efficiency. 
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In 1994, Schneider and Roeder adapted the DRAIN-2D finite element analysis software 

to perform hybrid simulations. This was the first time that a finite element software package was 

specifically modified for hybrid simulations instead of utilizing a problem-specific 

implementation. Furthermore, the researchers introduced the concept of replacing numerical 

elements with experimental elements representing the portions of the structure that are physically 

tested in a laboratory. Also in 1994, Thewalt and Roman, developed a technique for estimating 

the tangent stiffness matrix of an experimental subassembly from the measured displacements 

and forces. Their minimal update approach was based on the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) algorithm, which belongs to the family of quasi-Newton methods, see (Bathe 1996). 

Around the same time Shing et al. (1996) published a paper, which presented the hybrid 

simulation testing technique from a user’s perspective and also provided an updated summary on 

the latest developments. In addition, Bursi and Shing (1996) compiled a good comparison of 

existing implicit integration schemes for hybrid simulation. Shing’s modified implicit alpha 

method and Nakashima’s alpha-OS method were investigated and compared in more detail. The 

error propagation analysis of the alpha-OS scheme, which was still missing up to this point, was 

performed by Combescure and Pegon (1997). To take advantage of the various equipment and 

the unique capabilities of different structural testing facilities, Campbell and Stojadinovic (1998) 

proposed geographically distributing structural subassemblies within a network of laboratories 

where the individual sites are connected through the internet. In the same year Magonette and 

Negro (1998) compiled a comprehensive summary on the latest developments and activities in 

hybrid simulation at the European Laboratory for Structural Assessment (ELSA). 

To improve on the real-time execution of hybrid simulations, Horiuchi et al. (1996, 1999) 

developed actuator-delay compensation techniques that were based on actuator response 

predictions utilizing polynomial extrapolations. From then on real-time hybrid simulation 

quickly gained in popularity, which led to a constantly increasing number of researchers working 

on this subject. Darby et al. (1999, 2001) developed and executed several real-time partitioned 

hybrid simulations utilizing control system approaches. Furthermore, they proposed a real-time 

compatible integration algorithm for nonlinear problems that employed reduced sets of Ritz 

vectors in the solution process (Blakeborough et al. 2001). In addition, Nakashima and Masaoka 

(1999) for the first time utilized a digital signal processor (DSP) to separate the actuator signal 

generation task from the response analysis task. They employed an extrapolation-interpolation 
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procedure, based on the work by Horiuchi et al. (1996), to generate continuous displacement 

signals and bridge the different time scales of the two tasks. Magonette (2001), on the other 

hand, focused his research on developing a system to execute continuous hybrid simulations 

without the real-time requirement. He successfully demonstrated that continuous hybrid 

simulations are very effective in avoiding force relaxations and improving the accuracies of force 

measurements by eliminating actuator hold phases. 

In 2002, Chang, proposed an unconditionally stable explicit integration scheme that was 

based on the Newmark family of methods. However, since the algorithm required the inverse of 

the mass matrix in several places, it could not be employed to solve the equations of motion of 

hybrid models with singular mass matrices. The three-loop architecture that was developed by 

Mosqueda (2003) allowed for the first time execution of continuous, geographically distributed 

hybrid simulations with multiple subassemblies. Compared to previous geographically 

distributed hybrid simulations that utilized a hold-and-ramp loading procedure, it was possible to 

significantly reduce execution times and eliminate force relaxation problems. In addition 

Mosqueda (2003) proposed several error indicators to assess the accuracy and the efficiency of a 

hybrid simulation. In 2004, Bonelli and Bursi, developed implicit and explicit integration 

schemes that were based on the generalized-alpha methods by Chung and Hulbert (1993). These 

integration methods provided improved adjustment of the numerical energy-dissipation 

characteristics of the algorithm. The first partitioned hybrid simulation with nonlinearities in 

both the analytical and the experimental portions of the structure were performed by Pinto et al. 

(2004). The research team developed a novel, parallel inter-field integration algorithm to achieve 

such objective. 

Since up to this time most implementations of hybrid simulation had been problem 

specific and heavily dependent on the testing sites, several research projects were initiated to 

develop frameworks for conducting geographically distributed tests consisting of multiple 

subassemblies. Pan et al. (2005) developed an architecture where a physical test was conducted 

in one place, the associated numerical analysis was performed in a remote location, and the two 

locations communicated over the Internet. However, the proposed system adopted a file and 

folder sharing technique to exchange data between numerical and physical sites, sacrificing 

performance and flexibility. On the other hand, Takahashi and Fenves (2006) developed an 

object-oriented software framework consisting of a set of interrelated software classes that 
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provided in a convenient, modular, and standardized manner those additional functions needed 

by any analysis software to work with laboratory equipment to perform hybrid simulations. In 

addition, the software framework provided means for distributing structural subassemblies in a 

standardized manner within a network of laboratories and computational sites. Around the same 

time, Pan and coworkers improved their system by replacing the file-based data exchange 

routines with network socket-based ones and utilizing a centralized coordinator to enforce 

compatibility and equilibrium among the different subassemblies (Pan et al. 2006). This 

approach was similar to the one suggested earlier by Kwon et al. (2005) that consisted of a 

coordinator solving the equations of motion and any number of analytical and experimental static 

modules representing the different substructures of a hybrid model. The system provided the 

means to employ a wide variety of commercial finite element software codes to determine the 

static equilibrium of the individual modules. However, both this system as well as the one 

proposed by Wang et al. (2006) utilized restart capabilities provided by the finite element 

software packages (which write to and read from files) and therefore significantly limited 

performance. 

Because the number of researchers and users working in hybrid simulation has increased 

considerably worldwide over the last few years, the number of publications has multiplied as 

well. Some of the research that is currently under way includes the development of force control 

and mixed force/displacement control strategies as well as switching between force and 

displacement control during simulation (Elkhoraibi and Mosalam 2007; Wu et al. 2007). 

Furthermore, real-time testing continues to be one of the main thrust areas in hybrid simulation 

(Jung et al. 2007; Mercan and Ricles 2007; Gawthrop et al. 2007; Ahmadizadeh et al. 2008; 

Bonnet et al. 2008; Bursi et al. 2008). 

2.4 COMPONENTS AND PROCEDURE 

To perform a hybrid simulation, several key components including software and hardware are 

necessary. These components that all interact during a hybrid simulation are shown in Fig. 2.1 

and are described next. 

1. The first component is a discrete model of the structure to be analyzed on a computer, 

including the static and dynamic loading. In the structural analysis approach presented 

herein, the finite element method is used to discretize the problem spatially and a time-
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stepping integration algorithm is then used for the time discretization. Compared to the 

alternative control system approach, the finite element approach is more intuitive to the 

structural engineer and can easily be extended to perform partitioned hybrid simulations 

(see Chapter 3). The resulting dynamic equations of motion for the finite number of 

discrete degrees of freedom are a system of second-order time ordinary differential 

equations (see Chapter 4). 
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In the above equations M  is the mass matrix assembled from the nodal and element mass 

matrices, U&&  is the acceleration vector at the structural degrees of freedom, C  is the 

viscous damping matrix, U&  is the velocity vector at the structural degrees of freedom, rP  

are the assembled element resisting forces (which depend on the displacements), P  are 

the externally applied nodal loads and 0P  are the assembled element loads. 

2. The second required component is a transfer system consisting of a controller and static 

or dynamic actuators, so that the incremental response (generally the displacements) 

determined by the time-stepping integration algorithm can be applied to the physical 

portions of the structure. For slow tests, relatively inexpensive quasi-static testing 

equipment, which is often readily available in many structural testing laboratories, can be 

used for this purpose. 

3. The third major component is the physical specimen that is being tested in the laboratory, 

including a support against which the actuators of the transfer system can react against. 

4. The fourth and last component is a data-acquisition system comprising instruments such 

as displacement transducers, load cells, and accelerometers, to list the most common 

ones. The data-acquisition system is responsible for measuring the response of the test 

specimen and returning such experimental information (generally the resisting forces) to 

the time-stepping integration algorithm in order to advance the solution to the next 

analysis step. 

Because the finite element approach is utilized to introduce the basic concepts of a hybrid 

simulation, the testing procedure is laid out in terms of the necessary steps to execute a direct 

integration analysis. To simplify the testing procedure details, a linear instead of a nonlinear 



 

  19

equilibrium solution algorithm was chosen in the flowchart shown in Fig. 2.2. In addition, since 

the Open System for Earthquake Engineering Simulation, OpenSees (McKenna 1997), finite 

element software is extensively used throughout this work, the corresponding commands (blue) 

are shown as well. 

 
Fig. 2.1  Key components of a hybrid simulation. 

As can be seen from Fig. 2.2, for each time step of the direct integration analysis, the first 

operation consists of determining the new trial response quantities (displacements, velocities and 

accelerations). Afterwards the loads and the analysis time are incremented and the new trial 

response quantities are sent to the analytical and experimental subassemblies. The analytical 

subassemblies store the new response quantities so that they can later determine the unbalanced 

loads. On the other hand, the experimental subassemblies communicate with the transfer systems 

in the laboratories, which in turn start imposing the new trial displacements. 

The next task in the direct integration analysis is to solve the current time step for the 

response increments. Since the procedure is laid out for a linear equilibrium solution algorithm, 

this means that the effective tangent, mixed, or initial stiffness matrix needs to be assembled 

from the different portions of the structure. Depending on the integration scheme the analytical 

subassemblies calculate and return their tangent or initial stiffness matrices. In contrast, the 

experimental subassemblies return their initial stiffness matrices that have been determined 

numerically or analytically prior to the start of the hybrid simulation. However, if methods have 

been implemented for the experimental subassemblies to estimate their tangent stiffness matrices 
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from force and displacement measurements (Thewalt and Roman 1994), such matrices could be 

returned to the equilibrium solution algorithm instead. 

Start the Direct Integration Analysis 
analyze(numSteps, t); 

 for i=0 to i<numSteps do 

 

Finite Element Analysis 

Calculate and set new Trial Response 

Quantities, Increment Loads and Time 

by t, update Domain 

theIntegrator  newStep( t); 

Solve the current Time Step 
theLinearAlg  

solveCurrentStep( ); 

Commit the Solution State 
theIntegrator  commit( ); 

Form Effective Tangent, Initial or 

Mixed Stiffness A in A x = b 
theIntegrator  

formTangent( ); 

Form the Unbalanced Force b in 

A x = b 
theIntegrator  

formUnbalance( ); 

Solve A x = b for x 
theSOE  solve( ); 

Update the Response at t+ t 

theIntegrator  update(x); 

Experimental Subassembly 

Return Initial or Tangent 

Stiffness if available 
getInitialStiff( ); or 
getTangentStiff( ); 

Command Transfer System 

to impose Trial Response 

(Trial Displacements) 
setTrialResponse(…); 

Analytical Subassembly 

Calculate Resisting Forces 
getResistingForce( ); 

Calculate Tangent or Initial 

Stiffness 
getTangentStiff( ); or 
getInitialStiff( ); 

Once Target is reached 

measure Response 

(Resisting Forces) 
getDaqResponse(…); 

Set Trial Response 

(Trial Displacements) 
update(…); 

 
Fig. 2.2  Hybrid simulation testing procedure. 

Next, the equilibrium solution algorithm needs to assemble the unbalanced force vector. 

As a result, the analytical subassemblies retrieve the stored response quantities to calculate and 

return their resting forces and other contributions to the unbalanced force vector. On the other 

hand, the experimental subassemblies communicate with the data-acquisition systems in the 

laboratories to measure the resisting forces as soon as the previously received target response is 

reached. The measured resisting forces combined with the other contributions to the unbalanced 

force vector are then returned to the finite element analysis. Once the assembly processes of the 

effective stiffness matrix and the unbalanced force vector are terminated, the equilibrium 

solution algorithm can solve the linear system of equations for the response increments and 
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subsequently update the response of the entire structure. Finally, the solution state of the 

structure is committed and the direct integration analysis can be advanced to the next time step. 

2.5 LOCAL VS. GEOGRAPHICALLY DISTRIBUTED TESTING 

As has been described earlier, when all the advantages were laid out, hybrid simulation is a very 

versatile testing technique that facilitates many different modes of employment. Hence, it is 

useful to categorize some of these main modes of employment and to define the associated 

terminologies. 

The first way of categorizing hybrid simulations is by grouping them according to the 

geographical distribution of the structural subassemblies and the different components. In a local 

hybrid simulation the numerical analysis and the experimental testing are performed at the same 

location, i.e., in the same laboratory. Because the finite element analysis hardware, the control 

system, and the data-acquisition system are all collocated, it is possible to connect them through 

local high-speed network rings, e.g., the Shared Common Random Access Memory Network 

(SCRAMNet+) (Systran). Such local high-speed connections drastically reduce delays and make 

it possible to perform continuous and/or real-time hybrid simulations. Local hybrid simulations 

are thus not defined by the absence of a network but rather by the collocation of all the required 

components in one laboratory. 

Conversely, in a geographically distributed hybrid simulation various parts of a structure 

are analyzed and tested at different sites. This means that the analytical portions of the model can 

be analyzed on multiple computers, while the physical portions of the hybrid model are tested in 

multiple laboratories. Because some or all the participating sites are dispersed, they need to be 

connected through wide area networks such as the Internet or the Internet2’s Abilene network. 

Generally these networks create much larger delays than the local high-speed networks and the 

execution of rapid hybrid simulations becomes very challenging. In addition, it is necessary to 

establish the means for dealing with excessive network delays as well as breakdowns. However, 

by breaking a model up into selected subassemblies and distributing them within a network of 

laboratories and computational sites, a researcher is able to take advantage of and combine the 

different capabilities available at the various facilities. 
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2.6 SLOW VS. RAPID VS. REAL-TIME TESTING 

Another important feature that can be utilized to categorize a hybrid simulation is how fast a test 

is executed. Slow tests can be executed on extended time-scales of up to two orders of magnitude 

slower than the actual time-scale, whereas real-time tests need to be executed equal to or faster 

than the actual time-scale depending on similitude requirements. Thus, different aspects of a 

hybrid simulation need to be considered and treated more carefully, conditional on the execution 

speed. For slow tests it is imperative that the physically tested portions of the structure not 

exhibit any velocity-dependent behavior unless such dependency is compensated for in the 

analytical part of the hybrid model. In addition, it is important that an uninterrupted execution, 

meaning a continuous actuator motion, is maintained to avoid force relaxation and actuator stick-

slip difficulties. On the other hand, for rapid hybrid simulations it is crucial that the inertial and 

damping force contributions generated by the physical portions of the hybrid model are correctly 

accounted or compensated for. Moreover, it is important to recognize that for such tests high-

force dynamic actuators with large accumulators and hydraulic pumping systems are required 

and that the accurate control of these actuators becomes much more difficult due to inertial force 

feedbacks. 

The equations of motion that need to be solved during a hybrid simulation take on 

slightly different forms depending on the execution speed of the test. For slow tests, where no 

inertial forces are generated in the physical subassemblies, they can be expressed in the 

following manner. 

 ( ) ( )1 1 1 1 1 1 , 1,A E
i i i i i i i+ + + + + + ++ + + = −r r 0M U C U P U U P U P P&& & &  (2.2) 

where the terms with superscripts A are assembled from the analytical portions of the 

structure and the terms with superscripts E are assembled from the experimental portions of the 

structure. As can be seen from Equation (2.2) the mass and the viscous damping of the entire 

structure are treated numerically because the experimental resisting force vector E
rP  does not 

include any inertial or viscous damping force contributions due to the slow execution of the test. 

Hence, the mass matrix M  and viscous damping matrix C  can directly be assembled from all 

the node and element contributions of both the analytical and experimental portions of a 

structure. 

In contrast, if hybrid simulations are executed more rapidly, where inertial and viscous 

damping forces start being generated in the physically tested portions of a structure, it is 
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necessary to compensate for these dynamic forces, and the experimental resisting force vector 
E

rP  in Equation (2.2) needs to be modified to correctly account for such effects. 

 ( )1 , 1 1 1
E E E E E E

i i i i+ + + += − −r rP U P M U C U&& &  (2.3) 

In the above equation , 1
E

i+rP  are the resisting forces measured by the load cells and 

assembled from the experimental subassemblies (which include the dynamic force 

contributions), EM  and EC  are the mass and viscous damping matrices assembled from the 

experimental subassemblies, and 1
E
i+U&&  and 1

E
i+U&  are the accelerations and velocities measured 

from the experimental subassemblies. Even though the dynamic force correction in (2.3) is 

shown for the global degrees of freedom, it should ideally be performed for the element or even 

the actuator degrees of freedom instead. 

Once the execution speed reaches real time, meaning that the experimental subassemblies 

are loaded with the actual, calculated velocities and accelerations (including similitude 

requirements), an alternative, preferred form of the equations of motion can be employed. 

 ( ) ( )1 1 1 1 1 1 1 1 , 1, , ,A A A E
i i i i i i i i i+ + + + + + + + ++ + + = −r r 0M U C U P U U P U U U P P&& & & & &&  (2.4) 

where AM  and AC  are the mass and viscous damping matrices assembled from only the 

analytical subassemblies and E
rP  is the resisting force vector assembled from the experimental 

subassemblies, which includes the inertial and damping forces of these physical portions of the 

structure. It is important to notice that the experimental resisting force vector is assembled 

entirely from measured force values but for illustrative purposes can be expressed in the 

following manner. 

 ( )1 1 1 , 1 1, ,E E E
i i i i i+ + + + += +r rP U U U P M U& && &&  (2.5) 

On the other hand, if a real-time hybrid simulation is utilized to execute smart shaking 

table tests, where entire subassemblies are tested on simulator platforms, the experimental 

resisting force vector E
rP  is no longer a function of the relative response quantities. Instead, 

absolute response quantities need to be sent to the control systems driving the shaking tables. 

Again for illustrative purposes only, this can be expressed as follows. 

 ( ), 1 , 1 , 1 , 1 , 1, ,E E E
i i i i i+ + + + += +r t t t r tP U U U P M U& && &&  (2.6) 

For convenience the different forms of the equations of motion that need to be solved for 

the various types of hybrid simulations are summarized in Table 2.1 below. 
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Table 2.1  Equations of motion for different types of hybrid simulations. 

Type of Hybrid Simulation Equations of Motion 

slow test 2-2 

rapid test 2-2 & 2-3 

real-time test 2-2 & 2-3  or  2-4 & 2-5 

smart shaking table test 2-4 & 2-6 

Finally, many of the numerical time-stepping integration algorithms that can be employed 

to solve the presented equations of motion are discussed in detail in Chapter 4. 

2.7 NUMERICAL AND EXPERIMENTAL ERRORS 

To guarantee that the results obtained from a hybrid simulation are valid, reliable, and accurate, 

it is imperative to minimize and correct for the contamination of the results by errors. In hybrid 

simulations errors can be introduced into the solution process at various stages and it is possible 

to categorize them as numerical versus experimental errors, or, alternatively, as random versus 

systematic errors. While numerical and random errors do not significantly affect the response of 

a structure and can generally be ignored, experimental and systematic errors can accumulate over 

the course of a hybrid simulation and lead to poor results or even instabilities. As mentioned in 

Section 2.3, many researchers have thoroughly investigated the effects of various errors on the 

structural response. Shing and Mahin (1983, 1984, 1990) concentrated their studies on numerical 

errors that are introduced by the model abstraction and by the time-stepping integration 

algorithms. Experimental errors introduced by hardware components of the transfer and data-

acquisition systems were investigated and summarized by Thewalt and Mahin (1987). Mosqueda 

(2003) performed extensive numerical simulations of experimental errors to investigate their 

effects on the results of a hybrid simulation. He derived analytical models in the form of linear 

transfer functions for time delay errors and for the dynamic behavior of experimental setups 

(including the specimen, the transfer system and the reaction wall) to investigate their effect on 

the overall performance of the transfer system. 

Because comprehensive summaries of hybrid simulation errors and the available error 

compensation techniques have been compiled by Mosqueda (2003), only a brief list of numerical 

and experimental errors is presented here for convenience. 
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• The first source of errors is the spatial discretization of the structure that is necessary to 

obtain the semi-discrete, finite degrees-of-freedom models on which hybrid simulations 

are based. Because these finite-degrees-of-freedom models are approximations of 

continuous real-world structures, information is lost and numerical errors are inevitably 

introduced into the hybrid simulation during the modeling process. Assumptions about 

the energy-dissipation and other analysis parameters further influence such errors. 

• Other sources of numerical errors are the integration and equilibrium solution algorithms 

that are employed to solve the nonlinear equations of motion. This problem can be 

magnified if inappropriate algorithms and/or parameters for such algorithms (e.g., 

integration time-step size, algorithmic damping etc.) are selected for the hybrid 

simulation problem at hand. In addition, different integration schemes possess varying 

error propagation characteristics that can amplify experimental errors throughout a test. 

• The third source of errors is the manner in which the transfer system imposes the 

calculated response quantities on the experimental subassemblies. As discussed earlier, 

continuous loading procedures generally achieve better accuracy than hold-and-ramp 

procedures because they eliminate force relaxation and actuator stick-slip errors. 

Furthermore, if the physical subassemblies exhibit velocity-dependent behavior, it is 

critical that the transfer system imposes the calculated response quantities in real time to 

minimize errors and obtain accurate results. 

• Experimental errors generated by the transfer systems are the direst of all the errors 

affecting hybrid simulations. Poorly tuned transfer systems fail to accurately impose the 

calculated response quantities and introduce systematic errors such as undershoot, 

overshoot, lag, or feedback-loop instabilities. Furthermore, the interaction of the transfer 

system with its supporting reaction wall can lead to additional systematic errors. Because 

systematic errors modify the energy dissipation of a hybrid system, which in turn can 

render it unstable, they must be minimized or compensated for at all cost. 

• Finally, the instrumentation devices and the data-acquisition system that measure the 

structural response can also introduce experimental errors. The resolution of the 

instrumentation, noise generated in the instrumentation and calibration errors in the data-

acquisition system can produce very inaccurate or incorrect measurements that 

considerably affect a hybrid simulation and ultimately lead to poor test results. 
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2.8 SUMMARY 

Hybrid simulation is one of the currently well-developed methods to conduct laboratory testing 

for evaluating the seismic behavior of structural systems and/or components thereof. In this 

experimental testing technique a simulation is executed based on a step-by-step numerical 

solution of the governing equations of motion for a model formulated considering both 

numerical and physical components of a structural system. Many of the advantages that are 

gained by utilizing hybrid simulations to perform experimental investigations were discussed and 

summarized in this chapter. In addition, a list of challenges that still need to be addressed in 

hybrid simulation was compiled as well. Afterwards, a brief history on the development of the 

testing technique from 1975 (when the first publication appeared) until 2008 (when this research 

was concluded) was presented. Subsequently it was shown that four key components are required 

in order to perform a hybrid simulation. These consist of a discrete model of the structure, 

including the static and dynamic loading; a transfer system, including a controller and static or 

dynamic actuators; the physical specimen that is being tested in the laboratory, including a 

support against which the actuators of the transfer system can react; and a data-acquisition 

system, including instrumentation devices. Because the finite element approach was utilized to 

introduce the basic concepts of a hybrid simulation, the testing procedure was next laid out in 

terms of the steps required to execute a direct integration analysis. In addition, several of the 

more common modes of employment of a hybrid simulation, such as local versus geographically 

distributed tests and slow versus rapid versus real-time tests, were discussed in detail. It was 

shown that a local hybrid simulation is defined by the collocation of all the required components 

in one laboratory. In contrast, for geographically distributed tests some or all the participating 

sites are dispersed and need to be connected through wide area networks. Depending on the 

execution speed of the test, the equations of motion that need to be solved during a hybrid 

simulation take on slightly different forms, which have been summarized and discussed. Finally, 

the chapter presented a short summary of numerical and experimental errors encountered in 

hybrid simulations and explained how such errors affect a test. 

 



 

 

3 Object-Oriented Hybrid Simulation 
Framework 

3.1 INTRODUCTION 

Considerable research is currently being conducted worldwide to extend hybrid simulation to 

applications where advanced numerical techniques are utilized, boundary conditions are imposed 

in real time, and dynamic loading conditions are caused by seismic events, wind, blast, impact, 

waves, fire, and traffic. Similarly, efforts are under way to optimize capabilities for testing 

portions of a structure in geographically distributed laboratories, including techniques to improve 

network performance. 

While only a few basic operations and communication protocols are needed to perform a 

hybrid simulation, to date few efforts (e.g., (Takahashi and Fenves 2006)) have been made to 

develop a common software framework for implementing and deploying systems that can carry 

out hybrid tests. Typically, each implementation and execution of hybrid simulation has been 

problem specific and used to be strongly dependent on the computational procedure, the 

configuration of the experiment, and the control and data-acquisition systems employed at the 

testing site. This means that hybrid simulations have generally been hard-coded for each specific 

problem at hand. Such highly customized software implementations are difficult to adapt to 

different structural problems and even harder to port to different laboratories. This is particularly 

true if multiple laboratories are involved in a hybrid simulation, as is the case for geographically 

distributed simulations. Thus, the lack of a common framework has posed a hurdle for those who 

considered utilizing hybrid simulation to investigate a structure experimentally; and additionally, 

has also limited collaboration among experts in the field. 

A software framework is a reusable design for a system or subsystem and defines the 

overall architecture of such system, meaning its fundamental components as well as the 

relationships among them. Thus, a software framework for experimental testing should ideally 

support a large variety of computational software, structural testing methods, specimen types, 

testing configurations, control and data-acquisition systems, and communication protocols. 
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Furthermore, to accelerate the development and refinement of hybrid simulation, such software 

framework should be environment independent, robust, transparent, scalable, and easily 

extensible. It should allow domain researchers to execute hybrid simulations without specialized 

knowledge about the underlying software. At the same time, it should also enable hybrid 

simulation and IT specialists to extend the frontiers of the methodology by permitting the 

effortless addition of new developments. 

Two different approaches are currently utilized when developing and implementing 

hybrid simulations. The first one is the structural analysis approach, in which a hybrid simulation 

can be viewed as a conventional finite element analysis where physical models of some portions 

of the structure are embedded in the numerical model. The second one is the control system 

approach where a hybrid simulation is treated as a feedback system with the computational 

portion of the structure acting as the controller and the physical portion resembling the plant. 

While it can be shown that the two approaches lead to equivalent algorithms (Sivaselvan 2006) 

both of them have advantages and disadvantages when investigating the properties and 

performance of hybrid simulations. For the development of the object-orient software framework 

discussed herein, the former finite element approach is the preferred method. Since in this 

approach the physical portions of a structure are embedded as subassemblies into the 

computational software, the experimental software framework should provide the means to 

interact with any finite element code that provides an application programming interface (API) 

and is not a black box (see Fig. 3.1). This enables users to choose their favorite finite element 

analysis software (with all the unmodified computational features) to perform a hybrid 

simulation, without the need to learn new analysis software. 

Because the object-oriented software framework is designed to connect any finite 

element analysis software running on one or more machines with control and data-acquisition 

software running in one or more laboratories, it can be considered middleware. By definition 

middleware describes a piece of software that connects two or more software applications, 

allowing them to exchange data. It is similar to the middle layer of the three-tier architecture that 

is described in a later section. The Open-Source Framework for Experimental Setup and Control, 

OpenFresco, described herein, is a redesigned, improved, and extended version of the software 

framework originally presented by Takahashi and Fenves (2006), and provides in a convenient, 
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modular, and standardized manner those additional functions needed by analysis software to 

work with laboratory equipment to perform hybrid simulations. 

LABORATORY  
CONTROLLERS  

AND DAQS 

ADMINISTRATIVE 
FUNCTIONS 

COMMUNICATION RECORDERS 

NODAL 
GEOMETRY 

BOUNDARY 
CONDITIONS 

MASS AND 
DAMPING 

PROPERTIES 

LOADING 
SOLUTION 
METHODS 

ELEMENT TYPES 
AND LOCATIONS 

ELEMENT PROPERTIES 

STATE DETERMINATION 

GENERIC 
CLIENT 

ELEMENT 1 

NUMERICAL 
ELEMENT 1 

NUMERICAL 
ELEMENT 2 

OpenFresco 

 

Fig. 3.1  Finite element analysis software of user’s choice, OpenFresco middleware, and 
physical specimen with control and data-acquisition systems in laboratory. 

This chapter first presents the fundamental building blocks (abstract classes) of the 

software framework (Takahashi and Fenves 2006) and explains how such objects were 

determined based on a rigorous systems analysis of the operations performed during hybrid 

simulations. The interaction among those classes and the underlying object-oriented software 

design patterns are explained as well. Thereafter, the concept of the multitier software 

architecture is discussed, which provides the means to interact with any finite element software 

and facilitates geographically distributed simulations. Communication methods and protocols 

necessary for distributed computation and testing are described next. Following this are brief 

descriptions on the implementation of the available objects (concrete sub-classes). Finally, the 

chapter explains how the Open System for Earthquake Engineering Simulation, OpenSees 

(McKenna 1997), can be used as the computational framework and the advantages attained by 

doing so. 

3.2 OPENFRESCO SOFTWARE ARCHITECTURE 

In compliance with object-oriented methodologies the first step in the development process of 

the software framework is to determine what a structural testing system is functionally required 

to do, to facilitate the execution of experiments. This first phase of the development process is 
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also called object-oriented analysis (OOA) and produces a conceptual model of the software 

framework. All three of the currently well-established and earlier described experimental 

methods (quasi-static testing, shaking table testing, and hybrid simulation) impose boundary 

conditions on a structure or components thereof and return the corresponding work conjugates. 

The boundary conditions that are to be imposed at the interface degrees of freedom can be 

prescribed displacements, tractions, or a combination. In structural testing such prescribed 

boundary conditions are generally applied by means of a transfer system, which consists of 

actuators and measuring devices. The manner in which the transfer systems are set up and 

physically connect to the specimen is test specific and therefore usually changes from 

experiment to experiment. Finally, the actuators need to be commanded by means of a control 

system and measurements need to be recorded by a data-acquisition system. These control and 

data-acquisition systems generally differ from laboratory to laboratory. 

Hence, the main requirements for the software framework are (1) to provide some means 

to represent the structural subassemblies that are being tested experimentally; (2) to generate 

appropriate (displacements, velocities, accelerations, forces) input commands for the transfer 

systems; (3) to convert measured signals (displacements, velocities, accelerations, forces) back 

into appropriate forms for the computational software; and (4) to offer the flexibility to interact 

with a wide variety of control and data-acquisition systems. Additionally, the software 

framework should provide (5) techniques to distribute processes across a network to different 

machines, thereby enabling geographically distributed simulations; (6) means to transmit 

additional messages between the computational software and the laboratory; and (7) execution 

and communication speeds that make real-time testing possible. 

The next step in the object-oriented analysis process is to generate an object-oriented 

model (OOM) by breaking down the previously identified requirements into components. This 

means that abstractions of the real-world objects are generated in the software. These abstract 

components, which are blueprints describing the characteristics and behavior of a real-world 

object, are called software classes. Using encapsulation, a class conceals its functional details 

(data and operations on data) from other objects that send messages to it and thereby provides the 

basis for modular, flexible, and extensible software. According to the previously explained 

components and requirements necessary to provide a bridge between a standard finite element 
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analysis program and laboratory control and data-acquisition systems, the following software 

abstractions are introduced. 

FE Analysis Software 

Experimental Site 

Experimental Setup 

Experimental Control 

Control & Daq Systems 
in Laboratory 

Experimental Element 

 
Fig. 3.2  Abstract components of the OpenFresco software architecture. 

Experimental Element: 
The abstraction of the first of the previously described real-world components is the 

ExperimentalElement class. It represents specimens such as trusses, beams, columns, braces, 

springs, walls, and other parts of a structure that are physically tested in a laboratory. Analogous 

to an analytical element, the experimental element acts within the host finite element analysis 

software, but represents a physical portion of a model instead of a numerical one. Like the 

analytical element the basic functionality of an experimental element is to provide the mass, 

damping, and stiffness matrices as well as the residual force vector for a given deformation state. 

The experimental element is thus responsible for transforming prescribed boundary conditions 

from the global coordinate system of the FE-model into the local or basic element coordinate 

system that is best suited for testing. Additionally, it needs to provide inverse transformations for 

the measured response quantities, such as displacements, velocities, accelerations and forces, 

from the element coordinate system back to the global coordinate system of the FE-model. 

Contrary to analytical elements, the experimental element is oftentimes unable to return a tangent 

stiffness matrix and needs to return its initial stiffness matrix instead. This is because it is 

generally difficult to compute an accurate element tangent stiffness matrix solely from the 

experimentally measured response quantities at the basic or local element degrees of freedom. 

Furthermore, since a physical specimen is truly history dependent, the experimental element 

representing such specimen cannot revert to a previous or initial state of an analysis once a 
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simulation is in progress. The ExperimentalElement class is an abstract class, which defines the 

interface that all experimental elements must conform to. The concrete subclasses of the 

ExperimentalElement class then provide the implementations for the specific experimental 

specimens. 

Experimental Site: 
Other real-world components involved in an experimental test are the laboratories in which the 

testing takes place and the computational sites where the analysis is carried out. The 

ExperimentalSite class represents such laboratories and computational sites in the software 

framework. Because in the real world, laboratories and computational sites can be in different 

places, the experimental site objects in the software are responsible for providing communication 

methods to connect the different sites and store data that are received from or need to be sent to 

other sites. Furthermore, the experimental sites should support different communication 

protocols such as TCP/IP, UDP, or NHCP (NEES hybrid-simulation control protocol) and be 

able to guarantee secure transactions over the Internet using cryptographic protocols such as TLS 

(transport layer security) or SSL (secure sockets layer). The ExperimentalSite class is an abstract 

base class, which defines the interface that all experimental sites must conform to. The concrete 

subclasses of the ExperimentalSite class then provide the implementations for the specific 

laboratories and computational sites. 

Experimental Setup: 
The third abstraction is the ExperimentalSetup class, the software class that is responsible for 

representing the possible configurations of the transfer systems constructed in the laboratories. 

Since a transfer system consists of actuators and measuring devices, the experimental setup 

needs to transform the prescribed boundary conditions from the local or basic element degrees of 

freedom of the experimental elements into the actuator degrees of freedom of the transfer 

system, utilizing the geometry and the kinematics of the loading and instrumentation system. 

Similarly the work conjugates measured by transducers and load cells need to be transformed 

back to the experimental element degrees of freedom. These transformations can be implemented 

either as simple linear transformation matrices (small displacements) or as complex algebraic 

transformations taking large-displacement effects into account. The ExperimentalSetup class is 

again an abstract base class, which defines the interface that all experimental setups must 
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conform to. The concrete subclasses of the ExperimentalSetup class then provide the 

implementations for the specific setups. 

Experimental Control: 
The last one of the main abstractions introduced here is the ExperimentalControl class. Since one 

of the required tasks for experimental testing is the communication with a wide variety of control 

and data-acquisition systems, the ExperimentalControl class provides such interface and 

functionality in the software framework. The advantage of this abstraction and the encapsulation 

of these operations is that the ExperimentalSetup class separates the details of the loading system 

configuration from the ExperimentalControl class. Thus, those responsible for the IT aspects of 

the control and data-acquisition systems need be concerned only with the ExperimentalControl 

class; while those configuring the actuators and sensors focus on the ExperimentalSetup class. As 

with the other classes, the ExperimentalControl class is again an abstract base class, which 

defines the interface that all experimental controls must conform to. The concrete subclasses of 

the ExperimentalControl class then provide the implementations for the specific interfaces with 

different control and data-acquisition systems. 

3.3 MULTI-TIER SOFTWARE ARCHITECTURE 

While the components described in the previous section build the core of the software 

framework, they do not provide a modular and flexible way to utilize OpenFresco with any finite 

element analysis software of the user’s choice. To achieve this objective, the three- and multi-tier 

software architectures are introduced. They both belong to the class of client/server architectures, 

which is based on passing messages among different software agents. The three-tier software 

architecture wraps around the OpenFresco core modules and provides the necessary functionality 

to interface with a wide variety of finite element software clients and control and data-acquisition 

systems. 

As the name suggests the software is divided into three layers composed of a client, a 

middle-tier (or application) server, and a backend server. The middle-tier server is located 

between the user interface (client) and the data management (server) components. In the 

traditional three-tier architecture this middle-tier provides functional process management where 

business logic and rules are executed. The three-tier architecture is typically employed whenever 
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a distributed client/server design is required that provides increased performance, flexibility, 

maintainability, reusability, and scalability while hiding the complexity of distributed processing 

from the user (Carnegie Mellon SEI). 

Top Tier / Client 

Middle Tier / Application Server 

Third Tier / Backend Server 

Traditionally, the top-most level of the 
application is the user interface. 

Traditionally, the middle layer provides 
process management services and controls 
transactions. 

Traditionally, the third tier stores and 
manages information in a database for 
retrieval by the user. 
Structure or structural subassembly from 
which the FE-software is requesting 
information. 

For the experimental software framework 
this is the FE-software. 

Allows FE-software using different 
languages (Matlab, Fortran, C, C++) to 
communicate with physical specimens. 

Experimental Site 
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Experimental Control 

Experimental Element 

Experimental Site 

Experimental Setup 

Experimental Control 

Experimental Element 

Daq System API Control System API 

TCP/IP (Socket) TCP/IP (Socket) 

 
Fig. 3.3  Multi-tier software architecture. 

As can be seen from Fig. 3.3, in the case of the experimental software framework, the 

finite element analysis software resembles the client or user-interface top tier, where the 

structural model is created and then analyzed. The backend server, also called third tier, is the 

laboratory server composed of the different control and data-acquisition systems with their APIs. 

This means that comparable to the general three-tier architecture, where the third tier is typically 

a database from which a user is querying information, the laboratory server can be seen as the 

structure or structural subassembly from which the finite element analysis software is querying 

information. Finally, the middle-tier server, which is also called simulation application server, 

provides process management services and data transformations so that different computational 

clients can query information from the different experimentally tested portions of a structure. It 

improves performance, flexibility, maintainability, reusability, and scalability by centralizing 

process logic. Centralized process logic makes administration and change management easier by 
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localizing system functionality so that changes must be written only once and placed on the 

middle-tier server to be available throughout the systems (Carnegie Mellon SEI). In addition, due 

to this separation provided by the middle-tier server, finite element analysis software written in 

different languages such as Matlab, Fortran, C, C++, etc., can be accommodated. If the middle-

tier server is further divided into two or more units, the design is referred to as multi- or n-tier 

architecture, which is one of the architectural software patterns. As will be seen shortly, for 

geographically distributed simulations OpenFresco is employing a four-tier architecture with two 

middle-tier server units. 

Because of the modularity and flexibility of the multi-tier architecture combined with the 

OpenFresco middle-tier components, a wide variety of local and geographically distributed 

testing configurations are possible. For all these configurations the client and the first middle-tier 

server unit will usually be running on the same machine. However, since TCP/IP sockets are 

used to achieve the interprocess communications between the two, the client and the first 

simulation application server unit could also be run on two separate machines, if it is desired. On 

the other hand, the communications between the two simulation application server software 

agents are always distributed, which means that the processes are running on two different 

machines. These network communications are managed by the previously described 

ExperimentalSite class, which in turn is relying on the OpenSees Channel class. The OpenSees 

Channel class can then use different communication protocols such as TCP/IP, UDP, or NHCP. 

In the case of a local deployment of OpenFresco, meaning that all processes are executed 

locally in one laboratory, there are two possible configurations available as shown in Fig. 3.4. In 

the first configuration, which is the more general one, a generic client element has to be added to 

the finite element software that is being used for the analysis. The generic client element requires 

only the number of nodes, the degrees of freedom it is connected to, and the port to communicate 

through as input parameters. Furthermore, it can be implemented in the language of the 

corresponding finite element analysis software. Thus, data exchange with the OpenFresco 

middleware takes place through the generic client element, embedded by the user into each finite 

element analysis program using their published programming interfaces (e.g., user-defined 

elements). Utilizing the socket provided by the OpenFresco software framework, such user-

defined element communicates with the simulation application element server through a TCP/IP 

connection. Since a generic element is used in the finite element analysis software, the 
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simulation application element server then interfaces with the OpenFresco experimental element 

class. The advantage of this first configuration is that only one element, the generic client 

element, has to be added to the finite element analysis software and all the existing experimental 

elements in the OpenFresco software framework can be utilized to represent the experimental 

portions of a structure. 
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Fig. 3.4  Three-tier configurations for local deployment. 

In the second configuration in Fig. 3.4, an experimental element instead of a generic 

client element is directly added to the finite element analysis software. This experimental 

element then communicates with the simulation application site server in the OpenFresco 

software framework, which in turn interfaces with the local experimental site instead of the 

experimental element. The advantage of the second configuration is, that if a very specialized 

experimental element is needed, which is not available in and cannot be added to OpenFresco 

(because it utilizes some resources available only within the finite element analysis software), 

such experimental element can directly be added to the computational software client. 

As can be seen from Fig. 3.5, in the case of a distributed deployment of OpenFresco, two 

very similar possible configurations are available. Their main difference is that the middle-tier 
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server is divided into two units that are distributed across a network. The shadow and actor 

experimental sites, which are concrete subclasses of the ExperimentalSite base class, manage the 

communications between the two tiers. As mentioned before, they make use of the OpenSees 

Channel class and can therefore employ different protocols such as TCP/IP, TCP/IP with SSL, 

UDP, or NHCP for communications. 
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Fig. 3.5  Four-tier configurations for network deployment. 

Because the middle-tier server is divided into two units, the ExperimentalSetup class, 

which is responsible for transforming between element and actuator degrees of freedom, can be 

located either on the first middle-tier server unit (usually running on the same machine as the 

finite element analysis client) or on the second middle-tier server unit (usually running in the 

laboratory), but not on both sides simultaneously. The purpose of providing this flexibility to the 

user is to accommodate a finite element analyst’s view of a hybrid simulation as well as an 
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experimentalist's. The former is typically interested in having some finite elements that return 

resisting forces provided some trial response, without having to deal with experimental setups in 

a laboratory. In such cases the experimental setup can be placed on the laboratory side. The 

latter, on the other hand, generally prefers to directly receive commands and return 

measurements in the control and data-acquisition system degrees of freedom without having to 

transform from and to element degrees of freedom. In this case the experimental setup can 

conveniently be placed on the side of the computational client. So to summarize, OpenFresco’s 

three- and four-tier architectural patterns provide the modularity and flexibility to interface any 

computational agent running on one or more machines with physical specimens being tested in 

one or more laboratories. 

3.4 OBJECT-ORIENTED DESIGN DETAILS 

In the next step of the object-oriented methodology, the object-oriented design (OOD) phase, the 

interfaces of the objects and the interactions amongst them are defined. The basis for the design 

phase is the conceptual model and all the possible configurations (use cases) of the software 

framework that were developed during the object-oriented analysis in the previous subsections. 

Fig. 3.6 shows the class diagram of the OpenFresco software framework using simplified 

graphical notation of the Unified Modeling Language (UML) (Booch et al. 2005). The classes 

are graphically represented by a rectangle with the name of the class inside the rectangle. For 

abstract classes the name is displayed in Italic. The attributes and operations of a class are 

omitted in the diagram presented here and are explained separately afterwards. The following 

four types of lines represent the relationships among the classes: 

A dependency is a relationship that states that one class uses operations, variables or 

arguments from another class. The relationship is sometimes also referred to as 

“using-a” relationship. 

A generalization is a relationship between a parent (superclass or base class) and a 

child (subclass or derived class). The relationship is also called inheritance or is 

referred to as “is-a” relationship. A child inherits the properties, such as attributes 

and operations, from its parent class. 
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An association is a structural relationship that specifies that objects of one class are 

connected to objects of an other class. The relationship is also referred to as 

“knows-a” relationship. 

An aggregation is a special association relationship that specifies that an object of 

one class is made up of objects of other classes. The relationship is also referred to 

as “has-a” relationship. 

The multiplicity of an association or aggregation specifies how many objects may be 

connected across an instance. It is written as a range of integers with the minimal and maximal 

values and displayed at the ends of an association or aggregation. 
 



 

 

 

ExperimentalSite 

ExperimentalControl 

LocalExpSite 

ExperimentalElement 

ECSimulation ECAggregator ECLabVIEW 

SignalFilter 

ExperimentalCP 

ExperimentalSetup 

ESAggregator 

ShadowExpSite ActorExpSite 

 
Fig. 3.6  Class diagram of the OpenFresco software framework. 
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Experimental Element: 
As can be seen from the class diagram in Fig. 3.6, the ExperimentalElement class is an abstract 

class that inherits attributes and operations from the Element class, which is an abstract base 

class in OpenSees. 

class ExperimentalElement : public Element {
public: 
    // constructor and destructor 
    ExperimentalElement(int tag, int classTag, 
        ExperimentalSite *site = 0); 
    virtual ~ExperimentalElement(); 
     
    // public method to obtain basic DOF size which is 
    // equal to the max num DOF that can be controlled 
    virtual int getNumBasicDOF() = 0; 
     
    // public methods to set and to obtain the stiffness 
    virtual int setInitialStiff(const Matrix& stiff) = 0; 
    const Matrix &getTangentStiff(); 
    const Matrix &getInitialStiff(); 
     
    // public methods to obtain the daq response in global system 
    virtual const Vector &getDisp(); 
    virtual const Vector &getVel(); 
    virtual const Vector &getAccel(); 
    virtual const Vector &getTime(); 
     
protected: 
    // pointer to ExperimentalSite 
    ExperimentalSite* theSite; 
     
    // size of ctrl/daq data 
    // [0]:disp, [1]:vel, [2]:accel, [3]:force, [4]:time 
    ID* sizeCtrl; 
    ID* sizeDaq; 
         
    // initial stiffness matrix 
    Matrix theInitStiff; 
     
private: 
    // the following methods must be defined if the Element object  
    // is inherited, but are meaningless for this element. 
    int revertToLastCommit(); 
    int revertToStart(); 
     
    bool firstWarning; 
}; 

Fig. 3.7  Interface for the ExperimentalElement class. 

The implementations of the experimental elements, such as truss, beam, column, brace, 

spring, and others are provided in the concrete subclasses of the ExperimentalElement class. The 

class interface is shown in Fig. 3.7 and provides the following modified and additional 

functionalities as compared to its parent Element class. First of all, and most importantly, the 
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ExperimentalElement class is associated with the abstract ExperimentalSite class. More 

specifically, the relationship between these two classes is an aggregation, meaning that an 

experimental element has one experimental site. Furthermore, a method for setting the initial 

stiffness matrix of the experimental element and several methods for obtaining the measured 

response quantities have been added to the interface. Most of the methods defined in the 

ExperimentalElement interface are pure virtual, meaning that the concrete subclasses need to 

provide the implementations. Finally, since a physical specimen is truly history dependent and an 

experimental element representing such specimen cannot revert to a previous or initial state of an 

analysis, the two inherited methods revertToLastCommit() and revertToStart() return an 

error message and interrupt the simulation. 

Experimental Site: 
The redesigned ExperimentalSite class is an abstract base class with the interface defined, as 

shown in Fig. 3.8. It has three derived classes, which provide the concrete implementations 

necessary for local and geographically distributed simulations. The LocalExpSite class is 

employed for local testing and the ShadowExpSite and ActorExpSite classes are employed as a 

pair for distributed testing. In terms of the terminology generally used for client-server 

architectures, the ShadowExpSite provides the implementation of the client and the 

ActorExpSite the one of the server. 

class ExperimentalSite : public TaggedObject {
public: 
    // constructors and destructor 
    ExperimentalSite(int tag,  
        ExperimentalSetup *setup = 0); 
    ExperimentalSite(const ExperimentalSite &site); 
    virtual ~ExperimentalSite(); 
     
    virtual int setSize(ID sizeT, ID sizeO); 
    virtual int setup() = 0; 
     
    // public methods to set and to get responses 
    virtual int setTrialResponse(const Vector* disp, 
        const Vector* vel, 
        const Vector* accel, 
        const Vector* force, 
        const Vector* time); 
    virtual int setTrialDisp(const Vector* disp); 
    virtual int getDaqResponse(Vector* disp, 
        Vector* vel, 
        Vector* accel, 
        Vector* force, 
        Vector* time); 
                                                        (continued) 
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    virtual int setDaqResponse(const Vector* disp,
        const Vector* vel, 
        const Vector* accel, 
        const Vector* force, 
        const Vector* time); 
    virtual int checkDaqResponse() = 0; 
     
    virtual const Vector& getTrialDisp(); 
    virtual const Vector& getTrialVel(); 
    virtual const Vector& getTrialAccel(); 
    virtual const Vector& getTrialForce(); 
    virtual const Vector& getTrialTime(); 
     
    virtual const Vector& getDisp(); 
    virtual const Vector& getVel(); 
    virtual const Vector& getAccel(); 
    virtual const Vector& getForce(); 
    virtual const Vector& getTime(); 
     
    virtual int commitState(); 
     
    virtual ExperimentalSite *getCopy() = 0; 
     
    virtual int getTrialSize(int rType); 
    virtual int getOutSize(int rType); 
    virtual int getCtrlSize(int rType); 
    virtual int getDaqSize(int rType); 
     
protected: 
    ... 
 

Fig. 3.8  Interface for the ExperimentalSite class. 

The ShadowExpSite and the ActorExpSite should support different communication 

protocols such as TCP/IP, UDP, or NHCP (NEES hybrid-simulation control protocol) and be 

able to guarantee secure transactions over the Internet using cryptographic protocols such as TLS 

(Transport Layer Security) or SSL (Secure Sockets Layer). Since the distributed-computing 

model developed in OpenSees provides most of these requirements, the ShadowExpSite and 

ActorExpSite classes are derived from the Shadow and Actor classes of such model, respectively. 

The Shadow and Actor classes are both associated with the OpenSees Channel class, which is an 

abstract base class that has concrete subclasses implementing the different communication 

protocols. The available child classes useful for distributed testing are TCP_Socket, UDP_Socket 

and TCP_SocketSSL. 

Experimental Setup: 
The interface of the redesigned ExperimentalSetup abstract base class is defined as shown in Fig. 

3.9. Similar to the other abstract classes most of the methods in the ExperimentalSetup class are 

pure virtual, and the concrete subclasses provide the implementations for the different 
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experimental setups. As explained before, the Bridge software pattern is used between the 

ExperimentalSetup class and the associated ExperimentalControl class. Furthermore, the class 

interface provides methods for setting and getting trial and data-acquisition response quantities at 

and from the ExperimentalSite and ExperimentalControl classes. 

The transformation of the prescribed boundary conditions from the local or basic element 

degrees of freedom of the experimental elements into the actuator degrees of freedom of the 

transfer system, which is the first core task of the ExperimentalSetup class, is performed by the 

public transfTrialResponse() method. Similarly, the transformation of the work conjugates 

measured by transducers and load cells back to the experimental element degrees of freedom, 

which is the second core task of the ExperimentalSetup class, is performed by the public 

transfDaqResponse() method. Both of these methods then call a sequence of private methods 

from the concrete subclasses to transform each individual response quantity in turn. The 

remaining public methods are to set factors that are utilized to modify the control and data-

acquisition values in order to account for unit conversions and similitude transformations. 

class ExperimentalSetup : public TaggedObject {
public: 
    // constructors and destructor 
    ExperimentalSetup(int tag, 
        ExperimentalControl* control = 0); 
    ExperimentalSetup(const ExperimentalSetup& es); 
    virtual ~ExperimentalSetup(); 
     
    virtual int setSize(ID sizeT, ID sizeO) = 0; 
    virtual int setup() = 0; 
    virtual int setCtrlDaqSize(); 
     
    // public methods to set and to obtain responses 
    virtual int setTrialResponse(const Vector* disp, 
        const Vector* vel, 
        const Vector* accel, 
        const Vector* force, 
        const Vector* time); 
    virtual int getTrialResponse(Vector* disp, 
        Vector* vel, 
        Vector* accel, 
        Vector* force, 
        Vector* time); 
    virtual int setDaqResponse(const Vector* disp, 
        const Vector* vel, 
        const Vector* accel, 
        const Vector* force, 
        const Vector* time); 
    virtual int getDaqResponse(Vector* disp, 
        Vector* vel, 
        Vector* accel, 
        Vector* force, 
        Vector* time); 
                                                        (continued) 
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    // public methods to transform the responses
    virtual int transfTrialResponse(const Vector* disp, 
        const Vector* vel, 
        const Vector* accel, 
        const Vector* force, 
        const Vector* time); 
    virtual int transfDaqResponse(Vector* disp, 
        Vector* vel, 
        Vector* accel, 
        Vector* force, 
        Vector* time); 
     
    virtual int commitState(); 
     
    virtual ExperimentalSetup *getCopy() = 0; 
     
    // public methods to set the control and daq factors 
    void setCtrlDispFactor(const Vector& f); 
    void setCtrlVelFactor(const Vector& f); 
    void setCtrlAccelFactor(const Vector& f); 
    void setCtrlForceFactor(const Vector& f); 
    void setCtrlTimeFactor(const Vector& f); 
     
    void setDaqDispFactor(const Vector& f); 
    void setDaqVelFactor(const Vector& f); 
    void setDaqAccelFactor(const Vector& f); 
    void setDaqForceFactor(const Vector& f); 
    void setDaqTimeFactor(const Vector& f); 
     
    virtual ID getCtrlSize(); 
    virtual ID getDaqSize(); 
    virtual int getCtrlSize(int rType); 
    virtual int getDaqSize(int rType); 
     
protected: 
    ... 
 

Fig. 3.9  Interface for the ExperimentalSetup class. 

As can be seen from Fig. 3.6, the experimental setup hierarchy provides an ESAggregator 

subclass that is associated with its own ExperimentalSetup parent class. This allows two or more 

concrete experimental setups to be aggregated into a single experimental setup, which then 

interacts with the ExperimentalSite and ExperimentalControl objects. This structural pattern is 

known as Composite pattern and provides the means for the ExperimentalSite class to treat 

individual experimental setups and compositions of experimental setups uniformly (Gamma et 

al. 1995). 

Experimental Control: 
The redesigned ExperimentalControl class is an abstract base class with the interface defined as 

shown in Fig. 3.10. Once more, most of the methods in the abstract class interface are defined as 

pure virtual, and the concrete subclasses are responsible to supply the implementations. The 
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public setTrialResponse() and getDaqResponse() methods, which depend on all the 

response quantities, call the protected control() and acquire() methods. The protected 

methods then utilize the application programming interfaces (APIs) of the control and data-

acquisition systems in order to interact with such systems. This approach provides the flexibility 

to only use and return the response quantities supported by the specific APIs. 

Similar to the ExperimentalSetup hierarchy the Composite software pattern is employed 

again to provide an ECAggregator subclass that allows two or more experimental control objects 

to be aggregated into one composite. This enables the software framework to utilize one 

interface for controlling the actuators while a second one is utilized for the data acquisition. 

To analytically model control and data-acquisition systems and thereby provide software 

capabilities to simulate an experimental test before its actual execution, the ECSimulation class is 

added to the hierarchy. This is particularly useful for checking a hybrid model and estimating the 

response of a structure before running an actual test. In addition, the ECSimFEAdapter subclass 

provides the means to simulate parts of a structure by different finite element analysis software. 

This ability to couple finite element analysis software provides additional flexibility and greater 

realism in simulating large engineering systems than may be possible with a single program. As 

can be seen from Fig. 3.6 the ECSimulation class is an abstract class that is derived from the 

ExperimentalControl class. Furthermore, the ExperimentalControl class is associated with the 

abstract SignalFilter class that can be employed to filter measured signals or simulate 

experimental errors. Finally, the ExperimentalCP class is used to define control points, which are 

required by some of the concrete experimental control subclasses. A control point is a logical 

container of one or more directions (degrees of freedom) for sending command signals to a 

control system or acquiring feedback signals from a data-acquisition system. 

class ExperimentalControl : public TaggedObject {
public: 
    // constructors and destructor 
    ExperimentalControl(int tag);     
    ExperimentalControl(const ExperimentalControl& ec); 
    virtual ~ExperimentalControl(); 
     
    virtual int setSize(ID sizeT, ID sizeO) = 0; 
    virtual int setup() = 0; 
     
    // public methods to set and to get response 
    virtual int setTrialResponse(const Vector* disp, 
        const Vector* vel, 
        const Vector* accel, 
        const Vector* force, 
        const Vector* time) = 0; 
                                                        (continued) 
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    virtual int getDaqResponse(Vector* disp,
        Vector* vel, 
        Vector* accel, 
        Vector* force, 
        Vector* time) = 0; 
     
    virtual int commitState(); 
    virtual ExperimentalControl *getCopy() = 0; 
     
    const ID& getSizeCtrl(); 
    const ID& getSizeDaq(); 
     
protected: 
    // protected methods to set and to get response 
    virtual int control() = 0; 
    virtual int acquire() = 0; 
     
    // size of ctrl/daq data 
    // [0]:disp, [1]:vel, [2]:accel, [3]:force, [4]:time 
    ID *sizeCtrl; 
    ID *sizeDaq; 
     
    // signal filter 
    SignalFilter *theFilter; 
}; 

Fig. 3.10  Interface for the ExperimentalControl class. 

Interactions and Transformations: 
The flow of data between the OpenFresco modules and the transformation of the data within 

such modules is illustrated by the two-dimensional beam-column example shown in Fig. 3.11. 

The following terminology is used for the data flow: Data that are flowing from the finite 

element analysis software towards the laboratory are called (1) “trial data” (if entering an 

object/class) or (2) “ctrl data” (if leaving an object/class); and data that are flowing from the 

laboratory towards the finite element analysis software are called (3) “daq data” (if entering an 

object/class) or (4) “out data” (if leaving an object/class). 
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Fig. 3.11  Data flow and transformations for beam-column example. 
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As can be seen from the first picture in Fig. 3.11, the 2D beam-column element has a 

total of six global degrees of freedom, where u  are the global element displacements and p  are 

the global element forces. The ExperimentalElement then transforms these global trial 

displacements to control displacements (respectively deformations) in the cantilever basic 

coordinate system, bu . The next module, the ExperimentalSite, stores the trial data and, in case 

of a distributed test, reorganizes such data to facilitate a more efficient transfer across the 

network. Next, the three basic trial displacements/deformations, bu , are transformed to actuator 

control displacements, d , by the ExperimentalSetup object. Finally, the ExperimentalControl 

module converts the actuator trial displacements into control signals that are appropriate for the 

employed laboratory control system. On the way back, the force signals measured by the data-

acquisition system are converted into an output vector of forces by the ExperimentalControl 

object. Afterwards, the ExperimentalSetup module transforms these forces, f , from the load cell 

(respectively data-acquisition system) degrees of freedom into basic element forces, q . In case 

of a distributed simulation, the data are again reorganized into a structure that facilitates more 

efficient network transactions and are subsequently stored by the ExperimentalSite object for 

repeated retrieval, avoiding further network communications. Finally, the ExperimentalElement 

transforms the daq forces, q , from the cantilever basic coordinate system into global element 

forces, p , which are used by the computational code to assemble the global resisting force 

vector. 

Sequence Diagrams for Local and Distributed Simulations: 
The interaction diagrams that are shown next use the Unified Modeling Language (UML) to 

illustrate the sequence of messages that are sent to and received from objects. 
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Fig. 3.12  OpenFresco sequence diagram for local deployment. 
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Fig. 3.13  OpenFresco sequence diagram for distributed deployment with xperimentalSetup 

on laboratory side. 
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Fig. 3.14  OpenFresco sequence diagram for distributed deployment with 

ExperimentalSetup on computational client side. 
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3.5 CONCRETE SUBCLASSES 

The currently implemented and available concrete sub-classes are explained next. These libraries 

of concrete OpenFresco classes realize the following two important objectives: (1) they offer 

domain researchers the opportunity to begin using the software framework without much effort 

and (2) they provide a convenient starting point for developers to share implementations. The 

existing concrete subclasses can serve as templates when implementing new concrete objects for 

the OpenFresco software framework. To simplify the use of the software framework an 

interpreter has been implemented using the Tcl Scripting Language (Tcl Developer Xchange). 

The OpenFresco interpreter extends the Tcl interpreter by adding commands for modeling (using 

nodes and elements) and for generating instances of site, setup, and control objects. It should be 

understood that with appropriate realizations of ExperimentalElement, ExperimentalSite, 

ExperimentalSetup and ExperimentalControl objects, portions of the overall hybrid structure can 

be modeled and simulated numerically using the special capabilities of different finite element 

analysis software packages. 

3.5.1 Experimental Elements 

Truss: 
The experimental truss element has one axial degree of freedom, is defined by two nodes and can 

be used in 1D-, 2D-, and 3D-problems. 

 
Fig. 3.15  Experimental truss element (EETruss). 
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The transformations of trial displacements and resisting forces from the 6 or 12 degrees 

of freedom in the global coordinate system to the one axial degree of freedom in the cantilever 

basic coordinate system and back are treated as linear geometric transformations and are 

implemented in the EETruss class. As can be seen from Fig. 3.15, for the experimental truss 

element, the degree of freedom at which the displacement is controlled (blue) and the one at 

which the resisting force is acquired (red), are collocated. 

Beam-Column: 
Depending on the dimension of the problem (2D or 3D), the experimental beam-column element 

formulation is based on the 3 or 6 collocated degrees of freedom of the cantilever basic system. 

The necessary transformations of displacements, velocities, accelerations and forces are 

implemented in the EEBeamColumn2d class and EEBeamColumn3d class for the 2D and 3D 

cases, respectively. 

 
Fig. 3.16  Experimental beam-column element (EEBeamColumn2d). 

The experimental elements utilize the OpenSees CrdTransf class to transform the 

response quantities from the global degrees of freedom to the simply supported basic element 

degrees of freedom and back. The CrdTransf class is an abstract base class that has concrete 

subclasses for linear, p-delta and corotational geometric transformations. This abstraction and 

encapsulation of the frame element coordinate transformations facilitates the switching among 

different linear and nonlinear coordinate transformations without affecting the implementations 
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of the frame elements themselves. Because the simply supported basic system is not well suited 

for experimental testing (due to the two rotational degrees of freedom), the response quantities 

are transformed from the simply supported to the cantilever basic system and back. These 

additional nonlinear transformations are directly implemented in the EEBeamColumn classes. 

The nonlinear transformations of the trial displacements from basic system A (simply 

supported) to basic system B (cantilever) are given by the following expression. 
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where nL  is the length of the element in its deformed configuration. The nonlinear 

transformations for the trial velocities and trial accelerations can be determined by taking 

derivatives of Equation (3.1) with respect to time. The expressions can easily be evaluated with 

any computer algebra system (CAS) such as Mathematica (Wolfram) or Maple (Maplesoft), but 

get quite involved and are therefore not shown here. 

 
Fig. 3.17  Nonlinear transformation from basic system A to B. 

The inverse transformations of measured displacements from basic system B to basic 

system A take the following form. 
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where nL  is the length of the element in its deformed configuration and α  is the angle 

from chord B to chord A. Finally, the measured forces are transformed from basic system B to 

basic system A as follows. 

 

( ) ( )
( )

( ) ( ) ( )
1 1 2

( ) ( ) ( ) ( ) ( ) ( )
2 ,2 1 ,1 2 3

( ) ( )
3 3

cos sinA B B

A B B B B B
b b

A B

q q q

q u q L u q q

q q

α α= +

= − + −

=

 (3.3) 

where the chord rotation α  is given by the same formula as in (3.2) with the measured 

displacements replaced by the trial displacements to reduce the effect of experimental errors. 

 
Fig. 3.18  Nonlinear transformations from basic system B to A. 

Two-Node Link: 
The experimental two-node link element is defined by two nodes and can be used in 1D-, 2D-, 

and 3D-problems. This element can have 1 to 6 basic degrees of freedom that are uncoupled 

from each other. It is important to note that the element does not consider geometry as inferred 

from the given nodal coordinates, but utilizes the local orientation vectors, which are specified 

by the user, to determine the directions of the springs. The element is ideal for testing plastic 

hinges and other configurations that can be modeled by a range of uncoupled springs. The 

transformations of trial displacements and resisting forces from the global degrees of freedom to 

the 1 to 6 basic degrees of freedom and back are treated as linear geometric transformations and 

are implemented in the EETwoNodeLink class. As can be seen from Fig. 3.19, the degrees of 

freedom at which displacements are controlled (blue) and the ones at which resisting forces are 

acquired (red), are collocated. 
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Fig. 3.19  Experimental two-node link element (EETwoNodeLink). 

Generic: 
The generic experimental element is defined by any number of nodes and any number of the 

global degrees of freedom at those nodes. The number of degrees of freedom for each node 

obviously has to be between one and ndf (the maximal number of degrees of freedom of the 

problem). As such the element can be utilized in 1D-, 2D,- and 3D-problems. 

 
Fig. 3.20  Generic experimental element (EEGeneric). 

Since the control and data-acquisition degrees of freedom are already in the global 

coordinate system, the EEGeneric class does not perform any transformations of the response 

quantities like the other experimental element subclasses. Instead it extracts the trial response 

quantities at the appropriate degrees of freedom for control and assembles the measured response 



 

  58

quantities from the acquired signals at the corresponding degrees of freedom. As can be seen 

from Fig. 3.20, the degrees of freedom at which displacements are controlled (blue) and the ones 

at which resisting forces are acquired (red), are collocated. This experimental element is useful 

for representing any general specimen or larger subassemblies of an entire structure for which no 

specific experimental elements exist, as long as actuators can be attached to such degrees of 

freedom to control them correctly. Moreover, it can also be employed to represent multiple 

experimental elements using a single element, as long as the individual elements do not require 

specialized modeling techniques. 

Inverted-V Brace: 
The experimental inverted-V brace element is defined by three nodes and can be used in 2D-

problems. 

 
Fig. 3.21  Experimental inverted-V brace element (EEInvertedVBrace2d). 

It is assumed that the two braces are pinned at their ends, meaning that nodal rotations are 

ignored and moments are set to zero. As can be seen from Fig. 3.21 the deformation of the 

experimental element is controlled by the two translational degrees of freedom at the brace 

intersection at node k. However, in order to correctly capture the buckling behavior of the 

inverted-V brace subassembly, resisting forces are acquired by load cells at the two brace 

supports at nodes i and j, and the forces at node k are then calculated from the element 

equilibrium. In contrast with the previously discussed experimental elements, the control and 

data-acquisition degrees of freedom are therefore no longer collocated for the inverted-V brace 

element. The linear transformations of the trial displacements from the global degrees of freedom 

to the basic degrees of freedom take the following form. 
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The transformations of the measured forces from the two load cells to the global degrees 

of freedom account for cross-talk effects between the axial and shear force channels of the load 

cells. This leads to the following expressions that are implemented in the EEInvertedVBrace2d 

class. 
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 (3.5) 

For a more in-depth description of the theory, the nonlinear transformations and several 

application examples of this experimental element, the reader is referred to (Yang 2006). 

3.5.2 Experimental Sites 

Local: 
As the name suggests, the LocalExpSite class is employed for local testing at a single laboratory. 

This means that the computational analysis and the experimental testing take place at the same 

location. Since there are no wide area network communications necessary in such a test, the 

LocalExpSite class merely passes messages along and stores the trial and output data. Even 

though the LocalExpSite can therefore be considered a dummy site, it is still required in order to 

treat local and geographically distributed sites in a uniform manner. 

Shadow and Actor: 
The ShadowExpSite and ActorExpSite form the client-server architecture that is necessary to 

geographically distribute computational and experimental sites. The middle-tier server on which 

the OpenFresco core components are running is therefore further split up into a second and third 

tier. Since this distribution of processes across a network is very similar to the distributed 
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computing model in OpenSees, several abstract and concrete classes from such a model are 

utilized to model the desired behavior. 

As can be seen from Fig. 3.22 the ShadowExpSite, which represents the client side, 

inherits its properties from the Shadow base class and the ActorExpSite, which acts as the server, 

inherits its properties from the Actor base class. Both the Shadow and the Actor parent classes 

are associated with the abstract Channel base class. 

Shadow 

ShadowExpSite 

ActorExpSite 

Actor 

Channel 

TCP_Socket 
ExperimentalSite 

 
Fig. 3.22  Class diagram of client-server architecture. 

Such Channel object provides the communication methods between the client and the 

server processes. The concrete subclasses of the Channel class are responsible for implementing 

the different communication protocols. The TCP_SocketSSL subclass has been added to the 

existing communication protocols that are available from OpenSees. This new class utilizes the 

industry-tested, open-source OpenSSL technology to encrypt and decrypt data that are sent 

across a TCP/IP network. Both the client and the server are being verified during the initial 

handshake and thus require private keys and security certificates. Hence, the TCP_SocketSSL 

class provides the means for secure geographically distributed testing, while communication 

speeds are only slightly reduced by the encryption/decryption processes. In addition, to make 

geographically distributed testing as efficient as possible, the ShadowExpSite and the 

ActorExpSite assemble the request identification and all the data into a single message. This 

significantly reduces the number of required network transactions per computational step, and 

thus leads to improved performance. 

3.5.3 Experimental Setups 

No Transformation: 
As the name suggests, the ESNoTransformation class is a dummy experimental setup that does 

not perform any transformations from the basic element degrees of freedom to the actuator 
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degrees of freedom. However, it allows for reordering degrees of freedom without transforming 

them. This experimental setup should be employed if the experimental control and data-

acquisition systems directly perform all the necessary transformations, meaning that no 

additional transformations need to be implemented in the experimental setup object. 

One Actuator: 
The ESOneActuator experimental setup can be utilized to control any one of the basic degrees of 

freedom of an experimental element. The control and data-acquisition degrees of freedom of the 

ESOneActuator object are collocated. Since this setup has only one actuator, none of the 

response quantities are transformed. 

 
Fig. 3.23  One actuator experimental setup (ESOneActuator). 

Instead the ESOneActuator class extracts the trial response quantity at the user-specified 

degree of freedom for control and assembles the measured response quantity from the acquired 

signal at the corresponding degree of freedom. Fig. 3.23 shows an experimental beam-column 

element where the actuator is set to control basic degree of freedom 2 of the element. 

Two Actuators: 
As can be seen from Fig. 3.24, the ESTwoActuators2d experimental setup configuration consists 

of two parallel actuators that are connected by a rigid link to control the translational and 

rotational degrees of freedom of an experimental element. 
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Fig. 3.24  Two actuators experimental setup (ESTwoActuators2d). 

The transformations of all the response quantities from the element degrees of freedom to 

the actuator degrees of freedom and back can be implemented as simple linear geometric 

transformations or as complex nonlinear geometric transformations that take large displacements 

into account. To demonstrate the implementation process, the linear as well as nonlinear 

transformations for the ESTwoActuators2d subclass are summarized next. All the other 

implementations of the concrete experimental setup subclasses follow a similar approach. The 

linear (3.6) and nonlinear (3.7) transformations of the trial displacements take the following 

form. 
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where L  is the length of the rigid link and 1AL  is the initial length of the first actuator. 

While the linear transformations for the trial velocities and trial accelerations have the same form 

as (3.6), the nonlinear ones can be determined by taking the derivatives of Equation (3.7) with 

respect to time. The expressions can easily be evaluated with any computer algebra system 

(CAS) such as Mathematica (Wolfram) or Maple (Maplesoft), but get too involved and are 

therefore not shown here. The linear and nonlinear, inverse transformations of the displacements 
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measured by the data-acquisition system back to the basic displacements of the experimental 

element are shown next. 
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Finally, the linear and nonlinear cases of the force transformations, from the data-

acquisition degrees of freedom back to the element basic degrees of freedom, are expressed as 

follows. 
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For the displacements ,3bu  and 2d , which are necessary for the nonlinear force 

transformations in (3.11), it is possible to use either the trial values from (3.7) or the measured 

values from (3.9). However, to reduce the effects of experimental errors it is often advantageous 

to utilize the trial displacement values. 

Three Actuators: 
The ESThreeActuators2d experimental setup can be utilized to control the two translational and 

the rotational degrees of freedom of an experimental element. As can be seen from Fig. 3.25, the 

control and data-acquisition degrees of freedom of the ESThreeActuators2d object are 

collocated. The setup consists of a rigid loading beam, which is connected to the specimen, one 
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horizontal and two vertical, parallel actuators. The three actuators have lengths 1AL , 2AL , 3AL  

and the two parts of the rigid loading beam have lengths 1L  and 2L . As with the 

ESTwoActuators2d subclass, the transformations of all the response quantities from the element 

degrees of freedom to the actuator degrees of freedom and back have been implemented as 

simple linear geometric transformations and as complex nonlinear geometric transformations that 

take large displacements into account. However, the formulas are not shown here, since they get 

quite involved. 

The ESThreeActuatorsJntOff2d subclass, which is a very similar experimental setup that 

accounts for the rigid joint offsets between the actuator clevis hinges and the loading beam, has 

also been implemented and is available for testing. 

 
Fig. 3.25  Three actuators experimental setup (ESThreeActuators2d). 

Inverted-V Brace: 
The ESInvertedVBrace2d experimental setup was specifically developed for the suspended 

zipper-frame project (Yang 2006). This setup consists of the same loading configuration as the 

ESThreeActuators2d setup, meaning that a rigid beam and three actuators are utilized to control 

the two translational and the one rotational degrees of freedom. However, to capture the buckling 

behavior of the two braces, forces are acquired by two VPM load cells at the brace supports 

rather than at the actuator degrees of freedom. This means that in contrast to the previously 

discussed experimental setups, the control and data-acquisition degrees of freedom are no longer 

collocated here. The three actuators have lengths 1AL , 2AL , 3AL  and the two parts of the rigid 

loading beam have lengths 1L  and 2L . As with the other experimental setup subclass, the 
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transformations of all the response quantities from the element degrees of freedom to the actuator 

degrees of freedom and back have been implemented as simple linear geometric transformations 

and as complex nonlinear geometric transformations that take large displacements into account. 

For a more in-depth description of such transformations the interested reader is referred to Yang 

(2006). 

 
Fig. 3.26  Inverted-V brace experimental setup (ESInvertedVBrace2d). 

The ESInvertedVBraceJntOff2d subclass, which is a very similar experimental setup that 

accounts for the rigid joint offsets between the actuator clevis hinges and the loading beam, has 

also been implemented and is therefore available for testing. 

Aggregator: 
As explained before, the ESAggregator subclass is associated with its own ExperimentalSetup 

parent class. This allows two or more concrete experimental setups to be aggregated into a single 

experimental setup, which then interacts with the ExperimentalSite and ExperimentalControl 

objects. In this manner complex experimental testing configurations can be represented by an 

aggregation of smaller existing experimental setup objects, meaning that no new concrete 

experimental setup subclasses have to be implemented for testing configurations that are 

combinations of existing concrete experimental setup subclasses. 

3.5.4 Experimental Controls 

dSpace, xPC Target and SCRAMNet+: 
Even though the dSpace, the xPC Target, and the SCRAMNet+ control objects use different 

hardware and APIs to interface with the control and data-acquisition systems, they are all based 
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on the three-loop architecture that is described in detail in Chapter 5. This means that a predictor-

corrector algorithm is running on a digital signal processor, which is placed between the machine 

that is running the analysis and the one that is controlling the actuators. 

 
Fig. 3.27  dSpace experimental control (ECdSpace). 

The ECdSpace subclass is using the dSpace CLIB API (dSpace Inc.) to access the dSpace 

digital signal processors. These C libraries provide communication means between a PC and a 

real-time processor. The API supports the dSpace DS1103 and DS1104 PowerPC real-time 

processors, which are single PCI hardware boards for PCs. As can be seen from Fig. 3.27, the 

ECdSpace experimental control object is utilized to communicate with the predictor-corrector 

algorithm that is executing on the dSpace DSP and generating real-time command signals for the 

control system. Since the dSpace controller board is directly connected to the analysis machine 

through a PCI bus, the digital signals (represented by thick lines) are transmitted internally 

(memory sharing, interrupt lines, etc.). The digital control signals generated by the predictor-

corrector algorithm running on the DSP are then converted to analog signals (represented by thin 

lines) before they are transmitted to the control system. 

The xPC Target real-time hardware (Mathworks) is a digital signal processor similar to 

the dSpace controller board and therefore also provides the functionality to execute the predictor-

corrector algorithms in a real-time environment. The concrete ECxPCtarget subclass is using the 

xPC Target API to interact with an application, which is executing in real time on the target 

machine. As can be seen from Fig. 3.28, TCP/IP network sockets are used to connect the analysis 

machine (host) with the digital signal processor (target). On the other hand, the communication 
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between the DSP and the controller is achieved through SCRAMNet+, an ultra-low-latency, 

replicated, noncoherent, Shared Common RAM Network. In such a network, data written to 

memory by a host are sent across fiber optic cables to all the other nodes on the network, 

meaning that it is almost instantaneously replicated in the memory of all the other machines. In 

Fig. 3.28 the thick lines again represent digital signals and the thin ones analog. 

 
Fig. 3.28  xPC Target experimental control (ECxPCtarget). 

For rapid testing with the ECxPCtarget experimental control interface, the TCP/IP 

connection between the host and the target (which is used by the xPC Target API) might become 

a bottleneck, thus limiting execution speeds. To circumvent this problem, the concrete 

ECSCRAMNet experimental control subclass has been implemented. 

 
Fig. 3.29  SCRAMNet+ experimental control (ECSCRAMNet). 
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As can be seen from Fig. 3.29, this interface replaces the slower TCP/IP connection 

between the analysis machine and the xPC Target digital signal processor with an ultra-low-

latency SCRAMNet+ connection (Systran) equivalent to the one between the DSP and the 

controller. Once again the thick lines represent digital signals and the thin lines represent analog 

signals. 

MTS-CSI and LabVIEW: 
The MTS-CSI and LabVIEW experimental control objects are capable of interfacing with MTS 

hardware (MTS) and the NEES LabVIEW plugin (Hubbard et al. 2004). What these two 

experimental control objects have in common is that they are both using the abstraction of a 

control point to define the directions and response quantities that are being controlled and 

acquired. A control point represents a logical container of one or more directions (degrees of 

freedom) for sending command signals to a controller or acquiring feedback signals from a data-

acquisition system. Thus, control points represent logical groupings of output control channels or 

input data-acquisition channels (MTS). 

The concrete ECMtsCsi subclass is using the newly developed MTS Computer 

Simulation Interface (CSI) (MTS) to connect to MTS FlexTest controllers with the MTS 793 

software. Currently this hardware configuration does not include a predictor-corrector algorithm. 

This means that continuous testing is not yet possible, since the controller has to fall back to a 

hold and ramp approach to generate actuator command signals. However, the incorporation of 

predictor-corrector algorithms within the FlexTest environment has a high priority in the next 

development cycle. 

 
Fig. 3.30  MTS CSI experimental control (ECMtsCsi). 

OpenFresco 
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The MTS Computer Simulation Interface and Configurator (CSIC) is an application that 

provides a high-level programming interface for users to connect their test application to an MTS 

controller and execute common structural testing commands and data-acquisition operations. 

Users can take advantage of the simplified graphical user interface (GUI) of the Configurator to 

create their test application and define control points. Thus, they can focus on the structural 

analysis rather than learning the detailed, low-level MTS 793 system programming libraries to 

interface with their MTS controller (MTS). 

The ECLabVIEW subclass is employing a single persistent TCP/IP connection to 

communicate with a LabVIEW controller that is utilizing the NEES LabVIEW NTCP plug-in 

(Hubbard et al. 2004). The message exchange between the ECLabVIEW experimental control 

object and the LabVIEW plugin is based on a simple ASCII format that conforms to the 

LabVIEW plugin specifications. The LabVIEW plugin requires that control commands and data-

acquisition requests be expressed in terms of control points. The LabVIEW subclass is therefore 

associated with the ExperimentalCP class, which defines control points for control and data 

acquisition (see Fig. 3.6). 

Uniaxial Materials and Domain Simulations: 
The concrete subclasses of the ECSimulation parent class can be used to test the computational 

model, experimental setup, and network communication to ensure that all non-experimental 

aspects of a hybrid simulation are functioning properly before conducting an actual experiment. 

The ECSimUniaxialMaterials object can be used to simulate a specimen with 1 to n 

uncoupled degrees of freedom using 1 to n OpenSees uniaxial material models. Since the 

material models simulate the forces that the 1 to n actuator load cells would measure for a given 

set of actuator displacements, the units of the specified material values are force and 

displacement and not stress and strain. 

The ECSimDomain subclass makes available in OpenFresco the entire OpenSees 

domain, which includes the node, element, section, and material libraries. This makes it possible 

to simulate an actual experimental specimen using OpenSees. The ECSimDomain subclass is 

associated with the ExperimentalCP class, which defines the control points for control and data 

acquisition (see Fig. 3.6). 
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3.6 OPENSEES AS THE COMPUTATIONAL FRAMEWORK 

The OpenFresco experimental software framework has been developed so that it can interact 

with any finite element code that provides an application programming interface (API) and is not 

a black box. As described in detail in Section 3.3, this flexibility is achieved by employing a 

multi-tier software architecture that wraps around the OpenFresco core components. However, if 

OpenSees is utilized as the computational framework, the OpenFresco architecture can 

significantly be simplified because both software frameworks have the following three things in 

common: (1) they are both based on the object-oriented software design methodology, (2) they 

both use the open-source development methodology, and (3) they are both implemented in the 

C++ programming language. Because the simplified architecture eliminates the network 

communications between OpenSees (client) and the middle-tier (or application) server, improved 

performance is attained as compared to the full-blown multi-tier architecture. 

Element 
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MP_Constraint Node SP_Constraint 

ExperimentalElement 

LoadPattern 

BeamColumn 

ModelBuilder Analysis 

LABORATORY  
CONTROLLERS  

AND DAQS 
OpenFresco 

OPENSEES 

 
Fig. 3.31  OpenSees as the computational framework. 

As can be seen from Fig. 3.31 the abstract ExperimentalElement class can directly be 

embedded into OpenSees, since it is derived from the Element base class. The rest of the 

OpenFresco architecture remains unchanged, meaning that the association between the 

ExperimentalElement class and the ExperimentalSite class provides the connection to the other 

objects. Since in this architecture the experimental elements act as regular elements within 

OpenSees, they can be used along computational elements without changing OpenSees. At 

runtime OpenSees dynamically links with OpenFresco and acquires direct access to all the 

OpenFresco commands without the need for any network communications between the two. The 
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two software configurations for local and geographically distributed testing, utilizing OpenSees 

as the computational framework, are shown in Fig. 3.32. 
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Fig. 3.32  OpenSee-OpenFresco configurations for local and network deployments. 

3.7 SUMMARY 

The software framework for experimental testing (OpenFresco), which has been presented in this 

chapter, supports a wide range of computational software, structural testing methods, specimen 

types, testing configurations, control and data-acquisition systems and communication protocols. 

The development of such software framework for hybrid simulation is based on the structural 

analysis approach, in which a hybrid simulation can be viewed as a conventional finite element 

analysis where physical models of some portions of the structure are embedded in the numerical 

model. Object-oriented methodologies and a rigorous systems analysis of the operations 

performed during hybrid simulations were used to determine the fundamental building blocks of 

the software framework. In order to support any finite element analysis software as the 

computational driver, a multi-tier client/server architecture was wrapped around those 

fundamental OpenFresco building blocks. This design approach, which guarantees that the 
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software framework is environment independent, robust, transparent, scalable, and easily 

extensible, has been explained in detail. The resulting class diagram, the interfaces for the main 

base classes and the sequence diagrams have been summarized thereafter. The currently 

available OpenFresco templates (http://openfresco.neesforge.nees.org), including communication 

methods and protocols for distributed computation and testing, were discussed next. Finally, the 

chapter explained how OpenSees can be used as the computational framework and the 

advantages attained by doing so. The integration methods that are required by the computational 

drivers to solve the equations of motion and their applicability to hybrid simulation are presented 

in the next chapter. 
 



 

 

4 Integration Methods for Hybrid Simulation 

4.1 INTRODUCTION 

The linear and nonlinear equations of motion that arise in structural dynamics problems are 

generally solved through the application of numerical time-stepping integration algorithms. Over 

the years, a vast number of methods have been developed to numerically solve problems in 

structural dynamics and other engineering disciplines. However, many of these methods are not 

particularly well suited to advance the solution during a hybrid simulation test because they were 

specifically developed for purely analytical problems. Thus, one research area in hybrid 

simulation has been focusing on the development of specialized direct integration methods that 

are better suited to obtain reliable solutions when analytical and experimental portions of a 

structure are mixed and interacting during an analysis. 

After a brief introduction to the spatial and time discretization of the structural dynamics 

problem, this chapter first presents special integration scheme properties required for the reliable, 

accurate, and fast execution of hybrid simulations. The advantages and disadvantages of explicit, 

implicit, noniterative, and iterative methods and their application to different problem types are 

discussed as well. Several existing methods are then summarized including their derivation, 

accuracy, stability, and implementation. Finally, the chapter presents novel modifications 

introduced to some of the existing methods as well as the application of several alternative time-

stepping integration algorithms, such as the classic Runge-Kutta methods, to hybrid simulation. 

It is important to notice that the time-stepping integration methods for hybrid simulation are not 

part of the software framework that has been presented in the previous chapter, but need to be 

provided by or implemented in the finite element analysis software. 
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4.2 STRUCTURAL DYNAMICS PROBLEM 

4.2.1 Discretization in Space 

The derivation of the equations of motion at the discrete degrees of freedom of a structure is 

initiated by writing out the equilibrium equations for an infinitesimal body, including inertial 

forces. This leads to the strong form of equilibrium for the structural dynamics problem. 
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where ρ is the mass density of the material, iu  is the displacement vector, jiσ  is the 

stress tensor and ib  are applied body forces per unit volume. Since the differential Equation (4.1) 

forms a boundary and initial value problem, the remaining four equations define the prescribed 

displacements biu  and tractions it  on the boundary of the domain, as well as the initial 

displacements 0iu  and initial velocities 0iu&  of the problem. 

The next step is to construct the weak form of the equilibrium equations, which in 

mechanics is also called the principle of virtual displacements or virtual energy. To obtain such 

form the differential Equation (4.1) is first multiplied by a virtual displacement function ( )i iu xδ , 

also called variation, and then integrated over the entire domain. 
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Gauss’ divergence theorem is utilized to integrate Equation (4.2) and incorporate the 

boundary conditions. After simplification and substitution of the boundary value equations, the 

weak form of the structural dynamics problem is obtained. 
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For simplicity, the displacement field argument ix  on which all functions depend on is 

suppressed from the equations above. In Equation (4.3) the two left-hand side terms represent the 

inertial and the resisting forces, which are in equilibrium with the applied body and surface loads 

on the right-hand side. The remaining two equations correspond to the weak form of the two 

initial conditions. 

In the finite element approach to structural dynamics, the domain of the problem is 

subsequently discretized in space utilizing elements that are connected by nodes. Thus, the 

displacement field of the domain needs to be discretized as well, which is achieved by 

approximating it in terms of element shape functions N  and the discrete displacements at the 

nodes of the elements. 
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where N  is a matrix of shape functions and B  is the strain-displacement matrix. The 

virtual displacement field, which is required in the weak form of the problem, is generally 

selected to have the same form as the approximate trial displacement field. In the finite element 

literature, this approach is known as the Galerkin formulation. By combining Equation (4.4) for 

the trial and virtual displacement fields with the weak form of equilibrium in Equation (4.3) and 

recognizing that additional concentrated forces and loads can act at the nodes of the structure, the 

spatially discretized equations of motion are obtained. 
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where the element mass matrices, the element resisting force vectors and the element load 

vectors are given by the following expressions. 
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In the above Equations (4.5) and (4.6), ndM U&&  are the concentrated inertial forces due to 

the nodal masses, A is the direct assembly operator, el elm u&&  are the element inertial force 

contributions, ,elrp  are the element resisting forces due to internal stresses, P  are the externally 

applied nodal loads and ,el0p  are element forces due to externally applied loads like body forces, 

boundary tractions, initial strains and initial stresses. Formula (4.5) is also referred to as the 

semi-discrete equation of motion, since the structural dynamics problem has been discretized in 

space by the finite element approach but is still continuous in time. 

The spatially discretized differential equations can further be simplified by replacing the 

element assembly operations through global matrices and vectors at the structural degrees of 

freedom containing all the element contributions. This leads to the general form of the equations 

of motion at the structural degrees of freedom. 
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where the mass matrix M  is assembled from the nodal and element mass matrices, U&& is 

the acceleration vector at the structural degrees of freedom, rP  are the assembled element 

resisting forces (which depend on the structural displacements and velocities), P  are the 

externally applied nodal loads and 0P  are the assembled element loads. If the applied loads are 

entirely due to ground accelerations, the nodal load vector P  on the right-hand side of Equation 

(4.7) can be replaced by the following expression. 

 ( ) ( )gt t= −P M B U&&  (4.8) 

where M  is the mass matrix, B  is the ground acceleration transfer matrix and gU&&  are 

the specified support accelerations. 

4.2.2 Discretization in Time 

After the spatial discretization of the differential equations by the finite element method, the 

system of second-order ordinary differential equations is next discretized in time. An incremental 

approach is used to solve the equations at successive time steps. Thus, dynamic equilibrium is 

satisfied at each time step 1i it t t+ = + Δ . The time increments tΔ  are generally constant, since the 

applied forces 1i+P  obtained from the ground acceleration records are also given at constant time 
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intervals. This assumption leads to constant time-step integration algorithms in contrast to 

variable time-step integration algorithms where the step size is adaptively adjusted depending on 

the current accuracy of the solution. 
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For many problems in structural dynamics, it is oftentimes assumed that the resisting 

forces rP  depend linearly on the velocity. For slow hybrid simulations, this is a valid 

assumption, and the equations of motion can be written in the following form. 
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where C  is the viscous damping matrix and the resisting forces rP  are now  dependent 

only on the structural displacements. On the other hand, for real-time hybrid simulations the 

experimental resisting forces generally contain damping and inertial force contributions from the 

specimen. Hence, they depend not only on displacements, but also on velocities and 

accelerations (also see Chapter 2). In this case, the equations of motion take the following form. 
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It should be noticed that in real-time hybrid simulations, the manner in which the 

calculated command displacements are applied by the control system plays the central role in 

guaranteeing that consistent velocities and accelerations are obtained from the displacement 

commands. 

Given the numerical solution iU  at time it  and satisfying Equation (4.9), (4.10), or 

(4.11), the task is to advance such solution in time by finding displacement increments ΔU  such 

that Equation (4.9), (4.10), or (4.11) is also in equilibrium for 1i i+ = + ΔU U U at time it t+ Δ . To 

find these numerical solutions, different strategies can be employed. Most often, the system of 

second-order ordinary differential equations is directly solved by utilizing integration schemes, 
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which are based on expressing the displacements 1i+U  and velocities 1i+U&  at the new time step 

it t+ Δ  in terms of the response quantities at the new time step and k previous time steps. 
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These schemes are called direct integration methods. For purely analytical structural 

dynamics problems, the most widely utilized family of solution schemes in the class of direct 

integration methods is the one developed by Newmark (1959). For this method, the assumed 

relations among the response quantities (4.12) are finite difference formulas and take the 

following form. 
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where β  and γ  determine the variation of the accelerations over a time step. It can be 

seen that the Newmark method is a one-step method, since only responses at 1k =  previous time 

steps are required. However, in order to apply the Newmark method to hybrid simulation 

problems, several modifications have to be made to the scheme, which are described in Section 

4.4.3. 

Another strategy for solving the semi-discrete equation of motion in (4.7) is to first 

convert the second-order differential equation into a system of first-order ordinary differential 

equations. This transformation is also an essential step in the convergence analysis of direct 

integration methods and leads to the following system. 
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where ( ) ( ){ },
T

t t=y U U&  is a stacked vector containing the structural displacements and 

velocities. Once the structural dynamics problem is successfully transformed into a first-order 

initial-value problem, there are a vast number of methods from the field of numerical analysis 

available to solve such system of first-order differential equations. The easiest method to solve 

this system is the explicit Euler method that is shown next. 
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However, the explicit Euler method is only order 1p =  accurate and therefore should not 

be used for analyses. The most widely used class of such solution schemes is the family of 

Runge-Kutta methods. Runge-Kutta solution schemes belong to the class of one-step methods, 

which  require only the current solution state at time it  in order to calculate the new solution at 

it t+ Δ . They do not rely on past solution states and are essentially always stable. Multi-step 

methods, in contrast to one-step methods, form the new solution at time it t+ Δ  in terms of not 

only the current solution state but also the k-1 previous solution states. The applicability of 

Runge-Kutta methods to hybrid simulation is investigated in Section 4.5. 

4.3 INTEGRATOR PROPERTIES 

During the execution of a hybrid simulation test, the previously derived equations of motion 

need to be solved similarly to a conventional analytical analysis of a structure. However, since 

the hybrid model is an aggregation of numerical and experimental portions of a structure, several 

of the terms that form the equations of motion are assembled from not only analytical elements 

but also experimental ones. Because experimental elements represent physical specimens in a 

laboratory, they behave differently than numerical elements and are not always able to execute 

certain actions that can be performed by analytical elements. This fact leads to a range of special 

requirements that need to be provided by the integration methods in order to produce reliable and 

accurate results in a hybrid simulation. In order to effectively discuss these requirements and 

possible solutions, several general properties of integration schemes are reviewed first. The 

general properties also provide the basis for grouping the integration methods into different 

categories. 

4.3.1 Explicit vs. Implicit 

Besides categorizing integration methods by the number of solution states that are required to 

advance the analysis in time (one-step, two-step, multi-step), they can also be grouped into 
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explicit methods versus implicit methods. In this case, the grouping criterion is the new 

solution’s dependence on itself. For an explicit algorithm, the new solution at time it t+ Δ  can 

entirely be expressed by known terms such as the current solution state at time it  and k-1 

previous solution states. 

 ( )1 1 1 1, , , , , ,i i i i i k i k i kf+ − + − + − +=U U U U U U U& && & &&K  (4.16) 

Explicit integration methods are usually conditionally stable, meaning that the time-step 

size has to be smaller than a critical value to yield a stable solution. This critical value is called 

the stability limit, which is an important property of an algorithm and depends on the integration 

method. For explicit methods, the new solution at the end of a time step can often be determined 

in a single calculation step without the knowledge of the tangent stiffness matrix. The advantages 

of such methods are that they are computationally very efficient, easy to implement, and fast in 

their execution. However, because they are conditionally stable they are not well suited for stiff 

problems and cannot be used for infinitely stiff problems. For structures with very high natural 

frequencies, the integration time step would have to be so small to satisfy the stability condition, 

that the application of explicit methods to hybrid simulation becomes impractical. 

For an implicit algorithm, the new solution at time it t+ Δ  not only depends on the known 

terms at the current and previous time steps, but also on itself. Because of this, implicit 

algorithms contain algebraic formulas that need to be solved in order to determine the new 

solution at the end of a time step. 

 ( )1 1 1 1 1 1 1, , , , , , , , ,i i i i i i i i k i k i kf+ + + + − + − + − +=U U U U U U U U U U& && & && & &&K  (4.17) 

Many implicit integration methods are generally unconditionally stable, making them 

ideal candidates for stiff and infinitely stiff problems. It also means that only the accuracy of the 

algorithm needs to be considered when determining the time-step size, since the method is stable 

for any step size. Usually this permits the selection of larger analysis time steps as compared to 

explicit methods. Implicit methods are thus better suited for large problems with many degrees 

of freedom or for infinitely stiff problems, which arise when structural degrees of freedom 

without mass are present. However, they are computationally more demanding because they 

require iterative solution schemes, and they can introduce spurious loading cycles on the physical 

parts of the hybrid model. 
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4.3.2 Iterative vs. Noniterative 

Another important aspect of integration methods is how many function calls they need to make 

per time step to determine the new solution at it t+ Δ . For the classic direct integration methods 

in structural dynamics, a function call is considered to be the determination of the effective 

forces effP  for given displacements, velocities and accelerations. 

 ( )1 , 1 1 1 1i i i i i+ + + + += − − − −eff 0 rP P P P U CU M U& &&  (4.18) 

For Runge-Kutta and multi-step methods, a function call is considered to be the 

determination of the derivative f  in the first-order ordinary differential equation. 
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The classic explicit integration methods, which directly solve the second-order 

differential equations, are noniterative methods because they require only one function call per 

analysis time step. Explicit Runge-Kutta methods require the same number of function calls as 

they have stages. Implicit algorithms, on the other hand, contain algebraic formulas that need to 

be solved in order to determine the new solution at the end of a time step. One approach to solve 

such implicit equations is to predict a solution using an explicit expression and then subsequently 

correct it 1 to m-times utilizing the implicit expression. According to the underlying idea, these 

algorithms are called predictor-multicorrector integration methods. They require a total of m 

function calls per analysis time step to advance the solution. A second approach to solving the 

nonlinear implicit equations is to utilize the well-known Newton-Raphson algorithm to find the 

solution iteratively. The number of function calls is thus directly related to the number of 

iterations performed per analysis time step. The main disadvantage of implicit methods is that 

they can be computationally very demanding and far more difficult to implement than explicit 

methods. For example, in the second approach where the Newton-Raphson algorithm is 

deployed, each iteration step requires the solution of a system of linear algebraic equations that 

involves the Jacobian. The formation of the Jacobian and the solution of a large linear system of 

equations are computationally expensive operations. Algorithms which only update the Jacobian 

at the beginning of a time step and keep it constant during iterations or that use the initial 

Jacobian throughout the whole analysis can reduce computational cost. However, they require 

generally more iterations because quadratic convergence is lost. Another option that can 
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significantly reduce computational cost is to use a linearly implicit algorithm, which is 

equivalent to performing one Newton-Raphson iteration only. In the class of Runge-Kutta 

methods the linearly implicit algorithms are known as Rosenbrock methods. For stiff problems, 

Rosenbrock methods are the easiest to implement and are thus very popular. The Jacobian that is 

required for the single Newton-Raphson iteration can again be updated for every time-step or can 

be determined only once and kept constant throughout the analysis. 

4.3.3 Special Requirements 

Special requirements, which need to be provided by the integration methods, are discussed in this 

section. Most of these requirements are essential for an integration method to produce accurate 

and reliable results in a hybrid simulation. 

1. The integration method should be of order 2p ≥  accurate. This requirement effectively 

reduces the accumulation of numerical errors besides the experimental errors, intrinsic in 

experimental testing methods. The most accurate (smallest error constant) second-order 

method is the trapezoidal rule, which can be shown to be equivalent with the average 

acceleration Newmark method. 

2. In hybrid simulation, parts of the resisting force vector rP  are assembled from forces 

measured in real time in the laboratory. This leads to the requirement that for each 

integration step the method should make as few function calls as possible, since every 

function call triggers the acquisition of the resisting forces from the laboratory. The 

process of acquiring the nonlinear resisting forces from the test structure means that the 

calculated displacements need to be applied to the specimen by means of a transfer 

system and the corresponding forces need to be measured with load cells. This process 

can be time consuming and introduce experimental errors into the numerical integration 

algorithm. 

3. The mass matrix M  in the equations of motion (4.10) is generally singular, since mass 

moments of inertia at rotational degrees of freedom are often ignored during modeling. 

This makes the second-order differential equation infinitely stiff. Equations of motion 

where M  is singular are also called differential algebraic equations and they require 

unconditionally stable, fully implicit integration methods. In these cases explicit 

integration methods are either unstable or cannot be applied at all, since the inverse of the 
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mass matrix M  would be required. For many methods, this requirement conflicts with 

the previous one, which is to make as few function calls per integration time step as 

possible. 

4. For implicit and linearly implicit integration methods, the parts of the Jacobian that are 

contributed by the stiffness matrices elk  of the experimental elements are required to 

remain constant. This is because it is very difficult to obtain an accurate and reliable 

tangent stiffness matrix of an experimental element from the measurements at the 

controlled degrees of freedom. Only a few algorithms for estimating a tangent stiffness 

matrix from experimental measurements have been developed so far, and their 

application and possible benefits to implicit integration methods have not been 

demonstrated yet. However, one of these algorithms called the minimal update approach, 

developed by Igarashi et al. (1993), seems very promising for the problem at hand. The 

algorithm is based on the BFGS update formula. Its application to implicit integration 

methods should be further investigated. 

5. The integration method should provide some adjustable amount of algorithmic 

(numerical) energy dissipation to suppress the excitation of higher modes due to 

experimental errors contaminating the numerical solutions. The propagation of 

experimental and numerical errors has a more pronounced effect in the higher modes 

because the cumulative errors increase with the product of the natural frequency and the 

integration time step (Shing and Mahin 1983). Thus, it is generally viewed as desirable 

and often considered necessary to have some form of algorithmic damping present to 

remove the participation of the high-frequency modal components (Hughes 2000). The 

numerical energy dissipation should damp out the spurious higher-mode participations 

while maintaining the minimal second-order accuracy of the integration method and not 

affecting the participation of the lower modes to the solution. Because for second-order 

integrators the trapezoidal method is the most accurate, any modifications introduced to 

add algorithmic damping lower the accuracy. Thus, it is important to select integration 

methods for which the loss of accuracy due to the additional numerical energy dissipation 

is minimized. 

6. Displacement increments calculated by iterative procedures are required to be strictly 

increasing or strictly decreasing within an integration time step. While this requirement is 
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not necessary for analytical elements, it is essential for experimental elements that 

represent physical specimens in a laboratory. Without this restriction, the displacement 

commands during the iteration process can overshoot the converged displacements. This 

unintended loading-unloading cycle does not represent the true structural behavior, but is 

an artifact generated by the numerical algorithm. Contrary to the numerical portions of 

the hybrid model, for which the response depends on only the committed displacements 

at convergence, the response of the physical portions is truly path dependent and 

consequently affected by all iterations. 

7. Iterative integration methods should produce displacement increments that are as uniform 

as possible. This requirement guarantees that the transfer system, which imposes each 

displacement increment over a typically constant time interval, generates a continuous 

movement of the test specimen with a uniform speed. It is important to recognize that if 

the classic Newton-Raphson method is utilized to solve the implicit equations, 

displacement increments are not uniform but decrease rapidly during iteration. This is 

due to the quadratic convergence of the algorithm. As long as the control system is 

allotted the same time interval to impose such displacement increments, this produces 

velocity and thus force oscillations in the transfer system. These force oscillations feed 

back into the integration method and can therefore contaminate the solution or in the 

worst-case cause instability of the algorithm. As such, it is imperative to generate 

continuous, uniform command signals to avoid force oscillations at all cost. 

8. To be real-time compatible an integration scheme needs to execute a constant number of 

function calls, which produce strictly increasing (respectively decreasing) and uniform 

displacement increments within each integration time step. This requirement is thus a 

combination of several of the above requirements. 

4.4 DIRECT INTEGRATION METHODS 

In direct integration the equations of motion (4.10) are integrated using a numerical step-by-step 

procedure, the term “direct” meaning that prior to the numerical integration, no transformation of 

the equations into a different form is carried out (Bathe 1996). The most commonly utilized 

explicit schemes, including their stability and accuracy, are summarized first. Afterwards, the 

derivation, implementation, stability, and accuracy of several implicit direct integration methods 
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are discussed. All schemes are investigated in light of the special hybrid simulation requirements 

laid out previously. 

4.4.1 Explicit Newmark Method (ENM) 

The explicit Newmark scheme, which was proposed for hybrid simulation the first time by 

Mahin and Williams (1980), is the easiest and most straightforward to implement among the 

class of explicit direct integration methods. It is defined by the temporally discrete equations of 

motion (4.10) and Newmark’s finite difference formulae for displacements and velocities in 

Equation (4.13). To obtain the explicit form of the algorithm, the finite difference formulae are 

written in a predictor-corrector form and the β–parameter is set to zero. 
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Substitution of the displacement and velocity expressions into (4.20) yields the following 

system of linear equations, which needs to be solved for the accelerations 1i+U&&  at the new time 

step it t+ Δ . 

 1i+ =eff effM U P&&  (4.21) 

The effective mass matrix is a combination of the mass and damping matrices with the 

constants 2c t γ= Δ  and 3 1c = . The effective force vector (or unbalanced load vector) is 

evaluated at the predictor displacements and velocities. 
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If the effective mass matrix is diagonal, the system of linear equations simplifies to n 

uncoupled equations that can easily be solved for the new accelerations and that reduce the 

computational cost significantly. The effective mass matrix becomes diagonal if lumped masses 

are being used for modeling purposes and no damping or mass-proportional viscous damping is 

present. Once Equation (4.21) has been solved for the accelerations at it t+ Δ , the remaining 
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response quantities such as displacements and velocities are updated. Since the new 

displacements are equal to the predictor displacements, only the velocities need to be updated. 

 1 1

1 1 2 1

i i

i i ic
+ +

+ + +

=

= +

U U

U U U

%

&& % &&
 (4.23) 

Repetition of this procedure for the total number of N time steps yields the sought 

solution. The explicit Newmark integration method can be summarized as pseudo-code as shown 

in Fig. 4.1. 
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Fig. 4.1  Explicit Newmark (ENM) method. 

It can be shown that the explicit Newmark method with 0.5γ =  yields the same solutions 

as the well-known central-difference method. However, even though the two methods are 

numerically equivalent, the explicit Newmark method has several important advantages over the 

central-difference method. First, it is a self-starting method, meaning that it does not require any 

response quantities before 0t = . Second, velocities and accelerations are directly obtained as 

part of the solution algorithm and do not need to be calculated separately. Finally and most 

important, it has been shown by Shing and Mahin (1983) that the explicit Newmark method 

possesses more favorable error-propagation characteristics than the central-difference method. 
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Because of its numerical equivalence, the explicit Newmark method inherits the order of 

accuracy and the stability condition of the central-difference method. Both methods are second-

order accurate 2p = . Therefore, they satisfy requirement 1. In addition, the explicit Newmark 

method is conditionally stable with the following stability limit. 
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where tΔ  is the step size of the integration method and nT  is the shortest natural period 

of the structure that is being analyzed. Since the explicit Newmark method is conditionally 

stable, it cannot be applied to structural problems with singular mass matrices that yield zero-

period modes. This violates requirement 3. As can be seen from the pseudo-code in Fig. 4.1, the 

resisting forces at the predictor displacements are required only once per time step. This means 

that no more than one force acquisition from the experimental portion of the structure is 

necessary per integration step. Thus, requirement 2 is satisfied. One of the advantages of the 

explicit Newmark method is that the stiffness of the structure is not required in the solution 

algorithm. This is obvious from the effective mass in Equation (4.22), and requirement 4 does 

therefore not apply. Because of the initial assumption that 0.5γ = , this integration method is not 

capable of introducing any numerical damping to suppress higher-mode participation as 

suggested by requirement 5. On the other hand, for 0.5γ >  the algorithm introduces too much 

numerical damping, affecting the participation of the lower modes to the solution. The scheme 

also is no longer second-order accurate. Finally, requirements 6 and 7 do not apply here, since 

the explicit Newmark method is not an iterative solution scheme. In summary, except for the 

lack of algorithmic damping, the explicit Newmark method is an attractive integration scheme 

for hybrid simulation as long as the conditional stability limit can be satisfied with a reasonable 

time-step size. 

4.4.2 Explicit Generalized-Alpha Method (EGa) 

To overcome the aforementioned problem of the explicit Newmark method, many explicit and 

implicit direct integration methods with more suitable forms of algorithmic energy dissipation 

have been developed over the years. Among these methods, the generalized-alpha scheme 

developed by Hulbert and Chung (1996) is the most attractive for hybrid simulation. The method 
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provides optimized dissipation characteristics of the high-frequency modes, and the amount of 

algorithmic damping can be specified through the spectral radius bρ  at the bifurcation frequency 

b b tωΩ = Δ . To introduce the sought numerical energy dissipation, the weighed equations of 

motion (4.25) are formulated in between time steps it  and 1it + , depending on the choice of the 

two weighing parameters mα  and fα . In addition, to obtain the explicit form of the generalized-

alpha method, Newmark’s finite difference formulae for displacements and velocities (4.13) are 

written in a predictor-corrector form as follows. 

 ( )

( )

, ,

2
2 2

1 1 1 1

1 1 1 1

1 2
2

1

m f f f fi i i i i

i i i i i i i

i i i i i i

tt t t

t t t

α α α α α

β β β

γ γ γ

+ + + + +

+ + + +

+ + + +

+ + = −

Δ= + Δ + − + Δ = + Δ

= + Δ − + Δ = + Δ

r 0M U CU P P P

U U U U U U U

U U U U U U

&& &

& && && % &&

&& & && && % &&

 (4.25) 

In the above system of balance Equations (4.25), the accelerations and velocities in 

between time steps are expressed by the following weighed equations. 
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The internal resisting forces and the externally applied forces, on the other hand, can be 

expressed through any generalized quadrature rule (Erlicher et al. 2002). 

For example, for the generalized trapezoidal rule, the equations take the following form. 
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If the generalized midpoint rule is employed instead, the following equations are utilized. 
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It should be noticed that the predictor displacements, instead of the displacements at the 

new time step, are being used to evaluate the weighed resisting forces provided by the above 

generalized trapezoidal and midpoint formulas. Substitution of the displacement and velocity 

expressions into (4.25) yields the following system of linear equations, which needs to be solved 

for the accelerations 1i+U&&  at the new time step it t+ Δ . 
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 1i+ =eff effM U P&&  (4.29) 

The effective mass matrix is a combination of the mass and damping matrices with the 

constants 2
1c t β= Δ , 2c t γ=Δ , 3 1c =  and the weighing parameters mα  and fα . The effective 

force vector (or unbalanced load vector) also becomes a weighed expression between the current 

and the predictor response quantities. 
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If the effective mass matrix is diagonal, the system of linear equations simplifies to n 

uncoupled equations that can easily be solved for the new accelerations and that reduce the 

computational cost significantly. As with the explicit Newmark method, the effective mass 

matrix becomes diagonal if lumped masses are being used for modeling purposes and no 

damping or mass-proportional, viscous damping is present. Once Equation (4.29) has been 

solved for the accelerations at it t+ Δ , the remaining response quantities such as displacements 

and velocities are updated. 
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Repetition of this procedure for the total number of N time steps yields the sought 

solution. The explicit generalized-alpha integration method can thus be summarized as pseudo-

code as shown in Fig. 4.2. 

To maximize the high-frequency algorithmic energy dissipation while maintaining 

second-order accuracy, Hulbert and Chung (1996) derived the following relationships among the 

algorithmic parameters β  and γ , the weighing parameters mα  and fα , and the spectral radius 

0 1bρ≤ ≤  at the bifurcation frequency b b tωΩ = Δ . 
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As can be seen from the above equations, the resulting algorithm is a two-parameter 

( ),b fρ α  scheme that belongs to the family of generalized-alpha methods. If the free weighing 

parameter 0fα = , the resulting algorithm treats the physical damping explicitly. In contrast, for 

0fα ≠ , an implicit treatment of the physical damping is obtained. Hulbert and Chung (1996) 

recommend to use a midpoint evaluation of the physical damping, 0.5fα = , since the method is 

endowed with a larger stability limit in this neighborhood. The algorithmic energy dissipation of 

the high-frequency modes increases with the reduction of the spectral radius bρ  from 1.0 

towards 0.0. 
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Fig. 4.2  Explicit generalized-alpha (EGα) method. 

However, it is important to recognize that with an implicit treatment of physical damping 

and with spectral radii close to 1.0, the numerical damping can become negative; and thus, 

introduce energy into the high-frequency modes instead of dissipating energy. This means that in 

the case of 0fα ≠  the maximal spectral radius bρ  needs to be limited as a function of the 

physical damping present. 

With the selection of the integration scheme’s parameter according to (4.32), both 

methods are second-order accurate 2p = . Therefore, they satisfy requirement 1. For the case 
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without physical damping, the explicit generalized-alpha method is conditionally stable with the 

following stability limit. 
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On the other hand, if physical damping is present, the stability limit of the algorithm is 

more stringent than for the undamped case. For the situations where physical damping is treated 

explicitly, the stability limit is given as follows. 
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In the above two formulas, tΔ  is the step size of the integration method, and nT  is the 

shortest natural period of the structure that is being analyzed. Since the explicit generalized-alpha 

method is conditionally stable for all cases, it cannot be applied to structural problems with 

singular mass matrices that yield zero-period modes. This violates requirement 3. As can be seen 

from the pseudo-code in Fig. 4.2 the resisting forces necessary for assembling the effective force 

vector are  required only once per time step. Depending on the employed generalized quadrature 

rule, the resisting forces are acquired either at the predictor displacements, or at weighed 

displacements between the current and the predictor displacements. In short, this means that no 

more than one force acquisition from the experimental portion of the structure is necessary per 

integration step. Thus requirement 2 is satisfied. As with the explicit Newmark method, the 

stiffness of the structure is not required in the solution algorithm of the explicit generalized-alpha 

method. This is obvious from the equation for the effective mass in (4.30), and requirement 4 

does therefore not apply. Due to the nature of the method, requirement 5 is satisfied. 

Specifically, the direct integration scheme provides optimal dissipation of the high-frequency 

modes, while the amount of algorithmic damping can be specified through the spectral radius 

bρ . In addition, the accuracy of the method is only slightly lowered by the numerical energy 

dissipation, so that the scheme remains second-order accurate. Finally, requirements 6 and 7 do 

not apply here, since the explicit generalized-alpha method is not an iterative solution scheme. In 

summary, as long as the conditional stability limit can be satisfied with a reasonable time-step 

size, the explicit generalized-alpha method is a very attractive integration scheme for hybrid 
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simulation. Compared to the explicit Newmark method it has the important advantage of 

providing an adjustable numerical energy dissipation of the high-frequency modes. 

4.4.3 Implicit Newmark Methods (INM1, INM2) 

As mentioned earlier the direct integration scheme developed by Newmark (1959) is the most 

extensively used method for purely analytical structural dynamics problems. However, in order 

to apply the implicit Newmark method to hybrid simulation problems, the scheme has to be 

adjusted for a proper interaction with the physical parts of the hybrid model. After the derivation 

of the algorithm for purely analytical nonlinear problems, several possible modifications of such 

algorithm and the resulting implicit integration methods applicable to hybrid simulation are 

discussed. 

The implicit Newmark direct integration method is defined by the temporally discrete 

equations of motion (4.10) and Newmark’s finite difference formulae for displacements and 

velocities (4.13), which are repeated here for convenience. 
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In order to determine the three unknown response quantities, such as displacements, 

velocities, and accelerations, the three equations in (4.35) can be solved by two different 

approaches. 

D-Form: 
The first approach, also called D-form, advances the solution in time by solving for displacement 

increments. In order to derive such form, Newmark’s finite difference formulae (4.35) are first 

reformulated to obtain expressions for velocities and accelerations at 1it + . 

 
( )

( )

1 1

1 12

1 1
2

1 1 1 1
2

i i i i i

i i i i i

t
t

t t

γ γ γ
β β β

β β β

+ +

+ +

⎛ ⎞ ⎛ ⎞= − − − − Δ −⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠
⎛ ⎞= − − − −⎜ ⎟Δ Δ ⎝ ⎠

U U U U U

U U U U U

& & &&

&& & &&

 (4.36) 



 

  93

Substitution of these velocities and accelerations into the balance Equations (4.35) and 

equating such equations to zero yields a nonlinear system of equations, in which the unknowns 

are the displacements at the new time step it t+ Δ . 

 ( ) ( )1 1 1 1 1 , 1i i i i i iF + + + + + += + + − + =r 0U M U CU P U P P 0&& &  (4.37) 

In order to solve such system of nonlinear equations for the unknown displacements the 

well-known iterative Newton-Raphson algorithm is employed. 

 ( ) ( )( ) ( ) ( )
1 1

k k k
i iDF F+ +Δ = −U U U  (4.38) 

The Jacobian of the vector function DF  on the left-hand side and the negative vector 

function F  on the right-hand side both evaluated at the displacements of the current iteration are 

equivalent to an effective stiffness matrix and an effective force vector (also called unbalanced 

force vector), respectively. 

 ( ) ( ) ( )k k kΔ =eff effK U P  (4.39) 

In the above linear system of equations, the effective stiffness matrix and the effective 

force vector, which depend on the iteration k, take the following form. 
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where 1 1c = , 2 /( )c tγ β= Δ , and 2
3 1/( )c t β= Δ . Since the Newton-Raphson algorithm 

only guarantees convergence if the initial approximation of the displacement vector is 

sufficiently close to the actual solution, the converged displacement vector at time it  is used as 

an initial approximation for the sought displacement vector at time it t+ Δ . 
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Once Equation (4.39) has been solved for the displacement increments at iteration k, the 

response quantities such as displacements, velocities and accelerations are updated. 
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The iterations are repeated until an appropriate convergence criterion is satisfied. 
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Fig. 4.3  D-form of implicit Newmark method. 

Finally, the repetition of this procedure for the total number of N time steps, with 

Newton-Raphson iterations in each such step, yields the sought solution. The D-form of the 

implicit Newmark method is summarized as pseudo-code in Fig. 4.3. As can be seen from the 

pseudo-code, convergence is tested at the end of every iteration step by comparing a 

convergence criterion against a user-specified tolerance. 

Some of the possible criteria that can be employed to measure convergence are explained 

next. One possible choice is to use the absolute value of the vector norm of the displacement 

increments. The vector norm can be any p-norm or even the max-norm if the largest component 
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of the displacement increment matters the most. Another possibility is to utilize relative 

convergence criteria such as the vector norm of the current displacement increment relative to 

the vector norm of the first displacement increment or the vector norm of the current 

displacement increment relative to the sum of all the norms since last convergence. Instead of the 

displacement increment, it is also possible to use the effective/unbalanced force vector or an 

energy measure to formulate a convergence criterion, and as before with the displacement 

increment, these criteria can be expressed in an absolute or relative manner. 

Table 4.1  Convergence criteria. 
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increment 

( )k

p
tolΔ ≤U  

ΔU(k )
p

ΔU(1)
p

≤ tol  
ΔU(k )

p

ΔU( j )
p

j =1

k

∑
≤ tol  

effective/ 
unbalanced 

force 

( )k

p
tol≤effP  

( )

(1)

k

p

p

tol≤
eff

eff

P

P
 - 

energy ( )( ) ( )1
2

Tk k tolΔ ≤effU P  
( )
( )

( ) ( )

(1) (1)

Tk k

T tol
Δ

≤
Δ

eff

eff

U P

U P
 - 

A-Form: 
The A-form solution approach is a predictor-multicorrector method, as will be seen shortly. In 

this form, the direct integration scheme advances the solution in time by solving for acceleration 

increments instead of displacement increments. To derive the A-form, Newmark’s finite 

difference formulae (4.35) for displacements and velocities are directly substituted into the 

balance Equations (4.35). Equating everything to zero yields a nonlinear system of equations, in 

which the unknowns now are the accelerations instead of the displacements at the new time step 

it t+ Δ . 

 ( ) ( )1 1 1 1 1 , 1i i i i i iF + + + + + += + + − + =r 0U M U C U P U P P 0&& && &  (4.43) 

Once more, the well-known iterative Newton-Raphson algorithm is employed to solve 

such system of nonlinear equations for the unknown accelerations. 
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 ( ) ( )( ) ( ) ( )
1 1

k k k
i iDF F+ +Δ = −U U U&& && &&  (4.44) 

The Jacobian of the vector function DF  on the left-hand side and the negative vector 

function F on the right-hand side both evaluated at the accelerations of the current iteration are 

equivalent to an effective mass matrix and an effective force vector, respectively. 

 ( ) ( ) ( )k k kΔ =eff effM U P&&  (4.45) 

In the above linear system of equations, the effective mass matrix and the effective force 

vector, which depend on the iteration k, take the following form. 
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where 2
1c t β= Δ , 2c t γ=Δ and 3 1c = . Since the Newton-Raphson algorithm only 

guarantees convergence if the initial approximation of the acceleration vector is sufficiently close 

to the actual solution, the converged acceleration vector at time it  is used as an initial 

approximation for the sought acceleration vector at time it t+ Δ . 
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From the structure of Equations (4.47), it becomes obvious why the A-form is a 

predictor-multicorrector method. In the first iteration of each time step, displacement and 

velocity predictions are generated, which are then subsequently corrected until convergence is 

achieved. Once Equation (4.45) has been solved for the acceleration increments at iteration k, the 

response quantities such as displacements, velocities and accelerations are corrected as follows. 
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The iterations are repeated until an appropriate convergence criterion is satisfied. Finally, 

the repetition of this procedure for the total number of N time steps, with Newton-Raphson 

iterations in each such step, yields the sought solution. The A-form of the implicit Newmark 

method is summarized as pseudo-code in Fig. 4.4. 
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Fig. 4.4  A-form of implicit Newmark method. 

Similarly to the D-form of the solution scheme, convergence is tested at the end of every 

iteration step by comparing a convergence criterion against a user-specified tolerance. The 

possible criteria that can be employed to measure convergence are, however, somewhat different 

than in the D-form implementation. For the first category of criteria, where convergence is tested 

on the incremental solution vector, acceleration increments are utilized instead of displacement 

increments. The second category remains unchanged, meaning that convergence is measured by 

the absolute or relative size of the effective/unbalanced force vector. Finally, the last category 

does not apply to the A-form of the solution approach because it does not represent a meaningful 

physical quantity, such as energy. 

While both the D-form and the A-form implementations of the implicit Newmark method 

are theoretically sound solutions, experience has shown that the D-form implementation 

encounters fewer convergence issues than the A-form implementation. This is particularly true 

for complex structural models with strong material and geometric nonlinearities. Because of 
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these possible convergence issues and other reasons explained next, the D-form implementation 

of the implicit Newmark method is better suited to be modified for hybrid simulation. 

In their current form, both of the presented solution approaches for the implicit Newmark 

method require a tangent stiffness matrix and produce nonuniform, rapidly-decreasing 

displacement increments, due to the quadratic convergence of the Newton-Raphson algorithm 

during iteration. Thus, to obtain suitable forms of the implicit Newmark integration method, 

several modifications need to be made to the solution schemes. Some of these possible 

approaches are explained next. 

Increment Reduction Factor Modification (INM1): 
Because it is difficult to obtain an accurate and reliable tangent stiffness matrix of an 

experimental element from the measurements at the controlled degrees of freedom, the parts of 

the Jacobian in (4.40) and (4.46) that are contributed by the tangent stiffness matrices ,eltk  of the 

experimental elements are replaced by initial stiffness matrices ,elik . In addition, to obtain more 

uniform convergence for certain problem types and structural models, it is sometimes 

advantageous to utilize initial stiffness matrices for not only the experimental elements but also 

the analytical ones. However, a mixed treatment, where a structure is divided into partitions that 

utilize tangent element stiffness matrices and partitions that use initial element stiffness matrices, 

generally achieves improved convergence. This approach is comparable to implicit-explicit 

methods, where a structure is divided into partitions that treat elements implicitly and partitions 

that treat elements explicitly. The selection of appropriate convergence criteria guarantees that 

all partitions, also the slower converging initial stiffness matrix partitions, reach satisfactory 

equilibrium. In the first case, this leads to a modified Newton-Raphson algorithm that is using a 

constant initial stiffness matrix, and thus, a constant Jacobian, which needs to be factorized only 

once. In the second case, the global stiffness matrix is a nonconstant, mixed matrix, assembled 

from tangent and initial stiffness element matrices. Thus, the Jacobian is nonconstant as well. 

While for both cases, quadratic convergence is reduced to linear convergence, the reduction is 

obviously more pronounced for the constant initial stiffness matrix iteration approach. 

Nevertheless, the benefit of a single matrix factorization is generally outweighed by the 

excessive number of iterations required to reach equilibrium. 

To improve the reduced order of convergence, Accelerated-Newton methods can be 

employed to find equilibrium. Accelerated-Newton algorithms hold the stiffness matrix constant 
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during iteration but use selected information from previous iterations to accelerate convergence. 

The Krylov-Subspace Accelerated-Newton algorithm developed for nonlinear structural 

problems by Scott and Fenves (2003) is one of such methods. This Krylov-Newton method has 

been implemented in OpenSees and can thus easily be utilized for hybrid simulation. 

The described modifications of the equilibrium solution algorithms do however not yet 

guarantee that displacement increments calculated by these iterative procedures are strictly 

increasing or strictly decreasing within an integration time step, as set forth by requirement 6 for 

hybrid simulation. As suggested by Shing and Vannan (1991) a reduction factor, θ , that 

modifies the response increments, can be introduced to enhance the smoothness of the 

convergence path and to reduce the possibility of spurious loading/unloading cycles during 

iteration. It is obvious that this unfortunately lowers the order of convergence even further. In 

addition, the response reduction factor, as described by Shing and Vannan (1991), can  be 

incorporated into only the D-form of the implicit Newmark method. For the A-form, the 

reduction factor does not achieve the desired effect, since the predictor quantities remain 

unmodified and the initial displacement increment is therefore not being reduced. 

Thus, a first implicit Newmark method for hybrid simulation is obtained from the D-form 

of the algorithm by utilizing a modified stiffness matrix (initial or mixed) and the increment 

reduction factor in the iterative solution process. The implicit Newmark method for hybrid 

simulation is summarized as pseudo-code in Fig. 4.5. 

The accuracy and stability of the method depend on the two algorithmic parameters, β  

and γ . As with the explicit counterpart, the algorithm is only second-order accurate if 0.5γ = . 

For 0.5γ >  the integration scheme is reduced to first-order accuracy. In addition, it introduces 

too much algorithmic damping, affecting the participation of the lower modes to the solution. 

The stability limit of the implicit Newmark direct integration method is defined by the following 

expression. 

 
( ) ( )

( )

2 20.5 0.5 0.5
2 nt T

γ ξ γ β γ ξ
γ β π

− + − + −
Δ ≤

−
 (4.49) 

where tΔ  is the step size of the integration method and nT  is the shortest natural period 

of the structure that is being analyzed. As can be seen from the denominator in (4.49), the 

integration method becomes unconditionally stable if the algorithmic parameters 0.5γ =  (for 
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second-order accuracy) and 0.25β ≥  are selected. The implicit Newmark integrator with 

0.25β = is also known as the average acceleration, or the trapezoidal method. 
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Fig. 4.5  First modified D-form of implicit Newmark (INM1) method. 

To investigate the progression of convergence during the equilibrium solution process, 

two hybrid simulation models are analyzed by the modified implicit Newmark method. The first 

model is a four-story frame with linear elastic columns that are pinned at the base. The first- and 

second-story beams are represented by nonlinear experimental beam-column elements and the 

third- and fourth-story beams are modeled as nonlinear force-beam-column elements with fiber 

sections at five integration points. Since the structure is symmetric and the loading is 

asymmetric, only the left half of the structure is modeled for analysis. Only material 

nonlinearities are considered in this model, meaning that geometric nonlinearities due to axial 
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forces are ignored. The second model is a portal frame (similar to the one in Chapter 6) defined 

by two nonlinear columns that are connected by a linear-elastic beam. The left column is 

represented by a nonlinear experimental beam-column element and the right column is modeled 

as a nonlinear force-beam-column element with fiber sections at five integration points. 

Significant gravity loads corresponding to the nodal masses are applied at the top of the two 

columns, and the resulting large P-Δ effects are included in the modeling of the two column 

elements. Thus, both the nonlinear geometry and the nonlinear material behavior of the portal-

frame columns are taken into account during the hybrid simulation. Both models were analyzed 

by applying initial stiffness iterations, mixed stiffness iterations, no increment reduction, 

increment reduction, Newton-Raphson iterations, and Krylov-Newton iterations. The two-norm 

of the current displacement increment relative to the sum of all the two-norms from last 

convergence was used as the convergence criterion for all the analyses. 
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Fig. 4.6  Newton-Raphson convergence comparison for four-story-frame model. 
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Figures 4.6–4.9 show close-ups of the displacement convergence progress at the 

controlled degree of freedom of the experimental element over two integration time steps for 

different analysis parameters. As can be seen from the plots for the four-story-frame model with 

the Newton-Raphson equilibrium solution algorithm (Fig. 4.6), the application of the increment 

reduction factor successfully enhances the smoothness of the convergence path and reduces the 

possibility of spurious loading/unloading cycles during iteration. On the other hand, the 

application of the mixed stiffness matrix versus the initial stiffness matrix has a negligible effect 

on the convergence path of this specific model. Similar results are obtained for the Krylov-

Newton equilibrium solution algorithm (Fig. 4.7). However, the increment reduction factor is 

less effective, and the use of the mixed stiffness matrix achieves slightly faster convergence. 
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Fig. 4.7  Krylov-Newton convergence comparison for four-story-frame model. 
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The best convergence path for the four-story-frame model is achieved by employing the 

Krylov-Newton algorithm with the mixed stiffness matrix and with a moderate increment 

reduction factor. 

The portal-frame model, with its strong geometric and material nonlinearities, exhibits 

drastically different convergence paths. For the Newton-Raphson algorithm with initial stiffness 

iterations (Fig. 4.8), the displacement increments are not strictly increasing or strictly decreasing 

within an integration time step, and thus, introduce spurious loading/unloading cycles during 

equilibrium iterations. Even an increment reduction factor of 50% cannot entirely resolve this 

undesirable behavior. 
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Fig. 4.8  Newton-Raphson convergence comparison for portal-frame model. 

However, by utilizing the mixed Jacobian instead of the initial Jacobian in the iteration 

process, this problem completely disappears. The increment reduction factor in combination with 

the mixed stiffness matrix iterations can then further improve the smoothness of the convergence 
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path. A similar behavior is observed if the Krylov-Newton instead of the Newton-Raphson 

equilibrium solution algorithm is employed. For this specific model, the Krylov-Newton 

algorithm achieves significant convergence acceleration without being much affected by the 

increment reduction factor. 

2890 2895 2900 2905
3.7

3.75

3.8

3.85

3.9

3.95

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 1.0

 

 

3285 3290 3295 3300 3305
3.7

3.75

3.8

3.85

3.9

3.95

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 0.8

 

 

2212 2214 2216 2218
3.7

3.75

3.8

3.85

3.9

3.95

Mixed Stiffness Matrix: θ = 1.0

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

 

 

2870 2872 2874 2876 2878 2880
3.7

3.75

3.8

3.85

3.9

3.95

Mixed Stiffness Matrix: θ = 0.8

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

 

 

avg. num. iter. = 9 avg. num. iter. = 11 

avg. num. iter. = 4 avg. num. iter. = 5 

 
Fig. 4.9  Krylov-Newton convergence comparison for portal-frame model. 

The best convergence path for the portal-frame model with its strong geometric and 

material nonlinearities is achieved by employing the Krylov-Newton equilibrium solution 

algorithm with the mixed stiffness matrix and without reduction of the increments. 

In light of the special hybrid simulation requirements, the following conclusions can be 

drawn about the increment reduction factor implicit Newmark direct integration method. For the 

algorithmic parameters 0.5γ =  and 0.25β = , the average acceleration method is second-order 

accurate 2p =  and unconditionally stable independent of the amount of physical damping 

present. This means that requirements 1 and 3 are both satisfied. As can be seen from the 
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pseudo-code in Fig. 4.5, the resisting forces are required k-times according to the number of 

iterations necessary to reach equilibrium by satisfying the selected convergence criterion. This 

implies that displacement commands need to be communicated to the control system, and forces 

need to be measured by the data-acquisition system also k-times per integration time step. 

Therefore, the fewer iterations the equilibrium solution algorithm needs to execute, the better 

because requirement 2 asks for as few function calls as possible. 

Requirement 4 is satisfied, since for both described cases the global initial stiffness 

matrix and the global mixed stiffness matrix require only constant, initial, experimental element 

stiffness matrices for assembly. Because of the initial assumption that 0.5γ = , this integration 

method is not capable of introducing any numerical damping to suppress higher-mode 

participation as suggested by requirement 5. On the other hand, for 0.5γ >  the algorithm 

introduces too much numerical damping, affecting the participation of the lower modes to the 

solution. In addition, the scheme would no longer be second-order accurate. By utilizing the 

described stiffness matrix and increment reduction factor modifications, it is possible to 

guarantee that the displacement increments calculated by the equilibrium solution algorithm are 

strictly increasing or strictly decreasing within an integration time step. Requirement 6 is thus 

satisfied. 

Finally, requirement 7, which states that iterative integration methods should produce 

displacement increments that are as uniform as possible, is not satisfied by the modified implicit 

Newmark scheme. This can be seen well from the convergence plots in Figures 4.6–4.9. If the 

control system is allotted the same time interval to impose such inconsistent displacement 

increments, velocity and thus force oscillations are generated in the transfer system. To lessen 

these oscillations, the event-driven algorithms described in the next chapter need to adjust the 

time interval over which the displacement increments are imposed during simulation. Thus, the 

integration method, as described, only works well in combination with specialized event-driven 

strategies. In summary, except for the lack of algorithmic damping, the modified implicit 

Newmark method is an attractive integration scheme for hybrid simulation as long as it is 

combined with the appropriate event-driven strategies. It is recommended that this scheme be 

used for stiff or infinitely stiff problems that have strong material and geometric nonlinearities, 

and therefore, need well-converged equilibrium states at the end of the iteration process. 
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Constant Number of Iterations Modification (INM2): 
Because the previously described modifications of the implicit Newmark method still produce 

nonuniform displacement increments and because the integration method in this form cannot be 

employed for real-time hybrid simulations, an alternative implementation of the algorithm is 

discussed next. The goal is to fix the number of equilibrium iterations to a constant user-

specified value and to modify the displacement increments during iteration in a way that makes 

them more uniform. The approach of fixing the number of sub-steps or iterations was initially 

suggested by Dorka and Heiland (1991) and Shing et al. (1991). Shing’s approach was 

subsequently refined by Zhong (2005). The direct integration scheme presented here is a slightly 

modified version of the one used in Zhong’s work. 

As with the first modified implicit Newmark scheme, the formulation of the Jacobian and 

the application of the equilibrium solution algorithms remain unchanged. In the first case, a 

modified Newton-Raphson algorithm with a constant initial stiffness matrix, and thus, a constant 

Jacobian, is utilized. In the second case, the global stiffness matrix is a nonconstant, mixed 

matrix, assembled from tangent and initial stiffness element matrices, and thus, the Jacobian is 

nonconstant as well. In order to obtain a constant number of iterations that can be user specified, 

a new convergence test is introduced. Instead of terminating the equilibrium solution process 

when the norm of a certain quantity falls below a user-specified tolerance, the equilibrium 

solution process is stopped after a given, constant number of iterations. The absolute energy 

norm (see Table 4.1) is still determined but only to provide a measure for the convergence error 

size. In addition, only parts of the calculated response increments are utilized to update the 

elements. The reduced command displacements are determined by means of Lagrange 

interpolation using the trial displacements of the current iteration step and the last n committed 

displacements. The location of the Lagrange interpolation depends on the ratio between the 

current iteration and the fixed number of total iterations. The polynomials used to generate the 

scaled displacement increments are Lagrange polynomials of first, second, or third order. 

 ( ) ( )
1

( ) ( 1)
1 ,

1

i
k k

scaled i j n j
j i n

x L x
+

−
+

= + −

Δ = − + ∑U U U  (4.50) 

In the above interpolation formula ( 1)
1

k
i

−
+U  are the trial displacements at the previous 

iteration, jU  are the committed displacements at the previous time steps and the trial 

displacement of the current iteration, ,n jL  are the Lagrange functions of order n, and 
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[ ]max/ 0,1x k k= ∈  is the interpolation location. The Lagrange functions necessary in Equation 

(4.50) are summarized in Table 4.2. 

Table 4.2  Lagrange functions up to order 3. 

1, 1iL x+ =  ( )2, 1
1 1
2iL x x+ = +  ( )( )3, 1

1 1 2
6iL x x x+ = + +  

( )1, 1iL x= − −  ( )( )2, 1 1iL x x= − − +  ( )( )( )3,
1 1 1 2
2iL x x x= − − + +  

- ( )2, 1
1 1
2iL x x− = −  ( ) ( )3, 1

1 1 2
2iL x x x− = − +  

- - ( ) ( )3, 2
1 1 1
6iL x x x− = − − +  

This reduction scheme, which is similar to the one proposed by Zhong (2005), produces 

displacement increments that are nearly uniform, and thus, satisfies requirement 7 for hybrid 

simulation. 

Because the effective force vector is determined at the end of each iteration step, one 

additional equilibrium solution sequence is added to the integration method after the iteration 

process has converged. However, the elements are no longer updated with the response 

quantities, so that the experimental elements do not communicate these last response increments 

to the control system in the laboratory. The response increments are utilized only to update the 

response at the global degrees of freedom from which the solution process is continued in the 

next integration time step. 

This approach achieves significantly improved convergence characteristics of the 

integration scheme as compared to methods without the additional equilibrium solution 

sequence. The second modified implicit Newmark method for hybrid simulation is summarized 

as pseudo-code in Fig. 4.10. As with the first modified form of the implicit Newmark method, 

the integration scheme is unconditionally stable if the algorithmic parameters 0.5γ =  (for 

second-order accuracy) and 0.25β ≥  are selected. 
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Fig. 4.10  Second modified D-form of implicit Newmark (INM2) method. 

The progression of convergence during the equilibrium solution process is again 

investigated by means of the two previously described hybrid simulation models, which are 

analyzed by the constant-number-of-iterations implicit Newmark method. 
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Fig. 4.11  Convergence comparison for four-story-frame model. 

As can be seen from the results of the four-story-frame model (Fig. 4.11), the constant 

number of iterations modification achieves very smooth and uniform convergence paths. This is 

true for all four cases, including the initial stiffness matrix iteration, the mixed stiffness matrix 

iteration, a constant number of 5 increments, and a constant number of 10 increments. However, 

it can also be seen from the roof displacement time histories of the four-story-frame model (Fig. 

4.12), that the mixed stiffness matrix iterations provide a more accurate structural response as 

compared to the initial stiffness matrix iterations. 

In addition, the accuracy improves with larger constant numbers of iterations. The 

structural response, obtained by the unmodified implicit Newmark method with a very stringent 

displacement increment convergence test, was used as the assumed exact solution. For the most 

accurate solution (mixed stiffness, kmax = 10), the error in the maximal displacement is 0.05%, 

and the error in the residual displacement is 0.2%. 
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Fig. 4.12  Displacement comparison for four-story-frame model. 

Similar results are obtained for the portal-frame model with its strong geometric and 

material nonlinearities. The convergence paths (Fig. 4.13) are all very smooth with just the 

slightest reduction in consistency for the cases employing the mixed Jacobian iterations. Due to 

the strong geometric and material nonlinearities in the portal-frame model, the trends that were 

observed for the four-story-frame model are even more pronounced here. 

It is obvious from Fig. 4.14 that the mixed Jacobian iterations achieve superior accuracy 

and that such accuracy improves for larger constant numbers of iterations. For the most accurate 
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solution (mixed stiffness, kmax = 10), the error in the maximal displacement is 0.4% and the error 

in the residual displacement is 0.6%. 
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Fig. 4.13  Convergence comparison for portal-frame model. 

Finally, the constant-number-of-increments implicit Newmark method is again evaluated 

in terms of the special hybrid simulation requirements. For the algorithmic parameters 0.5γ =  

and 0.25β = , the average acceleration method is second-order accurate 2p =  and 

unconditionally stable independent of the amount of physical damping present. This means that 

requirements 1 and 3 are both satisfied. As can be seen from the pseudo-code in Fig. 4.10, the 

resisting forces are required kmax-times according to the constant number of iterations specified 

by the user. This implies that displacement commands need to be communicated to the control 

system and forces need to be measured by the data-acquisition system also kmax-times per 

integration time step. Requirement 4 is satisfied, since for both described cases the global initial 

stiffness matrix and the global mixed stiffness matrix require only constant, initial, experimental 
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element stiffness matrices for assembly. However, as has been shown earlier a mixed Jacobian 

should preferably be used. Such matrix achieves much better convergence during iteration, 

which improves the accuracy of the structural response significantly. 
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Fig. 4.14  Displacement comparison for portal-frame model. 

Because of the initial assumption, that 0.5γ = , this integration method is not capable of 

introducing any numerical damping to suppress higher-mode participation as suggested by 

requirement 5. However, it is possible to obtain the desired numerical dissipation by applying the 

same modifications to the implicit generalized-alpha integration method, which is discussed 

next. By utilizing a constant number of scaled displacement increments, such increments are 
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strictly increasing or strictly decreasing within an integration time step. Requirement 6 is thus 

satisfied. Finally, requirement 7, which states that iterative integration methods should produce 

displacement increments that are as uniform as possible, is also satisfied due to the described 

Lagrange interpolation of the trial displacements. Thus, the integration method, as described, 

provides excellent results as long as the experimental parts of the structure do not exhibit 

extreme combined material and geometric nonlinearities. If the structure includes such 

experimental portions, it is recommended to consider the previously mentioned algorithms for 

estimating element tangent stiffness matrices from the experimental measurements. 

4.4.4 Implicit Generalized-Alpha Methods (IGa1, IGa2) 

To introduce the desired algorithmic energy dissipation, which is missing in the implicit 

Newmark methods, the generalized-alpha scheme developed by Chung and Hulbert (1993) is 

utilized again. Similarly to the explicit form of the integration method, the implicit form is 

second-order accurate, provides optimized dissipation characteristics of the high-frequency 

modes, and can have the amount of algorithmic damping specified through the spectral radius 

ρ∞  at the high-frequency limit tω∞ ∞Ω = Δ → ∞ . The algorithm is optimal in the sense that it 

provides minimized low-frequency dissipation for a given value of high-frequency dissipation 

[ ]0,1ρ∞ ∈ . As with the explicit form, the weighed equations of motion (4.51) are formulated in 

between time steps it  and 1it + , depending on the choice of the two weighing parameters mα  and 

fα . In addition, Newmark’s finite difference formulas (4.13) are utilized again but in their 

original, unchanged form. 
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In the above system of balance equations, the accelerations and velocities in between 

time steps are expressed by the following weighed equations. 
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However, the internal resisting forces and the externally applied forces are expressed 

through any generalized quadrature rule (Erlicher et al. 2002), as explained in the section 

discussing the corresponding explicit scheme. For example, for the generalized trapezoidal rule, 

the equations take the following form. 
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If the generalized midpoint rule is employed instead, the following equations are utilized. 
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Because the resisting forces are treated implicitly here, the displacements at the new time 

step are being used to evaluate the weighed forces provided by the above generalized trapezoidal 

and midpoint formulas. 

As with the implicit Newmark method, the same two approaches can be employed to 

solve the three equations in (4.51) for the three unknown response quantities. Since the D-form 

implementation again encounters fewer convergence issues than the A-form implementation, 

only the D-form approach is modified herein for hybrid simulation. The two modifications that 

were discussed with the implicit Newmark method can be applied to the implicit generalized-

alpha method in the same manner. However, only the constant number of iterations modification 

is derived here. For the increment reduction factor modification, please refer to the section 

explaining the implicit Newmark method. 

Constant Number of Iterations Modification (IGα2): 
In order to derive the D-form, Newmark’s finite difference formulae (4.51) are again 

reformulated to obtain expressions for velocities and accelerations at 1it + . 
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Substitution of these velocities and accelerations into the weighed balance Equations 

(4.51) and equating such equations to zero yields a nonlinear system of equations, in which the 

unknowns are the displacements at the new time step it t+ Δ . 
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In order to solve such system of nonlinear equations for the unknown displacements, the 

well-known iterative Newton-Raphson algorithm is employed. 

 ( ) ( )( ) ( ) ( )
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k k k
i iDF F+ +Δ = −U U U  (4.57) 

The Jacobian of the vector function DF  on the left-hand side and the negative vector 

function F on the right-hand side both evaluated at the displacements of the current iteration are 

equivalent to an effective stiffness matrix and an effective force vector (also called unbalanced 

force vector), respectively. 

 ( ) ( ) ( )k k kΔ =eff effK U P  (4.58) 

In the above linear system of equations, the effective stiffness matrix and the effective 

force vector, which depend on the iteration k, take the following form. 
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where 1 1c = , 2 /( )c tγ β= Δ , and 2
3 1/( )c t β= Δ . Since the Newton-Raphson algorithm 

guarantees convergence only if the initial approximation of the displacement vector is 

sufficiently close to the actual solution, the converged displacement vector at time it  is used as 

an initial approximation for the sought displacement vector at time it t+ Δ . 
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Once Equation (4.58) has been solved for the displacement increments at iteration k, such 

increments are scaled using Lagrange polynomials of first, second, or third order. As before, the 

location of the Lagrange interpolation depends on the ratio between the current iteration and the 

fixed number of total iterations (4.50). The scaled displacement increments are then utilized to 

update the response quantities such as displacements, velocities, and accelerations as follows. 
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The iterations are repeated until the user-specified, fixed number of total iterations is 

reached. As with the implicit Newmark scheme, the effective force vector is determined at the 

end of each iteration step, and thus, one additional equilibrium solution sequence is added to the 

integration method after the iteration process has ended. However, the elements are no longer 

updated with the response quantities, so that the experimental elements do not communicate 

these last response increments to the control system in the laboratory. 

The response increments are utilized to update only the response at the global degrees of 

freedom from which the solution process is continued in the next integration time step. The 

repetition of this procedure for the total number of N time steps, with maxk  iterations in each such 

step, yields the sought solution. The modified D-form of the implicit generalized-alpha method is 

summarized as pseudo-code in Fig. 4.15. 

To maximize the high-frequency algorithmic energy dissipation while minimizing low-

frequency dissipation and maintaining second-order accuracy, Chung and Hulbert (1993) derived 

the following relationships among the algorithmic parameters β  and γ , the weighing 

parameters, mα  and fα , and the high-frequency spectral radius, 0 1ρ∞≤ ≤ . 
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Fig. 4.15  Second modified D-form of implicit generalized-alpha (IGα2) method. 
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The resulting implicit generalized-alpha direct integration method is a one-parameter 

( )ρ∞  scheme, which is unconditionally stable and second-order 2p =  accurate for 

displacements and velocities and first-order accurate for accelerations. Furthermore, the method 

satisfies the same special hybrid simulation requirements as the constant number of iterations 

implicit Newmark scheme, with the important advantage that an optimized, user-adjustable, 

high-frequency, algorithmic energy dissipation is provided. Thus, the constant number of 

iterations implicit generalized-alpha method additionally satisfies requirement 5 and should 

therefore be the preferred scheme for hybrid simulation as compared to the corresponding 

implicit Newmark method. 

4.4.5 Generalized-Alpha-OS Method (GaOS1) 

The generalized-alpha-OS direct integration method is comparable to the alpha-OS scheme 

originally developed by Nakashima (1988). The algorithm is a combination of the operator-

splitting technique proposed by Hughes et al. (1979) and the generalized-alpha method 

developed by Chung and Hulbert (1993). Hence, this alternative approach introduced here is 

different than the one proposed by Bonelli and Bursi (2004). The resulting integration scheme is 

a predictor-one-corrector method that does not require iterative equilibrium solution algorithms 

and that inherits the optimized algorithmic dissipation characteristics of the family of 

generalized-alpha methods. The operator-splitting technique is utilized to approximate the 

deviation of the structural response from linearity, meaning that the nonlinear resisting forces are 

expressed as the difference between the corresponding linear-elastic resisting forces and an 

approximate corrective part. The advantage of the class of alpha-OS integration methods is that 

unconditional stability can be achieved without the need to employ computationally expensive, 

iterative equilibrium solution algorithms. 

The derivation of the algorithm starts from the same equilibrium and finite-difference 

formulae as the explicit generalized-alpha method. 
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Utilizing the operator-splitting technique, the nonlinear internal resisting forces on the 

left-hand side of the equilibrium equations in (4.63) are approximated as follows. 

 ( ), ,f f f fi i i iα α α α+ + + +≅ − −r i i rP K U K U P% %  (4.64) 

 
Fig. 4.16  Approximation of nonlinear resisting force using Ki . 

As can be seen from the figure above, the operator-splitting technique assumes that the 

difference between the elastic and the nonlinear resisting forces at the predictor displacements 

fi α+U%  is approximately equal to the difference between the elastic and the nonlinear resisting 

forces at the new displacements 
fi α+U . Substitution of (4.64) into the balance Equation (4.63) 

leads to the following approximate equilibrium equations. 
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In the above equation, the accelerations, velocities, and displacements in between time 

steps are expressed by the following weighed equations. 
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Similarly to the previously discussed integration methods, the internal resisting forces at 

the predictor displacements and the externally applied forces are expressed in terms of any 
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generalized quadrature rule (Erlicher et al. 2002). For example, for the generalized trapezoidal 

rule, the equations take the following form. 
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If the generalized midpoint rule is employed instead, the following equations are utilized. 
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Next, the velocities and accelerations at 1it +  are expressed in terms of the predictor 

displacements. 
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Substitution of the velocities and acceleration expressions into (4.65) yields the following 

system of linear equations, which needs to be solved for the displacement increments ΔU  

between the predicted and the new displacements. 

 Δ =eff effK U P  (4.70) 

In the above linear system of equations, the effective stiffness matrix and the effective 

force vector take the following form. 
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where 1 1c = , 2 /( )c tγ β= Δ , and 2
3 1/( )c t β= Δ . Once Equation (4.70) has been solved for 

the displacement increments, the response quantities such as displacements, velocities, and 

accelerations are updated as follows. 
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Fig. 4.17  Generalized-alpha-OS (GαOS1) method. 

Repetition of this procedure for the total number of N time steps yields the sought 

solution. The generalized-alpha-OS integration method can thus be summarized as pseudo-code 

as shown above in Fig. 4.17. 

With the selection of the integration scheme’s parameter according to Equation (4.62), 

the method is second-order accurate 2p =  for displacements and velocities and first-order 

accurate for accelerations and therefore satisfies requirement 1. As long as at any time the 

predictor stiffness is larger than the tangent stiffness, the generalized-alpha-OS method is 

unconditionally stable (Combescure and Pegon 1997), and thus, satisfies requirement 3. This 

means that δ = −i tK K K  must be positive semi-definite. Thus, the generalized-alpha-OS 

method cannot be employed to analyze structures that exhibit hardening material behaviors or 

stiffening due to geometric nonlinearities. Furthermore, the method can also be rendered 

conditionally stable if geometric nonlinearities are accounted for by the large-displacement, 

moderate deformations, corotational transformation. This is further explained at the end of this 

section. As can be seen from the pseudo-code in Fig. 4.17, the resisting forces necessary for 

assembling the effective force vector are only required once per time step. Depending on the 
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employed generalized quadrature rule, the resisting forces are acquired either at the predictor 

displacements, or at weighed displacements between the last and current predictor 

displacements. In short, this means that no more than one force acquisition from the 

experimental portion of the structure is necessary per integration step. Requirement 2 is thus 

satisfied. Requirement 4 is satisfied, since the global initial stiffness matrix requires only 

constant, initial, experimental element stiffness matrices for assembly. Due to the nature of the 

method, requirement 5 is satisfied. Specifically, the generalized-alpha-OS integration scheme 

provides optimal dissipation of the high-frequency modes, while the amount of algorithmic 

damping can be specified through the high-frequency spectral radius ρ∞ . In addition, the 

accuracy of the method is only slightly lowered by the numerical energy dissipation, so that the 

scheme remains second-order accurate. Finally, requirements 6 and 7 do not apply here, since the 

generalized-alpha-OS method is not an iterative solution scheme. Because of the approximation 

that is used to express the resting forces in the equations of motion, the algorithm cannot provide 

very accurate results for highly nonlinear structures. However, as long as the analyzed structure 

does not exhibit severe geometric nonlinearities; the generalized-alpha-OS method is a very 

attractive integration scheme for hybrid simulation. 

The possible loss of the unconditional stability of the generalized-alpha-OS method in 

combination with the corotational geometric transformation is illustrated next. To evaluate the 

positive semi-definiteness of δ = −i tK K K , the initial and tangent stiffness matrices of a simple 

elastic cantilever column element employing the corotational transformation are determined first. 

The stiffness matrix of the frame element in the local coordinate system is derived as follows. 

 ( )
T

T T∂ ∂ ∂= = = +
∂ ∂ ∂

l
l b

l l l

p ak a q a k a q
u u u

 (4.73) 

where the compatibility matrix a  and the elastic element stiffness matrix bk  in the basic 

coordinate system are given by formulas (4.74). In these formulas lu  and lp  are the element 

displacements and forces in the local coordinate system, bu  and q  are the element deformations 

and forces in the basic coordinate system, α  is the chord rotation, and nL  is the chord length in 

the deformed configuration. 



 

  123

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

cos sin 0 cos sin 0

sin cos sin cos
1 0

sin cos sin cos
0 1

0 0

4 20

2 40

n n n n

n n n n

L L L L

L L L L

EA
L

EI EI
L L
EI EI
L L

α α α α

α α α α

α α α α

⎡ ⎤
− −⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b

a

k

 (4.74) 

Furthermore, the first part of the local stiffness matrix in (4.73) represents the material 

stiffness and the second part represents the geometric stiffness. These two parts can easily be 

evaluated with any computer algebra system (CAS) such as Mathematica (Wolfram) or Maple 

(Maplesoft). However, the resulting 6x6 stiffness matrix gets quite involved and is therefore not 

shown here. For the elastic cantilever column (see Fig. 4.18a), which is used in this example, the 

three fixed degrees of freedom at the base do not enter into the equations of motion, and the local 

initial and tangent stiffness matrices reduce to 3x3 matrices. The tangent stiffness matrix is still 

quite complicated and is therefore also not shown here, but for the chord rotation 0α =  and the 

chord length nL L= , the following initial stiffness matrix is obtained. 

 , 3 2

2

0 0

12 60

6 40

EA
L

EI EI
L L
EI EI
L L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

l ik  (4.75) 

Next the positive semi-definiteness of δK  is evaluated by determining its eigenvalues. 

In order to obtain a closed-form solution of the smallest eigenvalue, the special case of the 

elastic, corotational truss without loads is considered first ( 1 2 3 0EI q q q= = = = ). The smallest 

eigenvalue is given by the following expression. 

 ( )min sinEA
L

λ α= −  (4.76) 
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Since the smallest eigenvalue is negative, δK  is no longer positive semi-definite. Thus, 

the generalized-alpha-OS method is rendered conditionally stable. 

Similar results can be obtained numerically if a pushover analysis is performed, where 

the horizontal displacement ,5lu  is prescribed at the tip of the elastic cantilever column, which is 

loaded in compression by a constant vertical force P . As can be seen from Fig. 4.18b, one of the 

three eigenvalues is negative and decreasing with increasing drift. This again makes δK  

negative definite and renders the generalized-alpha-OS method conditionally stable. Fig. 4.18c 

and d show the local forces at the tip of the cantilever and the axial force, respectively. Because 

the smallest eigenvalue turns negative from the beginning of the pushover analysis, the 

generalized-alpha-OS method remains conditionally stable even for the analysis of a cantilever 

column that exhibits a softening material behavior after the initial elastic regime. 
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Fig. 4.18  Pushover analysis of elastic cantilever column with corotational geometric 
transformation: (a) geometry, (b) eigenvalues, (c) tip forces, (d) axial force. 
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4.4.6 Modified Generalized-Alpha-OS Method (GaOS2) 

To improve on the deficiency that the generalized-alpha-OS method can become conditionally 

stable when analyzing structural models that account for large-displacement geometric 

nonlinearities, it is suggested to use a mixed stiffness matrix instead of the initial stiffness matrix 

to approximate the resisting forces. The mixed global stiffness matrix is assembled from the 

tangent stiffness matrices of the analytical elements and the initial or if available tangent stiffness 

matrices of the experimental elements. Using the mixed global stiffness matrix, the internal 

resisting forces on the left-hand side of the equilibrium equations in (4.63) are now approximated 

as follows. 

 ( ), ,f f f fi i i iα α α α+ + + +≅ − −r m m rP K U K U P% %  (4.77) 

The mixed stiffness matrix is evaluated at the predictor displacements 1i+U%  or 
fi α+U%  

depending on the employed generalized quadrature rule. This means that the Jacobian is no 

longer constant and needs to be evaluated once per time step, increasing the computational cost 

of the algorithm. 

 
Fig. 4.19  Approximation of nonlinear resisting force using Km . 

Substitution of (4.77) into the balance Equation (4.63) leads to the following approximate 

equilibrium equations. 

 ( ) , ,m f f f f f fi i i i i i iα α α α α α α+ + + + + + ++ + − + = −m r 0M U CU K U U P P P&& & % %  (4.78) 

The rest of the algorithm remains unchanged from the previously described one, and thus, 

the modified generalized-alpha-OS integration method can be summarized as pseudo-code as 

shown below in Fig. 4.20. 
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Fig. 4.20  Modified generalized-alpha-OS (GαOS2) method. 

To demonstrate the improved stability of the modified generalized-alpha-OS method, a 

cantilever column is analyzed using the large-displacement, corotational geometric 

transformation. As can be seen from Fig. 4.21a, the model consists of two force-beam-column 

elements of equal length. Since mass is assigned only to the two translational degrees of freedom 

at the top of the column, the global mass matrix of the model is singular with rank of two. The 

fundamental period of the cantilever column is 1.321 sec and damping is assumed to be 5% of 

critical. Before the model is subjected to the 1978 Tabas near-fault ground motion scaled to a 

pga of 0.378 g , the cantilever column is loaded in compression by a constant vertical gravity 

load of 5kipP = . The structure is analyzed using an integration time-step size of int 0.01sectΔ = , 

which is equal to the time increment of the ground acceleration record. 

As can be seen from Fig. 4.21b and Fig. 4.22b, the displacement response of the 

cantilever column, analyzed by the generalized-alpha-OS method, starts growing without bounds 

at approximately 6.5 sec into the simulation. Therefore, it becomes unstable. On the other hand, 

the displacement response of the cantilever column, analyzed by the modified generalized-alpha-

OS method, remains bounded and accurate for the entire ground motion analysis. This is due to 
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the improved stability characteristics of the algorithm, which is achieved by using a mixed global 

stiffness matrix. By comparing Figures 4.21 and 4.22, it can also be observed that the same 

general behavior is attained for both the cantilever column with the linear-elastic material 

behavior and the one with the nonlinear material behavior. 
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Fig. 4.21  Cantilever column response for linear-elastic material behavior and nonlinear, 
corotational transformation: (a) model, (b) GαOS1, (c) GαOS2. 
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Fig. 4.22  Cantilever column response for nonlinear material behavior and nonlinear, 
corotational transformation: (a) model, (b) GαOS1, (c) GαOS2. 
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4.4.7 Accuracy: Numerical Dissipation and Dispersion 

In structural dynamics, it is often more useful to introduce different accuracy measures than local 

truncation error. Accuracy measures, in terms of numerical dissipation and dispersion, are 

preferred. According to Hughes (2000), for a linear-elastic, damped single-degree-of-freedom 

system in free vibration, the discrete solution of the numerical methods can be put into a form 

similar to the exact solution. 

 ( ) ( ) ( )( )cos sinn t
D Du t e A t B tξ ω ω ω−= +  (4.79) 

where 21D nω ω ξ= − . In the above formula, ξ  and nω  are the algorithmic counterparts 

of the damping ratio and the circular frequency of the exact solution, respectively. ξ  is called 

the algorithmic or numerical damping ratio (a measure for dissipation) and ( ) /T T T−  is referred 

to as the relative period error (a measure for dispersion). Since it is difficult to obtain analytical 

expressions of these accuracy measures for most numerical schemes, they are obtained from 

simulation results instead. Thus, free vibration tests of a linear-elastic single-degree-of-freedom 

system are performed for all the direct integration methods in order to determine their numerical 

dissipation and dispersion properties. The SDOF system has a period of 1secT =  and is excited 

by an initial displacement of 1 in.=0U  and an initial velocity of 0 in. / sec=0U& . 

Figures 4.23–4.26 present the displacement responses of the free vibration solutions for 

one specific normalized integration time step of / 0.1t TΔ = . The first figure in this series 

provides a comparison of the displacements for the discussed direct integration methods. As can 

be seen, the explicit Newmark method and the explicit generalized-alpha methods shorten 

periods, whereas all the implicit methods including the operator-splitting methods lengthen 

periods. Furthermore, it can be observed how the class of generalized-alpha methods provides 

the means of introducing user-adjustable, algorithmic energy dissipation by specifying the 

spectral radius ρ . 

Fig. 4.24 shows the free vibration solutions generated by the explicit generalized-alpha 

method for a range of spectral radii bρ  at the bifurcation frequency. For 1.0bρ = , no algorithmic 

damping is introduced and the solution is identical to the one obtained by the explicit Newmark 

method. On the other hand, for 0.0bρ = , the integration scheme achieves asymptotic 

annihilation, providing maximal algorithmic damping. This means that depending on the chosen 

integration time step, any high-frequency response is almost annihilated in a single time step. 
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This high-frequency dissipation of the explicit generalized-alpha method is very useful when 

analyzing structures where constraints are enforced by the penalty method. 
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Fig. 4.23  Free vibration solutions for direct integration methods. 
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Fig. 4.24  Free vibration solutions for explicit generalized-alpha (EGα) method. 
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Fig. 4.25  Free vibration solutions for implicit Newmark (INM1) method. 

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

Free Vibration Solutions for IGα2 and GαOS1,2 (Δt/T
n
 = 0.1)

 

 

ρ∞ = 1.0

ρ∞ = 0.8

ρ∞ = 0.4

ρ∞ = 0.2

ρ∞ = 0.1

ρ∞ = 0.0

 
Fig. 4.26  Free vibration solutions for implicit generalized-alpha (IGα2) method. 

The displacement responses of the modified implicit Newmark method for different 

values of the increment reduction factor θ  are shown in Fig. 4.25. It can be seen that the free 

vibration solutions lose some accuracy with the reduction of the increment reduction factors. 
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Fig. 4.26, the last in this series, presents the displacement responses for the constant 

number of iterations implicit generalized-alpha method and the generalized-alpha-OS methods, 

which are identical for linear-elastic systems. Similar to the explicit method, no algorithmic 

damping is introduced when 1.0ρ∞ =  and the two integration schemes produce equivalent 

solutions to the implicit Newmark method. For 0.0ρ∞ = , the algorithms again reach asymptotic 

annihilation, thereby introducing maximal algorithmic damping in the high-frequency modes 

while minimizing energy dissipation in the low-frequency modes. As the explicit generalized-

alpha method, these two integration schemes are thus well suited when constraints are enforced 

by the penalty method. 

The next three figures present comparisons of the two accuracy measures, that is, the 

algorithmic damping ratios and the relative period errors, for all the discussed direct integration 

methods. Fig. 4.27 provides a comparison among the different schemes. 
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Fig. 4.27  Algorithmic damping ratios and relative period errors for direct integration 

methods. 
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It can be seen that both the explicit and the implicit Newmark methods provide zero 

algorithmic energy dissipation in all the modes. In contrast, the generalized-alpha methods 

provide user-adjustable amounts of algorithmic damping for spectral radii 1.0ρ < . Furthermore, 

since the explicit generalized-alpha method is conditionally stable, the numerical damping ratios 

increase more rapidly as the stability limits are approached, than for the implicit generalized-

alpha and the generalized-alpha-OS schemes. As can be seen from the second graph in Fig. 4.27, 

all the algorithms exhibit some relative period error. The explicit Newmark method and the 

explicit generalized-alpha methods generally shorten the periods, and the implicit methods 

elongate the periods. 
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Fig. 4.28  Algorithmic damping ratios and relative period errors for explicit generalized-
alpha (EGα) method. 

Fig. 4.28 above, presents the numerical damping ratios and the relative period errors of 

the explicit generalized-alpha method for different values of the spectral radius bρ . The 
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algorithmic energy dissipation increases from zero when 1.0bρ =  to the maximal value when 

0.0bρ = . As can be seen from the second part of Fig. 4.28, both period shortening and 

elongation can occur, depending on the spectral radius bρ . As pointed out by Hulbert and Chung 

(1996), period errors are minimized in the low-frequency domain at an approximate spectral 

radius of 0.3665bρ ≅ . 

Finally, for the implicit generalized-alpha and the generalized-alpha-OS methods, Fig. 

4.29 shows the algorithmic damping ratios and the relative period errors versus the normalized 

integration time step, for a range of spectral radii ρ∞ . As with the related explicit method, the 

algorithmic energy dissipation increases from zero when 1.0ρ∞ =  to the maximal value when 

0.0ρ∞ = . On the other hand, the integration schemes elongate periods for all values of the 

spectral radius ρ∞ . The most accurate response is obtained for 1.0ρ∞ = , which is equivalent to 

the implicit Newmark method, but does not provide any algorithmic energy dissipation. 
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Fig. 4.29  Algorithmic damping ratios and relative period errors for implicit generalized-
alpha (IGα) and generalized-alpha-OS (GαOS) methods. 
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All of the direct integration methods that have been presented above and that are 

summarized in the next subsection have been implemented in the Open System for Earthquake 

Engineering Simulation, OpenSees (McKenna 1997), finite element software and are available to 

users to solve the equations of motion when performing hybrid simulations. 
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4.4.8 Summary of Special Requirements 

Table 4.3  Summary of special requirements for direct integration methods. 

Requirement ENM EGα INM1 INM2 IGα1 IGα2 GαOS1 GαOS2 

1. 2p ≥  accurate 2p =  2p =  2p =  2p =  2p =  (1) 2p =  (1) 2p =  (1) 2p =  (1) 

2. few function calls per tΔ  1 1  maxk   maxk  1 1 

3. unconditionally stable       (2) (3) 

4. constant ,expelk  na na       

5. algorithmic damping         

6. strictly incr./decreasing ΔU  na na     na na 

7. uniform ΔU  na na     na na 

8. real-time compatible         

 Notes: (1) acceleration is 1p =  accurate 

  (2) only if δ = −i tK K K  is positive semi-definite 

  (3) only if δ = −m tK K K  is positive semi-definite 
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4.5 RUNGE-KUTTA METHODS 

Runge-Kutta methods belong to the class of one-step methods. This implies that only the current 

solution state at time it  is required to calculate the new solution at it t+ Δ . As mentioned earlier, 

these solution schemes are designed to solve first-order ordinary differential equations, which 

require that higher-order differential equations, like the equations of motion, need to be 

transformed into a system of first-order differential equations before the Runge-Kutta methods 

can be applied. They are essentially always stable and can be either explicit or implicit. The 

objective of Runge-Kutta methods is to build a series of s stages  approximating the vector 

function ( , )tf y  between it  and 1it + , and then use a linear combination of those stages to advance 

the numerical solution to the new time step 1it + . 

The system of first-order ordinary differential equations to which the Runge-Kutta 

methods are applied is an initial value problem that has the following form. 
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 (4.80) 

After Runge (1895) and Heun (1900) constructed numerical schemes based on the Euler 

method, it was Kutta (1901) who formulated the generalized scheme of what is now known as 

the Runge-Kutta method. This method has s stages  and is expressed in the following manner. 
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An alternative form for fully implicit Runge-Kutta equations, which is numerically 

advantageous for implementation, takes the following form. 
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where [ ]mna=A  and 1ˆ T T −=b b A . Because A  needs to be nonsingular for inversion, this 

form of the equations is possible only for fully implicit methods. Finally, it is customary to 

symbolize Runge-Kutta methods by the Butcher array as follows. 
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 T

c A
b

 (4.83) 

As explained earlier the second-order equations of motion have to be transformed into a 

system of first-order differential equations, which is repeated here for convenience. 
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where ( ) ( ){ },
T

t t=y U U&  is a stacked vector containing the structural displacements and 

velocities. 

4.5.1 Explicit Methods (ERK) 

For explicit Runge-Kutta methods, A  is strictly lower triangular ( 0mna =  n m∀ ≥ ) and 

Equation (4.84) is simply evaluated at different arguments. Unfortunately, all of these explicit 

algorithms need to invert the mass matrix M  so that they cannot be used to analyze structural 

problems with singular mass matrices. In addition, none of the ERK methods are A-stable. 

Several popular ERK methods including their Butcher arrays are summarized next. 

Runge (ERK2): 
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 (4.85) 

The explicit Runge method is consistent and accurate of order 2p = , satisfying 

requirement 1. Since this scheme has two stages, it requires two function calls per time step. This 

means that one additional function call per time step is needed as compared to any of the 

previously discussed second-order explicit direct integration methods. 
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Heun (ERK3): 
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The explicit Heun method is consistent and accurate of order 3p = , and thus, satisfies 

requirement 1. The method requires three function calls per time step. Since it is more accurate 

than any of the direct integration methods, it is an excellent alternative. 

Runge-Kutta 3/8 Rule (ERK4b): 
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 (4.87) 

The explicit 3/8 Rule is consistent and accurate of order 4p = , satisfying requirement 1. 

According to the four stages, the method also requires four function calls per time step. 

However, the last stage determines an approximation for the derivative at the end of the current 

time step, and the first stage determines an approximation for the derivative at the beginning of 

the new time step. This means that the resisting forces are acquired twice at time 1it + , which is 

not ideal for generating strictly increasing or decreasing and uniform displacement increments as 

stated by requirements 6 and 7. 

To investigate the continuity and uniformity of the displacement command signals that 

are imposed on the experimental parts of a structure, a two-degrees-of-freedom, one-bay-frame 

model is analyzed by the different explicit Runge-Kutta integration methods. The one-bay-frame 

model is equivalent to the one that was used for the rapid geographically distributed hybrid 
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simulations (see Chapter 6). It is defined by two column elements that are connected by a fairly 

flexible linear-elastic truss element. The left nonlinear column is tested experimentally, while the 

right linear-elastic column is modeled analytically. Only material nonlinearities are considered in 

this model, meaning that geometric nonlinearities due to axial forces are ignored. Fig. 4.30 

shows close-ups of the displacement command signals at the controlled degree of freedom of the 

experimental element over three integration time steps for the different ERK methods. 
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Fig. 4.30  ERK convergence comparison for one-bay-frame model. 

As can be seen from the plots, the second-order Runge method and the third-order Heun 

method produce very smooth and uniform displacement commands. On the other hand, the 

command displacements of both fourth-order methods are neither strictly increasing nor uniform. 

According to the time increment vector { }0, 1 2, 1 2, 1T =c , the classic-RK method generates 

double displacement commands twice at 1 2it +  and 1it + , while the 3/8-rule method with 

{ }0, 1 3, 2 3, 1T =c  does so only once at 1it + . Due to the order conditions, any explicit Runge-
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Kutta scheme of order 4p ≥  requires the two stages at it  and 1it + . This means that displacement 

commands are inevitably generated and sent to the experimental portions of the structure twice at 

the same time instance 1it + . Because of this, these higher-order explicit Runge-Kutta methods 

should not be used for hybrid simulation. However, for the analysis of purely analytical 

structures such methods are compelling numerical integration schemes due to their improved 

accuracy. 

Finally, the preferred explicit Runge-Kutta method for hybrid simulation is summarized 

as pseudo-code in Fig. 4.31. The implementation simply consists of the evaluation of the three 

stages according to Equations (4.86), for each time step. 
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Fig. 4.31  Explicit third-order Heun (ERK3) method. 

4.5.2 Implicit Methods (IRK) 

Since the mass matrix is often singular in structural dynamics problems, meaning that explicit 

Runge-Kutta methods cannot be applied, implicit Runge-Kutta methods that can circumvent this 

problem are discussed next. First several IRK methods are summarized including their Butcher 

arrays. Afterwards, the derivation of the implicit Runge-Kutta methods applied to the equations 
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of motion is explained in terms of the 2-stage Gauss method. All the other lower-order implicit 

methods follow the same derivation. 

Midpoint Rule (IRK2a): 
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 (4.88) 

The implicit midpoint rule is consistent and accurate of order 2p = , and thus, satisfies 

requirement 1. Since this method consists of only one stage, the number of function evaluations 

per time step is equal to the number of iterations necessary to achieve convergence. 

Trapezoidal Rule (IRK2b): 
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 (4.89) 

Like the implicit midpoint rule, the implicit trapezoidal rule is also consistent and 

accurate of order 2p = . It therefore satisfies requirement 1. However it consists of two stages 

instead of one, which means that it requires twice as many function evaluations per time step as 

the implicit midpoint method. It should be noticed that with some algebraic manipulation it is 

possible to show that the implicit trapezoidal rule is equivalent to the implicit Constant-

Acceleration Newmark method. 

 ( ) ( )( )
1

1 1 1 1
1 , 1 1 1

, i
i i i

i i i i

t +
+ + + −

+ + + +

⎧ ⎫⎪ ⎪= = ⎨ ⎬− − −⎪ ⎪⎩ ⎭0 r

U
y f y

M P P CU P U

&
&

&
 (4.90) 

From the second formula in (4.90), the equilibrium equations at time 1it +  are recovered. 

 ( )1 1 1 1 , 1i i i i i+ + + + ++ + = −r 0M U CU P U P P&& &  (4.91) 

Because the second stage is equal to ( )2 1 1,i it + +=k f y , substitution of =y f&  into the 

implicit trapezoidal rule (4.89) yields the following expression. 
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These two equations are obviously equivalent to Newmark’s finite difference formulas 

(4.13) with 1 4β =  and 1 2γ = . 

2-Stage Radau IA (IRK3): 
The Radau IA methods are based on the left Radau quadrature formulas. This makes these 

algorithms order 2 1s −  accurate. The 2-stage scheme is defined as follows. 
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The implicit 2-stage Radau IA scheme is consistent and accurate of order 3p = , and thus 

satisfies requirement 1. 

2-Stage Gauss (IRK 4): 
The fourth-order Hammer-Hollingsworth scheme belongs to the class of methods that is based 

on the Gaussian quadrature formulas, which implies that 1.. sc c  are the zeros of the shifted 

Legendre polynomials of degree s  and the order of accuracy is 2s . 
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The implicit 2-stage Gauss scheme is consistent and accurate of order 4p = , and thus 

satisfies requirement 1. Since this is an implicit algorithm with a nonsingular matrix A , 

Equations (4.94) are next transformed into form (4.82), to reduce the influence of round off 

errors. From the two stages, the following system of nonlinear equations, with unknowns z , is 

obtained. 
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In order to solve such a system of nonlinear equations for the unknown stages z , the 

well-known iterative Newton-Raphson algorithm is employed once again. 

 ( ) ( )( ) ( ) ( )k k kDF FΔ = −z z z  (4.96) 

In Equation (4.96), the inverse of the mass matrix remains present. Therefore, lines 2 and 

4 are left-multiplied by the mass matrix, which produces the following Jacobian. 
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With all the parts of Equation (4.96) available, the iterations can be initialized from 

{ }( 1)k = =z 0 , which is a starting vector that is sufficiently close to the actual solution. Utilizing 

tensor products, the Newton-Raphson iterations can be summarized as follows. 
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 (4.98) 

As with any iterative method, the Jacobian matrix can be updated at every iteration or at 

the beginning of a time step, or kept constant at the initial value throughout the whole nonlinear 

dynamic analysis. Furthermore, it is possible to perform only a single Newton iteration, which is 

comparable to a linear implicit method. Once the iteration process on the linear system of 

Equation (4.98) has converged for time step 1it + , the response quantities such as displacements, 

velocities, and accelerations are updated according to Equation (4.99). Finally, the repetition of 

this procedure for the total number of N time steps, with Newton-Raphson iterations in each such 

step, yields the sought solution. The implicit 2-stage Gauss method is summarized as pseudo-

code in Fig. 4.32. 



 

  144

 

1

1

1

1

ˆ
s

n n
n

i i

i i

i i

b

t

=

+

+

+

Δ =

= + Δ

= + Δ
Δ= +
Δ

∑
1

2

2

y z

U U y

U U y
yU U

& &

&& &&

 (4.99) 

{ }

( )
{ }

( )
( )

( )

( )

1

1

2

2

0 0 0

0 0 0

( 1)

( )

1 1

11 1( ) ( )

21 1

1 2

12 1( )

22

:
, ,

,

:
0, ,

,
1: 4,1: 2

,

,

T

k

k

st
i i

i c ik k

i c i

nd
i i

i c ik

i c

Initialize

Analyze
for i i N i

do
F

(1 stage)

a t
F t DF

a t

(2 stage)

a t
F t

a t

=

+

+ +

+ +

+

+ +

+

=

= < + +

=

= −
= +

⎧ ⎫⎪ ⎪+ = Δ ⎨ ⎬
⎪ ⎪⎩ ⎭

= +

+ = Δ

U U U

y U U

z 0

z
y y z

f y

f y

y y z

f y

f

& &&

&

( )
( )

( )

( )

1

( ) ( ) ( ) ( )

( 1) ( ) ( )

1 1 2 2

1

1

1

1: 4,3 : 4
,

( ; )
ˆ ˆ

k

i

k k k k

k k k

i i

i i

i i

DF

solve DF F

while criterion tol k

b b

t
end

+

+

+

+

+

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

Δ = Δ =

= + Δ
> + +

Δ = +
= + Δ

= + Δ
Δ= +
Δ

1

2

2

y

z z

z z z

y z z
U U y

U U y
yU U

& &

&& &&

 

Fig. 4.32  Implicit 2-stage Gauss (IRK4) method. 

The continuity and uniformity of the displacement commands, which are generated 

during the iteration process, are again investigated by analyzing the two-degrees-of-freedom, 
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one-bay-frame model employing the different implicit Runge-Kutta integration methods. Fig. 

4.30 shows close-ups of the displacement command signals at the controlled degree of freedom 

of the experimental element over three integration time steps for the different IRK methods. 
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Fig. 4.33  IRK convergence comparison for one-bay-frame model. 

As can be seen from the plots, none of the implicit Runge-Kutta methods produce strictly 

increasing and uniform displacement commands, violating both hybrid simulation requirements 

6 and 7. In fact, all the implicit methods with two or more stages generate widely oscillating 

displacement increments during iteration. These oscillations occur because each stage is 

evaluated at a different time increment. So in every iteration, displacements are calculated at all 

the different 
mi ct + . This means that all the implicit Runge-Kutta methods with two or more stages 

cannot be used for hybrid simulation. In addition, due to the nonuniform displacement 

increments, the 1-stage midpoint-rule should be used for hybrid simulation only in combination 

with specialized event-driven algorithms, as it is the case for the INM1 direct integration method. 
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However, as with the higher-order ERK methods, the IRK methods are very compelling 

numerical integration schemes for the analysis of purely analytical structures because of their 

higher orders of accuracy. 

4.5.3 Rosenbrock Methods (RRK) 

In the previous section, it was shown that implicit Runge-Kutta methods cannot be used to 

perform the dynamic analysis in hybrid simulation because they need to solve the resulting 

nonlinear equations by Newton iteration. Thus, a different class of integration schemes, called 

Rosenbrock methods, is investigated next. Rosenbrock methods are a generalization of Linear-

implicit Runge-Kutta methods that replace the nonlinear system of equations by a sequence of 

linear systems. They incorporate the Jacobian directly into the algorithm instead of evaluating it 

during the iteration process. 

For nonautonomous problems, like the ones in structural dynamics, the general s stage−  

Rosenbrock method is defined as follows (Hairer and Wanner 2002). 
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where the additional coefficients are given by 
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Similarly to Singly diagonally implicit Runge-Kutta (SDIRK) methods, Rosenbrock 

schemes with mm mα α= ∀  are of special interest and can be expressed as follows. 
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As with the IRK methods, lines 2 and 4 are again left-multiplied by the mass matrix to 

eliminate the inversion of such a matrix and make the schemes applicable to problems with 
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singular mass matrices. In the above equations, the derivatives of the function f  with respect to 

time t  and to the solution vector y  are approximated by the following expressions. 
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The Rosenbrock methods are symbolized by the following modified Butcher array. 
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2-Stage Rosenbrock (RRK2): 
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Once the parameter 1 2 2α = −  is determined from the requirement that the 

Rosenbrock method should be L-stable, the remaining parameters are chosen such that all the 

order conditions for second-order accuracy are satisfied (Kaps & Wanner 1981). The L-stable, 2-

stage Rosenbrock method is thus consistent and accurate of order 2p = , satisfying requirement 

1. 

3-Stage Rosenbrock (RRK3): 
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The parameter 0.4358665215α =  is again determined from the requirement that the 

Rosenbrock method should be L-stable. While most of the other parameters can subsequently be 

determined from the order conditions for third-order accuracy, 31a  and 32a  remain free to choose 
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as long as their sum is equal to 3c . It was found that for 31 2 3a =  and 32 0a =  the L-stable, 3-

stage Rosenbrock method produces the smoothest displacement commands. The remaining 

parameters then take the following values: 21 0.1817534184α = , 31 -0.3760889857α = , and 

32 -0.2050663764α = . The L-stable, 3-stage Rosenbrock method is consistent and accurate of 

order 3p = , satisfying requirement 1. 
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Fig. 4.34  2-stage Rosenbrock (RRK2) method. 

The implementation of these two Rosenbrock methods requires, at each stage, the 

solution of a linear system of equations with matrix , ytα− ΔI f , which is updated at the 

beginning of each time step. The second-order method is summarized as pseudo-code in Fig. 

4.34. The implementation of the third-order method follows the same pattern. 
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The continuity and uniformity of the displacement commands, which are generated 

during the iteration process, are again investigated by analyzing the two-degrees-of-freedom, 

one-bay-frame model employing the different Rosenbrock integration methods. Fig. 4.35 shows 

close-ups of the displacement command signals at the controlled degree of freedom of the 

experimental element over three integration time steps for the different RRK methods. 
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Fig. 4.35  RRK convergence comparison for one-bay-frame model. 

The two plots on the top show the displacement commands, as received by the 

experimental column, for the two proposed Rosenbrock methods. For both the second- and the 

third-order schemes, the command signals are strictly increasing and very smooth. The two plots 

on the bottom of Fig. 4.35 show the displacement commands for two other choices of the free 

parameters 31a  and 32a  in the third-order method. Even though the command signals are still 

strictly increasing, the increments are clearly not as uniform as for the proposed set of 
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parameters. The two discussed Rosenbrock methods both satisfy requirements 6 and 7, and thus, 

are excellent integration schemes for hybrid simulation. 

4.5.4 Stability 

Since Runge-Kutta methods are one-step schemes they are essentially always stable. This means 

conditionally stable as long as a small enough time step is selected or unconditionally stable. 

However, the following concepts that are described next are utilized to investigate the extent of 

their stability. 

A-Stability: 
An initial value problem is A-stable if the region of absolute stability includes the entire left-half 

plane. This means that there are no stability restrictions for the test equation y yλ=&  

( )Re 0, 0tλ∀ < Δ > . This is comparable to unconditional stability for direct integration 

methods. For Runge-Kutta methods, the stability function ( )R z  (which determines the region of 

absolute stability, RAS: ( ) 1R z < ) can be found from the following equations. 

 
( ) ( )
( ) ( )

1

1

1 ( , )

1 ( )

T

T

R z z z ERK IRK

R z z z RRK

−

−

= + −

= + −

b I A e

b I B e
 (4.107) 

where z t λ= Δ , e  is a column vector of all ones and [ ]mn mna α= +B . 

L-Stability: 
A method is L-stable if it fulfills the following conditions: (1) it must be A-stable and (2) the 

limit of the stability function must approach zero as z approaches infinity. 

 ( )lim 0
z

R z
→∞

=  (4.108) 

L-stable methods have the important property that they damp out the transient phases of 

the stiff components very rapidly. This stability requirement is thus comparable with the 

requirement that an integration scheme should provide some algorithmic damping, which was 

postulated for the direct integration methods. 
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B-Stability: 
Finally, for implicit Runge-Kutta methods the stability of nonlinear differential equations is 

determined by the B-Stability property. Runge-Kutta methods are B-stable if they are 

algebraically stable. For algebraic stability, the following two matrices have to be positive semi-

definite. 

 
( )

T T

B diag b
M BA A B bb

=
= + −

 (4.109) 

Regions of Absolute Stability (RAS): 

Euler (ERK1): 
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Fig. 4.36  Regions of Absolute Stability (RAS) for ERK methods. 
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2-Stage Radau IA (IRK3): 
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Fig. 4.37  Regions of Absolute Stability (RAS) for IRK methods. 
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Fig. 4.38  Regions of Absolute Stability (RAS) for RRK methods. 

4.5.5 Accuracy: Numerical Dissipation and Dispersion 

As with the direct integration methods, the accuracy of the Runge-Kutta integration schemes is 

again evaluated in terms of the two measures, numerical dissipation and dispersion. Once again 

these accuracy measures are obtained from simulation results. Thus, free vibration tests of a 

linear-elastic single-degree-of-freedom system are performed for all the Runge-Kutta methods, 

in order to determine their numerical dissipation and dispersion properties. The SDOF system 

has a period of 1secT =  and is excited by an initial displacement of 1 in.=0U  and an initial 

velocity of 0 in. / sec=0U& , meaning that { }0 1, 0 T=y  becomes the starting vector for all the 

Runge-Kutta methods. 

The next figure presents comparisons of the two accuracy measures, that is, the 

algorithmic damping ratios and the relative period errors, for the relevant Runge-Kutta 

integration methods. It can be seen that the third-order ERK3 method provides a large amount of 

algorithmic energy dissipation in the mid-frequency modes and shortens the modes over the 

whole frequency range. The fourth-order ERK4 method provides no numerical damping in the 

low-frequency modes but the amount of algorithmic damping increases rapidly for the high-

frequency modes. In addition, the scheme is very accurate within the stability limits, meaning 

that the relative period errors are small. The ERK4 method elongates the low-frequency modes 

and shortens the high-frequency modes. For the implicit Runge-Kutta methods, the second-order 

ERK2a method achieves the same accuracy as the second-order implicit Newmark INM method. 
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This means that the scheme provides no numerical energy dissipation and elongates the modes 

over the whole frequency range. It can be seen that this algorithm is less accurate than the 

higher-order methods, since it elongates periods significantly more. The third-order IRK3 

integrator achieves quite low relative period errors while providing the desired algorithmic 

energy dissipation in the high-frequency modes because of the algorithms L-stability. It is 

obvious that the fourth-order IRK4 method is the most accurate among the discussed schemes 

but unfortunately does not provide any numerical energy dissipation to damp out high-frequency 

oscillations. Finally, the second- and third-order Rosenbrock methods achieve good accuracy 

with relatively small period errors and the desired algorithmic damping in the high-frequency 

modes due to their L-stability. 
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Fig. 4.39  Algorithmic damping ratios and relative period errors for Runge-Kutta methods. 
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All of the Runge-Kutta methods that have been presented above and that are summarized 

in the next subsection have so far only been implemented utilizing Matlab (Mathworks). 

However, there are plans to implement these Runge-Kutta methods into the OpenSees finite 

element software in the near future. 
 



 

 

4.5.6 Summary of Special Requirements 

Table 4.4  Summary of special requirements for Runge-Kutta integration methods. 

Requirement ERK3 ERK4b IRK2a IRK2b IRK3 IRK4 RRK2 RRK3 

1. 2p ≥  accurate 3p =  4p =  2p =  2p =  3p =  4p =  2p =  3p =  

2. few function calls per tΔ  3 4     2 3 

3. unconditionally stable         

4. constant ,expelk  na na       

5. algorithmic damping         

6. strictly incr./decreasing ΔU          

7. uniform ΔU          

8. real-time compatible         
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4.6 SUMMARY 

A wide range of integration methods and their applicability to hybrid simulation were presented 

in this chapter. Both the class of direct integration methods and the class of Runge-Kutta 

methods were investigated. After a brief introduction to the spatial and time discretization of the 

structural dynamics problem, special integration scheme properties required for the reliable, 

accurate and fast execution of hybrid simulations were introduced. It has been shown that 

explicit, noniterative methods are well suited for hybrid simulation and easy to implement, as 

long as it is possible to satisfy their stability limits. On the other hand, it has been demonstrated 

that unconditionally stable implicit methods should be used only for hybrid simulation under one 

of two conditions. Either the number of iterations in the equilibrium solution algorithms can be 

fixed at a constant value, or the event-driven algorithms described in the next chapter need to 

adjust the time interval over which the displacement increments are imposed during simulation. 

In addition, two special types of integration schemes, namely the operator-splitting and the 

Rosenbrock methods, were discussed. These types of schemes are capable of providing 

unconditional stability without the need for iterative equilibrium solution processes. For the 

operator-splitting schemes the generalized-alpha-OS and the modified generalized-alpha-OS 

methods were newly introduced. It has also been shown that for hybrid simulation the integration 

schemes should preferably provide some amount of algorithmic energy dissipation in the high-

frequency modes to damp out any spurious oscillations that might get excited by experimental 

errors. Finally, the integration methods have been summarized in form of pseudo-code to assist 

with the implementation into software. 

 



 

 

5 Event-Driven Strategies in Hybrid Simulation 

5.1 INTRODUCTION 

In the finite element analysis approach to hybrid simulation there are three key components 

required to perform experimental tests. The previous chapter focused on the first key component, 

the finite element analysis software itself. In particular, specialized time-stepping algorithms and 

their application to hybrid simulation were investigated. The second key component is the 

middleware that allows any finite element analysis software to be connected to a laboratory, and 

which was discussed in detail in Chapter 3. Consequently, this chapter is concerned with 

investigating methods and strategies for the third key component, meaning the control and data-

acquisition systems in a laboratory. 

Today’s state of the art servo-hydraulic control systems, which are part of the third key 

component, run at sampling rates of the order of 1 kHz and above. This means that for the signal 

generation of the actuator commands, new displacement values are required at very short, 

deterministic time intervals. On the other hand, the numerical integration of the equations of 

motion, which is performed in the finite element analysis software, can be very time consuming. 

In addition, the computation times required to advance the numerical solutions to the next step 

are generally nondeterministic because they depend on events such as yielding, buckling, 

fracture, or collapse of structural elements. Hence, the computational driver and the servo-

hydraulic control system run at different time rates, where the former is nondeterministic and the 

latter is deterministic. However, it is possible to synchronize these two processes by placing a 

predictor-corrector algorithm between the computational driver and the servo-hydraulic control 

system. It is important to notice that this synchronization predictor-corrector algorithm is 

implemented on a real-time digital signal processor in the laboratory (as part of the third key 

component) and is therefore not to be confused with integration predictor-corrector methods that 

are utilized to solve the equations of motion. 

The predictor-corrector algorithms that are utilized for synchronization operate as 

follows. While the finite element analysis software is solving the equations of motion for the trial 
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displacements at the next integration time step, the predictor-corrector algorithm generates 

displacement commands for the servo-hydraulic control system (at such system’s deterministic 

time intervals) by forward prediction of the displacement paths. Once the trial displacements at 

the next integration time step or substep are received from the finite element analysis software, 

the predictor-corrector algorithm switches to generating displacement commands (still at the 

control system’s deterministic sampling rate) correcting towards these new targets. As long as 

the computation time, which is required to generate these predicted and corrected displacement 

commands, is shorter than the given sampling time of the servo-hydraulic control system, the 

actuators can be moved continuously, guaranteeing test continuity. 

With the recent development of geographically distributed hybrid simulations, the 

difference in the time rates of the integration and actuator control processes becomes even 

greater due to the additional randomness (nondeterminism) of the network transmission times. 

Thus, previously developed extrapolation-interpolation methods (Nakashima and Masaoka 1999; 

Mosqueda 2003) are no longer ideal. The first problem is that the accuracy of such techniques 

rapidly deteriorates the further out the displacements are predicted. The second drawback is a 

large discrepancy between displacement commands while switching from extrapolation to 

interpolation. This sudden displacement jump prevents the actuators from moving smoothly and 

creates unrealistic velocities in the switching interval. Moreover, extrapolation and interpolation 

procedures are not based on physical laws but rather on pure mathematics. 

To improve the performance of the synchronization predictor-corrector algorithms and to 

reduce or eliminate the aforementioned problems, a range of new predictor-corrector algorithms 

are proposed and discussed in this chapter. In particular, the newly developed algorithms should 

be more accurate than the existing ones, while concurrently reducing or eliminating the 

switching interval inconsistencies. Since some of the proposed predictor-corrector algorithms 

make use of past velocities and past accelerations, in addition to displacements, they depend on 

the integration methods (see Chapter 4), which produce such response quantities. Furthermore, 

several adaptive, event-driven strategies are investigated. These event-driven methods do not run 

synchronously, where operations are coordinated under the centralized control of a fixed-rate 

clock signal, but are executing asynchronously, meaning that no global clock exists and 

simulation time-steps or integration time-steps are adjusted during simulation according to some 

suitable performance criteria. 
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The next section focuses on the review of previous developments. Specifically, the work 

on extrapolation-interpolation methods facilitating continuous testing and the development of the 

three-loop architecture for distributed testing are emphasized. Afterwards, the theory on existing 

and newly proposed predictor-corrector algorithms is presented, including a brief summary of 

advantages, disadvantages, and recommendations for each algorithm. The adaptive, 

asynchronous, event-driven strategies that adjust parameters, such as time steps and actuator 

velocities, over the course of a hybrid simulation are investigated last. 

5.2 PREVIOUS DEVELOPMENTS 

5.2.1 Discontinuous vs. Continuous Hybrid Simulation 

Conventional hybrid simulation testing techniques load the test specimens using a hold and ramp 

procedure. This means that a transfer system imposes the trial displacement commands 

(calculated by the computational driver) on the physical test specimen in a ramp-wise manner. 

Once the transfer system reaches these target displacements, they are held constant until the 

work conjugates (resisting forces) have been measured and the next trial displacement 

commands have been computed (see Fig. 5.1). 

 
Fig. 5.1  Hold and ramp procedure vs. continuous testing procedure. 

Although this procedure permits close observation of the response behavior of a 

structure, it has two major drawbacks. The first problem is that during the hold phase the test 

specimen undergoes force relaxation, which will lead to inaccurate resisting force measurements. 

The second disadvantage is that many new types of structural components, such as base-isolation 
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devices and dampers, have velocity-dependent behavior that a ramp and hold testing procedure 

cannot correctly capture. To deal with these problems two alternative hybrid simulation testing-

methods have been developed. In the method known as continuous testing, the specimen is 

loaded at a slow but continuous rate, which solves the problem of force relaxation. Such 

continuous testing was first achieved by using an implicit integration algorithm and a direct force 

feedback using analog circuits (Thewalt and Mahin 1987). The second method is real-time 

testing, which loads the test specimen continuously at the appropriate velocities (accounting for 

similitude effects) and therefore captures rate-dependent material behaviors (Nakashima et al. 

1992; Horiuchi et al. 1996; Nakashima and Masaoka 1999; Magonette 2001; Shing et al. 2002). 

 
Fig. 5.2  Execution sequence in the case of one single digital signal processor. 

To be able to run tests continuously, or in real time, most of these hybrid simulation 

methods use multi-rate approaches. This implies that both the integration of the equations of 

motion and the generation of displacement command signals are separated because they run at 

different time rates. In Nakashima and Masaoka’s (1999) algorithm, both tasks run on a digital 

signal processor (DSP), which is a real-time processor. Therefore, in order to send uninterrupted 

command signals to the digital control system, the signal generation task (which has higher 

priority), has to execute every millisecond. However, since the signal generation takes less than 

one millisecond, the remaining time is used to solve the equations of motion. This means that 

while the integrator is calculating the trial displacements for the next time step, the DSP is 

switching forth and back between the two tasks; then, once the new trial displacements are 

available, only the signal generation tasks are executed (see Fig. 5.2). The proposed algorithm 
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applies polynomial extrapolation and interpolation using past displacement values to produce the 

command signals for the transfer system. 

5.2.2 Three-Loop Hardware Architecture 

The latest development in hybrid simulation is the geographical distribution of experimental and 

analytical portions of a structure within a network of laboratories and computational sites, a 

method first proposed by Campbell and Stojadinovic (1998). Mosqueda (2003) found that by 

separating the integration of the equations of motion and the signal generation for the transfer 

system onto two machines instead of one, both real-time testing and continuous geographically 

distributed testing is made possible. Furthermore, as can be seen from Fig. 5.3, it is no longer 

necessary to interrupt the response analysis task in order to execute the signal generation task, 

because they run on two different machines. Consequently, since the two processes are executed 

on two separate computers, fast data transfer between those machines is crucial. This is made 

possible by using a shared memory network, which mirrors data almost instantaneously among 

computers. This new three-loop hardware architecture is therefore able to dedicate more 

computation time towards the integration task, which makes it possible to increase the 

complexity of the analytical portions of the hybrid model. 

 
Fig. 5.3  Execution sequence in the case of two machines. 

The three-loops in the new hardware architecture proposed by Mosqueda (2003) host the 

following tasks (see Fig. 5.4): 

1. The outermost loop hosts the computational driver with the integration method as well as 

the OpenFresco middleware framework. In a real-time test, this task is executed at the 
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integration time-step interval, inttΔ , of the computational driver (0.005–0.02 sec). 

However, for geographically distributed testing, such a task has to be slowed down, 

allowing the simulation time-step interval, simtΔ , to be controlled by the network speed 

(up to 3 sec) rather than by the time needed for the calculations. 

2. The innermost loop of the architecture hosts the control and data-acquisition systems with 

their software. Any controller, such as a PID- (Proportional-Integral-Derivative), PIDF- 

(Proportional-Integral-Derivative-Feedforward), SM- (Sliding-Mode) controller etc., can 

be employed to command the actuators of the transfer system. The update rate of many 

such controllers is on the order of 1 kHz or higher, meaning that new command signals 

need to be sent to the actuators at the deterministic controller time-step interval, contΔ . 

3. The intermediate loop hosts the predictor-corrector algorithm that connects the two other 

processes running at different time rates. Similar to Nakashima and Masaoka’s (1999) 

algorithm, it generates sub-step commands for the faster running control system using the 

trial response quantities from the slower running integration operator. The difference lies 

in the implementation of this predictor-corrector algorithm. Since in a geographically 

distributed test random network delays are introduced, Mosqueda (2003) utilizes an 

event-driven algorithm (a finite-state machine) to deal with these uncertainties. 

 
Fig. 5.4  Three-loop hardware architecture. 

The advantage of this complete separation of tasks is its modularity, flexibility, and 

extensibility; thus, different computational drivers can be utilized and developed without concern 

for the synchronization with the control and data-acquisition systems. Similarly, control 
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algorithms can be developed independent of the integration methods. In addition, different 

predictor-corrector algorithms for the synchronization task can be developed. Finally, the 

division also facilitates the distribution of the three processes on three different machines, which 

allows the computational driver, meaning the finite element analysis software, to be placed 

anywhere on the network. This abstraction and encapsulation of the different tasks is similar to 

the object-oriented design methodologies that were used to develop the OpenFresco software 

framework (see Chapter 3). 

5.3 THEORY ON PREDICTOR-CORRECTOR ALGORITHMS 

5.3.1 Existing Algorithms 

The predictor-corrector algorithms, which are used by other researchers such as Nakashima et al. 

(1999) and Mosqueda (2003), are based on extrapolation and interpolation, using displacement 

values at past integration points. The polynomials utilized are Lagrange polynomials of first-, 

second- or third-order (Burden and Faires 2001). Nakashima found that the third-order 

extrapolation/interpolation achieves the best accuracy given that computation time should remain 

short. 

Prediction (Pn): 
The extrapolated displacements are expressed in terms of a Lagrange polynomial using the last n 

displacement values. 

 ( ) ( )
0

,p k n k
k n

dsp x f P x
=−

= ∑  (5.1) 

where kf  are the displacements previously calculated by the integrator and [ ]0, 0.8x ∈ . 

The prediction is limited to a maximum of 80% of the simulation time step in order to leave a 

minimum of 20% of the simulation time step for the correction towards the next trial 

displacement. The Lagrange functions ,n kP  up to a third-order polynomial are given below. 
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Table 5.1  Predictor Lagrange functions up to order 3. 

1,0 1P x= +  ( )( )2,0
1 1 2
2

P x x= + +  ( )( ) ( )3,0
1 1 2 3
6

P x x x= + + +  

1, 1P x− = −  ( )2, 1 2P x x− = − +  ( )( )3, 1
1 2 3
2

P x x x− = − + +  

- ( )2, 2
1 1
2

P x x− = +  ( )( )3, 2
1 1 3
2

P x x x− = + +  

- - ( )( )3, 3
1 1 2
6

P x x x− = − + +  

 

 
Fig. 5.5  Predictor using a third-order Lagrange polynomial. 

Similar to Nakashima and Masaoka (1999), the accuracy of the predictors is evaluated by 

assuming that the earthquake response of a structure is a sinusoidal-like vibration. Using this 

approximation, the displacements are expressed in terms of amplitude A  and circular frequency 

ω  as follows. It is important to note that the circular frequency of the sinusoidal vibration ω  is 

provided in the integration time scale and not the simulation time scale. 

 ( ) ( )sinint intf t A tω=  (5.2) 

The discrete displacements at the previous simulation time steps, as needed in the 

predictor formula (5.1), are therefore given by the following expression. 

 ( )( )sink int intf A t t x kω ω= − Δ −  (5.3) 
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After the substitution of Equation (5.3) into (5.1) and the trigonometric expansion of the 

resulting formula, the following result is obtained. 

 
( ) ( )( ) ( )

( )

0

,sin

sin

p int int n k
k n

d int

dsp x A t t x k P x

A R t

ω ω

ω φ
=−

= − Δ −

= +

∑  (5.4) 

where: 

 ( )( ) ( )

( )( ) ( )

2 2

0

,

0

,

, arctan

cos

sin

C
d S C

S

S int n k
k n

C int n k
k n

CR C C
C

C t x k P x

C t x k P x

φ

ω

ω

=−

=−

⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠

= Δ −

= − Δ −

∑

∑

 (5.5) 

As can be seen, by comparing formula (5.2) with formula (5.4) the predicted 

displacements diverge from the exact displacements. The difference can be expressed in terms of 

an amplitude change dR  and a phase shift φ . The amplitude change and phase shift are therefore 

used as a measure of accuracy. In general, the accuracy of any predictor will decrease the further 

out a predicted value is sought and the larger the integration time interval is with respect to the 

excitation period. Obviously, the integration time interval needs to be small enough to guarantee 

stability and accuracy of the direct integration method used. 

Correction (Cn): 
The interpolated displacements are expressed in terms of a Lagrange polynomial similar to the 

one used for extrapolation: 

 ( ) ( )
1

,
1

c k n k
k n

dsp x f C x
=− +

= ∑  (5.6) 

where kf  are the displacements previously calculated by the integrator and [ ]0, 1x ∈ . 

The Lagrange functions ,n kC  up to a third-order polynomial are given in Table 5.2. Again, 

Equation (5.3) is substituted into (5.6) and the result is trigonometrically expanded to obtain the 

following corrector formula. 
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( ) ( )( ) ( )

( )

1

,
1

sin

sin

c int int n k
k n

d int

dsp x A t t x k C x

A R t

ω ω

ω φ
=− +

= − Δ −

= +

∑  (5.7) 

where:  

 ( )( ) ( )

( )( ) ( )

2 2

1

,
1

1

,
1

, arctan

cos

sin

C
d S C

S

S int n k
k n

C int n k
k n

CR C C
C

C t x k C x

C t x k C x

φ

ω

ω

=− +

=− +

⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠

= Δ −

= − Δ −

∑

∑

 (5.8) 

Table 5.2  Corrector Lagrange functions up to order 3. 

1,1C x=  ( )2,1
1 1
2

C x x= +  ( ) ( )3,1
1 1 2
6

C x x x= + +  

( )1,0 1C x= − −  ( )( )2,0 1 1C x x= − − +  ( )( ) ( )3,0
1 1 1 2
2

C x x x= − − + +  

- ( )2, 1
1 1
2

C x x− = −  ( ) ( )3, 1
1 1 2
2

C x x x− = − +  

- - ( ) ( )3, 2
1 1 1
6

C x x x− = − − +  

 

 
Fig. 5.6  Corrector using a third-order Lagrange polynomial. 
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As for the predictor formulas, the accuracy measures used are the change in amplitude 

and the phase shift. Since the corrector formulas make use of the trial displacements at the new 

time step or substep, they are overall more accurate than the predictor formulas. Furthermore, 

while they return the exact values at ,int it  and ,int i intt t+ Δ , they are the least accurate around the 

middle of a time step. Finally, similar to the predictor formulas, the accuracy decreases as the 

integration time interval increases with respect to the excitation period. 

5.3.2 Algorithms Using Last Predicted Displacement 

Besides the previously discussed displacement accuracy, two other important properties of the 

predictor-corrector algorithms have to be investigated. The first property is that the commanded 

actuator displacement paths are sufficiently smooth, which becomes important in continuous 

testing. Sufficiently smooth refers to displacement commands that are 0C -continuous; thus, there 

is no sudden displacement jumps. While it might seem advantageous to ask for 1C -continuity 

(continuous first derivatives) as well, it was found that it makes the system more likely to 

become unstable when switching from prediction to correction. This is because the accuracies of 

the corrector decrease with increasing continuity at the switching point. The second property that 

should be investigated is the velocity accuracy, which becomes important in real-time testing. 

This is especially true if velocity-dependent components such as base-isolation devices and 

dampers are part of a hybrid simulation. 

Returning to the predictor-corrector algorithms discussed in the previous section it 

becomes obvious that when the algorithm is required to switch within one controller time step, 

contΔ , (typically one millisecond) from the last predicted displacement value to the first corrected 

displacement value, a very high-velocity demand is created, resulting in an almost step-like 

discontinuity. Even though this problem decreases with an increasing order of the Lagrange 

polynomials, it might still create undesired actuator oscillations (similar to a step input) if the 

servo-hydraulic control system is tuned to behave highly responsive. Therefore, with the existing 

extrapolation-interpolation schemes neither 0C -continuity nor velocity accuracy is achieved. 

Correction (Cn): 
To correct the first property and thereby make the predictor-corrector algorithms 0C -continuous, 

the corrector Lagrange polynomials are modified to include the last predicted displacement. The 
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predictor formulas remain unchanged. By replacing the last trial displacement at time step ,int it  

with the last predicted value, the following expression is obtained for the predictor. 

 ( ) ( ) ( )
1

, ,
1

0

, ,
p pc k n k p x n x p

k n
k

dsp x f C x x f C x x
=− +
≠

= +∑  (5.9) 

where kf  are the displacements calculated by the integrator and 
pxf  is the last predicted 

displacement. The range for x is again [ ]0, 1x ∈  and [ ]0, 0.8px ∈ . The modified Lagrange 

functions up to a third-order predictor are given below. 

Table 5.3  Modified corrector Lagrange functions up to order 3. 

1,1 1
p

p

x x
C

x
−

= −
−

 
( )( )

( )2,1

1

2 1
p

p

x x x
C

x

− +
= −

−
 

( )( )( )
( )3,1

1 2

6 1
p

p

x x x x
C

x

− + +
= −

−
 

1,
1
1px

p

xC
x

−=
−

 ( )( )
( )( )2,

1 1
1 1px

p p

x x
C

x x
− +

=
− +

 ( )( )( )
( )( )( )3,

1 1 2
1 1 2px

p p p

x x x
C

x x x
− + +

=
− + +

 

- 
( )( )

( )2, 1

1

2 1
p

p

x x x
C

x−

− −
=

+
 

( )( )( )
( )3, 1

1 2

2 1
p

p

x x x x
C

x−

− − +
=

+
 

- - 
( )( )( )

( )3, 2

1 1

3 2
p

p

x x x x
C

x−

− − +
= −

+
 

To evaluate the accuracy of the new corrector, a sinusoidal vibration is assumed once 

again. Substitution of (5.3) and of ((5.4) evaluated at px ) into (5.9) and trigonometric expansion 

delivers the following result. 

 ( ) ( )sinc d intdsp x A R tω φ= +  (5.10) 
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where: 

 

( )( ) ( )

( ) ( )( ) ( )

( )( ) ( )

( ) ( )( ) ( )

2 2

1

,
1

0

0

, ,

1

,
1

0

0

, ,

, arctan

cos ,

, cos

sin ,

, sin

p

p

C
d S C

S

S int n k p
k n
k

n x p int p m k p
k m

C int n k p
k n
k

n x p int p m k p
k m

CR C C
C

C t x k C x x

C x x t x k P x

C t x k C x x

C x x t x k P x

φ

ω

ω

ω

ω

=− +
≠

=−

=− +
≠

=−

⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠

= Δ −

+ Δ −

= − Δ −

− Δ −

∑

∑

∑

∑

 (5.11) 

The graphical evaluation and the comparison against all the other algorithms for different 

values of x  and px  are discussed in a later section, after the formulas for all the investigated 

predictor-corrector algorithms have been presented. 

 

Fig. 5.7  Corrector using a third-order Lagrange polynomial including the last predicted 
value. 

5.3.3 Algorithms Using Velocities 

As described in the previous section it would be advantageous not only to achieve 0C -continuity 

but also to improve the velocity accuracy. While the earlier suggested modifications to the 

corrector accomplish the sought-after continuity, the velocity accuracy has not been improved 

yet. A first step towards attaining better velocity accuracy is to incorporate velocities in addition 
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to the displacements utilized so far. Depending on the employed integration method, accurate 

trial velocities are readily available and can thus be sent to the predictor-corrector algorithm 

together with the trial displacements. This is especially true for all the Runge-Kutta methods, 

where the solution vector directly contains displacements and velocities (see Chapter 4). 

However, for many of the direct integration methods the trial velocities at the integration time 

steps or substeps (iterative methods) are not very accurate or unavailable, and they are therefore 

incapable to improve the velocity accuracy of the predictor-corrector algorithms. In these cases 

velocity estimates can be obtained from numerical differentiation formulas as shown below. 

Prediction (PV): 
In this instance, the predicted displacements are expressed in terms of a Hermit polynomial using 

the last n displacement values as well as the last n velocity values. 

 ( ) ( ) ( )
0 0

2 1, 2 1,
ˆ

p k n k k n k
k n k n

dsp x f P x f P x+ +
=− =−

′= +∑ ∑  (5.12) 

where kf  and kf ′  are the displacements and velocities at the integration time steps, and, 

as always, [ ]0, 0.8x ∈ . For convenience the Hermit functions for the third-order polynomial are 

given below. 

 
( ) ( ) ( )

( ) ( )

2 2
3,0 3,0

2 2
3, 1 3, 1

ˆ1 2 1 1
ˆ2 3 1

P x x P x x

P x x P x x− −

= − + − = +

= + = +
 (5.13) 

If the velocities kf ′  in (5.12) are received from the integration method, they have to be 

multiplied by the integration time step, inttΔ , before the substitution, since the x-axis is 

dimensionless and not in units of time. 

On the other hand, if the velocities are determined utilizing numerical differentiation 

formulas, they can directly be substituted into (5.12) because the x-axis is already dimensionless. 

The differentiation formulas for second-order accurate velocities take the following form. 

 
( )

( )

0 0 -1 -2

-1 0 -2

1 3 4
2
1
2

f f f f

f f f

′ = − +

′ = −
 (5.14) 

For third-order accuracy the velocities are expressed in the following manner. 
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( )

( )

0 0 -1 -2 -3

-1 0 -1 -2 -3

1 11 18 9 2
6
1 2 3 6
6

f f f f f

f f f f f

′ = − + −

′ = + − +
 (5.15) 

And finally the fourth-order formulas approximate the velocities as follows. 

 
( )

( )

0 0 -1 -2 -3 -4

-1 0 -1 -2 -3 -4

1 25 48 36 16 3
12
1 3 10 18 6

12

f f f f f f

f f f f f f

′ = − + − +

′ = + − + −
 (5.16) 

 
Fig. 5.8  Predictor using a third-order Hermit polynomial. 

The accuracy of this predictor is evaluated in the same manner as for the previous ones 

except that the second-, third-, or fourth-order velocities are substituted into (5.12) before the 

amplitude change dR  and the phase shift φ  are determined. Due to their complexity these 

formulas are no longer presented here, but the results are shown graphically at the end of this 

section. 

Correction (CV): 
In order for a corrector formula to increase the velocity accuracy while maintaining the 0C -

continuity, trial velocities as well as the last predicted displacement value need to be 

incorporated. Again, as for the previously suggested predictor, only 0C -continuity is provided in 

the switching interval. This makes the system more stable in case the predicted displacements are 

fairly inaccurate. Compared to the almost jump-like displacement command that was 

encountered in the switching interval of the original algorithm, the 0C -continuity permits a 

discontinuity only in the velocity. This reduces possible oscillations significantly. Furthermore, 
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since 1C -continuity is not enforced, the corrector does not use the erroneous last velocity of the 

predictor to initially shoot in the wrong direction before correcting to the next trial displacement. 

 ( ) ( ) ( ) ( )
1 1

2 , 2 , 2 ,
1 1

0 0

ˆ, , ,
p pc k n k p k n k p x n x p

k n k n
k k

dsp x f C x x f C x x f C x x
=− + =− +
≠ ≠

′= + +∑ ∑  (5.17) 

where kf  and kf ′  are the displacements and velocities at the integration time steps and 

pxf  is the last predicted displacement. The ranges for x  and px  are as before [ ]0, 1x ∈  and 

[ ]0, 0.8px ∈ . As with the predictor formula the velocities kf ′  in (5.17) have to be multiplied by 

the integration time step, inttΔ , if they are received from the integration method. Since this 

corrector can have only order 2n , the second-order functions are given as an example below. 

The second-order corrector is preferred over the fourth-order one because less time and memory 

are consumed to calculate the command displacements. 

 

( )( )
( )

( )( )

( )
( )

2,1 2,12

2

2, 2

2 1ˆ
11

1

1p

p p p

pp

x

p

x x x x x x x
C C

xx

x
C

x

+ − − − −
= − = −

−−

−
=

−

 (5.18) 

 
Fig. 5.9  Corrector using a second-order polynomial including the last predicted value. 

Once more the accuracy formulas are not presented here due to their complexity, but the 

results are shown graphically at the end of this section. 
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5.3.4 Algorithms Using Accelerations 

So far, all the predictor-corrector algorithms were based on polynomial approximations used in 

numerical mathematics and less so on the physical behavior of a system. 

Prediction (PVA): 
In order to further improve the prediction and correction of actuator command signals, the 

physical behavior of a mass under the action of a constant force is incorporated into the 

algorithm. This means that it is assumed that the force does not change over a time step and is 

equal to the force at the beginning of the step. If the sum of all acting forces (applied, damping, 

and resisting) is constant, then by Newton’s second law of motion, the acceleration has to be 

constant over a time step as well. Integrating the constant acceleration twice and using the 

displacement and velocity at the beginning of the time step as initial conditions, the following 

equation for the predictor is obtained. 

 ( ) 2
0 0 0

1
2pdsp x f x f x f′ ′′= + +  (5.19) 

where 0f , 0f ′ , and 0f ′′  are the displacement, velocity, and acceleration, respectively, at 

the last integration time step, and [ ]0, 0.8x ∈  as always. If the velocities 0f ′  and accelerations 

0f ′′  in (5.19) are received from the integration method, they have to be multiplied by inttΔ  and 
2
inttΔ , respectively, since the x-axis is dimensionless and not in units of time. 

Alternatively, if the velocities and accelerations are determined utilizing numerical 

differentiation formulas, they can be substituted directly into (5.19) because the x-axis is already 

dimensionless. 

 
Fig. 5.10  Constant acceleration predictor. 
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The differentiation formulas for the velocities remain unchanged from the previous 

subsection. The formulas for the second- to fourth-order accurate accelerations take the 

following forms. 

 0 0 -1 -2 -32 5 4f f f f f′′ = − + −  (5.20) 

 ( )0 0 -1 -2 -3 -4
1 35 104 114 56 11

12
f f f f f f′′ = − + − +  (5.21) 

 ( )0 0 -1 -2 -3 -4 -5
1 45 154 214 156 61 10

12
f f f f f f f′′ = − + − + −  (5.22) 

The accuracy of this predictor is evaluated in the same manner as for the previous ones 

except that the second-, third-, or fourth-order velocities and accelerations are substituted into 

(5.19) before the amplitude change dR  and the phase shift φ  are determined. Due to their 

complexity these formulas are again omitted here, but the results are shown graphically at the 

end of this section. 

Correction (CVA): 
The expression for a corrector that is making use of accelerations is derived similarly to the 

previous one, which used only displacements and velocities. The only differences between the 

two are the addition of the third term and the change of the order. 

 

( ) ( ) ( )

( ) ( )

1 1

3 , 3 ,
1 1

0 0

1

3 , 3 ,
1

0

ˆ, ,

, ,
p p

c k n k p k n k p
k n k n
k k

k n k p x n x p
k n
k

dsp x f C x x f C x x

f C x x f C x x

=− + =− +
≠ ≠

=− +
≠

′= +

′′+ +

∑ ∑

∑ %
 (5.23) 

where kf , kf ′  and kf ′′  are the displacements, velocities, and accelerations, respectively, 

at the integration time steps, and 
pxf  is the last predicted displacement. The ranges for x  and px  

are as before, [ ]0, 1x ∈  and [ ]0, 0.8px ∈ . The functions that multiply the displacements, velocity 

and acceleration for a third-order corrector are given by. 

 

( )( )( )
( )

( )( )( )
( )

( ) ( )
( )

( )
( )

2 2

3,1 3,13 2

2 3

3,1 3, 3

3 3 3 2 1ˆ
1 1

1 1
2 1 1p
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x x
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Fig. 5.11  Corrector using a third-order polynomial including the last predicted value. 

5.3.5 Graphical Evaluation and Comparison 

In order to evaluate the different predictor-corrector algorithms graphically and compare them, 

the calculated amplitude and phase accuracies are plotted against the normalized integration time 

step, intt TΔ . While for the low-frequency modes of vibration, the normalized integration time 

step will be on the lower end of the plotted range, it can lie in the upper part of the plotted range 

for the higher modes of a multi-degrees-of-freedom system. If these high-frequency modes 

contribute significantly to the overall response of the structure, their amplitude and phase 

accuracies are essential as well. The amplitude change dR  and phase shift φ  are plotted for three 

different values of px  (0.2, 0.5 and 0.8). For the predictors, px x=  and [ ]0, 0.8x ∈ . As 

mentioned earlier, the prediction is limited to a maximum of 80% of the simulation time step in 

order to leave a minimum of 20% of the simulation time step for the correction towards the next 

trial displacement. For the correctors 0.5 2px x= +  is chosen to evaluate the accuracy in the 

middle between the last predicted value and the new trial value and the fourth-order numerical 

differentiation formulas are utilized to obtain velocities and accelerations. 
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Predictors: 
As can be seen from Fig. 5.12, the amplitude and phase accuracies of the two newly proposed 

predictors are overall better than the accuracies of the original ones. In addition, the accuracies of 

the newly developed predictors are generally very similar where the one using accelerations is 

slightly more accurate than the other using velocities only. It can be seen that the new predictors 

are significantly more accurate for the low-frequency modes ( 0.2intt TΔ < ). Above such value 

their accuracy is less consistent and starts picking up some oscillatory behavior due to the high-

order polynomials that are generated by the numerical differentiation formulas. This fact, which 

is well known from numerical mathematics, is called the Runge phenomenon. It states that by 

interpolating a function at equidistant points in a given interval using a high-order polynomial, 

the resulting interpolation will oscillate towards the end of the interval. This is also the reason 

why the original predictors go up only to order three, because the fourth-order polynomial 

already shows significant oscillatory behavior and is thus less accurate for the high-frequency 

modes. 

Correctors: 
Fig. 5.13 shows the amplitude changes and the phase shifts for the corrector algorithms, which 

do not incorporate the last predicted displacement. It can be seen that the correctors are overall 

more accurate than the predictors. This is due to the fact that the trial response quantities at the 

new step (or substep) are available to the correctors, and the calculated command displacements 

are therefore within the interval of known values. On the other hand, the calculated command 

displacements during prediction lie outside the interval of known values. However, it is 

important to remember that these corrector algorithms are unable to generate 0C -continuous 

displacement commands and therefore produce a step-like signal in the switching interval. Such 

inaccuracies and deficiencies are graphically not captured in Fig. 5.13. Furthermore, it can be 

observed that the correctors that are incorporating velocities and accelerations achieve about the 

same order of accuracy as the original second- and third-order correctors. It is also interesting to 

note that the corrector that incorporates velocities is overall the most accurate one. 
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Fig. 5.12  Accuracies of predictors in terms of amplitude and phase. 
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Fig. 5.13  Accuracies of correctors in terms of amplitude and phase. 
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Correctors Using Last Predicted Displacement: 
It is evident that overall the C0 -continuous predictors are slightly less accurate than their 

discontinuous counterparts. This effect is due to the incorporation of the last predicted 

displacement into the corrector formulas, which even at 0.2px =  already have some prediction 

errors. However, at the cost of slightly reduced accuracies the step-like discontinuities in the 

switching interval are entirely eliminated. From Fig. 5.14, it can be seen that this trend for the 

amplitude and phase accuracies becomes more pronounced the larger px  gets. The further away 

the prediction is from the last known value, the larger the error in the last predicted displacement 

and the more inaccurate the C0 -continuous correctors perform. However, one has to keep in 

mind that for the discontinuous correctors, the jump in the switching interval increases as well 

with increasing px . And, if this almost step-response-like switching discontinuity becomes too 

large, a responsive servo-hydraulic system will introduce overshoot and oscillations into the 

actuator commands at those points making the correction very inaccurate. So, it seems that a C0 -

continuous corrector with a somewhat reduced accuracy would be preferable over a 

discontinuous corrector that might initiate oscillations into the actuator commands. As can be 

seen from Fig. 5.14, for small values of px  all the corrector algorithms achieve quite similar 

orders of accuracy, with the C3 and CV correctors being the most accurate. On the other hand, 

for larger values of px  it is evident that the correctors that incorporate velocities and 

accelerations achieve better performance, with the CVA corrector clearly being the most 

accurate and thus preferred algorithm. 

5.3.6 Advantages, Disadvantages, and Recommendations 

While the advantages and disadvantages of each individual predictor and corrector are 

summarized in Table 5.4 below, some general advantages and disadvantage are first introduced. 

In the hybrid simulation of complicated structures that consist of nonlinear elements in their 

analytical subassemblies, it cannot always be guaranteed that the solution of the equations of 

motion is available to the controller (which is commanding the transfer system) on time. This is 

even true if an explicit direct integration method is used to solve the equations of motion. For 

geographically distributed hybrid simulations among several laboratories, this problem becomes 

even more serious because the solutions will inevitably be delayed due to latencies in the 

network communications. 



 

  182

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3
R

d
��
�

Amplitude Change: xp�0.2, x�0.6

 
0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: xp�0.2, x�0.6

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3

R
d
��
�

Amplitude Change: xp�0.5, x�0.75

 
0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: xp�0.5, x�0.75

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3

R
d
��
�

Amplitude Change: xp�0.8, x�0.9

 
0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: xp�0.8, x�0.9

  

Fig. 5.14  Accuracies of correctors including last predicted displacement. 
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Thus, the main advantage of the predictor-corrector algorithms is that they eliminate this 

problem by continuously producing actuator command signals, thereby creating a bridge 

between the computational driver and the transfer system imposing the boundary conditions. 

Another advantage comes directly from the ability to produce continuous actuator command 

signals. This eliminates or at least reduces the problems associated with force relaxation. On the 

other hand, the biggest problem with the predictor-corrector algorithms is that they need to 

predict the response at certain degrees of freedom of a structure without any knowledge about 

the properties of such structure. Hence, even though the predicted response is continuous, it 

could be very erroneous. Another problem is that in their current form the predictor-corrector 

algorithms do not work well with iterative integration methods. This problem and, accordingly, 

solution strategies are addressed in a later section of this chapter. 

Table 5.4  Summary of advantages/disadvantages for predictor-corrector algorithms. 

Algorithm Advantages Disadvantages 
Hold and 

Ramp 
o Works well with iterative 

integrators 
o Fast calculation due to easy 

formulas 

o Discontinuous actuator 
motions with noniterative as 
well as iterative integrators 

o Very inaccurate compared to 
continuous command signals 

o Force relaxation problems 
during hold phase 

o Potentially high velocities in 
ramp phase if hold phase 
takes up 80% of the time step 

Original Dis-
continuous 

o Fairly accurate, low-order 
correctors 

o Based on pure numerical 
polynomial interpolation 

o Considerable inaccuracies for 
high-frequency modes or 
large integration time steps 

o Step-like discontinuity in 
switching interval which can 
cause oscillations of servo-
hydraulic control system 

o Oscillations of high-order 
polynomials (Runge-
phenomenon) 

o Very inaccurate if used with 
iterative integrators 

Modified 0C -
Continuous 

o 0C -continuous and therefore 
no step-like discontinuity in 
the switching interval 

o Based on pure numerical 
polynomial interpolation 

o Large inaccuracies for high-
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frequency modes or large 
integration time steps 

o Oscillations of high-order 
polynomials (Runge-
phenomenon) 

o Very inaccurate if used with 
iterative integrators 

Utilizing 
Velocities 

o Predictor and corrector 
achieve good accuracy 

o 0C -continuous 

o Based on pure numerical 
polynomial interpolation 

Utilizing 
Accelerations 

o Based on the physical 
behavior of a mass 

o Most accurate of all the 
methods 

o 0C -continuous 

o Minor oscillations at larger 
values of the normalized 
integration time step (slight 
Runge-phenomenon) 

To conclude, it is recommended that the predictor-corrector algorithms, which are based 

on velocities and accelerations and are 0C -continuous, are utilized whenever possible. This is 

especially true if noniterative integration methods or integration schemes with constant numbers 

of iterations are employed (see Chapter 4). Furthermore, all the discontinuous predictor-corrector 

algorithms should be avoided and their 0C -continuous counterparts should be utilized instead. 

This eliminates step-like command input conditions in the switching interval and as a 

consequence, reduces displacement and thus force oscillations that often destabilize transfer 

systems. On the other hand, if unmodified iterative integration schemes are employed in the 

finite element analysis software, the traditional hold and ramp algorithms or the adaptive 

methods that are discussed later should be utilized to avoid displacement oscillations. 

5.4 ADAPTIVE EVENT-DRIVEN STRATEGIES 

5.4.1 Existing Strategy 

After the development and discussion of two of the key elements of the three-loop architecture, 

the next step is to investigate how the improved synchronization predictor-corrector algorithms 

can be incorporated into the intermediate loop of such architecture. As mentioned earlier, the 

time required to advance the solution of the equations of motion by the integration time step, 

inttΔ , is not constant. This is especially true for complex structures with material and geometric 

nonlinearities in their analytical subassemblies. In geographically distributed hybrid simulations, 
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the time that passes until the next trial response quantities are available happens to be even less 

predictable. Random delays due to network latencies have to be added to the time consumed by 

the computational driver. To deal with this randomness of the system, Mosqueda (2003) 

introduced an event-driven algorithm (a finite-state machine) that utilizes the predictor-corrector 

algorithms and is placed in the intermediate loop of the three-loop architecture. A finite-state 

machine is composed of states in which the system can exist and transition between those states. 

Guards and/or triggers (i.e., events) control the execution of the transitions. Furthermore, actions 

can be attached to transitions and/or states. 

The existing event-driven controller (Mosqueda 2003) is composed of four states. During 

standard operation, the trial response quantities from the integration method are available 

without delays and the controller will simply switch between the Prediction state and the 

Correction state. The actions that are executed while these states are active are the third-order 

extrapolation and the third-order interpolation methods of the predictor-corrector algorithms. 

However, if the integration method is taking too long to calculate the new response quantities or 

the transfer of such trial quantities across the network is delayed, the algorithm adapts and slows 

down the prediction. This is achieved by triggering a transition from the Prediction state into a 

SlowDown state. The guard on this transition is checking that a given percentage of the 

simulation time step, simtΔ , has passed in order to execute the transition. The actions, which are 

executed while in the SlowDown state, are still third-order extrapolations but they move the 

actuators at half the speed, thus allowing more time to receive the next trial response quantities. 

If the new prescribed boundary conditions become available within a specified time frame, the 

finite-state machine is triggered to transition from the SlowDown state back to the Correction 

state. On the other hand, if the trial response quantities have still not been received after the 

specified time has passed, the controller transitions into a Hold state. During the Hold state, 

constant command signals are sent to the control system, which effectively stops the actuators 

from moving. Once the response quantities at the next time-step become available, the controller 

is triggered to transition back to the Correction state. Nakashima and Masaoka (1999) found that 

the most appropriate values to use for the two guards between the Prediction, SlowDown, and 

Hold states are 60% and 80% of the simulation time step, simtΔ . This means that after 60% of the 

simulation time step has passed, the controller slows the actuator movements down to half the 
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speed and completely stops the movements at 80% of the simulation time step. This leaves a 

guaranteed minimum of 20% of the simulation time step for subsequent corrections. 

5.4.2 Smooth Slow-Down Strategy 

The problem that arises with the just-described event-driven strategy is that there is no smooth 

transition from the Prediction state to the Hold state and from the Hold state back to the 

Correction state. The velocities are not continuous, since the transfer system jumps from full 

speed to half speed to zero speed and back to full speed. If these velocity discontinuities are 

large, they can cause oscillations in the actuator movements as they were encountered in real 

tests in the laboratory. The response of the actuators to those velocity discontinuities depends a 

lot on all the tuning parameters of the control system. However, if these discontinuities are 

already eliminated in the implementation of the event-driven strategy, then the problem of tuning 

the servo-hydraulic control system to be responsive enough while trying to reduce oscillations 

can be avoided. 

 
Fig. 5.15  Displacement path and execution sequence of smooth slow-down strategy. 
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In order to improve the event-driven controller, a continuous change of the actuator 

velocities is incorporated into the SlowDown and the Correction states. Since the SlowDown 

state reduces the actuator velocities smoothly all the way to zero, the previously used Hold state 

is superfluous and is therefore eliminated. The Correction state is modified such that if it is 

entered from the SlowDown state, it increases the actuator velocities smoothly from the last 

velocities in the SlowDown state back to the full velocities at the target. In contrast, if the 

Correction state is entered directly from the Prediction state during standard operation, no 

velocity changes take place. These two modes of operation are illustrated in Fig. 5.15 below. 

To obtain the sought after smooth velocity change in the SlowDown state, the counter-

increment is linearly reduced from , 1i SDΔ =  at 60% of the integration time step to , 0i SDΔ =  at 

80% of the integration time step. The reduction of the counter-increment effectively slows down 

the actuators because additional substeps (each one of length contΔ ) are being generated within 

the simulation time step. Similarly, the counter-increment is linearly increased again during the 

Correction state starting from the last used counter-increment in the SlowDown state ,i i SDΔ = Δ  

back to 1iΔ = . 

 

Fig. 5.16  Relationship between counter-increment and counter for smooth velocity 
transitions. 
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 (5.25) 

In the above formulas, i  is the counter and N  is the total number of substeps (which is 

equal to the simulation time step simtΔ  divided by the controller time step contΔ ). In formula 
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(5.25) the maximum condition ensures that the velocity can increase again if it dropped all the 

way to zero and the minimum condition guarantees that the counter increment does not increase 

above one. All these event-driven strategies are implemented in Stateflow, a graphical design 

and development toolbox in Matlab/Simulink (Mathworks) for simulating complex reactive 

systems based on finite state machine theory. On the other hand, the previously discussed 

predictor-corrector functions are implemented using the C programming language. By including 

the header file and specifying the source file within Stateflow, access to the whole library of 

discussed predictor-corrector algorithms is obtained. These event-driven strategies are then 

incorporated into a Simulink (Mathworks) model, which runs on a real-time platform and 

communicates with the finite element analysis software utilizing the OpenFresco middleware 

(see Chapter 3). 

5.4.3 Adaptive Velocity Strategies 

Several situations arise in hybrid simulation where it becomes advantageous to automatically 

adjust actuator velocities and thus testing speeds. Often times when executing a hybrid 

simulation of a structure excited by an earthquake, the interesting parts of the experimental test 

are strongly correlated with the intensity of the ground motion. Meaning, that the beginning and 

the end of a test are usually less interesting due to the fact that the ground motion intensity is 

very low and the structural response is very small. As long as the experimental subassemblies do 

not exhibit rate-dependent behaviors, one possible solution to this problem is to execute a hybrid 

simulation with constant, user-specified actuator velocities. Since the actuators move at a 

constant velocity, testing is effectively accelerated for those parts of the simulation that produce 

small structural responses and is thus made more interesting. To achieve this goal the simulation 

time step simtΔ  (respectively the total number of substeps N ) is adjusted during simulation 

according to the size of the trial response increment received from the finite element analysis 

software. 

 0 1ceil
Act con

f f
N

v t
−⎛ − ⎞

= ⎜ ⎟Δ⎝ ⎠
 (5.26) 

where 0f  and 1f−  are the trial displacements at the new and previous integration steps, 

Actv  is the user-specified actuator velocity, and contΔ  is the time step of the control system. If 

multiple actuators are commanded by a single control system, one of them is chosen as the 
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master actuator for which the user specifies the desired velocity. The remaining actuators are 

then slaved to the master in the sense that their velocities are given, because they depend on the 

total number of substeps N , which is determined from the master. To prevent the actuators from 

exceeding their velocity limits and to guarantee that N  does not fall below a minimum number 

of substeps, additional checks are performed after the evaluation of (5.26). 

A second situation where it is critical to adapt actuator speeds during the course of a 

hybrid simulation arises when iterative integration methods are employed. As was explained 

earlier in Chapter 4, displacement increments decrease rapidly during the iteration process due to 

the quadratic convergence of the Newton-Raphson algorithm. If the control system is allotted the 

same time interval to impose such inconsistent displacement increments, velocity and thus force 

oscillations are generated in the transfer system. Hence, to lessen these oscillations, the event-

driven strategy needs to adjust the time interval over which the displacement increments are 

imposed during simulation. To achieve this goal the size of the response increments are checked 

as they are received from the finite element analysis; and if they exceed a user-specified limit 

limUΔ  the time over which such increments are applied (respectively the total number of 

controller substeps N ) is automatically increased. 

 0 1 lim

0 1 lim

f f U reset N

f f U increase N
−

−

− ≤ Δ →

− > Δ →
 (5.27) 

This means that the actuators are effectively slowed down when they impose the larger 

displacement increments at the beginning of the iteration process and move at the normal rate 

while applying the smaller increments towards the end of the equilibrium solution process. 

5.4.4 Interlaced Solution Strategy 

In the interlaced solution strategy two synchronized integration methods are interlaced in time, 

meaning that both schemes have an integration time step equal to 2 inttΔ , but they are spaced at 

half of this time step. Furthermore, it is assumed that both integration methods run on the same 

machine (in the outermost loop of the three-loop architecture), while a predictor-corrector 

algorithm runs on a separate real-time platform in the intermediate loop as before. 

According to Fig. 5.17, the interlaced solution procedure has the following steps: Once 

the trial displacements calculated by integrator A have been reached at ,a it , the corresponding 
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resisting forces ,a ifrc  are measured (this is indicated by the upwards pointing arrow). Integrator 

A then uses such resisting forces to compute the trial displacements at the next time step , 1a it + . In 

the meanwhile, the corrector algorithm is generating displacement command signals shooting 

towards the known trial displacements at time ,b it . Once these trial displacements at ,b it  are 

reached, the corresponding resisting forces are measured and integrator B starts to solve the 

equations of motion for the new response at , 1b it + . This sequence of operations is repeated for the 

total number of time steps divided by two. It can be seen from Fig. 5.17, as well as concluded 

from the assumptions above, that under normal operation the maximum allotted computation 

time per time step is equal to simtΔ  for both of the integration methods. 

 
Fig. 5.17  Displacement path and execution sequence of interlaced solution strategy. 

The big advantage of the interlaced solution strategy is that the machine that is solving 

the equations of motion is working to full capacity. This means that contrary to solution 

strategies with a single integrator, there is no idle time between computation tasks. Such idle 

times in single integrator strategies are inevitable. This is because after the calculated trial 
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displacements are sent off, the integrator has to wait until the displacements are applied and the 

corresponding forces have been measured (see Fig. 5.15). Because the computer that is executing 

the integration task is working to full capacity, the hybrid simulation can be run at a faster speed. 

This means that a shorter simulation time step simtΔ  can be chosen than in the case where only 

one integrator is engaged. To cope with the randomness of network communication times in 

geographically distributed hybrid simulations, the previously developed event-driven predictor-

corrector algorithms can be employed again. As before, such algorithms will slow down the 

displacement commands at 60% of the simulation time step, and hold them at 80% of the 

simulation time step. In addition, the advantage remains that the integrator machine is working to 

full capacity and is therefore producing trial displacements faster than a machine running a single 

integrator. 

Because the two integration schemes in the interlaced solution strategy both utilize an 

integration time step that is equal to 2 inttΔ , some further attention needs to be paid to the time-

step selection. To investigate the continuity and uniformity of the displacement command signals 

that are imposed on the experimental portions of a structure, a two-degrees-of-freedom-of-

freedom, one-bay-frame model is analyzed using the interlaced solution strategy. The one-bay-

frame model is equivalent to the one that was utilized for the rapid geographically distributed 

hybrid simulations (see Chapter 6). It is defined by two column elements that are connected by a 

fairly flexible linear-elastic truss element. While the right linear-elastic column is always 

modeled analytically, the left column is tested experimentally and exhibits either a linear or 

nonlinear behavior. The explicit Newmark method was employed for both of the interlaced 

solution schemes with integration time-step sizes of 0.02inttΔ =  and 0.01inttΔ =  sec. For 

comparison, the hybrid model was also analyzed by the regular explicit Newmark integration 

method with a time-step size of 0.02inttΔ = . Fig. 5.18 shows the entire time history as well as 

close-ups of the displacement command signals at the controlled degree of freedom of the 

experimental element. In the linear case, it can be observed that the interlaced solution strategy 

generates somewhat jagged displacement commands if the original integration time step of 

0.02inttΔ =  sec is utilized. However, by selecting an integration time step that is half as large, 

0.01inttΔ =  sec, the interlaced solution strategy is capable of producing a smooth and uniform 

trial response for the transfer system. 
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Fig. 5.18  Displacement command signal comparison for interlaced solution strategy. 

In the nonlinear case, a similar but more severe behavior can be observed, meaning that 

the displacement commands are more jagged and inaccurate for large integration time steps. 

Since the trial response is still somewhat jagged even for 0.01inttΔ = , the integration time-step 

size should be further reduced in order to generate smooth enough command signals for the 

transfer system. So whenever the interlaced solution strategy is employed in hybrid simulations, 
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it is critical that an integration time step is determined that guarantees a smooth displacement 

command signal generation. Because this time-step size can quickly become very small, it is 

recommended to instead utilize one of the adaptive strategies discussed next. 

5.4.5 Adaptive Simulation Time-Step Strategies 

Based on the event-driven control approaches developed by Sandee et al. (2005), some new 

promising solution strategies for hybrid simulation are proposed below. Furthermore, problems 

and difficulties encountered with one of the suggested ideas are explained as well. The proposed 

event-driven solution methods can be divided into two categories: (1) methods that handle 

asynchronous actions by adapting the simulation time step while keeping the integration time 

step constant (discussed in this section) and (2) methods that deal with asynchronous actions by 

adjusting the integration time steps (discussed in the next section). 

Skipping Ahead: 
One of the problems with the current event-driven solution schemes is that if the computational 

driver takes a long time to compute the new trial response quantities or the transmission of those 

quantities is delayed through the network, there remains very little time to correct the actuator 

positions to the target values. This is because the event-driven controller will generate predicted 

command displacements up to 80% of the simulation time step, leaving only 20% of such time 

step for correction. So if the prediction is not extremely accurate, significant corrections need to 

be applied in very little time. This makes it difficult to generate smooth actuator command 

signals. 

In order to improve the current strategy, one of the main ideas is to use some approximate 

predictor to not only predict the response a single time step ahead ( intt+Δ ), but also generate 

predictions that extend further out ( int2 t+ Δ , int3 t+ Δ , …). These predicted response quantities 

correspond directly to the trial response quantities computed in the integration methods. Thus, 

multiplying the integration time step by the appropriate factors and recalculating the trial 

response quantities can generate predictions at multiples of the integration time step. 

The first solution strategy that is trying to incorporate those additional trial response 

quantities is shown in Fig. 5.19 above. It is assumed that 1iEvent +  (that has trial displacements 

extending out to 5 inttΔ  attached) arrives very close to the end of a simulation time step. As was 
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previously explained, this means that there would be very little time to correct towards the 

targets at , 1int it + . So, instead of trying to correct towards those displacement targets, the idea is to 

simply skip this step and head towards the next predicted targets at , 2int it + . However, the key 

question is where the resisting forces required by the integration method should be measured. 

Since the integrator does not know that the predictor-corrector algorithm is already heading for 

the trial displacements at , 2int it + , the next received resisting forces are assumed to be the forces at 

, 1int it +  (in accordance with all the forces calculated by the analytical elements). Therefore, the 

resisting forces need to be measured at the target displacements at , 1int it + . 

 
Fig. 5.19  Difficulties with solution strategy that is skipping head. 

From Fig. 5.19, it can be seen that for case (a) where the new trial displacement that 

becomes available with 1iEvent +  is above the current predicted value, the force could simply be 

measured once that target is reached. On the other hand, in case (b) where the new trial 

displacement is lower than the current displacement, it is not possible to measure the resisting 

force anymore, since the predicted displacement shot over the target and is already heading 

towards the next predicted value. Since there is no guarantee that the new trial displacements are 
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always above the predicted displacements the event-driven strategy that is based on skipping 

ahead has to be dismissed and other solution strategies need to be sought. 

Constant Correction-Time: 
An alternative approach that makes use of the predicted response quantities at multiples of the 

time step (and that does not possess force measuring problems) uses a constant correction-time. 

This means that no matter how late an event with the attached trial displacements is received, the 

correction towards the new targets is executed over a predetermined constant time interval CT . 

This time interval is chosen at the beginning of a hybrid simulation. The chosen value should be 

large enough to allocate enough time for the corrector algorithm to achieve good performance 

and can be determined from simulations previous to a test. 

 
Fig. 5.20  Displacement path and execution sequence of constant correction-time strategy. 

From Fig. 5.20 above, it can be seen that once the new trial displacements are obtained at 

the occurrence of 1iEvent +  the predictor-corrector algorithm is correcting towards the target over 

the time interval CT . At the target displacement, the corresponding resisting forces are measured 

and the predictor starts shooting towards the next available trial value. However, the simulation 

time step simtΔ  is adjusted by taking the length of the previous simulation time steps into 
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account. The new simulation time step can be computed from the average of all the previous 

simulation time steps or from a weighted moving average of the previous simulation time steps 

with gradually increasing weights on the more current time steps. 
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where n  is the total number of previous simulation time steps utilized for the calculation 

of the next simulation time step. The purpose of adapting the simulation time step in such a 

manner is to reduce the possibility that an event (like 2iEvent +  in Figure 5.20) is received passed 

the next predicted trial displacement. Since this might cause a load reversal and should therefore 

be avoided, some additional safety factor could be used to increase the average simulation time 

step computed in Equation (5.28). Furthermore, using this approach the simulation time step will 

adapt to the variable network communication speed. This event-driven solution strategy should 

thus be employed only if the experimental portions of a structure exhibit truly velocity-

independent behaviors. 

5.4.6 Adaptive Integration Time-Step Strategies 

The adaptive simulation time-step strategy introduced in the previous section improves several 

aspects of traditional solution schemes. However, some of the problems remain still unresolved. 

One of these problems is that by adapting the simulation time step, the hybrid simulation does 

not run at a uniform speed but continuously slows down and speeds up depending on the 

occurrence of the events. This produces velocities in the experimental subassemblies of a 

structure that are no longer related to the real velocities (meaning that they are equal to or a 

constant portion of the real velocities). Thus, two additional solution strategies that are based on 

adapting the integration time steps (and therefore resolve this problem) are introduced and 

discussed in this section. Both of these methods rely again on multiple predictions that extend 

out several time steps ahead. 

Adaptation by Multiples of Integration Time Step: 
The first scheme that is proposed here adapts the integration time steps by multiples of the initial 

integration time step. This means that if no event is received by the time the first predicted 

displacement value is reached, the algorithm just keeps predicting towards the next values at 
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, 2int it + , , 3int it +  and so on. Once the new sequence of trial displacements is received from the 

integration method, the predictor-corrector algorithm starts correcting towards the corresponding 

new target. So, if the 1iEvent +  is received after simtΔ  but before 2 simtΔ  (as shown in Fig. 5.21), 

the second displacement of the just-received sequence has to be corrected towards. As soon as 

the corrector reaches such displacement, the forces are measured. In addition to those measured 

forces, an integer 2λ =  is sent in order to inform the integration scheme that the returned forces 

do not correspond to the trial displacements at , 1int it +  but rather , 2int it + . With this information 

available, the integrator then sends the trial response quantities at , 2int it +  off to the analytical 

elements and then assembles the global resisting force vector at such time step from the 

analytical and experimental element resisting forces. Hence, the integration method is using 

variable time steps that are multiples of the initially specified integration time step. 

 

Fig. 5.21  Displacement path and execution sequence of first adaptive integration time-step 
strategy. 

The advantage of this solution strategy is that only small corrections have to be made 

from the predicted response. Furthermore, since the simulation time step is not changed and no 
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slow-down or hold states are needed, the hybrid simulation runs at a consistent speed and does 

not continuously slow down or speed up. The rate at which the simulation is executed is 

determined by the ratio of the simulation time step over the integration time step. Such time-step 

values are chosen prior to starting a hybrid simulation and can be determined from previous 

simulations. 

The disadvantages of this strategy are that the machine running the computational driver 

is not working to full capacity and the trial response quantities cannot be sent to the analytical 

elements before the resisting forces are received from the experimental subassembly. 

Furthermore, it is not yet clear how the integration time steps could be adapted in a hybrid 

simulation with multiple experimental subassemblies. Difficulties arise when the forces sent 

back from different subassemblies no longer correspond to the same time step. This occurs when 

the experimental subassemblies did not receive the events at the same time and the predictions, 

consequently, do not extend out by equal number of steps. 

Adaptation Depending on Execution Time: 
An alternative approach to the previous solution strategy is to adjust the integration time steps 

not by multiples of an initial time step but by a variable length that depends on the previously 

consumed computation plus transmission time. 

With reference to Fig. 5.22, it can be seen that if Eventi +1  is not received by the time the 

displacement commands reach the first of the predicted trial values, the forces and the 

displacements are measured anyways. The prediction, however, is continued towards the trial 

displacement at , 2int it + . Once the new trial displacements are received from the computational 

driver, the previously measured forces and displacements as well as the time consumed by the 

response analysis task, , 1RAT iT + , are sent back to the integration method. Since the forces were 

measured at the wrong displacements, the error dspΔ  between the measured and the calculated 

displacements are used to correct the measured resisting forces utilizing the initial stiffness 

matrix (or if available the tangent stiffness matrix) of the experimental subassembly. This 

correction is similar to the initial stiffness modification that was proposed by Nakashima and 

Kato (1987) to mitigate experimental errors generated by control systems. Once the integration 

method has solved the equations of motion for the current time step, , 2 , 1int i RAT it T+ +Δ =  is used to 

create the new trial displacements at multiple future time steps. 
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Fig. 5.22  Displacement path and execution sequence of second adaptive integration time-
step strategy. 

The advantages of this method are, again, that only small corrections have to be made 

from a predicted response and that the ratio of the simulation time step to the integration time 

step is not changed. Furthermore, the trial response quantities can now be sent to the analytical 

elements at the same time the predicted trial response quantities are sent to the experimental 

subassemblies. This means that the analytical elements can perform their computations at the 

same time that the control systems are imposing the displacement commands on the 

experimental subassemblies. Additionally, this solution strategy is still applicable in a hybrid 

simulation with multiple experimental subassemblies. In such tests, the new integration time 

steps can be adjusted by considering all the response analysis task times RATT  from all the 

different subassemblies. Either the maximum or the average of the response analysis task times 

can be used in the determination of the new integration time step. Thus, the two main problems 

of the previously proposed solution strategy have been solved. Moreover, the third disadvantage 

of the previous scheme, which was the rather extensive idle times of the computational driver, 

has been improved (as can be seen from the execution sequence in Fig. 5.22 above). 
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5.5 SUMMARY 

The predictor-corrector algorithms and the event-driven solution strategies covered in this 

chapter provide the required synchronization between the integration and actuator control 

processes, which intrinsically run at different time rates. After a brief review of previous 

developments a wide range of new predictor-corrector algorithms were discussed. These 

algorithms achieve improved performance in the sense that they generate continuous 

displacement command signals without the inconsistencies in the switching interval. 

Furthermore, two predictor-corrector algorithms that are based on velocities and accelerations in 

addition to displacements have been introduced. It has been shown that they achieve improved 

accuracy while maintaining the continuity of the generated displacement command signals. The 

theory of such algorithms was covered in detail and their performance and accuracy were 

evaluated graphically. All of these synchronization predictor-corrector algorithms have been 

implemented in the C programming language and are available to users for performing 

continuous hybrid simulations. 

The event-driven solution strategies, which utilize the previously described algorithms 

for prediction and correction, were investigated next. Again the existing strategy was evaluated 

first, and then based on the determined deficiencies new and improved solution strategies were 

developed. These strategies are based on adaptive control concepts where parameters of the 

event-driven controller, such as time steps, actuator velocities, etc., are adjusted during 

simulation according to some suitable performance criteria. One of such solution strategies was 

specifically developed to work in conjunction with the implicit Newmark direct integration 

method (see Chapter 4), by adapting time intervals over which displacement commands are 

imposed. Except for the adaptive strategies that have not been released yet, all the other event-

driven strategies have been implemented in Simulink/Stateflow (Mathworks) and are available to 

users for performing hybrid simulations. 

 



 

 

6 Hybrid Simulation Case Studies 

6.1 INTRODUCTION 

Case studies of two novel applications of hybrid simulation are presented in this chapter. The 

main purpose is to demonstrate and validate the features and the flexibility of the redesigned and 

newly implemented object-oriented hybrid simulation framework. The two case studies were 

performed at the μNEES laboratory at the University of California, Berkeley, and utilize a wide 

range of methods and implementation details for hybrid simulation. 

6.2 RAPID GEOGRAPHICALLY DISTRIBUTED TESTS 

The latest advancements in networking technology paired with the experimental software 

framework OpenFresco make fast geographically distributed hybrid simulations finally feasible. 

As part of the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) 

program, a national collaboratory, called the NEESgrid, has been developed. NEESgrid is based 

on the Internet2’s Abilene network and links 15 NEES equipment sites together. The Abilene 

network is a private high-speed backbone network, which is used for education and research and 

has (as of 2006) a bandwidth of up to 10 Gbit/sec. For the fast geographically distributed hybrid 

simulations which were performed between NEESinc in Davis, California, and the μNEES 

laboratory of the nees@berkeley equipment site, one of the 1 Gbit/sec connections of the 

NEESgrid network was utilized. The subsequently described tests demonstrate how OpenFresco 

(see Chapter 3) in combination with a high-performance FE-software can be used to execute soft 

real-time hybrid simulations across large network distances. 

6.2.1 Motivation 

Over the last decade the introduction of high-performance devices, to improve structural 

behavior of components and/or systems under extreme loading conditions such as earthquakes, 

blast, and wind, has increased notably. Most of these devices, such as base-isolation bearings, 
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energy-dissipation devices, and high-performance materials, exhibit intrinsic rate-dependent 

behavior. Thus, it is of utter importance that testing of structural systems incorporating such 

devices is performed at the correct loading rates. This means that full-scale hybrid simulations 

need to be executed in real-time. Furthermore, if the hybrid model happens to be a scaled version 

of the prototype model with a length scale factor of Sl and additionally velocities need to be 

preserved, meaning that the velocity scale factor Sv = 1, hybrid simulations are required to be 

executed Sl
-1 times faster than real time. On the other hand, if strain rates instead of velocities are 

to be preserved for the scaled model structure, experimental tests need again to be executed in 

real time, since the time scale factor St = 1 is independent of the length scale Sl. 

Table 6.1  Similitude laws for rapid testing. 

Physical Quantity Dimension 
Scaling Factor 

with Sl, SE = Sv = 1 
Scaling Factor 

with Sl, SE = Sε&  = 1

Length, l L Sl Sl 

Displacement, d L Sl Sl 

Velocity, v LT-1 1 Sl 

Acceleration, a LT-2 Sl
-1 Sl 

Force, F F Sl
2 Sl

2 

Time, t T Sl 1 

Modulus, E FL-2 1 1 

Stress, σ FL-2 1 1 

Strain, ε 1 1 1 

Strain-Rate, ε&  T-1 Sl
-1 1 

Mass, m FL-1T2 Sl
3 Sl 

Damping, c FL-1T Sl
2 Sl 

Stiffness, k FL-1 Sl Sl 

Period, T T Sl 1 

Frequency, f T-1 Sl
-1 1 

These similitude laws for the two scaling factor triplets (Sl, SE, Sv) and (Sl, SE, Sε& ) are 

shown in Table 6.1. A different important class of applications for which it is crucial to have the 

ability to execute a test in real time are hybrid simulations that involve shaking tables. This 
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means that the physical portion of the hybrid model is tested on a shaking table, which receives 

real-time displacement commands from the numerical portion of the structure and feeds back the 

corresponding resisting forces to such (see Chapter 2). 

6.2.2 Test Structure and Earthquake Record 

Because of its simplicity and nominal computational effort, a one-bay-frame model with one 

ductile and one elastic column connected by a fairly soft spring was selected for these hybrid 

simulations. As can be seen from Fig. 6.1, the one-bay-frame had a height of 50 inches, which 

corresponds to the height at which the μNEES actuators are attached to the experimental steel 

specimen. The width of the frame was arbitrarily chosen to be 100 inches. 

 
Fig. 6.1  One-bay-frame model with structural properties. 

For the hybrid simulation, the left-hand column was represented by a specimen in the 

μNEES laboratory, and the right-hand column and horizontal spring connecting the two columns 

were modeled numerically. Furthermore, the left experimental column, the right linear-elastic 

column, and the linear-elastic spring connecting the two columns were assigned stiffnesses of 

k1,init = 2.8 kip/in., k2 = 5.6 kip/in., and k3 = 2.0 kip/in., respectively. The mass on top of the left 

column was 0.04 kip·sec2/in. and the mass on top of the right column was 0.02 kip·sec2/in. Given 

that only the horizontal degrees of freedom were considered, this simple one-bay-frame model 

had a total of two free degrees of freedom, both with mass. With the selected structural 



 

  204

properties, the resulting vibration periods of the model were T1 = 0.622 sec and T2 = 0.315 sec 

for the first and second mode, respectively. To get significant contributions to the total response 

from the second mode, in addition to that from the first mode, the linear-elastic spring was given 

a fairly low stiffness. In addition, the damping matrix was chosen to be proportional to the mass 

matrix instead of the stiffness matrix, so that the second mode would be less damped than the 

first. The first mode was assigned a damping value of 5% of critical, which led to a 2.53% 

damping ratio in the second mode. 

The north-south component of the El Centro ground acceleration history recorded during 

the 1940 Imperial Valley earthquake was used to dynamically excite the model. The 32 sec long 

time history consisted of 1600 data points recorded every 0.02 sec and was scaled to a pga of 

0.319 g. The elastic response spectra of such motion for damping ratios of 2.5% and 5% and with 

markers at the two model periods are shown in Fig. 6.2. 

6.2.3 Test Setup and Procedure 

As can be seen from Fig. 6.3, the experimental setup that was utilized to test the physical column 

of the one-bay-frame model consisted of a self-equilibrating reaction frame that was designed to 

support the actuator and the specimen under static and dynamic loading conditions. According to 

Mosqueda (2003), it was found that the reaction frame had a fundamental natural frequency of 

37 Hz, which was considered sufficiently high to minimize interactions with the fairly flexible 

test specimen. The 50-inch high experimental S4x7.7 steel column specimen was mounted on 

top of a special clevis with replaceable steel coupons that was capable of simulating the plastic 

hinge zone at the end of a steel section. Equipped with two ductile ASTM A36-04 (fy = 69 ksi) 

steel coupons, this connection produced stable and repeatable hysteresis loops that were ideal for 

testing and evaluating new ideas and concepts in hybrid simulation. In addition, a wide variety of 

hysteretic behavior can be simulated by using different coupon designs and/or nut configurations 

as described in Rodgers and Mahin (2004). The connection details and the hysteresis loops (SAC 

loading protocol) for the configuration with two ductile steel coupons with top and bottom nuts 

are shown in Fig. 6.4. 
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Fig. 6.2  Elastic response spectra for north-south component of 1940 El Centro, Imperial 
Valley earthquake record, with values at model periods. 
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Fig. 6.3  μNEES experimental setup with two independent specimens. 
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The 12 kip dynamic actuator that was used to load the specimen during the hybrid 

simulation tests was a double-ended 2.5HHTR15 Sheffer model with a total stroke capacity of 15 

inches. The actuator was driven by a 25 gpm Moog servo-valve connected to a 3000 psi 

hydraulic oil supply line, which yielded a velocity limit of roughly 23 in./sec. Given the bulk 

modulus of the hydraulic oil, β = 100 ksi, and the approximate weight of the payload, W = 0.049 

kip, the oil column frequency of the μNEES setup can be estimated at foc = 148 Hz. 
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Fig. 6.4  Connection with coupon details and displacement history with hysteresis loops. 

A unidirectional aluminum load cell with a capacity of ±15 kip was mounted between the 

actuator end and the specimen in order to measure the experimental resisting forces. The actuator 

displacement feedback, required by the servo-hydraulic control system, was provided by a 

Novotechnik TLH500 displacement transducer that had a displacement limit of ±10 inches. 

Selected properties of the μNEES setup are summarized in Table 6.2. 
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Table 6.2  Properties of μNEES experimental setup. 

Hydraulic properties Values 

Supply pressure ps = 3 ksi 

Return pressure pr = 0.05 ksi 

Bulk modulus of oil β = 100 ksi 

Sheffer 2.5HHTR15 actuator properties Values 

Actuator bore b = 2.5 in. 

Rod diameter d = 1.0 in. 

Rod length L = 40 in. 

Actuator stroke S = 15 in. 

Servo-valve & payload properties Values 

Flow rate q = 96.25 in3/sec 

Weight (rod, load cell, specimen) W = 0.049 kip 

Derived experimental setup properties Values 

Displacement limit umax = ±7.5 in. 

Velocity limit vmax = ±23.3 in./sec 

Oil column stiffness Koc = 110 kip/in. 

Oil column frequency foc = 148 Hz 

Reaction frame frequency frf = 37 Hz 

Specimen frequency fsp = 25.6 Hz 

For the operation of the described experimental setup a MTS 493 real-time controller 

with the Structural-Test-System (STS) software and the xPC Target real-time environment was 

utilized. This digital controller provided closed-loop PID, differential Feedforward, and Delta-P 

control capabilities. The accompanying STS software is a graphical user interface that allows the 

operator to access the controller for calibration, configuration, test setup, and data display. In 

order to achieve the best possible performance of the servo-hydraulic control system throughout 

the real-time geographically distributed hybrid simulations, some fair amount of time was spent 

prior to the tests, tuning the actuators locally. The established PID and feed-forward gains, 

shown in Table 6.3, delivered the fastest possible system response with minimal actuator lag and 

overshoot, and without excessive excitation of the actuator oil-column frequency. Any attempt to 

raise the gains past the given values initiated the generation of high-frequency actuator vibrations 
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at the oil-column frequency, which in turn created significant force oscillations that fed back into 

the hybrid simulation. 

Table 6.3  Parameters of real-time MTS 493 controller. 

Controller parameters Values 

Proportional gain p = 12.00 

Integral gain i = 0.00 

Integrator authority iA = 5% 

Derivative gain d = 0.07 

Feedforward gain f = 0.13 

Bandwidth of low pass filter bw = 1024 Hz 

Delta-P gain Δp = 0.00 

The soft real-time geographically distributed hybrid simulation described here was 

executed between the NEESinc Headquarters in Davis, California, and the nees@berkeley 

equipment site in Richmond, California. The OpenSees finite element software was used to 

model and analyze the one-bay frame structure on a portable computer at the NEESinc 

Headquarters, the μNEES setup was utilized to test the experimental portion of the model at the 

nees@berkeley laboratory, and the experimental software framework OpenFresco was employed 

to connect the two across the 60 miles long network connection. The specific client-server 

configuration for this test, described in detail in Chapter 3, can be seen from Fig. 6.5. It should 

be noted that the ShadowExpSite and ActorExpSite pair of OpenFresco provided the necessary 

capabilities to distribute the two processes across a network using different communication 

protocols. 

The OpenSees finite element analysis software in combination with OpenFresco’s tightly 

integrated experimental element and experimental site objects composed the client side of the 

distributed hybrid simulation. The explicit Newmark method (see Chapter 4) was chosen for the 

integration of the equations of motion in OpenSees because of the following reasons. First of all, 

since both free degrees of freedom of this one-bay frame model had mass assigned and 

additionally the structure was chosen to be fairly flexible, there were no modes present with 

excessively high frequencies. This allowed for the selection of an explicit conditionally stable 

integration method, with a reasonable integration time-step size. Secondly, given that the goal of 
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this case study was to perform a geographically distributed hybrid simulation in real time, it was 

desired to choose an integration method that did not require iteration and needed as little time for 

computation as possible. As such, the explicit Newmark method was the ideal choice for the 

problem at hand. Moreover, it was possible to use the unmodified equations of motions (without 

inertial force compensation) for slow hybrid simulations (see Chapter 2) because the actual 

physical mass of the specimen was only 0.3% of the analytical mass at node 3. The test results 

presented in Section 6.2.5, successfully validated this assumption. The TwoNodeLink 

experimental element available from the OpenFresco element library was used to represent the 

physical column tested in the laboratory. 

 
Fig. 6.5  Client-server configuration. 

The server side of the hybrid simulation consisted of OpenFresco’s experimental site, 

experimental setup, and experimental control objects. It should be noticed that for this specific 

validation test the finite element analyst’s view of a hybrid simulation was chosen. This means 

that the OneActuator experimental setup was located on the server side of the distributed 

configuration and hence all the response quantities transmitted across the network were in the 

element’s basic reference coordinate system. Lastly, the xPCtarget experimental control object 

was employed to connect to the real-time xPC Target machine, which was running the event-

driven predictor-corrector model. As described in detail in Chapter 5, the predictor-corrector 
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model was responsible for handling possible delays caused by the nondeterministic TCP/IP 

network transactions and the direct integration of the equations of motion. 

The first step of the test procedure was to start the OpenFresco lab-server, which in turn 

initialized and started the predictor-corrector model on the real-time xPC Target machine. 

During this initialization, the predictor-corrector model was automatically stopped allowing for 

last minute adjustments of the servo-hydraulic control system to zero out displacements and 

forces. This guaranteed that the initial conditions of the experimental element were as close to 

zero as possible. Once the desired initial conditions were set, the MTS 493 controller was started 

to accept command signals over SCRAMNet+, which concluded the test initialization on the 

server side in the nees@berkeley laboratory. All that remained to be done to run the rapid 

geographically distributed hybrid simulation was to start the FEA software (OpenSees) on the 

client side at the NEESinc Headquarters. 

6.2.4 Network Performance Evaluation 

To establish a connection between the client and server program of a distributed hybrid 

simulation, OpenFresco’s ShadowExpSite and ActorExpSite classes employ a channel object. 

The channel object is an abstract base class that defines endpoints of communication from which 

data leave or enter a program. Consequently, it is the derived subclasses that implement the 

different communication protocols (sockets) that can be used to transmit data between a client 

and server program. The client-server architecture with all the available options was described in 

detail in Chapter 3. For the rapid geographically distributed hybrid simulation case study 

described here, the TCP_Socket object was utilized to setup a persistent TCP/IP connection from 

the client application to the server application. The TCP/IP connection guaranteed that the 

transmitted messages were never lost, damaged, or received out of order. In addition, the 

persistent connection provided significant performance gains, since the TCP connection setup 

delay caused by the client server handshake occurred only once during initialization of the 

distributed test rather than at the beginning of every single transaction. 

Besides the use of a persistent TCP/IP connection, the size of the data packages sent to 

the TCP stack also significantly affected the network performance. Because the TCP protocol 

has a data stream interface that permits applications to send data of any size to the TCP stack 

(even a single byte at a time), it was imperative to determine a TCP segment size that would 
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produce the best possible network performance. There was a trade-off in determining such 

optimal segment size. If TCP segments were too large, they were likely to become fragmented at 

the IP level. On the other hand, if they were too small, the network performance degraded greatly 

because small amounts of data were being sent with at least 40 bytes overhead from the TCP and 

IP headers. So by increasing the size of the data packages that were transmitted between the 

ShadowExpSite and the ActorExpSite past the minimal size necessary for the response vectors, 

the so-called sender silly window syndrome was avoided. Sending a storm of tiny data packages 

is very inefficient and can even disrupt other network traffic (Gourley et al. 2002). 

In order to investigate the effect of the data package size on the network performance a 

sequence of hybrid simulations, where the experimental column of the one-bay-frame model was 

simulated, instead of tested in the laboratory, was executed across different network 

configurations. The distributed hybrid simulation tests were performed on a local area network at 

the nees@berkeley equipment site as well as on the Abilene network between Davis and 

Berkeley. For each test the total simulation time required for the execution of the 1599-step-long 

direct integration analysis was recorded and used as a measure to evaluate the performance of the 

network under investigation. 
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Fig. 6.6  Network performance depending on data package size. 
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As can be seen from Fig. 6.6, the simulation time decreased abruptly by about a factor of 

10, once a data size of approximately 200 64-bit doubles was reached. As expected the 

performance started deteriorating again for very large data packages, but at a much slower rate 

than the sudden increase encountered before. As a result of these performance tests, a vector size 

of 256 64-bit doubles was chosen for the rapid geographically distributed hybrid simulation of 

the one-bay-frame model. It is important to recognize that the event-driven predictor-corrector 

model, which executed on the real-time xPC Target machine (see Chapter 5), actually 

determined how fast the hybrid simulation was running under normal operating conditions. As 

long as there were no excessive network and integration delays, the simulation time step that was 

set in the predictor-corrector model, established how much time would pass on a wall clock for 

each integration time step. 

Because the goal in this case study was to perform a hybrid simulation in real time, the 

simulation time step, Δtsim, had to be set equal to the integration time step, Δtint = 20 msec. 

However, because the simulation time step had to be a multiple of the controller time step, Δtcon 

= 1/1024 sec, this was not exactly possible. It was decided to choose 20 substeps for each 

simulation time step. This yielded Δtsim = 19.53125 msec, as long as the network and integration 

tasks were capable of executing in less than 60% of the predefined simulation time step. Thus, 

the theoretical testing rate was 0.9766, which turned out to be slightly faster than real time. 

The timing and interaction of the different tasks within a simulation time step can be seen 

from Fig. 6.7. The flow of events was as follows. Once the target displacement was reached at ti, 

the resisting force was acquired and sent off across the Abilene network to the integration task. 

In the meanwhile the signal generation task performed a response prediction that created new 

displacement commands every Δtcon. This guaranteed that the actuator kept moving until the new 

target displacement was received. After completion of the direct integration of the equations of 

motion, the new displacement target was sent back from the client across the Abilene network to 

the server, which triggered the finite-state machine to switch from prediction to correction. As 

previously mentioned the predictor-corrector model automatically slowed down the actuator 

movement if the combined network and integration time exceeded 60% of the predefined 

simulation time step. To achieve optimal performance, this condition needed to arise as little as 

possible. Once the target displacement was reached at ti+1, the resisting force was measured and 

the sequence of events started over. 
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Fig. 6.7  Timing and interaction of tasks within a time step. 

During the actual hybrid simulation, timing took place on the client side as well as on the 

server side of the geographically distributed test. On the client side the time consumed by each 

step of the transient analysis running on the non-real-time operating system was measured and 

recorded. On the server side time-stamping of all the predictor-corrector events occurred on the 

xPC Target machine running in real time. From these results the time required for each 

simulation time step was later extracted. 

As can be seen from Figure 6.8, the distribution of the integration time steps was not as 

narrow as the one of the simulation time steps. This was because time measurements on the 

client and server sides were shifted in time with respect to each other. By nature of the predictor-

corrector model, simulation time steps on the xPC Target machine could never be shorter than 

the predefined value; 19.53125 msec in this case. They could, however, be longer for situations 

where the finite state machine had to slow down the actuator movements due to excessive delays. 

Contrary to this, the analysis step durations were measured somewhere inside the integration task 

block in Fig. 6.7, which caused them to vary somewhat more than the simulation time steps. 

It can also be observed from Figure 6.8 that the sporadic delays caused by the network 

and integration tasks occurred at times that were consistent between the two independent 

measurements. The number of times the finite-state machine had to slow down the actuator due 

to these delays corresponded to 0.8% of the total number of analysis steps. It should be noted 

that the time measurements taken on the real-time xPC Target machine are likely more accurate 

than the ones obtained from the non-real-time client machine. The achieved time-step durations 

as measures of network performance are summarized in Table 6.4. Because not all the simulation 

time steps could be completed without any slow downs, the geographically distributed hybrid 
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simulation was not executed in hard real-time, but rather in soft real time, where sporadic, short 

delays were encountered. In many applications, such random short delays may be quite 

acceptable and do not invalidate an entire test. 

Table 6.4  Network performance in terms of time-step durations. 

 Client-Side Server-Side Desired 

dtMin [msec] 16.564 19.531 19.531 

dtMax [msec] 107.093 83.984 19.531 

dtAvg [msec] 19.877 19.893 19.531 

dtStd [msec] 4.156 4.559 0.0 

tTot [sec] 31.784 31.809 31.230 
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Fig. 6.8  Comparison of integration and simulation step distributions. 
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6.2.5 Test Results and Interpretation 

In this section, the results, as they were recorded by OpenSees on the client side of the hybrid 

simulation (at the NEESinc Headquarters) are discussed first. Secondly, some predictor-corrector 

results that were recorded on the xPC Target machine are presented. The measurements recorded 

by the STS controller software are then used to evaluate the performance of the servo-hydraulic 

control system that was achieved during the test. Finally, the soft real-time network test is 

compared to a slow local test to investigate the effect of testing speeds on the response of the 

one-bay frame structure. 

Finite Element Model Results: 
Fig. 6.9 shows the lateral displacement, velocity, and acceleration response of the two free 

degrees of freedom of the one-bay frame structure. The response histories are plotted from the 

OpenSees output files that were recorded during the real-time test. As marked on the following 

three graphs, the largest displacement, velocity, and acceleration values seen on top of the left 

experimental column were 2.31 in., 22.1 in./sec, and 242 in./sec2, respectively. Because the top 

of the left experimental column was attached to the actuator of the μNEES setup and the test was 

executed in real time, the actuator experienced the same response maxima. Consequently, such 

extremes had to remain inside the actuator displacement limits of ±7.5 in. and the actuator 

velocity limits of ±23.3 in./sec (as listed in Table 6.2) in order not to saturate the response or 

trigger the interlocks and shutdown the control system. 

Another observation that can be made from the very end of the displacement history is 

that the structural response kept decreasing with each cycle due to the total energy dissipation, 

which was determined to be equal to a viscous damping coefficient of approximately 6% of 

critical. Since at these small displacements the hysteretic energy dissipation completely vanished 

and because the explicit Newmark method does not introduce any numerical damping, the total 

energy dissipation was a combination of the assigned viscous damping and the energy 

dissipation due to experimental errors. Thus, it can be concluded that the additional damping 

contributed by experimental errors was approximately 1% of critical. This means that the 

actuator control system was slightly overshooting the reference displacements, which is 

confirmed from the results acquired by the STS control software. 
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Fig. 6.9  Response histories of one-bay frame model from OpenSees. 
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Fig. 6.10  Hysteresis loops and force histories of one-bay frame model from OpenSees. 

As can be seen from Fig. 6.10, the resisting forces that were measured by the load cell 

and fed back to OpenSees are reasonably smooth except at one short instance in time. So even 

though the hybrid simulation was executed in real time with high velocities and accelerations, 

force oscillations stayed small. This can be explained by the very small weight (49 lb = 0.3% of 
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weight at node 3) of the physical components that the actuator had to move forth and back. If the 

weight had been larger, significant inertial forces would have been generated that in turn would 

have affected the force measurements to a much larger degree. In addition, it would then have 

been necessary to compensate for these inertial force contributions in the equations of motion as 

was explained in Chapter 2. 

Predictor-Corrector Results: 
To confirm the correct operation of the predictor-corrector finite state machine, Fig. 6.11 

provides a closer look at the displacement command generation and the handling of excessive 

network and computation delays. The smoothness of the actuator displacement command signal 

(solid red line), which has no jumps and kinks, verifies that the third-order polynomial predictor-

corrector model that was chosen for this test was adequate. Furthermore, it can be seen that due 

to small tracking errors, the measured displacement signal (dash-dotted green line) did not 

always exactly reach the intersection of the target displacement signal (dashed blue line) with the 

command displacement signal (solid red line). 
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Fig. 6.11  Close up of predictor-corrector state transitions from xPC Target. 

Finally, it can be observed that whenever delays occurred, the command displacement 

signal was smoothly slowed down and then smoothly sped up again when the target 



 

  219

displacement was lastly received. Such smooth transitions of the command displacements are 

important so as to not generate spurious force oscillation, which would be expected if the 

actuators were changing their speed abruptly. 

Servo-Hydraulic Control System Results: 
The performance of the servo-hydraulic control system is evaluated from the displacement and 

force measurements, which were acquired by the STS control software at a sampling rate of 1024 

Hz. As can be seen from Fig. 6.12, the largest displacement error during the rapid hybrid 

simulation was equal to 0.06 in., which corresponded to approximately 2.6% of the maximal 

displacement. 
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Fig. 6.12  Displacement error history and Fourier amplitude spectrum from STS. 

The Fourier amplitude spectrum of the displacement errors clearly shows the 

fundamental frequency of the structure at 1.47 Hz, which was slightly lower than the linear-

elastic frequency of 1.61 Hz, due to the nonlinear softening of the experimental column. The 

specimen must have generated the second amplitude peak at a frequency of 25.4 Hz, since it was 

very close to the analytically estimated value of the specimen frequency at 25.6 Hz. Finally, the 
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third amplitude peak at a frequency of 148 Hz corresponds to the oil column frequency of the 

μNEES setup and thus confirms the analytically estimated value. 

A convenient method to check for actuator lag, lead, undershoot, and overshoot all in one 

single plot was utilized by Mercan (2007). Fig. 6.13 presents such graph, where the measured 

displacement is plotted against the command displacement. The following actuator performances 

can quickly be determined from the graph: If the plot is a straight 45º-line, perfect tracking 

without any error was achieved. If the plot shows a counter-clockwise or clockwise turning 

ellipsoid, the actuator produced a lagging or leading displacement response. Finally if the line or 

the axis of the ellipsoid is turned clockwise or counterclockwise away from the 45º-line, the 

actuator was undershooting or overshooting. 
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Fig. 6.13  Synchronization subspace plot from STS. 

The plot presented here of the real-time test shows an almost perfectly straight line turned 

slightly counter-clockwise. This means that the actuator was overshooting a little bit and 

confirms the conclusions, which were made by the investigation of energy dissipation. As can be 

seen from Fig. 6.14, there is three distinct amplitude peaks in the Fourier spectrum of the 

measured resisting forces. The first peak at a frequency of 1.53 Hz again resembles the 

fundamental frequency of the one-bay frame model. However, the second peak, which occurred 

around a frequency of 37 Hz, corresponds to the natural frequency of the reaction frame and was 

therefore generated by the interaction of the test specimen with the reaction frame and the 
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actuator. The third amplitude peak at a frequency of 148 Hz corresponds again to the oil column 

frequency of the μNEES setup and thus confirms once more the analytically estimated value. 
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Fig. 6.14  Measured force history and Fourier amplitude spectrum from STS. 

Comparison of Real-Time versus Slow Hybrid Simulation: 
In order to determine if the structural response of the one-bay frame model was affected by the 

testing rate of the hybrid simulation, a second, ten-times slower, local hybrid simulation was 

carried out. The simulation time step was increased to Δtsim = 200.2 msec, which effectively 

yielded a hybrid simulation that executed approximately ten-times slower than the soft real-time 

geographically distributed one. As can be seen from Fig. 6.15 the displacement, velocity, and 

acceleration response at the top of the left experimental column (node 3) were almost identical. 

This means that the effect of the testing rate for this specific test and structure was negligible and 

can be ignored. The comparison of the hysteresis loops and the experimental shear forces in Fig. 

6.16 confirm this observation. Because the response of the one-bay-frame structure was barely 

affected by the rate of testing, two conclusions can be drawn. First, the behavior of the two 

ductile steel coupons, simulating the plastic hinge zone at the end of the column, was 

independent of strain rates. 
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Fig. 6.15  Comparison of response histories of one-bay-frame model for real-time versus 
slow hybrid simulation. 
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Fig. 6.16  Comparison of hysteresis loops and force histories of one-bay-frame model for 
real-time versus slow hybrid simulation. 
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Secondly, the effects of the inertial forces created by the physical mass of the specimen 

and loading apparatus were small compared to the ones generated by the mass of the model at 

node 3. It was determined that the maximal physical inertial force measured by the load cell and 

fed back into the analysis was approximately 0.5% of the analytical inertial force at node 3, 

which confirms the second conclusion. 

To compare the performance of the servo-hydraulic control system achieved during the 

real-time and slow tests, a tracking indicator as defined by Mercan (2007) was utilized. The 

tracking indicator is based on the enclosed area of the hysteresis loops when measured 

displacements are plotted versus command displacements, as in Fig. 6.13. If the value of the 

indicator is increasing, the displacement response is leading and consequently introducing 

additional energy dissipation (damping) into the system. On the other hand, if the indicator is 

decreasing, the displacement response is lagging and the energy dissipation due to those tracking 

inaccuracies is negative. If the energy introduced into the system by this systematic experimental 

error is larger than the sum of the hysteretic, viscous, and numerical energy dissipation, the 

response of the system starts growing, ultimately yielding the system unstable. 
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Fig. 6.17  Comparison of tracking performance for real-time versus slow hybrid 
simulation. 

Fig. 6.17 presents the tracking indicators for the two tests, where the slow test was 

compressed in time by a factor of ten to facilitate easier comparison. From the positive values of 

the two tracking indicators it can be inferred that additional damping was introduced into the 
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system during both hybrid simulations. Even though this affected the accuracies of the tests this 

experimental error was preferable as opposed to the systematic introduction of additional energy, 

which could have destabilized the system. Although tracking was good for both tests, it can be 

observed that the performance during the slow test was approximately 12 times better than 

during the real-time test. 

Comparison of Analytical Simulation versus Hybrid Simulation: 
To validate the purely analytical OpenSees models of the μNEES specimen and the one-bay-

frame structure, the numerical results were compared against the experimental results obtained 

from the quasi-static test and the hybrid simulation. The analytical model of the μNEES 

specimen consisted of several linear elastic elements resembling the clevis and the S4x7.7 steel 

column and four nonlinear force beam-column elements modeling the two steel coupons. 

 
Fig. 6.18  Analytical model of μNEES specimen. 

In order to capture the buckling behavior of the steel coupons an approach introduced by 

Uriz (2005) was adopted, where the exact large-displacement corotational geometric-

transformation was utilized in combination with an initial offset (perpendicular to the coupon’s 

local x-axis) of the center node of the coupon. For each nonlinear force beam-column element 

five Gauss-Lobatto integration points with circular fiber cross-sections were used and all the 

fibers were modeled utilizing the Menegotto-Pinto plasticity model without isotropic hardening. 
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In a first step the parameters of the analytical model of the μNEES specimen were 

calibrated using the experimentally determined hysteresis loops from the SAC loading history as 

shown in Fig. 6.4. As can be seen from Fig. 6.19, the calibrated analytical model was capable of 

capturing the overall response quite accurately. In addition it can be observed that the strength 

reduction with each cycle, due to the buckling of the coupons, was accurately modeled by the 

nonlinear force beam-column elements and the corotional geometric-transformations. For 

positive displacements the match between the numerically generated hysteresis loops and the 

experimentally generated ones was slightly better than for negative displacements. 
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Fig. 6.19  Comparison of analytical versus experimental hysteresis loops for SAC loading 
history. 

After the successful calibration of the numerical specimen, the subassembly was 

incorporated into a complete analytical model of the one-bay-frame structure in order to perform 

the dynamic direct integration analysis. The earthquake response of the purely analytical 

structure was then compared against the results obtained from the hybrid simulation test. As can 

be seen from Fig. 6.20 the displacement, velocity, and acceleration response at the top of the left 

column (node 3) were nearly identical for the analytical and the hybrid model. This means that 

the purely numerical model was capable to accurately capture the earthquake response of the 
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nonlinear one-bay-frame structure. The comparison of the hysteresis loops and the shear forces 

of the left column are shown in Fig. 6.21. It can be seen that the column shear forces computed 

by the analytical model matched well with the shear forces measured from the experimental 

column specimen. However, the resisting forces were captured with slightly less accuracy than 

the displacements, velocities, and accelerations. This can also be observed from the hysteresis 

loops where the numerical model of the specimen exhibited too much softening in the second 

response cycle as compared to the experimental specimen. 
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Fig. 6.20  Comparison of response histories of one-bay-frame model for analytical versus 
hybrid simulation. 
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Fig. 6.21  Comparison of hysteresis loops and force histories of one-bay-frame model for 
analytical versus hybrid simulation. 

Nevertheless, the overall response of the purely analytical and the hybrid structure 

matched very well, which successfully demonstrated the validity of both models. Particularly, it 

proved that the geographically distributed hybrid simulation is a viable testing method that can 

be utilized to conduct soft real-time experimental tests among different laboratories by relying on 

the next-generation Abilene network. 

6.3 STRUCTURAL COLLAPSE SIMULATION 

6.3.1 Motivation 

One important research area in the field of earthquake engineering is concerned with the ability 

to model structural collapse in order to improve our understanding of the performance of 

structures during very rare earthquake events. However, experimental investigations of collapse 

are in general complex, expensive, and potentially dangerous.  Any of the three previously 

described experimental methods (see Chapter 2) can technically be employed to perform 

structural collapse tests. However, quasi-static and shaking table tests both face difficulties in 

setting up, executing, and interpreting such tests, whereas hybrid simulation does not. 

The advantages and disadvantages of the three experimental methods with respect to 

structural collapse investigations are summarized next. 

1. While quasi-static tests are relatively easy and economical to perform, the demands 

imposed on the test specimens are not directly related to the observed damage. This raises 
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questions about whether the specimens are under- or overtested, which in turn makes it 

extremely difficult to draw accurate conclusions about the behavior of a structure near or 

at collapse. 

2. Shaking table tests provide important data on the dynamic response to specific ground 

motions considering the inertial and energy-dissipation characteristics of the structure and 

the consequences of geometric nonlinearities, localized yielding and damage on the 

response. However, for such tests, a complete structural system is required, and the 

specimen needs to be constructed including complex active or passive gravity load 

setups. Furthermore, preventive measures need to be taken to protect expensive test 

equipment from specimen impact during collapse. This makes investigations of collapse 

on shaking tables very complex, expensive, and potentially dangerous. In addition, due to 

simulator platform and/or control system limitations, reduced-scale or highly simplified 

specimens are commonly necessary, which call into question the realism of many shaking 

table tests of structural collapse. 

3. Hybrid simulations make it possible to investigate geometric nonlinearities, three-

dimensional effects, multiple-support excitation, and soil-structure interactions by 

incorporating them into the analytical portion of the hybrid model. Hence, the hybrid 

simulation method gives the researcher the ability to test large- or full-scale specimens 

and to reduce or avoid scaling issues. In addition, only the critical, collapse-sensitive 

elements of the structure need to be physically tested, allowing for a substantial increase 

in the number of different collapse tests afforded by the same budget. 

To demonstrate how gravity loads and geometric nonlinearities can be accounted for in the 

numerical part of the hybrid model, a hybrid simulation, wherein a portal-frame is tested by 

consistently accounting for second-order effects due to gravity loads, is carried out using the 

Open System for Earthquake Engineering Simulation (OpenSees) (McKenna 1997; Fenves et al. 

2004) and the OpenFresco (see Chapter 3) software packages. 

6.3.2 Second-Order Effects 

Because second-order effects are caused by gravity loads, it is important to understand how such 

loads affect the response of a structure. In general, gravity loads influence the response of a 

structure on three levels, which can be categorized as shown in Table 6.5 below. 
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Table 6.5  Effects of gravity loads on the structural response. 

Level Effect 

Section Gravity loads cause axial forces that interact with bending moments 
and shears at the cross section, commonly known as P-M and P-V 
interaction. 

Element Gravity loads affect the stability of structural elements and critical 
regions, causing softening and local and/or lateral-torsional buckling 
of elements, commonly known as the small P-Delta (P-δ) effects. 

Structure Gravity loads influence the stability of a structure, causing additional 
overturning moments due to large displacements. These effects are 
commonly known as the large P-Delta (P-Δ) effects. 

To model these nonlinear geometric effects in finite element software (such as 

OpenSees), the element equilibrium equations need to be satisfied in the deformed configuration. 

Furthermore, because of large displacements, the compatibility relations between element 

deformations and global element end-displacements become nonlinear. For frame elements, it is 

then possible to separate these coordinate transformations from the actual implementation of the 

element itself as long as the element force-deformation relations are defined in a basic coordinate 

system without rigid body modes. Hence, different geometric theories can be implemented for 

the same element without modifying the element code. In OpenSees the CrdTransf software 

class provides this exact functionality by transforming the response quantities of any frame 

element from the global degrees of freedom to the simply supported basic element degrees of 

freedom and back. The CrdTransf class is an abstract base class that has concrete subclasses for 

linear, p-delta, and corotational geometric transformations. This abstraction and encapsulation of 

the frame element coordinate transformations facilitates the switching among different linear and 

nonlinear coordinate transformations in the OpenSees software framework without affecting the 

implementations of the frame elements themselves. 

6.3.3 Theory and Implementation 

The 2D experimental beam-column element formulation in OpenFresco (which is used in this 

case study) is based on the three collocated degrees-of-freedom of the cantilever basic system 

(see Fig. 6.22 or Chapter 3). 
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The necessary transformations of displacements, velocities, accelerations, and forces are 

implemented in the concrete EEBeamColumn2d class. Since this experimental element is a 

frame member similar to an analytical beam-column element, the previously described OpenSees 

CrdTransf class is employed to transform the response quantities from the global degrees of 

freedom to the simply supported basic element degrees of freedom and back. However, because 

the simply supported basic system is not well suited for experimental testing (due to the two 

rotational degrees of freedom), the response quantities are further transformed from the simply 

supported to the cantilever basic system and back. These additional nonlinear transformations are 

directly implemented in the EEBeamColumn2d class and described in detail in Chapter 3. 

 
Fig. 6.22  Experimental beam-column element (EEBeamColumn2d). 

Of the three coordinate transformations (linear, p-delta, and corotational) that are 

available in OpenSees, only the large-displacement, moderate deformations corotational 

transformation (de Souza 2000; Filippou and Fenves 2004) is explained here. 
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Fig. 6.23  Corotational transformation from local to Basic System A. 

In a first step (which is not shown), the six end-displacements of the beam-column 

element are transformed from the global to the local coordinate system by applying a rotational 

transformation matrix. Afterwards, the element trial displacements, ul, in the local coordinate 

system are transformed to the element deformations, ub, in the basic coordinate system using. 
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where Ln is the length of the element chord in its deformed configuration and α is the 

rotation of the chord from the undeformed to the deformed element configuration. As previously 

shown in Chapter 4 and repeated here for convenience, the transformations of the resisting forces 

and the element stiffness matrix from the Basic System A to the local coordinate system take the 

following form. 

 ( )

( )

( ) ( ) ( )

T A

T
T A T A A

=

∂ ∂ ∂= = = +
∂ ∂ ∂

l

l
l b

l l l

p a q

p ak a q a k a q
u u u

 (6.2) 

where the compatibility matrix, a, and the elastic element stiffness matrix, kb
(A), in the 

basic coordinate system A are given in Equation (6.3). 
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 (6.3) 

ul and pl are the element displacements and forces in the local coordinate system, ub
(A) 

and q(A) are the element deformations and forces in the basic coordinate system A, α is the chord 

rotation, and Ln is the length of the element chord in its deformed configuration. Furthermore, the 

first part of the local stiffness matrix in (6.2) represents the material stiffness, and the second part 

represents the geometric stiffness. 

6.3.4 Test Structure and Earthquake Record 

This section demonstrates how the novel experimental beam-column elements 

(EEBeamColumn2d; see Chapter 3) can be used to perform a hybrid simulation until collapse. 

As can be seen from Fig. 6.24 the steel single-story, single-bay portal-frame had a height of 50 

inches, which corresponds to the height at which the actuators attached to the experimental steel 

specimen. The width of the structure was arbitrarily chosen to be 100 inches. Furthermore, the 

portal-frame consisted of an elastic W6x12 beam and two ductile, nonlinear S4x7.7 columns. 

The connecting beam, the viscous energy-dissipation and mass properties as well as the gravity 

and earthquake loads were all analytically modeled in OpenSees. The EEBeamColumn2d 

experimental element (see Fig. 6.22) was used to represent both columns. The left column was 

simulated using the ECSimDomain controller and the right column was physically tested in the 

μNEES laboratory. 
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Fig. 6.24  Portal-frame model with structural properties. 

Considering the axial and flexural deformations in the elements, the portal-frame model 

had a total of eight degrees of freedom (four translational and four rotational). However, it was 

assumed that only the four translational degrees of freedom had mass (m3 = m4 = 0.0138 

kip·sec2/in.), which made the 8x8 mass matrix singular with rank equal to four. With the selected 

structural properties, the fundamental period of the structure was 0.49 sec, and the viscous 

energy dissipation was modeled with 5% mass proportional damping. The magnitude of the 

gravity loads (P = 5.32 kip) was set at 50% of the critical side-sway buckling load of the physical 

column (including the clevis) obtained by assuming that the beam was flexurally rigid and the 

base support of the column was pinned. Because the gravity loads on the two columns were 

entirely treated in the analytical portion of the hybrid model, with negligible axial loads imposed 

on the experimental parts of the structure (column cross-sections and elements), only the large p-

delta effects (see Table 6.5) are accounted for in this demonstration and validation example. 

The hybrid portal-frame model was subjected to the SACNF01 near-fault ground motion 

of the SAC database, scaled to a peak ground acceleration of 0.906 g. The ground motion was 

originally recorded during the 1978 Tabas, Iran, earthquake and modified based on the SAC 

protocol to represent NEHRP soil type Sd. The 30 sec time history was shortened to 25 sec so 

that the hybrid simulations took less time to execute. It therefore consisted of 2500 data points 
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recorded every 0.01 sec. The elastic response spectra of such motion for a damping ratio of 5% 

and with markers at the fundamental side-sway period are shown in Fig. 6.25. 

6.3.5 Test Setup and Procedure 

For convenience in the laboratory, the right beam-column specimen was inverted with the pin 

end at the top and the fixed end at the bottom. The μNEES experimental setup, which was 

described in detail in Section 6.2.3, was used to test the right column of the portal-frame. It is 

important to emphasize that because the basic coordinate system moved as the element 

deformed, the one-actuator experimental setup (Fig. 6.3) utilized in these tests also behaved as if 

it had been attached to and moved with the experimental element. Because the tests were 

performed as local hybrid simulations, the OpenSees finite element analysis software in 

combination with OpenFresco’s tightly integrated experimental element, local experimental site, 

experimental setup, and control objects were all located at the nees@berkeley laboratory. Due to 

the fact that only two of the eight degrees of freedom had mass assigned an unconditionally 

stable integration method had to be used to solve the equations of motion. 
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Fig. 6.25  Elastic response spectra for SACNF01 ground motion, with values at 
fundamental period. 
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In addition, since the hybrid model consisted of both numerical and experimental 

elements that exhibited strong material and geometric nonlinearities, the generalized-alpha-OS 

method (see Chapter 4) was not well suited and an iterative solution scheme had to be employed 

instead. Hence, the second modified implicit Newmark method with 10 sub-steps and the 

Newton-Raphson algorithm with a mixed Jacobian were utilized (see Chapter 4). 

As with the previous case study, the OneActuator experimental setup in OpenFresco was 

utilized to represent the μNEES setup and the xPCtarget experimental control object was 

employed to connect to the real-time xPC Target machine, which was running the event-driven, 

third-order predictor-corrector algorithm that uses the last predicted value in the corrector 

formula (see Chapter 5). The integration time step was chosen to be Δtint = 0.01 sec, which was 

equal to the ground motion time step. On the other hand, the simulation time step was chosen to 

be Δtsim = 2-5 = 31.25 msec and in combination with the 10 iterations per time step, the hybrid 

simulation was performed at a rate 31.25 times slower than real time, and each test lasted 13 

minutes. 

6.3.6 Test Results and Interpretation 

To investigate the effect of gravity loads on the response of the portal-frame, two pairs of 

simulations were performed. One simulation was performed without any gravity loads applied, 

and then gravity loads were added to the analytical portion of the hybrid model for the second 

test. Both tests utilized the corotational geometric coordinate transformation and identical new 

coupons were used in the clevis representing the plastic hinge in each test. 

Various results are described in this section. Firstly, the response that was recorded 

within OpenSees is discussed. Secondly, some predictor-corrector results that were recorded on 

the xPC Target machine are presented. The measurements recorded by the STS controller 

software are then used to evaluate the performance of the servo-hydraulic control system that 

was achieved during the test. Finally, the hybrid simulations are compared against purely 

analytical simulations of the portal-frame model. 

Finite Element Model Results: 
The story-drift time histories as well as the story-shear vs. story-drift hysteresis loops are 

compared in Fig. 6.26. Even though the frame drifts and the residual displacements were 
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substantial for the first test without gravity loads, the hybrid model did not collapse. In the 

second hybrid simulation, the presence of the gravity loads is clearly evident from the negative 

post-yield tangent stiffness exhibited by the combined hybrid model. 
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Fig. 6.26  Comparison of story-drift time-histories and total story hysteresis loops for 
portal-frame model from OpenSees. 

As can be seen from Fig. 6.26a, for the hybrid simulation with gravity loads, the story 

drifts increased rapidly at 6.5 sec into the test, which can be considered as the initiation of frame 

collapse. With each additional cycle, the portal-frame leaned over further until the hybrid 

simulation was finally terminated when the actuators reached their stroke limit of 7.5 inches, 

which corresponded to an interstory drift ratio of 15%. The second simulation demonstrated that 

the hybrid model could be tested all the way to collapse of the portal-frame, which would be 

difficult and dangerous to accomplish in shaking table tests. 



 

  238

−2 0 2 4 6 8 10 12 14
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Story Drift Ratio [%]

R
es

is
tin

g 
F

or
ce

 L
ef

t C
ol

um
n 

[k
ip

]

 

 

w/o Gravity Load
with Gravity Load

 
−2 0 2 4 6 8 10 12 14

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Story Drift Ratio [%]

R
es

is
tin

g 
F

or
ce

 R
ig

ht
 C

ol
um

n 
[k

ip
]

 

 

w/o Gravity Load
with Gravity Load

 

Fig. 6.27  Comparison of element force-story-drift hysteresis loops for portal-frame model 
from OpenSees. 

Fig. 6.27 provides the comparison of the hysteresis loops of the two experimental column 

elements. The element shear forces are plotted against the element drift ratios in the global 

reference coordinate system. It can be observed that for both hybrid simulations (the one without 

and the one with gravity loads) the negative post-yield stiffnesses of the right column were 

significantly larger than the ones of the left column. This behavior can be explained by the fact 

that the portal-frame was leaning to the right and the overturning moment was therefore loading 

the right column further in compression and unloading the left column. Since both hybrid 

simulations utilized large-displacement nonlinear geometric coordinate transformations for all 

the elements, this effect could also be observed in the test without the gravity loads. 

Fig. 6.28 compares the actuator hysteresis loops for the two experimental beam-column 

elements. The actuator-force vs. actuator-displacement relationships are plotted in the Basic 

System B (cantilever) as they were acquired from the ECSimDomain (left column) and the 

ECxPCtarget (right column) control objects. This means that the responses are compared before 

they were transformed to the Basic System A (simply supported) and before the gravity load 

effects were applied by the nonlinear geometric transformations in the EEBeamColumn objects. 

Thus, no negative post-peak stiffnesses were observed in the actual test. The differences between 

the hysteresis loops are entirely due to the consistently applied displacements. Furthermore, it 

can be seen that for large displacements of the cantilever column ends (respectively large 

rotations of the clevises), the hysteresis loops exhibited some degradation. This degradation was 

due to the buckling of the replaceable steel coupons as the clevises went through large rotations. 
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Fig. 6.28  Comparison of actuator force-displacement hysteresis loops for portal-frame 
model from OpenSees. 

Predictor-Corrector Results: 
Similarly to the previous case study, the correct operation of the predictor-corrector finite state 

machine is again confirmed by taking a closer look at the displacement command generation. 
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Fig. 6.29  Close up of predictor-corrector state transitions from xPC Target. 

The two graphs in Fig. 6.29 show close-ups of the signals for the test without gravity 

loads (left) and the one with gravity loads (right). The smoothness of the actuator displacement 

command signals (solid red lines), which have no jumps and kinks, verify that the chosen third-

order predictor-corrector algorithm that utilizes the last predicted value in the corrector formula 

(see Chapter 5), achieved satisfactory performance. 

Furthermore, it can be observed that due to small tracking errors, the measured 

displacement signals (dash-dotted green lines) did not always exactly reach the intersection of 
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the target displacement signals (dashed blue lines) with the command displacement signals (solid 

red lines). Particularly, the measured displacement signals were a little smaller than the 

commanded ones. This means that the actuators were slightly undershooting, which is confirmed 

from the results acquired by the STS control software in the next section. 

Servo-Hydraulic Control System Results: 
The performance of the servo-hydraulic control system is evaluated from the displacement and 

force measurements, which were acquired by the STS control software at a sampling rate of 1024 

Hz. For the first hybrid simulation without gravity loads, the largest displacement error during 

the test was equal to 0.006 in., which corresponded to approximately 0.15% of the maximal 

displacement; and for the second hybrid simulation with gravity loads, the largest displacement 

error during the test was equal to 0.005 in., which corresponded to approximately 0.06% of the 

maximal displacement. This means that the servo-hydraulic control system was able to achieve 

very accurate displacement tracking, mainly due to the slow execution of the tests (31.25-times 

slower than real time). 

Actuator lag, lead, undershoot, and overshoot were again evaluated from synchronization 

subspace plots (Mercan 2007), where the measured displacements are plotted against the 

command displacements. The following actuator performances can quickly be determined from 

the graph: If the plot is a straight 45º-line perfect tracking without any error was achieved. If the 

plot shows a counterclockwise or clockwise turning ellipsoid, the actuator produced a lagging or 

leading displacement response. Finally if the line or the axis of the ellipsoid is turned clock-wise 

or counter-clock-wise away from the 45º-line, the actuator was undershooting or overshooting. 
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Fig. 6.30  Synchronization subspace plots from STS. 

The two plots for the hybrid simulations without gravity loads (left) and with gravity 

loads (right), presented in Fig. 6.30, show almost perfectly straight lines, which are minutely 

turned clock-wise. This means that during both tests the actuator was undershooting a little bit, 

introducing a minuscule amount of additional energy into the system. Furthermore, this confirms 

the observations that were made in the previous section. 

Fig. 6.31 presents the tracking indicators for the two tests (Mercan 2007). From the 

negative values of the two indicators it can be inferred that negative damping, meaning 

additional energy, was introduced into the system during both hybrid simulations. However, the 

values of the tracking indicators are so small that only minuscule amounts of energy were 

introduced into the hybrid simulations, which did not affect the stability of the system. Although 

tracking was excellent for both tests, it can be observed that tracking during the test with gravity 

loads was slightly better than tracking during the tests without gravity loads but with more noise 

in the measured signals. 
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Fig. 6.31  Comparison of tracking performance for test without gravity loads versus test 
with gravity loads from STS. 

Comparison of Analytical Simulation versus Hybrid Simulation: 
The numerical model of the μNEES specimen that was developed in Section 6.2.5 is again 

utilized to perform two purely analytical simulations (AS) of the portal-frame model in 

OpenSees and compare the numerical results against the test results from the two hybrid 

simulations (HS). The comparisons of the story-drift time histories as well as the story-shear vs. 

story-drift hysteresis loops are shown in Fig. 6.32. Overall the analytical simulations were 

capable of capturing the response of the portal-frame reasonably well, which can be confirmed 

from the close matches of the story-drift time histories in the first graph. 
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Fig. 6.32  Comparison of story-drift time-histories and total story hysteresis loops of portal-
frame model for analytical versus hybrid simulation. 
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Fig. 6.33  Comparison of element force-story-drift and actuator force-displacement 
hysteresis loops of portal-frame model for analytical versus hybrid simulation. 
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However, it can be observed from all the graphs in Fig. 6.32 to Fig. 6.33 that the 

analytical simulation without gravity loads was clearly more accurate than the one with gravity 

loads. Furthermore, the divergence between the hybrid and analytical simulations increased with 

the portal-frame approaching collapse. This can be explained by the complex behavior (severe 

buckling, necking of the cross-section, crack propagation) of the replaceable steel coupons for 

large rotations of the clevis (respectively large story-drift-ratios), which was not accurately 

captured by the simplified finite element model of the specimen. 

Nevertheless, as mentioned before, the overall response of the purely analytical and the 

hybrid structure matched very well, which successfully demonstrated the validity of both models. 

Particularly, it proved that the OpenFresco software framework, with the novel experimental 

beam-column element and the other research presented herein, provide a useful and effective set 

of modules for performing accurate, safe, and cost-effective hybrid simulations of structural 

collapse. 

6.4 SUMMARY 

The two novel applications of hybrid simulation, which have been discussed in this chapter, 

successfully demonstrated and validated some of the features and the overall flexibility of the 

newly implemented object-oriented hybrid simulation framework presented in Chapter 3. In 

addition, several other independent developments and implementations from Chapters 4 and 5, 

such as the integration methods and the event-driven strategies, have been employed to 

successfully execute two challenging hybrid simulation case studies. 

The first application presented a continuous geographically distributed hybrid simulation 

that was executed in soft real time for the first time. The latest advancements in networking 

technology (Abilene network) paired with the experimental software framework, OpenFresco, 

made such real-time geographically distributed hybrid simulation possible. Over the last few 

years, real-time hybrid simulations have considerably gained significance because many new 

high-performance structural devices, such as base isolation bearings, energy-dissipation devices 

and high-performance materials, exhibit intrinsic rate-dependent behavior. Hence, it is of great 

importance that testing of structural systems incorporating such devices is performed at the 

correct loading rates even if the hybrid simulations are geographically distributed. The one-bay-
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frame structure, the test setup and procedure, the network performance, the transfer system 

performance and the response of the hybrid model were all discussed and evaluated in detail. 

The second case study introduced a novel approach for conducting structural collapse 

investigations utilizing hybrid simulation. It was demonstrated that the OpenFresco software 

framework provides an effective set of modules, especially the novel experimental beam-column 

elements, for performing accurate, safe, and cost-effective hybrid simulations of structural 

collapse. Furthermore, it was shown that the ability to correctly account for the second-order 

effects in hybrid models is crucial for simulating collapse of structures under gravity loads. In 

summary, hybrid simulation of collapse behavior offers three significant advantages over 

conventional testing methods: (1) the gravity loads and the resulting geometric nonlinearities are 

represented in the analytical portion of the hybrid model in the computer, eliminating the need 

for complex active or passive gravity load setups; (2) there is no need to protect expensive test 

equipment from specimen impact during collapse because the actuator control system will limit 

the movements of the test specimens; and (3) only the critical, collapse-sensitive, elements of the 

structure need to be physically tested allowing for a substantial increase in the number of 

different collapse tests afforded by the same budget. Finally, the portal-frame structure, the test 

setup and procedure, the transfer system performance and the response of the hybrid model were 

again discussed and evaluated in detail. 

 



 

 

7 Conclusions and Recommendations 

7.1 SUMMARY AND CONCLUSIONS 

The overarching goal of this research was to explore, develop, and validate advanced techniques 

to facilitate the wider use of local and geographically distributed hybrid simulation by the 

research community and permit hybrid simulation to address a range of complex problems of 

current interest to investigators. To achieve this goal, investigations were conducted to address 

the following objectives: 

1. Review and evaluate existing concepts and frameworks in hybrid simulation and devise 

and implement an improved object-oriented software framework for experimental testing. 

2. Investigate existing time-stepping integration methods, evaluate their applicability to 

hybrid simulations, and develop and implement improved versions for several methods. 

3. Examine existing predictor-corrector algorithms and event-driven strategies for 

synchronization, and conceive and implement new and improved approaches to 

synchronize the integration and transfer system processes. 

To accomplish these objectives, the research efforts were arranged into the following activities. 

The first activity was to conduct an extensive literature review to determine the advantages, as 

well as past and current challenges associated with the hybrid simulation experimental testing 

technique. Furthermore, the fundamental concept and the different modes of conducting hybrid 

simulations were discussed. It was concluded that the lack of a common framework for the 

implementation and deployment of hybrid simulation has posed a major hurdle for those who 

considered utilizing hybrid simulation. Moreover, it has also limited collaboration among experts 

in the field. Thus, the second activity was to devise and implement a number of important 

extensions to an object-oriented software framework for experimental testing (Takahashi and 

Fenves 2006) to support a large variety of finite element analysis software, structural testing 

methods, specimen types, testing configurations, control and data-acquisition systems, and 

network communication protocols. Because in hybrid simulations the step-by-step numerical 

integration of the semi-discrete equations of motion acts as the computational driver, the third 
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activity was to examine existing hybrid-simulation specialized integration schemes and develop 

improved versions for a few of these methods. While the third activity focused on the finite 

element analysis side of a hybrid simulation, the fourth activity was concerned with investigating 

methods and strategies for the control and data-acquisition systems on the laboratory side of the 

testing technique. Specifically, improved event-driven strategies and predictor-corrector 

algorithms, which are employed to synchronize the integration and transfer system processes, 

were developed and compared. The fifth and finally activity was to develop and execute a few 

novel and demonstrative hybrid simulations to validate the software framework, the integration 

methods, and the event-driven synchronization strategies. A short summary of each activity 

combined with the key findings is provided next. 

7.1.1 Hybrid Simulation Fundamentals 

To commence the investigations, it was shown that among the currently well-established 

experimental testing techniques, hybrid simulation is able to provide a range of important 

advantages but still faces several important challenges. It was explained that some of the major 

advantages gained through hybrid simulation are the analytically defined loading, the 

substructuring capabilities, the ability to test large-scale specimens, the option to utilize 

affordable testing equipment, the variable speeds of execution, and the possibility to 

geographically distribute numerical and physical subassemblies. On the other hand, some of the 

key challenges that still need to be addressed were discussed. These include the implementation 

of an environment-independent framework for the development and deployment of hybrid 

simulation, the exploration of force and mixed force/displacement control strategies, dealing 

with network delays and breakdowns in geographically distributed tests, the development of 

methods for assessing the goodness of a hybrid simulation, and the execution of hybrid 

simulations in high-performance computing (HPC) environments. 

The four key components, which are required to perform a hybrid simulation, were laid 

out in a comprehensive way. They consist of a discrete model of the structure including the static 

and dynamic loading; a transfer system comprising a controller and static or dynamic actuators; 

the physical specimen that is being tested in the laboratory, including a support against which the 

actuators of the transfer system can react; and a data-acquisition system including 

instrumentation devices. 
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The most common modes of deployment of hybrid simulations, such as local versus 

geographically distributed tests and slow versus rapid versus real-time tests, were summarized 

and discussed. A local hybrid simulation was defined by the collocation of all the required 

components in one testing facility. In contrast, for geographically distributed tests some or all the 

participating sites are dispersed and need to be connected through wide area networks. 

Moreover, it was noted that the equations of motion, which are solved by a time-stepping 

integration method, will by necessity take on slightly different forms depending on the execution 

speed of the hybrid simulation. 

7.1.2 Experimental Software Framework 

From the literature review it was found that even though only a small number of basic operations 

and communication protocols are needed to perform hybrid simulations, hitherto few efforts 

have been made to implement a universal, environment-independent software framework for 

developing and deploying systems that are capable of carrying out hybrid simulations. It was 

explained that a software framework is a reusable design for a system or subsystem and defines 

the overall architecture of such system, meaning its fundamental components as well as the 

relationships among them. 

Conforming to this definition, an existing software framework for experimental testing 

(OpenFresco) was redesigned, extended, and implemented to support a large variety of 

computational drivers, structural testing methods, specimen types, testing configurations, control 

and data-acquisition systems, and communication protocols. In addition, to accelerate the 

development and refinement of hybrid simulation, OpenFresco was implemented to be 

environment independent, robust, transparent, scalable, and easily extensible. It was described 

how the original development of the software framework is based on the structural analysis 

approach, in which a hybrid simulation can be viewed as a conventional finite element analysis 

where physical subassemblies of the structure are embedded in the numerical model. Object-

oriented methodologies and a rigorous systems analysis of the operations performed during 

hybrid simulations were used to determine the fundamental building blocks of the OpenFresco 

software framework. 

Four main software abstractions (classes) had previously been introduced to represent the 

real-world components required to perform hybrid simulations (Takahashi and Fenves 2006). 
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These classes are the ExperimentalElement, which represents those parts of a structure that are 

physically tested in a laboratory; the ExperimentalSite, which represents the laboratories where 

the testing takes place or the computational sites where the analysis is carried out; the 

ExperimentalSetup, which represents the possible configurations of the transfer system; and the 

ExperimentalControl, which provides the interface to communicate with a wide variety of 

control and data-acquisition systems. 

One of the key contributions of the research presented here is the application of a multi-

tier client/server architecture that was wrapped around the fundamental OpenFresco building 

blocks. As part of this work, the OpenFresco core components were redesigned and newly 

implemented before they were combined with the multi-tier client/server architecture. It was 

shown how the new design supports any finite element analysis software as the computational 

driver and facilitates a wide variety of local and geographically distributed testing 

configurations. In addition, these different modes of deployment were explained in detail. Hence, 

it can be concluded that OpenFresco’s new three- and four-tier architectural patterns provide the 

modularity and flexibility to interface any computational agent running on one or more machines 

with physical specimens being tested in one or more laboratories. 

The final OpenFresco software design that resulted from the object-oriented design phase 

was summarized utilizing class diagrams, class APIs, and sequence diagrams as are commonly 

done for software developments. Afterwards, all the concrete classes, which have been 

implemented as part of the work presented here, and protocols for distributed computation and 

testing, were discussed. The OpenFresco source-code, documentation, and examples are 

available at http://openfresco.neesforge.nees.org. Finally, it was shown how OpenSees could be 

used as the computational framework. It was found that improved performance could be 

achieved as compared to other finite element analysis software because the two software 

frameworks can directly be integrated without utilizing network connections. 

Overall, it can be concluded that the redesigned, extended, and newly implemented 

software framework for experimental testing is very flexible, extensible, and capable of 

interfacing with a wide variety of finite element analysis software and of supporting a large array 

of testing equipment. Thus, it will be able to boost the development and deployment of hybrid 

simulation and promote the collaboration among experts in the field. 
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7.1.3 Integration Methods 

After the OpenFresco middleware, which allows any finite element analysis software to be 

connected to a laboratory, had successfully been redesigned, the goal was to investigate another 

of the key components required to perform hybrid simulations; that is, the time-stepping 

integration methods, which act as the computational drivers and need to be provided by or 

implemented in the finite element analysis software. 

A wide range of integration schemes from both the class of direct integration methods 

and the class of Runge-Kutta methods were investigated and evaluated in terms of their 

applicability to hybrid simulation. The first step in these investigations identified and 

summarized special integration scheme properties required for the reliable, accurate and fast 

execution of hybrid simulations. It was concluded that explicit noniterative methods are well 

suited for hybrid simulation and easy to implement, as long as it is possible to satisfy their 

stability limits with a reasonable time-step size. In contrast, it was demonstrated that 

unconditionally stable iterative implicit methods should be used for hybrid simulation under only 

one of two conditions: either a fixed user-specified number of iterations is utilized in the 

equilibrium solution algorithm or the event-driven algorithms that were introduced in another 

part of this report need to automatically adjust the time intervals over which displacement 

increments are imposed. For the former approach, improved versions of existing algorithms were 

developed that achieve superior convergence in the iteration process. Third, it was shown that the 

operator-splitting methods and Rosenbrock methods, which are unconditionally stable, relatively 

easy to implement, and computationally almost as efficient as explicit methods, are excellent for 

solving the equations of motion during hybrid simulations. For the operator-splitting schemes, 

two new methods were proposed, the generalized-alpha-OS and the Modified generalized-alpha-

OS method. They were described in detail and it was concluded that as long as the hybrid model 

does not exhibit severe geometric nonlinearities, the two methods are very attractive integration 

schemes for hybrid simulation. Another key component of this work is the thorough 

investigation of the applicability of Runge-Kutta methods to hybrid simulation. 

The accuracy of both the class of direct integration methods and the class of Runge-Kutta 

methods considered was also evaluated in terms of two measures, numerical dissipation and 

dispersion. It was concluded that for hybrid simulation the integration schemes should preferably 

provide some user-adjustable amount of algorithmic energy dissipation in high-frequency modes 
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to damp out any spurious oscillations that might get excited by experimental errors. In contrast, it 

was concluded that the numerical dispersion, meaning the relative period elongation, should be 

as small as possible for maximal accuracy of the integration method. 

Finally, all the integration methods introduced were summarized in form of pseudo-code 

to assist with their implementation into finite element software. In addition, most of the methods 

have already been implemented in OpenSees. 

7.1.4 Event-Driven Strategies 

The predictor-corrector algorithms that provide the synchronization of the integration and 

transfer system processes and need to be implemented on the control and data-acquisition system 

side in a real-time environment were investigated next. Previous developments, such as methods 

for continuous and real-time testing as well as the three-loop hardware architecture (Mosqueda 

2003) that makes continuous geographically distributed testing possible, were discussed first. 

Several improved predictor-corrector algorithms, which incorporate the last predicted 

displacement command into the corrector formulas, were then introduced. It was shown that 

these algorithms achieve improved performance in the sense that they generate continuous 

displacement command signals without inconsistencies in the switching interval. Furthermore, 

two new predictor-corrector algorithms that are based on velocities and accelerations, in addition 

to displacements, were proposed and shown to achieve improved accuracy while preserving 

continuity in the generated displacement command signals. The theories of all synchronization 

algorithms introduced were covered in detail, and their performance and accuracy evaluated 

graphically in terms of amplitude change and a phase shift. Hence, it can be concluded that the 

new and improved synchronization algorithms, which have been implemented in the C 

programming language and are available to users, provide means for performing more accurate 

continuous hybrid simulations and should therefore be utilized in place of the original 

algorithms. 

The event-driven solution strategies, which employ the previously described algorithms 

for prediction and correction, were investigated next. Again, the existing strategy was evaluated 

first, and based on the deficiencies identified, new and improved solution strategies were 

suggested. Most of the new strategies are based on adaptive control concepts that automatically 

adjust parameters of the event-driven controller, such as time steps, actuator velocities etc., 
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according to some suitable performance criteria. It was shown that one of the improved strategies 

successfully generates continuous velocity transition (whenever test execution needs to be 

slowed down or sped up) instead of the discontinuous ones of the original strategy. Another one 

of the new solution strategies was specifically developed to work in conjunction with the implicit 

Newmark direct integration method (that would otherwise be inappropriate for hybrid 

simulation), by adapting time intervals over which displacement commands are imposed. Finally, 

except for the adaptive simulation time-step strategies and the adaptive integration time-step 

strategies, which still need to be tested and evaluated in a real physical environment, all the other 

event-driven strategies have been implemented in Simulink/Stateflow (Mathworks) and are 

available to users for performing hybrid simulations. 

As a result, it can be concluded that the new and improved predictor-corrector algorithms 

and event-driven strategies provide an important and useful set of tools to perform continuous 

hybrid simulations in which consistent and more accurate commands are generated for the 

control systems. 

7.1.5 Novel Hybrid Simulation Examples 

To confirm the robustness, flexibility, and usability of the extended OpenFresco software 

framework and to validate the integration methods and the event-driven synchronization 

strategies introduced, two new, interesting, and challenging hybrid simulation examples were 

carried out. 

The first application presented a continuous geographically distributed hybrid simulation 

that was executed in soft real time for the first time in history. It was shown that OpenFresco’s 

newly implemented Shadow and Actor experimental sites combined with the latest 

advancements in networking technology (Abilene network) made such real-time geographically 

distributed hybrid simulation possible. Furthermore, it can be concluded that the improved 

predictor-corrector algorithms and event-driven strategies successfully guaranteed the continuous 

execution of the test, as well as the smooth slow downs and speed ups of the experiment in case 

of network delays. 

It was discussed that over the last few years, real-time hybrid simulations have gained 

considerably in significance because the many new high-performance structural devices, such as 

base isolation bearings, energy-dissipation devices, and high-performance materials, exhibit 
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intrinsic rate-dependent behavior. Thus, it was concluded that it is of great importance that 

testing of structural systems incorporating such devices is performed at the correct loading rates 

even if the hybrid simulations are geographically distributed. It was successfully demonstrated 

that the redesigned, extended and newly implemented software framework for experimental 

testing provides the means to perform such hybrid simulations. 

The second application introduced a novel approach for conducting structural collapse 

investigations utilizing hybrid simulation. It was shown that the OpenFresco software framework 

provides an effective set of modules, especially the novel experimental beam-column elements, 

for performing accurate, safe and cost-effective hybrid simulations of structural collapse. 

Furthermore, it was concluded that the modified implicit Newmark integration scheme with 10 

sub-steps is capable of generating an accurate response of the portal-frame despite the significant 

geometric nonlinearities. 

Finally, it was concluded that hybrid simulation of structural collapse offers three 

important advantages over conventional testing methods: (1) the gravity loads and the resulting 

geometric nonlinearities are represented in the analytical portion of the hybrid model in the 

computer, eliminating the need for complex active or passive gravity load setups; (2) there is no 

need to protect expensive test equipment from specimen impact during collapse because the 

actuator control system will limit the movements of the test specimens; and (3) only the critical, 

collapse-sensitive elements of the structure need to be physically tested allowing for a substantial 

increase in the number of different collapse tests afforded by the same budget. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

The topics cover by this research constitute a valuable contribution that provides the research 

community with an extensive set of tools, such as a robust and flexible software framework and 

a comprehensive compilation of time-stepping integration techniques and synchronization 

strategies, to perform advanced hybrid simulations to experimentally investigate the behavior of 

complex structures. In the process of developing and implementing many of the discussed topics 

several research areas were identified which could benefit from further study. 
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OpenFresco Software Framework: 
1. Enhance the ability of the hybrid simulation software framework to simulate in dry-run 

mode test specimens and transfer systems, including controllers, actuators, hydraulic 

supply systems, and instrumentation. Such capabilities to conduct dry runs of an 

experiment before the actual test are critical in determining control parameters, and in 

confirming that various analysis parameters are input properly ensuring that the hybrid 

simulation can be run safely. The OpenFresco software framework currently permits 

simulation of the specimen in dry-run mode, but features are not adequate to simulate the 

full system including critical aspects of controllers, hydraulic control systems, etc., 

necessary to assess overall stability and safety. 

2. Improve the support for rapid and soft real-time geographically distributed hybrid 

simulations and verify that the OpenFresco software framework provides the necessary 

capabilities for hard real-time hybrid simulations. This is a rapidly growing research area 

with several NEES equipment sites and individual research projects undertaking projects 

that require real-time or rapid test execution. The following activities should be included: 

Implement methods into the OpenFresco software framework for compensating for 

inertial and viscous damping forces that are being generated in the physically tested 

portions of a structure during the rapid or real-time execution of a hybrid simulation (see 

Chapter 2). Extend the OpenFresco software framework so that it can be employed to 

execute smart shaking table tests by performing a hybrid simulation where a simulator 

platform is controlled in real time. Investigate methods to further improve the speed and 

reliability of geographically distributed hybrid simulations and to take full advantage of 

the capabilities of the next generation Internet. 

3. Several NEES equipment sites and researchers are currently working towards the ability 

to conduct force and mixed force/displacement controlled hybrid simulations. Thus, it is 

important to collaborate with these equipment sites and researchers to make any changes 

needed to the OpenFresco software framework to enable force and mixed 

force/displacement control, as well as switching during simulation between force and 

displacement control. 

4. One of the main features of the OpenFresco software framework is its ability to allow 

users to employ any finite element analysis software of their choice. Currently, the 
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implementations with OpenSees, Matlab, LS-Dyna, and SimCor work well. However, 

additional interfaces for other widely used finite element software packages, such as 

Abaqus and SAP2000, should be investigated and interfaces be implemented. 

5. One of the NEES objectives is to foster the open exchange of data and information 

among researchers and practicing engineers through shared, web-accessible repositories. 

Hence, it is essential to implement recording capabilities for all the objects in the 

OpenFresco software framework and investigate approaches for automatically uploading 

all the recorded data into the NEES data repository. 

Integration Methods: 
1. Investigate the changes or additions that are required in OpenSees in order to implement 

all the discussed Runge-Kutta integration methods, especially the real-time compatible 

Rosenbrock methods. Because for Runge-Kutta methods the second-order differential 

equation is converted into a system of first-order ordinary differential equations, the size 

of the linear system of equations that needs to be solved during the analysis doubles. This 

will entail some new additions to OpenSees to assemble and solve these distinctive linear 

systems of equations. 

2. The application of mixed time implicit-explicit integration schemes (Liu and Belytschko 

1982) to hybrid simulation should be investigated. Contrary to implicit-explicit 

integration methods (Hughes and Liu 1978), which were employed for hybrid simulation 

by Dermitzakis and Mahin (1985), the partition procedures by Liu and Belytschko (1982) 

permit different time-integration algorithms with different time steps to be used 

simultaneously in different parts of the finite element mesh. 

Event-Driven Strategies: 
1. Many simulation results but only a limited number of actual tests were performed to 

validate the newly introduced predictor-corrector algorithms. Hence, additional real 

hybrid simulations should be performed to enforce the validation of the algorithms under 

a broader range of conditions. Specifically, the algorithms that are based on velocities 

and accelerations should be further investigated if the velocities and accelerations are 

provided by the integration methods (especially the Runge-Kutta methods once they are 

implemented in OpenSees). 
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2. To make the adaptive simulation and integration time-step strategies available to hybrid 

simulation users and researchers, they should be implemented in Simulink/Stateflow 

(Mathworks) so that they can be validated through actual tests in a real-time environment 

prior to releasing them. 

Applications: 
1. There is a range of hybrid simulation applications that are challenging to execute because 

of the following known issues. It is difficult to control three-dimensional systems 

utilizing an array of actuators due to their kinematic interaction. Furthermore, controlling 

experimental subassemblies with large physical masses is very challenging because of 

inertial force interactions. This becomes even more difficult if high loading rates are 

necessary due to the velocity dependence of structural devices. As a result, example 

applications should be designed to perform hybrid simulations to investigate these issues 

and research means for dealing with these difficulties. 
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