
PEER 2009/104
NOVEMBER 2009

PACIFIC EARTHQUAKE ENGINEERING
RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING
Advanced Implementation of Hybrid Simulation

Andreas H. Schellenberg
Stephen A. Mahin
Gregory L. Fenves

University of California, Berkeley

Advanced Implementation of Hybrid Simulation

Andreas H. Schellenberg
Department of Civil and Environmental Engineering

University of California, Berkeley

Stephen A. Mahin
Department of Civil and Environmental Engineering

University of California, Berkeley

Gregory L. Fenves
Department of Civil and Environmental Engineering

University of California, Berkeley

PEER Report 2009/104
Pacific Earthquake Engineering Research Center

College of Engineering
University of California, Berkeley

November 2009

 iii

ABSTRACT

Experimental testing of structures under simulated seismic loading is one of the best approaches

to gain knowledge about the response and behavior of structures during earthquakes and to

confirm the effectiveness of design methods for new earthquake-resistant structures and the

retrofit of existing structures. Hybrid simulation, where a test is executed based on a step-by-step

numerical solution of the governing equations of motion for a hybrid model formulated

considering both the numerical and physical portions of a structural system, is one of the well-

established experimental testing techniques.

In order for the earthquake engineering community to take full advantage of this

technique, it is essential to conduct vigorous research to standardize the deployment of the

method and extend its capabilities to applications where advanced numerical techniques are

utilized; boundary conditions are imposed in real time; and dynamic loading conditions caused

by wind, blast, impact, waves, fire, traffic, and, in particular, seismic events are considered.

Accordingly, the objectives of this research are to investigate, develop, and validate advanced

techniques to facilitate the broader use of local and geographically distributed hybrid simulation

by the earthquake engineering community and to permit hybrid simulation to address a range of

complex problems of current interest to researchers.

Utilizing a rigorous systems analysis of the operations performed during hybrid

simulations, an existing object-oriented software framework for experimental testing

(OpenFresco) is evaluated, and extensions are devised and implemented to facilitate the

standardized execution of hybrid simulations. The OpenFresco middleware is environment

independent, robust, flexible, and easily extensible, and supports a large variety of computational

drivers, structural testing methods, specimen types, testing configurations, control and data-

acquisition systems and communication protocols. One of the key contributions presented herein,

is the application of a multi-tier client/server software architecture to the existing OpenFresco

core components to support any finite element analysis software and facilitate an array of local

and geographically distributed testing configurations.

Time-stepping integration methods that act as the computational drivers during a hybrid

simulation and that need to be provided by or implemented in the finite element analysis

software are thoroughly investigated. Integration schemes from both the class of direct

integration methods and the class of Runge-Kutta methods are examined and their applicability

 iv

to hybrid simulation is evaluated. It is shown that the proposed operator-splitting methods and

Rosenbrock methods, which are unconditionally stable, relatively easy to implement, and

computationally nearly as efficient as explicit methods, are excellent techniques for solving the

equations of motion during hybrid simulations.

The next part of the research focuses on the predictor-corrector algorithms that provide

the synchronization of the integration and transfer system processes and that need to be

implemented in a real-time environment on the control and data-acquisition system side of a

hybrid simulation. Improved and new algorithms are proposed, which provide means for

performing more accurate, continuous hybrid simulations, especially in situations with excessive

delays. Event-driven solution strategies that employ the predictor-corrector algorithms are

investigated and several new algorithms are introduced that are based on adaptive control

concepts that automatically adjust parameters of the event-driven controller, such as time steps

and actuator velocities, according to some suitable performance criteria.

In order to confirm the robustness, flexibility and usability of the OpenFresco software

framework and to validate the integration methods and the event-driven synchronization

strategies in actual tests, two novel and challenging hybrid simulation examples are carried out.

The first case study performs a continuous, geographically distributed hybrid simulation in soft

real-time for the first time, and the second case demonstrates how to utilize hybrid simulation to

conduct safe and economical tests of structural collapse.

 v

ACKNOWLEDGMENTS

The work in this report was made possible by financial support from a number of sources

including: the Earthquake Engineering Research Centers Program of the National Science

Foundation, under award number EEC-9701568 through the Pacific Earthquake Engineering

Research Center (PEER); the National Science Foundation through a subaward to UC Berkeley

as part of the NEES-SG: International Hybrid Simulation of Tomorrow’s Braced Frame

Structures (NSF 0619161); and the National Science Foundation through a subaward from the

NEES Consortium Inc. (Research Agreement RA-Hybrid Sim-2007-UCB). Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect those of the sponsors.

 vii

CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ...v

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... xi

LIST OF TABLES .. xvii

1 INTRODUCTION..1

1.1 Motivation ...1

1.2 Problem Definition ..2

1.3 Research Objectives and Scope ..3

1.4 Organization of Report ..4

2 HYBRID SIMULATION FUNDAMENTALS ..7

2.1 Introduction ...7

2.2 Advantages and Challenges ..9

2.3 History ...12

2.4 Components and Procedure...17

2.5 Local vs. Geographically Distributed Testing ..21

2.6 Slow vs. Rapid vs. Real-Time Testing ..22

2.7 Numerical and Experimental Errors..24

2.8 Summary ...26

3 OBJECT-ORIENTED HYBRID SIMULATION FRAMEWORK27

3.1 Introduction ...27

3.2 OpenFresco Software Architecture ...29

3.3 Multi-Tier Software Architecture ...33

3.4 Object-Oriented Design Details ..38

3.5 Concrete Sub-Classes ..53

3.5.1 Experimental Elements ...53

3.5.2 Experimental Sites ..59

3.5.3 Experimental Setups ...60

3.5.4 Experimental Controls ..65

 viii

3.6 OpenSees as the Computational Framework ..70

3.7 Summary ...71

4 INTEGRATION METHODS FOR HYBRID SIMULATION73

4.1 Introduction ...73

4.2 Structural Dynamics Problem ...74

4.2.1 Discretization in Space ..74

4.2.2 Discretization in Time ...76

4.3 Integrator Properties ..79

4.3.1 Explicit vs. Implicit ...79

4.3.2 Iterative vs. Noniterative ...81

4.3.3 Special Requirements ..82

4.4 Direct Integration Methods ...84

4.4.1 Explicit Newmark Method (ENM) ...85

4.4.2 Explicit Generalized-Alpha Method (EGa) ..87

4.4.3 Implicit Newmark Methods (INM1, INM2) ...92

4.4.4 Implicit Generalized-Alpha Methods (IGa1, IGa2) ..113

4.4.5 Generalized-Alpha-OS Method (GaOS1) ...118

4.4.6 Modified Generalized-Alpha-OS Method (GaOS2)125

4.4.7 Accuracy: Numerical Dissipation and Dispersion ..128

4.4.8 Summary of Special Requirements ...135

4.5 Runge-Kutta Methods ...136

4.5.1 Explicit Methods (ERK) ...137

4.5.2 Implicit Methods (IRK)...140

4.5.3 Rosenbrock Methods (RRK) ...146

4.5.4 Stability ...150

4.5.5 Accuracy: Numerical Dissipation and Dispersion ..154

4.5.6 Summary of Special Requirements ...157

4.6 Summary ...158

5 EVENT-DRIVEN STRATEGIES IN HYBRID SIMULATION159

5.1 Introduction ...159

5.2 Previous Developments ...161

 ix

5.2.1 Discontinuous vs. Continuous Hybrid Simulation ..161

5.2.2 Three-Loop Hardware Architecture ..163

5.3 Theory on Predictor-Corrector Algorithms ...165

5.3.1 Existing Algorithms ..165

5.3.2 Algorithms Using Last Predicted Displacement ...169

5.3.3 Algorithms Using Velocities ...171

5.3.4 Algorithms Using Accelerations ...175

5.3.5 Graphical Evaluation and Comparison ...177

5.3.6 Advantages, Disadvantages and Recommendations181

5.4 Adaptive Event-Driven Strategies...184

5.4.1 Existing Strategy ...184

5.4.2 Smooth Slow-Down Strategy ..186

5.4.3 Adaptive Velocity Strategies...188

5.4.4 Interlaced Solution Strategy ..189

5.4.5 Adaptive Simulation Time-Step Strategies ...193

5.4.6 Adaptive Integration Time-Step Strategies ...196

5.5 Summary ...200

6 HYBRID SIMULATION CASE STUDIES ..201

6.1 Introduction ...201

6.2 Rapid Geographically Distributed Tests ...201

6.2.1 Motivation ...201

6.2.2 Test Structure and Earthquake Record ..203

6.2.3 Test Setup and Procedure ..204

6.2.4 Network Performance Evaluation ...211

6.2.5 Test Results and Interpretation..216

6.3 Structural Collapse Simulation ...227

6.3.1 Motivation ...227

6.3.2 Second-Order Effects ..228

6.3.3 Theory and Implementation ..229

6.3.4 Test Structure and Earthquake Record ..232

6.3.5 Test Setup and Procedure ..234

 x

6.3.6 Test Results and Interpretation..236

6.4 Summary ...244

7 CONCLUSIONS AND RECOMMENDATIONS ..247

7.1 Summary and Conclusions ..247

7.1.1 Hybrid Simulation Fundamentals ...248

7.1.2 Experimental Software Framework ..249

7.1.3 Integration Methods ..251

7.1.4 Event-Driven Strategies ..252

7.1.5 Novel Hybrid Simulation Examples ...253

7.2 Recommendations for Future Work ..254

REFERENCES ...259

 xi

LIST OF FIGURES

Fig. 2.1 Key components of a hybrid simulation. .. 19

Fig. 2.2 Hybrid simulation testing procedure. .. 20

Fig. 3.1 Finite element analysis software of user’s choice, OpenFresco middleware, and

physical specimen with control and data-acquisition systems in laboratory. 29

Fig. 3.2 Abstract components of the OpenFresco software architecture. 31

Fig. 3.3 Multi-tier software architecture. ... 34

Fig. 3.4 Three-tier configurations for local deployment. ... 36

Fig. 3.5 Four-tier configurations for network deployment. .. 37

Fig. 3.6 Class diagram of the OpenFresco software framework. ... 40

Fig. 3.7 Interface for the ExperimentalElement class. ... 41

Fig. 3.8 Interface for the ExperimentalSite class. .. 43

Fig. 3.9 Interface for the ExperimentalSetup class. ... 45

Fig. 3.10 Interface for the ExperimentalControl class. .. 47

Fig. 3.11 Data flow and transformations for beam-column example. .. 48

Fig. 3.12 OpenFresco sequence diagram for local deployment. .. 50

Fig. 3.13 OpenFresco sequence diagram for distributed deployment with ExperimentalSetup

on laboratory side. ... 51

Fig. 3.14 OpenFresco sequence diagram for distributed deployment with ExperimentalSetup

on computational client side. .. 52

Fig. 3.15 Experimental truss element (EETruss). .. 53

Fig. 3.16 Experimental beam-column element (EEBeamColumn2d).. 54

Fig. 3.17 Nonlinear transformation from basic system A to B. ... 55

Fig. 3.18 Nonlinear transformations from basic system B to A. .. 56

Fig. 3.19 Experimental two-node link element (EETwoNodeLink). ... 57

Fig. 3.20 Generic experimental element (EEGeneric). .. 57

Fig. 3.21 Experimental inverted-V brace element (EEInvertedVBrace2d). 58

Fig. 3.22 Class diagram of client-server architecture. .. 60

Fig. 3.23 One actuator experimental setup (ESOneActuator). ... 61

Fig. 3.24 Two actuators experimental setup (ESTwoActuators2d). .. 62

 xii

Fig. 3.25 Three actuators experimental setup (ESThreeActuators2d). 64

Fig. 3.26 Inverted-V brace experimental setup (ESInvertedVBrace2d). 65

Fig. 3.27 dSpace experimental control (ECdSpace). ... 66

Fig. 3.28 xPC Target experimental control (ECxPCtarget). .. 67

Fig. 3.29 SCRAMNet+ experimental control (ECSCRAMNet). ... 67

Fig. 3.30 MTS CSI experimental control (ECMtsCsi)... 68

Fig. 3.31 OpenSees as the computational framework. ... 70

Fig. 3.32 OpenSee-OpenFresco configurations for local and network deployments. 71

Fig. 4.1 Explicit Newmark (ENM) method. ... 86

Fig. 4.2 Explicit generalized-alpha (EGα) method. ... 90

Fig. 4.3 D-form of implicit Newmark method. .. 94

Fig. 4.4 A-form of implicit Newmark method. .. 97

Fig. 4.5 First modified D-form of implicit Newmark (INM1) method. 100

Fig. 4.6 Newton-Raphson convergence comparison for four-story-frame model. 101

Fig. 4.7 Krylov-Newton convergence comparison for four-story-frame model. 102

Fig. 4.8 Newton-Raphson convergence comparison for portal-frame model. 103

Fig. 4.9 Krylov-Newton convergence comparison for portal-frame model. 104

Fig. 4.10 Second modified D-form of implicit Newmark (INM2) method. 108

Fig. 4.11 Convergence comparison for four-story-frame model. .. 109

Fig. 4.12 Displacement comparison for four-story-frame model. .. 110

Fig. 4.13 Convergence comparison for portal-frame model. ... 111

Fig. 4.14 Displacement comparison for portal-frame model. .. 112

Fig. 4.15 Second modified D-form of implicit generalized-alpha (IGα2) method. 117

Fig. 4.16 Approximation of nonlinear resisting force using Ki . .. 119

Fig. 4.17 Generalized-alpha-OS (GαOS1) method. ... 121

Fig. 4.18 Pushover analysis of elastic cantilever column with corotational geometric

transformation: (a) geometry, (b) eigenvalues, (c) tip forces, (d) axial force. 124

Fig. 4.19 Approximation of nonlinear resisting force using Km 125

Fig. 4.20 Modified generalized-alpha-OS (GαOS2) method. .. 126

Fig. 4.21 Cantilever column response for linear-elastic material behavior and nonlinear,

corotational transformation: (a) model, (b) GαOS1, (c) GαOS2. 127

 xiii

Fig. 4.22 Cantilever column response for nonlinear material behavior and nonlinear,

corotational transformation: (a) model, (b) GαOS1, (c) GαOS2. 127

Fig. 4.23 Free vibration solutions for direct integration methods. ... 129

Fig. 4.24 Free vibration solutions for explicit generalized-alpha (EGα) method. 129

Fig. 4.25 Free vibration solutions for implicit Newmark (INM1) method. 130

Fig. 4.26 Free vibration solutions for implicit generalized-alpha (IGα2) method. 130

Fig. 4.27 Algorithmic damping ratios and relative period errors for 131

Fig. 4.28 Algorithmic damping ratios and relative period errors for 132

Fig. 4.29 Algorithmic damping ratios and relative period errors for 133

Fig. 4.30 ERK convergence comparison for one-bay-frame model. 139

Fig. 4.31 Explicit third-order Heun (ERK3) method. .. 140

Fig. 4.32 Implicit 2-stage Gauss (IRK4) method. .. 144

Fig. 4.33 IRK convergence comparison for one-bay-frame model. ... 145

Fig. 4.34 2-stage Rosenbrock (RRK2) method. ... 148

Fig. 4.35 RRK convergence comparison for one-bay-frame model. 149

Fig. 4.36 Regions of Absolute Stability (RAS) for ERK methods. ... 152

Fig. 4.37 Regions of Absolute Stability (RAS) for IRK methods.. 153

Fig. 4.38 Regions of Absolute Stability (RAS) for RRK methods. ... 154

Fig. 4.39 Algorithmic damping ratios and relative period errors for 155

Fig. 5.1 Hold and ramp procedure vs. continuous testing procedure. 161

Fig. 5.2 Execution sequence in the case of one single digital signal processor. 162

Fig. 5.3 Execution sequence in the case of two machines. .. 163

Fig. 5.4 Three-loop hardware architecture. .. 164

Fig. 5.5 Predictor using a third-order Lagrange polynomial. ... 166

Fig. 5.6 Corrector using a third-order Lagrange polynomial. .. 168

Fig. 5.7 Corrector using a third-order Lagrange polynomial including the last predicted

value. ... 171

Fig. 5.8 Predictor using a third-order Hermit polynomial. ... 173

Fig. 5.9 Corrector using a second-order polynomial including the last predicted value. 174

Fig. 5.10 Constant acceleration predictor. .. 175

Fig. 5.11 Corrector using a third-order polynomial including the last predicted value. 177

 xiv

Fig. 5.12 Accuracies of predictors in terms of amplitude and phase. 179

Fig. 5.13 Accuracies of correctors in terms of amplitude and phase. 180

Fig. 5.14 Accuracies of correctors including last predicted displacement. 182

Fig. 5.15 Displacement path and execution sequence of smooth slow-down strategy. 186

Fig. 5.16 Relationship between counter-increment and counter for .. 187

Fig. 5.17 Displacement path and execution sequence of interlaced solution strategy. 190

Fig. 5.18 Displacement command signal comparison for interlaced solution strategy. 192

Fig. 5.19 Difficulties with solution strategy that is skipping head. .. 194

Fig. 5.20 Displacement path and execution sequence of constant correction-time strategy. ... 195

Fig. 5.21 Displacement path and execution sequence of first adaptive integration time-step

strategy. ... 197

Fig. 5.22 Displacement path and execution sequence of second adaptive integration time-

step strategy. ... 199

Fig. 6.1 One-bay-frame model with structural properties. ... 203

Fig. 6.2 Elastic response spectra for north-south component of 1940 El Centro, Imperial

Valley earthquake record, with values at model periods. ... 205

Fig. 6.3 μNEES experimental setup with two independent specimens. 206

Fig. 6.4 Connection with coupon details and ... 207

Fig. 6.5 Client-server configuration. .. 210

Fig. 6.6 Network performance depending on data package size. ... 212

Fig. 6.7 Timing and interaction of tasks within a time step. .. 214

Fig. 6.8 Comparison of integration and simulation step distributions. 215

Fig. 6.9 Response histories of one-bay frame model from OpenSees. 217

Fig. 6.10 Hysteresis loops and force histories of one-bay frame model from OpenSees. 217

Fig. 6.11 Close up of predictor-corrector state transitions from xPC Target. 218

Fig. 6.12 Displacement error history and Fourier amplitude spectrum from STS. 219

Fig. 6.13 Synchronization subspace plot from STS. .. 220

Fig. 6.14 Measured force history and Fourier amplitude spectrum from STS. 221

Fig. 6.15 Comparison of response histories of one-bay-frame model for real-time versus

slow hybrid simulation. ... 222

 xv

Fig. 6.16 Comparison of hysteresis loops and force histories of one-bay-frame model for

real-time versus slow hybrid simulation. .. 222

Fig. 6.17 Comparison of tracking performance for real-time versus slow hybrid

simulation. ... 223

Fig. 6.18 Analytical model of μNEES specimen. .. 224

Fig. 6.19 Comparison of analytical versus experimental hysteresis loops for SAC loading

history. .. 225

Fig. 6.20 Comparison of response histories of one-bay-frame model for analytical versus

hybrid simulation. ... 226

Fig. 6.21 Comparison of hysteresis loops and force histories of one-bay-frame model for

analytical versus hybrid simulation. ... 227

Fig. 6.22 Experimental beam-column element (EEBeamColumn2d)...................................... 230

Fig. 6.23 Corotational transformation from local to Basic System A. 231

Fig. 6.24 Portal-frame model with structural properties. ... 233

Fig. 6.25 Elastic response spectra for SACNF01 ground motion, with values at fundamental

period. ... 235

Fig. 6.26 Comparison of story-drift time-histories and total story hysteresis loops for portal-

frame model from OpenSees. ... 237

Fig. 6.27 Comparison of element force-story-drift hysteresis loops for portal-frame model

from OpenSees. ... 238

Fig. 6.28 Comparison of actuator force-displacement hysteresis loops for portal-frame model

from OpenSees. ... 239

Fig. 6.29 Close up of predictor-corrector state transitions from xPC Target. 239

Fig. 6.30 Synchronization subspace plots from STS. .. 241

Fig. 6.31 Comparison of tracking performance for test without gravity loads versus test

with gravity loads from STS. .. 242

Fig. 6.32 Comparison of story-drift time-histories and total story hysteresis loops of portal-

frame model for analytical versus hybrid simulation. .. 243

Fig. 6.33 Comparison of element force-story-drift and actuator force-displacement

hysteresis loops of portal-frame model for analytical versus hybrid simulation. 243

 xvii

LIST OF TABLES

Table 2.1 Equations of motion for different types of hybrid simulations. 24

Table 4.1 Convergence criteria. .. 95

Table 4.2 Lagrange functions up to order 3. ... 107

Table 4.3 Summary of special requirements for direct integration methods. 135

Table 4.4 Summary of special requirements for Runge-Kutta integration methods. 157

Table 5.1 Predictor Lagrange functions up to order 3. ... 166

Table 5.2 Corrector Lagrange functions up to order 3. ... 168

Table 5.3 Modified corrector Lagrange functions up to order 3. .. 170

Table 5.4 Summary of advantages/disadvantages for predictor-corrector algorithms. 183

Table 6.1 Similitude laws for rapid testing. .. 202

Table 6.2 Properties of μNEES experimental setup. .. 208

Table 6.3 Parameters of real-time MTS 493 controller. ... 209

Table 6.4 Network performance in terms of time-step durations. .. 215

Table 6.5 Effects of gravity loads on the structural response. .. 229

1 Introduction

1.1 MOTIVATION

The world continues to face challenges related to the rapid growth of cities and the expansion of

critical infrastructure systems in seismically active regions. In order to prevent catastrophic

tragedies including extensive direct (replacement and/or repair of infrastructure) and indirect

(business interruption) losses due to large earthquakes, it is imperative for the civil engineering

community to improve their knowledge and understanding of the response and behavior of civil

structures during seismic events. Experimental testing of structures under simulated seismic

loading is one of the best ways to gain such knowledge and confirm the effectiveness of design

methods for new earthquake-resistant structures and the retrofit of existing ones. New models

and methodologies for simulating the behavior of complex structures and advanced structural

components are rapidly emerging from the fields of high-performance engineering and

computing. However, it is essential to utilize results from experimental tests to validate and

calibrate the new models and methodologies.

To advance the development and deployment of new and existing experimental and

numerical methods in earthquake engineering, the National Science Foundation (NSF) in the

United States established the George E. Brown, Jr. Network for Earthquake Engineering

Simulation (NEES) as a networked collaboratory of geographically distributed, shared-use

experimental research equipment sites. The resources available within this network of 15

equipment sites provide the means for collaboration and discovery in the form of advanced

research based on experimentation and computational simulation of the ways buildings, bridges,

utility systems, coastal regions, and geomaterials perform during seismic events [NSF].

Several of the NEES equipment sites specialize in the experimental testing and evaluation

of large-scale structural and nonstructural systems utilizing hybrid simulation. In this

experimental testing technique, a simulation is executed based on a step-by-step numerical

solution of the governing equations of motion for a hybrid model formulated considering both

the numerical and physical components of a structural system. To perform advanced hybrid

 2

simulations of complex structural systems, the nees@berkeley testing facility provides a range of

state-of-the-art equipment, such as a configurable reaction wall, an array of versatile static and

dynamic actuators, several real-time digital controllers, powerful computational resources, and a

high-speed data-acquisition system with a variety of instrumentation devices. However, in order

for the earthquake engineering community to take full advantage of the versatile equipment at

the nees@berkeley testing facility and elsewhere, extensive research must be conducted to

standardize the employment of this testing method and extend hybrid simulation capabilities to

applications where advanced numerical techniques are utilized; boundary conditions are imposed

in real time; and dynamic loading conditions caused by wind, blast, impact, waves, fire, traffic,

and seismic events are considered.

1.2 PROBLEM DEFINITION

In the past, each implementation of hybrid simulation has been problem specific and highly

customized for the software and hardware available at a certain laboratory. Hence, researchers

wanting to perform a hybrid simulation had to be willing to invest considerable time and effort to

familiarize themselves with the available control and data-acquisition systems and to implement

the problem-specific details. Many researchers have therefore been hesitant in utilizing hybrid

simulation to investigate the performance of structural systems under the above-mentioned

conditions. In addition, it has been challenging or often times impossible to employ existing

finite element software packages to execute hybrid simulations. This is due to the lack of

middleware that provides a standardized, environment-independent approach to connecting any

finite element software package of a user’s choice with the laboratory facilities where the

experimental testing is performed. Furthermore, selecting the most appropriate time-stepping

integration method, from the various for hybrid simulation specialized schemes, to solve the

governing equations of motion of a certain problem type, has been very difficult as well.

To take advantage of the unique capabilities of different structural testing facilities, the

geographically distributed deployment of hybrid simulation has gained significant popularity

over the last few years. However, because the geographical distribution of computational and

experimental sites relies heavily on wide area networks for communication, it is necessary to

develop approaches for dealing with network delays and breakdowns, and for improving

communication speeds. Furthermore, it is also important to standardize the geographically

 3

distributed deployment of hybrid simulation to promote the collaboration among multi-

disciplinary experts in the field of earthquake engineering, and to improve the accessibility of

this testing technique to the researcher.

Because structural engineers recently are using an increasing number of rate-dependent

devices to improve the performance of structures by reducing demands and/or dissipating

additional energy, hybrid simulations must be performed rapidly or in real time to correctly

capture the behavior of such devices. Thus, advanced methods need to be developed that are

capable of imposing consistent dynamic boundary conditions with the appropriate velocities and

accelerations and that are also able to deal with sporadic delays caused by the analysis software.

On the other hand, if the correct execution speed cannot be achieved due to hardware or other

limitations, it may be possible to develop approaches that numerically, in a truly hybrid sense,

compensate for the velocity dependence of the high-performance devices.

1.3 RESEARCH OBJECTIVES AND SCOPE

The overarching goal of this research is to investigate, develop and validate advanced techniques

to facilitate the wider use of local and geographically distributed hybrid simulation by the

research community and to permit hybrid simulation to address a range of more complex

problems of current interest to the investigators. To achieve this goal, investigations are

conducted addressing the following objectives:

1. Review and evaluate existing concepts and frameworks in hybrid simulation and devise

and implement an improved object-oriented software framework for experimental testing.

2. Investigate existing time-stepping integration methods, evaluate their applicability to

hybrid simulations, and develop and implement improved versions for several methods.

3. Examine existing predictor-corrector algorithms and event-driven strategies for

synchronization, and conceive and implement new and improved approaches to

synchronize the integration and transfer system processes.

To realize these objectives, the first and main task is to devise and implement a common

software framework for developing and deploying hybrid simulations. This software framework

for experimental testing, which is an improved version of the one proposed by Takahashi and

Fenves (2006), should support a large variety of finite element analysis software, structural

testing methods, specimen types, testing configurations, control and data-acquisition systems,

 4

and network communication protocols. Furthermore, to accelerate the development and

refinement of hybrid simulation, the object-oriented software framework should be environment

independent, robust, transparent, scalable, and easily extensible. Because the step-by-step

numerical integration of the semi-discrete equations of motion acts as the computational driver in

hybrid simulations, the second task is to investigate existing integration schemes and develop

improved versions of such methods if possible. Both the direct integration methods, common to

structural dynamics, and the classic Runge-Kutta methods, which are popular for solving first-

order ordinary differential equations, are analyzed. The investigation of the various integration

schemes should ultimately provide the means to make recommendations about selecting the most

appropriate integration scheme for a certain hybrid simulation problem. To achieve continuous

testing, especially in geographically distributed hybrid simulations, event-driven strategies with

predictor-corrector algorithms are generally employed for synchronization. The third task is to

develop improved and new predictor-corrector algorithms that are more accurate and that

eliminate some of the inconsistencies of the existing methods. In addition, new event-driven

strategies should be developed that can handle random time delays through adaptation. The last

task is to validate the software framework, the integration methods, and the event-driven

strategies by conducting a few demonstrative hybrid simulations that utilize the new

developments.

1.4 ORGANIZATION OF REPORT

The advanced implementation of hybrid simulation is organized into seven chapters. Following

the introduction, Chapter 2 describes the fundamental concepts of hybrid simulation, one of the

current, well-established techniques for conducting laboratory tests. The chapter includes a brief

summary of previous developments, the current status of hybrid simulation, a variety of

advantages that are gained by using this testing technique, as well as the remaining challenges. In

addition, different modes of employment, such as local versus geographically distributed and

slow versus rapid testing are explained and compared, and errors affecting hybrid simulation

results are summarized.

Chapter 3 presents the development details of the object-oriented framework for hybrid

simulation, which is environment independent, robust, transparent, scalable, and easily

extensible. The chapter presents the fundamental building blocks of the software framework and

 5

explains the interaction among them. It also introduces the multi-tier software architecture that

was employed to support a wide range of finite element analysis software packages and discusses

communication methods and protocols necessary for distributed computation and testing. The

chapter concludes by describing how the Open System for Earthquake Engineering Simulation

(OpenSees) can be used as the computational framework in combination with the newly

developed experimental framework and the advantages attained by doing so.

Specialized, time-stepping integration methods that are required to solve the semi-

discrete equations of motion of a hybrid simulation model are the focus of Chapter 4. The

derivation of these semi-discrete equations of motion in terms of fundamental mechanical

principles is explained first. The chapter then summarizes special integration scheme properties

that are necessary for the reliable, accurate, and fast execution of hybrid simulations and

discusses the differences between explicit, implicit, noniterative, and iterative methods. Detailed

descriptions of a number of direct integration and Runge-Kutta methods and their modifications

for improving performance are provided thereafter.

Chapter 5 presents the development of improved event-driven strategies that are required

to execute continuous local and geographically distributed hybrid simulations. The chapter first

summarizes previous developments with an emphasis on the three-loop-architecture that was

proposed for distributed testing. The theory and the analytical investigations of a variety of

existing and newly developed predictor-corrector algorithms are presented thereafter. The

chapter concludes by introducing server novel, adaptive, asynchronous, event-driven strategies

for dealing with nondeterministic systems such as geographically distributed hybrid simulations.

Chapter 6 presents case studies of two novel applications of hybrid simulation that are

made possible by the new developments described in the previous chapters. The first

experimental study consists of a rapid geographically distributed hybrid simulation, which on

average is executed in real time. The second study demonstrates how hybrid simulation can be

utilized to perform safely and realistically experimental tests of structural collapse.

Finally, Chapter 7 presents a summary of the main findings and conclusions of this

research and provides a brief list of future research directions.

2 Hybrid Simulation Fundamentals

2.1 INTRODUCTION

At present, there are several well-established methods to conduct laboratory testing for

evaluating the seismic behavior of structural systems and/or components thereof. The first and

most common technique is the quasi-static testing method, where the investigated structure is

subjected to a predefined history of loads or displacements that are applied by actuators. By

imposing the same load or displacement history on a series of specimens, the effect of systematic

changes in material properties, details, boundary conditions, loading rates, and other factors can

be readily identified. While such tests are relatively easy and economical to execute, the overall

demands imposed on the test specimens are not directly related to the damage observed, raising

questions about whether the specimens were under- or overtested for project-specific situations.

Furthermore, the applied load patterns are generally inadequate for resembling the constantly

changing load distributions that a structure undergoes during an actual seismic event.

Shaking table tests are a second form of laboratory tests. They are able to simulate

conditions that closely resemble those that would exist during a particular earthquake. These

tests provide important data on the dynamic response caused by specific ground motions,

considering the inertial and energy-dissipation characteristics of the structure tested and the

consequences of geometric nonlinearities, localized yielding and damage, and component failure

on the structural response. However, for shaking table tests, a complete structural system is

generally required, and the specimens need to be carefully constructed following the rules of

dynamic similitude. On the other hand, controlling real-time dynamic component tests, which

require additional actuators besides the shaking table, is particularly challenging and another

topic of advanced research. So far only a few shaking tables exist with the means to apply

accurate base motions to full-scale structures. The limited capacity and size of most available

shaking tables place significant restrictions on the size, weight, and strength of a specimen that

can be tested. As a result, reduced-scale or highly simplified specimens are commonly

necessitated, which call into question the realism of many shaking table tests.

 8

The third method is hybrid simulation, formerly also called the pseudo-dynamic test

method or the online computer-controlled test method. In this experimental testing technique a

simulation is executed based on a step-by-step numerical solution of the governing equations of

motion for a model formulated considering both the numerical and physical components of a

structural system. Contrary to conventional computational modeling and simulation, where the

entire structure is analyzed analytically, the hybrid simulation method obtains the forces

corresponding to either the stiffness, the energy-dissipation, or the mass properties of a structural

system, from a laboratory test of the real structure or components thereof. If the hybrid

simulation method is implemented for a typical quasi-static, displacement-based test, the mass

and viscous damping characteristics of the specimen are numerically modeled, and the

incremental displacement response of the structure to a specified dynamic excitation is computed

at each step based on the current state of the physically and numerically modeled portions of the

structure. During the simulation the physical portions of the overall hybrid model are tested in

one or more laboratories using computer-controlled actuators, while the numerical portions are

simultaneously analyzed on one or more computers. Since dynamic aspects of the simulation are

handled numerically, such tests can be conducted quasi-statically using standard computer-

controlled actuators. As such, hybrid simulation may be viewed as an advanced form of actuator-

based testing, where the loading history is determined during the course of an experiment for a

given system subjected to a specific ground motion. Alternatively, hybrid simulation can also be

considered a conventional finite element analysis, where physical models of some portions of the

structure are embedded in the numerical model.

A variety of advantages that are gained by utilizing hybrid simulation, instead of the

quasi-static or shaking table test methods, to conduct experimental investigations are discussed

in the next section. In addition, several of the challenges that still need to be addressed in hybrid

simulation are summarized as well. In fact, one of the main challenges, the lack of a common

framework for the development and deployment of hybrid simulation, provides the basis for the

work presented in the following chapters. Afterwards, a short history on the development of the

hybrid simulation testing technique since its invention three decades ago is presented. The next

section then outlines the basic components and the procedure that are required to perform a

hybrid simulation. Different modes of employment, such as local versus geographically

distributed and slow versus rapid testing are explained and compared thereafter. Finally the

 9

chapter concludes by presenting a brief summary of numerical and experimental errors

encountered in hybrid simulations and by explaining how such errors affect a test.

2.2 ADVANTAGES AND CHALLENGES

Advantages:
Because the hybrid simulation testing technique combines analytical with experimental

approaches to investigate a structural system and can be executed on expanded time-scales of up

to two orders of magnitude slower than the actual time-scale, many advantages are gained. Some

of the most important advantages are summarized in the following list:

• In a hybrid simulation the loading (the right-hand side of the equations of motion) is

defined analytically, which provides the means to investigate the behavior of a structure

excited by a wide variety of loading conditions. Seismic events including multi-support

excitations; hydrodynamic loading conditions created by waves; traffic and impact loads

due to moving vehicles, aerodynamic loads generated by wind and blast loads can all be

simulated by incorporating them the analytical portion of the hybrid model without

changing the physical portions of the experiment.

• The hybrid simulation method gives the researcher the ability to subdivide a large

structure into subassemblies where the behavior is (1) well understood and can be

modeled reliably using finite element models and (2) highly nonlinear and/or numerically

difficult to simulate and is thus obtained from a physical test in a laboratory. This reduces

modeling uncertainties by replacing numerical with actual physical components. Hence,

hybrid simulation can be seen as an advanced form of component testing, which does not

face the difficulties of imposing proper boundary conditions as in shaking table tests.

• Dynamic testing of full-scale specimens is made possible if the hybrid simulation method

is implemented for a typical quasi-static, displacement-based test that is executed on an

extended time-scale. Large-scale testing additionally eliminates the scaling difficulties

encountered in shaking table tests.

• The sizes and the weights of the physical subassemblies are limited only by the available

laboratory space and the strength of the strong floor and reaction frames. Furthermore,

the strength of the experimental specimens is only limited by the capacities of the transfer

systems (actuators) that are available at a testing facility.

 10

• Because hybrid simulations can be executed on extended time-scales, quasi-static testing

equipment including the actuators, the servo-valves, and the hydraulic power-supply are

generally sufficient for testing. Oftentimes such equipment is also readily available at

existing testing facilities. This and the possibility of physically testing only the critical

components of a structural system make hybrid simulation a very economical technique

for performing laboratory tests.

• Slow tests allow for the careful inspection of the specimens during a hybrid simulation.

This can provide important insight into the behavior of a test specimen as a means to

detect the initiation and track the progress of damage throughout a simulation.

• Hybrid simulations can be executed at rates anywhere between two orders of magnitude

slower than the actual time scale and several times faster than the actual time scale

depending on similitude requirements.

• Experimental and analytical subassemblies can be geographically distributed allowing

researchers to take advantage of the different capabilities available in different

laboratories.

• Effects such as geometric nonlinearities, three-dimensional effects, soil-structure

interactions, and soil-pile interactions can all be incorporated into the analytical portion

of the hybrid model.

• Hybrid simulation can be utilized to execute smart shaking table tests in which a

simulator platform is controlled in real time to investigate problems such as tuned mass

dampers or soil-structure interaction.

Challenges:
Besides the many advantages and opportunities of hybrid simulation, the method also faces

several challenges that still need to be addressed by conducting further research on the technique

itself and by performing specific hybrid simulations to evaluate and verify the findings. Some of

these challenges are summarized in the following list:

• The development and the deployment of hybrid simulation have been hampered

considerably by the absence of a common framework for conducting tests across various

laboratories and computing environments. To date, each implementation of hybrid

simulation is not only problem specific but also heavily dependent on the testing site and

the control and data-acquisition systems used. Such highly customized software

 11

implementations are difficult to adapt to different structural problems and even harder to

port to different laboratories. Thus, there is a great need for an environment-independent

software framework that is robust, transparent, and easily extensible.

• To guarantee that the results obtained from a hybrid simulation are valid, reliable and

accurate, it is imperative to minimize and correct for the contamination of the solution by

errors. The following errors that occur at different stages of a hybrid simulation

experiment can affect the solution process: (1) modeling errors due to the discretization

process, and assumptions about energy-dissipation and analysis; (2) numerical errors

introduced by the integration and equilibrium solution algorithms; (3) experimental errors

generated by the control and transfer systems; and (4) experimental errors introduced by

the instrumentation devices and the data-acquisition system. Experimental errors can

introduce energy into the hybrid system and render it unstable and must thus be

minimized or compensated for at all cost.

• The execution of hybrid simulations where complex analytical subassemblies that include

material and geometric nonlinearities are combined with complex inelastic experimental

subassemblies is a fairly daunting task. This is because these hybrid models generally

require implicit iterative integration methods, which can lead to convergence issues

during the solution process. In addition, computational loads can vary significantly from

time step to time step because of all the nonlinearities, making it difficult or impossible to

perform rapid and real-time hybrid simulations.

• Hybrid simulations that contain very stiff or hardening physical subassemblies are

difficult to execute under displacement control. Hence, it is necessary to utilize force

control, mixed force/displacement control, or switching during simulation between force

and displacement control. However, very little research has been conducted in these

challenging areas so far.

• There is a need to develop approaches that consistently apply similitude laws if the

analytical and the experimental portions of a structural system have different scales.

• Geographically distributed hybrid simulations require the means for dealing with network

delays and breakdowns, and for improving communication speeds. These features are

crucial for performing soft real-time geographically distributed hybrid simulations where

 12

the real-time requirements are satisfied in an average sense but not necessarily for every

single time-step.

• Another challenge is the development of methods for assessing the accuracy and the

efficiency of a hybrid simulation. Such methods should allow a hybrid simulation to be

evaluated not only after completion, but also during a simulation.

• As hybrid models become larger (increasing number of nodes, elements, and degrees of

freedom), more complex (increasing number of material and geometric nonlinearities),

and are performed near or at real time, the execution of hybrid simulations in high-

performance computing (HPC) environments becomes indispensable. High-performance

computing environments utilize multi-processor and/or multi-core parallel computing

capabilities to distribute workloads and thus improve performance.

• In rapid and real-time hybrid simulations inertial forces are generated by the physical

masses of the experimental subassemblies that should not be neglected. Thus, it is

important that methods are developed to correctly account for these force contributions.

• To improve the accessibility of hybrid simulation to the experimental research

community, powerful but yet comprehensible user interfaces should be developed.

2.3 HISTORY

While seeking new methods for experimentally evaluating the dynamic, especially seismic,

performance of large-scale structures, several researchers initiated the development of the hybrid

simulation testing technique in the early 1970s. The first official publication did not appear until

1975 when Takanashi et al. proposed the hybrid simulation testing method, then referred to as

“online test,” as an alternative experimental technique to shaking table tests. Since then a vast

number of variations of this experimental method and the accompanying numerical algorithms

have been developed to improve efficiency, accuracy, and performance. The remainder of this

section presents a brief summary of such progress, which is strongly connected to the

advancements achieved in developing faster and more reliable testing and computational

hardware.

Because hybrid simulation test results can significantly be affected by experimental

errors, the propagation of random and systematic errors were thoroughly studied (Mahin and

Williams 1980; Shing and Mahin 1983) shortly after the initial developments were concluded. In

 13

addition, Thewalt and Mahin (1987) and Mosqueda et al. (2005) provide excellent explanations

and summaries on errors in hybrid simulations, including errors based on modeling,

implementation techniques, and the experimental setup. Around the same time the online

computer-controlled testing method also started to be referred to as the pseudo-dynamic testing

technique, especially in the U.S.

In 1984, Shing and Mahin, conducted the first systematic studies in the area of numerical

algorithms for the integration of the equations of motion in hybrid simulations. They investigated

refinements and the implementation of stable explicit schemes, including the explicit Newmark

method, which is based on the Newmark family of methods (Newmark 1959), and is still

extensively used to perform hybrid simulations. It was observed that during structural testing,

damage (and therefore the nonlinear behavior) often occurred in specific, limited regions of an

entire structure. Hence, Dermitzakis and Mahin (1985) suggested utilizing substructuring

techniques in order to divide a structure into experimental and numerical subassemblies and

perform partitioned hybrid simulations. Furthermore, to overcome stability limitations imposed

by explicit integration schemes applied to partitioned hybrid simulations, Dermitzakis and Mahin

(1985) proposed a mixed implicit-explicit algorithm that was based on the work by Hughes and

Liu (1978). Shortly thereafter Mahin and Shing (1985) published a paper that provided an

excellent summary of all the U.S. activities in hybrid simulation up to that time. It presented the

basic approach to the pseudo-dynamic testing method including numerical integration

algorithms, implementation details, and capabilities and limitations of the technique.

After its initial development a lot of progress was made in developing hybrid simulation

in both the U.S. and Japan. A whole series of papers (Nakashima 1985–1989) investigated the

stability and accuracy of the pseudo-dynamic testing method. One of these publications

(Takanashi and Nakashima 1987), like the paper by Mahin and Shing (1985), provided a

comprehensive summary of all the Japanese activities in hybrid simulation up to that time.

Significant progress was made around the same time in the U.S. by Thewalt and Mahin (1987),

who executed the first multi-directional hybrid simulations, developed force and mixed force and

displacement control strategies, and proposed the “effective force” dynamic testing method.

However, the employment of explicit conditionally stable integration methods quickly became

impractical for multi-directional hybrid simulations for multi-degrees of freedom. Thus, Thewalt

and Mahin (1987) developed the first implicit unconditionally stable integration method for

 14

hybrid simulations that was based on the alpha method by Hilber et al. (1977) and utilized analog

feedback signals of the measured resisting forces instead of numerical equilibrium iterations.

While working on pseudo-dynamic tests using the substructuring technique, Nakashima

also recognized the dire need for an efficient, unconditionally stable numerical algorithm to

integrate the equations of motion of large multi-degrees-of-freedom hybrid models. He proposed

for hybrid simulations a specialized operator-splitting (OS) method (Nakashima 1988) that was

based on Hughes’ work on implicit-explicit predictor-corrector schemes (Hughes et al. 1979).

The stability and accuracy properties of the OS method were investigated and published shortly

thereafter (Nakashima et al. 1990). It was found that the OS method possessed improved stability

and error propagation properties as compared to the existing explicit methods, while not

requiring any equilibrium iterations. In 1989, Mahin et al. compiled an updated summary on the

current status and the future directions of hybrid simulation.

Due to the continuously increasing complexity of the structural systems that were being

tested as well as the growing number of partitioned hybrid simulations, the development of

implicit unconditionally stable integration schemes that were specialized for hybrid simulations

was inevitable. Two researchers that developed and investigated such schemes with somewhat

different approaches were Dorka and Shing. The former one proposed an integration scheme that

was based on the implicit Newmark method and utilized a substepping approach in an inner loop

of the algorithm (Dorka and Heiland 1991; Dorka 2002; Bayer et al. 2005). This substepping can

be interpreted as a digital implementation of the force feedback, which is comparable to the

analog implementation by Thewalt and Mahin (1987). The latter's integration method was based

on the alpha method by Hilber et al. (1977) and employed an equilibrium solution algorithm with

initial stiffness iterations (Shing et al. 1991; Shing and Vannan 1991). In addition, the

equilibrium solution algorithm utilized an increment reduction factor to minimize the occurrence

of spurious loading/unloading cycles. The algorithm was subsequently used to execute

partitioned pseudo-dynamic tests on concentrically braced frames (Shing et al. 1994) and was

extended to adaptively adjust time-step sizes during a hybrid simulation (Bursi et al. 1994).

The first implementation of hybrid simulation for real-time testing was achieved by

utilizing improved hardware such as dynamic actuators and a digital servo-mechanism

(Nakashima et al. 1992). In addition, these researchers employed an interlaced solution strategy,

also called staggered integration, to improve computational efficiency.

 15

In 1994, Schneider and Roeder adapted the DRAIN-2D finite element analysis software

to perform hybrid simulations. This was the first time that a finite element software package was

specifically modified for hybrid simulations instead of utilizing a problem-specific

implementation. Furthermore, the researchers introduced the concept of replacing numerical

elements with experimental elements representing the portions of the structure that are physically

tested in a laboratory. Also in 1994, Thewalt and Roman, developed a technique for estimating

the tangent stiffness matrix of an experimental subassembly from the measured displacements

and forces. Their minimal update approach was based on the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm, which belongs to the family of quasi-Newton methods, see (Bathe 1996).

Around the same time Shing et al. (1996) published a paper, which presented the hybrid

simulation testing technique from a user’s perspective and also provided an updated summary on

the latest developments. In addition, Bursi and Shing (1996) compiled a good comparison of

existing implicit integration schemes for hybrid simulation. Shing’s modified implicit alpha

method and Nakashima’s alpha-OS method were investigated and compared in more detail. The

error propagation analysis of the alpha-OS scheme, which was still missing up to this point, was

performed by Combescure and Pegon (1997). To take advantage of the various equipment and

the unique capabilities of different structural testing facilities, Campbell and Stojadinovic (1998)

proposed geographically distributing structural subassemblies within a network of laboratories

where the individual sites are connected through the internet. In the same year Magonette and

Negro (1998) compiled a comprehensive summary on the latest developments and activities in

hybrid simulation at the European Laboratory for Structural Assessment (ELSA).

To improve on the real-time execution of hybrid simulations, Horiuchi et al. (1996, 1999)

developed actuator-delay compensation techniques that were based on actuator response

predictions utilizing polynomial extrapolations. From then on real-time hybrid simulation

quickly gained in popularity, which led to a constantly increasing number of researchers working

on this subject. Darby et al. (1999, 2001) developed and executed several real-time partitioned

hybrid simulations utilizing control system approaches. Furthermore, they proposed a real-time

compatible integration algorithm for nonlinear problems that employed reduced sets of Ritz

vectors in the solution process (Blakeborough et al. 2001). In addition, Nakashima and Masaoka

(1999) for the first time utilized a digital signal processor (DSP) to separate the actuator signal

generation task from the response analysis task. They employed an extrapolation-interpolation

 16

procedure, based on the work by Horiuchi et al. (1996), to generate continuous displacement

signals and bridge the different time scales of the two tasks. Magonette (2001), on the other

hand, focused his research on developing a system to execute continuous hybrid simulations

without the real-time requirement. He successfully demonstrated that continuous hybrid

simulations are very effective in avoiding force relaxations and improving the accuracies of force

measurements by eliminating actuator hold phases.

In 2002, Chang, proposed an unconditionally stable explicit integration scheme that was

based on the Newmark family of methods. However, since the algorithm required the inverse of

the mass matrix in several places, it could not be employed to solve the equations of motion of

hybrid models with singular mass matrices. The three-loop architecture that was developed by

Mosqueda (2003) allowed for the first time execution of continuous, geographically distributed

hybrid simulations with multiple subassemblies. Compared to previous geographically

distributed hybrid simulations that utilized a hold-and-ramp loading procedure, it was possible to

significantly reduce execution times and eliminate force relaxation problems. In addition

Mosqueda (2003) proposed several error indicators to assess the accuracy and the efficiency of a

hybrid simulation. In 2004, Bonelli and Bursi, developed implicit and explicit integration

schemes that were based on the generalized-alpha methods by Chung and Hulbert (1993). These

integration methods provided improved adjustment of the numerical energy-dissipation

characteristics of the algorithm. The first partitioned hybrid simulation with nonlinearities in

both the analytical and the experimental portions of the structure were performed by Pinto et al.

(2004). The research team developed a novel, parallel inter-field integration algorithm to achieve

such objective.

Since up to this time most implementations of hybrid simulation had been problem

specific and heavily dependent on the testing sites, several research projects were initiated to

develop frameworks for conducting geographically distributed tests consisting of multiple

subassemblies. Pan et al. (2005) developed an architecture where a physical test was conducted

in one place, the associated numerical analysis was performed in a remote location, and the two

locations communicated over the Internet. However, the proposed system adopted a file and

folder sharing technique to exchange data between numerical and physical sites, sacrificing

performance and flexibility. On the other hand, Takahashi and Fenves (2006) developed an

object-oriented software framework consisting of a set of interrelated software classes that

 17

provided in a convenient, modular, and standardized manner those additional functions needed

by any analysis software to work with laboratory equipment to perform hybrid simulations. In

addition, the software framework provided means for distributing structural subassemblies in a

standardized manner within a network of laboratories and computational sites. Around the same

time, Pan and coworkers improved their system by replacing the file-based data exchange

routines with network socket-based ones and utilizing a centralized coordinator to enforce

compatibility and equilibrium among the different subassemblies (Pan et al. 2006). This

approach was similar to the one suggested earlier by Kwon et al. (2005) that consisted of a

coordinator solving the equations of motion and any number of analytical and experimental static

modules representing the different substructures of a hybrid model. The system provided the

means to employ a wide variety of commercial finite element software codes to determine the

static equilibrium of the individual modules. However, both this system as well as the one

proposed by Wang et al. (2006) utilized restart capabilities provided by the finite element

software packages (which write to and read from files) and therefore significantly limited

performance.

Because the number of researchers and users working in hybrid simulation has increased

considerably worldwide over the last few years, the number of publications has multiplied as

well. Some of the research that is currently under way includes the development of force control

and mixed force/displacement control strategies as well as switching between force and

displacement control during simulation (Elkhoraibi and Mosalam 2007; Wu et al. 2007).

Furthermore, real-time testing continues to be one of the main thrust areas in hybrid simulation

(Jung et al. 2007; Mercan and Ricles 2007; Gawthrop et al. 2007; Ahmadizadeh et al. 2008;

Bonnet et al. 2008; Bursi et al. 2008).

2.4 COMPONENTS AND PROCEDURE

To perform a hybrid simulation, several key components including software and hardware are

necessary. These components that all interact during a hybrid simulation are shown in Fig. 2.1

and are described next.

1. The first component is a discrete model of the structure to be analyzed on a computer,

including the static and dynamic loading. In the structural analysis approach presented

herein, the finite element method is used to discretize the problem spatially and a time-

 18

stepping integration algorithm is then used for the time discretization. Compared to the

alternative control system approach, the finite element approach is more intuitive to the

structural engineer and can easily be extended to perform partitioned hybrid simulations

(see Chapter 3). The resulting dynamic equations of motion for the finite number of

discrete degrees of freedom are a system of second-order time ordinary differential

equations (see Chapter 4).

()1 1 1 1 , 1

0

0

i i i i i

i

i

+ + + + +

=

=

+ + = −
=

=

r 0

0

0

M U C U P U P P
U U

U U

&& &

& &

 (2.1)

In the above equations M is the mass matrix assembled from the nodal and element mass

matrices, U&& is the acceleration vector at the structural degrees of freedom, C is the

viscous damping matrix, U& is the velocity vector at the structural degrees of freedom, rP

are the assembled element resisting forces (which depend on the displacements), P are

the externally applied nodal loads and 0P are the assembled element loads.

2. The second required component is a transfer system consisting of a controller and static

or dynamic actuators, so that the incremental response (generally the displacements)

determined by the time-stepping integration algorithm can be applied to the physical

portions of the structure. For slow tests, relatively inexpensive quasi-static testing

equipment, which is often readily available in many structural testing laboratories, can be

used for this purpose.

3. The third major component is the physical specimen that is being tested in the laboratory,

including a support against which the actuators of the transfer system can react against.

4. The fourth and last component is a data-acquisition system comprising instruments such

as displacement transducers, load cells, and accelerometers, to list the most common

ones. The data-acquisition system is responsible for measuring the response of the test

specimen and returning such experimental information (generally the resisting forces) to

the time-stepping integration algorithm in order to advance the solution to the next

analysis step.

Because the finite element approach is utilized to introduce the basic concepts of a hybrid

simulation, the testing procedure is laid out in terms of the necessary steps to execute a direct

integration analysis. To simplify the testing procedure details, a linear instead of a nonlinear

 19

equilibrium solution algorithm was chosen in the flowchart shown in Fig. 2.2. In addition, since

the Open System for Earthquake Engineering Simulation, OpenSees (McKenna 1997), finite

element software is extensively used throughout this work, the corresponding commands (blue)

are shown as well.

Fig. 2.1 Key components of a hybrid simulation.

As can be seen from Fig. 2.2, for each time step of the direct integration analysis, the first

operation consists of determining the new trial response quantities (displacements, velocities and

accelerations). Afterwards the loads and the analysis time are incremented and the new trial

response quantities are sent to the analytical and experimental subassemblies. The analytical

subassemblies store the new response quantities so that they can later determine the unbalanced

loads. On the other hand, the experimental subassemblies communicate with the transfer systems

in the laboratories, which in turn start imposing the new trial displacements.

The next task in the direct integration analysis is to solve the current time step for the

response increments. Since the procedure is laid out for a linear equilibrium solution algorithm,

this means that the effective tangent, mixed, or initial stiffness matrix needs to be assembled

from the different portions of the structure. Depending on the integration scheme the analytical

subassemblies calculate and return their tangent or initial stiffness matrices. In contrast, the

experimental subassemblies return their initial stiffness matrices that have been determined

numerically or analytically prior to the start of the hybrid simulation. However, if methods have

been implemented for the experimental subassemblies to estimate their tangent stiffness matrices

 20

from force and displacement measurements (Thewalt and Roman 1994), such matrices could be

returned to the equilibrium solution algorithm instead.

Start the Direct Integration Analysis
analyze(numSteps, t);

 for i=0 to i<numSteps do

Finite Element Analysis

Calculate and set new Trial Response

Quantities, Increment Loads and Time

by t, update Domain

theIntegrator newStep(t);

Solve the current Time Step
theLinearAlg

solveCurrentStep();

Commit the Solution State
theIntegrator commit();

Form Effective Tangent, Initial or

Mixed Stiffness A in A x = b
theIntegrator

formTangent();

Form the Unbalanced Force b in

A x = b
theIntegrator

formUnbalance();

Solve A x = b for x
theSOE solve();

Update the Response at t+ t

theIntegrator update(x);

Experimental Subassembly

Return Initial or Tangent

Stiffness if available
getInitialStiff(); or
getTangentStiff();

Command Transfer System

to impose Trial Response

(Trial Displacements)
setTrialResponse(…);

Analytical Subassembly

Calculate Resisting Forces
getResistingForce();

Calculate Tangent or Initial

Stiffness
getTangentStiff(); or
getInitialStiff();

Once Target is reached

measure Response

(Resisting Forces)
getDaqResponse(…);

Set Trial Response

(Trial Displacements)
update(…);

Fig. 2.2 Hybrid simulation testing procedure.

Next, the equilibrium solution algorithm needs to assemble the unbalanced force vector.

As a result, the analytical subassemblies retrieve the stored response quantities to calculate and

return their resting forces and other contributions to the unbalanced force vector. On the other

hand, the experimental subassemblies communicate with the data-acquisition systems in the

laboratories to measure the resisting forces as soon as the previously received target response is

reached. The measured resisting forces combined with the other contributions to the unbalanced

force vector are then returned to the finite element analysis. Once the assembly processes of the

effective stiffness matrix and the unbalanced force vector are terminated, the equilibrium

solution algorithm can solve the linear system of equations for the response increments and

 21

subsequently update the response of the entire structure. Finally, the solution state of the

structure is committed and the direct integration analysis can be advanced to the next time step.

2.5 LOCAL VS. GEOGRAPHICALLY DISTRIBUTED TESTING

As has been described earlier, when all the advantages were laid out, hybrid simulation is a very

versatile testing technique that facilitates many different modes of employment. Hence, it is

useful to categorize some of these main modes of employment and to define the associated

terminologies.

The first way of categorizing hybrid simulations is by grouping them according to the

geographical distribution of the structural subassemblies and the different components. In a local

hybrid simulation the numerical analysis and the experimental testing are performed at the same

location, i.e., in the same laboratory. Because the finite element analysis hardware, the control

system, and the data-acquisition system are all collocated, it is possible to connect them through

local high-speed network rings, e.g., the Shared Common Random Access Memory Network

(SCRAMNet+) (Systran). Such local high-speed connections drastically reduce delays and make

it possible to perform continuous and/or real-time hybrid simulations. Local hybrid simulations

are thus not defined by the absence of a network but rather by the collocation of all the required

components in one laboratory.

Conversely, in a geographically distributed hybrid simulation various parts of a structure

are analyzed and tested at different sites. This means that the analytical portions of the model can

be analyzed on multiple computers, while the physical portions of the hybrid model are tested in

multiple laboratories. Because some or all the participating sites are dispersed, they need to be

connected through wide area networks such as the Internet or the Internet2’s Abilene network.

Generally these networks create much larger delays than the local high-speed networks and the

execution of rapid hybrid simulations becomes very challenging. In addition, it is necessary to

establish the means for dealing with excessive network delays as well as breakdowns. However,

by breaking a model up into selected subassemblies and distributing them within a network of

laboratories and computational sites, a researcher is able to take advantage of and combine the

different capabilities available at the various facilities.

 22

2.6 SLOW VS. RAPID VS. REAL-TIME TESTING

Another important feature that can be utilized to categorize a hybrid simulation is how fast a test

is executed. Slow tests can be executed on extended time-scales of up to two orders of magnitude

slower than the actual time-scale, whereas real-time tests need to be executed equal to or faster

than the actual time-scale depending on similitude requirements. Thus, different aspects of a

hybrid simulation need to be considered and treated more carefully, conditional on the execution

speed. For slow tests it is imperative that the physically tested portions of the structure not

exhibit any velocity-dependent behavior unless such dependency is compensated for in the

analytical part of the hybrid model. In addition, it is important that an uninterrupted execution,

meaning a continuous actuator motion, is maintained to avoid force relaxation and actuator stick-

slip difficulties. On the other hand, for rapid hybrid simulations it is crucial that the inertial and

damping force contributions generated by the physical portions of the hybrid model are correctly

accounted or compensated for. Moreover, it is important to recognize that for such tests high-

force dynamic actuators with large accumulators and hydraulic pumping systems are required

and that the accurate control of these actuators becomes much more difficult due to inertial force

feedbacks.

The equations of motion that need to be solved during a hybrid simulation take on

slightly different forms depending on the execution speed of the test. For slow tests, where no

inertial forces are generated in the physical subassemblies, they can be expressed in the

following manner.

 () ()1 1 1 1 1 1 , 1,A E
i i i i i i i+ + + + + + ++ + + = −r r 0M U C U P U U P U P P&& & & (2.2)

where the terms with superscripts A are assembled from the analytical portions of the

structure and the terms with superscripts E are assembled from the experimental portions of the

structure. As can be seen from Equation (2.2) the mass and the viscous damping of the entire

structure are treated numerically because the experimental resisting force vector E
rP does not

include any inertial or viscous damping force contributions due to the slow execution of the test.

Hence, the mass matrix M and viscous damping matrix C can directly be assembled from all

the node and element contributions of both the analytical and experimental portions of a

structure.

In contrast, if hybrid simulations are executed more rapidly, where inertial and viscous

damping forces start being generated in the physically tested portions of a structure, it is

 23

necessary to compensate for these dynamic forces, and the experimental resisting force vector
E

rP in Equation (2.2) needs to be modified to correctly account for such effects.

 ()1 , 1 1 1
E E E E E E

i i i i+ + + += − −r rP U P M U C U&& & (2.3)

In the above equation , 1
E

i+rP are the resisting forces measured by the load cells and

assembled from the experimental subassemblies (which include the dynamic force

contributions), EM and EC are the mass and viscous damping matrices assembled from the

experimental subassemblies, and 1
E
i+U&& and 1

E
i+U& are the accelerations and velocities measured

from the experimental subassemblies. Even though the dynamic force correction in (2.3) is

shown for the global degrees of freedom, it should ideally be performed for the element or even

the actuator degrees of freedom instead.

Once the execution speed reaches real time, meaning that the experimental subassemblies

are loaded with the actual, calculated velocities and accelerations (including similitude

requirements), an alternative, preferred form of the equations of motion can be employed.

 () ()1 1 1 1 1 1 1 1 , 1, , ,A A A E
i i i i i i i i i+ + + + + + + + ++ + + = −r r 0M U C U P U U P U U U P P&& & & & && (2.4)

where AM and AC are the mass and viscous damping matrices assembled from only the

analytical subassemblies and E
rP is the resisting force vector assembled from the experimental

subassemblies, which includes the inertial and damping forces of these physical portions of the

structure. It is important to notice that the experimental resisting force vector is assembled

entirely from measured force values but for illustrative purposes can be expressed in the

following manner.

 ()1 1 1 , 1 1, ,E E E
i i i i i+ + + + += +r rP U U U P M U& && && (2.5)

On the other hand, if a real-time hybrid simulation is utilized to execute smart shaking

table tests, where entire subassemblies are tested on simulator platforms, the experimental

resisting force vector E
rP is no longer a function of the relative response quantities. Instead,

absolute response quantities need to be sent to the control systems driving the shaking tables.

Again for illustrative purposes only, this can be expressed as follows.

 (), 1 , 1 , 1 , 1 , 1, ,E E E
i i i i i+ + + + += +r t t t r tP U U U P M U& && && (2.6)

For convenience the different forms of the equations of motion that need to be solved for

the various types of hybrid simulations are summarized in Table 2.1 below.

 24

Table 2.1 Equations of motion for different types of hybrid simulations.

Type of Hybrid Simulation Equations of Motion

slow test 2-2

rapid test 2-2 & 2-3

real-time test 2-2 & 2-3 or 2-4 & 2-5

smart shaking table test 2-4 & 2-6

Finally, many of the numerical time-stepping integration algorithms that can be employed

to solve the presented equations of motion are discussed in detail in Chapter 4.

2.7 NUMERICAL AND EXPERIMENTAL ERRORS

To guarantee that the results obtained from a hybrid simulation are valid, reliable, and accurate,

it is imperative to minimize and correct for the contamination of the results by errors. In hybrid

simulations errors can be introduced into the solution process at various stages and it is possible

to categorize them as numerical versus experimental errors, or, alternatively, as random versus

systematic errors. While numerical and random errors do not significantly affect the response of

a structure and can generally be ignored, experimental and systematic errors can accumulate over

the course of a hybrid simulation and lead to poor results or even instabilities. As mentioned in

Section 2.3, many researchers have thoroughly investigated the effects of various errors on the

structural response. Shing and Mahin (1983, 1984, 1990) concentrated their studies on numerical

errors that are introduced by the model abstraction and by the time-stepping integration

algorithms. Experimental errors introduced by hardware components of the transfer and data-

acquisition systems were investigated and summarized by Thewalt and Mahin (1987). Mosqueda

(2003) performed extensive numerical simulations of experimental errors to investigate their

effects on the results of a hybrid simulation. He derived analytical models in the form of linear

transfer functions for time delay errors and for the dynamic behavior of experimental setups

(including the specimen, the transfer system and the reaction wall) to investigate their effect on

the overall performance of the transfer system.

Because comprehensive summaries of hybrid simulation errors and the available error

compensation techniques have been compiled by Mosqueda (2003), only a brief list of numerical

and experimental errors is presented here for convenience.

 25

• The first source of errors is the spatial discretization of the structure that is necessary to

obtain the semi-discrete, finite degrees-of-freedom models on which hybrid simulations

are based. Because these finite-degrees-of-freedom models are approximations of

continuous real-world structures, information is lost and numerical errors are inevitably

introduced into the hybrid simulation during the modeling process. Assumptions about

the energy-dissipation and other analysis parameters further influence such errors.

• Other sources of numerical errors are the integration and equilibrium solution algorithms

that are employed to solve the nonlinear equations of motion. This problem can be

magnified if inappropriate algorithms and/or parameters for such algorithms (e.g.,

integration time-step size, algorithmic damping etc.) are selected for the hybrid

simulation problem at hand. In addition, different integration schemes possess varying

error propagation characteristics that can amplify experimental errors throughout a test.

• The third source of errors is the manner in which the transfer system imposes the

calculated response quantities on the experimental subassemblies. As discussed earlier,

continuous loading procedures generally achieve better accuracy than hold-and-ramp

procedures because they eliminate force relaxation and actuator stick-slip errors.

Furthermore, if the physical subassemblies exhibit velocity-dependent behavior, it is

critical that the transfer system imposes the calculated response quantities in real time to

minimize errors and obtain accurate results.

• Experimental errors generated by the transfer systems are the direst of all the errors

affecting hybrid simulations. Poorly tuned transfer systems fail to accurately impose the

calculated response quantities and introduce systematic errors such as undershoot,

overshoot, lag, or feedback-loop instabilities. Furthermore, the interaction of the transfer

system with its supporting reaction wall can lead to additional systematic errors. Because

systematic errors modify the energy dissipation of a hybrid system, which in turn can

render it unstable, they must be minimized or compensated for at all cost.

• Finally, the instrumentation devices and the data-acquisition system that measure the

structural response can also introduce experimental errors. The resolution of the

instrumentation, noise generated in the instrumentation and calibration errors in the data-

acquisition system can produce very inaccurate or incorrect measurements that

considerably affect a hybrid simulation and ultimately lead to poor test results.

 26

2.8 SUMMARY

Hybrid simulation is one of the currently well-developed methods to conduct laboratory testing

for evaluating the seismic behavior of structural systems and/or components thereof. In this

experimental testing technique a simulation is executed based on a step-by-step numerical

solution of the governing equations of motion for a model formulated considering both

numerical and physical components of a structural system. Many of the advantages that are

gained by utilizing hybrid simulations to perform experimental investigations were discussed and

summarized in this chapter. In addition, a list of challenges that still need to be addressed in

hybrid simulation was compiled as well. Afterwards, a brief history on the development of the

testing technique from 1975 (when the first publication appeared) until 2008 (when this research

was concluded) was presented. Subsequently it was shown that four key components are required

in order to perform a hybrid simulation. These consist of a discrete model of the structure,

including the static and dynamic loading; a transfer system, including a controller and static or

dynamic actuators; the physical specimen that is being tested in the laboratory, including a

support against which the actuators of the transfer system can react; and a data-acquisition

system, including instrumentation devices. Because the finite element approach was utilized to

introduce the basic concepts of a hybrid simulation, the testing procedure was next laid out in

terms of the steps required to execute a direct integration analysis. In addition, several of the

more common modes of employment of a hybrid simulation, such as local versus geographically

distributed tests and slow versus rapid versus real-time tests, were discussed in detail. It was

shown that a local hybrid simulation is defined by the collocation of all the required components

in one laboratory. In contrast, for geographically distributed tests some or all the participating

sites are dispersed and need to be connected through wide area networks. Depending on the

execution speed of the test, the equations of motion that need to be solved during a hybrid

simulation take on slightly different forms, which have been summarized and discussed. Finally,

the chapter presented a short summary of numerical and experimental errors encountered in

hybrid simulations and explained how such errors affect a test.

3 Object-Oriented Hybrid Simulation
Framework

3.1 INTRODUCTION

Considerable research is currently being conducted worldwide to extend hybrid simulation to

applications where advanced numerical techniques are utilized, boundary conditions are imposed

in real time, and dynamic loading conditions are caused by seismic events, wind, blast, impact,

waves, fire, and traffic. Similarly, efforts are under way to optimize capabilities for testing

portions of a structure in geographically distributed laboratories, including techniques to improve

network performance.

While only a few basic operations and communication protocols are needed to perform a

hybrid simulation, to date few efforts (e.g., (Takahashi and Fenves 2006)) have been made to

develop a common software framework for implementing and deploying systems that can carry

out hybrid tests. Typically, each implementation and execution of hybrid simulation has been

problem specific and used to be strongly dependent on the computational procedure, the

configuration of the experiment, and the control and data-acquisition systems employed at the

testing site. This means that hybrid simulations have generally been hard-coded for each specific

problem at hand. Such highly customized software implementations are difficult to adapt to

different structural problems and even harder to port to different laboratories. This is particularly

true if multiple laboratories are involved in a hybrid simulation, as is the case for geographically

distributed simulations. Thus, the lack of a common framework has posed a hurdle for those who

considered utilizing hybrid simulation to investigate a structure experimentally; and additionally,

has also limited collaboration among experts in the field.

A software framework is a reusable design for a system or subsystem and defines the

overall architecture of such system, meaning its fundamental components as well as the

relationships among them. Thus, a software framework for experimental testing should ideally

support a large variety of computational software, structural testing methods, specimen types,

testing configurations, control and data-acquisition systems, and communication protocols.

 28

Furthermore, to accelerate the development and refinement of hybrid simulation, such software

framework should be environment independent, robust, transparent, scalable, and easily

extensible. It should allow domain researchers to execute hybrid simulations without specialized

knowledge about the underlying software. At the same time, it should also enable hybrid

simulation and IT specialists to extend the frontiers of the methodology by permitting the

effortless addition of new developments.

Two different approaches are currently utilized when developing and implementing

hybrid simulations. The first one is the structural analysis approach, in which a hybrid simulation

can be viewed as a conventional finite element analysis where physical models of some portions

of the structure are embedded in the numerical model. The second one is the control system

approach where a hybrid simulation is treated as a feedback system with the computational

portion of the structure acting as the controller and the physical portion resembling the plant.

While it can be shown that the two approaches lead to equivalent algorithms (Sivaselvan 2006)

both of them have advantages and disadvantages when investigating the properties and

performance of hybrid simulations. For the development of the object-orient software framework

discussed herein, the former finite element approach is the preferred method. Since in this

approach the physical portions of a structure are embedded as subassemblies into the

computational software, the experimental software framework should provide the means to

interact with any finite element code that provides an application programming interface (API)

and is not a black box (see Fig. 3.1). This enables users to choose their favorite finite element

analysis software (with all the unmodified computational features) to perform a hybrid

simulation, without the need to learn new analysis software.

Because the object-oriented software framework is designed to connect any finite

element analysis software running on one or more machines with control and data-acquisition

software running in one or more laboratories, it can be considered middleware. By definition

middleware describes a piece of software that connects two or more software applications,

allowing them to exchange data. It is similar to the middle layer of the three-tier architecture that

is described in a later section. The Open-Source Framework for Experimental Setup and Control,

OpenFresco, described herein, is a redesigned, improved, and extended version of the software

framework originally presented by Takahashi and Fenves (2006), and provides in a convenient,

 29

modular, and standardized manner those additional functions needed by analysis software to

work with laboratory equipment to perform hybrid simulations.

LABORATORY
CONTROLLERS

AND DAQS

ADMINISTRATIVE
FUNCTIONS

COMMUNICATION RECORDERS

NODAL
GEOMETRY

BOUNDARY
CONDITIONS

MASS AND
DAMPING

PROPERTIES

LOADING
SOLUTION
METHODS

ELEMENT TYPES
AND LOCATIONS

ELEMENT PROPERTIES

STATE DETERMINATION

GENERIC
CLIENT

ELEMENT 1

NUMERICAL
ELEMENT 1

NUMERICAL
ELEMENT 2

OpenFresco

Fig. 3.1 Finite element analysis software of user’s choice, OpenFresco middleware, and
physical specimen with control and data-acquisition systems in laboratory.

This chapter first presents the fundamental building blocks (abstract classes) of the

software framework (Takahashi and Fenves 2006) and explains how such objects were

determined based on a rigorous systems analysis of the operations performed during hybrid

simulations. The interaction among those classes and the underlying object-oriented software

design patterns are explained as well. Thereafter, the concept of the multitier software

architecture is discussed, which provides the means to interact with any finite element software

and facilitates geographically distributed simulations. Communication methods and protocols

necessary for distributed computation and testing are described next. Following this are brief

descriptions on the implementation of the available objects (concrete sub-classes). Finally, the

chapter explains how the Open System for Earthquake Engineering Simulation, OpenSees

(McKenna 1997), can be used as the computational framework and the advantages attained by

doing so.

3.2 OPENFRESCO SOFTWARE ARCHITECTURE

In compliance with object-oriented methodologies the first step in the development process of

the software framework is to determine what a structural testing system is functionally required

to do, to facilitate the execution of experiments. This first phase of the development process is

 30

also called object-oriented analysis (OOA) and produces a conceptual model of the software

framework. All three of the currently well-established and earlier described experimental

methods (quasi-static testing, shaking table testing, and hybrid simulation) impose boundary

conditions on a structure or components thereof and return the corresponding work conjugates.

The boundary conditions that are to be imposed at the interface degrees of freedom can be

prescribed displacements, tractions, or a combination. In structural testing such prescribed

boundary conditions are generally applied by means of a transfer system, which consists of

actuators and measuring devices. The manner in which the transfer systems are set up and

physically connect to the specimen is test specific and therefore usually changes from

experiment to experiment. Finally, the actuators need to be commanded by means of a control

system and measurements need to be recorded by a data-acquisition system. These control and

data-acquisition systems generally differ from laboratory to laboratory.

Hence, the main requirements for the software framework are (1) to provide some means

to represent the structural subassemblies that are being tested experimentally; (2) to generate

appropriate (displacements, velocities, accelerations, forces) input commands for the transfer

systems; (3) to convert measured signals (displacements, velocities, accelerations, forces) back

into appropriate forms for the computational software; and (4) to offer the flexibility to interact

with a wide variety of control and data-acquisition systems. Additionally, the software

framework should provide (5) techniques to distribute processes across a network to different

machines, thereby enabling geographically distributed simulations; (6) means to transmit

additional messages between the computational software and the laboratory; and (7) execution

and communication speeds that make real-time testing possible.

The next step in the object-oriented analysis process is to generate an object-oriented

model (OOM) by breaking down the previously identified requirements into components. This

means that abstractions of the real-world objects are generated in the software. These abstract

components, which are blueprints describing the characteristics and behavior of a real-world

object, are called software classes. Using encapsulation, a class conceals its functional details

(data and operations on data) from other objects that send messages to it and thereby provides the

basis for modular, flexible, and extensible software. According to the previously explained

components and requirements necessary to provide a bridge between a standard finite element

 31

analysis program and laboratory control and data-acquisition systems, the following software

abstractions are introduced.

FE Analysis Software

Experimental Site

Experimental Setup

Experimental Control

Control & Daq Systems
in Laboratory

Experimental Element

Fig. 3.2 Abstract components of the OpenFresco software architecture.

Experimental Element:
The abstraction of the first of the previously described real-world components is the

ExperimentalElement class. It represents specimens such as trusses, beams, columns, braces,

springs, walls, and other parts of a structure that are physically tested in a laboratory. Analogous

to an analytical element, the experimental element acts within the host finite element analysis

software, but represents a physical portion of a model instead of a numerical one. Like the

analytical element the basic functionality of an experimental element is to provide the mass,

damping, and stiffness matrices as well as the residual force vector for a given deformation state.

The experimental element is thus responsible for transforming prescribed boundary conditions

from the global coordinate system of the FE-model into the local or basic element coordinate

system that is best suited for testing. Additionally, it needs to provide inverse transformations for

the measured response quantities, such as displacements, velocities, accelerations and forces,

from the element coordinate system back to the global coordinate system of the FE-model.

Contrary to analytical elements, the experimental element is oftentimes unable to return a tangent

stiffness matrix and needs to return its initial stiffness matrix instead. This is because it is

generally difficult to compute an accurate element tangent stiffness matrix solely from the

experimentally measured response quantities at the basic or local element degrees of freedom.

Furthermore, since a physical specimen is truly history dependent, the experimental element

representing such specimen cannot revert to a previous or initial state of an analysis once a

 32

simulation is in progress. The ExperimentalElement class is an abstract class, which defines the

interface that all experimental elements must conform to. The concrete subclasses of the

ExperimentalElement class then provide the implementations for the specific experimental

specimens.

Experimental Site:
Other real-world components involved in an experimental test are the laboratories in which the

testing takes place and the computational sites where the analysis is carried out. The

ExperimentalSite class represents such laboratories and computational sites in the software

framework. Because in the real world, laboratories and computational sites can be in different

places, the experimental site objects in the software are responsible for providing communication

methods to connect the different sites and store data that are received from or need to be sent to

other sites. Furthermore, the experimental sites should support different communication

protocols such as TCP/IP, UDP, or NHCP (NEES hybrid-simulation control protocol) and be

able to guarantee secure transactions over the Internet using cryptographic protocols such as TLS

(transport layer security) or SSL (secure sockets layer). The ExperimentalSite class is an abstract

base class, which defines the interface that all experimental sites must conform to. The concrete

subclasses of the ExperimentalSite class then provide the implementations for the specific

laboratories and computational sites.

Experimental Setup:
The third abstraction is the ExperimentalSetup class, the software class that is responsible for

representing the possible configurations of the transfer systems constructed in the laboratories.

Since a transfer system consists of actuators and measuring devices, the experimental setup

needs to transform the prescribed boundary conditions from the local or basic element degrees of

freedom of the experimental elements into the actuator degrees of freedom of the transfer

system, utilizing the geometry and the kinematics of the loading and instrumentation system.

Similarly the work conjugates measured by transducers and load cells need to be transformed

back to the experimental element degrees of freedom. These transformations can be implemented

either as simple linear transformation matrices (small displacements) or as complex algebraic

transformations taking large-displacement effects into account. The ExperimentalSetup class is

again an abstract base class, which defines the interface that all experimental setups must

 33

conform to. The concrete subclasses of the ExperimentalSetup class then provide the

implementations for the specific setups.

Experimental Control:
The last one of the main abstractions introduced here is the ExperimentalControl class. Since one

of the required tasks for experimental testing is the communication with a wide variety of control

and data-acquisition systems, the ExperimentalControl class provides such interface and

functionality in the software framework. The advantage of this abstraction and the encapsulation

of these operations is that the ExperimentalSetup class separates the details of the loading system

configuration from the ExperimentalControl class. Thus, those responsible for the IT aspects of

the control and data-acquisition systems need be concerned only with the ExperimentalControl

class; while those configuring the actuators and sensors focus on the ExperimentalSetup class. As

with the other classes, the ExperimentalControl class is again an abstract base class, which

defines the interface that all experimental controls must conform to. The concrete subclasses of

the ExperimentalControl class then provide the implementations for the specific interfaces with

different control and data-acquisition systems.

3.3 MULTI-TIER SOFTWARE ARCHITECTURE

While the components described in the previous section build the core of the software

framework, they do not provide a modular and flexible way to utilize OpenFresco with any finite

element analysis software of the user’s choice. To achieve this objective, the three- and multi-tier

software architectures are introduced. They both belong to the class of client/server architectures,

which is based on passing messages among different software agents. The three-tier software

architecture wraps around the OpenFresco core modules and provides the necessary functionality

to interface with a wide variety of finite element software clients and control and data-acquisition

systems.

As the name suggests the software is divided into three layers composed of a client, a

middle-tier (or application) server, and a backend server. The middle-tier server is located

between the user interface (client) and the data management (server) components. In the

traditional three-tier architecture this middle-tier provides functional process management where

business logic and rules are executed. The three-tier architecture is typically employed whenever

 34

a distributed client/server design is required that provides increased performance, flexibility,

maintainability, reusability, and scalability while hiding the complexity of distributed processing

from the user (Carnegie Mellon SEI).

Top Tier / Client

Middle Tier / Application Server

Third Tier / Backend Server

Traditionally, the top-most level of the
application is the user interface.

Traditionally, the middle layer provides
process management services and controls
transactions.

Traditionally, the third tier stores and
manages information in a database for
retrieval by the user.
Structure or structural subassembly from
which the FE-software is requesting
information.

For the experimental software framework
this is the FE-software.

Allows FE-software using different
languages (Matlab, Fortran, C, C++) to
communicate with physical specimens.

Experimental Site

Experimental Setup

Experimental Control

Experimental Element

Experimental Site

Experimental Setup

Experimental Control

Experimental Element

Daq System API Control System API

TCP/IP (Socket) TCP/IP (Socket)

Fig. 3.3 Multi-tier software architecture.

As can be seen from Fig. 3.3, in the case of the experimental software framework, the

finite element analysis software resembles the client or user-interface top tier, where the

structural model is created and then analyzed. The backend server, also called third tier, is the

laboratory server composed of the different control and data-acquisition systems with their APIs.

This means that comparable to the general three-tier architecture, where the third tier is typically

a database from which a user is querying information, the laboratory server can be seen as the

structure or structural subassembly from which the finite element analysis software is querying

information. Finally, the middle-tier server, which is also called simulation application server,

provides process management services and data transformations so that different computational

clients can query information from the different experimentally tested portions of a structure. It

improves performance, flexibility, maintainability, reusability, and scalability by centralizing

process logic. Centralized process logic makes administration and change management easier by

 35

localizing system functionality so that changes must be written only once and placed on the

middle-tier server to be available throughout the systems (Carnegie Mellon SEI). In addition, due

to this separation provided by the middle-tier server, finite element analysis software written in

different languages such as Matlab, Fortran, C, C++, etc., can be accommodated. If the middle-

tier server is further divided into two or more units, the design is referred to as multi- or n-tier

architecture, which is one of the architectural software patterns. As will be seen shortly, for

geographically distributed simulations OpenFresco is employing a four-tier architecture with two

middle-tier server units.

Because of the modularity and flexibility of the multi-tier architecture combined with the

OpenFresco middle-tier components, a wide variety of local and geographically distributed

testing configurations are possible. For all these configurations the client and the first middle-tier

server unit will usually be running on the same machine. However, since TCP/IP sockets are

used to achieve the interprocess communications between the two, the client and the first

simulation application server unit could also be run on two separate machines, if it is desired. On

the other hand, the communications between the two simulation application server software

agents are always distributed, which means that the processes are running on two different

machines. These network communications are managed by the previously described

ExperimentalSite class, which in turn is relying on the OpenSees Channel class. The OpenSees

Channel class can then use different communication protocols such as TCP/IP, UDP, or NHCP.

In the case of a local deployment of OpenFresco, meaning that all processes are executed

locally in one laboratory, there are two possible configurations available as shown in Fig. 3.4. In

the first configuration, which is the more general one, a generic client element has to be added to

the finite element software that is being used for the analysis. The generic client element requires

only the number of nodes, the degrees of freedom it is connected to, and the port to communicate

through as input parameters. Furthermore, it can be implemented in the language of the

corresponding finite element analysis software. Thus, data exchange with the OpenFresco

middleware takes place through the generic client element, embedded by the user into each finite

element analysis program using their published programming interfaces (e.g., user-defined

elements). Utilizing the socket provided by the OpenFresco software framework, such user-

defined element communicates with the simulation application element server through a TCP/IP

connection. Since a generic element is used in the finite element analysis software, the

 36

simulation application element server then interfaces with the OpenFresco experimental element

class. The advantage of this first configuration is that only one element, the generic client

element, has to be added to the finite element analysis software and all the existing experimental

elements in the OpenFresco software framework can be utilized to represent the experimental

portions of a structure.

FE-Software

GenericClientElmt

ExperimentalSetup

ExperimentalControl

Control System
in Laboratory

LocalExpSite

ExperimentalElement

SimAppElemServer

Client

Middle Tier
Server

TCP/IP (Socket)

Backend
Server

FE-Software

ExpElement

ExperimentalSetup

ExperimentalControl

LocalExpSite

SimAppSiteServer

Client

Middle Tier
Server

TCP/IP (Socket)

Control System
in Laboratory

Backend
Server

Fig. 3.4 Three-tier configurations for local deployment.

In the second configuration in Fig. 3.4, an experimental element instead of a generic

client element is directly added to the finite element analysis software. This experimental

element then communicates with the simulation application site server in the OpenFresco

software framework, which in turn interfaces with the local experimental site instead of the

experimental element. The advantage of the second configuration is, that if a very specialized

experimental element is needed, which is not available in and cannot be added to OpenFresco

(because it utilizes some resources available only within the finite element analysis software),

such experimental element can directly be added to the computational software client.

As can be seen from Fig. 3.5, in the case of a distributed deployment of OpenFresco, two

very similar possible configurations are available. Their main difference is that the middle-tier

 37

server is divided into two units that are distributed across a network. The shadow and actor

experimental sites, which are concrete subclasses of the ExperimentalSite base class, manage the

communications between the two tiers. As mentioned before, they make use of the OpenSees

Channel class and can therefore employ different protocols such as TCP/IP, TCP/IP with SSL,

UDP, or NHCP for communications.

FE-Software

GenericClientElmt

ExperimentalControl

ShadowExpSite

ExperimentalElement

SimAppElemServer

Client

Middle Tier
Server 1

ExperimentalSetup

ActorExpSite

TCP/IP (Channel)

ExperimentalSetup

TCP/IP (Socket)

Control System
in Laboratory

Backend
Server

Middle Tier
Server 2

FE-Software

ExpElement

ShadowExpSite

SimAppSiteServer

Client

Middle Tier
Server 1

ExperimentalControl

ExperimentalSetup

ActorExpSite

TCP/IP (Channel)

ExperimentalSetup

TCP/IP (Socket)

Middle Tier
Server 2

Control System
in Laboratory

Backend
Server

Fig. 3.5 Four-tier configurations for network deployment.

Because the middle-tier server is divided into two units, the ExperimentalSetup class,

which is responsible for transforming between element and actuator degrees of freedom, can be

located either on the first middle-tier server unit (usually running on the same machine as the

finite element analysis client) or on the second middle-tier server unit (usually running in the

laboratory), but not on both sides simultaneously. The purpose of providing this flexibility to the

user is to accommodate a finite element analyst’s view of a hybrid simulation as well as an

 38

experimentalist's. The former is typically interested in having some finite elements that return

resisting forces provided some trial response, without having to deal with experimental setups in

a laboratory. In such cases the experimental setup can be placed on the laboratory side. The

latter, on the other hand, generally prefers to directly receive commands and return

measurements in the control and data-acquisition system degrees of freedom without having to

transform from and to element degrees of freedom. In this case the experimental setup can

conveniently be placed on the side of the computational client. So to summarize, OpenFresco’s

three- and four-tier architectural patterns provide the modularity and flexibility to interface any

computational agent running on one or more machines with physical specimens being tested in

one or more laboratories.

3.4 OBJECT-ORIENTED DESIGN DETAILS

In the next step of the object-oriented methodology, the object-oriented design (OOD) phase, the

interfaces of the objects and the interactions amongst them are defined. The basis for the design

phase is the conceptual model and all the possible configurations (use cases) of the software

framework that were developed during the object-oriented analysis in the previous subsections.

Fig. 3.6 shows the class diagram of the OpenFresco software framework using simplified

graphical notation of the Unified Modeling Language (UML) (Booch et al. 2005). The classes

are graphically represented by a rectangle with the name of the class inside the rectangle. For

abstract classes the name is displayed in Italic. The attributes and operations of a class are

omitted in the diagram presented here and are explained separately afterwards. The following

four types of lines represent the relationships among the classes:

A dependency is a relationship that states that one class uses operations, variables or

arguments from another class. The relationship is sometimes also referred to as

“using-a” relationship.

A generalization is a relationship between a parent (superclass or base class) and a

child (subclass or derived class). The relationship is also called inheritance or is

referred to as “is-a” relationship. A child inherits the properties, such as attributes

and operations, from its parent class.

 39

An association is a structural relationship that specifies that objects of one class are

connected to objects of an other class. The relationship is also referred to as

“knows-a” relationship.

An aggregation is a special association relationship that specifies that an object of

one class is made up of objects of other classes. The relationship is also referred to

as “has-a” relationship.

The multiplicity of an association or aggregation specifies how many objects may be

connected across an instance. It is written as a range of integers with the minimal and maximal

values and displayed at the ends of an association or aggregation.

ExperimentalSite

ExperimentalControl

LocalExpSite

ExperimentalElement

ECSimulation ECAggregator ECLabVIEW

SignalFilter

ExperimentalCP

ExperimentalSetup

ESAggregator

ShadowExpSite ActorExpSite

Fig. 3.6 Class diagram of the OpenFresco software framework.

40

 41

Experimental Element:
As can be seen from the class diagram in Fig. 3.6, the ExperimentalElement class is an abstract

class that inherits attributes and operations from the Element class, which is an abstract base

class in OpenSees.

class ExperimentalElement : public Element {
public:
 // constructor and destructor
 ExperimentalElement(int tag, int classTag,
 ExperimentalSite *site = 0);
 virtual ~ExperimentalElement();

 // public method to obtain basic DOF size which is
 // equal to the max num DOF that can be controlled
 virtual int getNumBasicDOF() = 0;

 // public methods to set and to obtain the stiffness
 virtual int setInitialStiff(const Matrix& stiff) = 0;
 const Matrix &getTangentStiff();
 const Matrix &getInitialStiff();

 // public methods to obtain the daq response in global system
 virtual const Vector &getDisp();
 virtual const Vector &getVel();
 virtual const Vector &getAccel();
 virtual const Vector &getTime();

protected:
 // pointer to ExperimentalSite
 ExperimentalSite* theSite;

 // size of ctrl/daq data
 // [0]:disp, [1]:vel, [2]:accel, [3]:force, [4]:time
 ID* sizeCtrl;
 ID* sizeDaq;

 // initial stiffness matrix
 Matrix theInitStiff;

private:
 // the following methods must be defined if the Element object
 // is inherited, but are meaningless for this element.
 int revertToLastCommit();
 int revertToStart();

 bool firstWarning;
};

Fig. 3.7 Interface for the ExperimentalElement class.

The implementations of the experimental elements, such as truss, beam, column, brace,

spring, and others are provided in the concrete subclasses of the ExperimentalElement class. The

class interface is shown in Fig. 3.7 and provides the following modified and additional

functionalities as compared to its parent Element class. First of all, and most importantly, the

 42

ExperimentalElement class is associated with the abstract ExperimentalSite class. More

specifically, the relationship between these two classes is an aggregation, meaning that an

experimental element has one experimental site. Furthermore, a method for setting the initial

stiffness matrix of the experimental element and several methods for obtaining the measured

response quantities have been added to the interface. Most of the methods defined in the

ExperimentalElement interface are pure virtual, meaning that the concrete subclasses need to

provide the implementations. Finally, since a physical specimen is truly history dependent and an

experimental element representing such specimen cannot revert to a previous or initial state of an

analysis, the two inherited methods revertToLastCommit() and revertToStart() return an

error message and interrupt the simulation.

Experimental Site:
The redesigned ExperimentalSite class is an abstract base class with the interface defined, as

shown in Fig. 3.8. It has three derived classes, which provide the concrete implementations

necessary for local and geographically distributed simulations. The LocalExpSite class is

employed for local testing and the ShadowExpSite and ActorExpSite classes are employed as a

pair for distributed testing. In terms of the terminology generally used for client-server

architectures, the ShadowExpSite provides the implementation of the client and the

ActorExpSite the one of the server.

class ExperimentalSite : public TaggedObject {
public:
 // constructors and destructor
 ExperimentalSite(int tag,
 ExperimentalSetup *setup = 0);
 ExperimentalSite(const ExperimentalSite &site);
 virtual ~ExperimentalSite();

 virtual int setSize(ID sizeT, ID sizeO);
 virtual int setup() = 0;

 // public methods to set and to get responses
 virtual int setTrialResponse(const Vector* disp,
 const Vector* vel,
 const Vector* accel,
 const Vector* force,
 const Vector* time);
 virtual int setTrialDisp(const Vector* disp);
 virtual int getDaqResponse(Vector* disp,
 Vector* vel,
 Vector* accel,
 Vector* force,
 Vector* time);
 (continued)

 43

 virtual int setDaqResponse(const Vector* disp,
 const Vector* vel,
 const Vector* accel,
 const Vector* force,
 const Vector* time);
 virtual int checkDaqResponse() = 0;

 virtual const Vector& getTrialDisp();
 virtual const Vector& getTrialVel();
 virtual const Vector& getTrialAccel();
 virtual const Vector& getTrialForce();
 virtual const Vector& getTrialTime();

 virtual const Vector& getDisp();
 virtual const Vector& getVel();
 virtual const Vector& getAccel();
 virtual const Vector& getForce();
 virtual const Vector& getTime();

 virtual int commitState();

 virtual ExperimentalSite *getCopy() = 0;

 virtual int getTrialSize(int rType);
 virtual int getOutSize(int rType);
 virtual int getCtrlSize(int rType);
 virtual int getDaqSize(int rType);

protected:
 ...

Fig. 3.8 Interface for the ExperimentalSite class.

The ShadowExpSite and the ActorExpSite should support different communication

protocols such as TCP/IP, UDP, or NHCP (NEES hybrid-simulation control protocol) and be

able to guarantee secure transactions over the Internet using cryptographic protocols such as TLS

(Transport Layer Security) or SSL (Secure Sockets Layer). Since the distributed-computing

model developed in OpenSees provides most of these requirements, the ShadowExpSite and

ActorExpSite classes are derived from the Shadow and Actor classes of such model, respectively.

The Shadow and Actor classes are both associated with the OpenSees Channel class, which is an

abstract base class that has concrete subclasses implementing the different communication

protocols. The available child classes useful for distributed testing are TCP_Socket, UDP_Socket

and TCP_SocketSSL.

Experimental Setup:
The interface of the redesigned ExperimentalSetup abstract base class is defined as shown in Fig.

3.9. Similar to the other abstract classes most of the methods in the ExperimentalSetup class are

pure virtual, and the concrete subclasses provide the implementations for the different

 44

experimental setups. As explained before, the Bridge software pattern is used between the

ExperimentalSetup class and the associated ExperimentalControl class. Furthermore, the class

interface provides methods for setting and getting trial and data-acquisition response quantities at

and from the ExperimentalSite and ExperimentalControl classes.

The transformation of the prescribed boundary conditions from the local or basic element

degrees of freedom of the experimental elements into the actuator degrees of freedom of the

transfer system, which is the first core task of the ExperimentalSetup class, is performed by the

public transfTrialResponse() method. Similarly, the transformation of the work conjugates

measured by transducers and load cells back to the experimental element degrees of freedom,

which is the second core task of the ExperimentalSetup class, is performed by the public

transfDaqResponse() method. Both of these methods then call a sequence of private methods

from the concrete subclasses to transform each individual response quantity in turn. The

remaining public methods are to set factors that are utilized to modify the control and data-

acquisition values in order to account for unit conversions and similitude transformations.

class ExperimentalSetup : public TaggedObject {
public:
 // constructors and destructor
 ExperimentalSetup(int tag,
 ExperimentalControl* control = 0);
 ExperimentalSetup(const ExperimentalSetup& es);
 virtual ~ExperimentalSetup();

 virtual int setSize(ID sizeT, ID sizeO) = 0;
 virtual int setup() = 0;
 virtual int setCtrlDaqSize();

 // public methods to set and to obtain responses
 virtual int setTrialResponse(const Vector* disp,
 const Vector* vel,
 const Vector* accel,
 const Vector* force,
 const Vector* time);
 virtual int getTrialResponse(Vector* disp,
 Vector* vel,
 Vector* accel,
 Vector* force,
 Vector* time);
 virtual int setDaqResponse(const Vector* disp,
 const Vector* vel,
 const Vector* accel,
 const Vector* force,
 const Vector* time);
 virtual int getDaqResponse(Vector* disp,
 Vector* vel,
 Vector* accel,
 Vector* force,
 Vector* time);
 (continued)

 45

 // public methods to transform the responses
 virtual int transfTrialResponse(const Vector* disp,
 const Vector* vel,
 const Vector* accel,
 const Vector* force,
 const Vector* time);
 virtual int transfDaqResponse(Vector* disp,
 Vector* vel,
 Vector* accel,
 Vector* force,
 Vector* time);

 virtual int commitState();

 virtual ExperimentalSetup *getCopy() = 0;

 // public methods to set the control and daq factors
 void setCtrlDispFactor(const Vector& f);
 void setCtrlVelFactor(const Vector& f);
 void setCtrlAccelFactor(const Vector& f);
 void setCtrlForceFactor(const Vector& f);
 void setCtrlTimeFactor(const Vector& f);

 void setDaqDispFactor(const Vector& f);
 void setDaqVelFactor(const Vector& f);
 void setDaqAccelFactor(const Vector& f);
 void setDaqForceFactor(const Vector& f);
 void setDaqTimeFactor(const Vector& f);

 virtual ID getCtrlSize();
 virtual ID getDaqSize();
 virtual int getCtrlSize(int rType);
 virtual int getDaqSize(int rType);

protected:
 ...

Fig. 3.9 Interface for the ExperimentalSetup class.

As can be seen from Fig. 3.6, the experimental setup hierarchy provides an ESAggregator

subclass that is associated with its own ExperimentalSetup parent class. This allows two or more

concrete experimental setups to be aggregated into a single experimental setup, which then

interacts with the ExperimentalSite and ExperimentalControl objects. This structural pattern is

known as Composite pattern and provides the means for the ExperimentalSite class to treat

individual experimental setups and compositions of experimental setups uniformly (Gamma et

al. 1995).

Experimental Control:
The redesigned ExperimentalControl class is an abstract base class with the interface defined as

shown in Fig. 3.10. Once more, most of the methods in the abstract class interface are defined as

pure virtual, and the concrete subclasses are responsible to supply the implementations. The

 46

public setTrialResponse() and getDaqResponse() methods, which depend on all the

response quantities, call the protected control() and acquire() methods. The protected

methods then utilize the application programming interfaces (APIs) of the control and data-

acquisition systems in order to interact with such systems. This approach provides the flexibility

to only use and return the response quantities supported by the specific APIs.

Similar to the ExperimentalSetup hierarchy the Composite software pattern is employed

again to provide an ECAggregator subclass that allows two or more experimental control objects

to be aggregated into one composite. This enables the software framework to utilize one

interface for controlling the actuators while a second one is utilized for the data acquisition.

To analytically model control and data-acquisition systems and thereby provide software

capabilities to simulate an experimental test before its actual execution, the ECSimulation class is

added to the hierarchy. This is particularly useful for checking a hybrid model and estimating the

response of a structure before running an actual test. In addition, the ECSimFEAdapter subclass

provides the means to simulate parts of a structure by different finite element analysis software.

This ability to couple finite element analysis software provides additional flexibility and greater

realism in simulating large engineering systems than may be possible with a single program. As

can be seen from Fig. 3.6 the ECSimulation class is an abstract class that is derived from the

ExperimentalControl class. Furthermore, the ExperimentalControl class is associated with the

abstract SignalFilter class that can be employed to filter measured signals or simulate

experimental errors. Finally, the ExperimentalCP class is used to define control points, which are

required by some of the concrete experimental control subclasses. A control point is a logical

container of one or more directions (degrees of freedom) for sending command signals to a

control system or acquiring feedback signals from a data-acquisition system.

class ExperimentalControl : public TaggedObject {
public:
 // constructors and destructor
 ExperimentalControl(int tag);
 ExperimentalControl(const ExperimentalControl& ec);
 virtual ~ExperimentalControl();

 virtual int setSize(ID sizeT, ID sizeO) = 0;
 virtual int setup() = 0;

 // public methods to set and to get response
 virtual int setTrialResponse(const Vector* disp,
 const Vector* vel,
 const Vector* accel,
 const Vector* force,
 const Vector* time) = 0;
 (continued)

 47

 virtual int getDaqResponse(Vector* disp,
 Vector* vel,
 Vector* accel,
 Vector* force,
 Vector* time) = 0;

 virtual int commitState();
 virtual ExperimentalControl *getCopy() = 0;

 const ID& getSizeCtrl();
 const ID& getSizeDaq();

protected:
 // protected methods to set and to get response
 virtual int control() = 0;
 virtual int acquire() = 0;

 // size of ctrl/daq data
 // [0]:disp, [1]:vel, [2]:accel, [3]:force, [4]:time
 ID *sizeCtrl;
 ID *sizeDaq;

 // signal filter
 SignalFilter *theFilter;
};

Fig. 3.10 Interface for the ExperimentalControl class.

Interactions and Transformations:
The flow of data between the OpenFresco modules and the transformation of the data within

such modules is illustrated by the two-dimensional beam-column example shown in Fig. 3.11.

The following terminology is used for the data flow: Data that are flowing from the finite

element analysis software towards the laboratory are called (1) “trial data” (if entering an

object/class) or (2) “ctrl data” (if leaving an object/class); and data that are flowing from the

laboratory towards the finite element analysis software are called (3) “daq data” (if entering an

object/class) or (4) “out data” (if leaving an object/class).

 48

Fig. 3.11 Data flow and transformations for beam-column example.

 49

As can be seen from the first picture in Fig. 3.11, the 2D beam-column element has a

total of six global degrees of freedom, where u are the global element displacements and p are

the global element forces. The ExperimentalElement then transforms these global trial

displacements to control displacements (respectively deformations) in the cantilever basic

coordinate system, bu . The next module, the ExperimentalSite, stores the trial data and, in case

of a distributed test, reorganizes such data to facilitate a more efficient transfer across the

network. Next, the three basic trial displacements/deformations, bu , are transformed to actuator

control displacements, d , by the ExperimentalSetup object. Finally, the ExperimentalControl

module converts the actuator trial displacements into control signals that are appropriate for the

employed laboratory control system. On the way back, the force signals measured by the data-

acquisition system are converted into an output vector of forces by the ExperimentalControl

object. Afterwards, the ExperimentalSetup module transforms these forces, f , from the load cell

(respectively data-acquisition system) degrees of freedom into basic element forces, q . In case

of a distributed simulation, the data are again reorganized into a structure that facilitates more

efficient network transactions and are subsequently stored by the ExperimentalSite object for

repeated retrieval, avoiding further network communications. Finally, the ExperimentalElement

transforms the daq forces, q , from the cantilever basic coordinate system into global element

forces, p , which are used by the computational code to assemble the global resisting force

vector.

Sequence Diagrams for Local and Distributed Simulations:
The interaction diagrams that are shown next use the Unified Modeling Language (UML) to

illustrate the sequence of messages that are sent to and received from objects.

 50

Fig. 3.12 OpenFresco sequence diagram for local deployment.

 51

Fig. 3.13 OpenFresco sequence diagram for distributed deployment with xperimentalSetup

on laboratory side.

 52

Fig. 3.14 OpenFresco sequence diagram for distributed deployment with

ExperimentalSetup on computational client side.

 53

3.5 CONCRETE SUBCLASSES

The currently implemented and available concrete sub-classes are explained next. These libraries

of concrete OpenFresco classes realize the following two important objectives: (1) they offer

domain researchers the opportunity to begin using the software framework without much effort

and (2) they provide a convenient starting point for developers to share implementations. The

existing concrete subclasses can serve as templates when implementing new concrete objects for

the OpenFresco software framework. To simplify the use of the software framework an

interpreter has been implemented using the Tcl Scripting Language (Tcl Developer Xchange).

The OpenFresco interpreter extends the Tcl interpreter by adding commands for modeling (using

nodes and elements) and for generating instances of site, setup, and control objects. It should be

understood that with appropriate realizations of ExperimentalElement, ExperimentalSite,

ExperimentalSetup and ExperimentalControl objects, portions of the overall hybrid structure can

be modeled and simulated numerically using the special capabilities of different finite element

analysis software packages.

3.5.1 Experimental Elements

Truss:
The experimental truss element has one axial degree of freedom, is defined by two nodes and can

be used in 1D-, 2D-, and 3D-problems.

Fig. 3.15 Experimental truss element (EETruss).

 54

The transformations of trial displacements and resisting forces from the 6 or 12 degrees

of freedom in the global coordinate system to the one axial degree of freedom in the cantilever

basic coordinate system and back are treated as linear geometric transformations and are

implemented in the EETruss class. As can be seen from Fig. 3.15, for the experimental truss

element, the degree of freedom at which the displacement is controlled (blue) and the one at

which the resisting force is acquired (red), are collocated.

Beam-Column:
Depending on the dimension of the problem (2D or 3D), the experimental beam-column element

formulation is based on the 3 or 6 collocated degrees of freedom of the cantilever basic system.

The necessary transformations of displacements, velocities, accelerations and forces are

implemented in the EEBeamColumn2d class and EEBeamColumn3d class for the 2D and 3D

cases, respectively.

Fig. 3.16 Experimental beam-column element (EEBeamColumn2d).

The experimental elements utilize the OpenSees CrdTransf class to transform the

response quantities from the global degrees of freedom to the simply supported basic element

degrees of freedom and back. The CrdTransf class is an abstract base class that has concrete

subclasses for linear, p-delta and corotational geometric transformations. This abstraction and

encapsulation of the frame element coordinate transformations facilitates the switching among

different linear and nonlinear coordinate transformations without affecting the implementations

 55

of the frame elements themselves. Because the simply supported basic system is not well suited

for experimental testing (due to the two rotational degrees of freedom), the response quantities

are transformed from the simply supported to the cantilever basic system and back. These

additional nonlinear transformations are directly implemented in the EEBeamColumn classes.

The nonlinear transformations of the trial displacements from basic system A (simply

supported) to basic system B (cantilever) are given by the following expression.

() ()
()

() () ()
,1 ,2 ,1

() ()
,2 ,2

() () ()
,3 ,2 ,3

cos

sin

B A A
b n b n b

B A
b n b

B A A
b b b

u L u L with L L u

u L u

u u u

= − = +

= −

= − +

 (3.1)

where nL is the length of the element in its deformed configuration. The nonlinear

transformations for the trial velocities and trial accelerations can be determined by taking

derivatives of Equation (3.1) with respect to time. The expressions can easily be evaluated with

any computer algebra system (CAS) such as Mathematica (Wolfram) or Maple (Maplesoft), but

get quite involved and are therefore not shown here.

Fig. 3.17 Nonlinear transformation from basic system A to B.

The inverse transformations of measured displacements from basic system B to basic

system A take the following form.

() ()2 2() () ()
,1 ,1 ,2

()
,2()

,2 ()
,1

() ()
,3 ,3

arctan

A B B
b n n b b

B
bA

b B
b

A B
b b

u L L with L L u u

u
u

L u

u u

α α

α

= − = + +

⎛ ⎞
= − = ⎜ ⎟⎜ ⎟+⎝ ⎠
= − +

 (3.2)

 56

where nL is the length of the element in its deformed configuration and α is the angle

from chord B to chord A. Finally, the measured forces are transformed from basic system B to

basic system A as follows.

() ()
()

() () ()
1 1 2

() () () () () ()
2 ,2 1 ,1 2 3

() ()
3 3

cos sinA B B

A B B B B B
b b

A B

q q q

q u q L u q q

q q

α α= +

= − + −

=

 (3.3)

where the chord rotation α is given by the same formula as in (3.2) with the measured

displacements replaced by the trial displacements to reduce the effect of experimental errors.

Fig. 3.18 Nonlinear transformations from basic system B to A.

Two-Node Link:
The experimental two-node link element is defined by two nodes and can be used in 1D-, 2D-,

and 3D-problems. This element can have 1 to 6 basic degrees of freedom that are uncoupled

from each other. It is important to note that the element does not consider geometry as inferred

from the given nodal coordinates, but utilizes the local orientation vectors, which are specified

by the user, to determine the directions of the springs. The element is ideal for testing plastic

hinges and other configurations that can be modeled by a range of uncoupled springs. The

transformations of trial displacements and resisting forces from the global degrees of freedom to

the 1 to 6 basic degrees of freedom and back are treated as linear geometric transformations and

are implemented in the EETwoNodeLink class. As can be seen from Fig. 3.19, the degrees of

freedom at which displacements are controlled (blue) and the ones at which resisting forces are

acquired (red), are collocated.

 57

Fig. 3.19 Experimental two-node link element (EETwoNodeLink).

Generic:
The generic experimental element is defined by any number of nodes and any number of the

global degrees of freedom at those nodes. The number of degrees of freedom for each node

obviously has to be between one and ndf (the maximal number of degrees of freedom of the

problem). As such the element can be utilized in 1D-, 2D,- and 3D-problems.

Fig. 3.20 Generic experimental element (EEGeneric).

Since the control and data-acquisition degrees of freedom are already in the global

coordinate system, the EEGeneric class does not perform any transformations of the response

quantities like the other experimental element subclasses. Instead it extracts the trial response

quantities at the appropriate degrees of freedom for control and assembles the measured response

 58

quantities from the acquired signals at the corresponding degrees of freedom. As can be seen

from Fig. 3.20, the degrees of freedom at which displacements are controlled (blue) and the ones

at which resisting forces are acquired (red), are collocated. This experimental element is useful

for representing any general specimen or larger subassemblies of an entire structure for which no

specific experimental elements exist, as long as actuators can be attached to such degrees of

freedom to control them correctly. Moreover, it can also be employed to represent multiple

experimental elements using a single element, as long as the individual elements do not require

specialized modeling techniques.

Inverted-V Brace:
The experimental inverted-V brace element is defined by three nodes and can be used in 2D-

problems.

Fig. 3.21 Experimental inverted-V brace element (EEInvertedVBrace2d).

It is assumed that the two braces are pinned at their ends, meaning that nodal rotations are

ignored and moments are set to zero. As can be seen from Fig. 3.21 the deformation of the

experimental element is controlled by the two translational degrees of freedom at the brace

intersection at node k. However, in order to correctly capture the buckling behavior of the

inverted-V brace subassembly, resisting forces are acquired by load cells at the two brace

supports at nodes i and j, and the forces at node k are then calculated from the element

equilibrium. In contrast with the previously discussed experimental elements, the control and

data-acquisition degrees of freedom are therefore no longer collocated for the inverted-V brace

element. The linear transformations of the trial displacements from the global degrees of freedom

to the basic degrees of freedom take the following form.

 59

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

0 0 1 0 0

0 0 0 1 0

bu T u with
x y y y y x y y
D D D DT

x x y x x x x y
D D D D

D x y y x

=
Δ Δ Δ Δ Δ Δ Δ Δ⎡ ⎤− −⎢ ⎥

= ⎢ ⎥
Δ Δ Δ Δ Δ Δ Δ Δ⎢ ⎥− − −⎢ ⎥⎣ ⎦

= Δ Δ − Δ Δ

 (3.4)

The transformations of the measured forces from the two load cells to the global degrees

of freedom account for cross-talk effects between the axial and shear force channels of the load

cells. This leads to the following expressions that are implemented in the EEInvertedVBrace2d

class.

1 1
1 1 2 2 1 2

1 1

2 2
4 4 5 5 4 5

2 2

7 1 4 8 2 5

1 1
2 2

1 1
2 2

x yp q q p q q
y x

x yp q q p q q
y x

p p p p p p

⎛ ⎞ ⎛ ⎞Δ Δ= + = +⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞Δ Δ= + = +⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

= − − = − −

 (3.5)

For a more in-depth description of the theory, the nonlinear transformations and several

application examples of this experimental element, the reader is referred to (Yang 2006).

3.5.2 Experimental Sites

Local:
As the name suggests, the LocalExpSite class is employed for local testing at a single laboratory.

This means that the computational analysis and the experimental testing take place at the same

location. Since there are no wide area network communications necessary in such a test, the

LocalExpSite class merely passes messages along and stores the trial and output data. Even

though the LocalExpSite can therefore be considered a dummy site, it is still required in order to

treat local and geographically distributed sites in a uniform manner.

Shadow and Actor:
The ShadowExpSite and ActorExpSite form the client-server architecture that is necessary to

geographically distribute computational and experimental sites. The middle-tier server on which

the OpenFresco core components are running is therefore further split up into a second and third

tier. Since this distribution of processes across a network is very similar to the distributed

 60

computing model in OpenSees, several abstract and concrete classes from such a model are

utilized to model the desired behavior.

As can be seen from Fig. 3.22 the ShadowExpSite, which represents the client side,

inherits its properties from the Shadow base class and the ActorExpSite, which acts as the server,

inherits its properties from the Actor base class. Both the Shadow and the Actor parent classes

are associated with the abstract Channel base class.

Shadow

ShadowExpSite

ActorExpSite

Actor

Channel

TCP_Socket
ExperimentalSite

Fig. 3.22 Class diagram of client-server architecture.

Such Channel object provides the communication methods between the client and the

server processes. The concrete subclasses of the Channel class are responsible for implementing

the different communication protocols. The TCP_SocketSSL subclass has been added to the

existing communication protocols that are available from OpenSees. This new class utilizes the

industry-tested, open-source OpenSSL technology to encrypt and decrypt data that are sent

across a TCP/IP network. Both the client and the server are being verified during the initial

handshake and thus require private keys and security certificates. Hence, the TCP_SocketSSL

class provides the means for secure geographically distributed testing, while communication

speeds are only slightly reduced by the encryption/decryption processes. In addition, to make

geographically distributed testing as efficient as possible, the ShadowExpSite and the

ActorExpSite assemble the request identification and all the data into a single message. This

significantly reduces the number of required network transactions per computational step, and

thus leads to improved performance.

3.5.3 Experimental Setups

No Transformation:
As the name suggests, the ESNoTransformation class is a dummy experimental setup that does

not perform any transformations from the basic element degrees of freedom to the actuator

 61

degrees of freedom. However, it allows for reordering degrees of freedom without transforming

them. This experimental setup should be employed if the experimental control and data-

acquisition systems directly perform all the necessary transformations, meaning that no

additional transformations need to be implemented in the experimental setup object.

One Actuator:
The ESOneActuator experimental setup can be utilized to control any one of the basic degrees of

freedom of an experimental element. The control and data-acquisition degrees of freedom of the

ESOneActuator object are collocated. Since this setup has only one actuator, none of the

response quantities are transformed.

Fig. 3.23 One actuator experimental setup (ESOneActuator).

Instead the ESOneActuator class extracts the trial response quantity at the user-specified

degree of freedom for control and assembles the measured response quantity from the acquired

signal at the corresponding degree of freedom. Fig. 3.23 shows an experimental beam-column

element where the actuator is set to control basic degree of freedom 2 of the element.

Two Actuators:
As can be seen from Fig. 3.24, the ESTwoActuators2d experimental setup configuration consists

of two parallel actuators that are connected by a rigid link to control the translational and

rotational degrees of freedom of an experimental element.

 62

Fig. 3.24 Two actuators experimental setup (ESTwoActuators2d).

The transformations of all the response quantities from the element degrees of freedom to

the actuator degrees of freedom and back can be implemented as simple linear geometric

transformations or as complex nonlinear geometric transformations that take large displacements

into account. To demonstrate the implementation process, the linear as well as nonlinear

transformations for the ESTwoActuators2d subclass are summarized next. All the other

implementations of the concrete experimental setup subclasses follow a similar approach. The

linear (3.6) and nonlinear (3.7) transformations of the trial displacements take the following

form.

 1 ,1

2 ,1 ,3

b

b b

d u
d u Lu

=
= −

 (3.6)

()() ()()

1 ,1

2 2

2 ,1 ,3 1 ,3 1sin cos

b

b b A b A

d u

d u L u L L u L L

=

= − + + − −
 (3.7)

where L is the length of the rigid link and 1AL is the initial length of the first actuator.

While the linear transformations for the trial velocities and trial accelerations have the same form

as (3.6), the nonlinear ones can be determined by taking the derivatives of Equation (3.7) with

respect to time. The expressions can easily be evaluated with any computer algebra system

(CAS) such as Mathematica (Wolfram) or Maple (Maplesoft), but get too involved and are

therefore not shown here. The linear and nonlinear, inverse transformations of the displacements

 63

measured by the data-acquisition system back to the basic displacements of the experimental

element are shown next.

()

,1 1

,2

,3 1 2

0
1

b

b

b

u d
u

u d d
L

=
=

= −

 (3.8)

() ()
()

,1 1

,2

2 22
1 2 1 11 1

,3 22
1 1

0

2
arctan arccos

2

b

b

A AA
b

A

u d
u

L d L L dL du
L L L L d

=
=

⎛ ⎞+ − − ++⎛ ⎞ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎝ ⎠ − + +⎝ ⎠

 (3.9)

Finally, the linear and nonlinear cases of the force transformations, from the data-

acquisition degrees of freedom back to the element basic degrees of freedom, are expressed as

follows.

1 1 2

2

3 2

0
q f f
q
q L f

= +
=
= −

 (3.10)

() ()()

() () () ()

,3
1 1 2 2 2

1 2

2

3 2 2 ,3 2 2 ,3

1 cos
cos arcsin

0

cos cos sin sin

b

A

b b

L u
q f f with

L d

q

q f L u f L u

θ θ

θ θ

⎛ ⎞−
⎜ ⎟= + =
⎜ + ⎟
⎝ ⎠

=

= − −

 (3.11)

For the displacements ,3bu and 2d , which are necessary for the nonlinear force

transformations in (3.11), it is possible to use either the trial values from (3.7) or the measured

values from (3.9). However, to reduce the effects of experimental errors it is often advantageous

to utilize the trial displacement values.

Three Actuators:
The ESThreeActuators2d experimental setup can be utilized to control the two translational and

the rotational degrees of freedom of an experimental element. As can be seen from Fig. 3.25, the

control and data-acquisition degrees of freedom of the ESThreeActuators2d object are

collocated. The setup consists of a rigid loading beam, which is connected to the specimen, one

 64

horizontal and two vertical, parallel actuators. The three actuators have lengths 1AL , 2AL , 3AL

and the two parts of the rigid loading beam have lengths 1L and 2L . As with the

ESTwoActuators2d subclass, the transformations of all the response quantities from the element

degrees of freedom to the actuator degrees of freedom and back have been implemented as

simple linear geometric transformations and as complex nonlinear geometric transformations that

take large displacements into account. However, the formulas are not shown here, since they get

quite involved.

The ESThreeActuatorsJntOff2d subclass, which is a very similar experimental setup that

accounts for the rigid joint offsets between the actuator clevis hinges and the loading beam, has

also been implemented and is available for testing.

Fig. 3.25 Three actuators experimental setup (ESThreeActuators2d).

Inverted-V Brace:
The ESInvertedVBrace2d experimental setup was specifically developed for the suspended

zipper-frame project (Yang 2006). This setup consists of the same loading configuration as the

ESThreeActuators2d setup, meaning that a rigid beam and three actuators are utilized to control

the two translational and the one rotational degrees of freedom. However, to capture the buckling

behavior of the two braces, forces are acquired by two VPM load cells at the brace supports

rather than at the actuator degrees of freedom. This means that in contrast to the previously

discussed experimental setups, the control and data-acquisition degrees of freedom are no longer

collocated here. The three actuators have lengths 1AL , 2AL , 3AL and the two parts of the rigid

loading beam have lengths 1L and 2L . As with the other experimental setup subclass, the

 65

transformations of all the response quantities from the element degrees of freedom to the actuator

degrees of freedom and back have been implemented as simple linear geometric transformations

and as complex nonlinear geometric transformations that take large displacements into account.

For a more in-depth description of such transformations the interested reader is referred to Yang

(2006).

Fig. 3.26 Inverted-V brace experimental setup (ESInvertedVBrace2d).

The ESInvertedVBraceJntOff2d subclass, which is a very similar experimental setup that

accounts for the rigid joint offsets between the actuator clevis hinges and the loading beam, has

also been implemented and is therefore available for testing.

Aggregator:
As explained before, the ESAggregator subclass is associated with its own ExperimentalSetup

parent class. This allows two or more concrete experimental setups to be aggregated into a single

experimental setup, which then interacts with the ExperimentalSite and ExperimentalControl

objects. In this manner complex experimental testing configurations can be represented by an

aggregation of smaller existing experimental setup objects, meaning that no new concrete

experimental setup subclasses have to be implemented for testing configurations that are

combinations of existing concrete experimental setup subclasses.

3.5.4 Experimental Controls

dSpace, xPC Target and SCRAMNet+:
Even though the dSpace, the xPC Target, and the SCRAMNet+ control objects use different

hardware and APIs to interface with the control and data-acquisition systems, they are all based

 66

on the three-loop architecture that is described in detail in Chapter 5. This means that a predictor-

corrector algorithm is running on a digital signal processor, which is placed between the machine

that is running the analysis and the one that is controlling the actuators.

Fig. 3.27 dSpace experimental control (ECdSpace).

The ECdSpace subclass is using the dSpace CLIB API (dSpace Inc.) to access the dSpace

digital signal processors. These C libraries provide communication means between a PC and a

real-time processor. The API supports the dSpace DS1103 and DS1104 PowerPC real-time

processors, which are single PCI hardware boards for PCs. As can be seen from Fig. 3.27, the

ECdSpace experimental control object is utilized to communicate with the predictor-corrector

algorithm that is executing on the dSpace DSP and generating real-time command signals for the

control system. Since the dSpace controller board is directly connected to the analysis machine

through a PCI bus, the digital signals (represented by thick lines) are transmitted internally

(memory sharing, interrupt lines, etc.). The digital control signals generated by the predictor-

corrector algorithm running on the DSP are then converted to analog signals (represented by thin

lines) before they are transmitted to the control system.

The xPC Target real-time hardware (Mathworks) is a digital signal processor similar to

the dSpace controller board and therefore also provides the functionality to execute the predictor-

corrector algorithms in a real-time environment. The concrete ECxPCtarget subclass is using the

xPC Target API to interact with an application, which is executing in real time on the target

machine. As can be seen from Fig. 3.28, TCP/IP network sockets are used to connect the analysis

machine (host) with the digital signal processor (target). On the other hand, the communication

 67

between the DSP and the controller is achieved through SCRAMNet+, an ultra-low-latency,

replicated, noncoherent, Shared Common RAM Network. In such a network, data written to

memory by a host are sent across fiber optic cables to all the other nodes on the network,

meaning that it is almost instantaneously replicated in the memory of all the other machines. In

Fig. 3.28 the thick lines again represent digital signals and the thin ones analog.

Fig. 3.28 xPC Target experimental control (ECxPCtarget).

For rapid testing with the ECxPCtarget experimental control interface, the TCP/IP

connection between the host and the target (which is used by the xPC Target API) might become

a bottleneck, thus limiting execution speeds. To circumvent this problem, the concrete

ECSCRAMNet experimental control subclass has been implemented.

Fig. 3.29 SCRAMNet+ experimental control (ECSCRAMNet).

 68

As can be seen from Fig. 3.29, this interface replaces the slower TCP/IP connection

between the analysis machine and the xPC Target digital signal processor with an ultra-low-

latency SCRAMNet+ connection (Systran) equivalent to the one between the DSP and the

controller. Once again the thick lines represent digital signals and the thin lines represent analog

signals.

MTS-CSI and LabVIEW:
The MTS-CSI and LabVIEW experimental control objects are capable of interfacing with MTS

hardware (MTS) and the NEES LabVIEW plugin (Hubbard et al. 2004). What these two

experimental control objects have in common is that they are both using the abstraction of a

control point to define the directions and response quantities that are being controlled and

acquired. A control point represents a logical container of one or more directions (degrees of

freedom) for sending command signals to a controller or acquiring feedback signals from a data-

acquisition system. Thus, control points represent logical groupings of output control channels or

input data-acquisition channels (MTS).

The concrete ECMtsCsi subclass is using the newly developed MTS Computer

Simulation Interface (CSI) (MTS) to connect to MTS FlexTest controllers with the MTS 793

software. Currently this hardware configuration does not include a predictor-corrector algorithm.

This means that continuous testing is not yet possible, since the controller has to fall back to a

hold and ramp approach to generate actuator command signals. However, the incorporation of

predictor-corrector algorithms within the FlexTest environment has a high priority in the next

development cycle.

Fig. 3.30 MTS CSI experimental control (ECMtsCsi).

OpenFresco

 69

The MTS Computer Simulation Interface and Configurator (CSIC) is an application that

provides a high-level programming interface for users to connect their test application to an MTS

controller and execute common structural testing commands and data-acquisition operations.

Users can take advantage of the simplified graphical user interface (GUI) of the Configurator to

create their test application and define control points. Thus, they can focus on the structural

analysis rather than learning the detailed, low-level MTS 793 system programming libraries to

interface with their MTS controller (MTS).

The ECLabVIEW subclass is employing a single persistent TCP/IP connection to

communicate with a LabVIEW controller that is utilizing the NEES LabVIEW NTCP plug-in

(Hubbard et al. 2004). The message exchange between the ECLabVIEW experimental control

object and the LabVIEW plugin is based on a simple ASCII format that conforms to the

LabVIEW plugin specifications. The LabVIEW plugin requires that control commands and data-

acquisition requests be expressed in terms of control points. The LabVIEW subclass is therefore

associated with the ExperimentalCP class, which defines control points for control and data

acquisition (see Fig. 3.6).

Uniaxial Materials and Domain Simulations:
The concrete subclasses of the ECSimulation parent class can be used to test the computational

model, experimental setup, and network communication to ensure that all non-experimental

aspects of a hybrid simulation are functioning properly before conducting an actual experiment.

The ECSimUniaxialMaterials object can be used to simulate a specimen with 1 to n

uncoupled degrees of freedom using 1 to n OpenSees uniaxial material models. Since the

material models simulate the forces that the 1 to n actuator load cells would measure for a given

set of actuator displacements, the units of the specified material values are force and

displacement and not stress and strain.

The ECSimDomain subclass makes available in OpenFresco the entire OpenSees

domain, which includes the node, element, section, and material libraries. This makes it possible

to simulate an actual experimental specimen using OpenSees. The ECSimDomain subclass is

associated with the ExperimentalCP class, which defines the control points for control and data

acquisition (see Fig. 3.6).

 70

3.6 OPENSEES AS THE COMPUTATIONAL FRAMEWORK

The OpenFresco experimental software framework has been developed so that it can interact

with any finite element code that provides an application programming interface (API) and is not

a black box. As described in detail in Section 3.3, this flexibility is achieved by employing a

multi-tier software architecture that wraps around the OpenFresco core components. However, if

OpenSees is utilized as the computational framework, the OpenFresco architecture can

significantly be simplified because both software frameworks have the following three things in

common: (1) they are both based on the object-oriented software design methodology, (2) they

both use the open-source development methodology, and (3) they are both implemented in the

C++ programming language. Because the simplified architecture eliminates the network

communications between OpenSees (client) and the middle-tier (or application) server, improved

performance is attained as compared to the full-blown multi-tier architecture.

Element

Domain

MP_Constraint Node SP_Constraint

ExperimentalElement

LoadPattern

BeamColumn

ModelBuilder Analysis

LABORATORY
CONTROLLERS

AND DAQS
OpenFresco

OPENSEES

Fig. 3.31 OpenSees as the computational framework.

As can be seen from Fig. 3.31 the abstract ExperimentalElement class can directly be

embedded into OpenSees, since it is derived from the Element base class. The rest of the

OpenFresco architecture remains unchanged, meaning that the association between the

ExperimentalElement class and the ExperimentalSite class provides the connection to the other

objects. Since in this architecture the experimental elements act as regular elements within

OpenSees, they can be used along computational elements without changing OpenSees. At

runtime OpenSees dynamically links with OpenFresco and acquires direct access to all the

OpenFresco commands without the need for any network communications between the two. The

 71

two software configurations for local and geographically distributed testing, utilizing OpenSees

as the computational framework, are shown in Fig. 3.32.

OpenSees

ExpElement

ExperimentalSetup

ExperimentalControl

LocalExpSite

Control System
in Laboratory

Backend
Server

Client

OpenSees

ExpElement

ShadowExpSite

ExperimentalControl

ExperimentalSetup

ActorExpSite

ExperimentalSetup

TCP/IP (Channel)

Client

Control System
in Laboratory

Backend
Server

Middle Tier
Server 2

Fig. 3.32 OpenSee-OpenFresco configurations for local and network deployments.

3.7 SUMMARY

The software framework for experimental testing (OpenFresco), which has been presented in this

chapter, supports a wide range of computational software, structural testing methods, specimen

types, testing configurations, control and data-acquisition systems and communication protocols.

The development of such software framework for hybrid simulation is based on the structural

analysis approach, in which a hybrid simulation can be viewed as a conventional finite element

analysis where physical models of some portions of the structure are embedded in the numerical

model. Object-oriented methodologies and a rigorous systems analysis of the operations

performed during hybrid simulations were used to determine the fundamental building blocks of

the software framework. In order to support any finite element analysis software as the

computational driver, a multi-tier client/server architecture was wrapped around those

fundamental OpenFresco building blocks. This design approach, which guarantees that the

 72

software framework is environment independent, robust, transparent, scalable, and easily

extensible, has been explained in detail. The resulting class diagram, the interfaces for the main

base classes and the sequence diagrams have been summarized thereafter. The currently

available OpenFresco templates (http://openfresco.neesforge.nees.org), including communication

methods and protocols for distributed computation and testing, were discussed next. Finally, the

chapter explained how OpenSees can be used as the computational framework and the

advantages attained by doing so. The integration methods that are required by the computational

drivers to solve the equations of motion and their applicability to hybrid simulation are presented

in the next chapter.

4 Integration Methods for Hybrid Simulation

4.1 INTRODUCTION

The linear and nonlinear equations of motion that arise in structural dynamics problems are

generally solved through the application of numerical time-stepping integration algorithms. Over

the years, a vast number of methods have been developed to numerically solve problems in

structural dynamics and other engineering disciplines. However, many of these methods are not

particularly well suited to advance the solution during a hybrid simulation test because they were

specifically developed for purely analytical problems. Thus, one research area in hybrid

simulation has been focusing on the development of specialized direct integration methods that

are better suited to obtain reliable solutions when analytical and experimental portions of a

structure are mixed and interacting during an analysis.

After a brief introduction to the spatial and time discretization of the structural dynamics

problem, this chapter first presents special integration scheme properties required for the reliable,

accurate, and fast execution of hybrid simulations. The advantages and disadvantages of explicit,

implicit, noniterative, and iterative methods and their application to different problem types are

discussed as well. Several existing methods are then summarized including their derivation,

accuracy, stability, and implementation. Finally, the chapter presents novel modifications

introduced to some of the existing methods as well as the application of several alternative time-

stepping integration algorithms, such as the classic Runge-Kutta methods, to hybrid simulation.

It is important to notice that the time-stepping integration methods for hybrid simulation are not

part of the software framework that has been presented in the previous chapter, but need to be

provided by or implemented in the finite element analysis software.

 74

4.2 STRUCTURAL DYNAMICS PROBLEM

4.2.1 Discretization in Space

The derivation of the equations of motion at the discrete degrees of freedom of a structure is

initiated by writing out the equilibrium equations for an infinitesimal body, including inertial

forces. This leads to the strong form of equilibrium for the structural dynamics problem.

() () ()
() ()

() ()
() ()
() ()

, ,

0

, 0

, , ,

, ,

, ,

,0

,0

i tt i ji j i i i i

i i bi i i d

j ji i i i i t

i i i i

i t i i i

u x t x t b x t for x V

u x t u x t for x V

n x t t x t for x V

u x u x

u x u x

ρ σ

σ

= + ∈

= ∈∂

= ∈∂

=

= &

 (4.1)

where ρ is the mass density of the material, iu is the displacement vector, jiσ is the

stress tensor and ib are applied body forces per unit volume. Since the differential Equation (4.1)

forms a boundary and initial value problem, the remaining four equations define the prescribed

displacements biu and tractions it on the boundary of the domain, as well as the initial

displacements 0iu and initial velocities 0iu& of the problem.

The next step is to construct the weak form of the equilibrium equations, which in

mechanics is also called the principle of virtual displacements or virtual energy. To obtain such

form the differential Equation (4.1) is first multiplied by a virtual displacement function ()i iu xδ ,

also called variation, and then integrated over the entire domain.

 () () () () ()(), ,, , ,i i i tt i i i ji j i i i
V V

u x u x t dV u x x t b x t dVδ ρ δ σ⋅ = ⋅ +∫ ∫ (4.2)

Gauss’ divergence theorem is utilized to integrate Equation (4.2) and incorporate the

boundary conditions. After simplification and substitution of the boundary value equations, the

weak form of the structural dynamics problem is obtained.

() () () ()

()

()

0

0

0

0

i i ij ji i i i i
V V V V

i i i i
V V

i i i i
V V

u u t dV t dV u b t dV u t t dS

u u dV u u dV

u u dV u u dV

δ ρ δε σ δ δ

δ ρ δ ρ

δ ρ δ ρ

∂

⋅ + ⋅ = ⋅ + ⋅

⋅ = ⋅

⋅ = ⋅

∫ ∫ ∫ ∫

∫ ∫

∫ ∫

&&

& &



 (4.3)

 75

For simplicity, the displacement field argument ix on which all functions depend on is

suppressed from the equations above. In Equation (4.3) the two left-hand side terms represent the

inertial and the resisting forces, which are in equilibrium with the applied body and surface loads

on the right-hand side. The remaining two equations correspond to the weak form of the two

initial conditions.

In the finite element approach to structural dynamics, the domain of the problem is

subsequently discretized in space utilizing elements that are connected by nodes. Thus, the

displacement field of the domain needs to be discretized as well, which is achieved by

approximating it in terms of element shape functions N and the discrete displacements at the

nodes of the elements.

() () ()

() ()
, ,

,
el el el

el el

= = =

= =

u x Nu x Bu u x Nu

u x N u x B u

&& &&ε

δ δ δε δ
 (4.4)

where N is a matrix of shape functions and B is the strain-displacement matrix. The

virtual displacement field, which is required in the weak form of the problem, is generally

selected to have the same form as the approximate trial displacement field. In the finite element

literature, this approach is known as the Galerkin formulation. By combining Equation (4.4) for

the trial and virtual displacement fields with the weak form of equilibrium in Equation (4.3) and

recognizing that additional concentrated forces and loads can act at the nodes of the structure, the

spatially discretized equations of motion are obtained.

() () () ()() () ()
()
()

, ,,

0

0

el el el el el elel el el
t t t t t t+ + = −

=

=

nd r 0

0

0

M U m u p u u P p

U U

U U

A A A&& && &

& &

 (4.5)

where the element mass matrices, the element resisting force vectors and the element load

vectors are given by the following expressions.

 ()

,

,

,

el

el

el t el el el

T
el

V

T
el

V

T T T T
el

V V V V

dV

dV

dV dS dV dV

ρ

∂

=

=

= − − − +

∫

∫

∫ ∫ ∫ ∫

r

0 0 0

m N N

p B

p N b N t B D B

σ ε

ε σ

 (4.6)

 76

In the above Equations (4.5) and (4.6), ndM U&& are the concentrated inertial forces due to

the nodal masses, A is the direct assembly operator, el elm u&& are the element inertial force

contributions, ,elrp are the element resisting forces due to internal stresses, P are the externally

applied nodal loads and ,el0p are element forces due to externally applied loads like body forces,

boundary tractions, initial strains and initial stresses. Formula (4.5) is also referred to as the

semi-discrete equation of motion, since the structural dynamics problem has been discretized in

space by the finite element approach but is still continuous in time.

The spatially discretized differential equations can further be simplified by replacing the

element assembly operations through global matrices and vectors at the structural degrees of

freedom containing all the element contributions. This leads to the general form of the equations

of motion at the structural degrees of freedom.

() () ()() () ()
()
()

,

0

0

t t t t t+ = −

=

=

r 0

0

0

M U P U U P P

U U

U U

&& &

& &

 (4.7)

where the mass matrix M is assembled from the nodal and element mass matrices, U&& is

the acceleration vector at the structural degrees of freedom, rP are the assembled element

resisting forces (which depend on the structural displacements and velocities), P are the

externally applied nodal loads and 0P are the assembled element loads. If the applied loads are

entirely due to ground accelerations, the nodal load vector P on the right-hand side of Equation

(4.7) can be replaced by the following expression.

 () ()gt t= −P M B U&& (4.8)

where M is the mass matrix, B is the ground acceleration transfer matrix and gU&& are

the specified support accelerations.

4.2.2 Discretization in Time

After the spatial discretization of the differential equations by the finite element method, the

system of second-order ordinary differential equations is next discretized in time. An incremental

approach is used to solve the equations at successive time steps. Thus, dynamic equilibrium is

satisfied at each time step 1i it t t+ = + Δ . The time increments tΔ are generally constant, since the

applied forces 1i+P obtained from the ground acceleration records are also given at constant time

 77

intervals. This assumption leads to constant time-step integration algorithms in contrast to

variable time-step integration algorithms where the step size is adaptively adjusted depending on

the current accuracy of the solution.

()1 1 1 1 , 1

0

0

,i i i i i

i

i

+ + + + +

=

=

+ = −

=

=

r 0

0

0

M U P U U P P

U U

U U

&& &

& &

 (4.9)

For many problems in structural dynamics, it is oftentimes assumed that the resisting

forces rP depend linearly on the velocity. For slow hybrid simulations, this is a valid

assumption, and the equations of motion can be written in the following form.

()1 1 1 1 , 1

0

0

i i i i i

i

i

+ + + + +

=

=

+ + = −
=

=

r 0

0

0

M U C U P U P P
U U

U U

&& &

& &

 (4.10)

where C is the viscous damping matrix and the resisting forces rP are now dependent

only on the structural displacements. On the other hand, for real-time hybrid simulations the

experimental resisting forces generally contain damping and inertial force contributions from the

specimen. Hence, they depend not only on displacements, but also on velocities and

accelerations (also see Chapter 2). In this case, the equations of motion take the following form.

()1 1 1 1 1 1 , 1

0

0

, ,i i i i i i i

i

i

+ + + + + + +

=

=

+ + = −

=

=

r 0

0

0

M U CU P U U U P P

U U

U U

&& & & &&

& &

 (4.11)

It should be noticed that in real-time hybrid simulations, the manner in which the

calculated command displacements are applied by the control system plays the central role in

guaranteeing that consistent velocities and accelerations are obtained from the displacement

commands.

Given the numerical solution iU at time it and satisfying Equation (4.9), (4.10), or

(4.11), the task is to advance such solution in time by finding displacement increments ΔU such

that Equation (4.9), (4.10), or (4.11) is also in equilibrium for 1i i+ = + ΔU U U at time it t+ Δ . To

find these numerical solutions, different strategies can be employed. Most often, the system of

second-order ordinary differential equations is directly solved by utilizing integration schemes,

 78

which are based on expressing the displacements 1i+U and velocities 1i+U& at the new time step

it t+ Δ in terms of the response quantities at the new time step and k previous time steps.

()
()

1 1 1 1 1 1 1

1 1 1 1 1 1 1

, , , , , , , , ,

, , , , , , , , ,

i i i i i i i i k i k i k

i i i i i i i i k i k i k

f

f

+ + + + − + − + − +

+ + + + − + − + − +

=

=

U U U U U U U U U U

U U U U U U U U U U

& && & && & &&K

& & && & && & &&K
 (4.12)

These schemes are called direct integration methods. For purely analytical structural

dynamics problems, the most widely utilized family of solution schemes in the class of direct

integration methods is the one developed by Newmark (1959). For this method, the assumed

relations among the response quantities (4.12) are finite difference formulas and take the

following form.

()()

()()

2

1 1

1 1

1 2 2
2

1

i i i i i

i i i i

tt

t

β β

γ γ

+ +

+ +

Δ= + Δ + − +

= + Δ − +

U U U U U

U U U U

& && &&

& & && &&
 (4.13)

where β and γ determine the variation of the accelerations over a time step. It can be

seen that the Newmark method is a one-step method, since only responses at 1k = previous time

steps are required. However, in order to apply the Newmark method to hybrid simulation

problems, several modifications have to be made to the scheme, which are described in Section

4.4.3.

Another strategy for solving the semi-discrete equation of motion in (4.7) is to first

convert the second-order differential equation into a system of first-order ordinary differential

equations. This transformation is also an essential step in the convergence analysis of direct

integration methods and leads to the following system.

() ()

()
() () () ()()()

()

1,
,

0

t
t t

t t t t−

⎧ ⎫⎪ ⎪= = ⎨ ⎬− −⎪ ⎪⎩ ⎭
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

0 r

0

0

U
y f y

M P P P U U

U
y

U

&
&

&

&

 (4.14)

where () (){ },
T

t t=y U U& is a stacked vector containing the structural displacements and

velocities. Once the structural dynamics problem is successfully transformed into a first-order

initial-value problem, there are a vast number of methods from the field of numerical analysis

available to solve such system of first-order differential equations. The easiest method to solve

this system is the explicit Euler method that is shown next.

 79

()()1

,1

1

,
i

i i i ii i

i

t −
+

=

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎪ ⎪= + Δ⎨ ⎬ ⎨ ⎬ ⎨ ⎬− −⎩ ⎭ ⎩ ⎭ ⎪ ⎪⎩ ⎭
⎧ ⎫⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

0 r

0

0

UU U
U U M P P P U U

UU
UU

&

& & &

&&

 (4.15)

However, the explicit Euler method is only order 1p = accurate and therefore should not

be used for analyses. The most widely used class of such solution schemes is the family of

Runge-Kutta methods. Runge-Kutta solution schemes belong to the class of one-step methods,

which require only the current solution state at time it in order to calculate the new solution at

it t+ Δ . They do not rely on past solution states and are essentially always stable. Multi-step

methods, in contrast to one-step methods, form the new solution at time it t+ Δ in terms of not

only the current solution state but also the k-1 previous solution states. The applicability of

Runge-Kutta methods to hybrid simulation is investigated in Section 4.5.

4.3 INTEGRATOR PROPERTIES

During the execution of a hybrid simulation test, the previously derived equations of motion

need to be solved similarly to a conventional analytical analysis of a structure. However, since

the hybrid model is an aggregation of numerical and experimental portions of a structure, several

of the terms that form the equations of motion are assembled from not only analytical elements

but also experimental ones. Because experimental elements represent physical specimens in a

laboratory, they behave differently than numerical elements and are not always able to execute

certain actions that can be performed by analytical elements. This fact leads to a range of special

requirements that need to be provided by the integration methods in order to produce reliable and

accurate results in a hybrid simulation. In order to effectively discuss these requirements and

possible solutions, several general properties of integration schemes are reviewed first. The

general properties also provide the basis for grouping the integration methods into different

categories.

4.3.1 Explicit vs. Implicit

Besides categorizing integration methods by the number of solution states that are required to

advance the analysis in time (one-step, two-step, multi-step), they can also be grouped into

 80

explicit methods versus implicit methods. In this case, the grouping criterion is the new

solution’s dependence on itself. For an explicit algorithm, the new solution at time it t+ Δ can

entirely be expressed by known terms such as the current solution state at time it and k-1

previous solution states.

 ()1 1 1 1, , , , , ,i i i i i k i k i kf+ − + − + − +=U U U U U U U& && & &&K (4.16)

Explicit integration methods are usually conditionally stable, meaning that the time-step

size has to be smaller than a critical value to yield a stable solution. This critical value is called

the stability limit, which is an important property of an algorithm and depends on the integration

method. For explicit methods, the new solution at the end of a time step can often be determined

in a single calculation step without the knowledge of the tangent stiffness matrix. The advantages

of such methods are that they are computationally very efficient, easy to implement, and fast in

their execution. However, because they are conditionally stable they are not well suited for stiff

problems and cannot be used for infinitely stiff problems. For structures with very high natural

frequencies, the integration time step would have to be so small to satisfy the stability condition,

that the application of explicit methods to hybrid simulation becomes impractical.

For an implicit algorithm, the new solution at time it t+ Δ not only depends on the known

terms at the current and previous time steps, but also on itself. Because of this, implicit

algorithms contain algebraic formulas that need to be solved in order to determine the new

solution at the end of a time step.

 ()1 1 1 1 1 1 1, , , , , , , , ,i i i i i i i i k i k i kf+ + + + − + − + − +=U U U U U U U U U U& && & && & &&K (4.17)

Many implicit integration methods are generally unconditionally stable, making them

ideal candidates for stiff and infinitely stiff problems. It also means that only the accuracy of the

algorithm needs to be considered when determining the time-step size, since the method is stable

for any step size. Usually this permits the selection of larger analysis time steps as compared to

explicit methods. Implicit methods are thus better suited for large problems with many degrees

of freedom or for infinitely stiff problems, which arise when structural degrees of freedom

without mass are present. However, they are computationally more demanding because they

require iterative solution schemes, and they can introduce spurious loading cycles on the physical

parts of the hybrid model.

 81

4.3.2 Iterative vs. Noniterative

Another important aspect of integration methods is how many function calls they need to make

per time step to determine the new solution at it t+ Δ . For the classic direct integration methods

in structural dynamics, a function call is considered to be the determination of the effective

forces effP for given displacements, velocities and accelerations.

 ()1 , 1 1 1 1i i i i i+ + + + += − − − −eff 0 rP P P P U CU M U& && (4.18)

For Runge-Kutta and multi-step methods, a function call is considered to be the

determination of the derivative f in the first-order ordinary differential equation.

 ()()
1

1
1 , 1 1 1,

i

i i i i

+

−
+ + + +

⎧ ⎫⎪ ⎪= = ⎨ ⎬− −⎪ ⎪⎩ ⎭0 r

U
y f

M P P P U U

&
&

&
 (4.19)

The classic explicit integration methods, which directly solve the second-order

differential equations, are noniterative methods because they require only one function call per

analysis time step. Explicit Runge-Kutta methods require the same number of function calls as

they have stages. Implicit algorithms, on the other hand, contain algebraic formulas that need to

be solved in order to determine the new solution at the end of a time step. One approach to solve

such implicit equations is to predict a solution using an explicit expression and then subsequently

correct it 1 to m-times utilizing the implicit expression. According to the underlying idea, these

algorithms are called predictor-multicorrector integration methods. They require a total of m

function calls per analysis time step to advance the solution. A second approach to solving the

nonlinear implicit equations is to utilize the well-known Newton-Raphson algorithm to find the

solution iteratively. The number of function calls is thus directly related to the number of

iterations performed per analysis time step. The main disadvantage of implicit methods is that

they can be computationally very demanding and far more difficult to implement than explicit

methods. For example, in the second approach where the Newton-Raphson algorithm is

deployed, each iteration step requires the solution of a system of linear algebraic equations that

involves the Jacobian. The formation of the Jacobian and the solution of a large linear system of

equations are computationally expensive operations. Algorithms which only update the Jacobian

at the beginning of a time step and keep it constant during iterations or that use the initial

Jacobian throughout the whole analysis can reduce computational cost. However, they require

generally more iterations because quadratic convergence is lost. Another option that can

 82

significantly reduce computational cost is to use a linearly implicit algorithm, which is

equivalent to performing one Newton-Raphson iteration only. In the class of Runge-Kutta

methods the linearly implicit algorithms are known as Rosenbrock methods. For stiff problems,

Rosenbrock methods are the easiest to implement and are thus very popular. The Jacobian that is

required for the single Newton-Raphson iteration can again be updated for every time-step or can

be determined only once and kept constant throughout the analysis.

4.3.3 Special Requirements

Special requirements, which need to be provided by the integration methods, are discussed in this

section. Most of these requirements are essential for an integration method to produce accurate

and reliable results in a hybrid simulation.

1. The integration method should be of order 2p ≥ accurate. This requirement effectively

reduces the accumulation of numerical errors besides the experimental errors, intrinsic in

experimental testing methods. The most accurate (smallest error constant) second-order

method is the trapezoidal rule, which can be shown to be equivalent with the average

acceleration Newmark method.

2. In hybrid simulation, parts of the resisting force vector rP are assembled from forces

measured in real time in the laboratory. This leads to the requirement that for each

integration step the method should make as few function calls as possible, since every

function call triggers the acquisition of the resisting forces from the laboratory. The

process of acquiring the nonlinear resisting forces from the test structure means that the

calculated displacements need to be applied to the specimen by means of a transfer

system and the corresponding forces need to be measured with load cells. This process

can be time consuming and introduce experimental errors into the numerical integration

algorithm.

3. The mass matrix M in the equations of motion (4.10) is generally singular, since mass

moments of inertia at rotational degrees of freedom are often ignored during modeling.

This makes the second-order differential equation infinitely stiff. Equations of motion

where M is singular are also called differential algebraic equations and they require

unconditionally stable, fully implicit integration methods. In these cases explicit

integration methods are either unstable or cannot be applied at all, since the inverse of the

 83

mass matrix M would be required. For many methods, this requirement conflicts with

the previous one, which is to make as few function calls per integration time step as

possible.

4. For implicit and linearly implicit integration methods, the parts of the Jacobian that are

contributed by the stiffness matrices elk of the experimental elements are required to

remain constant. This is because it is very difficult to obtain an accurate and reliable

tangent stiffness matrix of an experimental element from the measurements at the

controlled degrees of freedom. Only a few algorithms for estimating a tangent stiffness

matrix from experimental measurements have been developed so far, and their

application and possible benefits to implicit integration methods have not been

demonstrated yet. However, one of these algorithms called the minimal update approach,

developed by Igarashi et al. (1993), seems very promising for the problem at hand. The

algorithm is based on the BFGS update formula. Its application to implicit integration

methods should be further investigated.

5. The integration method should provide some adjustable amount of algorithmic

(numerical) energy dissipation to suppress the excitation of higher modes due to

experimental errors contaminating the numerical solutions. The propagation of

experimental and numerical errors has a more pronounced effect in the higher modes

because the cumulative errors increase with the product of the natural frequency and the

integration time step (Shing and Mahin 1983). Thus, it is generally viewed as desirable

and often considered necessary to have some form of algorithmic damping present to

remove the participation of the high-frequency modal components (Hughes 2000). The

numerical energy dissipation should damp out the spurious higher-mode participations

while maintaining the minimal second-order accuracy of the integration method and not

affecting the participation of the lower modes to the solution. Because for second-order

integrators the trapezoidal method is the most accurate, any modifications introduced to

add algorithmic damping lower the accuracy. Thus, it is important to select integration

methods for which the loss of accuracy due to the additional numerical energy dissipation

is minimized.

6. Displacement increments calculated by iterative procedures are required to be strictly

increasing or strictly decreasing within an integration time step. While this requirement is

 84

not necessary for analytical elements, it is essential for experimental elements that

represent physical specimens in a laboratory. Without this restriction, the displacement

commands during the iteration process can overshoot the converged displacements. This

unintended loading-unloading cycle does not represent the true structural behavior, but is

an artifact generated by the numerical algorithm. Contrary to the numerical portions of

the hybrid model, for which the response depends on only the committed displacements

at convergence, the response of the physical portions is truly path dependent and

consequently affected by all iterations.

7. Iterative integration methods should produce displacement increments that are as uniform

as possible. This requirement guarantees that the transfer system, which imposes each

displacement increment over a typically constant time interval, generates a continuous

movement of the test specimen with a uniform speed. It is important to recognize that if

the classic Newton-Raphson method is utilized to solve the implicit equations,

displacement increments are not uniform but decrease rapidly during iteration. This is

due to the quadratic convergence of the algorithm. As long as the control system is

allotted the same time interval to impose such displacement increments, this produces

velocity and thus force oscillations in the transfer system. These force oscillations feed

back into the integration method and can therefore contaminate the solution or in the

worst-case cause instability of the algorithm. As such, it is imperative to generate

continuous, uniform command signals to avoid force oscillations at all cost.

8. To be real-time compatible an integration scheme needs to execute a constant number of

function calls, which produce strictly increasing (respectively decreasing) and uniform

displacement increments within each integration time step. This requirement is thus a

combination of several of the above requirements.

4.4 DIRECT INTEGRATION METHODS

In direct integration the equations of motion (4.10) are integrated using a numerical step-by-step

procedure, the term “direct” meaning that prior to the numerical integration, no transformation of

the equations into a different form is carried out (Bathe 1996). The most commonly utilized

explicit schemes, including their stability and accuracy, are summarized first. Afterwards, the

derivation, implementation, stability, and accuracy of several implicit direct integration methods

 85

are discussed. All schemes are investigated in light of the special hybrid simulation requirements

laid out previously.

4.4.1 Explicit Newmark Method (ENM)

The explicit Newmark scheme, which was proposed for hybrid simulation the first time by

Mahin and Williams (1980), is the easiest and most straightforward to implement among the

class of explicit direct integration methods. It is defined by the temporally discrete equations of

motion (4.10) and Newmark’s finite difference formulae for displacements and velocities in

Equation (4.13). To obtain the explicit form of the algorithm, the finite difference formulae are

written in a predictor-corrector form and the β–parameter is set to zero.

()

()()

1 1 1 1 , 1

2

1 1

1 1 1 1

2
1

i i i i i

i i i i i

i i i i i i

tt

t tγ γ γ

+ + + + +

+ +

+ + + +

+ + = −

Δ= + Δ + =

= + Δ − + = + Δ

r 0M U C U P U P P

U U U U U

U U U U U U

&& &

& && %

&& & && && % &&

 (4.20)

Substitution of the displacement and velocity expressions into (4.20) yields the following

system of linear equations, which needs to be solved for the accelerations 1i+U&& at the new time

step it t+ Δ .

 1i+ =eff effM U P&& (4.21)

The effective mass matrix is a combination of the mass and damping matrices with the

constants 2c t γ= Δ and 3 1c = . The effective force vector (or unbalanced load vector) is

evaluated at the predictor displacements and velocities.

 ()
3 2

1 , 1 1 1i i i i

c c

+ + + +

= +

= − − −

eff

eff 0 r

M M C

P P P P U CU&% %
 (4.22)

If the effective mass matrix is diagonal, the system of linear equations simplifies to n

uncoupled equations that can easily be solved for the new accelerations and that reduce the

computational cost significantly. The effective mass matrix becomes diagonal if lumped masses

are being used for modeling purposes and no damping or mass-proportional viscous damping is

present. Once Equation (4.21) has been solved for the accelerations at it t+ Δ , the remaining

 86

response quantities such as displacements and velocities are updated. Since the new

displacements are equal to the predictor displacements, only the velocities need to be updated.

 1 1

1 1 2 1

i i

i i ic
+ +

+ + +

=

= +

U U

U U U

%

&& % &&
 (4.23)

Repetition of this procedure for the total number of N time steps yields the sought

solution. The explicit Newmark integration method can be summarized as pseudo-code as shown

in Fig. 4.1.

()

()
()

()

0 0 0

3 2

2

1

1

1 , 1 1 1

1 1

1 1

1 1

:
, ,

:
0, ,

2
1

i i i i

i i i

i i i i

i i

i i

i i

Initialize

c c (factorized storage)
Analyze

for i i N i

tt

t

solve

γ

+

+

+ + + +

+ +

+ +

+ +

= +

= < + +

Δ= + Δ +

= + Δ −

= − − −

= =

=

= +

eff

eff 0 r

eff eff

U U U
M M C

U U U U

U U U

P P P P U CU

U M U P

U U

U U

& &&

% & &&

&% & &&

&% %

&& &&

%

&& %
2 1ic

end
+U&&

Fig. 4.1 Explicit Newmark (ENM) method.

It can be shown that the explicit Newmark method with 0.5γ = yields the same solutions

as the well-known central-difference method. However, even though the two methods are

numerically equivalent, the explicit Newmark method has several important advantages over the

central-difference method. First, it is a self-starting method, meaning that it does not require any

response quantities before 0t = . Second, velocities and accelerations are directly obtained as

part of the solution algorithm and do not need to be calculated separately. Finally and most

important, it has been shown by Shing and Mahin (1983) that the explicit Newmark method

possesses more favorable error-propagation characteristics than the central-difference method.

 87

Because of its numerical equivalence, the explicit Newmark method inherits the order of

accuracy and the stability condition of the central-difference method. Both methods are second-

order accurate 2p = . Therefore, they satisfy requirement 1. In addition, the explicit Newmark

method is conditionally stable with the following stability limit.

() ()2 20.5 0.5 0.5

n
n

Tt T
γ ξ γ γ ξ

γ π π
− + + −

Δ ≤ = (4.24)

where tΔ is the step size of the integration method and nT is the shortest natural period

of the structure that is being analyzed. Since the explicit Newmark method is conditionally

stable, it cannot be applied to structural problems with singular mass matrices that yield zero-

period modes. This violates requirement 3. As can be seen from the pseudo-code in Fig. 4.1, the

resisting forces at the predictor displacements are required only once per time step. This means

that no more than one force acquisition from the experimental portion of the structure is

necessary per integration step. Thus, requirement 2 is satisfied. One of the advantages of the

explicit Newmark method is that the stiffness of the structure is not required in the solution

algorithm. This is obvious from the effective mass in Equation (4.22), and requirement 4 does

therefore not apply. Because of the initial assumption that 0.5γ = , this integration method is not

capable of introducing any numerical damping to suppress higher-mode participation as

suggested by requirement 5. On the other hand, for 0.5γ > the algorithm introduces too much

numerical damping, affecting the participation of the lower modes to the solution. The scheme

also is no longer second-order accurate. Finally, requirements 6 and 7 do not apply here, since

the explicit Newmark method is not an iterative solution scheme. In summary, except for the

lack of algorithmic damping, the explicit Newmark method is an attractive integration scheme

for hybrid simulation as long as the conditional stability limit can be satisfied with a reasonable

time-step size.

4.4.2 Explicit Generalized-Alpha Method (EGa)

To overcome the aforementioned problem of the explicit Newmark method, many explicit and

implicit direct integration methods with more suitable forms of algorithmic energy dissipation

have been developed over the years. Among these methods, the generalized-alpha scheme

developed by Hulbert and Chung (1996) is the most attractive for hybrid simulation. The method

 88

provides optimized dissipation characteristics of the high-frequency modes, and the amount of

algorithmic damping can be specified through the spectral radius bρ at the bifurcation frequency

b b tωΩ = Δ . To introduce the sought numerical energy dissipation, the weighed equations of

motion (4.25) are formulated in between time steps it and 1it + , depending on the choice of the

two weighing parameters mα and fα . In addition, to obtain the explicit form of the generalized-

alpha method, Newmark’s finite difference formulae for displacements and velocities (4.13) are

written in a predictor-corrector form as follows.

 ()

()

, ,

2
2 2

1 1 1 1

1 1 1 1

1 2
2

1

m f f f fi i i i i

i i i i i i i

i i i i i i

tt t t

t t t

α α α α α

β β β

γ γ γ

+ + + + +

+ + + +

+ + + +

+ + = −

Δ= + Δ + − + Δ = + Δ

= + Δ − + Δ = + Δ

r 0M U CU P P P

U U U U U U U

U U U U U U

&& &

& && && % &&

&& & && && % &&

 (4.25)

In the above system of balance Equations (4.25), the accelerations and velocities in

between time steps are expressed by the following weighed equations.

()
()

1

1

1

1
m

f

i m i m i

i f i f i

α

α

α α

α α
+ +

+ +

= − +

= − +

U U U

U U U

&& && &&

& & &
 (4.26)

The internal resisting forces and the externally applied forces, on the other hand, can be

expressed through any generalized quadrature rule (Erlicher et al. 2002).

For example, for the generalized trapezoidal rule, the equations take the following form.

() () ()

()() ()
, 1

, , 1 , 1

1

1
f

f f

i f i f i

i i f i i f i i

α

α α

α α

α α
+ +

+ + + +

= − +

− = − − + −

r r r

0 0 0

P P U P U

P P P P P P

%
 (4.27)

If the generalized midpoint rule is employed instead, the following equations are utilized.

() ()()

() ()
, 1

,

1
f f

f f f f

i i f i f i

i i i it t

α α

α α α α

α α+ + +

+ + + +

= = − +

− = −

r r r

0 0

P P U P U U

P P P P

%

 (4.28)

It should be noticed that the predictor displacements, instead of the displacements at the

new time step, are being used to evaluate the weighed resisting forces provided by the above

generalized trapezoidal and midpoint formulas. Substitution of the displacement and velocity

expressions into (4.25) yields the following system of linear equations, which needs to be solved

for the accelerations 1i+U&& at the new time step it t+ Δ .

 89

 1i+ =eff effM U P&& (4.29)

The effective mass matrix is a combination of the mass and damping matrices with the

constants 2
1c t β= Δ , 2c t γ=Δ , 3 1c = and the weighing parameters mα and fα . The effective

force vector (or unbalanced load vector) also becomes a weighed expression between the current

and the predictor response quantities.

() ()

3 2

, , 11 1
f f f

m f

i i i m i f i f i

c c

α α α

α α

α α α+ + + +

= +

⎡ ⎤= − − − − − − +
⎣ ⎦

eff

eff 0 r

M M C

P P P P M U C U U&&& & %
 (4.30)

If the effective mass matrix is diagonal, the system of linear equations simplifies to n

uncoupled equations that can easily be solved for the new accelerations and that reduce the

computational cost significantly. As with the explicit Newmark method, the effective mass

matrix becomes diagonal if lumped masses are being used for modeling purposes and no

damping or mass-proportional, viscous damping is present. Once Equation (4.29) has been

solved for the accelerations at it t+ Δ , the remaining response quantities such as displacements

and velocities are updated.

 1 1 1 1

1 1 2 1

i i i

i i i

c

c
+ + +

+ + +

= +

= +

U U U

U U U

% &&

&& % &&
 (4.31)

Repetition of this procedure for the total number of N time steps yields the sought

solution. The explicit generalized-alpha integration method can thus be summarized as pseudo-

code as shown in Fig. 4.2.

To maximize the high-frequency algorithmic energy dissipation while maintaining

second-order accuracy, Hulbert and Chung (1996) derived the following relationships among the

algorithmic parameters β and γ , the weighing parameters mα and fα , and the spectral radius

0 1bρ≤ ≤ at the bifurcation frequency b b tωΩ = Δ .

[]

() ()
()()()

[]

[]

2 2 3

2

2 2.0, 0.5
1

5 3 3 2 2 3
2.5, 0.0

1 2 1

0.5 2.5, 0.5

b
m

b

b f b b f b b

f b b

m f

ρα
ρ

ρ α ρ ρ α ρ ρ
β

α ρ ρ

γ α α

−= ∈
+

− − + − + + −
= ∈

− − +

= + − ∈

 (4.32)

 90

As can be seen from the above equations, the resulting algorithm is a two-parameter

(),b fρ α scheme that belongs to the family of generalized-alpha methods. If the free weighing

parameter 0fα = , the resulting algorithm treats the physical damping explicitly. In contrast, for

0fα ≠ , an implicit treatment of the physical damping is obtained. Hulbert and Chung (1996)

recommend to use a midpoint evaluation of the physical damping, 0.5fα = , since the method is

endowed with a larger stability limit in this neighborhood. The algorithmic energy dissipation of

the high-frequency modes increases with the reduction of the spectral radius bρ from 1.0

towards 0.0.

()

()

()

() ()

0 0 0

3 2

2

1

1

, ,

1

:
, ,

:
0, ,

1 2
2

1

1 1

f f f

m f

i i i i

i i i

i i i

m i f i f i

Initialize

c c (factorized storage)

Analyze
for i i N i

tt

t
(Eq. 4.27 or Eq. 4.28)α α α

α α

β

γ

α α α

+

+

+ + +

+

= +

= < + +

Δ= + Δ + −

= + Δ −
= − −

⎡− − − − +
⎣

eff

eff 0 r

U U U
M M C

U U U U

U U U
P P P P

M U C U U

& &&

% & &&

&% & &&

&&& & %

()1 1

1 1 1 1

1 1 2 1

i i

i i i

i i i

solve

c

c
end

+ +

+ + +

+ + +

⎤
⎦

= =

= +

= +

eff effU M U P

U U U

U U U

&& &&

% &&

&& % &&

Fig. 4.2 Explicit generalized-alpha (EGα) method.

However, it is important to recognize that with an implicit treatment of physical damping

and with spectral radii close to 1.0, the numerical damping can become negative; and thus,

introduce energy into the high-frequency modes instead of dissipating energy. This means that in

the case of 0fα ≠ the maximal spectral radius bρ needs to be limited as a function of the

physical damping present.

With the selection of the integration scheme’s parameter according to (4.32), both

methods are second-order accurate 2p = . Therefore, they satisfy requirement 1. For the case

 91

without physical damping, the explicit generalized-alpha method is conditionally stable with the

following stability limit.

() ()3

2 3 4

12 1 21
2 10 15

b b
n

b b b b

t T
ρ ρ

π ρ ρ ρ ρ
+ −

Δ ≤
+ − + −

 (4.33)

On the other hand, if physical damping is present, the stability limit of the algorithm is

more stringent than for the undamped case. For the situations where physical damping is treated

explicitly, the stability limit is given as follows.

()

()

2 22 1 4 8 4 1

1 2 4
m m m

n
m

t T
α ξ β α β α ξ

α β π
− − + + −

Δ ≤
+ −

 (4.34)

In the above two formulas, tΔ is the step size of the integration method, and nT is the

shortest natural period of the structure that is being analyzed. Since the explicit generalized-alpha

method is conditionally stable for all cases, it cannot be applied to structural problems with

singular mass matrices that yield zero-period modes. This violates requirement 3. As can be seen

from the pseudo-code in Fig. 4.2 the resisting forces necessary for assembling the effective force

vector are required only once per time step. Depending on the employed generalized quadrature

rule, the resisting forces are acquired either at the predictor displacements, or at weighed

displacements between the current and the predictor displacements. In short, this means that no

more than one force acquisition from the experimental portion of the structure is necessary per

integration step. Thus requirement 2 is satisfied. As with the explicit Newmark method, the

stiffness of the structure is not required in the solution algorithm of the explicit generalized-alpha

method. This is obvious from the equation for the effective mass in (4.30), and requirement 4

does therefore not apply. Due to the nature of the method, requirement 5 is satisfied.

Specifically, the direct integration scheme provides optimal dissipation of the high-frequency

modes, while the amount of algorithmic damping can be specified through the spectral radius

bρ . In addition, the accuracy of the method is only slightly lowered by the numerical energy

dissipation, so that the scheme remains second-order accurate. Finally, requirements 6 and 7 do

not apply here, since the explicit generalized-alpha method is not an iterative solution scheme. In

summary, as long as the conditional stability limit can be satisfied with a reasonable time-step

size, the explicit generalized-alpha method is a very attractive integration scheme for hybrid

 92

simulation. Compared to the explicit Newmark method it has the important advantage of

providing an adjustable numerical energy dissipation of the high-frequency modes.

4.4.3 Implicit Newmark Methods (INM1, INM2)

As mentioned earlier the direct integration scheme developed by Newmark (1959) is the most

extensively used method for purely analytical structural dynamics problems. However, in order

to apply the implicit Newmark method to hybrid simulation problems, the scheme has to be

adjusted for a proper interaction with the physical parts of the hybrid model. After the derivation

of the algorithm for purely analytical nonlinear problems, several possible modifications of such

algorithm and the resulting implicit integration methods applicable to hybrid simulation are

discussed.

The implicit Newmark direct integration method is defined by the temporally discrete

equations of motion (4.10) and Newmark’s finite difference formulae for displacements and

velocities (4.13), which are repeated here for convenience.

()

()()
()()

1 1 1 1 , 1

2

1 1

1 1

1 2 2
2

1

i i i i i

i i i i i

i i i i

tt

t

β β

γ γ

+ + + + +

+ +

+ +

+ + = −

Δ= + Δ + − +

= + Δ − +

r 0M U CU P U P P

U U U U U

U U U U

&& &

& && &&

& & && &&

 (4.35)

In order to determine the three unknown response quantities, such as displacements,

velocities, and accelerations, the three equations in (4.35) can be solved by two different

approaches.

D-Form:
The first approach, also called D-form, advances the solution in time by solving for displacement

increments. In order to derive such form, Newmark’s finite difference formulae (4.35) are first

reformulated to obtain expressions for velocities and accelerations at 1it + .

()

()

1 1

1 12

1 1
2

1 1 1 1
2

i i i i i

i i i i i

t
t

t t

γ γ γ
β β β

β β β

+ +

+ +

⎛ ⎞ ⎛ ⎞= − − − − Δ −⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠
⎛ ⎞= − − − −⎜ ⎟Δ Δ ⎝ ⎠

U U U U U

U U U U U

& & &&

&& & &&

 (4.36)

 93

Substitution of these velocities and accelerations into the balance Equations (4.35) and

equating such equations to zero yields a nonlinear system of equations, in which the unknowns

are the displacements at the new time step it t+ Δ .

 () ()1 1 1 1 1 , 1i i i i i iF + + + + + += + + − + =r 0U M U CU P U P P 0&& & (4.37)

In order to solve such system of nonlinear equations for the unknown displacements the

well-known iterative Newton-Raphson algorithm is employed.

 () ()() () ()
1 1

k k k
i iDF F+ +Δ = −U U U (4.38)

The Jacobian of the vector function DF on the left-hand side and the negative vector

function F on the right-hand side both evaluated at the displacements of the current iteration are

equivalent to an effective stiffness matrix and an effective force vector (also called unbalanced

force vector), respectively.

 () () ()k k kΔ =eff effK U P (4.39)

In the above linear system of equations, the effective stiffness matrix and the effective

force vector, which depend on the iteration k, take the following form.

()

()
() ()

3 2 1 1

() () () ()
1 , 1 1 1 1

k k
i

k k k k
i i i i i

c c c +

+ + + + +

= + +

= − − − −

eff t

eff 0 r

K M C K U

P P P P U M U C U&& &
 (4.40)

where 1 1c = , 2 /()c tγ β= Δ , and 2
3 1/()c t β= Δ . Since the Newton-Raphson algorithm

only guarantees convergence if the initial approximation of the displacement vector is

sufficiently close to the actual solution, the converged displacement vector at time it is used as

an initial approximation for the sought displacement vector at time it t+ Δ .

(1)
1

(1)
1

(1)
1

1 1
2

1 1 1
2

k
i i

k
i i i

k
i i i

t

t

γ γ
β β

β β

=
+

=
+

=
+

=

⎛ ⎞ ⎛ ⎞= − − − Δ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − − −⎜ ⎟Δ ⎝ ⎠

U U

U U U

U U U

& & &&

&& & &&

 (4.41)

Once Equation (4.39) has been solved for the displacement increments at iteration k, the

response quantities such as displacements, velocities and accelerations are updated.

 94

(1) () ()
1 1 1

(1) () ()
1 1 2

(1) () ()
1 1 3

k k k
i i
k k k

i i

k k k
i i

c

c

c

+
+ +

+
+ +

+
+ +

= + Δ

= + Δ

= + Δ

U U U

U U U

U U U

& &

&& &&

 (4.42)

The iterations are repeated until an appropriate convergence criterion is satisfied.

()

()

0 0 0

(1)
1

(1)
1

(1)
1

() () () ()
1 , 1 1 1 1

()
3

:
, ,

:
0, ,

1 1
2

1 1 1
2

k
i i

k
i i i

k
i i i

k k k k
i i i i i

k

Initialize

Analyze
for i i N i

t

t
do

c c

γ γ
β β

β β

=
+

=
+

=
+

+ + + + +

= < + +

=

⎛ ⎞ ⎛ ⎞= − − − Δ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − − −⎜ ⎟Δ ⎝ ⎠

= − − − −

= +

eff 0 r

eff

U U U

U U

U U U

U U U

P P P P U M U CU

K M

& &&

& & &&

&& & &&

&& &

()
()

()
2 1 1

() () () ()

(1) () ()
1 1 1

(1) () ()
1 1 2

(1) () ()
1 1 3

(;)

k
i

k k k k

k k k
i i

k k k
i i

k k k
i i

c

solve

c

c

c
while criterion tol k

end

+

+
+ +

+
+ +

+
+ +

+

Δ = Δ =

= + Δ

= + Δ

= + Δ
> + +

t

eff eff

C K U

U K U P

U U U

U U U

U U U

& &

&& &&

Fig. 4.3 D-form of implicit Newmark method.

Finally, the repetition of this procedure for the total number of N time steps, with

Newton-Raphson iterations in each such step, yields the sought solution. The D-form of the

implicit Newmark method is summarized as pseudo-code in Fig. 4.3. As can be seen from the

pseudo-code, convergence is tested at the end of every iteration step by comparing a

convergence criterion against a user-specified tolerance.

Some of the possible criteria that can be employed to measure convergence are explained

next. One possible choice is to use the absolute value of the vector norm of the displacement

increments. The vector norm can be any p-norm or even the max-norm if the largest component

 95

of the displacement increment matters the most. Another possibility is to utilize relative

convergence criteria such as the vector norm of the current displacement increment relative to

the vector norm of the first displacement increment or the vector norm of the current

displacement increment relative to the sum of all the norms since last convergence. Instead of the

displacement increment, it is also possible to use the effective/unbalanced force vector or an

energy measure to formulate a convergence criterion, and as before with the displacement

increment, these criteria can be expressed in an absolute or relative manner.

Table 4.1 Convergence criteria.

 absolute relative relative total

displacement
increment

()k

p
tolΔ ≤U

ΔU(k)
p

ΔU(1)
p

≤ tol
ΔU(k)

p

ΔU(j)
p

j =1

k

∑
≤ tol

effective/
unbalanced

force

()k

p
tol≤effP

()

(1)

k

p

p

tol≤
eff

eff

P

P
 -

energy ()() ()1
2

Tk k tolΔ ≤effU P
()
()

() ()

(1) (1)

Tk k

T tol
Δ

≤
Δ

eff

eff

U P

U P
 -

A-Form:
The A-form solution approach is a predictor-multicorrector method, as will be seen shortly. In

this form, the direct integration scheme advances the solution in time by solving for acceleration

increments instead of displacement increments. To derive the A-form, Newmark’s finite

difference formulae (4.35) for displacements and velocities are directly substituted into the

balance Equations (4.35). Equating everything to zero yields a nonlinear system of equations, in

which the unknowns now are the accelerations instead of the displacements at the new time step

it t+ Δ .

 () ()1 1 1 1 1 , 1i i i i i iF + + + + + += + + − + =r 0U M U C U P U P P 0&& && & (4.43)

Once more, the well-known iterative Newton-Raphson algorithm is employed to solve

such system of nonlinear equations for the unknown accelerations.

 96

 () ()() () ()
1 1

k k k
i iDF F+ +Δ = −U U U&& && && (4.44)

The Jacobian of the vector function DF on the left-hand side and the negative vector

function F on the right-hand side both evaluated at the accelerations of the current iteration are

equivalent to an effective mass matrix and an effective force vector, respectively.

 () () ()k k kΔ =eff effM U P&& (4.45)

In the above linear system of equations, the effective mass matrix and the effective force

vector, which depend on the iteration k, take the following form.

()

()
() ()

3 2 1 1

() () () ()
1 , 1 1 1 1

k k
i

k k k k
i i i i i

c c c +

+ + + + +

= + +

= − − − −

eff t

eff 0 r

M M C K U

P P P P U M U C U&& &
 (4.46)

where 2
1c t β= Δ , 2c t γ=Δ and 3 1c = . Since the Newton-Raphson algorithm only

guarantees convergence if the initial approximation of the acceleration vector is sufficiently close

to the actual solution, the converged acceleration vector at time it is used as an initial

approximation for the sought acceleration vector at time it t+ Δ .

2
(1)

1

(1)
1

(1)
1

2
k

i i i i

k
i i i

k
i i

tt

t

=
+

=
+

=
+

Δ= + Δ +

= + Δ

=

U U U U

U U U

U U

& &&

& & &&

&& &&

 (4.47)

From the structure of Equations (4.47), it becomes obvious why the A-form is a

predictor-multicorrector method. In the first iteration of each time step, displacement and

velocity predictions are generated, which are then subsequently corrected until convergence is

achieved. Once Equation (4.45) has been solved for the acceleration increments at iteration k, the

response quantities such as displacements, velocities and accelerations are corrected as follows.

(1) () ()
1 1 1

(1) () ()
1 1 2

(1) () ()
1 1 3

k k k
i i

k k k
i i

k k k
i i

c

c

c

+
+ +

+
+ +

+
+ +

= + Δ

= + Δ

= + Δ

U U U

U U U

U U U

&&

& & &&

&& && &&

 (4.48)

The iterations are repeated until an appropriate convergence criterion is satisfied. Finally,

the repetition of this procedure for the total number of N time steps, with Newton-Raphson

iterations in each such step, yields the sought solution. The A-form of the implicit Newmark

method is summarized as pseudo-code in Fig. 4.4.

 97

()

()
()

0 0 0

2
(1)

1

(1)
1

(1)
1

() () () ()
1 , 1 1 1 1

() ()
3 2 1 1

()

:
, ,

:
0, ,

2
k

i i i i

k
i i i

k
i i

k k k k
i i i i i

k k
i

k

Initialize

Analyze
for i i N i

tt

t

do

c c c

solve

=
+

=
+

=
+

+ + + + +

+

= < + +

Δ= + Δ +

= + Δ

=

= − − − −

= + +

Δ =

eff 0 r

eff t

U U U

U U U U

U U U

U U

P P P P U M U CU

M M C K U

U

& &&

& &&

& & &&

&& &&

&& &

&& ()() () ()

(1) () ()
1 1 1

(1) () ()
1 1 2

(1) () ()
1 1 3

(;)

k k k

k k k
i i

k k k
i i

k k k
i i

c

c

c
while criterion tol k

end

+
+ +

+
+ +

+
+ +

Δ =

= + Δ

= + Δ

= + Δ
> + +

eff effM U P

U U U

U U U

U U U

&&

&&

& & &&

&& && &&

Fig. 4.4 A-form of implicit Newmark method.

Similarly to the D-form of the solution scheme, convergence is tested at the end of every

iteration step by comparing a convergence criterion against a user-specified tolerance. The

possible criteria that can be employed to measure convergence are, however, somewhat different

than in the D-form implementation. For the first category of criteria, where convergence is tested

on the incremental solution vector, acceleration increments are utilized instead of displacement

increments. The second category remains unchanged, meaning that convergence is measured by

the absolute or relative size of the effective/unbalanced force vector. Finally, the last category

does not apply to the A-form of the solution approach because it does not represent a meaningful

physical quantity, such as energy.

While both the D-form and the A-form implementations of the implicit Newmark method

are theoretically sound solutions, experience has shown that the D-form implementation

encounters fewer convergence issues than the A-form implementation. This is particularly true

for complex structural models with strong material and geometric nonlinearities. Because of

 98

these possible convergence issues and other reasons explained next, the D-form implementation

of the implicit Newmark method is better suited to be modified for hybrid simulation.

In their current form, both of the presented solution approaches for the implicit Newmark

method require a tangent stiffness matrix and produce nonuniform, rapidly-decreasing

displacement increments, due to the quadratic convergence of the Newton-Raphson algorithm

during iteration. Thus, to obtain suitable forms of the implicit Newmark integration method,

several modifications need to be made to the solution schemes. Some of these possible

approaches are explained next.

Increment Reduction Factor Modification (INM1):
Because it is difficult to obtain an accurate and reliable tangent stiffness matrix of an

experimental element from the measurements at the controlled degrees of freedom, the parts of

the Jacobian in (4.40) and (4.46) that are contributed by the tangent stiffness matrices ,eltk of the

experimental elements are replaced by initial stiffness matrices ,elik . In addition, to obtain more

uniform convergence for certain problem types and structural models, it is sometimes

advantageous to utilize initial stiffness matrices for not only the experimental elements but also

the analytical ones. However, a mixed treatment, where a structure is divided into partitions that

utilize tangent element stiffness matrices and partitions that use initial element stiffness matrices,

generally achieves improved convergence. This approach is comparable to implicit-explicit

methods, where a structure is divided into partitions that treat elements implicitly and partitions

that treat elements explicitly. The selection of appropriate convergence criteria guarantees that

all partitions, also the slower converging initial stiffness matrix partitions, reach satisfactory

equilibrium. In the first case, this leads to a modified Newton-Raphson algorithm that is using a

constant initial stiffness matrix, and thus, a constant Jacobian, which needs to be factorized only

once. In the second case, the global stiffness matrix is a nonconstant, mixed matrix, assembled

from tangent and initial stiffness element matrices. Thus, the Jacobian is nonconstant as well.

While for both cases, quadratic convergence is reduced to linear convergence, the reduction is

obviously more pronounced for the constant initial stiffness matrix iteration approach.

Nevertheless, the benefit of a single matrix factorization is generally outweighed by the

excessive number of iterations required to reach equilibrium.

To improve the reduced order of convergence, Accelerated-Newton methods can be

employed to find equilibrium. Accelerated-Newton algorithms hold the stiffness matrix constant

 99

during iteration but use selected information from previous iterations to accelerate convergence.

The Krylov-Subspace Accelerated-Newton algorithm developed for nonlinear structural

problems by Scott and Fenves (2003) is one of such methods. This Krylov-Newton method has

been implemented in OpenSees and can thus easily be utilized for hybrid simulation.

The described modifications of the equilibrium solution algorithms do however not yet

guarantee that displacement increments calculated by these iterative procedures are strictly

increasing or strictly decreasing within an integration time step, as set forth by requirement 6 for

hybrid simulation. As suggested by Shing and Vannan (1991) a reduction factor, θ , that

modifies the response increments, can be introduced to enhance the smoothness of the

convergence path and to reduce the possibility of spurious loading/unloading cycles during

iteration. It is obvious that this unfortunately lowers the order of convergence even further. In

addition, the response reduction factor, as described by Shing and Vannan (1991), can be

incorporated into only the D-form of the implicit Newmark method. For the A-form, the

reduction factor does not achieve the desired effect, since the predictor quantities remain

unmodified and the initial displacement increment is therefore not being reduced.

Thus, a first implicit Newmark method for hybrid simulation is obtained from the D-form

of the algorithm by utilizing a modified stiffness matrix (initial or mixed) and the increment

reduction factor in the iterative solution process. The implicit Newmark method for hybrid

simulation is summarized as pseudo-code in Fig. 4.5.

The accuracy and stability of the method depend on the two algorithmic parameters, β

and γ . As with the explicit counterpart, the algorithm is only second-order accurate if 0.5γ = .

For 0.5γ > the integration scheme is reduced to first-order accuracy. In addition, it introduces

too much algorithmic damping, affecting the participation of the lower modes to the solution.

The stability limit of the implicit Newmark direct integration method is defined by the following

expression.

() ()

()

2 20.5 0.5 0.5
2 nt T

γ ξ γ β γ ξ
γ β π

− + − + −
Δ ≤

−
 (4.49)

where tΔ is the step size of the integration method and nT is the shortest natural period

of the structure that is being analyzed. As can be seen from the denominator in (4.49), the

integration method becomes unconditionally stable if the algorithmic parameters 0.5γ = (for

 100

second-order accuracy) and 0.25β ≥ are selected. The implicit Newmark integrator with

0.25β = is also known as the average acceleration, or the trapezoidal method.

()

0 0 0

3 2 1

(1)
1

(1)
1

(1)
1

(1)
1 , 1

:
, ,

:
0, ,

1 1
2

1 1 1
2

k
i i

k
i i i

k
i i i

k
i i

Initialize

c c c (case 1 : initial stiffness)
Analyze

for i i N i

t

t

γ γ
β β

β β

=
+

=
+

=
+

=
+ +

= + +

= < + +

=

⎛ ⎞ ⎛ ⎞= − − − Δ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − − −⎜ ⎟Δ ⎝ ⎠

= −

eff i

eff 0

U U U
K M C K

U U

U U U

U U U

P P P

& &&

& & &&

&& & &&

()

()
()

(1) (1) (1)
1 1 1

() ()
3 2 1 1

() () () ()

(1) () ()
1 1 1

(1) () ()
1 1 2

(1) ()
1 1 3

k k k
i i i

k k
i

k k k k

k k k
i i

k k k
i i

k k
i i

do

c c c (case 2 : mixed stiffness)

solve

c

c

c

θ
θ

= = =
+ + +

+

+
+ +

+
+ +

+
+ +

− − −

= + +

Δ = Δ =

= + Δ

= + Δ

= +

r

eff m

eff eff

P U M U CU

K M C K U

U K U P

U U U

U U U

U U

&& &

& &

&& &&

()
()

(1) (1) (1) (1)
1 , 1 1 1 1

(;)

k

k k k k
i i i i i

while criterion tol k
end

θ
+ + + +

+ + + + +

Δ

= − − − −

> + +
eff 0 r

U

P P P P U M U CU&& &

Fig. 4.5 First modified D-form of implicit Newmark (INM1) method.

To investigate the progression of convergence during the equilibrium solution process,

two hybrid simulation models are analyzed by the modified implicit Newmark method. The first

model is a four-story frame with linear elastic columns that are pinned at the base. The first- and

second-story beams are represented by nonlinear experimental beam-column elements and the

third- and fourth-story beams are modeled as nonlinear force-beam-column elements with fiber

sections at five integration points. Since the structure is symmetric and the loading is

asymmetric, only the left half of the structure is modeled for analysis. Only material

nonlinearities are considered in this model, meaning that geometric nonlinearities due to axial

 101

forces are ignored. The second model is a portal frame (similar to the one in Chapter 6) defined

by two nonlinear columns that are connected by a linear-elastic beam. The left column is

represented by a nonlinear experimental beam-column element and the right column is modeled

as a nonlinear force-beam-column element with fiber sections at five integration points.

Significant gravity loads corresponding to the nodal masses are applied at the top of the two

columns, and the resulting large P-Δ effects are included in the modeling of the two column

elements. Thus, both the nonlinear geometry and the nonlinear material behavior of the portal-

frame columns are taken into account during the hybrid simulation. Both models were analyzed

by applying initial stiffness iterations, mixed stiffness iterations, no increment reduction,

increment reduction, Newton-Raphson iterations, and Krylov-Newton iterations. The two-norm

of the current displacement increment relative to the sum of all the two-norms from last

convergence was used as the convergence criterion for all the analyses.

5105 5110 5115

1.7

1.75

1.8

1.85

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 1.0

12990 12995 13000 13005 13010

1.7

1.75

1.8

1.85

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 0.75

4680 4682 4684 4686 4688 4690

1.7

1.75

1.8

1.85

Mixed Stiffness Matrix: θ = 1.0

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

12905 12910 12915 12920 12925

1.7

1.75

1.8

1.85

Mixed Stiffness Matrix: θ = 0.75

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

avg. num. iter. = 7 avg. num. iter. = 11

avg. num. iter. = 11 avg. num. iter. = 5

Fig. 4.6 Newton-Raphson convergence comparison for four-story-frame model.

 102

Figures 4.6–4.9 show close-ups of the displacement convergence progress at the

controlled degree of freedom of the experimental element over two integration time steps for

different analysis parameters. As can be seen from the plots for the four-story-frame model with

the Newton-Raphson equilibrium solution algorithm (Fig. 4.6), the application of the increment

reduction factor successfully enhances the smoothness of the convergence path and reduces the

possibility of spurious loading/unloading cycles during iteration. On the other hand, the

application of the mixed stiffness matrix versus the initial stiffness matrix has a negligible effect

on the convergence path of this specific model. Similar results are obtained for the Krylov-

Newton equilibrium solution algorithm (Fig. 4.7). However, the increment reduction factor is

less effective, and the use of the mixed stiffness matrix achieves slightly faster convergence.

4708 4710 4712 4714 4716 4718

1.7

1.75

1.8

1.85

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 1.0

5830 5835 5840

1.7

1.75

1.8

1.85

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 0.75

4402 4404 4406 4408 4410

1.7

1.75

1.8

1.85

Mixed Stiffness Matrix: θ = 1.0

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

5502 5504 5506 5508 5510 5512

1.7

1.75

1.8

1.85

Mixed Stiffness Matrix: θ = 0.75

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

avg. num. iter. = 6 avg. num. iter. = 6

avg. num. iter. = 5 avg. num. iter. = 5

Fig. 4.7 Krylov-Newton convergence comparison for four-story-frame model.

 103

The best convergence path for the four-story-frame model is achieved by employing the

Krylov-Newton algorithm with the mixed stiffness matrix and with a moderate increment

reduction factor.

The portal-frame model, with its strong geometric and material nonlinearities, exhibits

drastically different convergence paths. For the Newton-Raphson algorithm with initial stiffness

iterations (Fig. 4.8), the displacement increments are not strictly increasing or strictly decreasing

within an integration time step, and thus, introduce spurious loading/unloading cycles during

equilibrium iterations. Even an increment reduction factor of 50% cannot entirely resolve this

undesirable behavior.

4030 4040 4050 4060
3.7

3.75

3.8

3.85

3.9

3.95

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 1.0

14390 14400 14410 14420
3.7

3.75

3.8

3.85

3.9

3.95

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 0.5

2460 2465 2470 2475
3.7

3.75

3.8

3.85

3.9

3.95

Mixed Stiffness Matrix: θ = 1.0

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

13150 13160 13170 13180 13190
3.7

3.75

3.8

3.85

3.9

3.95

Mixed Stiffness Matrix: θ = 0.5

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

avg. num. iter. = 19 avg. num. iter. = 37

avg. num. iter. = 21 avg. num. iter. = 9

Fig. 4.8 Newton-Raphson convergence comparison for portal-frame model.

However, by utilizing the mixed Jacobian instead of the initial Jacobian in the iteration

process, this problem completely disappears. The increment reduction factor in combination with

the mixed stiffness matrix iterations can then further improve the smoothness of the convergence

 104

path. A similar behavior is observed if the Krylov-Newton instead of the Newton-Raphson

equilibrium solution algorithm is employed. For this specific model, the Krylov-Newton

algorithm achieves significant convergence acceleration without being much affected by the

increment reduction factor.

2890 2895 2900 2905
3.7

3.75

3.8

3.85

3.9

3.95

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 1.0

3285 3290 3295 3300 3305
3.7

3.75

3.8

3.85

3.9

3.95

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: θ = 0.8

2212 2214 2216 2218
3.7

3.75

3.8

3.85

3.9

3.95

Mixed Stiffness Matrix: θ = 1.0

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

2870 2872 2874 2876 2878 2880
3.7

3.75

3.8

3.85

3.9

3.95

Mixed Stiffness Matrix: θ = 0.8

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

avg. num. iter. = 9 avg. num. iter. = 11

avg. num. iter. = 4 avg. num. iter. = 5

Fig. 4.9 Krylov-Newton convergence comparison for portal-frame model.

The best convergence path for the portal-frame model with its strong geometric and

material nonlinearities is achieved by employing the Krylov-Newton equilibrium solution

algorithm with the mixed stiffness matrix and without reduction of the increments.

In light of the special hybrid simulation requirements, the following conclusions can be

drawn about the increment reduction factor implicit Newmark direct integration method. For the

algorithmic parameters 0.5γ = and 0.25β = , the average acceleration method is second-order

accurate 2p = and unconditionally stable independent of the amount of physical damping

present. This means that requirements 1 and 3 are both satisfied. As can be seen from the

 105

pseudo-code in Fig. 4.5, the resisting forces are required k-times according to the number of

iterations necessary to reach equilibrium by satisfying the selected convergence criterion. This

implies that displacement commands need to be communicated to the control system, and forces

need to be measured by the data-acquisition system also k-times per integration time step.

Therefore, the fewer iterations the equilibrium solution algorithm needs to execute, the better

because requirement 2 asks for as few function calls as possible.

Requirement 4 is satisfied, since for both described cases the global initial stiffness

matrix and the global mixed stiffness matrix require only constant, initial, experimental element

stiffness matrices for assembly. Because of the initial assumption that 0.5γ = , this integration

method is not capable of introducing any numerical damping to suppress higher-mode

participation as suggested by requirement 5. On the other hand, for 0.5γ > the algorithm

introduces too much numerical damping, affecting the participation of the lower modes to the

solution. In addition, the scheme would no longer be second-order accurate. By utilizing the

described stiffness matrix and increment reduction factor modifications, it is possible to

guarantee that the displacement increments calculated by the equilibrium solution algorithm are

strictly increasing or strictly decreasing within an integration time step. Requirement 6 is thus

satisfied.

Finally, requirement 7, which states that iterative integration methods should produce

displacement increments that are as uniform as possible, is not satisfied by the modified implicit

Newmark scheme. This can be seen well from the convergence plots in Figures 4.6–4.9. If the

control system is allotted the same time interval to impose such inconsistent displacement

increments, velocity and thus force oscillations are generated in the transfer system. To lessen

these oscillations, the event-driven algorithms described in the next chapter need to adjust the

time interval over which the displacement increments are imposed during simulation. Thus, the

integration method, as described, only works well in combination with specialized event-driven

strategies. In summary, except for the lack of algorithmic damping, the modified implicit

Newmark method is an attractive integration scheme for hybrid simulation as long as it is

combined with the appropriate event-driven strategies. It is recommended that this scheme be

used for stiff or infinitely stiff problems that have strong material and geometric nonlinearities,

and therefore, need well-converged equilibrium states at the end of the iteration process.

 106

Constant Number of Iterations Modification (INM2):
Because the previously described modifications of the implicit Newmark method still produce

nonuniform displacement increments and because the integration method in this form cannot be

employed for real-time hybrid simulations, an alternative implementation of the algorithm is

discussed next. The goal is to fix the number of equilibrium iterations to a constant user-

specified value and to modify the displacement increments during iteration in a way that makes

them more uniform. The approach of fixing the number of sub-steps or iterations was initially

suggested by Dorka and Heiland (1991) and Shing et al. (1991). Shing’s approach was

subsequently refined by Zhong (2005). The direct integration scheme presented here is a slightly

modified version of the one used in Zhong’s work.

As with the first modified implicit Newmark scheme, the formulation of the Jacobian and

the application of the equilibrium solution algorithms remain unchanged. In the first case, a

modified Newton-Raphson algorithm with a constant initial stiffness matrix, and thus, a constant

Jacobian, is utilized. In the second case, the global stiffness matrix is a nonconstant, mixed

matrix, assembled from tangent and initial stiffness element matrices, and thus, the Jacobian is

nonconstant as well. In order to obtain a constant number of iterations that can be user specified,

a new convergence test is introduced. Instead of terminating the equilibrium solution process

when the norm of a certain quantity falls below a user-specified tolerance, the equilibrium

solution process is stopped after a given, constant number of iterations. The absolute energy

norm (see Table 4.1) is still determined but only to provide a measure for the convergence error

size. In addition, only parts of the calculated response increments are utilized to update the

elements. The reduced command displacements are determined by means of Lagrange

interpolation using the trial displacements of the current iteration step and the last n committed

displacements. The location of the Lagrange interpolation depends on the ratio between the

current iteration and the fixed number of total iterations. The polynomials used to generate the

scaled displacement increments are Lagrange polynomials of first, second, or third order.

 () ()
1

() (1)
1 ,

1

i
k k

scaled i j n j
j i n

x L x
+

−
+

= + −

Δ = − + ∑U U U (4.50)

In the above interpolation formula (1)
1

k
i

−
+U are the trial displacements at the previous

iteration, jU are the committed displacements at the previous time steps and the trial

displacement of the current iteration, ,n jL are the Lagrange functions of order n, and

 107

[]max/ 0,1x k k= ∈ is the interpolation location. The Lagrange functions necessary in Equation

(4.50) are summarized in Table 4.2.

Table 4.2 Lagrange functions up to order 3.

1, 1iL x+ = ()2, 1
1 1
2iL x x+ = + ()()3, 1

1 1 2
6iL x x x+ = + +

()1, 1iL x= − − ()()2, 1 1iL x x= − − + ()()()3,
1 1 1 2
2iL x x x= − − + +

- ()2, 1
1 1
2iL x x− = − () ()3, 1

1 1 2
2iL x x x− = − +

- - () ()3, 2
1 1 1
6iL x x x− = − − +

This reduction scheme, which is similar to the one proposed by Zhong (2005), produces

displacement increments that are nearly uniform, and thus, satisfies requirement 7 for hybrid

simulation.

Because the effective force vector is determined at the end of each iteration step, one

additional equilibrium solution sequence is added to the integration method after the iteration

process has converged. However, the elements are no longer updated with the response

quantities, so that the experimental elements do not communicate these last response increments

to the control system in the laboratory. The response increments are utilized only to update the

response at the global degrees of freedom from which the solution process is continued in the

next integration time step.

This approach achieves significantly improved convergence characteristics of the

integration scheme as compared to methods without the additional equilibrium solution

sequence. The second modified implicit Newmark method for hybrid simulation is summarized

as pseudo-code in Fig. 4.10. As with the first modified form of the implicit Newmark method,

the integration scheme is unconditionally stable if the algorithmic parameters 0.5γ = (for

second-order accuracy) and 0.25β ≥ are selected.

 108

()

0 0 0

3 2 1

(1)
1

(1)
1

(1)
1

(1)
1 , 1

:
, ,

:
0, ,

1 1
2

1 1 1
2

k
i i

k
i i i

k
i i i

k
i i

Initialize

c c c (case 1 : initial stiffness)
Analyze

for i i N i

t

t

γ γ
β β

β β

=
+

=
+

=
+

=
+ +

= + +

= < + +

=

⎛ ⎞ ⎛ ⎞= − − − Δ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − − −⎜ ⎟Δ ⎝ ⎠

= −

eff i

eff 0

U U U
K M C K

U U

U U U

U U U

P P P

& &&

& & &&

&& & &&

()

()
()

(1) (1) (1)
1 1 1

() ()
3 2 1 1

() () () ()

1
() (1)

1 ,
1 max

(1) ()
1 1 1

k k k
i i i

k k
i

k k k k

i
k k

scaled i j n j
j i n

k k
i i scale

do

c c c (case 2 : mixed stiffness)

solve

kL
k

c

= = =
+ + +

+

+
−

+
= + −

+
+ +

− − −

= + +

Δ = Δ =

⎛ ⎞
Δ = − + ⎜ ⎟

⎝ ⎠
= + Δ

∑

r

eff m

eff eff

P U M U CU

K M C K U

U K U P

U U U

U U U

&& &

()

()

()

(1) () ()
1 1 2

(1) () ()
1 1 3

(1) (1) (1) (1)
1 , 1 1 1 1

max

(1)
3 2 1 1

(;)

k
d

k k k
i i scaled

k k k
i i scaled

k k k k
i i i i i

k
i

c

c

while k k k

c c c (case 2 : mixed stiffness)

+
+ +

+
+ +

+ + + +
+ + + + +

+
+

= + Δ

= + Δ

= − − − −

< + +

= + +

Δ

eff 0 r

eff m

U U U

U U U

P P P P U M U CU

K M C K U

U

& &

&& &&

&& &

()(1)

(1)
1 1 1

()
1 1 2

()
1 1 3

k

k
i i

k
i i

k
i i

solve

c

c

c
end

+

+
+ +

+ +

+ +

= Δ =

= + Δ

= + Δ

= + Δ

eff effK U P

U U U

U U U

U U U

& &

&& &&

Fig. 4.10 Second modified D-form of implicit Newmark (INM2) method.

The progression of convergence during the equilibrium solution process is again

investigated by means of the two previously described hybrid simulation models, which are

analyzed by the constant-number-of-iterations implicit Newmark method.

 109

5870 5872 5874 5876 5878 5880

1.65

1.7

1.75

1.8

1.85

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: k
max

 = 5

11730 11735 11740 11745 11750

1.65

1.7

1.75

1.8

1.85

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: k
max

 = 10

5870 5872 5874 5876 5878 5880

1.65

1.7

1.75

1.8

1.85

Mixed Stiffness Matrix: k
max

 = 5

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

11730 11735 11740 11745 11750

1.65

1.7

1.75

1.8

1.85

Mixed Stiffness Matrix: k
max

 = 10

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Fig. 4.11 Convergence comparison for four-story-frame model.

As can be seen from the results of the four-story-frame model (Fig. 4.11), the constant

number of iterations modification achieves very smooth and uniform convergence paths. This is

true for all four cases, including the initial stiffness matrix iteration, the mixed stiffness matrix

iteration, a constant number of 5 increments, and a constant number of 10 increments. However,

it can also be seen from the roof displacement time histories of the four-story-frame model (Fig.

4.12), that the mixed stiffness matrix iterations provide a more accurate structural response as

compared to the initial stiffness matrix iterations.

In addition, the accuracy improves with larger constant numbers of iterations. The

structural response, obtained by the unmodified implicit Newmark method with a very stringent

displacement increment convergence test, was used as the assumed exact solution. For the most

accurate solution (mixed stiffness, kmax = 10), the error in the maximal displacement is 0.05%,

and the error in the residual displacement is 0.2%.

 110

0 5 10 15 20 25 30 35 40 45
−6

−4

−2

0

2

4

6

8

10

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

close−up

assumed exact
initialStiff: k

max
 = 2

initialStiff: k
max

 = 5

initialStiff: k
max

 = 10

mixedStiff: k
max

 = 2

mixedStiff: k
max

 = 5

mixedStiff: k
max

 = 10

8.95 9 9.05 9.1 9.15 9.2 9.25 9.3 9.35

5.05

5.1

5.15

5.2

5.25

5.3

5.35

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

assumed exact
initialStiff: k

max
 = 2

initialStiff: k
max

 = 5

initialStiff: k
max

 = 10

mixedStiff: k
max

 = 2

mixedStiff: k
max

 = 5

mixedStiff: k
max

 = 10

Fig. 4.12 Displacement comparison for four-story-frame model.

Similar results are obtained for the portal-frame model with its strong geometric and

material nonlinearities. The convergence paths (Fig. 4.13) are all very smooth with just the

slightest reduction in consistency for the cases employing the mixed Jacobian iterations. Due to

the strong geometric and material nonlinearities in the portal-frame model, the trends that were

observed for the four-story-frame model are even more pronounced here.

It is obvious from Fig. 4.14 that the mixed Jacobian iterations achieve superior accuracy

and that such accuracy improves for larger constant numbers of iterations. For the most accurate

 111

solution (mixed stiffness, kmax = 10), the error in the maximal displacement is 0.4% and the error

in the residual displacement is 0.6%.

3274 3276 3278 3280 3282 3284 3286
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: k
max

 = 5

6540 6545 6550 6555 6560
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Initial Stiffness Matrix: k
max

 = 10

3274 3276 3278 3280 3282 3284 3286
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Mixed Stiffness Matrix: k
max

 = 5

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

6540 6545 6550 6555 6560
3.65

3.7

3.75

3.8

3.85

3.9

3.95

Mixed Stiffness Matrix: k
max

 = 10

Iteration Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Fig. 4.13 Convergence comparison for portal-frame model.

Finally, the constant-number-of-increments implicit Newmark method is again evaluated

in terms of the special hybrid simulation requirements. For the algorithmic parameters 0.5γ =

and 0.25β = , the average acceleration method is second-order accurate 2p = and

unconditionally stable independent of the amount of physical damping present. This means that

requirements 1 and 3 are both satisfied. As can be seen from the pseudo-code in Fig. 4.10, the

resisting forces are required kmax-times according to the constant number of iterations specified

by the user. This implies that displacement commands need to be communicated to the control

system and forces need to be measured by the data-acquisition system also kmax-times per

integration time step. Requirement 4 is satisfied, since for both described cases the global initial

stiffness matrix and the global mixed stiffness matrix require only constant, initial, experimental

 112

element stiffness matrices for assembly. However, as has been shown earlier a mixed Jacobian

should preferably be used. Such matrix achieves much better convergence during iteration,

which improves the accuracy of the structural response significantly.

0 5 10 15 20 25 30 35
−1

0

1

2

3

4

5

6

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

close−up

assumed exact
initialStiff: k

max
 = 2

initialStiff: k
max

 = 5

initialStiff: k
max

 = 10

mixedStiff: k
max

 = 2

mixedStiff: k
max

 = 5

mixedStiff: k
max

 = 10

6.6 6.65 6.7 6.75 6.8 6.85 6.9

4.7

4.8

4.9

5

5.1

5.2

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

assumed exact
initialStiff: k

max
 = 2

initialStiff: k
max

 = 5

initialStiff: k
max

 = 10

mixedStiff: k
max

 = 2

mixedStiff: k
max

 = 5

mixedStiff: k
max

 = 10

Fig. 4.14 Displacement comparison for portal-frame model.

Because of the initial assumption, that 0.5γ = , this integration method is not capable of

introducing any numerical damping to suppress higher-mode participation as suggested by

requirement 5. However, it is possible to obtain the desired numerical dissipation by applying the

same modifications to the implicit generalized-alpha integration method, which is discussed

next. By utilizing a constant number of scaled displacement increments, such increments are

 113

strictly increasing or strictly decreasing within an integration time step. Requirement 6 is thus

satisfied. Finally, requirement 7, which states that iterative integration methods should produce

displacement increments that are as uniform as possible, is also satisfied due to the described

Lagrange interpolation of the trial displacements. Thus, the integration method, as described,

provides excellent results as long as the experimental parts of the structure do not exhibit

extreme combined material and geometric nonlinearities. If the structure includes such

experimental portions, it is recommended to consider the previously mentioned algorithms for

estimating element tangent stiffness matrices from the experimental measurements.

4.4.4 Implicit Generalized-Alpha Methods (IGa1, IGa2)

To introduce the desired algorithmic energy dissipation, which is missing in the implicit

Newmark methods, the generalized-alpha scheme developed by Chung and Hulbert (1993) is

utilized again. Similarly to the explicit form of the integration method, the implicit form is

second-order accurate, provides optimized dissipation characteristics of the high-frequency

modes, and can have the amount of algorithmic damping specified through the spectral radius

ρ∞ at the high-frequency limit tω∞ ∞Ω = Δ → ∞ . The algorithm is optimal in the sense that it

provides minimized low-frequency dissipation for a given value of high-frequency dissipation

[]0,1ρ∞ ∈ . As with the explicit form, the weighed equations of motion (4.51) are formulated in

between time steps it and 1it + , depending on the choice of the two weighing parameters mα and

fα . In addition, Newmark’s finite difference formulas (4.13) are utilized again but in their

original, unchanged form.

 ()()
()()

, ,

2

1 1

1 1

1 2 2
2

1

m f f f fi i i i i

i i i i i

i i i i

tt

t

α α α α α

β β

γ γ

+ + + + +

+ +

+ +

+ + = −

Δ= + Δ + − +

= + Δ − +

r 0M U CU P P P

U U U U U

U U U U

&& &

& && &&

& & && &&

 (4.51)

In the above system of balance equations, the accelerations and velocities in between

time steps are expressed by the following weighed equations.

()
()

1

1

1

1
m

f

i m i m i

i f i f i

α

α

α α

α α
+ +

+ +

= − +

= − +

U U U

U U U

&& && &&

& & &
 (4.52)

 114

However, the internal resisting forces and the externally applied forces are expressed

through any generalized quadrature rule (Erlicher et al. 2002), as explained in the section

discussing the corresponding explicit scheme. For example, for the generalized trapezoidal rule,

the equations take the following form.

() () ()

()() ()
, 1

, , 1 , 1

1

1
f

f f

i f i f i

i i f i i f i i

α

α α

α α

α α
+ +

+ + + +

= − +

− = − − + −

r r r

0 0 0

P P U P U

P P P P P P
 (4.53)

If the generalized midpoint rule is employed instead, the following equations are utilized.

() ()()

() ()
, 1

,

1
f f

f f f f

i i f i f i

i i i it t

α α

α α α α

α α+ + +

+ + + +

= = − +

− = −

r r r

0 0

P P U P U U

P P P P
 (4.54)

Because the resisting forces are treated implicitly here, the displacements at the new time

step are being used to evaluate the weighed forces provided by the above generalized trapezoidal

and midpoint formulas.

As with the implicit Newmark method, the same two approaches can be employed to

solve the three equations in (4.51) for the three unknown response quantities. Since the D-form

implementation again encounters fewer convergence issues than the A-form implementation,

only the D-form approach is modified herein for hybrid simulation. The two modifications that

were discussed with the implicit Newmark method can be applied to the implicit generalized-

alpha method in the same manner. However, only the constant number of iterations modification

is derived here. For the increment reduction factor modification, please refer to the section

explaining the implicit Newmark method.

Constant Number of Iterations Modification (IGα2):
In order to derive the D-form, Newmark’s finite difference formulae (4.51) are again

reformulated to obtain expressions for velocities and accelerations at 1it + .

()

()

1 1

1 12

1 1
2

1 1 1 1
2

i i i i i

i i i i i

t
t

t t

γ γ γ
β β β

β β β

+ +

+ +

⎛ ⎞ ⎛ ⎞= − − − − Δ −⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠
⎛ ⎞= − − − −⎜ ⎟Δ Δ ⎝ ⎠

U U U U U

U U U U U

& & &&

&& & &&

 (4.55)

 115

Substitution of these velocities and accelerations into the weighed balance Equations

(4.51) and equating such equations to zero yields a nonlinear system of equations, in which the

unknowns are the displacements at the new time step it t+ Δ .

() () ()

()
1 1 1

, 1 ,

1 1

0
f f f

i m i m i f i f i

i i i i

F

α α α

α α α α+ + +

+ + + +

= − + + − +

+ − + =r 0

U M U M U CU CU

P U P P

&& && & &
 (4.56)

In order to solve such system of nonlinear equations for the unknown displacements, the

well-known iterative Newton-Raphson algorithm is employed.

 () ()() () ()
1 1

k k k
i iDF F+ +Δ = −U U U (4.57)

The Jacobian of the vector function DF on the left-hand side and the negative vector

function F on the right-hand side both evaluated at the displacements of the current iteration are

equivalent to an effective stiffness matrix and an effective force vector (also called unbalanced

force vector), respectively.

 () () ()k k kΔ =eff effK U P (4.58)

In the above linear system of equations, the effective stiffness matrix and the effective

force vector, which depend on the iteration k, take the following form.

()
()

() ()

() ()
3 2 1 1

() ()
, , 1

1 11 1
f f f

k k
m f f i

k k
i i i i

m i m i f i f i

c c c

α α α

α α α

α α α α

+

+ + + +

+ +

= + +

= − −

⎡ ⎤⎡ ⎤− − + − − +⎣ ⎦ ⎣ ⎦

eff t

eff 0 r

K M C K U

P P P P U

M U U C U U&& && & &

 (4.59)

where 1 1c = , 2 /()c tγ β= Δ , and 2
3 1/()c t β= Δ . Since the Newton-Raphson algorithm

guarantees convergence only if the initial approximation of the displacement vector is

sufficiently close to the actual solution, the converged displacement vector at time it is used as

an initial approximation for the sought displacement vector at time it t+ Δ .

(1)
1

(1)
1

(1)
1

1 1
2

1 1 1
2

k
i i

k
i i i

k
i i i

t

t

γ γ
β β

β β

=
+

=
+

=
+

=

⎛ ⎞ ⎛ ⎞= − − − Δ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − − −⎜ ⎟Δ ⎝ ⎠

U U

U U U

U U U

& & &&

&& & &&

 (4.60)

 116

Once Equation (4.58) has been solved for the displacement increments at iteration k, such

increments are scaled using Lagrange polynomials of first, second, or third order. As before, the

location of the Lagrange interpolation depends on the ratio between the current iteration and the

fixed number of total iterations (4.50). The scaled displacement increments are then utilized to

update the response quantities such as displacements, velocities, and accelerations as follows.

(1) () ()
1 1 1

(1) () ()
1 1 2

(1) () ()
1 1 3

k k k
i i scaled

k k k
i i scaled

k k k
i i scaled

c

c

c

+
+ +

+
+ +

+
+ +

= + Δ

= + Δ

= + Δ

U U U

U U U

U U U

& &

&& &&

 (4.61)

The iterations are repeated until the user-specified, fixed number of total iterations is

reached. As with the implicit Newmark scheme, the effective force vector is determined at the

end of each iteration step, and thus, one additional equilibrium solution sequence is added to the

integration method after the iteration process has ended. However, the elements are no longer

updated with the response quantities, so that the experimental elements do not communicate

these last response increments to the control system in the laboratory.

The response increments are utilized to update only the response at the global degrees of

freedom from which the solution process is continued in the next integration time step. The

repetition of this procedure for the total number of N time steps, with maxk iterations in each such

step, yields the sought solution. The modified D-form of the implicit generalized-alpha method is

summarized as pseudo-code in Fig. 4.15.

To maximize the high-frequency algorithmic energy dissipation while minimizing low-

frequency dissipation and maintaining second-order accuracy, Chung and Hulbert (1993) derived

the following relationships among the algorithmic parameters β and γ , the weighing

parameters, mα and fα , and the high-frequency spectral radius, 0 1ρ∞≤ ≤ .

[]

[]

()
[]

[]

2

2 2.0, 0.5
1

1 1.0, 0.5
1

1 1, 0.25
1

0.5 1.5, 0.5

m

f

m f

ρα
ρ

α
ρ

β
ρ

γ α α

∞

∞

∞

∞

−= ∈
+

= ∈
+

= ∈
+

= + − ∈

 (4.62)

 117

()

0 0 0

3 2 1

(1)
1

(1)
1

(1)
1

(1)

:
, ,

:
0, ,

1 1
2

1 1 1
2

f

m f f

k
i i

k
i i i

k
i i i

k
i

Initialize

c c c (case 1 : initial stiffness)

Analyze
for i i N i

t

t

α

α α α

γ γ
β β

β β

=
+

=
+

=
+

=
+

= + +

= < + +

=

⎛ ⎞ ⎛ ⎞= − − − Δ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − − −⎜ ⎟Δ ⎝ ⎠

=

eff i

eff

U U U
K M C K

U U

U U U

U U U

P P

& &&

& & &&

&& & &&

()
() ()

()
()

(1)
, , 1

(1) (1)
1 1

() ()
3 2 1 1

() () () ()

()

1 1
f f

k
i i i

k k
m i m i f i f i

k k
m f f i

k k k k

k
scaled

(Eq. 4.53 or Eq. 4.54)

do

c c c (case 2 : mixed stiffness)

solve

α α

α α α α

α α α

=
+ + +

= =
+ +

+

− −

⎡ ⎤⎡ ⎤− − + − − +⎣ ⎦ ⎣ ⎦

= + +

Δ = Δ =

Δ =

0 r

eff m

eff eff

P P U

M U U C U U

K M C K U

U K U P

U

&& && & &

()

1
(1)

1 ,
1 max

(1) () ()
1 1 1

(1) () ()
1 1 2

(1) () ()
1 1 3

(1) (1)
, , 1

1
f f f

i
k

i j n j
j i n

k k k
i i scaled

k k k
i i scaled

k k k
i i scaled

k k
i i i i

kL
k

c

c

c

(Eq. 4.53 or Eq. 4.54)α α α

+
−

+
= + −

+
+ +

+
+ +

+
+ +

+ +
+ + + +

⎛ ⎞
− + ⎜ ⎟

⎝ ⎠
= + Δ

= + Δ

= + Δ

= − −

− −

∑

eff 0 r

U U

U U U

U U U

U U U

P P P P U

M

& &

&& &&

() ()

()
()

(1) (1)
1 1

max

(1)
3 2 1 1

(1)

(1)
1 1 1

()
1 1 2

(
1 1

1

(;)

k k
m i m i f i f i

k
m f f i

k

k
i i

k
i i

i i

while k k k

c c c (case 2 : mixed stiffness)

solve

c

c

α α α α

α α α

+ +
+ +

+
+

+

+
+ +

+ +

+ +

⎡ ⎤⎡ ⎤+ − − +⎣ ⎦ ⎣ ⎦
< + +

= + +

Δ = Δ =

= + Δ

= + Δ

=

eff m

eff eff

U U C U U

K M C K U

U K U P

U U U

U U U

U U

&& && & &

& &

&& &&)
3

k c
end

+ ΔU

Fig. 4.15 Second modified D-form of implicit generalized-alpha (IGα2) method.

 118

The resulting implicit generalized-alpha direct integration method is a one-parameter

()ρ∞ scheme, which is unconditionally stable and second-order 2p = accurate for

displacements and velocities and first-order accurate for accelerations. Furthermore, the method

satisfies the same special hybrid simulation requirements as the constant number of iterations

implicit Newmark scheme, with the important advantage that an optimized, user-adjustable,

high-frequency, algorithmic energy dissipation is provided. Thus, the constant number of

iterations implicit generalized-alpha method additionally satisfies requirement 5 and should

therefore be the preferred scheme for hybrid simulation as compared to the corresponding

implicit Newmark method.

4.4.5 Generalized-Alpha-OS Method (GaOS1)

The generalized-alpha-OS direct integration method is comparable to the alpha-OS scheme

originally developed by Nakashima (1988). The algorithm is a combination of the operator-

splitting technique proposed by Hughes et al. (1979) and the generalized-alpha method

developed by Chung and Hulbert (1993). Hence, this alternative approach introduced here is

different than the one proposed by Bonelli and Bursi (2004). The resulting integration scheme is

a predictor-one-corrector method that does not require iterative equilibrium solution algorithms

and that inherits the optimized algorithmic dissipation characteristics of the family of

generalized-alpha methods. The operator-splitting technique is utilized to approximate the

deviation of the structural response from linearity, meaning that the nonlinear resisting forces are

expressed as the difference between the corresponding linear-elastic resisting forces and an

approximate corrective part. The advantage of the class of alpha-OS integration methods is that

unconditional stability can be achieved without the need to employ computationally expensive,

iterative equilibrium solution algorithms.

The derivation of the algorithm starts from the same equilibrium and finite-difference

formulae as the explicit generalized-alpha method.

 ()

()

, ,

2
2 2

1 1 1 1

1 1 1 1

1 2
2

1

m f f f fi i i i i

i i i i i i i

i i i i i i

tt t t

t t t

α α α α α

β β β

γ γ γ

+ + + + +

+ + + +

+ + + +

+ + = −

Δ= + Δ + − + Δ = + Δ

= + Δ − + Δ = + Δ

r 0M U CU P P P

U U U U U U U

U U U U U U

&& &

& && && % &&

&& & && && % &&

 (4.63)

 119

Utilizing the operator-splitting technique, the nonlinear internal resisting forces on the

left-hand side of the equilibrium equations in (4.63) are approximated as follows.

 (), ,f f f fi i i iα α α α+ + + +≅ − −r i i rP K U K U P% % (4.64)

Fig. 4.16 Approximation of nonlinear resisting force using Ki .

As can be seen from the figure above, the operator-splitting technique assumes that the

difference between the elastic and the nonlinear resisting forces at the predictor displacements

fi α+U% is approximately equal to the difference between the elastic and the nonlinear resisting

forces at the new displacements
fi α+U . Substitution of (4.64) into the balance Equation (4.63)

leads to the following approximate equilibrium equations.

 () , ,m f f f f f fi i i i i i iα α α α α α α+ + + + + + ++ + − + = −i r 0M U CU K U U P P P&& & % % (4.65)

In the above equation, the accelerations, velocities, and displacements in between time

steps are expressed by the following weighed equations.

()
()
()
()

1

1

1

1

1

1

1

1

m

f

f

f

i m i m i

i f i f i

i f i f i

i f i f i

α

α

α

α

α α

α α

α α

α α

+ +

+ +

+ +

+ +

= − +

= − +

= − +

= − +

U U U

U U U

U U U

U U U

&& && &&

& & &

% % %

 (4.66)

Similarly to the previously discussed integration methods, the internal resisting forces at

the predictor displacements and the externally applied forces are expressed in terms of any

 120

generalized quadrature rule (Erlicher et al. 2002). For example, for the generalized trapezoidal

rule, the equations take the following form.

() () ()

()() ()
, 1

, , 1 , 1

1

1
f

f f

i f i f i

i i f i i f i i

α

α α

α α

α α
+ +

+ + + +

= − +

− = − − + −

r r r

0 0 0

P P U P U

P P P P P P

% % %
 (4.67)

If the generalized midpoint rule is employed instead, the following equations are utilized.

() ()()

() ()
, 1

,

1
f f

f f f f

i i f i f i

i i i it t

α α

α α α α

α α+ + +

+ + + +

= = − +

− = −

r r r

0 0

P P U P U U

P P P P

% % % %

 (4.68)

Next, the velocities and accelerations at 1it + are expressed in terms of the predictor

displacements.

() ()

()

1 1 1

1 1 12

1

1

i i i i i

i i i

t
t

t

γ γ
β

β

+ + +

+ + +

= − + + Δ −
Δ

= −
Δ

U U U U U

U U U

& % & &&

&& %
 (4.69)

Substitution of the velocities and acceleration expressions into (4.65) yields the following

system of linear equations, which needs to be solved for the displacement increments ΔU

between the predicted and the new displacements.

 Δ =eff effK U P (4.70)

In the above linear system of equations, the effective stiffness matrix and the effective

force vector take the following form.

 ()()
() ()

3 2 1

, ,

1

1

1 1

f f f

m f f

i i i f i i

m i f i f i

c c c

α α α

α α α

α

α α α

+ + +

+

= + +

⎡ ⎤= − − + − −⎣ ⎦
⎡ ⎤− − − − +
⎣ ⎦

eff i

eff 0 r i

K M C K

P P P P K U U

M U C U U

% %

&&& & %

 (4.71)

where 1 1c = , 2 /()c tγ β= Δ , and 2
3 1/()c t β= Δ . Once Equation (4.70) has been solved for

the displacement increments, the response quantities such as displacements, velocities, and

accelerations are updated as follows.

1 1 1

1 1 2

1 3

i i

i i

i

c

c

c

+ +

+ +

+

= + Δ

= + Δ

= Δ

U U U

U U U

U U

%

&& %

&&

 (4.72)

 121

()

()

()

()() ()

0 0 0

3 2 1

2

1

1

, ,

:
, ,

:
0, ,

1 2
2

1

1 1

f f f

m f f

i i i i

i i i

i i i

f i i m

Initialize

c c c (factorized storage)

Analyze
for i i N i

tt

t

(Eq. 4.67 or Eq. 4.68)α α α

α α α

β

γ

α α

+

+

+ + +

= + +

= < + +

Δ= + Δ + −

= + Δ −

= − −

− − − − −

eff i

eff 0 r

i

U U U
K M C K

U U U U

U U U

P P P P

K U U M

& &&

% & &&

&% & &&

%

% && ()
()

1

1 1 1

1 1 2

1 3

1i f i f i

i i

i i

i

solve

c

c

c
end

α α +

+ +

+ +

+

⎡ ⎤− − +
⎣ ⎦

Δ = Δ =

= + Δ

= + Δ

= Δ

eff eff

U C U U

U K U P

U U U

U U U

U U

&& %

%

&& %

&&

Fig. 4.17 Generalized-alpha-OS (GαOS1) method.

Repetition of this procedure for the total number of N time steps yields the sought

solution. The generalized-alpha-OS integration method can thus be summarized as pseudo-code

as shown above in Fig. 4.17.

With the selection of the integration scheme’s parameter according to Equation (4.62),

the method is second-order accurate 2p = for displacements and velocities and first-order

accurate for accelerations and therefore satisfies requirement 1. As long as at any time the

predictor stiffness is larger than the tangent stiffness, the generalized-alpha-OS method is

unconditionally stable (Combescure and Pegon 1997), and thus, satisfies requirement 3. This

means that δ = −i tK K K must be positive semi-definite. Thus, the generalized-alpha-OS

method cannot be employed to analyze structures that exhibit hardening material behaviors or

stiffening due to geometric nonlinearities. Furthermore, the method can also be rendered

conditionally stable if geometric nonlinearities are accounted for by the large-displacement,

moderate deformations, corotational transformation. This is further explained at the end of this

section. As can be seen from the pseudo-code in Fig. 4.17, the resisting forces necessary for

assembling the effective force vector are only required once per time step. Depending on the

 122

employed generalized quadrature rule, the resisting forces are acquired either at the predictor

displacements, or at weighed displacements between the last and current predictor

displacements. In short, this means that no more than one force acquisition from the

experimental portion of the structure is necessary per integration step. Requirement 2 is thus

satisfied. Requirement 4 is satisfied, since the global initial stiffness matrix requires only

constant, initial, experimental element stiffness matrices for assembly. Due to the nature of the

method, requirement 5 is satisfied. Specifically, the generalized-alpha-OS integration scheme

provides optimal dissipation of the high-frequency modes, while the amount of algorithmic

damping can be specified through the high-frequency spectral radius ρ∞ . In addition, the

accuracy of the method is only slightly lowered by the numerical energy dissipation, so that the

scheme remains second-order accurate. Finally, requirements 6 and 7 do not apply here, since the

generalized-alpha-OS method is not an iterative solution scheme. Because of the approximation

that is used to express the resting forces in the equations of motion, the algorithm cannot provide

very accurate results for highly nonlinear structures. However, as long as the analyzed structure

does not exhibit severe geometric nonlinearities; the generalized-alpha-OS method is a very

attractive integration scheme for hybrid simulation.

The possible loss of the unconditional stability of the generalized-alpha-OS method in

combination with the corotational geometric transformation is illustrated next. To evaluate the

positive semi-definiteness of δ = −i tK K K , the initial and tangent stiffness matrices of a simple

elastic cantilever column element employing the corotational transformation are determined first.

The stiffness matrix of the frame element in the local coordinate system is derived as follows.

 ()
T

T T∂ ∂ ∂= = = +
∂ ∂ ∂

l
l b

l l l

p ak a q a k a q
u u u

 (4.73)

where the compatibility matrix a and the elastic element stiffness matrix bk in the basic

coordinate system are given by formulas (4.74). In these formulas lu and lp are the element

displacements and forces in the local coordinate system, bu and q are the element deformations

and forces in the basic coordinate system, α is the chord rotation, and nL is the chord length in

the deformed configuration.

 123

() () () ()

() () () ()

() () () ()

cos sin 0 cos sin 0

sin cos sin cos
1 0

sin cos sin cos
0 1

0 0

4 20

2 40

n n n n

n n n n

L L L L

L L L L

EA
L

EI EI
L L
EI EI
L L

α α α α

α α α α

α α α α

⎡ ⎤
− −⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b

a

k

 (4.74)

Furthermore, the first part of the local stiffness matrix in (4.73) represents the material

stiffness and the second part represents the geometric stiffness. These two parts can easily be

evaluated with any computer algebra system (CAS) such as Mathematica (Wolfram) or Maple

(Maplesoft). However, the resulting 6x6 stiffness matrix gets quite involved and is therefore not

shown here. For the elastic cantilever column (see Fig. 4.18a), which is used in this example, the

three fixed degrees of freedom at the base do not enter into the equations of motion, and the local

initial and tangent stiffness matrices reduce to 3x3 matrices. The tangent stiffness matrix is still

quite complicated and is therefore also not shown here, but for the chord rotation 0α = and the

chord length nL L= , the following initial stiffness matrix is obtained.

 , 3 2

2

0 0

12 60

6 40

EA
L

EI EI
L L
EI EI
L L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

l ik (4.75)

Next the positive semi-definiteness of δK is evaluated by determining its eigenvalues.

In order to obtain a closed-form solution of the smallest eigenvalue, the special case of the

elastic, corotational truss without loads is considered first (1 2 3 0EI q q q= = = =). The smallest

eigenvalue is given by the following expression.

 ()min sinEA
L

λ α= − (4.76)

 124

Since the smallest eigenvalue is negative, δK is no longer positive semi-definite. Thus,

the generalized-alpha-OS method is rendered conditionally stable.

Similar results can be obtained numerically if a pushover analysis is performed, where

the horizontal displacement ,5lu is prescribed at the tip of the elastic cantilever column, which is

loaded in compression by a constant vertical force P . As can be seen from Fig. 4.18b, one of the

three eigenvalues is negative and decreasing with increasing drift. This again makes δK

negative definite and renders the generalized-alpha-OS method conditionally stable. Fig. 4.18c

and d show the local forces at the tip of the cantilever and the axial force, respectively. Because

the smallest eigenvalue turns negative from the beginning of the pushover analysis, the

generalized-alpha-OS method remains conditionally stable even for the analysis of a cantilever

column that exhibits a softening material behavior after the initial elastic regime.

0 1 2 3 4 5
−80

−60

−40

−20

0

20

40

60

80

Drift [%]

E
ig

en
va

lu
es

 o
f δ

K
 [−

]

1st Eigenvalue

2nd Eigenvalue

3rd Eigenvalue

0 1 2 3 4 5
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Drift [%]

T
ip

 F
or

ce
s

[k
ip

,k
ip

⋅in
.]

Vertical Force
Horizontal Force
Moment

0 1 2 3 4 5
−10.05

−10

−9.95

−9.9

−9.85

−9.8

−9.75

−9.7

−9.65

−9.6

Drift [%]

A
xi

al
 F

or
ce

 [k
ip

]

Fig. 4.18 Pushover analysis of elastic cantilever column with corotational geometric
transformation: (a) geometry, (b) eigenvalues, (c) tip forces, (d) axial force.

 125

4.4.6 Modified Generalized-Alpha-OS Method (GaOS2)

To improve on the deficiency that the generalized-alpha-OS method can become conditionally

stable when analyzing structural models that account for large-displacement geometric

nonlinearities, it is suggested to use a mixed stiffness matrix instead of the initial stiffness matrix

to approximate the resisting forces. The mixed global stiffness matrix is assembled from the

tangent stiffness matrices of the analytical elements and the initial or if available tangent stiffness

matrices of the experimental elements. Using the mixed global stiffness matrix, the internal

resisting forces on the left-hand side of the equilibrium equations in (4.63) are now approximated

as follows.

 (), ,f f f fi i i iα α α α+ + + +≅ − −r m m rP K U K U P% % (4.77)

The mixed stiffness matrix is evaluated at the predictor displacements 1i+U% or
fi α+U%

depending on the employed generalized quadrature rule. This means that the Jacobian is no

longer constant and needs to be evaluated once per time step, increasing the computational cost

of the algorithm.

Fig. 4.19 Approximation of nonlinear resisting force using Km .

Substitution of (4.77) into the balance Equation (4.63) leads to the following approximate

equilibrium equations.

 () , ,m f f f f f fi i i i i i iα α α α α α α+ + + + + + ++ + − + = −m r 0M U CU K U U P P P&& & % % (4.78)

The rest of the algorithm remains unchanged from the previously described one, and thus,

the modified generalized-alpha-OS integration method can be summarized as pseudo-code as

shown below in Fig. 4.20.

 126

()

()

()

()() () ()

0 0 0

2

1

1

3 2 1

, ,

1

:
, ,

:
0, ,

1 2
2

1

1 1 1

f f f

i i i i

i i i

m f f

i i i

f i i m i f i f i

Initialize

Analyze
for i i N i

tt

t
c c c

(Eq. 4.67 or Eq. 4.68)α α α

β

γ
α α α

α α α α

+

+

+ + +

+

= < + +

Δ= + Δ + −

= + Δ −
= + +

= − −

− − − − − − − +

eff m

eff 0 r

m

U U U

U U U U

U U U
K M C K

P P P P

K U U M U C U U

& &&

% & &&

&% & &&

%

&% && & %

()
1 1 1

1 1 2

1 3

i i

i i

i

solve

c

c

c
end

+ +

+ +

+

⎡ ⎤
⎣ ⎦

Δ = Δ =

= + Δ

= + Δ

= Δ

eff effU K U P

U U U

U U U

U U

%

&& %

&&

Fig. 4.20 Modified generalized-alpha-OS (GαOS2) method.

To demonstrate the improved stability of the modified generalized-alpha-OS method, a

cantilever column is analyzed using the large-displacement, corotational geometric

transformation. As can be seen from Fig. 4.21a, the model consists of two force-beam-column

elements of equal length. Since mass is assigned only to the two translational degrees of freedom

at the top of the column, the global mass matrix of the model is singular with rank of two. The

fundamental period of the cantilever column is 1.321 sec and damping is assumed to be 5% of

critical. Before the model is subjected to the 1978 Tabas near-fault ground motion scaled to a

pga of 0.378 g , the cantilever column is loaded in compression by a constant vertical gravity

load of 5kipP = . The structure is analyzed using an integration time-step size of int 0.01sectΔ = ,

which is equal to the time increment of the ground acceleration record.

As can be seen from Fig. 4.21b and Fig. 4.22b, the displacement response of the

cantilever column, analyzed by the generalized-alpha-OS method, starts growing without bounds

at approximately 6.5 sec into the simulation. Therefore, it becomes unstable. On the other hand,

the displacement response of the cantilever column, analyzed by the modified generalized-alpha-

OS method, remains bounded and accurate for the entire ground motion analysis. This is due to

 127

the improved stability characteristics of the algorithm, which is achieved by using a mixed global

stiffness matrix. By comparing Figures 4.21 and 4.22, it can also be observed that the same

general behavior is attained for both the cantilever column with the linear-elastic material

behavior and the one with the nonlinear material behavior.

0 5 10 15 20 25 30 35
−4

−2

0

2

4

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

0 5 10 15 20 25 30 35
−4

−2

0

2

4

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

Fig. 4.21 Cantilever column response for linear-elastic material behavior and nonlinear,
corotational transformation: (a) model, (b) GαOS1, (c) GαOS2.

0 5 10 15 20 25 30 35
−4

−2

0

2

4

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

0 5 10 15 20 25 30 35
−4

−2

0

2

4

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

Fig. 4.22 Cantilever column response for nonlinear material behavior and nonlinear,
corotational transformation: (a) model, (b) GαOS1, (c) GαOS2.

 128

4.4.7 Accuracy: Numerical Dissipation and Dispersion

In structural dynamics, it is often more useful to introduce different accuracy measures than local

truncation error. Accuracy measures, in terms of numerical dissipation and dispersion, are

preferred. According to Hughes (2000), for a linear-elastic, damped single-degree-of-freedom

system in free vibration, the discrete solution of the numerical methods can be put into a form

similar to the exact solution.

 () () ()()cos sinn t
D Du t e A t B tξ ω ω ω−= + (4.79)

where 21D nω ω ξ= − . In the above formula, ξ and nω are the algorithmic counterparts

of the damping ratio and the circular frequency of the exact solution, respectively. ξ is called

the algorithmic or numerical damping ratio (a measure for dissipation) and () /T T T− is referred

to as the relative period error (a measure for dispersion). Since it is difficult to obtain analytical

expressions of these accuracy measures for most numerical schemes, they are obtained from

simulation results instead. Thus, free vibration tests of a linear-elastic single-degree-of-freedom

system are performed for all the direct integration methods in order to determine their numerical

dissipation and dispersion properties. The SDOF system has a period of 1secT = and is excited

by an initial displacement of 1 in.=0U and an initial velocity of 0 in. / sec=0U& .

Figures 4.23–4.26 present the displacement responses of the free vibration solutions for

one specific normalized integration time step of / 0.1t TΔ = . The first figure in this series

provides a comparison of the displacements for the discussed direct integration methods. As can

be seen, the explicit Newmark method and the explicit generalized-alpha methods shorten

periods, whereas all the implicit methods including the operator-splitting methods lengthen

periods. Furthermore, it can be observed how the class of generalized-alpha methods provides

the means of introducing user-adjustable, algorithmic energy dissipation by specifying the

spectral radius ρ .

Fig. 4.24 shows the free vibration solutions generated by the explicit generalized-alpha

method for a range of spectral radii bρ at the bifurcation frequency. For 1.0bρ = , no algorithmic

damping is introduced and the solution is identical to the one obtained by the explicit Newmark

method. On the other hand, for 0.0bρ = , the integration scheme achieves asymptotic

annihilation, providing maximal algorithmic damping. This means that depending on the chosen

integration time step, any high-frequency response is almost annihilated in a single time step.

 129

This high-frequency dissipation of the explicit generalized-alpha method is very useful when

analyzing structures where constraints are enforced by the penalty method.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

Free Vibration Solutions (Δt/T
n
 = 0.1)

ENM (γ=0.5)
EGα (ρ

b
=0.5, α

f
=0.5)

EGα (ρ
b
=0.0, α

f
=0.5)

INM1 (γ=0.5, β=0.25, θ=0.5)
INM2 (γ=0.5, β=0.25)
IGα1 (ρ∞=0.5, θ=0.5)

IGα1 (ρ∞=0.0, θ=0.5)

IGα2, GαOS1,2 (ρ∞=0.5)

IGα2, GαOS1,2 (ρ∞=0.0)

Fig. 4.23 Free vibration solutions for direct integration methods.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

Free Vibration Solutions for EGα (Δt/T
n
 = 0.1)

ρ
b
 = 1.0

ρ
b
 = 0.8

ρ
b
 = 0.4

ρ
b
 = 0.2

ρ
b
 = 0.1

ρ
b
 = 0.0

Fig. 4.24 Free vibration solutions for explicit generalized-alpha (EGα) method.

 130

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

Free Vibration Solutions for INM1 (Δt/T
n
 = 0.1)

θ = 1.0
θ = 0.8
θ = 0.6
θ = 0.4

Fig. 4.25 Free vibration solutions for implicit Newmark (INM1) method.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

Free Vibration Solutions for IGα2 and GαOS1,2 (Δt/T
n
 = 0.1)

ρ∞ = 1.0

ρ∞ = 0.8

ρ∞ = 0.4

ρ∞ = 0.2

ρ∞ = 0.1

ρ∞ = 0.0

Fig. 4.26 Free vibration solutions for implicit generalized-alpha (IGα2) method.

The displacement responses of the modified implicit Newmark method for different

values of the increment reduction factor θ are shown in Fig. 4.25. It can be seen that the free

vibration solutions lose some accuracy with the reduction of the increment reduction factors.

 131

Fig. 4.26, the last in this series, presents the displacement responses for the constant

number of iterations implicit generalized-alpha method and the generalized-alpha-OS methods,

which are identical for linear-elastic systems. Similar to the explicit method, no algorithmic

damping is introduced when 1.0ρ∞ = and the two integration schemes produce equivalent

solutions to the implicit Newmark method. For 0.0ρ∞ = , the algorithms again reach asymptotic

annihilation, thereby introducing maximal algorithmic damping in the high-frequency modes

while minimizing energy dissipation in the low-frequency modes. As the explicit generalized-

alpha method, these two integration schemes are thus well suited when constraints are enforced

by the penalty method.

The next three figures present comparisons of the two accuracy measures, that is, the

algorithmic damping ratios and the relative period errors, for all the discussed direct integration

methods. Fig. 4.27 provides a comparison among the different schemes.

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Δt/T
n
 [−]

ξ a
lg

 [−
]

Algorithmic Damping

ENM
EGα (ρ

b
 = 0.5)

EGα (ρ
b
 = 0.0)

INM2
IGα2 (ρ∞ = 0.5)

IGα2 (ρ∞ = 0.0)

0 0.1 0.2 0.3 0.4
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Δt/T
n
 [−]

P
E

 [−
]

Period Elongation

ENM
EGα (ρ

b
 = 0.5)

EGα (ρ
b
 = 0.0)

INM2
IGα2 (ρ∞ = 0.5)

IGα2 (ρ∞ = 0.0)

Fig. 4.27 Algorithmic damping ratios and relative period errors for direct integration

methods.

 132

It can be seen that both the explicit and the implicit Newmark methods provide zero

algorithmic energy dissipation in all the modes. In contrast, the generalized-alpha methods

provide user-adjustable amounts of algorithmic damping for spectral radii 1.0ρ < . Furthermore,

since the explicit generalized-alpha method is conditionally stable, the numerical damping ratios

increase more rapidly as the stability limits are approached, than for the implicit generalized-

alpha and the generalized-alpha-OS schemes. As can be seen from the second graph in Fig. 4.27,

all the algorithms exhibit some relative period error. The explicit Newmark method and the

explicit generalized-alpha methods generally shorten the periods, and the implicit methods

elongate the periods.

0 0.05 0.1 0.15 0.2 0.25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Δt/T
n
 [−]

ξ a
lg

 [−
]

Algorithmic Damping

ρ

b
 = 1.0

ρ
b
 = 0.8

ρ
b
 = 0.6

ρ
b
 = 0.4

ρ
b
 = 0.2

ρ
b
 = 0.1

ρ
b
 = 0.0

0 0.05 0.1 0.15 0.2 0.25
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Δt/T
n
 [−]

P
E

 [−
]

Period Elongation

ρ

b
 = 1.0

ρ
b
 = 0.8

ρ
b
 = 0.6

ρ
b
 = 0.4

ρ
b
 = 0.2

ρ
b
 = 0.1

ρ
b
 = 0.0

Fig. 4.28 Algorithmic damping ratios and relative period errors for explicit generalized-
alpha (EGα) method.

Fig. 4.28 above, presents the numerical damping ratios and the relative period errors of

the explicit generalized-alpha method for different values of the spectral radius bρ . The

 133

algorithmic energy dissipation increases from zero when 1.0bρ = to the maximal value when

0.0bρ = . As can be seen from the second part of Fig. 4.28, both period shortening and

elongation can occur, depending on the spectral radius bρ . As pointed out by Hulbert and Chung

(1996), period errors are minimized in the low-frequency domain at an approximate spectral

radius of 0.3665bρ ≅ .

Finally, for the implicit generalized-alpha and the generalized-alpha-OS methods, Fig.

4.29 shows the algorithmic damping ratios and the relative period errors versus the normalized

integration time step, for a range of spectral radii ρ∞ . As with the related explicit method, the

algorithmic energy dissipation increases from zero when 1.0ρ∞ = to the maximal value when

0.0ρ∞ = . On the other hand, the integration schemes elongate periods for all values of the

spectral radius ρ∞ . The most accurate response is obtained for 1.0ρ∞ = , which is equivalent to

the implicit Newmark method, but does not provide any algorithmic energy dissipation.

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Δt/T
n
 [−]

ξ a
lg

 [−
]

Algorithmic Damping

ρ∞ = 1.0

ρ∞ = 0.8

ρ∞ = 0.6

ρ∞ = 0.4

ρ∞ = 0.2

ρ∞ = 0.1

ρ∞ = 0.0

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

Δt/T
n
 [−]

P
E

 [−
]

Period Elongation

ρ∞ = 1.0

ρ∞ = 0.8

ρ∞ = 0.6

ρ∞ = 0.4

ρ∞ = 0.2

ρ∞ = 0.1

ρ∞ = 0.0

Fig. 4.29 Algorithmic damping ratios and relative period errors for implicit generalized-
alpha (IGα) and generalized-alpha-OS (GαOS) methods.

 134

All of the direct integration methods that have been presented above and that are

summarized in the next subsection have been implemented in the Open System for Earthquake

Engineering Simulation, OpenSees (McKenna 1997), finite element software and are available to

users to solve the equations of motion when performing hybrid simulations.

135

4.4.8 Summary of Special Requirements

Table 4.3 Summary of special requirements for direct integration methods.

Requirement ENM EGα INM1 INM2 IGα1 IGα2 GαOS1 GαOS2

1. 2p ≥ accurate 2p = 2p = 2p = 2p = 2p = (1) 2p = (1) 2p = (1) 2p = (1)

2. few function calls per tΔ 1 1 maxk maxk 1 1

3. unconditionally stable (2) (3)

4. constant ,expelk na na

5. algorithmic damping

6. strictly incr./decreasing ΔU na na na na

7. uniform ΔU na na na na

8. real-time compatible

 Notes: (1) acceleration is 1p = accurate

 (2) only if δ = −i tK K K is positive semi-definite

 (3) only if δ = −m tK K K is positive semi-definite

 136

4.5 RUNGE-KUTTA METHODS

Runge-Kutta methods belong to the class of one-step methods. This implies that only the current

solution state at time it is required to calculate the new solution at it t+ Δ . As mentioned earlier,

these solution schemes are designed to solve first-order ordinary differential equations, which

require that higher-order differential equations, like the equations of motion, need to be

transformed into a system of first-order differential equations before the Runge-Kutta methods

can be applied. They are essentially always stable and can be either explicit or implicit. The

objective of Runge-Kutta methods is to build a series of s stages approximating the vector

function (,)tf y between it and 1it + , and then use a linear combination of those stages to advance

the numerical solution to the new time step 1it + .

The system of first-order ordinary differential equations to which the Runge-Kutta

methods are applied is an initial value problem that has the following form.

() ()
()

,

0

t t=

= 0

y f y

y y

&
 (4.80)

After Runge (1895) and Heun (1900) constructed numerical schemes based on the Euler

method, it was Kutta (1901) who formulated the generalized scheme of what is now known as

the Runge-Kutta method. This method has s stages and is expressed in the following manner.

 1

1
1

, for m =1..s
m

s

m i c i mn n
n

s

i i n n
n

t t a

t b

+
=

+
=

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠

= + Δ

∑

∑

k f y k

y y k
 (4.81)

An alternative form for fully implicit Runge-Kutta equations, which is numerically

advantageous for implementation, takes the following form.

()

1

1
1

, for m=1..s

ˆ

n

s

m mn i c i n
n

s

i i n n
n

t a t

b

+
=

+
=

= Δ +

= +

∑

∑

z f y z

y y z
 (4.82)

where []mna=A and 1ˆ T T −=b b A . Because A needs to be nonsingular for inversion, this

form of the equations is possible only for fully implicit methods. Finally, it is customary to

symbolize Runge-Kutta methods by the Butcher array as follows.

 137

 T

c A
b

 (4.83)

As explained earlier the second-order equations of motion have to be transformed into a

system of first-order differential equations, which is repeated here for convenience.

() () () () ()()

()

1,

0

t t
t t−

⎧ ⎫⎪ ⎪= = ⎨ ⎬− − −⎪ ⎪⎩ ⎭
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

2

0 2 r 1

0

0

y
y f y

M P P Cy P y

U
y

U

&

&

 (4.84)

where () (){ },
T

t t=y U U& is a stacked vector containing the structural displacements and

velocities.

4.5.1 Explicit Methods (ERK)

For explicit Runge-Kutta methods, A is strictly lower triangular (0mna = n m∀ ≥) and

Equation (4.84) is simply evaluated at different arguments. Unfortunately, all of these explicit

algorithms need to invert the mass matrix M so that they cannot be used to analyze structural

problems with singular mass matrices. In addition, none of the ERK methods are A-stable.

Several popular ERK methods including their Butcher arrays are summarized next.

Runge (ERK2):

()1

2 1 2 1

1 2

,

1,
2

i i

i i

i i

t

t t

t

+

+

=

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠

= + Δ

k f y

k f y k

y y k

0 0 0
1 1 0
2 2

0 1

 (4.85)

The explicit Runge method is consistent and accurate of order 2p = , satisfying

requirement 1. Since this scheme has two stages, it requires two function calls per time step. This

means that one additional function call per time step is needed as compared to any of the

previously discussed second-order explicit direct integration methods.

 138

Heun (ERK3):

()1

2 1 3 1

3 2 3 2

1 1 3

,

1,
3
2,
3

1 3
4 4

i i

i i

i i

i i

t

t t

t t

t

+

+

+

=

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠
⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠

⎛ ⎞= + Δ +⎜ ⎟
⎝ ⎠

k f y

k f y k

k f y k

y y k k

0 0 0 0
1 1 0 0
3 3
2 20 0
3 3

1 30
4 4

 (4.86)

The explicit Heun method is consistent and accurate of order 3p = , and thus, satisfies

requirement 1. The method requires three function calls per time step. Since it is more accurate

than any of the direct integration methods, it is an excellent alternative.

Runge-Kutta 3/8 Rule (ERK4b):

()

()()

1

2 1 3 1

3 2 3 1 2

4 1 1 2 3

1 1 2 3 4

,

1,
3

1,
3

,

1 3 3 1
8 8 8 8

i i

i i

i i

i i

i i

t

t t

t t

t t

t

+

+

+

+

=

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞= + Δ − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= + Δ − +

⎛ ⎞= + Δ + + +⎜ ⎟
⎝ ⎠

k f y

k f y k

k f y k k

k f y k k k

y y k k k k

0 0 0 0 0
1 1 0 0 0
3 3
2 1 1 0 0
3 3
1 1 1 1 0

1 3 3 1
8 8 8 8

−

−

 (4.87)

The explicit 3/8 Rule is consistent and accurate of order 4p = , satisfying requirement 1.

According to the four stages, the method also requires four function calls per time step.

However, the last stage determines an approximation for the derivative at the end of the current

time step, and the first stage determines an approximation for the derivative at the beginning of

the new time step. This means that the resisting forces are acquired twice at time 1it + , which is

not ideal for generating strictly increasing or decreasing and uniform displacement increments as

stated by requirements 6 and 7.

To investigate the continuity and uniformity of the displacement command signals that

are imposed on the experimental parts of a structure, a two-degrees-of-freedom, one-bay-frame

model is analyzed by the different explicit Runge-Kutta integration methods. The one-bay-frame

model is equivalent to the one that was used for the rapid geographically distributed hybrid

 139

simulations (see Chapter 6). It is defined by two column elements that are connected by a fairly

flexible linear-elastic truss element. The left nonlinear column is tested experimentally, while the

right linear-elastic column is modeled analytically. Only material nonlinearities are considered in

this model, meaning that geometric nonlinearities due to axial forces are ignored. Fig. 4.30

shows close-ups of the displacement command signals at the controlled degree of freedom of the

experimental element over three integration time steps for the different ERK methods.

578 580 582 584

1.7

1.75

1.8

1.85

1.9

1.95

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

ERK2: Runge

868 870 872 874 876

1.7

1.75

1.8

1.85

1.9

1.95

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

ERK3: Heun

1160 1165 1170

1.7

1.75

1.8

1.85

1.9

1.95

ERK4a: Classic−RK

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

1160 1165 1170

1.7

1.75

1.8

1.85

1.9

1.95

ERK4b: 3/8−Rule

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Fig. 4.30 ERK convergence comparison for one-bay-frame model.

As can be seen from the plots, the second-order Runge method and the third-order Heun

method produce very smooth and uniform displacement commands. On the other hand, the

command displacements of both fourth-order methods are neither strictly increasing nor uniform.

According to the time increment vector { }0, 1 2, 1 2, 1T =c , the classic-RK method generates

double displacement commands twice at 1 2it + and 1it + , while the 3/8-rule method with

{ }0, 1 3, 2 3, 1T =c does so only once at 1it + . Due to the order conditions, any explicit Runge-

 140

Kutta scheme of order 4p ≥ requires the two stages at it and 1it + . This means that displacement

commands are inevitably generated and sent to the experimental portions of the structure twice at

the same time instance 1it + . Because of this, these higher-order explicit Runge-Kutta methods

should not be used for hybrid simulation. However, for the analysis of purely analytical

structures such methods are compelling numerical integration schemes due to their improved

accuracy.

Finally, the preferred explicit Runge-Kutta method for hybrid simulation is summarized

as pseudo-code in Fig. 4.31. The implementation simply consists of the evaluation of the three

stages according to Equations (4.86), for each time step.

{ }

()
()

()

()

()

0 0 0

0 0 0

1 1 1

1 1 2 1 3 1

1 2 3 2 3 1

1 3

1

1

:
, ,

,

:
0, ,

,
1 ,
3
2 ,
3

1 3
4

T

st
i i i i

nd
i i i i

rd
i i i i

i i

i i

i

Initialize

Analyze
for i i N i

t (1 stage)

t t (2 stage)

t t (3 stage)

t

+ +

+ + +

+ + +

+

+

+

=

= < + +

= =

= + Δ =

= + Δ =

Δ = Δ +

= + Δ

= + Δ
1

2

U U U

y U U

y y k f y

y y k k f y

y y k k f y

y k k

U U y

U U y

U

& &&

&

& &

&&
1 i t

end

Δ= +
Δ

2yU&&

Fig. 4.31 Explicit third-order Heun (ERK3) method.

4.5.2 Implicit Methods (IRK)

Since the mass matrix is often singular in structural dynamics problems, meaning that explicit

Runge-Kutta methods cannot be applied, implicit Runge-Kutta methods that can circumvent this

problem are discussed next. First several IRK methods are summarized including their Butcher

arrays. Afterwards, the derivation of the implicit Runge-Kutta methods applied to the equations

 141

of motion is explained in terms of the 2-stage Gauss method. All the other lower-order implicit

methods follow the same derivation.

Midpoint Rule (IRK2a):

 1 1 2 1

1 1

1,
2i i

i i

t t

t

+

+

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠

= + Δ

k f y k

y y k

1 1
2 2

1
 (4.88)

The implicit midpoint rule is consistent and accurate of order 2p = , and thus, satisfies

requirement 1. Since this method consists of only one stage, the number of function evaluations

per time step is equal to the number of iterations necessary to achieve convergence.

Trapezoidal Rule (IRK2b):

()1

2 1 1 2

1 1 2

,

1 1,
2 2

1 1
2 2

i i

i i

i i

t

t t

t

+

+

=

⎛ ⎞⎛ ⎞= + Δ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞= + Δ +⎜ ⎟
⎝ ⎠

k f y

k f y k k

y y k k

0 0 0
1 11
2 2
1 1
2 2

 (4.89)

Like the implicit midpoint rule, the implicit trapezoidal rule is also consistent and

accurate of order 2p = . It therefore satisfies requirement 1. However it consists of two stages

instead of one, which means that it requires twice as many function evaluations per time step as

the implicit midpoint method. It should be noticed that with some algebraic manipulation it is

possible to show that the implicit trapezoidal rule is equivalent to the implicit Constant-

Acceleration Newmark method.

 () ()()
1

1 1 1 1
1 , 1 1 1

, i
i i i

i i i i

t +
+ + + −

+ + + +

⎧ ⎫⎪ ⎪= = ⎨ ⎬− − −⎪ ⎪⎩ ⎭0 r

U
y f y

M P P CU P U

&
&

&
 (4.90)

From the second formula in (4.90), the equilibrium equations at time 1it + are recovered.

 ()1 1 1 1 , 1i i i i i+ + + + ++ + = −r 0M U CU P U P P&& & (4.91)

Because the second stage is equal to ()2 1 1,i it + +=k f y , substitution of =y f& into the

implicit trapezoidal rule (4.89) yields the following expression.

 142

 1 1
1

1 1

1 1
2 2

i i i i
i

i i i i

t+ +
+

+ +

⎛ ⎞⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫
= = + Δ +⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎝ ⎠

U U U U
y

U U U U

& &

& & && &&
 (4.92)

These two equations are obviously equivalent to Newmark’s finite difference formulas

(4.13) with 1 4β = and 1 2γ = .

2-Stage Radau IA (IRK3):
The Radau IA methods are based on the left Radau quadrature formulas. This makes these

algorithms order 2 1s − accurate. The 2-stage scheme is defined as follows.

1 1 2

2 2 3 1 2

1 1 2

1 1,
4 4

1 5,
4 12

1 3
4 4

i i

i i

i i

t t

t t

t

+

+

⎛ ⎞⎛ ⎞= + Δ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞= + Δ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞= + Δ +⎜ ⎟
⎝ ⎠

k f y k k

k f y k k

y y k k

1 10
4 4

2 1 5
3 4 12

1 3
4 4

−

 (4.93)

The implicit 2-stage Radau IA scheme is consistent and accurate of order 3p = , and thus

satisfies requirement 1.

2-Stage Gauss (IRK 4):
The fourth-order Hammer-Hollingsworth scheme belongs to the class of methods that is based

on the Gaussian quadrature formulas, which implies that 1.. sc c are the zeros of the shifted

Legendre polynomials of degree s and the order of accuracy is 2s .

()()
()()

()

1

2

1 11 1 12 2

2 21 1 22 2

1 1 1 2 2

,

,

i c i

i c i

i i

t t a a

t t a a

t b b

+

+

+

= + Δ +

= + Δ +

= + Δ +

k f y k k

k f y k k

y y k k

1 3 1 1 3
2 6 4 4 6
1 3 1 3 1
2 6 4 6 4

1 1
2 2

− −

+ + (4.94)

The implicit 2-stage Gauss scheme is consistent and accurate of order 4p = , and thus

satisfies requirement 1. Since this is an implicit algorithm with a nonsingular matrix A ,

Equations (4.94) are next transformed into form (4.82), to reduce the influence of round off

errors. From the two stages, the following system of nonlinear equations, with unknowns z , is

obtained.

 143

 () () ()
() ()

11 1 12 21

21 1 22 22

a a
F t

a a
+⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪= − Δ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬+⎪ ⎪ ⎩ ⎭⎩ ⎭ ⎩ ⎭

f z f zz 0
z

f z f zz 0
 (4.95)

In order to solve such a system of nonlinear equations for the unknown stages z , the

well-known iterative Newton-Raphson algorithm is employed once again.

 () ()() () ()k k kDF FΔ = −z z z (4.96)

In Equation (4.96), the inverse of the mass matrix remains present. Therefore, lines 2 and

4 are left-multiplied by the mass matrix, which produces the following Jacobian.

 () () ()

() ()

11 12

() ()
11 11 11 12 21 12()

21 22

() ()
21 11 21 22 21 22

k k

k

k k

t a t a

t a t a t a t a
DF

t a t a

t a t a t a t a

−Δ −Δ⎡ ⎤
⎢ ⎥
Δ + Δ Δ Δ⎢ ⎥

= ⎢ ⎥−Δ −Δ⎢ ⎥
⎢ ⎥Δ Δ Δ + Δ⎣ ⎦

t t

t t

I I 0 I

K z M C K z C
z

0 I I I

K z C K z M C

 (4.97)

With all the parts of Equation (4.96) available, the iterations can be initialized from

{ }(1)k = =z 0 , which is a starting vector that is sufficiently close to the actual solution. Utilizing

tensor products, the Newton-Raphson iterations can be summarized as follows.

 ()() () ()() () () ()
,

(1) () ()

k k k k
z

k k k

t t
+

− Δ ⊗ Δ = − + Δ ⊗

= + Δ

I A f z z z A I f z

z z z
 (4.98)

As with any iterative method, the Jacobian matrix can be updated at every iteration or at

the beginning of a time step, or kept constant at the initial value throughout the whole nonlinear

dynamic analysis. Furthermore, it is possible to perform only a single Newton iteration, which is

comparable to a linear implicit method. Once the iteration process on the linear system of

Equation (4.98) has converged for time step 1it + , the response quantities such as displacements,

velocities, and accelerations are updated according to Equation (4.99). Finally, the repetition of

this procedure for the total number of N time steps, with Newton-Raphson iterations in each such

step, yields the sought solution. The implicit 2-stage Gauss method is summarized as pseudo-

code in Fig. 4.32.

 144

1

1

1

1

ˆ
s

n n
n

i i

i i

i i

b

t

=

+

+

+

Δ =

= + Δ

= + Δ
Δ= +
Δ

∑
1

2

2

y z

U U y

U U y
yU U

& &

&& &&

 (4.99)

{ }

()
{ }

()
()

()

()

1

1

2

2

0 0 0

0 0 0

(1)

()

1 1

11 1() ()

21 1

1 2

12 1()

22

:
, ,

,

:
0, ,

,
1: 4,1: 2

,

,

T

k

k

st
i i

i c ik k

i c i

nd
i i

i c ik

i c

Initialize

Analyze
for i i N i

do
F

(1 stage)

a t
F t DF

a t

(2 stage)

a t
F t

a t

=

+

+ +

+ +

+

+ +

+

=

= < + +

=

= −
= +

⎧ ⎫⎪ ⎪+ = Δ ⎨ ⎬
⎪ ⎪⎩ ⎭

= +

+ = Δ

U U U

y U U

z 0

z
y y z

f y

f y

y y z

f y

f

& &&

&

()
()

()

()

1

() () () ()

(1) () ()

1 1 2 2

1

1

1

1: 4,3 : 4
,

(;)
ˆ ˆ

k

i

k k k k

k k k

i i

i i

i i

DF

solve DF F

while criterion tol k

b b

t
end

+

+

+

+

+

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

Δ = Δ =

= + Δ
> + +

Δ = +
= + Δ

= + Δ
Δ= +
Δ

1

2

2

y

z z

z z z

y z z
U U y

U U y
yU U

& &

&& &&

Fig. 4.32 Implicit 2-stage Gauss (IRK4) method.

The continuity and uniformity of the displacement commands, which are generated

during the iteration process, are again investigated by analyzing the two-degrees-of-freedom,

 145

one-bay-frame model employing the different implicit Runge-Kutta integration methods. Fig.

4.30 shows close-ups of the displacement command signals at the controlled degree of freedom

of the experimental element over three integration time steps for the different IRK methods.

960 965 970

1.7

1.75

1.8

1.85

1.9

1.95

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

IRK2a: Midpoint−Rule

1505 1510 1515 1520 1525

1.7

1.75

1.8

1.85

1.9

1.95

Counter [−]
D

is
pl

ac
em

en
t [

in
.]

IRK2b: Trapezoidal−Rule

1650 1655 1660 1665

1.7

1.75

1.8

1.85

1.9

1.95

IRK3: 2−Stage Radau IA

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

1625 1630 1635 1640 1645

1.7

1.75

1.8

1.85

1.9

1.95

IRK4: 2−Stage Gauss

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Fig. 4.33 IRK convergence comparison for one-bay-frame model.

As can be seen from the plots, none of the implicit Runge-Kutta methods produce strictly

increasing and uniform displacement commands, violating both hybrid simulation requirements

6 and 7. In fact, all the implicit methods with two or more stages generate widely oscillating

displacement increments during iteration. These oscillations occur because each stage is

evaluated at a different time increment. So in every iteration, displacements are calculated at all

the different
mi ct + . This means that all the implicit Runge-Kutta methods with two or more stages

cannot be used for hybrid simulation. In addition, due to the nonuniform displacement

increments, the 1-stage midpoint-rule should be used for hybrid simulation only in combination

with specialized event-driven algorithms, as it is the case for the INM1 direct integration method.

 146

However, as with the higher-order ERK methods, the IRK methods are very compelling

numerical integration schemes for the analysis of purely analytical structures because of their

higher orders of accuracy.

4.5.3 Rosenbrock Methods (RRK)

In the previous section, it was shown that implicit Runge-Kutta methods cannot be used to

perform the dynamic analysis in hybrid simulation because they need to solve the resulting

nonlinear equations by Newton iteration. Thus, a different class of integration schemes, called

Rosenbrock methods, is investigated next. Rosenbrock methods are a generalization of Linear-

implicit Runge-Kutta methods that replace the nonlinear system of equations by a sequence of

linear systems. They incorporate the Jacobian directly into the algorithm instead of evaluating it

during the iteration process.

For nonautonomous problems, like the ones in structural dynamics, the general s stage−

Rosenbrock method is defined as follows (Hairer and Wanner 2002).

() ()

1

, ,
1 1

1
1

, , , for m =1..s
m

m m

m i c i mn n m t i i y i i mn n
n n

s

i i n n
n

t t a t t t t

t b

γ α
−

+
= =

+
=

⎛ ⎞= + Δ + Δ + Δ⎜ ⎟
⎝ ⎠

= + Δ

∑ ∑

∑

k f y k f y f y k

y y k
(4.100)

where the additional coefficients are given by

1

1 1

m m

m mn m mn
n n

c a and γ α
−

= =

= =∑ ∑ (4.101)

Similarly to Singly diagonally implicit Runge-Kutta (SDIRK) methods, Rosenbrock

schemes with mm mα α= ∀ are of special interest and can be expressed as follows.

()() ()

()

1

, ,
1

1

,
1

1
1

, , ,

, for m =1..s

m

m

y i i m i c i mn n m t i i
n

m

y i i mn n
n

s

i i n n
n

t t t t a t t

t t

t b

α γ

α

−

+
=

−

=

+
=

⎛ ⎞− Δ = + Δ + Δ⎜ ⎟
⎝ ⎠

+ Δ

= + Δ

∑

∑

∑

I f y k f y k f y

f y k

y y k

 (4.102)

As with the IRK methods, lines 2 and 4 are again left-multiplied by the mass matrix to

eliminate the inversion of such a matrix and make the schemes applicable to problems with

 147

singular mass matrices. In the above equations, the derivatives of the function f with respect to

time t and to the solution vector y are approximated by the following expressions.

 (), ,
,,

1
t y

ii i

and
t

⎡ ⎤⎧ ⎫
= =⎨ ⎬ ⎢ ⎥Δ − ΔΔ ⎩ ⎭ ⎣ ⎦t 10

0 I0
f f

K y CP P
 (4.103)

The Rosenbrock methods are symbolized by the following modified Butcher array.

 T

c A
b

α
 (4.104)

2-Stage Rosenbrock (RRK2):

() ()
() ()2

, 1 ,

, 2 21 1

, 21 1

1 2

,

,

y i i t

y i c i

y

i i

t t t

t t t a

t

t

α α

α

α
+

+

− Δ = + Δ

− Δ = + Δ

+ Δ

= + Δ

I f k f y f

I f k f y k

f k

y y k

0 0 0 0
1 1 0
2 2

0 1

α

α α− (4.105)

Once the parameter 1 2 2α = − is determined from the requirement that the

Rosenbrock method should be L-stable, the remaining parameters are chosen such that all the

order conditions for second-order accuracy are satisfied (Kaps & Wanner 1981). The L-stable, 2-

stage Rosenbrock method is thus consistent and accurate of order 2p = , satisfying requirement

1.

3-Stage Rosenbrock (RRK3):

() ()
() ()

() ()()
()

2

3

, 1 1 ,

, 2 21 1

2 , , 21 1

, 3 21 1 32 2

3 , , 31 1 32 2

1 1 3

,

,

,

1 3
4 4

y i i t

y i c i

t y

y i c i

t y

i i

t t t

t t t a

t t

t t t a a

t t

t

α γ

α

γ α

α

γ α α

+

+

+

− Δ = + Δ

− Δ = + Δ

+ Δ + Δ

− Δ = + Δ +

+ Δ + Δ +

⎛ ⎞= + Δ +⎜ ⎟
⎝ ⎠

I f k f y f

I f k f y k

f f k

I f k f y k k

f f k k

y y k k

21

31 32

0 0 0 0 0 0
1 1 0 0 0
3 3
2 2 0 0
3 3

1 30
4 4

α

α α

α α α (4.106)

The parameter 0.4358665215α = is again determined from the requirement that the

Rosenbrock method should be L-stable. While most of the other parameters can subsequently be

determined from the order conditions for third-order accuracy, 31a and 32a remain free to choose

 148

as long as their sum is equal to 3c . It was found that for 31 2 3a = and 32 0a = the L-stable, 3-

stage Rosenbrock method produces the smoothest displacement commands. The remaining

parameters then take the following values: 21 0.1817534184α = , 31 -0.3760889857α = , and

32 -0.2050663764α = . The L-stable, 3-stage Rosenbrock method is consistent and accurate of

order 3p = , satisfying requirement 1.

{ }

()

()

()

()

()
()

0 0 0

0 0 0

,

1 1

1 1

1 1 1 2 1 1

2 2

:
, ,

,

:
0, ,

,

1 ,
2

T

i

st
i i i i

i

nd
i i i i

Initialize

Analyze
for i i N i

t

t (1 stage)

solve

t t t (2 stage)

solve

α

α

α

+ +

+ + +

=

= < + +

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= − Δ⎢ ⎥
⎣ ⎦

⎧ ⎫
= = + ⎨ ⎬Δ⎩ ⎭

= =

= + Δ = − Δ

= =
Δ =

t 1

U U U

y U U

0 I
J

K y C

I 0
A J

0 M

0
y y b f y

P

k Ak b

y y k b f y J k

k Ak b
y

& &&

&

2

1

1

1

i i

i i

i i

t

t
end

+

+

+

Δ
= + Δ

= + Δ
Δ= +
Δ

1

2

2

k
U U y

U U y
yU U

& &

&& &&

Fig. 4.34 2-stage Rosenbrock (RRK2) method.

The implementation of these two Rosenbrock methods requires, at each stage, the

solution of a linear system of equations with matrix , ytα− ΔI f , which is updated at the

beginning of each time step. The second-order method is summarized as pseudo-code in Fig.

4.34. The implementation of the third-order method follows the same pattern.

 149

The continuity and uniformity of the displacement commands, which are generated

during the iteration process, are again investigated by analyzing the two-degrees-of-freedom,

one-bay-frame model employing the different Rosenbrock integration methods. Fig. 4.35 shows

close-ups of the displacement command signals at the controlled degree of freedom of the

experimental element over three integration time steps for the different RRK methods.

580 582 584 586

1.7

1.75

1.8

1.85

1.9

1.95

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

RRK2

870 872 874 876 878

1.7

1.75

1.8

1.85

1.9

1.95

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

RRK3 (a
31

 = 2/3, a
32

 = 0)

870 872 874 876 878

1.7

1.75

1.8

1.85

1.9

1.95

RRK3 (a
31

 = 1/3, a
32

 = 1/3)

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

870 872 874 876 878

1.7

1.75

1.8

1.85

1.9

1.95

RRK3 (a
31

 = 0, a
32

 = 2/3)

Counter [−]

D
is

pl
ac

em
en

t [
in

.]

Fig. 4.35 RRK convergence comparison for one-bay-frame model.

The two plots on the top show the displacement commands, as received by the

experimental column, for the two proposed Rosenbrock methods. For both the second- and the

third-order schemes, the command signals are strictly increasing and very smooth. The two plots

on the bottom of Fig. 4.35 show the displacement commands for two other choices of the free

parameters 31a and 32a in the third-order method. Even though the command signals are still

strictly increasing, the increments are clearly not as uniform as for the proposed set of

 150

parameters. The two discussed Rosenbrock methods both satisfy requirements 6 and 7, and thus,

are excellent integration schemes for hybrid simulation.

4.5.4 Stability

Since Runge-Kutta methods are one-step schemes they are essentially always stable. This means

conditionally stable as long as a small enough time step is selected or unconditionally stable.

However, the following concepts that are described next are utilized to investigate the extent of

their stability.

A-Stability:
An initial value problem is A-stable if the region of absolute stability includes the entire left-half

plane. This means that there are no stability restrictions for the test equation y yλ=&

()Re 0, 0tλ∀ < Δ > . This is comparable to unconditional stability for direct integration

methods. For Runge-Kutta methods, the stability function ()R z (which determines the region of

absolute stability, RAS: () 1R z <) can be found from the following equations.

() ()
() ()

1

1

1 (,)

1 ()

T

T

R z z z ERK IRK

R z z z RRK

−

−

= + −

= + −

b I A e

b I B e
 (4.107)

where z t λ= Δ , e is a column vector of all ones and []mn mna α= +B .

L-Stability:
A method is L-stable if it fulfills the following conditions: (1) it must be A-stable and (2) the

limit of the stability function must approach zero as z approaches infinity.

 ()lim 0
z

R z
→∞

= (4.108)

L-stable methods have the important property that they damp out the transient phases of

the stiff components very rapidly. This stability requirement is thus comparable with the

requirement that an integration scheme should provide some algorithmic damping, which was

postulated for the direct integration methods.

 151

B-Stability:
Finally, for implicit Runge-Kutta methods the stability of nonlinear differential equations is

determined by the B-Stability property. Runge-Kutta methods are B-stable if they are

algebraically stable. For algebraic stability, the following two matrices have to be positive semi-

definite.

()

T T

B diag b
M BA A B bb

=
= + −

 (4.109)

Regions of Absolute Stability (RAS):

Euler (ERK1):

() 1R z z
not A - stable

= +
→

Runge (ERK2):

() 211
2

R z z z

not A- stable

= + +

→

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

Heun (ERK3):

() 2 31 11
2 6

R z z z z

not A- stable

= + + +

→

Classic RK and 3/8 rule (ERK4):

() 2 3 41 1 11
2 6 24

R z z z z z

not A- stable

= + + + +

→

 152

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

Fig. 4.36 Regions of Absolute Stability (RAS) for ERK methods.

Midpoint-Rule (IRK2a):

()
()

2
2

1
1, 0

zR z
z

R

A- stable and B - stable

+=
−

∞ = −
= =

→
B M

Trapezoidal-Rule (IRK2b):

()
()

2
2

1

1 10 0
2 4,

1 10 0
2 4

zR z
z

R

A- stable

+=
−

∞ = −

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

→

B M

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

 153

2-Stage Radau IA (IRK3):

()

()
2

6 2
6 4
0

1 11 0
16 164 ,

3 1 10
4 16 16

zR z
z z

R

A- stable, L - stable and B - stable

+=
− +

∞ =

⎡ ⎤⎡ ⎤ −⎢ ⎥⎢ ⎥
= = ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
→

B M

2-Stage Gauss (IRK4):

()

()

2

2

12 6
12 6
1

1 0 0 02 ,
1 0 00
2

z zR z
z z

R

A - stable and B - stable

+ +=
− +

∞ =

⎡ ⎤
⎢ ⎥ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦
→

B M

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

Fig. 4.37 Regions of Absolute Stability (RAS) for IRK methods.

2-Stage Rosenbrock (RRK2):

()

()
2 2

4 4 4 2
4 8 4 2 6 4 2
0

0 0
0 1

0 0.2071
0.2071 0.4142

z zR z
z z z z

R

A- stable and L - stable

− +=
− + + −

∞ =

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
→

B

M

3-Stage Rosenbrock (RRK3):

()

()

2

2 3

12.077 3.715 2.870
12.077 15.791 6.883

0

0.25 0 0
0 0 0
0 0 0.75

0.1554 0 0.0304
0 0 0.1538

0.0304 0.1538 0.0913

z zR z
z z z

R

A- stable and L - stable

− + +=
− + − +

∞ =

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

→

B

M

 154

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

Fig. 4.38 Regions of Absolute Stability (RAS) for RRK methods.

4.5.5 Accuracy: Numerical Dissipation and Dispersion

As with the direct integration methods, the accuracy of the Runge-Kutta integration schemes is

again evaluated in terms of the two measures, numerical dissipation and dispersion. Once again

these accuracy measures are obtained from simulation results. Thus, free vibration tests of a

linear-elastic single-degree-of-freedom system are performed for all the Runge-Kutta methods,

in order to determine their numerical dissipation and dispersion properties. The SDOF system

has a period of 1secT = and is excited by an initial displacement of 1 in.=0U and an initial

velocity of 0 in. / sec=0U& , meaning that { }0 1, 0 T=y becomes the starting vector for all the

Runge-Kutta methods.

The next figure presents comparisons of the two accuracy measures, that is, the

algorithmic damping ratios and the relative period errors, for the relevant Runge-Kutta

integration methods. It can be seen that the third-order ERK3 method provides a large amount of

algorithmic energy dissipation in the mid-frequency modes and shortens the modes over the

whole frequency range. The fourth-order ERK4 method provides no numerical damping in the

low-frequency modes but the amount of algorithmic damping increases rapidly for the high-

frequency modes. In addition, the scheme is very accurate within the stability limits, meaning

that the relative period errors are small. The ERK4 method elongates the low-frequency modes

and shortens the high-frequency modes. For the implicit Runge-Kutta methods, the second-order

ERK2a method achieves the same accuracy as the second-order implicit Newmark INM method.

 155

This means that the scheme provides no numerical energy dissipation and elongates the modes

over the whole frequency range. It can be seen that this algorithm is less accurate than the

higher-order methods, since it elongates periods significantly more. The third-order IRK3

integrator achieves quite low relative period errors while providing the desired algorithmic

energy dissipation in the high-frequency modes because of the algorithms L-stability. It is

obvious that the fourth-order IRK4 method is the most accurate among the discussed schemes

but unfortunately does not provide any numerical energy dissipation to damp out high-frequency

oscillations. Finally, the second- and third-order Rosenbrock methods achieve good accuracy

with relatively small period errors and the desired algorithmic damping in the high-frequency

modes due to their L-stability.

0 0.1 0.2 0.3 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Δt/T
n
 [−]

ξ a
lg

 [−
]

Algorithmic Damping

ERK3
ERK4b
IRK2a,b
IRK3
IRK4
RRK2
RRK3

0 0.1 0.2 0.3 0.4

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Δt/T
n
 [−]

P
E

 [−
]

Period Elongation

ERK3
ERK4b
IRK2a,b
IRK3
IRK4
RRK2
RRK3

Fig. 4.39 Algorithmic damping ratios and relative period errors for Runge-Kutta methods.

 156

All of the Runge-Kutta methods that have been presented above and that are summarized

in the next subsection have so far only been implemented utilizing Matlab (Mathworks).

However, there are plans to implement these Runge-Kutta methods into the OpenSees finite

element software in the near future.

4.5.6 Summary of Special Requirements

Table 4.4 Summary of special requirements for Runge-Kutta integration methods.

Requirement ERK3 ERK4b IRK2a IRK2b IRK3 IRK4 RRK2 RRK3

1. 2p ≥ accurate 3p = 4p = 2p = 2p = 3p = 4p = 2p = 3p =

2. few function calls per tΔ 3 4 2 3

3. unconditionally stable

4. constant ,expelk na na

5. algorithmic damping

6. strictly incr./decreasing ΔU

7. uniform ΔU

8. real-time compatible

157

 158

4.6 SUMMARY

A wide range of integration methods and their applicability to hybrid simulation were presented

in this chapter. Both the class of direct integration methods and the class of Runge-Kutta

methods were investigated. After a brief introduction to the spatial and time discretization of the

structural dynamics problem, special integration scheme properties required for the reliable,

accurate and fast execution of hybrid simulations were introduced. It has been shown that

explicit, noniterative methods are well suited for hybrid simulation and easy to implement, as

long as it is possible to satisfy their stability limits. On the other hand, it has been demonstrated

that unconditionally stable implicit methods should be used only for hybrid simulation under one

of two conditions. Either the number of iterations in the equilibrium solution algorithms can be

fixed at a constant value, or the event-driven algorithms described in the next chapter need to

adjust the time interval over which the displacement increments are imposed during simulation.

In addition, two special types of integration schemes, namely the operator-splitting and the

Rosenbrock methods, were discussed. These types of schemes are capable of providing

unconditional stability without the need for iterative equilibrium solution processes. For the

operator-splitting schemes the generalized-alpha-OS and the modified generalized-alpha-OS

methods were newly introduced. It has also been shown that for hybrid simulation the integration

schemes should preferably provide some amount of algorithmic energy dissipation in the high-

frequency modes to damp out any spurious oscillations that might get excited by experimental

errors. Finally, the integration methods have been summarized in form of pseudo-code to assist

with the implementation into software.

5 Event-Driven Strategies in Hybrid Simulation

5.1 INTRODUCTION

In the finite element analysis approach to hybrid simulation there are three key components

required to perform experimental tests. The previous chapter focused on the first key component,

the finite element analysis software itself. In particular, specialized time-stepping algorithms and

their application to hybrid simulation were investigated. The second key component is the

middleware that allows any finite element analysis software to be connected to a laboratory, and

which was discussed in detail in Chapter 3. Consequently, this chapter is concerned with

investigating methods and strategies for the third key component, meaning the control and data-

acquisition systems in a laboratory.

Today’s state of the art servo-hydraulic control systems, which are part of the third key

component, run at sampling rates of the order of 1 kHz and above. This means that for the signal

generation of the actuator commands, new displacement values are required at very short,

deterministic time intervals. On the other hand, the numerical integration of the equations of

motion, which is performed in the finite element analysis software, can be very time consuming.

In addition, the computation times required to advance the numerical solutions to the next step

are generally nondeterministic because they depend on events such as yielding, buckling,

fracture, or collapse of structural elements. Hence, the computational driver and the servo-

hydraulic control system run at different time rates, where the former is nondeterministic and the

latter is deterministic. However, it is possible to synchronize these two processes by placing a

predictor-corrector algorithm between the computational driver and the servo-hydraulic control

system. It is important to notice that this synchronization predictor-corrector algorithm is

implemented on a real-time digital signal processor in the laboratory (as part of the third key

component) and is therefore not to be confused with integration predictor-corrector methods that

are utilized to solve the equations of motion.

The predictor-corrector algorithms that are utilized for synchronization operate as

follows. While the finite element analysis software is solving the equations of motion for the trial

 160

displacements at the next integration time step, the predictor-corrector algorithm generates

displacement commands for the servo-hydraulic control system (at such system’s deterministic

time intervals) by forward prediction of the displacement paths. Once the trial displacements at

the next integration time step or substep are received from the finite element analysis software,

the predictor-corrector algorithm switches to generating displacement commands (still at the

control system’s deterministic sampling rate) correcting towards these new targets. As long as

the computation time, which is required to generate these predicted and corrected displacement

commands, is shorter than the given sampling time of the servo-hydraulic control system, the

actuators can be moved continuously, guaranteeing test continuity.

With the recent development of geographically distributed hybrid simulations, the

difference in the time rates of the integration and actuator control processes becomes even

greater due to the additional randomness (nondeterminism) of the network transmission times.

Thus, previously developed extrapolation-interpolation methods (Nakashima and Masaoka 1999;

Mosqueda 2003) are no longer ideal. The first problem is that the accuracy of such techniques

rapidly deteriorates the further out the displacements are predicted. The second drawback is a

large discrepancy between displacement commands while switching from extrapolation to

interpolation. This sudden displacement jump prevents the actuators from moving smoothly and

creates unrealistic velocities in the switching interval. Moreover, extrapolation and interpolation

procedures are not based on physical laws but rather on pure mathematics.

To improve the performance of the synchronization predictor-corrector algorithms and to

reduce or eliminate the aforementioned problems, a range of new predictor-corrector algorithms

are proposed and discussed in this chapter. In particular, the newly developed algorithms should

be more accurate than the existing ones, while concurrently reducing or eliminating the

switching interval inconsistencies. Since some of the proposed predictor-corrector algorithms

make use of past velocities and past accelerations, in addition to displacements, they depend on

the integration methods (see Chapter 4), which produce such response quantities. Furthermore,

several adaptive, event-driven strategies are investigated. These event-driven methods do not run

synchronously, where operations are coordinated under the centralized control of a fixed-rate

clock signal, but are executing asynchronously, meaning that no global clock exists and

simulation time-steps or integration time-steps are adjusted during simulation according to some

suitable performance criteria.

 161

The next section focuses on the review of previous developments. Specifically, the work

on extrapolation-interpolation methods facilitating continuous testing and the development of the

three-loop architecture for distributed testing are emphasized. Afterwards, the theory on existing

and newly proposed predictor-corrector algorithms is presented, including a brief summary of

advantages, disadvantages, and recommendations for each algorithm. The adaptive,

asynchronous, event-driven strategies that adjust parameters, such as time steps and actuator

velocities, over the course of a hybrid simulation are investigated last.

5.2 PREVIOUS DEVELOPMENTS

5.2.1 Discontinuous vs. Continuous Hybrid Simulation

Conventional hybrid simulation testing techniques load the test specimens using a hold and ramp

procedure. This means that a transfer system imposes the trial displacement commands

(calculated by the computational driver) on the physical test specimen in a ramp-wise manner.

Once the transfer system reaches these target displacements, they are held constant until the

work conjugates (resisting forces) have been measured and the next trial displacement

commands have been computed (see Fig. 5.1).

Fig. 5.1 Hold and ramp procedure vs. continuous testing procedure.

Although this procedure permits close observation of the response behavior of a

structure, it has two major drawbacks. The first problem is that during the hold phase the test

specimen undergoes force relaxation, which will lead to inaccurate resisting force measurements.

The second disadvantage is that many new types of structural components, such as base-isolation

 162

devices and dampers, have velocity-dependent behavior that a ramp and hold testing procedure

cannot correctly capture. To deal with these problems two alternative hybrid simulation testing-

methods have been developed. In the method known as continuous testing, the specimen is

loaded at a slow but continuous rate, which solves the problem of force relaxation. Such

continuous testing was first achieved by using an implicit integration algorithm and a direct force

feedback using analog circuits (Thewalt and Mahin 1987). The second method is real-time

testing, which loads the test specimen continuously at the appropriate velocities (accounting for

similitude effects) and therefore captures rate-dependent material behaviors (Nakashima et al.

1992; Horiuchi et al. 1996; Nakashima and Masaoka 1999; Magonette 2001; Shing et al. 2002).

Fig. 5.2 Execution sequence in the case of one single digital signal processor.

To be able to run tests continuously, or in real time, most of these hybrid simulation

methods use multi-rate approaches. This implies that both the integration of the equations of

motion and the generation of displacement command signals are separated because they run at

different time rates. In Nakashima and Masaoka’s (1999) algorithm, both tasks run on a digital

signal processor (DSP), which is a real-time processor. Therefore, in order to send uninterrupted

command signals to the digital control system, the signal generation task (which has higher

priority), has to execute every millisecond. However, since the signal generation takes less than

one millisecond, the remaining time is used to solve the equations of motion. This means that

while the integrator is calculating the trial displacements for the next time step, the DSP is

switching forth and back between the two tasks; then, once the new trial displacements are

available, only the signal generation tasks are executed (see Fig. 5.2). The proposed algorithm

 163

applies polynomial extrapolation and interpolation using past displacement values to produce the

command signals for the transfer system.

5.2.2 Three-Loop Hardware Architecture

The latest development in hybrid simulation is the geographical distribution of experimental and

analytical portions of a structure within a network of laboratories and computational sites, a

method first proposed by Campbell and Stojadinovic (1998). Mosqueda (2003) found that by

separating the integration of the equations of motion and the signal generation for the transfer

system onto two machines instead of one, both real-time testing and continuous geographically

distributed testing is made possible. Furthermore, as can be seen from Fig. 5.3, it is no longer

necessary to interrupt the response analysis task in order to execute the signal generation task,

because they run on two different machines. Consequently, since the two processes are executed

on two separate computers, fast data transfer between those machines is crucial. This is made

possible by using a shared memory network, which mirrors data almost instantaneously among

computers. This new three-loop hardware architecture is therefore able to dedicate more

computation time towards the integration task, which makes it possible to increase the

complexity of the analytical portions of the hybrid model.

Fig. 5.3 Execution sequence in the case of two machines.

The three-loops in the new hardware architecture proposed by Mosqueda (2003) host the

following tasks (see Fig. 5.4):

1. The outermost loop hosts the computational driver with the integration method as well as

the OpenFresco middleware framework. In a real-time test, this task is executed at the

 164

integration time-step interval, inttΔ , of the computational driver (0.005–0.02 sec).

However, for geographically distributed testing, such a task has to be slowed down,

allowing the simulation time-step interval, simtΔ , to be controlled by the network speed

(up to 3 sec) rather than by the time needed for the calculations.

2. The innermost loop of the architecture hosts the control and data-acquisition systems with

their software. Any controller, such as a PID- (Proportional-Integral-Derivative), PIDF-

(Proportional-Integral-Derivative-Feedforward), SM- (Sliding-Mode) controller etc., can

be employed to command the actuators of the transfer system. The update rate of many

such controllers is on the order of 1 kHz or higher, meaning that new command signals

need to be sent to the actuators at the deterministic controller time-step interval, contΔ .

3. The intermediate loop hosts the predictor-corrector algorithm that connects the two other

processes running at different time rates. Similar to Nakashima and Masaoka’s (1999)

algorithm, it generates sub-step commands for the faster running control system using the

trial response quantities from the slower running integration operator. The difference lies

in the implementation of this predictor-corrector algorithm. Since in a geographically

distributed test random network delays are introduced, Mosqueda (2003) utilizes an

event-driven algorithm (a finite-state machine) to deal with these uncertainties.

Fig. 5.4 Three-loop hardware architecture.

The advantage of this complete separation of tasks is its modularity, flexibility, and

extensibility; thus, different computational drivers can be utilized and developed without concern

for the synchronization with the control and data-acquisition systems. Similarly, control

 165

algorithms can be developed independent of the integration methods. In addition, different

predictor-corrector algorithms for the synchronization task can be developed. Finally, the

division also facilitates the distribution of the three processes on three different machines, which

allows the computational driver, meaning the finite element analysis software, to be placed

anywhere on the network. This abstraction and encapsulation of the different tasks is similar to

the object-oriented design methodologies that were used to develop the OpenFresco software

framework (see Chapter 3).

5.3 THEORY ON PREDICTOR-CORRECTOR ALGORITHMS

5.3.1 Existing Algorithms

The predictor-corrector algorithms, which are used by other researchers such as Nakashima et al.

(1999) and Mosqueda (2003), are based on extrapolation and interpolation, using displacement

values at past integration points. The polynomials utilized are Lagrange polynomials of first-,

second- or third-order (Burden and Faires 2001). Nakashima found that the third-order

extrapolation/interpolation achieves the best accuracy given that computation time should remain

short.

Prediction (Pn):
The extrapolated displacements are expressed in terms of a Lagrange polynomial using the last n

displacement values.

 () ()
0

,p k n k
k n

dsp x f P x
=−

= ∑ (5.1)

where kf are the displacements previously calculated by the integrator and []0, 0.8x ∈ .

The prediction is limited to a maximum of 80% of the simulation time step in order to leave a

minimum of 20% of the simulation time step for the correction towards the next trial

displacement. The Lagrange functions ,n kP up to a third-order polynomial are given below.

 166

Table 5.1 Predictor Lagrange functions up to order 3.

1,0 1P x= + ()()2,0
1 1 2
2

P x x= + + ()() ()3,0
1 1 2 3
6

P x x x= + + +

1, 1P x− = − ()2, 1 2P x x− = − + ()()3, 1
1 2 3
2

P x x x− = − + +

- ()2, 2
1 1
2

P x x− = + ()()3, 2
1 1 3
2

P x x x− = + +

- - ()()3, 3
1 1 2
6

P x x x− = − + +

Fig. 5.5 Predictor using a third-order Lagrange polynomial.

Similar to Nakashima and Masaoka (1999), the accuracy of the predictors is evaluated by

assuming that the earthquake response of a structure is a sinusoidal-like vibration. Using this

approximation, the displacements are expressed in terms of amplitude A and circular frequency

ω as follows. It is important to note that the circular frequency of the sinusoidal vibration ω is

provided in the integration time scale and not the simulation time scale.

 () ()sinint intf t A tω= (5.2)

The discrete displacements at the previous simulation time steps, as needed in the

predictor formula (5.1), are therefore given by the following expression.

 ()()sink int intf A t t x kω ω= − Δ − (5.3)

 167

After the substitution of Equation (5.3) into (5.1) and the trigonometric expansion of the

resulting formula, the following result is obtained.

() ()() ()

()

0

,sin

sin

p int int n k
k n

d int

dsp x A t t x k P x

A R t

ω ω

ω φ
=−

= − Δ −

= +

∑ (5.4)

where:

 ()() ()

()() ()

2 2

0

,

0

,

, arctan

cos

sin

C
d S C

S

S int n k
k n

C int n k
k n

CR C C
C

C t x k P x

C t x k P x

φ

ω

ω

=−

=−

⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠

= Δ −

= − Δ −

∑

∑

 (5.5)

As can be seen, by comparing formula (5.2) with formula (5.4) the predicted

displacements diverge from the exact displacements. The difference can be expressed in terms of

an amplitude change dR and a phase shift φ . The amplitude change and phase shift are therefore

used as a measure of accuracy. In general, the accuracy of any predictor will decrease the further

out a predicted value is sought and the larger the integration time interval is with respect to the

excitation period. Obviously, the integration time interval needs to be small enough to guarantee

stability and accuracy of the direct integration method used.

Correction (Cn):
The interpolated displacements are expressed in terms of a Lagrange polynomial similar to the

one used for extrapolation:

 () ()
1

,
1

c k n k
k n

dsp x f C x
=− +

= ∑ (5.6)

where kf are the displacements previously calculated by the integrator and []0, 1x ∈ .

The Lagrange functions ,n kC up to a third-order polynomial are given in Table 5.2. Again,

Equation (5.3) is substituted into (5.6) and the result is trigonometrically expanded to obtain the

following corrector formula.

 168

() ()() ()

()

1

,
1

sin

sin

c int int n k
k n

d int

dsp x A t t x k C x

A R t

ω ω

ω φ
=− +

= − Δ −

= +

∑ (5.7)

where:

 ()() ()

()() ()

2 2

1

,
1

1

,
1

, arctan

cos

sin

C
d S C

S

S int n k
k n

C int n k
k n

CR C C
C

C t x k C x

C t x k C x

φ

ω

ω

=− +

=− +

⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠

= Δ −

= − Δ −

∑

∑

 (5.8)

Table 5.2 Corrector Lagrange functions up to order 3.

1,1C x= ()2,1
1 1
2

C x x= + () ()3,1
1 1 2
6

C x x x= + +

()1,0 1C x= − − ()()2,0 1 1C x x= − − + ()() ()3,0
1 1 1 2
2

C x x x= − − + +

- ()2, 1
1 1
2

C x x− = − () ()3, 1
1 1 2
2

C x x x− = − +

- - () ()3, 2
1 1 1
6

C x x x− = − − +

Fig. 5.6 Corrector using a third-order Lagrange polynomial.

 169

As for the predictor formulas, the accuracy measures used are the change in amplitude

and the phase shift. Since the corrector formulas make use of the trial displacements at the new

time step or substep, they are overall more accurate than the predictor formulas. Furthermore,

while they return the exact values at ,int it and ,int i intt t+ Δ , they are the least accurate around the

middle of a time step. Finally, similar to the predictor formulas, the accuracy decreases as the

integration time interval increases with respect to the excitation period.

5.3.2 Algorithms Using Last Predicted Displacement

Besides the previously discussed displacement accuracy, two other important properties of the

predictor-corrector algorithms have to be investigated. The first property is that the commanded

actuator displacement paths are sufficiently smooth, which becomes important in continuous

testing. Sufficiently smooth refers to displacement commands that are 0C -continuous; thus, there

is no sudden displacement jumps. While it might seem advantageous to ask for 1C -continuity

(continuous first derivatives) as well, it was found that it makes the system more likely to

become unstable when switching from prediction to correction. This is because the accuracies of

the corrector decrease with increasing continuity at the switching point. The second property that

should be investigated is the velocity accuracy, which becomes important in real-time testing.

This is especially true if velocity-dependent components such as base-isolation devices and

dampers are part of a hybrid simulation.

Returning to the predictor-corrector algorithms discussed in the previous section it

becomes obvious that when the algorithm is required to switch within one controller time step,

contΔ , (typically one millisecond) from the last predicted displacement value to the first corrected

displacement value, a very high-velocity demand is created, resulting in an almost step-like

discontinuity. Even though this problem decreases with an increasing order of the Lagrange

polynomials, it might still create undesired actuator oscillations (similar to a step input) if the

servo-hydraulic control system is tuned to behave highly responsive. Therefore, with the existing

extrapolation-interpolation schemes neither 0C -continuity nor velocity accuracy is achieved.

Correction (Cn):
To correct the first property and thereby make the predictor-corrector algorithms 0C -continuous,

the corrector Lagrange polynomials are modified to include the last predicted displacement. The

 170

predictor formulas remain unchanged. By replacing the last trial displacement at time step ,int it

with the last predicted value, the following expression is obtained for the predictor.

 () () ()
1

, ,
1

0

, ,
p pc k n k p x n x p

k n
k

dsp x f C x x f C x x
=− +
≠

= +∑ (5.9)

where kf are the displacements calculated by the integrator and
pxf is the last predicted

displacement. The range for x is again []0, 1x ∈ and []0, 0.8px ∈ . The modified Lagrange

functions up to a third-order predictor are given below.

Table 5.3 Modified corrector Lagrange functions up to order 3.

1,1 1
p

p

x x
C

x
−

= −
−

()()

()2,1

1

2 1
p

p

x x x
C

x

− +
= −

−

()()()
()3,1

1 2

6 1
p

p

x x x x
C

x

− + +
= −

−

1,
1
1px

p

xC
x

−=
−

 ()()
()()2,

1 1
1 1px

p p

x x
C

x x
− +

=
− +

 ()()()
()()()3,

1 1 2
1 1 2px

p p p

x x x
C

x x x
− + +

=
− + +

-
()()

()2, 1

1

2 1
p

p

x x x
C

x−

− −
=

+

()()()
()3, 1

1 2

2 1
p

p

x x x x
C

x−

− − +
=

+

- -
()()()

()3, 2

1 1

3 2
p

p

x x x x
C

x−

− − +
= −

+

To evaluate the accuracy of the new corrector, a sinusoidal vibration is assumed once

again. Substitution of (5.3) and of ((5.4) evaluated at px) into (5.9) and trigonometric expansion

delivers the following result.

 () ()sinc d intdsp x A R tω φ= + (5.10)

 171

where:

()() ()

() ()() ()

()() ()

() ()() ()

2 2

1

,
1

0

0

, ,

1

,
1

0

0

, ,

, arctan

cos ,

, cos

sin ,

, sin

p

p

C
d S C

S

S int n k p
k n
k

n x p int p m k p
k m

C int n k p
k n
k

n x p int p m k p
k m

CR C C
C

C t x k C x x

C x x t x k P x

C t x k C x x

C x x t x k P x

φ

ω

ω

ω

ω

=− +
≠

=−

=− +
≠

=−

⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠

= Δ −

+ Δ −

= − Δ −

− Δ −

∑

∑

∑

∑

 (5.11)

The graphical evaluation and the comparison against all the other algorithms for different

values of x and px are discussed in a later section, after the formulas for all the investigated

predictor-corrector algorithms have been presented.

Fig. 5.7 Corrector using a third-order Lagrange polynomial including the last predicted
value.

5.3.3 Algorithms Using Velocities

As described in the previous section it would be advantageous not only to achieve 0C -continuity

but also to improve the velocity accuracy. While the earlier suggested modifications to the

corrector accomplish the sought-after continuity, the velocity accuracy has not been improved

yet. A first step towards attaining better velocity accuracy is to incorporate velocities in addition

 172

to the displacements utilized so far. Depending on the employed integration method, accurate

trial velocities are readily available and can thus be sent to the predictor-corrector algorithm

together with the trial displacements. This is especially true for all the Runge-Kutta methods,

where the solution vector directly contains displacements and velocities (see Chapter 4).

However, for many of the direct integration methods the trial velocities at the integration time

steps or substeps (iterative methods) are not very accurate or unavailable, and they are therefore

incapable to improve the velocity accuracy of the predictor-corrector algorithms. In these cases

velocity estimates can be obtained from numerical differentiation formulas as shown below.

Prediction (PV):
In this instance, the predicted displacements are expressed in terms of a Hermit polynomial using

the last n displacement values as well as the last n velocity values.

 () () ()
0 0

2 1, 2 1,
ˆ

p k n k k n k
k n k n

dsp x f P x f P x+ +
=− =−

′= +∑ ∑ (5.12)

where kf and kf ′ are the displacements and velocities at the integration time steps, and,

as always, []0, 0.8x ∈ . For convenience the Hermit functions for the third-order polynomial are

given below.

() () ()

() ()

2 2
3,0 3,0

2 2
3, 1 3, 1

ˆ1 2 1 1
ˆ2 3 1

P x x P x x

P x x P x x− −

= − + − = +

= + = +
 (5.13)

If the velocities kf ′ in (5.12) are received from the integration method, they have to be

multiplied by the integration time step, inttΔ , before the substitution, since the x-axis is

dimensionless and not in units of time.

On the other hand, if the velocities are determined utilizing numerical differentiation

formulas, they can directly be substituted into (5.12) because the x-axis is already dimensionless.

The differentiation formulas for second-order accurate velocities take the following form.

()

()

0 0 -1 -2

-1 0 -2

1 3 4
2
1
2

f f f f

f f f

′ = − +

′ = −
 (5.14)

For third-order accuracy the velocities are expressed in the following manner.

 173

()

()

0 0 -1 -2 -3

-1 0 -1 -2 -3

1 11 18 9 2
6
1 2 3 6
6

f f f f f

f f f f f

′ = − + −

′ = + − +
 (5.15)

And finally the fourth-order formulas approximate the velocities as follows.

()

()

0 0 -1 -2 -3 -4

-1 0 -1 -2 -3 -4

1 25 48 36 16 3
12
1 3 10 18 6

12

f f f f f f

f f f f f f

′ = − + − +

′ = + − + −
 (5.16)

Fig. 5.8 Predictor using a third-order Hermit polynomial.

The accuracy of this predictor is evaluated in the same manner as for the previous ones

except that the second-, third-, or fourth-order velocities are substituted into (5.12) before the

amplitude change dR and the phase shift φ are determined. Due to their complexity these

formulas are no longer presented here, but the results are shown graphically at the end of this

section.

Correction (CV):
In order for a corrector formula to increase the velocity accuracy while maintaining the 0C -

continuity, trial velocities as well as the last predicted displacement value need to be

incorporated. Again, as for the previously suggested predictor, only 0C -continuity is provided in

the switching interval. This makes the system more stable in case the predicted displacements are

fairly inaccurate. Compared to the almost jump-like displacement command that was

encountered in the switching interval of the original algorithm, the 0C -continuity permits a

discontinuity only in the velocity. This reduces possible oscillations significantly. Furthermore,

 174

since 1C -continuity is not enforced, the corrector does not use the erroneous last velocity of the

predictor to initially shoot in the wrong direction before correcting to the next trial displacement.

 () () () ()
1 1

2 , 2 , 2 ,
1 1

0 0

ˆ, , ,
p pc k n k p k n k p x n x p

k n k n
k k

dsp x f C x x f C x x f C x x
=− + =− +
≠ ≠

′= + +∑ ∑ (5.17)

where kf and kf ′ are the displacements and velocities at the integration time steps and

pxf is the last predicted displacement. The ranges for x and px are as before []0, 1x ∈ and

[]0, 0.8px ∈ . As with the predictor formula the velocities kf ′ in (5.17) have to be multiplied by

the integration time step, inttΔ , if they are received from the integration method. Since this

corrector can have only order 2n , the second-order functions are given as an example below.

The second-order corrector is preferred over the fourth-order one because less time and memory

are consumed to calculate the command displacements.

()()
()

()()

()
()

2,1 2,12

2

2, 2

2 1ˆ
11

1

1p

p p p

pp

x

p

x x x x x x x
C C

xx

x
C

x

+ − − − −
= − = −

−−

−
=

−

 (5.18)

Fig. 5.9 Corrector using a second-order polynomial including the last predicted value.

Once more the accuracy formulas are not presented here due to their complexity, but the

results are shown graphically at the end of this section.

 175

5.3.4 Algorithms Using Accelerations

So far, all the predictor-corrector algorithms were based on polynomial approximations used in

numerical mathematics and less so on the physical behavior of a system.

Prediction (PVA):
In order to further improve the prediction and correction of actuator command signals, the

physical behavior of a mass under the action of a constant force is incorporated into the

algorithm. This means that it is assumed that the force does not change over a time step and is

equal to the force at the beginning of the step. If the sum of all acting forces (applied, damping,

and resisting) is constant, then by Newton’s second law of motion, the acceleration has to be

constant over a time step as well. Integrating the constant acceleration twice and using the

displacement and velocity at the beginning of the time step as initial conditions, the following

equation for the predictor is obtained.

 () 2
0 0 0

1
2pdsp x f x f x f′ ′′= + + (5.19)

where 0f , 0f ′ , and 0f ′′ are the displacement, velocity, and acceleration, respectively, at

the last integration time step, and []0, 0.8x ∈ as always. If the velocities 0f ′ and accelerations

0f ′′ in (5.19) are received from the integration method, they have to be multiplied by inttΔ and
2
inttΔ , respectively, since the x-axis is dimensionless and not in units of time.

Alternatively, if the velocities and accelerations are determined utilizing numerical

differentiation formulas, they can be substituted directly into (5.19) because the x-axis is already

dimensionless.

Fig. 5.10 Constant acceleration predictor.

 176

The differentiation formulas for the velocities remain unchanged from the previous

subsection. The formulas for the second- to fourth-order accurate accelerations take the

following forms.

 0 0 -1 -2 -32 5 4f f f f f′′ = − + − (5.20)

 ()0 0 -1 -2 -3 -4
1 35 104 114 56 11

12
f f f f f f′′ = − + − + (5.21)

 ()0 0 -1 -2 -3 -4 -5
1 45 154 214 156 61 10

12
f f f f f f f′′ = − + − + − (5.22)

The accuracy of this predictor is evaluated in the same manner as for the previous ones

except that the second-, third-, or fourth-order velocities and accelerations are substituted into

(5.19) before the amplitude change dR and the phase shift φ are determined. Due to their

complexity these formulas are again omitted here, but the results are shown graphically at the

end of this section.

Correction (CVA):
The expression for a corrector that is making use of accelerations is derived similarly to the

previous one, which used only displacements and velocities. The only differences between the

two are the addition of the third term and the change of the order.

() () ()

() ()

1 1

3 , 3 ,
1 1

0 0

1

3 , 3 ,
1

0

ˆ, ,

, ,
p p

c k n k p k n k p
k n k n
k k

k n k p x n x p
k n
k

dsp x f C x x f C x x

f C x x f C x x

=− + =− +
≠ ≠

=− +
≠

′= +

′′+ +

∑ ∑

∑ %
 (5.23)

where kf , kf ′ and kf ′′ are the displacements, velocities, and accelerations, respectively,

at the integration time steps, and
pxf is the last predicted displacement. The ranges for x and px

are as before, []0, 1x ∈ and []0, 0.8px ∈ . The functions that multiply the displacements, velocity

and acceleration for a third-order corrector are given by.

()()()
()

()()()
()

() ()
()

()
()

2 2

3,1 3,13 2

2 3

3,1 3, 3

3 3 3 2 1ˆ
1 1

1 1
2 1 1p

p p p p p p

p p

p
x

p p

x x x x x x x x x x x x
C C

x x

x x x x
C C

x x

+ − + − + − + − − −
= − = −

− −

− − −
= − =

− −
%

 (5-24)

 177

Fig. 5.11 Corrector using a third-order polynomial including the last predicted value.

5.3.5 Graphical Evaluation and Comparison

In order to evaluate the different predictor-corrector algorithms graphically and compare them,

the calculated amplitude and phase accuracies are plotted against the normalized integration time

step, intt TΔ . While for the low-frequency modes of vibration, the normalized integration time

step will be on the lower end of the plotted range, it can lie in the upper part of the plotted range

for the higher modes of a multi-degrees-of-freedom system. If these high-frequency modes

contribute significantly to the overall response of the structure, their amplitude and phase

accuracies are essential as well. The amplitude change dR and phase shift φ are plotted for three

different values of px (0.2, 0.5 and 0.8). For the predictors, px x= and []0, 0.8x ∈ . As

mentioned earlier, the prediction is limited to a maximum of 80% of the simulation time step in

order to leave a minimum of 20% of the simulation time step for the correction towards the next

trial displacement. For the correctors 0.5 2px x= + is chosen to evaluate the accuracy in the

middle between the last predicted value and the new trial value and the fourth-order numerical

differentiation formulas are utilized to obtain velocities and accelerations.

 178

Predictors:
As can be seen from Fig. 5.12, the amplitude and phase accuracies of the two newly proposed

predictors are overall better than the accuracies of the original ones. In addition, the accuracies of

the newly developed predictors are generally very similar where the one using accelerations is

slightly more accurate than the other using velocities only. It can be seen that the new predictors

are significantly more accurate for the low-frequency modes (0.2intt TΔ <). Above such value

their accuracy is less consistent and starts picking up some oscillatory behavior due to the high-

order polynomials that are generated by the numerical differentiation formulas. This fact, which

is well known from numerical mathematics, is called the Runge phenomenon. It states that by

interpolating a function at equidistant points in a given interval using a high-order polynomial,

the resulting interpolation will oscillate towards the end of the interval. This is also the reason

why the original predictors go up only to order three, because the fourth-order polynomial

already shows significant oscillatory behavior and is thus less accurate for the high-frequency

modes.

Correctors:
Fig. 5.13 shows the amplitude changes and the phase shifts for the corrector algorithms, which

do not incorporate the last predicted displacement. It can be seen that the correctors are overall

more accurate than the predictors. This is due to the fact that the trial response quantities at the

new step (or substep) are available to the correctors, and the calculated command displacements

are therefore within the interval of known values. On the other hand, the calculated command

displacements during prediction lie outside the interval of known values. However, it is

important to remember that these corrector algorithms are unable to generate 0C -continuous

displacement commands and therefore produce a step-like signal in the switching interval. Such

inaccuracies and deficiencies are graphically not captured in Fig. 5.13. Furthermore, it can be

observed that the correctors that are incorporating velocities and accelerations achieve about the

same order of accuracy as the original second- and third-order correctors. It is also interesting to

note that the corrector that incorporates velocities is overall the most accurate one.

 179

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3
R

d
��
�

Amplitude Change: x�0.2

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: x�0.2

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3

R
d
��
�

Amplitude Change: x�0.5

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: x�0.5

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3

R
d
��
�

Amplitude Change: x�0.8

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: x�0.8

Fig. 5.12 Accuracies of predictors in terms of amplitude and phase.

P1 P2 P3 PV PVA

 180

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3
R

d
��
�

Amplitude Change: x�0.6

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: x�0.6

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3

R
d
��
�

Amplitude Change: x�0.75

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: x�0.75

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3

R
d
��
�

Amplitude Change: x�0.9

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: x�0.9

Fig. 5.13 Accuracies of correctors in terms of amplitude and phase.

C1 C2 C3 CV CVA

 181

Correctors Using Last Predicted Displacement:
It is evident that overall the C0 -continuous predictors are slightly less accurate than their

discontinuous counterparts. This effect is due to the incorporation of the last predicted

displacement into the corrector formulas, which even at 0.2px = already have some prediction

errors. However, at the cost of slightly reduced accuracies the step-like discontinuities in the

switching interval are entirely eliminated. From Fig. 5.14, it can be seen that this trend for the

amplitude and phase accuracies becomes more pronounced the larger px gets. The further away

the prediction is from the last known value, the larger the error in the last predicted displacement

and the more inaccurate the C0 -continuous correctors perform. However, one has to keep in

mind that for the discontinuous correctors, the jump in the switching interval increases as well

with increasing px . And, if this almost step-response-like switching discontinuity becomes too

large, a responsive servo-hydraulic system will introduce overshoot and oscillations into the

actuator commands at those points making the correction very inaccurate. So, it seems that a C0 -

continuous corrector with a somewhat reduced accuracy would be preferable over a

discontinuous corrector that might initiate oscillations into the actuator commands. As can be

seen from Fig. 5.14, for small values of px all the corrector algorithms achieve quite similar

orders of accuracy, with the C3 and CV correctors being the most accurate. On the other hand,

for larger values of px it is evident that the correctors that incorporate velocities and

accelerations achieve better performance, with the CVA corrector clearly being the most

accurate and thus preferred algorithm.

5.3.6 Advantages, Disadvantages, and Recommendations

While the advantages and disadvantages of each individual predictor and corrector are

summarized in Table 5.4 below, some general advantages and disadvantage are first introduced.

In the hybrid simulation of complicated structures that consist of nonlinear elements in their

analytical subassemblies, it cannot always be guaranteed that the solution of the equations of

motion is available to the controller (which is commanding the transfer system) on time. This is

even true if an explicit direct integration method is used to solve the equations of motion. For

geographically distributed hybrid simulations among several laboratories, this problem becomes

even more serious because the solutions will inevitably be delayed due to latencies in the

network communications.

 182

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3
R

d
��
�

Amplitude Change: xp�0.2, x�0.6

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: xp�0.2, x�0.6

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3

R
d
��
�

Amplitude Change: xp�0.5, x�0.75

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: xp�0.5, x�0.75

0 0.05 0.1 0.15 0.2 0.25
�tint�T ���

0.7

0.8

0.9

1

1.1

1.2

1.3

R
d
��
�

Amplitude Change: xp�0.8, x�0.9

0 0.05 0.1 0.15 0.2 0.25

�tint�T ���

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

Φ
�r

ad
�

Phase Shift: xp�0.8, x�0.9

Fig. 5.14 Accuracies of correctors including last predicted displacement.

C1 C2 C3 CV CVA

 183

Thus, the main advantage of the predictor-corrector algorithms is that they eliminate this

problem by continuously producing actuator command signals, thereby creating a bridge

between the computational driver and the transfer system imposing the boundary conditions.

Another advantage comes directly from the ability to produce continuous actuator command

signals. This eliminates or at least reduces the problems associated with force relaxation. On the

other hand, the biggest problem with the predictor-corrector algorithms is that they need to

predict the response at certain degrees of freedom of a structure without any knowledge about

the properties of such structure. Hence, even though the predicted response is continuous, it

could be very erroneous. Another problem is that in their current form the predictor-corrector

algorithms do not work well with iterative integration methods. This problem and, accordingly,

solution strategies are addressed in a later section of this chapter.

Table 5.4 Summary of advantages/disadvantages for predictor-corrector algorithms.

Algorithm Advantages Disadvantages
Hold and

Ramp
o Works well with iterative

integrators
o Fast calculation due to easy

formulas

o Discontinuous actuator
motions with noniterative as
well as iterative integrators

o Very inaccurate compared to
continuous command signals

o Force relaxation problems
during hold phase

o Potentially high velocities in
ramp phase if hold phase
takes up 80% of the time step

Original Dis-
continuous

o Fairly accurate, low-order
correctors

o Based on pure numerical
polynomial interpolation

o Considerable inaccuracies for
high-frequency modes or
large integration time steps

o Step-like discontinuity in
switching interval which can
cause oscillations of servo-
hydraulic control system

o Oscillations of high-order
polynomials (Runge-
phenomenon)

o Very inaccurate if used with
iterative integrators

Modified 0C -
Continuous

o 0C -continuous and therefore
no step-like discontinuity in
the switching interval

o Based on pure numerical
polynomial interpolation

o Large inaccuracies for high-

 184

frequency modes or large
integration time steps

o Oscillations of high-order
polynomials (Runge-
phenomenon)

o Very inaccurate if used with
iterative integrators

Utilizing
Velocities

o Predictor and corrector
achieve good accuracy

o 0C -continuous

o Based on pure numerical
polynomial interpolation

Utilizing
Accelerations

o Based on the physical
behavior of a mass

o Most accurate of all the
methods

o 0C -continuous

o Minor oscillations at larger
values of the normalized
integration time step (slight
Runge-phenomenon)

To conclude, it is recommended that the predictor-corrector algorithms, which are based

on velocities and accelerations and are 0C -continuous, are utilized whenever possible. This is

especially true if noniterative integration methods or integration schemes with constant numbers

of iterations are employed (see Chapter 4). Furthermore, all the discontinuous predictor-corrector

algorithms should be avoided and their 0C -continuous counterparts should be utilized instead.

This eliminates step-like command input conditions in the switching interval and as a

consequence, reduces displacement and thus force oscillations that often destabilize transfer

systems. On the other hand, if unmodified iterative integration schemes are employed in the

finite element analysis software, the traditional hold and ramp algorithms or the adaptive

methods that are discussed later should be utilized to avoid displacement oscillations.

5.4 ADAPTIVE EVENT-DRIVEN STRATEGIES

5.4.1 Existing Strategy

After the development and discussion of two of the key elements of the three-loop architecture,

the next step is to investigate how the improved synchronization predictor-corrector algorithms

can be incorporated into the intermediate loop of such architecture. As mentioned earlier, the

time required to advance the solution of the equations of motion by the integration time step,

inttΔ , is not constant. This is especially true for complex structures with material and geometric

nonlinearities in their analytical subassemblies. In geographically distributed hybrid simulations,

 185

the time that passes until the next trial response quantities are available happens to be even less

predictable. Random delays due to network latencies have to be added to the time consumed by

the computational driver. To deal with this randomness of the system, Mosqueda (2003)

introduced an event-driven algorithm (a finite-state machine) that utilizes the predictor-corrector

algorithms and is placed in the intermediate loop of the three-loop architecture. A finite-state

machine is composed of states in which the system can exist and transition between those states.

Guards and/or triggers (i.e., events) control the execution of the transitions. Furthermore, actions

can be attached to transitions and/or states.

The existing event-driven controller (Mosqueda 2003) is composed of four states. During

standard operation, the trial response quantities from the integration method are available

without delays and the controller will simply switch between the Prediction state and the

Correction state. The actions that are executed while these states are active are the third-order

extrapolation and the third-order interpolation methods of the predictor-corrector algorithms.

However, if the integration method is taking too long to calculate the new response quantities or

the transfer of such trial quantities across the network is delayed, the algorithm adapts and slows

down the prediction. This is achieved by triggering a transition from the Prediction state into a

SlowDown state. The guard on this transition is checking that a given percentage of the

simulation time step, simtΔ , has passed in order to execute the transition. The actions, which are

executed while in the SlowDown state, are still third-order extrapolations but they move the

actuators at half the speed, thus allowing more time to receive the next trial response quantities.

If the new prescribed boundary conditions become available within a specified time frame, the

finite-state machine is triggered to transition from the SlowDown state back to the Correction

state. On the other hand, if the trial response quantities have still not been received after the

specified time has passed, the controller transitions into a Hold state. During the Hold state,

constant command signals are sent to the control system, which effectively stops the actuators

from moving. Once the response quantities at the next time-step become available, the controller

is triggered to transition back to the Correction state. Nakashima and Masaoka (1999) found that

the most appropriate values to use for the two guards between the Prediction, SlowDown, and

Hold states are 60% and 80% of the simulation time step, simtΔ . This means that after 60% of the

simulation time step has passed, the controller slows the actuator movements down to half the

 186

speed and completely stops the movements at 80% of the simulation time step. This leaves a

guaranteed minimum of 20% of the simulation time step for subsequent corrections.

5.4.2 Smooth Slow-Down Strategy

The problem that arises with the just-described event-driven strategy is that there is no smooth

transition from the Prediction state to the Hold state and from the Hold state back to the

Correction state. The velocities are not continuous, since the transfer system jumps from full

speed to half speed to zero speed and back to full speed. If these velocity discontinuities are

large, they can cause oscillations in the actuator movements as they were encountered in real

tests in the laboratory. The response of the actuators to those velocity discontinuities depends a

lot on all the tuning parameters of the control system. However, if these discontinuities are

already eliminated in the implementation of the event-driven strategy, then the problem of tuning

the servo-hydraulic control system to be responsive enough while trying to reduce oscillations

can be avoided.

Fig. 5.15 Displacement path and execution sequence of smooth slow-down strategy.

 187

In order to improve the event-driven controller, a continuous change of the actuator

velocities is incorporated into the SlowDown and the Correction states. Since the SlowDown

state reduces the actuator velocities smoothly all the way to zero, the previously used Hold state

is superfluous and is therefore eliminated. The Correction state is modified such that if it is

entered from the SlowDown state, it increases the actuator velocities smoothly from the last

velocities in the SlowDown state back to the full velocities at the target. In contrast, if the

Correction state is entered directly from the Prediction state during standard operation, no

velocity changes take place. These two modes of operation are illustrated in Fig. 5.15 below.

To obtain the sought after smooth velocity change in the SlowDown state, the counter-

increment is linearly reduced from , 1i SDΔ = at 60% of the integration time step to , 0i SDΔ = at

80% of the integration time step. The reduction of the counter-increment effectively slows down

the actuators because additional substeps (each one of length contΔ) are being generated within

the simulation time step. Similarly, the counter-increment is linearly increased again during the

Correction state starting from the last used counter-increment in the SlowDown state ,i i SDΔ = Δ

back to 1iΔ = .

Fig. 5.16 Relationship between counter-increment and counter for smooth velocity
transitions.

()

()

,

,

1.01.0 0.6 4.0
0.2 0.2

1.0min max ,0.001 ,1.0
0.2

i SD

i i SD SD

ii N
N N

i i
N

Δ = − − = −

⎡ ⎤⎡ ⎤Δ = Δ + −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 (5.25)

In the above formulas, i is the counter and N is the total number of substeps (which is

equal to the simulation time step simtΔ divided by the controller time step contΔ). In formula

 188

(5.25) the maximum condition ensures that the velocity can increase again if it dropped all the

way to zero and the minimum condition guarantees that the counter increment does not increase

above one. All these event-driven strategies are implemented in Stateflow, a graphical design

and development toolbox in Matlab/Simulink (Mathworks) for simulating complex reactive

systems based on finite state machine theory. On the other hand, the previously discussed

predictor-corrector functions are implemented using the C programming language. By including

the header file and specifying the source file within Stateflow, access to the whole library of

discussed predictor-corrector algorithms is obtained. These event-driven strategies are then

incorporated into a Simulink (Mathworks) model, which runs on a real-time platform and

communicates with the finite element analysis software utilizing the OpenFresco middleware

(see Chapter 3).

5.4.3 Adaptive Velocity Strategies

Several situations arise in hybrid simulation where it becomes advantageous to automatically

adjust actuator velocities and thus testing speeds. Often times when executing a hybrid

simulation of a structure excited by an earthquake, the interesting parts of the experimental test

are strongly correlated with the intensity of the ground motion. Meaning, that the beginning and

the end of a test are usually less interesting due to the fact that the ground motion intensity is

very low and the structural response is very small. As long as the experimental subassemblies do

not exhibit rate-dependent behaviors, one possible solution to this problem is to execute a hybrid

simulation with constant, user-specified actuator velocities. Since the actuators move at a

constant velocity, testing is effectively accelerated for those parts of the simulation that produce

small structural responses and is thus made more interesting. To achieve this goal the simulation

time step simtΔ (respectively the total number of substeps N) is adjusted during simulation

according to the size of the trial response increment received from the finite element analysis

software.

 0 1ceil
Act con

f f
N

v t
−⎛ − ⎞

= ⎜ ⎟Δ⎝ ⎠
 (5.26)

where 0f and 1f− are the trial displacements at the new and previous integration steps,

Actv is the user-specified actuator velocity, and contΔ is the time step of the control system. If

multiple actuators are commanded by a single control system, one of them is chosen as the

 189

master actuator for which the user specifies the desired velocity. The remaining actuators are

then slaved to the master in the sense that their velocities are given, because they depend on the

total number of substeps N , which is determined from the master. To prevent the actuators from

exceeding their velocity limits and to guarantee that N does not fall below a minimum number

of substeps, additional checks are performed after the evaluation of (5.26).

A second situation where it is critical to adapt actuator speeds during the course of a

hybrid simulation arises when iterative integration methods are employed. As was explained

earlier in Chapter 4, displacement increments decrease rapidly during the iteration process due to

the quadratic convergence of the Newton-Raphson algorithm. If the control system is allotted the

same time interval to impose such inconsistent displacement increments, velocity and thus force

oscillations are generated in the transfer system. Hence, to lessen these oscillations, the event-

driven strategy needs to adjust the time interval over which the displacement increments are

imposed during simulation. To achieve this goal the size of the response increments are checked

as they are received from the finite element analysis; and if they exceed a user-specified limit

limUΔ the time over which such increments are applied (respectively the total number of

controller substeps N) is automatically increased.

 0 1 lim

0 1 lim

f f U reset N

f f U increase N
−

−

− ≤ Δ →

− > Δ →
 (5.27)

This means that the actuators are effectively slowed down when they impose the larger

displacement increments at the beginning of the iteration process and move at the normal rate

while applying the smaller increments towards the end of the equilibrium solution process.

5.4.4 Interlaced Solution Strategy

In the interlaced solution strategy two synchronized integration methods are interlaced in time,

meaning that both schemes have an integration time step equal to 2 inttΔ , but they are spaced at

half of this time step. Furthermore, it is assumed that both integration methods run on the same

machine (in the outermost loop of the three-loop architecture), while a predictor-corrector

algorithm runs on a separate real-time platform in the intermediate loop as before.

According to Fig. 5.17, the interlaced solution procedure has the following steps: Once

the trial displacements calculated by integrator A have been reached at ,a it , the corresponding

 190

resisting forces ,a ifrc are measured (this is indicated by the upwards pointing arrow). Integrator

A then uses such resisting forces to compute the trial displacements at the next time step , 1a it + . In

the meanwhile, the corrector algorithm is generating displacement command signals shooting

towards the known trial displacements at time ,b it . Once these trial displacements at ,b it are

reached, the corresponding resisting forces are measured and integrator B starts to solve the

equations of motion for the new response at , 1b it + . This sequence of operations is repeated for the

total number of time steps divided by two. It can be seen from Fig. 5.17, as well as concluded

from the assumptions above, that under normal operation the maximum allotted computation

time per time step is equal to simtΔ for both of the integration methods.

Fig. 5.17 Displacement path and execution sequence of interlaced solution strategy.

The big advantage of the interlaced solution strategy is that the machine that is solving

the equations of motion is working to full capacity. This means that contrary to solution

strategies with a single integrator, there is no idle time between computation tasks. Such idle

times in single integrator strategies are inevitable. This is because after the calculated trial

 191

displacements are sent off, the integrator has to wait until the displacements are applied and the

corresponding forces have been measured (see Fig. 5.15). Because the computer that is executing

the integration task is working to full capacity, the hybrid simulation can be run at a faster speed.

This means that a shorter simulation time step simtΔ can be chosen than in the case where only

one integrator is engaged. To cope with the randomness of network communication times in

geographically distributed hybrid simulations, the previously developed event-driven predictor-

corrector algorithms can be employed again. As before, such algorithms will slow down the

displacement commands at 60% of the simulation time step, and hold them at 80% of the

simulation time step. In addition, the advantage remains that the integrator machine is working to

full capacity and is therefore producing trial displacements faster than a machine running a single

integrator.

Because the two integration schemes in the interlaced solution strategy both utilize an

integration time step that is equal to 2 inttΔ , some further attention needs to be paid to the time-

step selection. To investigate the continuity and uniformity of the displacement command signals

that are imposed on the experimental portions of a structure, a two-degrees-of-freedom-of-

freedom, one-bay-frame model is analyzed using the interlaced solution strategy. The one-bay-

frame model is equivalent to the one that was utilized for the rapid geographically distributed

hybrid simulations (see Chapter 6). It is defined by two column elements that are connected by a

fairly flexible linear-elastic truss element. While the right linear-elastic column is always

modeled analytically, the left column is tested experimentally and exhibits either a linear or

nonlinear behavior. The explicit Newmark method was employed for both of the interlaced

solution schemes with integration time-step sizes of 0.02inttΔ = and 0.01inttΔ = sec. For

comparison, the hybrid model was also analyzed by the regular explicit Newmark integration

method with a time-step size of 0.02inttΔ = . Fig. 5.18 shows the entire time history as well as

close-ups of the displacement command signals at the controlled degree of freedom of the

experimental element. In the linear case, it can be observed that the interlaced solution strategy

generates somewhat jagged displacement commands if the original integration time step of

0.02inttΔ = sec is utilized. However, by selecting an integration time step that is half as large,

0.01inttΔ = sec, the interlaced solution strategy is capable of producing a smooth and uniform

trial response for the transfer system.

 192

0 5 10 15 20 25 30

−3

−2

−1

0

1

2

3
D

is
pl

ac
em

en
t [

in
.]

Time [sec]

Linear One−Bay−Frame Model

normal Δt

int
 = 0.02

interlaced Δt
int

 = 0.02

interlaced Δt
int

 = 0.01

0 5 10 15 20 25 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

D
is

pl
ac

em
en

t [
in

.]
Time [sec]

Nonlinear One−Bay−Frame Model

normal Δt

int
 = 0.02

interlaced Δt
int

 = 0.02

interlaced Δt
int

 = 0.01

7.4 7.6 7.8 8 8.2 8.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

D
is

pl
ac

em
en

t [
in

.]

Time [sec]

Linear One−Bay−Frame Model

normal Δt
int

 = 0.02

interlaced Δt
int

 = 0.02

interlaced Δt
int

 = 0.01

7 7.2 7.4 7.6 7.8 8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D
is

pl
ac

em
en

t [
in

.]

Time [sec]

Nonlinear One−Bay−Frame Model

normal Δt
int

 = 0.02

interlaced Δt
int

 = 0.02

interlaced Δt
int

 = 0.01

Fig. 5.18 Displacement command signal comparison for interlaced solution strategy.

In the nonlinear case, a similar but more severe behavior can be observed, meaning that

the displacement commands are more jagged and inaccurate for large integration time steps.

Since the trial response is still somewhat jagged even for 0.01inttΔ = , the integration time-step

size should be further reduced in order to generate smooth enough command signals for the

transfer system. So whenever the interlaced solution strategy is employed in hybrid simulations,

 193

it is critical that an integration time step is determined that guarantees a smooth displacement

command signal generation. Because this time-step size can quickly become very small, it is

recommended to instead utilize one of the adaptive strategies discussed next.

5.4.5 Adaptive Simulation Time-Step Strategies

Based on the event-driven control approaches developed by Sandee et al. (2005), some new

promising solution strategies for hybrid simulation are proposed below. Furthermore, problems

and difficulties encountered with one of the suggested ideas are explained as well. The proposed

event-driven solution methods can be divided into two categories: (1) methods that handle

asynchronous actions by adapting the simulation time step while keeping the integration time

step constant (discussed in this section) and (2) methods that deal with asynchronous actions by

adjusting the integration time steps (discussed in the next section).

Skipping Ahead:
One of the problems with the current event-driven solution schemes is that if the computational

driver takes a long time to compute the new trial response quantities or the transmission of those

quantities is delayed through the network, there remains very little time to correct the actuator

positions to the target values. This is because the event-driven controller will generate predicted

command displacements up to 80% of the simulation time step, leaving only 20% of such time

step for correction. So if the prediction is not extremely accurate, significant corrections need to

be applied in very little time. This makes it difficult to generate smooth actuator command

signals.

In order to improve the current strategy, one of the main ideas is to use some approximate

predictor to not only predict the response a single time step ahead (intt+Δ), but also generate

predictions that extend further out (int2 t+ Δ , int3 t+ Δ , …). These predicted response quantities

correspond directly to the trial response quantities computed in the integration methods. Thus,

multiplying the integration time step by the appropriate factors and recalculating the trial

response quantities can generate predictions at multiples of the integration time step.

The first solution strategy that is trying to incorporate those additional trial response

quantities is shown in Fig. 5.19 above. It is assumed that 1iEvent + (that has trial displacements

extending out to 5 inttΔ attached) arrives very close to the end of a simulation time step. As was

 194

previously explained, this means that there would be very little time to correct towards the

targets at , 1int it + . So, instead of trying to correct towards those displacement targets, the idea is to

simply skip this step and head towards the next predicted targets at , 2int it + . However, the key

question is where the resisting forces required by the integration method should be measured.

Since the integrator does not know that the predictor-corrector algorithm is already heading for

the trial displacements at , 2int it + , the next received resisting forces are assumed to be the forces at

, 1int it + (in accordance with all the forces calculated by the analytical elements). Therefore, the

resisting forces need to be measured at the target displacements at , 1int it + .

Fig. 5.19 Difficulties with solution strategy that is skipping head.

From Fig. 5.19, it can be seen that for case (a) where the new trial displacement that

becomes available with 1iEvent + is above the current predicted value, the force could simply be

measured once that target is reached. On the other hand, in case (b) where the new trial

displacement is lower than the current displacement, it is not possible to measure the resisting

force anymore, since the predicted displacement shot over the target and is already heading

towards the next predicted value. Since there is no guarantee that the new trial displacements are

 195

always above the predicted displacements the event-driven strategy that is based on skipping

ahead has to be dismissed and other solution strategies need to be sought.

Constant Correction-Time:
An alternative approach that makes use of the predicted response quantities at multiples of the

time step (and that does not possess force measuring problems) uses a constant correction-time.

This means that no matter how late an event with the attached trial displacements is received, the

correction towards the new targets is executed over a predetermined constant time interval CT .

This time interval is chosen at the beginning of a hybrid simulation. The chosen value should be

large enough to allocate enough time for the corrector algorithm to achieve good performance

and can be determined from simulations previous to a test.

Fig. 5.20 Displacement path and execution sequence of constant correction-time strategy.

From Fig. 5.20 above, it can be seen that once the new trial displacements are obtained at

the occurrence of 1iEvent + the predictor-corrector algorithm is correcting towards the target over

the time interval CT . At the target displacement, the corresponding resisting forces are measured

and the predictor starts shooting towards the next available trial value. However, the simulation

time step simtΔ is adjusted by taking the length of the previous simulation time steps into

 196

account. The new simulation time step can be computed from the average of all the previous

simulation time steps or from a weighted moving average of the previous simulation time steps

with gradually increasing weights on the more current time steps.

() ()

1

, 1 ,
0

2
1

n

sim i sim i k
k

t n k t
n n

−

+ −
=

Δ = − Δ
+ ∑ (5.28)

where n is the total number of previous simulation time steps utilized for the calculation

of the next simulation time step. The purpose of adapting the simulation time step in such a

manner is to reduce the possibility that an event (like 2iEvent + in Figure 5.20) is received passed

the next predicted trial displacement. Since this might cause a load reversal and should therefore

be avoided, some additional safety factor could be used to increase the average simulation time

step computed in Equation (5.28). Furthermore, using this approach the simulation time step will

adapt to the variable network communication speed. This event-driven solution strategy should

thus be employed only if the experimental portions of a structure exhibit truly velocity-

independent behaviors.

5.4.6 Adaptive Integration Time-Step Strategies

The adaptive simulation time-step strategy introduced in the previous section improves several

aspects of traditional solution schemes. However, some of the problems remain still unresolved.

One of these problems is that by adapting the simulation time step, the hybrid simulation does

not run at a uniform speed but continuously slows down and speeds up depending on the

occurrence of the events. This produces velocities in the experimental subassemblies of a

structure that are no longer related to the real velocities (meaning that they are equal to or a

constant portion of the real velocities). Thus, two additional solution strategies that are based on

adapting the integration time steps (and therefore resolve this problem) are introduced and

discussed in this section. Both of these methods rely again on multiple predictions that extend

out several time steps ahead.

Adaptation by Multiples of Integration Time Step:
The first scheme that is proposed here adapts the integration time steps by multiples of the initial

integration time step. This means that if no event is received by the time the first predicted

displacement value is reached, the algorithm just keeps predicting towards the next values at

 197

, 2int it + , , 3int it + and so on. Once the new sequence of trial displacements is received from the

integration method, the predictor-corrector algorithm starts correcting towards the corresponding

new target. So, if the 1iEvent + is received after simtΔ but before 2 simtΔ (as shown in Fig. 5.21),

the second displacement of the just-received sequence has to be corrected towards. As soon as

the corrector reaches such displacement, the forces are measured. In addition to those measured

forces, an integer 2λ = is sent in order to inform the integration scheme that the returned forces

do not correspond to the trial displacements at , 1int it + but rather , 2int it + . With this information

available, the integrator then sends the trial response quantities at , 2int it + off to the analytical

elements and then assembles the global resisting force vector at such time step from the

analytical and experimental element resisting forces. Hence, the integration method is using

variable time steps that are multiples of the initially specified integration time step.

Fig. 5.21 Displacement path and execution sequence of first adaptive integration time-step
strategy.

The advantage of this solution strategy is that only small corrections have to be made

from the predicted response. Furthermore, since the simulation time step is not changed and no

 198

slow-down or hold states are needed, the hybrid simulation runs at a consistent speed and does

not continuously slow down or speed up. The rate at which the simulation is executed is

determined by the ratio of the simulation time step over the integration time step. Such time-step

values are chosen prior to starting a hybrid simulation and can be determined from previous

simulations.

The disadvantages of this strategy are that the machine running the computational driver

is not working to full capacity and the trial response quantities cannot be sent to the analytical

elements before the resisting forces are received from the experimental subassembly.

Furthermore, it is not yet clear how the integration time steps could be adapted in a hybrid

simulation with multiple experimental subassemblies. Difficulties arise when the forces sent

back from different subassemblies no longer correspond to the same time step. This occurs when

the experimental subassemblies did not receive the events at the same time and the predictions,

consequently, do not extend out by equal number of steps.

Adaptation Depending on Execution Time:
An alternative approach to the previous solution strategy is to adjust the integration time steps

not by multiples of an initial time step but by a variable length that depends on the previously

consumed computation plus transmission time.

With reference to Fig. 5.22, it can be seen that if Eventi +1 is not received by the time the

displacement commands reach the first of the predicted trial values, the forces and the

displacements are measured anyways. The prediction, however, is continued towards the trial

displacement at , 2int it + . Once the new trial displacements are received from the computational

driver, the previously measured forces and displacements as well as the time consumed by the

response analysis task, , 1RAT iT + , are sent back to the integration method. Since the forces were

measured at the wrong displacements, the error dspΔ between the measured and the calculated

displacements are used to correct the measured resisting forces utilizing the initial stiffness

matrix (or if available the tangent stiffness matrix) of the experimental subassembly. This

correction is similar to the initial stiffness modification that was proposed by Nakashima and

Kato (1987) to mitigate experimental errors generated by control systems. Once the integration

method has solved the equations of motion for the current time step, , 2 , 1int i RAT it T+ +Δ = is used to

create the new trial displacements at multiple future time steps.

 199

Fig. 5.22 Displacement path and execution sequence of second adaptive integration time-
step strategy.

The advantages of this method are, again, that only small corrections have to be made

from a predicted response and that the ratio of the simulation time step to the integration time

step is not changed. Furthermore, the trial response quantities can now be sent to the analytical

elements at the same time the predicted trial response quantities are sent to the experimental

subassemblies. This means that the analytical elements can perform their computations at the

same time that the control systems are imposing the displacement commands on the

experimental subassemblies. Additionally, this solution strategy is still applicable in a hybrid

simulation with multiple experimental subassemblies. In such tests, the new integration time

steps can be adjusted by considering all the response analysis task times RATT from all the

different subassemblies. Either the maximum or the average of the response analysis task times

can be used in the determination of the new integration time step. Thus, the two main problems

of the previously proposed solution strategy have been solved. Moreover, the third disadvantage

of the previous scheme, which was the rather extensive idle times of the computational driver,

has been improved (as can be seen from the execution sequence in Fig. 5.22 above).

 200

5.5 SUMMARY

The predictor-corrector algorithms and the event-driven solution strategies covered in this

chapter provide the required synchronization between the integration and actuator control

processes, which intrinsically run at different time rates. After a brief review of previous

developments a wide range of new predictor-corrector algorithms were discussed. These

algorithms achieve improved performance in the sense that they generate continuous

displacement command signals without the inconsistencies in the switching interval.

Furthermore, two predictor-corrector algorithms that are based on velocities and accelerations in

addition to displacements have been introduced. It has been shown that they achieve improved

accuracy while maintaining the continuity of the generated displacement command signals. The

theory of such algorithms was covered in detail and their performance and accuracy were

evaluated graphically. All of these synchronization predictor-corrector algorithms have been

implemented in the C programming language and are available to users for performing

continuous hybrid simulations.

The event-driven solution strategies, which utilize the previously described algorithms

for prediction and correction, were investigated next. Again the existing strategy was evaluated

first, and then based on the determined deficiencies new and improved solution strategies were

developed. These strategies are based on adaptive control concepts where parameters of the

event-driven controller, such as time steps, actuator velocities, etc., are adjusted during

simulation according to some suitable performance criteria. One of such solution strategies was

specifically developed to work in conjunction with the implicit Newmark direct integration

method (see Chapter 4), by adapting time intervals over which displacement commands are

imposed. Except for the adaptive strategies that have not been released yet, all the other event-

driven strategies have been implemented in Simulink/Stateflow (Mathworks) and are available to

users for performing hybrid simulations.

6 Hybrid Simulation Case Studies

6.1 INTRODUCTION

Case studies of two novel applications of hybrid simulation are presented in this chapter. The

main purpose is to demonstrate and validate the features and the flexibility of the redesigned and

newly implemented object-oriented hybrid simulation framework. The two case studies were

performed at the μNEES laboratory at the University of California, Berkeley, and utilize a wide

range of methods and implementation details for hybrid simulation.

6.2 RAPID GEOGRAPHICALLY DISTRIBUTED TESTS

The latest advancements in networking technology paired with the experimental software

framework OpenFresco make fast geographically distributed hybrid simulations finally feasible.

As part of the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES)

program, a national collaboratory, called the NEESgrid, has been developed. NEESgrid is based

on the Internet2’s Abilene network and links 15 NEES equipment sites together. The Abilene

network is a private high-speed backbone network, which is used for education and research and

has (as of 2006) a bandwidth of up to 10 Gbit/sec. For the fast geographically distributed hybrid

simulations which were performed between NEESinc in Davis, California, and the μNEES

laboratory of the nees@berkeley equipment site, one of the 1 Gbit/sec connections of the

NEESgrid network was utilized. The subsequently described tests demonstrate how OpenFresco

(see Chapter 3) in combination with a high-performance FE-software can be used to execute soft

real-time hybrid simulations across large network distances.

6.2.1 Motivation

Over the last decade the introduction of high-performance devices, to improve structural

behavior of components and/or systems under extreme loading conditions such as earthquakes,

blast, and wind, has increased notably. Most of these devices, such as base-isolation bearings,

 202

energy-dissipation devices, and high-performance materials, exhibit intrinsic rate-dependent

behavior. Thus, it is of utter importance that testing of structural systems incorporating such

devices is performed at the correct loading rates. This means that full-scale hybrid simulations

need to be executed in real-time. Furthermore, if the hybrid model happens to be a scaled version

of the prototype model with a length scale factor of Sl and additionally velocities need to be

preserved, meaning that the velocity scale factor Sv = 1, hybrid simulations are required to be

executed Sl
-1 times faster than real time. On the other hand, if strain rates instead of velocities are

to be preserved for the scaled model structure, experimental tests need again to be executed in

real time, since the time scale factor St = 1 is independent of the length scale Sl.

Table 6.1 Similitude laws for rapid testing.

Physical Quantity Dimension
Scaling Factor

with Sl, SE = Sv = 1
Scaling Factor

with Sl, SE = Sε& = 1

Length, l L Sl Sl

Displacement, d L Sl Sl

Velocity, v LT-1 1 Sl

Acceleration, a LT-2 Sl
-1 Sl

Force, F F Sl
2 Sl

2

Time, t T Sl 1

Modulus, E FL-2 1 1

Stress, σ FL-2 1 1

Strain, ε 1 1 1

Strain-Rate, ε& T-1 Sl
-1 1

Mass, m FL-1T2 Sl
3 Sl

Damping, c FL-1T Sl
2 Sl

Stiffness, k FL-1 Sl Sl

Period, T T Sl 1

Frequency, f T-1 Sl
-1 1

These similitude laws for the two scaling factor triplets (Sl, SE, Sv) and (Sl, SE, Sε&) are

shown in Table 6.1. A different important class of applications for which it is crucial to have the

ability to execute a test in real time are hybrid simulations that involve shaking tables. This

 203

means that the physical portion of the hybrid model is tested on a shaking table, which receives

real-time displacement commands from the numerical portion of the structure and feeds back the

corresponding resisting forces to such (see Chapter 2).

6.2.2 Test Structure and Earthquake Record

Because of its simplicity and nominal computational effort, a one-bay-frame model with one

ductile and one elastic column connected by a fairly soft spring was selected for these hybrid

simulations. As can be seen from Fig. 6.1, the one-bay-frame had a height of 50 inches, which

corresponds to the height at which the μNEES actuators are attached to the experimental steel

specimen. The width of the frame was arbitrarily chosen to be 100 inches.

Fig. 6.1 One-bay-frame model with structural properties.

For the hybrid simulation, the left-hand column was represented by a specimen in the

μNEES laboratory, and the right-hand column and horizontal spring connecting the two columns

were modeled numerically. Furthermore, the left experimental column, the right linear-elastic

column, and the linear-elastic spring connecting the two columns were assigned stiffnesses of

k1,init = 2.8 kip/in., k2 = 5.6 kip/in., and k3 = 2.0 kip/in., respectively. The mass on top of the left

column was 0.04 kip·sec2/in. and the mass on top of the right column was 0.02 kip·sec2/in. Given

that only the horizontal degrees of freedom were considered, this simple one-bay-frame model

had a total of two free degrees of freedom, both with mass. With the selected structural

 204

properties, the resulting vibration periods of the model were T1 = 0.622 sec and T2 = 0.315 sec

for the first and second mode, respectively. To get significant contributions to the total response

from the second mode, in addition to that from the first mode, the linear-elastic spring was given

a fairly low stiffness. In addition, the damping matrix was chosen to be proportional to the mass

matrix instead of the stiffness matrix, so that the second mode would be less damped than the

first. The first mode was assigned a damping value of 5% of critical, which led to a 2.53%

damping ratio in the second mode.

The north-south component of the El Centro ground acceleration history recorded during

the 1940 Imperial Valley earthquake was used to dynamically excite the model. The 32 sec long

time history consisted of 1600 data points recorded every 0.02 sec and was scaled to a pga of

0.319 g. The elastic response spectra of such motion for damping ratios of 2.5% and 5% and with

markers at the two model periods are shown in Fig. 6.2.

6.2.3 Test Setup and Procedure

As can be seen from Fig. 6.3, the experimental setup that was utilized to test the physical column

of the one-bay-frame model consisted of a self-equilibrating reaction frame that was designed to

support the actuator and the specimen under static and dynamic loading conditions. According to

Mosqueda (2003), it was found that the reaction frame had a fundamental natural frequency of

37 Hz, which was considered sufficiently high to minimize interactions with the fairly flexible

test specimen. The 50-inch high experimental S4x7.7 steel column specimen was mounted on

top of a special clevis with replaceable steel coupons that was capable of simulating the plastic

hinge zone at the end of a steel section. Equipped with two ductile ASTM A36-04 (fy = 69 ksi)

steel coupons, this connection produced stable and repeatable hysteresis loops that were ideal for

testing and evaluating new ideas and concepts in hybrid simulation. In addition, a wide variety of

hysteretic behavior can be simulated by using different coupon designs and/or nut configurations

as described in Rodgers and Mahin (2004). The connection details and the hysteresis loops (SAC

loading protocol) for the configuration with two ductile steel coupons with top and bottom nuts

are shown in Fig. 6.4.

 205

0 0.25 0.5 0.75 1 1.25 1.5
0

1

2

3

4

5

6

Period [sec]

D
is

pl
ac

em
en

t [
in

.]

ELC270 Displacement Response Spectra with values at T = [0.622,0.315] sec

3.05
2.71

0.91
0.76

ζ = 0.025
ζ = 0.050

0 0.25 0.5 0.75 1 1.25 1.5
0

10

20

30

40

50

Period [sec]

P
se

ud
o

V
el

oc
ity

 [i
n.

/s
ec

]

ELC270 Pseudo Velocity Response Spectra with values at T = [0.622,0.315] sec

30.77
27.42

18.07
15.18

ζ = 0.025
ζ = 0.050

0 0.25 0.5 0.75 1 1.25 1.5
0

100

200

300

400

500

600

Period [sec]

P
se

ud
o

A
cc

el
er

at
io

n
[in

./s
ec

2]

ELC270 Pseudo Acceleration Response Spectra with values at T = [0.622,0.315] sec

310.9
277.0

360.5
302.8

ζ = 0.025
ζ = 0.050

Fig. 6.2 Elastic response spectra for north-south component of 1940 El Centro, Imperial
Valley earthquake record, with values at model periods.

 206

Fig. 6.3 μNEES experimental setup with two independent specimens.

Instrumentation
Frame

Clevis

Sheffer
Actuators

Reaction
Frame

Clevis

2 Independent
Specimens

 207

The 12 kip dynamic actuator that was used to load the specimen during the hybrid

simulation tests was a double-ended 2.5HHTR15 Sheffer model with a total stroke capacity of 15

inches. The actuator was driven by a 25 gpm Moog servo-valve connected to a 3000 psi

hydraulic oil supply line, which yielded a velocity limit of roughly 23 in./sec. Given the bulk

modulus of the hydraulic oil, β = 100 ksi, and the approximate weight of the payload, W = 0.049

kip, the oil column frequency of the μNEES setup can be estimated at foc = 148 Hz.

 0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

u
y

2u
y

3u
y

4u
y

5u
y

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Measured Displacement [in.]

M
ea

su
re

d
F

or
ce

 [k
ip

]

Fig. 6.4 Connection with coupon details and displacement history with hysteresis loops.

A unidirectional aluminum load cell with a capacity of ±15 kip was mounted between the

actuator end and the specimen in order to measure the experimental resisting forces. The actuator

displacement feedback, required by the servo-hydraulic control system, was provided by a

Novotechnik TLH500 displacement transducer that had a displacement limit of ±10 inches.

Selected properties of the μNEES setup are summarized in Table 6.2.

 208

Table 6.2 Properties of μNEES experimental setup.

Hydraulic properties Values

Supply pressure ps = 3 ksi

Return pressure pr = 0.05 ksi

Bulk modulus of oil β = 100 ksi

Sheffer 2.5HHTR15 actuator properties Values

Actuator bore b = 2.5 in.

Rod diameter d = 1.0 in.

Rod length L = 40 in.

Actuator stroke S = 15 in.

Servo-valve & payload properties Values

Flow rate q = 96.25 in3/sec

Weight (rod, load cell, specimen) W = 0.049 kip

Derived experimental setup properties Values

Displacement limit umax = ±7.5 in.

Velocity limit vmax = ±23.3 in./sec

Oil column stiffness Koc = 110 kip/in.

Oil column frequency foc = 148 Hz

Reaction frame frequency frf = 37 Hz

Specimen frequency fsp = 25.6 Hz

For the operation of the described experimental setup a MTS 493 real-time controller

with the Structural-Test-System (STS) software and the xPC Target real-time environment was

utilized. This digital controller provided closed-loop PID, differential Feedforward, and Delta-P

control capabilities. The accompanying STS software is a graphical user interface that allows the

operator to access the controller for calibration, configuration, test setup, and data display. In

order to achieve the best possible performance of the servo-hydraulic control system throughout

the real-time geographically distributed hybrid simulations, some fair amount of time was spent

prior to the tests, tuning the actuators locally. The established PID and feed-forward gains,

shown in Table 6.3, delivered the fastest possible system response with minimal actuator lag and

overshoot, and without excessive excitation of the actuator oil-column frequency. Any attempt to

raise the gains past the given values initiated the generation of high-frequency actuator vibrations

 209

at the oil-column frequency, which in turn created significant force oscillations that fed back into

the hybrid simulation.

Table 6.3 Parameters of real-time MTS 493 controller.

Controller parameters Values

Proportional gain p = 12.00

Integral gain i = 0.00

Integrator authority iA = 5%

Derivative gain d = 0.07

Feedforward gain f = 0.13

Bandwidth of low pass filter bw = 1024 Hz

Delta-P gain Δp = 0.00

The soft real-time geographically distributed hybrid simulation described here was

executed between the NEESinc Headquarters in Davis, California, and the nees@berkeley

equipment site in Richmond, California. The OpenSees finite element software was used to

model and analyze the one-bay frame structure on a portable computer at the NEESinc

Headquarters, the μNEES setup was utilized to test the experimental portion of the model at the

nees@berkeley laboratory, and the experimental software framework OpenFresco was employed

to connect the two across the 60 miles long network connection. The specific client-server

configuration for this test, described in detail in Chapter 3, can be seen from Fig. 6.5. It should

be noted that the ShadowExpSite and ActorExpSite pair of OpenFresco provided the necessary

capabilities to distribute the two processes across a network using different communication

protocols.

The OpenSees finite element analysis software in combination with OpenFresco’s tightly

integrated experimental element and experimental site objects composed the client side of the

distributed hybrid simulation. The explicit Newmark method (see Chapter 4) was chosen for the

integration of the equations of motion in OpenSees because of the following reasons. First of all,

since both free degrees of freedom of this one-bay frame model had mass assigned and

additionally the structure was chosen to be fairly flexible, there were no modes present with

excessively high frequencies. This allowed for the selection of an explicit conditionally stable

integration method, with a reasonable integration time-step size. Secondly, given that the goal of

 210

this case study was to perform a geographically distributed hybrid simulation in real time, it was

desired to choose an integration method that did not require iteration and needed as little time for

computation as possible. As such, the explicit Newmark method was the ideal choice for the

problem at hand. Moreover, it was possible to use the unmodified equations of motions (without

inertial force compensation) for slow hybrid simulations (see Chapter 2) because the actual

physical mass of the specimen was only 0.3% of the analytical mass at node 3. The test results

presented in Section 6.2.5, successfully validated this assumption. The TwoNodeLink

experimental element available from the OpenFresco element library was used to represent the

physical column tested in the laboratory.

Fig. 6.5 Client-server configuration.

The server side of the hybrid simulation consisted of OpenFresco’s experimental site,

experimental setup, and experimental control objects. It should be noticed that for this specific

validation test the finite element analyst’s view of a hybrid simulation was chosen. This means

that the OneActuator experimental setup was located on the server side of the distributed

configuration and hence all the response quantities transmitted across the network were in the

element’s basic reference coordinate system. Lastly, the xPCtarget experimental control object

was employed to connect to the real-time xPC Target machine, which was running the event-

driven predictor-corrector model. As described in detail in Chapter 5, the predictor-corrector

 211

model was responsible for handling possible delays caused by the nondeterministic TCP/IP

network transactions and the direct integration of the equations of motion.

The first step of the test procedure was to start the OpenFresco lab-server, which in turn

initialized and started the predictor-corrector model on the real-time xPC Target machine.

During this initialization, the predictor-corrector model was automatically stopped allowing for

last minute adjustments of the servo-hydraulic control system to zero out displacements and

forces. This guaranteed that the initial conditions of the experimental element were as close to

zero as possible. Once the desired initial conditions were set, the MTS 493 controller was started

to accept command signals over SCRAMNet+, which concluded the test initialization on the

server side in the nees@berkeley laboratory. All that remained to be done to run the rapid

geographically distributed hybrid simulation was to start the FEA software (OpenSees) on the

client side at the NEESinc Headquarters.

6.2.4 Network Performance Evaluation

To establish a connection between the client and server program of a distributed hybrid

simulation, OpenFresco’s ShadowExpSite and ActorExpSite classes employ a channel object.

The channel object is an abstract base class that defines endpoints of communication from which

data leave or enter a program. Consequently, it is the derived subclasses that implement the

different communication protocols (sockets) that can be used to transmit data between a client

and server program. The client-server architecture with all the available options was described in

detail in Chapter 3. For the rapid geographically distributed hybrid simulation case study

described here, the TCP_Socket object was utilized to setup a persistent TCP/IP connection from

the client application to the server application. The TCP/IP connection guaranteed that the

transmitted messages were never lost, damaged, or received out of order. In addition, the

persistent connection provided significant performance gains, since the TCP connection setup

delay caused by the client server handshake occurred only once during initialization of the

distributed test rather than at the beginning of every single transaction.

Besides the use of a persistent TCP/IP connection, the size of the data packages sent to

the TCP stack also significantly affected the network performance. Because the TCP protocol

has a data stream interface that permits applications to send data of any size to the TCP stack

(even a single byte at a time), it was imperative to determine a TCP segment size that would

 212

produce the best possible network performance. There was a trade-off in determining such

optimal segment size. If TCP segments were too large, they were likely to become fragmented at

the IP level. On the other hand, if they were too small, the network performance degraded greatly

because small amounts of data were being sent with at least 40 bytes overhead from the TCP and

IP headers. So by increasing the size of the data packages that were transmitted between the

ShadowExpSite and the ActorExpSite past the minimal size necessary for the response vectors,

the so-called sender silly window syndrome was avoided. Sending a storm of tiny data packages

is very inefficient and can even disrupt other network traffic (Gourley et al. 2002).

In order to investigate the effect of the data package size on the network performance a

sequence of hybrid simulations, where the experimental column of the one-bay-frame model was

simulated, instead of tested in the laboratory, was executed across different network

configurations. The distributed hybrid simulation tests were performed on a local area network at

the nees@berkeley equipment site as well as on the Abilene network between Davis and

Berkeley. For each test the total simulation time required for the execution of the 1599-step-long

direct integration analysis was recorded and used as a measure to evaluate the performance of the

network under investigation.

10
1

10
2

10
3

10
4

10
5

0

200

400

600

800

1000

1200

Data Size * 64 [bit]

E
la

ps
ed

 T
im

e
[s

ec
]

LAN 1
LAN 2
AVG

Fig. 6.6 Network performance depending on data package size.

 213

As can be seen from Fig. 6.6, the simulation time decreased abruptly by about a factor of

10, once a data size of approximately 200 64-bit doubles was reached. As expected the

performance started deteriorating again for very large data packages, but at a much slower rate

than the sudden increase encountered before. As a result of these performance tests, a vector size

of 256 64-bit doubles was chosen for the rapid geographically distributed hybrid simulation of

the one-bay-frame model. It is important to recognize that the event-driven predictor-corrector

model, which executed on the real-time xPC Target machine (see Chapter 5), actually

determined how fast the hybrid simulation was running under normal operating conditions. As

long as there were no excessive network and integration delays, the simulation time step that was

set in the predictor-corrector model, established how much time would pass on a wall clock for

each integration time step.

Because the goal in this case study was to perform a hybrid simulation in real time, the

simulation time step, Δtsim, had to be set equal to the integration time step, Δtint = 20 msec.

However, because the simulation time step had to be a multiple of the controller time step, Δtcon

= 1/1024 sec, this was not exactly possible. It was decided to choose 20 substeps for each

simulation time step. This yielded Δtsim = 19.53125 msec, as long as the network and integration

tasks were capable of executing in less than 60% of the predefined simulation time step. Thus,

the theoretical testing rate was 0.9766, which turned out to be slightly faster than real time.

The timing and interaction of the different tasks within a simulation time step can be seen

from Fig. 6.7. The flow of events was as follows. Once the target displacement was reached at ti,

the resisting force was acquired and sent off across the Abilene network to the integration task.

In the meanwhile the signal generation task performed a response prediction that created new

displacement commands every Δtcon. This guaranteed that the actuator kept moving until the new

target displacement was received. After completion of the direct integration of the equations of

motion, the new displacement target was sent back from the client across the Abilene network to

the server, which triggered the finite-state machine to switch from prediction to correction. As

previously mentioned the predictor-corrector model automatically slowed down the actuator

movement if the combined network and integration time exceeded 60% of the predefined

simulation time step. To achieve optimal performance, this condition needed to arise as little as

possible. Once the target displacement was reached at ti+1, the resisting force was measured and

the sequence of events started over.

 214

Fig. 6.7 Timing and interaction of tasks within a time step.

During the actual hybrid simulation, timing took place on the client side as well as on the

server side of the geographically distributed test. On the client side the time consumed by each

step of the transient analysis running on the non-real-time operating system was measured and

recorded. On the server side time-stamping of all the predictor-corrector events occurred on the

xPC Target machine running in real time. From these results the time required for each

simulation time step was later extracted.

As can be seen from Figure 6.8, the distribution of the integration time steps was not as

narrow as the one of the simulation time steps. This was because time measurements on the

client and server sides were shifted in time with respect to each other. By nature of the predictor-

corrector model, simulation time steps on the xPC Target machine could never be shorter than

the predefined value; 19.53125 msec in this case. They could, however, be longer for situations

where the finite state machine had to slow down the actuator movements due to excessive delays.

Contrary to this, the analysis step durations were measured somewhere inside the integration task

block in Fig. 6.7, which caused them to vary somewhat more than the simulation time steps.

It can also be observed from Figure 6.8 that the sporadic delays caused by the network

and integration tasks occurred at times that were consistent between the two independent

measurements. The number of times the finite-state machine had to slow down the actuator due

to these delays corresponded to 0.8% of the total number of analysis steps. It should be noted

that the time measurements taken on the real-time xPC Target machine are likely more accurate

than the ones obtained from the non-real-time client machine. The achieved time-step durations

as measures of network performance are summarized in Table 6.4. Because not all the simulation

time steps could be completed without any slow downs, the geographically distributed hybrid

 215

simulation was not executed in hard real-time, but rather in soft real time, where sporadic, short

delays were encountered. In many applications, such random short delays may be quite

acceptable and do not invalidate an entire test.

Table 6.4 Network performance in terms of time-step durations.

 Client-Side Server-Side Desired

dtMin [msec] 16.564 19.531 19.531

dtMax [msec] 107.093 83.984 19.531

dtAvg [msec] 19.877 19.893 19.531

dtStd [msec] 4.156 4.559 0.0

tTot [sec] 31.784 31.809 31.230

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

 Average Step Duration
 = 19.8929 msec

Simulation Step Duration [msec]

N
um

be
r

of
 S

te
ps

 [−
]

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

110

Time [sec]

S
im

ul
at

io
n

S
te

p
D

ur
at

io
n

[m
se

c]

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

 Average Step Duration
 = 19.8774 msec

Integration Step Duration [msec]

N
um

be
r

of
 S

te
ps

 [−
]

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

110

Time [sec]

In
te

gr
at

io
n

S
te

p
D

ur
at

io
n

[m
se

c]

Fig. 6.8 Comparison of integration and simulation step distributions.

 216

6.2.5 Test Results and Interpretation

In this section, the results, as they were recorded by OpenSees on the client side of the hybrid

simulation (at the NEESinc Headquarters) are discussed first. Secondly, some predictor-corrector

results that were recorded on the xPC Target machine are presented. The measurements recorded

by the STS controller software are then used to evaluate the performance of the servo-hydraulic

control system that was achieved during the test. Finally, the soft real-time network test is

compared to a slow local test to investigate the effect of testing speeds on the response of the

one-bay frame structure.

Finite Element Model Results:
Fig. 6.9 shows the lateral displacement, velocity, and acceleration response of the two free

degrees of freedom of the one-bay frame structure. The response histories are plotted from the

OpenSees output files that were recorded during the real-time test. As marked on the following

three graphs, the largest displacement, velocity, and acceleration values seen on top of the left

experimental column were 2.31 in., 22.1 in./sec, and 242 in./sec2, respectively. Because the top

of the left experimental column was attached to the actuator of the μNEES setup and the test was

executed in real time, the actuator experienced the same response maxima. Consequently, such

extremes had to remain inside the actuator displacement limits of ±7.5 in. and the actuator

velocity limits of ±23.3 in./sec (as listed in Table 6.2) in order not to saturate the response or

trigger the interlocks and shutdown the control system.

Another observation that can be made from the very end of the displacement history is

that the structural response kept decreasing with each cycle due to the total energy dissipation,

which was determined to be equal to a viscous damping coefficient of approximately 6% of

critical. Since at these small displacements the hysteretic energy dissipation completely vanished

and because the explicit Newmark method does not introduce any numerical damping, the total

energy dissipation was a combination of the assigned viscous damping and the energy

dissipation due to experimental errors. Thus, it can be concluded that the additional damping

contributed by experimental errors was approximately 1% of critical. This means that the

actuator control system was slightly overshooting the reference displacements, which is

confirmed from the results acquired by the STS control software.

 217

0 5 10 15 20 25 30 35

−2

−1

0

1

2

−2.31

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

Top Left Column
Top Right Column

0 5 10 15 20 25 30 35

−20

−10

0

10

20
22.1

Time [sec]

V
el

oc
ity

 [i
n.

/s
ec

]

Top Left Column
Top Right Column

0 5 10 15 20 25 30 35
−300

−200

−100

0

100

200

300

−242

Time [sec]

A
cc

el
er

at
io

n
[in

./s
ec

2]

Top Left Column
Top Right Column

Fig. 6.9 Response histories of one-bay frame model from OpenSees.

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

3

4

Shear Deformation [in.]

R
es

is
tin

g
S

he
ar

 F
or

ce
 [k

ip
]

Left Column
Right Column

0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

4

Time [sec]

Left Column
Right Column

Fig. 6.10 Hysteresis loops and force histories of one-bay frame model from OpenSees.

As can be seen from Fig. 6.10, the resisting forces that were measured by the load cell

and fed back to OpenSees are reasonably smooth except at one short instance in time. So even

though the hybrid simulation was executed in real time with high velocities and accelerations,

force oscillations stayed small. This can be explained by the very small weight (49 lb = 0.3% of

 218

weight at node 3) of the physical components that the actuator had to move forth and back. If the

weight had been larger, significant inertial forces would have been generated that in turn would

have affected the force measurements to a much larger degree. In addition, it would then have

been necessary to compensate for these inertial force contributions in the equations of motion as

was explained in Chapter 2.

Predictor-Corrector Results:
To confirm the correct operation of the predictor-corrector finite state machine, Fig. 6.11

provides a closer look at the displacement command generation and the handling of excessive

network and computation delays. The smoothness of the actuator displacement command signal

(solid red line), which has no jumps and kinks, verifies that the third-order polynomial predictor-

corrector model that was chosen for this test was adequate. Furthermore, it can be seen that due

to small tracking errors, the measured displacement signal (dash-dotted green line) did not

always exactly reach the intersection of the target displacement signal (dashed blue line) with the

command displacement signal (solid red line).

6.8 7 7.2 7.4 7.6 7.8 8
0

0.1

0.2

0.3

0.4

0.5

0.6

smooth slowdown
smooth speedup

D
is

pl
ac

em
en

t [
in

.]

targDsp
commDsp
measDsp

6.8 7 7.2 7.4 7.6 7.8 8
0

0.5

1

1.5

2

 0 −− correction
 1 −− prediction
 2 −− prediction with slowdown

Time [sec]

P
re

di
ct

or
−

C
or

re
ct

or
 S

ta
te

 [−
]

Fig. 6.11 Close up of predictor-corrector state transitions from xPC Target.

Finally, it can be observed that whenever delays occurred, the command displacement

signal was smoothly slowed down and then smoothly sped up again when the target

 219

displacement was lastly received. Such smooth transitions of the command displacements are

important so as to not generate spurious force oscillation, which would be expected if the

actuators were changing their speed abruptly.

Servo-Hydraulic Control System Results:
The performance of the servo-hydraulic control system is evaluated from the displacement and

force measurements, which were acquired by the STS control software at a sampling rate of 1024

Hz. As can be seen from Fig. 6.12, the largest displacement error during the rapid hybrid

simulation was equal to 0.06 in., which corresponded to approximately 2.6% of the maximal

displacement.

0 5 10 15 20 25 30 35
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [sec]

D
is

pl
ac

em
en

t E
rr

or
 [i

n.
]

0 50 100 150 200 250 300
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency [Hz]

F
ou

rie
r

A
m

pl
itu

de
 [i

n.
/s

ec
]

1.47 Hz

25.4 Hz

148 Hz

Fig. 6.12 Displacement error history and Fourier amplitude spectrum from STS.

The Fourier amplitude spectrum of the displacement errors clearly shows the

fundamental frequency of the structure at 1.47 Hz, which was slightly lower than the linear-

elastic frequency of 1.61 Hz, due to the nonlinear softening of the experimental column. The

specimen must have generated the second amplitude peak at a frequency of 25.4 Hz, since it was

very close to the analytically estimated value of the specimen frequency at 25.6 Hz. Finally, the

 220

third amplitude peak at a frequency of 148 Hz corresponds to the oil column frequency of the

μNEES setup and thus confirms the analytically estimated value.

A convenient method to check for actuator lag, lead, undershoot, and overshoot all in one

single plot was utilized by Mercan (2007). Fig. 6.13 presents such graph, where the measured

displacement is plotted against the command displacement. The following actuator performances

can quickly be determined from the graph: If the plot is a straight 45º-line, perfect tracking

without any error was achieved. If the plot shows a counter-clockwise or clockwise turning

ellipsoid, the actuator produced a lagging or leading displacement response. Finally if the line or

the axis of the ellipsoid is turned clockwise or counterclockwise away from the 45º-line, the

actuator was undershooting or overshooting.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Command Displacement [in.]

M
ea

su
re

d
D

is
pl

ac
em

en
t [

in
.]

Fig. 6.13 Synchronization subspace plot from STS.

The plot presented here of the real-time test shows an almost perfectly straight line turned

slightly counter-clockwise. This means that the actuator was overshooting a little bit and

confirms the conclusions, which were made by the investigation of energy dissipation. As can be

seen from Fig. 6.14, there is three distinct amplitude peaks in the Fourier spectrum of the

measured resisting forces. The first peak at a frequency of 1.53 Hz again resembles the

fundamental frequency of the one-bay frame model. However, the second peak, which occurred

around a frequency of 37 Hz, corresponds to the natural frequency of the reaction frame and was

therefore generated by the interaction of the test specimen with the reaction frame and the

 221

actuator. The third amplitude peak at a frequency of 148 Hz corresponds again to the oil column

frequency of the μNEES setup and thus confirms once more the analytically estimated value.

0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3

Time [sec]

M
ea

su
re

d
F

or
ce

 [k
ip

]

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

F
ou

rie
r

A
m

pl
itu

de
 [k

ip
/s

ec
]

1.53 Hz

37.3 Hz
148 Hz

Fig. 6.14 Measured force history and Fourier amplitude spectrum from STS.

Comparison of Real-Time versus Slow Hybrid Simulation:
In order to determine if the structural response of the one-bay frame model was affected by the

testing rate of the hybrid simulation, a second, ten-times slower, local hybrid simulation was

carried out. The simulation time step was increased to Δtsim = 200.2 msec, which effectively

yielded a hybrid simulation that executed approximately ten-times slower than the soft real-time

geographically distributed one. As can be seen from Fig. 6.15 the displacement, velocity, and

acceleration response at the top of the left experimental column (node 3) were almost identical.

This means that the effect of the testing rate for this specific test and structure was negligible and

can be ignored. The comparison of the hysteresis loops and the experimental shear forces in Fig.

6.16 confirm this observation. Because the response of the one-bay-frame structure was barely

affected by the rate of testing, two conclusions can be drawn. First, the behavior of the two

ductile steel coupons, simulating the plastic hinge zone at the end of the column, was

independent of strain rates.

 222

0 5 10 15 20 25 30

−2

−1

0

1

2

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

0 5 10 15 20 25 30

−20

−10

0

10

20

Time [sec]

V
el

oc
ity

 [i
n.

/s
ec

]

0 5 10 15 20 25 30
−300

−200

−100

0

100

200

300

Time [sec]

A
cc

el
er

at
io

n
[in

./s
ec

2]

Real−Time
10−Times Slower

Real−Time
10−Times Slower

Real−Time
10−Times Slower

Fig. 6.15 Comparison of response histories of one-bay-frame model for real-time versus
slow hybrid simulation.

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

3

4

Shear Deformation [in.]

R
es

is
tin

g
S

he
ar

 F
or

ce
 [k

ip
]

Real−Time
10−Times Slower

0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

4

Time [sec]

Real−Time
10−Times Slower

Fig. 6.16 Comparison of hysteresis loops and force histories of one-bay-frame model for
real-time versus slow hybrid simulation.

 223

Secondly, the effects of the inertial forces created by the physical mass of the specimen

and loading apparatus were small compared to the ones generated by the mass of the model at

node 3. It was determined that the maximal physical inertial force measured by the load cell and

fed back into the analysis was approximately 0.5% of the analytical inertial force at node 3,

which confirms the second conclusion.

To compare the performance of the servo-hydraulic control system achieved during the

real-time and slow tests, a tracking indicator as defined by Mercan (2007) was utilized. The

tracking indicator is based on the enclosed area of the hysteresis loops when measured

displacements are plotted versus command displacements, as in Fig. 6.13. If the value of the

indicator is increasing, the displacement response is leading and consequently introducing

additional energy dissipation (damping) into the system. On the other hand, if the indicator is

decreasing, the displacement response is lagging and the energy dissipation due to those tracking

inaccuracies is negative. If the energy introduced into the system by this systematic experimental

error is larger than the sum of the hysteretic, viscous, and numerical energy dissipation, the

response of the system starts growing, ultimately yielding the system unstable.

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time [sec]

T
ra

ck
in

g
In

di
ca

to
r

[in
2]

Real−Time
10−Times Slower

Fig. 6.17 Comparison of tracking performance for real-time versus slow hybrid
simulation.

Fig. 6.17 presents the tracking indicators for the two tests, where the slow test was

compressed in time by a factor of ten to facilitate easier comparison. From the positive values of

the two tracking indicators it can be inferred that additional damping was introduced into the

 224

system during both hybrid simulations. Even though this affected the accuracies of the tests this

experimental error was preferable as opposed to the systematic introduction of additional energy,

which could have destabilized the system. Although tracking was good for both tests, it can be

observed that the performance during the slow test was approximately 12 times better than

during the real-time test.

Comparison of Analytical Simulation versus Hybrid Simulation:
To validate the purely analytical OpenSees models of the μNEES specimen and the one-bay-

frame structure, the numerical results were compared against the experimental results obtained

from the quasi-static test and the hybrid simulation. The analytical model of the μNEES

specimen consisted of several linear elastic elements resembling the clevis and the S4x7.7 steel

column and four nonlinear force beam-column elements modeling the two steel coupons.

Fig. 6.18 Analytical model of μNEES specimen.

In order to capture the buckling behavior of the steel coupons an approach introduced by

Uriz (2005) was adopted, where the exact large-displacement corotational geometric-

transformation was utilized in combination with an initial offset (perpendicular to the coupon’s

local x-axis) of the center node of the coupon. For each nonlinear force beam-column element

five Gauss-Lobatto integration points with circular fiber cross-sections were used and all the

fibers were modeled utilizing the Menegotto-Pinto plasticity model without isotropic hardening.

 225

In a first step the parameters of the analytical model of the μNEES specimen were

calibrated using the experimentally determined hysteresis loops from the SAC loading history as

shown in Fig. 6.4. As can be seen from Fig. 6.19, the calibrated analytical model was capable of

capturing the overall response quite accurately. In addition it can be observed that the strength

reduction with each cycle, due to the buckling of the coupons, was accurately modeled by the

nonlinear force beam-column elements and the corotional geometric-transformations. For

positive displacements the match between the numerically generated hysteresis loops and the

experimentally generated ones was slightly better than for negative displacements.

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Measured Displacement [in.]

M
ea

su
re

d
F

or
ce

 [k
ip

]

Analytical Simulation
Experimental Test

Fig. 6.19 Comparison of analytical versus experimental hysteresis loops for SAC loading
history.

After the successful calibration of the numerical specimen, the subassembly was

incorporated into a complete analytical model of the one-bay-frame structure in order to perform

the dynamic direct integration analysis. The earthquake response of the purely analytical

structure was then compared against the results obtained from the hybrid simulation test. As can

be seen from Fig. 6.20 the displacement, velocity, and acceleration response at the top of the left

column (node 3) were nearly identical for the analytical and the hybrid model. This means that

the purely numerical model was capable to accurately capture the earthquake response of the

 226

nonlinear one-bay-frame structure. The comparison of the hysteresis loops and the shear forces

of the left column are shown in Fig. 6.21. It can be seen that the column shear forces computed

by the analytical model matched well with the shear forces measured from the experimental

column specimen. However, the resisting forces were captured with slightly less accuracy than

the displacements, velocities, and accelerations. This can also be observed from the hysteresis

loops where the numerical model of the specimen exhibited too much softening in the second

response cycle as compared to the experimental specimen.

0 5 10 15 20 25 30

−2

−1

0

1

2

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

0 5 10 15 20 25 30

−20

−10

0

10

20

Time [sec]

V
el

oc
ity

 [i
n.

/s
ec

]

0 5 10 15 20 25 30
−300

−200

−100

0

100

200

300

Time [sec]

A
cc

el
er

at
io

n
[in

./s
ec

2]

Analytical Simulation
Hybrid Simulation

Analytical Simulation
Hybrid Simulation

Analytical Simulation
Hybrid Simulation

Fig. 6.20 Comparison of response histories of one-bay-frame model for analytical versus
hybrid simulation.

 227

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

3

4

Shear Deformation [in.]

R
es

is
tin

g
S

he
ar

 F
or

ce
 [k

ip
]

Analytical Simulation
Hybrid Simulation

0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

4

Time [sec]

Analytical Simulation
Hybrid Simulation

Fig. 6.21 Comparison of hysteresis loops and force histories of one-bay-frame model for
analytical versus hybrid simulation.

Nevertheless, the overall response of the purely analytical and the hybrid structure

matched very well, which successfully demonstrated the validity of both models. Particularly, it

proved that the geographically distributed hybrid simulation is a viable testing method that can

be utilized to conduct soft real-time experimental tests among different laboratories by relying on

the next-generation Abilene network.

6.3 STRUCTURAL COLLAPSE SIMULATION

6.3.1 Motivation

One important research area in the field of earthquake engineering is concerned with the ability

to model structural collapse in order to improve our understanding of the performance of

structures during very rare earthquake events. However, experimental investigations of collapse

are in general complex, expensive, and potentially dangerous. Any of the three previously

described experimental methods (see Chapter 2) can technically be employed to perform

structural collapse tests. However, quasi-static and shaking table tests both face difficulties in

setting up, executing, and interpreting such tests, whereas hybrid simulation does not.

The advantages and disadvantages of the three experimental methods with respect to

structural collapse investigations are summarized next.

1. While quasi-static tests are relatively easy and economical to perform, the demands

imposed on the test specimens are not directly related to the observed damage. This raises

 228

questions about whether the specimens are under- or overtested, which in turn makes it

extremely difficult to draw accurate conclusions about the behavior of a structure near or

at collapse.

2. Shaking table tests provide important data on the dynamic response to specific ground

motions considering the inertial and energy-dissipation characteristics of the structure and

the consequences of geometric nonlinearities, localized yielding and damage on the

response. However, for such tests, a complete structural system is required, and the

specimen needs to be constructed including complex active or passive gravity load

setups. Furthermore, preventive measures need to be taken to protect expensive test

equipment from specimen impact during collapse. This makes investigations of collapse

on shaking tables very complex, expensive, and potentially dangerous. In addition, due to

simulator platform and/or control system limitations, reduced-scale or highly simplified

specimens are commonly necessary, which call into question the realism of many shaking

table tests of structural collapse.

3. Hybrid simulations make it possible to investigate geometric nonlinearities, three-

dimensional effects, multiple-support excitation, and soil-structure interactions by

incorporating them into the analytical portion of the hybrid model. Hence, the hybrid

simulation method gives the researcher the ability to test large- or full-scale specimens

and to reduce or avoid scaling issues. In addition, only the critical, collapse-sensitive

elements of the structure need to be physically tested, allowing for a substantial increase

in the number of different collapse tests afforded by the same budget.

To demonstrate how gravity loads and geometric nonlinearities can be accounted for in the

numerical part of the hybrid model, a hybrid simulation, wherein a portal-frame is tested by

consistently accounting for second-order effects due to gravity loads, is carried out using the

Open System for Earthquake Engineering Simulation (OpenSees) (McKenna 1997; Fenves et al.

2004) and the OpenFresco (see Chapter 3) software packages.

6.3.2 Second-Order Effects

Because second-order effects are caused by gravity loads, it is important to understand how such

loads affect the response of a structure. In general, gravity loads influence the response of a

structure on three levels, which can be categorized as shown in Table 6.5 below.

 229

Table 6.5 Effects of gravity loads on the structural response.

Level Effect

Section Gravity loads cause axial forces that interact with bending moments
and shears at the cross section, commonly known as P-M and P-V
interaction.

Element Gravity loads affect the stability of structural elements and critical
regions, causing softening and local and/or lateral-torsional buckling
of elements, commonly known as the small P-Delta (P-δ) effects.

Structure Gravity loads influence the stability of a structure, causing additional
overturning moments due to large displacements. These effects are
commonly known as the large P-Delta (P-Δ) effects.

To model these nonlinear geometric effects in finite element software (such as

OpenSees), the element equilibrium equations need to be satisfied in the deformed configuration.

Furthermore, because of large displacements, the compatibility relations between element

deformations and global element end-displacements become nonlinear. For frame elements, it is

then possible to separate these coordinate transformations from the actual implementation of the

element itself as long as the element force-deformation relations are defined in a basic coordinate

system without rigid body modes. Hence, different geometric theories can be implemented for

the same element without modifying the element code. In OpenSees the CrdTransf software

class provides this exact functionality by transforming the response quantities of any frame

element from the global degrees of freedom to the simply supported basic element degrees of

freedom and back. The CrdTransf class is an abstract base class that has concrete subclasses for

linear, p-delta, and corotational geometric transformations. This abstraction and encapsulation of

the frame element coordinate transformations facilitates the switching among different linear and

nonlinear coordinate transformations in the OpenSees software framework without affecting the

implementations of the frame elements themselves.

6.3.3 Theory and Implementation

The 2D experimental beam-column element formulation in OpenFresco (which is used in this

case study) is based on the three collocated degrees-of-freedom of the cantilever basic system

(see Fig. 6.22 or Chapter 3).

 230

The necessary transformations of displacements, velocities, accelerations, and forces are

implemented in the concrete EEBeamColumn2d class. Since this experimental element is a

frame member similar to an analytical beam-column element, the previously described OpenSees

CrdTransf class is employed to transform the response quantities from the global degrees of

freedom to the simply supported basic element degrees of freedom and back. However, because

the simply supported basic system is not well suited for experimental testing (due to the two

rotational degrees of freedom), the response quantities are further transformed from the simply

supported to the cantilever basic system and back. These additional nonlinear transformations are

directly implemented in the EEBeamColumn2d class and described in detail in Chapter 3.

Fig. 6.22 Experimental beam-column element (EEBeamColumn2d).

Of the three coordinate transformations (linear, p-delta, and corotational) that are

available in OpenSees, only the large-displacement, moderate deformations corotational

transformation (de Souza 2000; Filippou and Fenves 2004) is explained here.

 231

Fig. 6.23 Corotational transformation from local to Basic System A.

In a first step (which is not shown), the six end-displacements of the beam-column

element are transformed from the global to the local coordinate system by applying a rotational

transformation matrix. Afterwards, the element trial displacements, ul, in the local coordinate

system are transformed to the element deformations, ub, in the basic coordinate system using.

()
,1

()
,2 ,3

()
,3 ,6

A
b n

A
b l

A
b l

u L L

u u

u u

α

α

= −

= −

= −

 with
() ()2 2

,4 ,1 ,5 ,2

,5 ,2

,4 ,1

arctan

n l l l l

l l

l l

L L u u u u

u u
L u u

α

= + − + −

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+ −⎝ ⎠

 (6.1)

where Ln is the length of the element chord in its deformed configuration and α is the

rotation of the chord from the undeformed to the deformed element configuration. As previously

shown in Chapter 4 and repeated here for convenience, the transformations of the resisting forces

and the element stiffness matrix from the Basic System A to the local coordinate system take the

following form.

 ()

()

() () ()

T A

T
T A T A A

=

∂ ∂ ∂= = = +
∂ ∂ ∂

l

l
l b

l l l

p a q

p ak a q a k a q
u u u

 (6.2)

where the compatibility matrix, a, and the elastic element stiffness matrix, kb
(A), in the

basic coordinate system A are given in Equation (6.3).

 232

() () () ()

() () () ()

() () () ()

()

cos sin 0 cos sin 0

sin cos sin cos
1 0

sin cos sin cos
0 1

0 0

4 20

2 40

n n n n

n n n n

A

L L L L

L L L L

EA
L

EI EI
L L
EI EI
L L

α α α α

α α α α

α α α α

⎡ ⎤
− −⎢ ⎥
⎢ ⎥
⎢ ⎥

= − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b

a

k

 (6.3)

ul and pl are the element displacements and forces in the local coordinate system, ub
(A)

and q(A) are the element deformations and forces in the basic coordinate system A, α is the chord

rotation, and Ln is the length of the element chord in its deformed configuration. Furthermore, the

first part of the local stiffness matrix in (6.2) represents the material stiffness, and the second part

represents the geometric stiffness.

6.3.4 Test Structure and Earthquake Record

This section demonstrates how the novel experimental beam-column elements

(EEBeamColumn2d; see Chapter 3) can be used to perform a hybrid simulation until collapse.

As can be seen from Fig. 6.24 the steel single-story, single-bay portal-frame had a height of 50

inches, which corresponds to the height at which the actuators attached to the experimental steel

specimen. The width of the structure was arbitrarily chosen to be 100 inches. Furthermore, the

portal-frame consisted of an elastic W6x12 beam and two ductile, nonlinear S4x7.7 columns.

The connecting beam, the viscous energy-dissipation and mass properties as well as the gravity

and earthquake loads were all analytically modeled in OpenSees. The EEBeamColumn2d

experimental element (see Fig. 6.22) was used to represent both columns. The left column was

simulated using the ECSimDomain controller and the right column was physically tested in the

μNEES laboratory.

 233

Fig. 6.24 Portal-frame model with structural properties.

Considering the axial and flexural deformations in the elements, the portal-frame model

had a total of eight degrees of freedom (four translational and four rotational). However, it was

assumed that only the four translational degrees of freedom had mass (m3 = m4 = 0.0138

kip·sec2/in.), which made the 8x8 mass matrix singular with rank equal to four. With the selected

structural properties, the fundamental period of the structure was 0.49 sec, and the viscous

energy dissipation was modeled with 5% mass proportional damping. The magnitude of the

gravity loads (P = 5.32 kip) was set at 50% of the critical side-sway buckling load of the physical

column (including the clevis) obtained by assuming that the beam was flexurally rigid and the

base support of the column was pinned. Because the gravity loads on the two columns were

entirely treated in the analytical portion of the hybrid model, with negligible axial loads imposed

on the experimental parts of the structure (column cross-sections and elements), only the large p-

delta effects (see Table 6.5) are accounted for in this demonstration and validation example.

The hybrid portal-frame model was subjected to the SACNF01 near-fault ground motion

of the SAC database, scaled to a peak ground acceleration of 0.906 g. The ground motion was

originally recorded during the 1978 Tabas, Iran, earthquake and modified based on the SAC

protocol to represent NEHRP soil type Sd. The 30 sec time history was shortened to 25 sec so

that the hybrid simulations took less time to execute. It therefore consisted of 2500 data points

 234

recorded every 0.01 sec. The elastic response spectra of such motion for a damping ratio of 5%

and with markers at the fundamental side-sway period are shown in Fig. 6.25.

6.3.5 Test Setup and Procedure

For convenience in the laboratory, the right beam-column specimen was inverted with the pin

end at the top and the fixed end at the bottom. The μNEES experimental setup, which was

described in detail in Section 6.2.3, was used to test the right column of the portal-frame. It is

important to emphasize that because the basic coordinate system moved as the element

deformed, the one-actuator experimental setup (Fig. 6.3) utilized in these tests also behaved as if

it had been attached to and moved with the experimental element. Because the tests were

performed as local hybrid simulations, the OpenSees finite element analysis software in

combination with OpenFresco’s tightly integrated experimental element, local experimental site,

experimental setup, and control objects were all located at the nees@berkeley laboratory. Due to

the fact that only two of the eight degrees of freedom had mass assigned an unconditionally

stable integration method had to be used to solve the equations of motion.

 235

0 0.25 0.5 0.75 1 1.25 1.5
0

2

4

6

8

10

Period [sec]

D
is

pl
ac

em
en

t [
in

.]

SACNF01 Displacement Response Spectrum with value at T = 0.491 sec

3.67

ζ = 0.05

0 0.25 0.5 0.75 1 1.25 1.5
0

10

20

30

40

50

Period [sec]

P
se

ud
o

V
el

oc
ity

 [i
n.

/s
ec

]

SACNF01 Pseudo Velocity Response Spectrum with value at T = 0.491 sec

47.02ζ = 0.05

0 0.25 0.5 0.75 1 1.25 1.5
0

250

500

750

1000

1250

1500

Period [sec]

P
se

ud
o

A
cc

el
er

at
io

n
[in

./s
ec

2]

SACNF01 Pseudo Acceleration Response Spectrum with value at T = 0.491 sec

601.64

ζ = 0.05

Fig. 6.25 Elastic response spectra for SACNF01 ground motion, with values at
fundamental period.

 236

In addition, since the hybrid model consisted of both numerical and experimental

elements that exhibited strong material and geometric nonlinearities, the generalized-alpha-OS

method (see Chapter 4) was not well suited and an iterative solution scheme had to be employed

instead. Hence, the second modified implicit Newmark method with 10 sub-steps and the

Newton-Raphson algorithm with a mixed Jacobian were utilized (see Chapter 4).

As with the previous case study, the OneActuator experimental setup in OpenFresco was

utilized to represent the μNEES setup and the xPCtarget experimental control object was

employed to connect to the real-time xPC Target machine, which was running the event-driven,

third-order predictor-corrector algorithm that uses the last predicted value in the corrector

formula (see Chapter 5). The integration time step was chosen to be Δtint = 0.01 sec, which was

equal to the ground motion time step. On the other hand, the simulation time step was chosen to

be Δtsim = 2-5 = 31.25 msec and in combination with the 10 iterations per time step, the hybrid

simulation was performed at a rate 31.25 times slower than real time, and each test lasted 13

minutes.

6.3.6 Test Results and Interpretation

To investigate the effect of gravity loads on the response of the portal-frame, two pairs of

simulations were performed. One simulation was performed without any gravity loads applied,

and then gravity loads were added to the analytical portion of the hybrid model for the second

test. Both tests utilized the corotational geometric coordinate transformation and identical new

coupons were used in the clevis representing the plastic hinge in each test.

Various results are described in this section. Firstly, the response that was recorded

within OpenSees is discussed. Secondly, some predictor-corrector results that were recorded on

the xPC Target machine are presented. The measurements recorded by the STS controller

software are then used to evaluate the performance of the servo-hydraulic control system that

was achieved during the test. Finally, the hybrid simulations are compared against purely

analytical simulations of the portal-frame model.

Finite Element Model Results:
The story-drift time histories as well as the story-shear vs. story-drift hysteresis loops are

compared in Fig. 6.26. Even though the frame drifts and the residual displacements were

 237

substantial for the first test without gravity loads, the hybrid model did not collapse. In the

second hybrid simulation, the presence of the gravity loads is clearly evident from the negative

post-yield tangent stiffness exhibited by the combined hybrid model.

0 5 10 15 20 25

−2

0

2

4

6

8

10

12

14

Time [sec]

S
to

ry
 D

rif
t R

at
io

 [%
]

w/o Gravity Load
with Gravity Load

−2 0 2 4 6 8 10 12 14

−5

−4

−3

−2

−1

0

1

2

3

4

5

Story Drift Ratio [%]
B

as
e

S
he

ar
 [k

ip
]

w/o Gravity Load
with Gravity Load

Fig. 6.26 Comparison of story-drift time-histories and total story hysteresis loops for
portal-frame model from OpenSees.

As can be seen from Fig. 6.26a, for the hybrid simulation with gravity loads, the story

drifts increased rapidly at 6.5 sec into the test, which can be considered as the initiation of frame

collapse. With each additional cycle, the portal-frame leaned over further until the hybrid

simulation was finally terminated when the actuators reached their stroke limit of 7.5 inches,

which corresponded to an interstory drift ratio of 15%. The second simulation demonstrated that

the hybrid model could be tested all the way to collapse of the portal-frame, which would be

difficult and dangerous to accomplish in shaking table tests.

 238

−2 0 2 4 6 8 10 12 14
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Story Drift Ratio [%]

R
es

is
tin

g
F

or
ce

 L
ef

t C
ol

um
n

[k
ip

]

w/o Gravity Load
with Gravity Load

−2 0 2 4 6 8 10 12 14

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Story Drift Ratio [%]

R
es

is
tin

g
F

or
ce

 R
ig

ht
 C

ol
um

n
[k

ip
]

w/o Gravity Load
with Gravity Load

Fig. 6.27 Comparison of element force-story-drift hysteresis loops for portal-frame model
from OpenSees.

Fig. 6.27 provides the comparison of the hysteresis loops of the two experimental column

elements. The element shear forces are plotted against the element drift ratios in the global

reference coordinate system. It can be observed that for both hybrid simulations (the one without

and the one with gravity loads) the negative post-yield stiffnesses of the right column were

significantly larger than the ones of the left column. This behavior can be explained by the fact

that the portal-frame was leaning to the right and the overturning moment was therefore loading

the right column further in compression and unloading the left column. Since both hybrid

simulations utilized large-displacement nonlinear geometric coordinate transformations for all

the elements, this effect could also be observed in the test without the gravity loads.

Fig. 6.28 compares the actuator hysteresis loops for the two experimental beam-column

elements. The actuator-force vs. actuator-displacement relationships are plotted in the Basic

System B (cantilever) as they were acquired from the ECSimDomain (left column) and the

ECxPCtarget (right column) control objects. This means that the responses are compared before

they were transformed to the Basic System A (simply supported) and before the gravity load

effects were applied by the nonlinear geometric transformations in the EEBeamColumn objects.

Thus, no negative post-peak stiffnesses were observed in the actual test. The differences between

the hysteresis loops are entirely due to the consistently applied displacements. Furthermore, it

can be seen that for large displacements of the cantilever column ends (respectively large

rotations of the clevises), the hysteresis loops exhibited some degradation. This degradation was

due to the buckling of the replaceable steel coupons as the clevises went through large rotations.

 239

−1 0 1 2 3 4 5 6 7
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Displacement Left Actuator [in.]

R
es

is
tin

g
F

or
ce

 L
ef

t A
ct

ua
to

r
[k

ip
]

w/o Gravity Load
with Gravity Load

−1 0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Displacement Right Actuator [in.]

R
es

is
tin

g
F

or
ce

 R
ig

ht
 A

ct
ua

to
r

[k
ip

]

w/o Gravity Load
with Gravity Load

Fig. 6.28 Comparison of actuator force-displacement hysteresis loops for portal-frame
model from OpenSees.

Predictor-Corrector Results:
Similarly to the previous case study, the correct operation of the predictor-corrector finite state

machine is again confirmed by taking a closer look at the displacement command generation.

209 209.2 209.4 209.6 209.8 210 210.2 210.4 210.6 210.8

3.68

3.7

3.72

3.74

3.76

3.78

3.8

3.82

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

targDsp
commDsp
measDsp

210 210.2 210.4 210.6 210.8 211 211.2 211.4 211.6

5.28

5.3

5.32

5.34

5.36

5.38

5.4

Time [sec]

D
is

pl
ac

em
en

t [
in

.]

targDsp
commDsp
measDsp

Fig. 6.29 Close up of predictor-corrector state transitions from xPC Target.

The two graphs in Fig. 6.29 show close-ups of the signals for the test without gravity

loads (left) and the one with gravity loads (right). The smoothness of the actuator displacement

command signals (solid red lines), which have no jumps and kinks, verify that the chosen third-

order predictor-corrector algorithm that utilizes the last predicted value in the corrector formula

(see Chapter 5), achieved satisfactory performance.

Furthermore, it can be observed that due to small tracking errors, the measured

displacement signals (dash-dotted green lines) did not always exactly reach the intersection of

 240

the target displacement signals (dashed blue lines) with the command displacement signals (solid

red lines). Particularly, the measured displacement signals were a little smaller than the

commanded ones. This means that the actuators were slightly undershooting, which is confirmed

from the results acquired by the STS control software in the next section.

Servo-Hydraulic Control System Results:
The performance of the servo-hydraulic control system is evaluated from the displacement and

force measurements, which were acquired by the STS control software at a sampling rate of 1024

Hz. For the first hybrid simulation without gravity loads, the largest displacement error during

the test was equal to 0.006 in., which corresponded to approximately 0.15% of the maximal

displacement; and for the second hybrid simulation with gravity loads, the largest displacement

error during the test was equal to 0.005 in., which corresponded to approximately 0.06% of the

maximal displacement. This means that the servo-hydraulic control system was able to achieve

very accurate displacement tracking, mainly due to the slow execution of the tests (31.25-times

slower than real time).

Actuator lag, lead, undershoot, and overshoot were again evaluated from synchronization

subspace plots (Mercan 2007), where the measured displacements are plotted against the

command displacements. The following actuator performances can quickly be determined from

the graph: If the plot is a straight 45º-line perfect tracking without any error was achieved. If the

plot shows a counterclockwise or clockwise turning ellipsoid, the actuator produced a lagging or

leading displacement response. Finally if the line or the axis of the ellipsoid is turned clock-wise

or counter-clock-wise away from the 45º-line, the actuator was undershooting or overshooting.

 241

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Command Displacement [in.]

M
ea

su
re

d
D

is
pl

ac
em

en
t [

in
.]

−1 0 1 2 3 4 5 6 7 8

−1

0

1

2

3

4

5

6

7

8

Command Displacement [in.]

M
ea

su
re

d
D

is
pl

ac
em

en
t [

in
.]

Fig. 6.30 Synchronization subspace plots from STS.

The two plots for the hybrid simulations without gravity loads (left) and with gravity

loads (right), presented in Fig. 6.30, show almost perfectly straight lines, which are minutely

turned clock-wise. This means that during both tests the actuator was undershooting a little bit,

introducing a minuscule amount of additional energy into the system. Furthermore, this confirms

the observations that were made in the previous section.

Fig. 6.31 presents the tracking indicators for the two tests (Mercan 2007). From the

negative values of the two indicators it can be inferred that negative damping, meaning

additional energy, was introduced into the system during both hybrid simulations. However, the

values of the tracking indicators are so small that only minuscule amounts of energy were

introduced into the hybrid simulations, which did not affect the stability of the system. Although

tracking was excellent for both tests, it can be observed that tracking during the test with gravity

loads was slightly better than tracking during the tests without gravity loads but with more noise

in the measured signals.

 242

0 100 200 300 400 500 600 700 800
−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

Time [sec]

T
ra

ck
in

g
In

di
ca

to
r

[in
2]

w/o Gravity Load
with Gravity Load

Fig. 6.31 Comparison of tracking performance for test without gravity loads versus test
with gravity loads from STS.

Comparison of Analytical Simulation versus Hybrid Simulation:
The numerical model of the μNEES specimen that was developed in Section 6.2.5 is again

utilized to perform two purely analytical simulations (AS) of the portal-frame model in

OpenSees and compare the numerical results against the test results from the two hybrid

simulations (HS). The comparisons of the story-drift time histories as well as the story-shear vs.

story-drift hysteresis loops are shown in Fig. 6.32. Overall the analytical simulations were

capable of capturing the response of the portal-frame reasonably well, which can be confirmed

from the close matches of the story-drift time histories in the first graph.

 243

0 5 10 15 20 25

−2

0

2

4

6

8

10

12

14

Time [sec]

S
to

ry
 D

rif
t R

at
io

 [%
]

AS w/o Gravity
HS w/o Gravity
AS with Gravity
HS with Gravity

−2 0 2 4 6 8 10 12 14

−5

−4

−3

−2

−1

0

1

2

3

4

5

Story Drift Ratio [%]

B
as

e
S

he
ar

 [k
ip

]

AS w/o Gravity
HS w/o Gravity
AS with Gravity
HS with Gravity

Fig. 6.32 Comparison of story-drift time-histories and total story hysteresis loops of portal-
frame model for analytical versus hybrid simulation.

−2 0 2 4 6 8 10 12 14
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Story Drift Ratio [%]

R
es

is
tin

g
F

or
ce

 L
ef

t C
ol

um
n

[k
ip

]

AS w/o Gravity
HS w/o Gravity
AS with Gravity
HS with Gravity

−2 0 2 4 6 8 10 12 14

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Story Drift Ratio [%]

R
es

is
tin

g
F

or
ce

 R
ig

ht
 C

ol
um

n
[k

ip
]

AS w/o Gravity
HS w/o Gravity
AS with Gravity
HS with Gravity

−1 0 1 2 3 4 5 6 7
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Displacement Left Actuator [in.]

R
es

is
tin

g
F

or
ce

 L
ef

t A
ct

ua
to

r
[k

ip
]

AS w/o Gravity
HS w/o Gravity
AS with Gravity
HS with Gravity

−1 0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Displacement Right Actuator [in.]

R
es

is
tin

g
F

or
ce

 R
ig

ht
 A

ct
ua

to
r

[k
ip

]

AS w/o Gravity
HS w/o Gravity
AS with Gravity
HS with Gravity

Fig. 6.33 Comparison of element force-story-drift and actuator force-displacement
hysteresis loops of portal-frame model for analytical versus hybrid simulation.

 244

However, it can be observed from all the graphs in Fig. 6.32 to Fig. 6.33 that the

analytical simulation without gravity loads was clearly more accurate than the one with gravity

loads. Furthermore, the divergence between the hybrid and analytical simulations increased with

the portal-frame approaching collapse. This can be explained by the complex behavior (severe

buckling, necking of the cross-section, crack propagation) of the replaceable steel coupons for

large rotations of the clevis (respectively large story-drift-ratios), which was not accurately

captured by the simplified finite element model of the specimen.

Nevertheless, as mentioned before, the overall response of the purely analytical and the

hybrid structure matched very well, which successfully demonstrated the validity of both models.

Particularly, it proved that the OpenFresco software framework, with the novel experimental

beam-column element and the other research presented herein, provide a useful and effective set

of modules for performing accurate, safe, and cost-effective hybrid simulations of structural

collapse.

6.4 SUMMARY

The two novel applications of hybrid simulation, which have been discussed in this chapter,

successfully demonstrated and validated some of the features and the overall flexibility of the

newly implemented object-oriented hybrid simulation framework presented in Chapter 3. In

addition, several other independent developments and implementations from Chapters 4 and 5,

such as the integration methods and the event-driven strategies, have been employed to

successfully execute two challenging hybrid simulation case studies.

The first application presented a continuous geographically distributed hybrid simulation

that was executed in soft real time for the first time. The latest advancements in networking

technology (Abilene network) paired with the experimental software framework, OpenFresco,

made such real-time geographically distributed hybrid simulation possible. Over the last few

years, real-time hybrid simulations have considerably gained significance because many new

high-performance structural devices, such as base isolation bearings, energy-dissipation devices

and high-performance materials, exhibit intrinsic rate-dependent behavior. Hence, it is of great

importance that testing of structural systems incorporating such devices is performed at the

correct loading rates even if the hybrid simulations are geographically distributed. The one-bay-

 245

frame structure, the test setup and procedure, the network performance, the transfer system

performance and the response of the hybrid model were all discussed and evaluated in detail.

The second case study introduced a novel approach for conducting structural collapse

investigations utilizing hybrid simulation. It was demonstrated that the OpenFresco software

framework provides an effective set of modules, especially the novel experimental beam-column

elements, for performing accurate, safe, and cost-effective hybrid simulations of structural

collapse. Furthermore, it was shown that the ability to correctly account for the second-order

effects in hybrid models is crucial for simulating collapse of structures under gravity loads. In

summary, hybrid simulation of collapse behavior offers three significant advantages over

conventional testing methods: (1) the gravity loads and the resulting geometric nonlinearities are

represented in the analytical portion of the hybrid model in the computer, eliminating the need

for complex active or passive gravity load setups; (2) there is no need to protect expensive test

equipment from specimen impact during collapse because the actuator control system will limit

the movements of the test specimens; and (3) only the critical, collapse-sensitive, elements of the

structure need to be physically tested allowing for a substantial increase in the number of

different collapse tests afforded by the same budget. Finally, the portal-frame structure, the test

setup and procedure, the transfer system performance and the response of the hybrid model were

again discussed and evaluated in detail.

7 Conclusions and Recommendations

7.1 SUMMARY AND CONCLUSIONS

The overarching goal of this research was to explore, develop, and validate advanced techniques

to facilitate the wider use of local and geographically distributed hybrid simulation by the

research community and permit hybrid simulation to address a range of complex problems of

current interest to investigators. To achieve this goal, investigations were conducted to address

the following objectives:

1. Review and evaluate existing concepts and frameworks in hybrid simulation and devise

and implement an improved object-oriented software framework for experimental testing.

2. Investigate existing time-stepping integration methods, evaluate their applicability to

hybrid simulations, and develop and implement improved versions for several methods.

3. Examine existing predictor-corrector algorithms and event-driven strategies for

synchronization, and conceive and implement new and improved approaches to

synchronize the integration and transfer system processes.

To accomplish these objectives, the research efforts were arranged into the following activities.

The first activity was to conduct an extensive literature review to determine the advantages, as

well as past and current challenges associated with the hybrid simulation experimental testing

technique. Furthermore, the fundamental concept and the different modes of conducting hybrid

simulations were discussed. It was concluded that the lack of a common framework for the

implementation and deployment of hybrid simulation has posed a major hurdle for those who

considered utilizing hybrid simulation. Moreover, it has also limited collaboration among experts

in the field. Thus, the second activity was to devise and implement a number of important

extensions to an object-oriented software framework for experimental testing (Takahashi and

Fenves 2006) to support a large variety of finite element analysis software, structural testing

methods, specimen types, testing configurations, control and data-acquisition systems, and

network communication protocols. Because in hybrid simulations the step-by-step numerical

integration of the semi-discrete equations of motion acts as the computational driver, the third

 248

activity was to examine existing hybrid-simulation specialized integration schemes and develop

improved versions for a few of these methods. While the third activity focused on the finite

element analysis side of a hybrid simulation, the fourth activity was concerned with investigating

methods and strategies for the control and data-acquisition systems on the laboratory side of the

testing technique. Specifically, improved event-driven strategies and predictor-corrector

algorithms, which are employed to synchronize the integration and transfer system processes,

were developed and compared. The fifth and finally activity was to develop and execute a few

novel and demonstrative hybrid simulations to validate the software framework, the integration

methods, and the event-driven synchronization strategies. A short summary of each activity

combined with the key findings is provided next.

7.1.1 Hybrid Simulation Fundamentals

To commence the investigations, it was shown that among the currently well-established

experimental testing techniques, hybrid simulation is able to provide a range of important

advantages but still faces several important challenges. It was explained that some of the major

advantages gained through hybrid simulation are the analytically defined loading, the

substructuring capabilities, the ability to test large-scale specimens, the option to utilize

affordable testing equipment, the variable speeds of execution, and the possibility to

geographically distribute numerical and physical subassemblies. On the other hand, some of the

key challenges that still need to be addressed were discussed. These include the implementation

of an environment-independent framework for the development and deployment of hybrid

simulation, the exploration of force and mixed force/displacement control strategies, dealing

with network delays and breakdowns in geographically distributed tests, the development of

methods for assessing the goodness of a hybrid simulation, and the execution of hybrid

simulations in high-performance computing (HPC) environments.

The four key components, which are required to perform a hybrid simulation, were laid

out in a comprehensive way. They consist of a discrete model of the structure including the static

and dynamic loading; a transfer system comprising a controller and static or dynamic actuators;

the physical specimen that is being tested in the laboratory, including a support against which the

actuators of the transfer system can react; and a data-acquisition system including

instrumentation devices.

 249

The most common modes of deployment of hybrid simulations, such as local versus

geographically distributed tests and slow versus rapid versus real-time tests, were summarized

and discussed. A local hybrid simulation was defined by the collocation of all the required

components in one testing facility. In contrast, for geographically distributed tests some or all the

participating sites are dispersed and need to be connected through wide area networks.

Moreover, it was noted that the equations of motion, which are solved by a time-stepping

integration method, will by necessity take on slightly different forms depending on the execution

speed of the hybrid simulation.

7.1.2 Experimental Software Framework

From the literature review it was found that even though only a small number of basic operations

and communication protocols are needed to perform hybrid simulations, hitherto few efforts

have been made to implement a universal, environment-independent software framework for

developing and deploying systems that are capable of carrying out hybrid simulations. It was

explained that a software framework is a reusable design for a system or subsystem and defines

the overall architecture of such system, meaning its fundamental components as well as the

relationships among them.

Conforming to this definition, an existing software framework for experimental testing

(OpenFresco) was redesigned, extended, and implemented to support a large variety of

computational drivers, structural testing methods, specimen types, testing configurations, control

and data-acquisition systems, and communication protocols. In addition, to accelerate the

development and refinement of hybrid simulation, OpenFresco was implemented to be

environment independent, robust, transparent, scalable, and easily extensible. It was described

how the original development of the software framework is based on the structural analysis

approach, in which a hybrid simulation can be viewed as a conventional finite element analysis

where physical subassemblies of the structure are embedded in the numerical model. Object-

oriented methodologies and a rigorous systems analysis of the operations performed during

hybrid simulations were used to determine the fundamental building blocks of the OpenFresco

software framework.

Four main software abstractions (classes) had previously been introduced to represent the

real-world components required to perform hybrid simulations (Takahashi and Fenves 2006).

 250

These classes are the ExperimentalElement, which represents those parts of a structure that are

physically tested in a laboratory; the ExperimentalSite, which represents the laboratories where

the testing takes place or the computational sites where the analysis is carried out; the

ExperimentalSetup, which represents the possible configurations of the transfer system; and the

ExperimentalControl, which provides the interface to communicate with a wide variety of

control and data-acquisition systems.

One of the key contributions of the research presented here is the application of a multi-

tier client/server architecture that was wrapped around the fundamental OpenFresco building

blocks. As part of this work, the OpenFresco core components were redesigned and newly

implemented before they were combined with the multi-tier client/server architecture. It was

shown how the new design supports any finite element analysis software as the computational

driver and facilitates a wide variety of local and geographically distributed testing

configurations. In addition, these different modes of deployment were explained in detail. Hence,

it can be concluded that OpenFresco’s new three- and four-tier architectural patterns provide the

modularity and flexibility to interface any computational agent running on one or more machines

with physical specimens being tested in one or more laboratories.

The final OpenFresco software design that resulted from the object-oriented design phase

was summarized utilizing class diagrams, class APIs, and sequence diagrams as are commonly

done for software developments. Afterwards, all the concrete classes, which have been

implemented as part of the work presented here, and protocols for distributed computation and

testing, were discussed. The OpenFresco source-code, documentation, and examples are

available at http://openfresco.neesforge.nees.org. Finally, it was shown how OpenSees could be

used as the computational framework. It was found that improved performance could be

achieved as compared to other finite element analysis software because the two software

frameworks can directly be integrated without utilizing network connections.

Overall, it can be concluded that the redesigned, extended, and newly implemented

software framework for experimental testing is very flexible, extensible, and capable of

interfacing with a wide variety of finite element analysis software and of supporting a large array

of testing equipment. Thus, it will be able to boost the development and deployment of hybrid

simulation and promote the collaboration among experts in the field.

 251

7.1.3 Integration Methods

After the OpenFresco middleware, which allows any finite element analysis software to be

connected to a laboratory, had successfully been redesigned, the goal was to investigate another

of the key components required to perform hybrid simulations; that is, the time-stepping

integration methods, which act as the computational drivers and need to be provided by or

implemented in the finite element analysis software.

A wide range of integration schemes from both the class of direct integration methods

and the class of Runge-Kutta methods were investigated and evaluated in terms of their

applicability to hybrid simulation. The first step in these investigations identified and

summarized special integration scheme properties required for the reliable, accurate and fast

execution of hybrid simulations. It was concluded that explicit noniterative methods are well

suited for hybrid simulation and easy to implement, as long as it is possible to satisfy their

stability limits with a reasonable time-step size. In contrast, it was demonstrated that

unconditionally stable iterative implicit methods should be used for hybrid simulation under only

one of two conditions: either a fixed user-specified number of iterations is utilized in the

equilibrium solution algorithm or the event-driven algorithms that were introduced in another

part of this report need to automatically adjust the time intervals over which displacement

increments are imposed. For the former approach, improved versions of existing algorithms were

developed that achieve superior convergence in the iteration process. Third, it was shown that the

operator-splitting methods and Rosenbrock methods, which are unconditionally stable, relatively

easy to implement, and computationally almost as efficient as explicit methods, are excellent for

solving the equations of motion during hybrid simulations. For the operator-splitting schemes,

two new methods were proposed, the generalized-alpha-OS and the Modified generalized-alpha-

OS method. They were described in detail and it was concluded that as long as the hybrid model

does not exhibit severe geometric nonlinearities, the two methods are very attractive integration

schemes for hybrid simulation. Another key component of this work is the thorough

investigation of the applicability of Runge-Kutta methods to hybrid simulation.

The accuracy of both the class of direct integration methods and the class of Runge-Kutta

methods considered was also evaluated in terms of two measures, numerical dissipation and

dispersion. It was concluded that for hybrid simulation the integration schemes should preferably

provide some user-adjustable amount of algorithmic energy dissipation in high-frequency modes

 252

to damp out any spurious oscillations that might get excited by experimental errors. In contrast, it

was concluded that the numerical dispersion, meaning the relative period elongation, should be

as small as possible for maximal accuracy of the integration method.

Finally, all the integration methods introduced were summarized in form of pseudo-code

to assist with their implementation into finite element software. In addition, most of the methods

have already been implemented in OpenSees.

7.1.4 Event-Driven Strategies

The predictor-corrector algorithms that provide the synchronization of the integration and

transfer system processes and need to be implemented on the control and data-acquisition system

side in a real-time environment were investigated next. Previous developments, such as methods

for continuous and real-time testing as well as the three-loop hardware architecture (Mosqueda

2003) that makes continuous geographically distributed testing possible, were discussed first.

Several improved predictor-corrector algorithms, which incorporate the last predicted

displacement command into the corrector formulas, were then introduced. It was shown that

these algorithms achieve improved performance in the sense that they generate continuous

displacement command signals without inconsistencies in the switching interval. Furthermore,

two new predictor-corrector algorithms that are based on velocities and accelerations, in addition

to displacements, were proposed and shown to achieve improved accuracy while preserving

continuity in the generated displacement command signals. The theories of all synchronization

algorithms introduced were covered in detail, and their performance and accuracy evaluated

graphically in terms of amplitude change and a phase shift. Hence, it can be concluded that the

new and improved synchronization algorithms, which have been implemented in the C

programming language and are available to users, provide means for performing more accurate

continuous hybrid simulations and should therefore be utilized in place of the original

algorithms.

The event-driven solution strategies, which employ the previously described algorithms

for prediction and correction, were investigated next. Again, the existing strategy was evaluated

first, and based on the deficiencies identified, new and improved solution strategies were

suggested. Most of the new strategies are based on adaptive control concepts that automatically

adjust parameters of the event-driven controller, such as time steps, actuator velocities etc.,

 253

according to some suitable performance criteria. It was shown that one of the improved strategies

successfully generates continuous velocity transition (whenever test execution needs to be

slowed down or sped up) instead of the discontinuous ones of the original strategy. Another one

of the new solution strategies was specifically developed to work in conjunction with the implicit

Newmark direct integration method (that would otherwise be inappropriate for hybrid

simulation), by adapting time intervals over which displacement commands are imposed. Finally,

except for the adaptive simulation time-step strategies and the adaptive integration time-step

strategies, which still need to be tested and evaluated in a real physical environment, all the other

event-driven strategies have been implemented in Simulink/Stateflow (Mathworks) and are

available to users for performing hybrid simulations.

As a result, it can be concluded that the new and improved predictor-corrector algorithms

and event-driven strategies provide an important and useful set of tools to perform continuous

hybrid simulations in which consistent and more accurate commands are generated for the

control systems.

7.1.5 Novel Hybrid Simulation Examples

To confirm the robustness, flexibility, and usability of the extended OpenFresco software

framework and to validate the integration methods and the event-driven synchronization

strategies introduced, two new, interesting, and challenging hybrid simulation examples were

carried out.

The first application presented a continuous geographically distributed hybrid simulation

that was executed in soft real time for the first time in history. It was shown that OpenFresco’s

newly implemented Shadow and Actor experimental sites combined with the latest

advancements in networking technology (Abilene network) made such real-time geographically

distributed hybrid simulation possible. Furthermore, it can be concluded that the improved

predictor-corrector algorithms and event-driven strategies successfully guaranteed the continuous

execution of the test, as well as the smooth slow downs and speed ups of the experiment in case

of network delays.

It was discussed that over the last few years, real-time hybrid simulations have gained

considerably in significance because the many new high-performance structural devices, such as

base isolation bearings, energy-dissipation devices, and high-performance materials, exhibit

 254

intrinsic rate-dependent behavior. Thus, it was concluded that it is of great importance that

testing of structural systems incorporating such devices is performed at the correct loading rates

even if the hybrid simulations are geographically distributed. It was successfully demonstrated

that the redesigned, extended and newly implemented software framework for experimental

testing provides the means to perform such hybrid simulations.

The second application introduced a novel approach for conducting structural collapse

investigations utilizing hybrid simulation. It was shown that the OpenFresco software framework

provides an effective set of modules, especially the novel experimental beam-column elements,

for performing accurate, safe and cost-effective hybrid simulations of structural collapse.

Furthermore, it was concluded that the modified implicit Newmark integration scheme with 10

sub-steps is capable of generating an accurate response of the portal-frame despite the significant

geometric nonlinearities.

Finally, it was concluded that hybrid simulation of structural collapse offers three

important advantages over conventional testing methods: (1) the gravity loads and the resulting

geometric nonlinearities are represented in the analytical portion of the hybrid model in the

computer, eliminating the need for complex active or passive gravity load setups; (2) there is no

need to protect expensive test equipment from specimen impact during collapse because the

actuator control system will limit the movements of the test specimens; and (3) only the critical,

collapse-sensitive elements of the structure need to be physically tested allowing for a substantial

increase in the number of different collapse tests afforded by the same budget.

7.2 RECOMMENDATIONS FOR FUTURE WORK

The topics cover by this research constitute a valuable contribution that provides the research

community with an extensive set of tools, such as a robust and flexible software framework and

a comprehensive compilation of time-stepping integration techniques and synchronization

strategies, to perform advanced hybrid simulations to experimentally investigate the behavior of

complex structures. In the process of developing and implementing many of the discussed topics

several research areas were identified which could benefit from further study.

 255

OpenFresco Software Framework:
1. Enhance the ability of the hybrid simulation software framework to simulate in dry-run

mode test specimens and transfer systems, including controllers, actuators, hydraulic

supply systems, and instrumentation. Such capabilities to conduct dry runs of an

experiment before the actual test are critical in determining control parameters, and in

confirming that various analysis parameters are input properly ensuring that the hybrid

simulation can be run safely. The OpenFresco software framework currently permits

simulation of the specimen in dry-run mode, but features are not adequate to simulate the

full system including critical aspects of controllers, hydraulic control systems, etc.,

necessary to assess overall stability and safety.

2. Improve the support for rapid and soft real-time geographically distributed hybrid

simulations and verify that the OpenFresco software framework provides the necessary

capabilities for hard real-time hybrid simulations. This is a rapidly growing research area

with several NEES equipment sites and individual research projects undertaking projects

that require real-time or rapid test execution. The following activities should be included:

Implement methods into the OpenFresco software framework for compensating for

inertial and viscous damping forces that are being generated in the physically tested

portions of a structure during the rapid or real-time execution of a hybrid simulation (see

Chapter 2). Extend the OpenFresco software framework so that it can be employed to

execute smart shaking table tests by performing a hybrid simulation where a simulator

platform is controlled in real time. Investigate methods to further improve the speed and

reliability of geographically distributed hybrid simulations and to take full advantage of

the capabilities of the next generation Internet.

3. Several NEES equipment sites and researchers are currently working towards the ability

to conduct force and mixed force/displacement controlled hybrid simulations. Thus, it is

important to collaborate with these equipment sites and researchers to make any changes

needed to the OpenFresco software framework to enable force and mixed

force/displacement control, as well as switching during simulation between force and

displacement control.

4. One of the main features of the OpenFresco software framework is its ability to allow

users to employ any finite element analysis software of their choice. Currently, the

 256

implementations with OpenSees, Matlab, LS-Dyna, and SimCor work well. However,

additional interfaces for other widely used finite element software packages, such as

Abaqus and SAP2000, should be investigated and interfaces be implemented.

5. One of the NEES objectives is to foster the open exchange of data and information

among researchers and practicing engineers through shared, web-accessible repositories.

Hence, it is essential to implement recording capabilities for all the objects in the

OpenFresco software framework and investigate approaches for automatically uploading

all the recorded data into the NEES data repository.

Integration Methods:
1. Investigate the changes or additions that are required in OpenSees in order to implement

all the discussed Runge-Kutta integration methods, especially the real-time compatible

Rosenbrock methods. Because for Runge-Kutta methods the second-order differential

equation is converted into a system of first-order ordinary differential equations, the size

of the linear system of equations that needs to be solved during the analysis doubles. This

will entail some new additions to OpenSees to assemble and solve these distinctive linear

systems of equations.

2. The application of mixed time implicit-explicit integration schemes (Liu and Belytschko

1982) to hybrid simulation should be investigated. Contrary to implicit-explicit

integration methods (Hughes and Liu 1978), which were employed for hybrid simulation

by Dermitzakis and Mahin (1985), the partition procedures by Liu and Belytschko (1982)

permit different time-integration algorithms with different time steps to be used

simultaneously in different parts of the finite element mesh.

Event-Driven Strategies:
1. Many simulation results but only a limited number of actual tests were performed to

validate the newly introduced predictor-corrector algorithms. Hence, additional real

hybrid simulations should be performed to enforce the validation of the algorithms under

a broader range of conditions. Specifically, the algorithms that are based on velocities

and accelerations should be further investigated if the velocities and accelerations are

provided by the integration methods (especially the Runge-Kutta methods once they are

implemented in OpenSees).

 257

2. To make the adaptive simulation and integration time-step strategies available to hybrid

simulation users and researchers, they should be implemented in Simulink/Stateflow

(Mathworks) so that they can be validated through actual tests in a real-time environment

prior to releasing them.

Applications:
1. There is a range of hybrid simulation applications that are challenging to execute because

of the following known issues. It is difficult to control three-dimensional systems

utilizing an array of actuators due to their kinematic interaction. Furthermore, controlling

experimental subassemblies with large physical masses is very challenging because of

inertial force interactions. This becomes even more difficult if high loading rates are

necessary due to the velocity dependence of structural devices. As a result, example

applications should be designed to perform hybrid simulations to investigate these issues

and research means for dealing with these difficulties.

REFERENCES

Ahmadizadeh, M., et al. [2008]. "Compensation of actuator delay and dynamics for real-time hybrid structural
simulation." Earthquake Engineering & Structural Dynamics 37(1): 21-42.

Bathe, K.-J. [1996]. Finite element procedures. Englewood Cliffs, NJ, Prentice Hall.
Bayer, V., et al. [2005]. "On real-time pseudo-dynamic sub-structure testing: algorithm, numerical and experimental

results." Aerospace Science and Technology 9(3): 223-232.
Belytschko, T. and Hughes, T. J. R. [1983]. Computational methods for transient analysis. Amsterdam; New York,

NY, North-Holland.
Blakeborough, A., et al. [2001]. "The development of real-time substructure testing." Philosophical Transactions of

the Royal Society: Mathematical, Physical and Engineering Sciences 359(1786): 1869-1891.
Bonelli, A. and Bursi, O. S. [2004]. "Generalized-alpha methods for seismic structural testing." Earthquake

Engineering & Structural Dynamics 33(10): 1067-1102.
Bonnet, P. A., et al. [2008]. "Evaluation of numerical time-integration schemes for real-time hybrid testing."

Earthquake Engineering & Structural Dynamics 37(13): 1467-1490.
Booch, G., et al. [2005]. The unified modeling language user guide. Upper Saddle River, NJ, Addison-Wesley.
Burden, R. L. and Faires, J. D. [2001]. Numerical analysis. Pacific Grove, CA, Brooks/Cole-Thomson Learning.
Bursi, O. S., et al. [2008]. "Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure

testing." Earthquake Engineering & Structural Dynamics 37(3): 339-360.
Bursi, O. S., et al. [1994]. "Pseudodynamic testing of strain-softening systems with adaptive time steps." Earthquake

Engineering & Structural Dynamics 23(7): 745-760.
Bursi, O. S. and Shing, P. S. B. [1996]. "Evaluation of some implicit time-stepping algorithms for pseudodynamic

tests." Earthquake Engineering & Structural Dynamics 25(4): 333-355.
Butcher, J. C. [2003]. Numerical methods for ordinary differential equations. Chichester, West Sussex, England ;

Hoboken, NJ, J. Wiley.
Campbell, S. and Stojadinovic, B. [1998]. A system for simultaneous pseudodynamic testing of multiple

substructures. Proceedings, Sixth U.S. National Conference on Earthquake Engineering. Seattle, WA.
Carnegie Mellon SEI. [2008]. "Software technology roadmap." from http://www.sei.cmu.edu/str.
Chang, S.-Y. [2002]. "Explicit pseudodynamic algorithm with unconditional stability." Journal of Engineering

Mechanics 128(9): 935-947.
Chang, S. Y. and Sung, Y. C. [2006]. An enhanced explicit pseudodynamic algorithm with unconditional stability.

Proceedings, Eighth U.S. National Conference on Earthquake Engineering. San Francisco, CA.
Chopra, A. K. [2001]. Dynamics of structures: theory and applications to earthquake engineering. Upper Saddle

River, NJ, Prentice Hall.
Chung, J. and Hulbert, G. M. [1993]. "A time integration algorithm for structural dynamics with improved

numerical dissipation: the generalized-alpha method." Journal of Applied Mechanics, ASME 60(2): 371-375.
Combescure, D. and Pegon, P. [1997]. "Alpha-operator splitting time integration technique for pseudodynamic

testing error propagation analysis." Soil Dynamics and Earthquake Engineering 16(7-8): 427-443.
Cook, R. D. [2002]. Concepts and applications of finite element analysis. New York, NY, Wiley.

 260

Darby, A. P., et al. [1999]. "Real-time substructure tests using hydraulic actuator." Journal of Engineering
Mechanics 125(10): 1133-1139.

Darby, A. P., et al. [2001]. "Improved control algorithm for real-time substructure testing." Earthquake Engineering
& Structural Dynamics 30(3): 431-448.

de Souza, R. M. [2000]. Force-based finite element for large displacement inelastic analysis of frames, University of
California, Berkeley. Ph.D.: 205.

Deitel, H. M. and Deitel, P. J. [2003]. C++ how to program. Upper Saddle River, NJ, Prentice Hall.
Dermitzakis, S. N. and Mahin, S. A. [1985]. Development of substructuring techniques for on-line computer

controlled seismic performance testing. Berkeley, CA, Earthquake Engineering Research Center: 153 pages.
Dorka, U. E. [2002]. Hybrid experimental - numerical simulation of vibrating structures. International Conference

WAVE2002. Okayama, Japan.
Dorka, U. E. and Heiland, D. [1991]. Fast online earthquake utilizing a novel PC supported measurement and

control concept. 4th Conference on Structural Dynamics. Southampton, UK.
dSpace Inc. [2008]. "dSPACE." from http://www.dspaceinc.com/ww/en/inc/home.cfm.
Elkhoraibi, T. and Mosalam, K. M. [2007]. "Towards error-free hybrid simulation using mixed variables."

Earthquake Engineering & Structural Dynamics 36(11): 1497-1522.
Erlicher, S., et al. [2002]. "The analysis of the generalized-α method for non-linear dynamic problems."

Computational Mechanics 28(2): 83-104.
Fenves, G. L. [1990]. "Object-oriented programming for engineering software development." Engineering with

Computers 6(1): 1-15.
Fenves, G. L., et al. [2004]. An object-oriented software environment for collaborative network simulation.

Proceedings, 13th World Conference on Earthquake Engineering. Vancouver, BC, Canada.
Filippou, F. C. and Fenves, G. L. [2004]. Methods of analysis for earthquake-resistant structures. Earthquake

Engineering: From Engineering Seismology to Performance-Based Engineering. Boca Raton, FL, CRC Press.
Gamma, E., et al. [1995]. Design patterns: elements of reusable object-oriented software. Reading, MA, Addison-

Wesley.
Gawthrop, P. J., et al. [2007]. "Robust real-time substructuring techniques for under-damped systems." Structural

Control and Health Monitoring 14(4): 591-608.
Gourley, D. and Totty, B. [2002]. Http: the definitive guide. Beijing; Cambridge, MA, O'Reilly.
Hairer, E., et al. [2000]. Solving ordinary differential equations I, nonstiff problems. Berlin; New York, NY,

Springer-Verlag.
Hairer, E. and Wanner, G. [2002]. Solving ordinary differential equations II, stiff and differential-algebraic

problems. Berlin; New York, NY, Springer-Verlag.
Harris, H. G., et al. [1999]. Structural modeling and experimental techniques. Boca Raton, FL, CRC Press.
Heun, K. [1900]. "Neue Methoden zur approximativen Integration der Differentialgleichungen einer unabhängigen

Veränderlichen." Zeitschrift für Mathematik und Physik 45: 23-38.
Hilber, H. M. and Hughes, T. J. R. [1978]. "Collocation, dissipation and 'overshoot' for time integration schemes in

structural dynamics." Earthquake Engineering and Structural Dynamics 6(1): 99-117.
Hilber, H. M., et al. [1977]. "Improved numerical dissipation for time integration algorithms in structural dynamics."

Earthquake Engineering and Structural Dynamics 5(3): 283-292.

 261

Horiuchi, T., et al. [2000]. Development of a real-time hybrid experimental system using a shaking table.
Proceedings, 12th World Conference on Earthquake Engineering. Auckland, New Zealand.

Horiuchi, T., et al. [1999]. "Real-time hybrid experimental system with actuator delay compensation and its
application to a piping system with energy absorber." Earthquake Engineering & Structural Dynamics 28(10):
1121-1141.

Horiuchi, T. and Konno, T. [2001]. "A new method for compensating actuator delay in real-time hybrid
experiments." Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering
Sciences 359(1786): 1893-1909.

Horiuchi, T., et al. [1996]. Development of a real-time hybrid experimental system with actuator delay
compensation. Proceedings, 11th World Conference on Earthquake Engineering. Acapulco, México.

Hubbard, P., et al. [2004]. Protocol specification for the LabView NTCP plugin. San Diego, CA, NEESit Technical
Report.

Hughes, T. J. R. [2000]. The finite element method: linear static and dynamic finite element analysis. Mineola, NY,
Dover Publications.

Hughes, T. J. R. and Liu, W. K. [1978]. "Implicit-explicit finite elements in transient analysis: implementation and
numerical examples." Journal of Applied Mechanics, ASME 45(2): 375-378.

Hughes, T. J. R. and Liu, W. K. [1978]. "Implicit-explicit finite elements in transient analysis: stability theory."
Journal of Applied Mechanics, ASME 45(2): 371-374.

Hughes, T. J. R., et al. [1979]. "Implicit-explicit finite elements in nonlinear transient analysis " Computer Methods
in Applied Mechanics and Engineering 17(18): 159-182.

Hulbert, G. M. and Chung, J. [1996]. "Explicit time integration algorithms for structural dynamics with optimal
numerical dissipation." Computer Methods in Applied Mechanics and Engineering 137(2): 175-188.

Humar, J. L. [2002]. Dynamics of structures. Exton, PA, A.A. Balkema Publishers.
Igarashi, A., et al. [1993]. Development of the pseudodynamic technique for testing a full scale 5-story shear wall

structure. U.S. - Japan Seminar, Development and Future Dimensions of Structural Testing Techniques.
Honolulu, HI.

Jung, R.-Y. and Shing, P. B. [2006]. "Performance evaluation of a real-time pseudodynamic test system."
Earthquake Engineering & Structural Dynamics 35(7): 789-810.

Jung, R.-Y., et al. [2007]. "Performance of a real-time pseudodynamic test system considering nonlinear structural
response." Earthquake Engineering & Structural Dynamics 36(12): 1785-1809.

Kaps, P. and Wanner, G. [1981]. "A study of Rosenbrock-type methods of high order." Numerische Mathematik
38(2): 279-298.

Kuhl, D. and Crisfield, M. A. [1999]. "Energy-conserving and decaying algorithms in non-linear structural
dynamics." International Journal for Numerical Methods in Engineering 45(5): 569-599.

Kutta, W. [1901]. "Beitrag zur näherungsweisen Integration totaler Differentialgleichungen." Zeitschrift für
Mathematik und Physik 46(435-453).

Kwon, O.-S., et al. [2005]. "A framework for multi-site distributed simulation and application to complex structural
systems." Journal of Earthquake Engineering 9(5): 741-753.

Lambert, J. D. [1991]. Numerical methods for ordinary differential systems: the initial value problem. Chichester ;
New York, NY, Wiley.

 262

Liu, W. K. and Belytschko, T. [1982]. "Mixed-time implicit-explicit finite elements for transient analysis."
Computers and Structures 15(4): 445-450.

Liu, W. K., et al. [1984]. "Implementation and accuracy of mixed-time implicit-explicit methods for structural
dynamics." Computers & Structures 19(4): 521-530.

Livermore Software Technology Corp. [2008]. "LS-DYNA." from http://www.lstc.com.
Magonette, G. [2001]. "Development and application of large-scale continuous pseudo-dynamic testing techniques."

Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences 359(1786):
1771-1799.

Magonette, G. E. and Negro, P. [1998]. "Verification of the pseudodynamic test method." European Earthquake
Engineering XII(1): 40-50.

Mahin, S. A., et al. [1989]. "Pseudodynamic test method - current status and future directions." Journal of Structural
Engineering 115(8): 2113-2128.

Mahin, S. A. and Shing, P. S. B. [1985]. "Pseudodynamic method for seismic testing." Journal of Structural
Engineering 111(7): 1482-1503.

Mahin, S. A. and Williams, M. E. [1980]. Computer controlled seismic performance testing. Dynamic Response of
Structures: Experimentation, Observation, Prediction and Control, American Society of Civil Engineers, New
York, NY.

Manring, N. [2005]. Hydraulic control systems. Hoboken, NJ, John Wiley & Sons.
Maplesoft. [2008]. "Maple." from http://www.maplesoft.com.
Mathworks. [2008]. "MATLAB, Simulink, Stateflow, xPC Target." from http://www.mathworks.com.
McKenna, F. T. [1997]. Object-oriented finite element programming: frameworks for analysis, algorithms and

parallel computing, University of California, Berkeley. Ph.D.: 247.
Mercan, O. and Ricles, J. M. [2007]. "Stability and accuracy analysis of outer loop dynamics in real-time

pseudodynamic testing of SDOF systems." Earthquake Engineering & Structural Dynamics 36(11): 1523-1543.
Morgan, T. A. [2007]. The use of innovative base isolation systems to achieve complex seismic performance

objectives, University of California, Berkeley. Ph.D.: 323.
Mosqueda, G. [2003]. Continuous hybrid simulation with geographically distributed substructures, University of

California, Berkeley. Ph.D.: 232.
Mosqueda, G., et al. [2005]. Implementation and accuracy of continuous hybrid simulation with geographically

distributed substructures. Berkeley, CA, Earthquake Engineering Research Center.
Mosqueda, G., et al. [2007]. "Real-time error monitoring for hybrid simulation. Part II: Structural response

modification due to errors." Journal of Structural Engineering (8): 1109-1117.
Mosqueda, G., et al. [2007]. "Real-time error monitoring for hybrid simulation. Part I: methodology and

experimental verification." Journal of Structural Engineering (8): 1100-1108.
Mosqueda, G., et al. [2004]. Experimental and analytical studies of the friction pendulum system for the seismic

protection of simple bridges. Berkeley, CA, Earthquake Engineering Research Center.
MTS. [2008]. "Civil engineering testing solutions." from http://www.mts.com.
Nakashima, M. [1985]. "Part 2: Relationship between integration time interval and accuracy of displacement,

velocity, and acceleration responses in pseudo dynamic testing." Journal of Structural and Construction
Engineering (Transactions of AIJ) (358): 35-42.

 263

Nakashima, M. [1985]. "Part 1: Relationship between integration time interval and response stability in pseudo
dynamic testing (stability and accuracy behavior of pseudo dynamic response)." Journal of Structural and
Construction Engineering (Transactions of AIJ) (353): 29-36.

Nakashima, M. [2001]. "Development, potential, and limitations of real-time online (pseudo-dynamic) testing."
Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences 359(1786):
1851-1867.

Nakashima, M., et al. [1988]. Feasibility of pseudo dynamic test using substructuring techniques. Proceedings, Ninth
World Conference on Earthquake Engineering. Tokyo, Japan.

Nakashima, M., et al. [1990]. Integration techniques for substructure pseudo dynamic test. Proceedings, Fourth U.S.
National Conference on Earthquake Engineering. Palm Springs, CA.

Nakashima, M. and Kato, H. [1987]. Experimental error growth behavior and error growth control in on-line
computer test control method. Building Research Institute, Ministry of Construction, Tsukuba, Japan: 145
pages.

Nakashima, M. and Kato, H. [1988]. "Part 3: experimental error growth in pseudo dynamic testing (stability and
accuracy behavior of pseudo dynamic response)." Journal of Structural and Construction Engineering
(Transactions of AIJ) (386): 36-48.

Nakashima, M. and Kato, H. [1989]. "Part 4: Control of experimental error growth in pseudo dynamic testing--
Stability and accuracy behavior of pseudo dynamic response." Journal of Structural and Construction
Engineering (Transactions of AIJ) (401): 129-138.

Nakashima, M., et al. [1992]. "Development of real-time pseudo dynamic testing." Earthquake Engineering &
Structural Dynamics 21(1): 79-92.

Nakashima, M. and Masaoka, N. [1999]. "Real-time on-line test for MDOF systems." Earthquake Engineering &
Structural Dynamics 28(4): 393-420.

Newmark, N. M. [1959]. "A method of computation for structural dynamics." Journal of Engineering Mechanics,
ASCE 67.

Nise, N. S. [2004]. Control systems engineering. Hoboken, NJ, Wiley.
OpenFresco. [2008]. "Open Framework for Experimental Setup and Control." from

http://openfresco.neesforge.nees.org.
OpenSees. [2008]. "Open System for Earthquake Engineering Simulation." from http://opensees.berkeley.edu.
Pan, P., et al. [2005]. "Online test using displacement-force mixed control." Earthquake Engineering & Structural

Dynamics 34(8): 869-888.
Pan, P., et al. [2005]. "Online hybrid test by internet linkage of distributed test-analysis domains." Earthquake

Engineering & Structural Dynamics 34(11): 1407-1425.
Pan, P., et al. [2006]. "Development of peer-to-peer (P2P) internet online hybrid test system." Earthquake

Engineering & Structural Dynamics 35(7): 867-890.
Pinto, A. V., et al. [2004]. "Pseudo-dynamic testing of bridges using non-linear substructuring." Earthquake

Engineering & Structural Dynamics 33(11): 1125-1146.
Plesha, M. E. and Belytschko, T. [1985]. "A constitutive operator splitting method for nonlinear transient analysis."

Computers & Structures 20(4): 767-777.

 264

Rodgers, J. E. and Mahin, S. A. [2004]. Effects of connection hysteretic degradation on the seismic behavior of steel
moment-resisting frames. Berkeley, CA, Pacific Earthquake Engineering Research Center.

Runge, C. [1895]. "Ueber die numerische Auflösung von Differentialgleichungen." Mathematische Annalen 46:
167-178.

Sandee, J. H., et al. [2005]. Event-driven control as an opportunity in the multidisciplinary development of
embedded controllers, Technische Universiteit Eindhoven, Dept. of Electrical Engineering, Control Systems
Group.

Schellenberg, A. and Mahin, S. [2006]. Integration of hybrid simulation within the general-purpose computational
framework Opensees. Proceedings, Eighth U.S. National Conference on Earthquake Engineering. San
Francisco, CA.

Schellenberg, A., et al. [2007]. A software framework for hybrid simulation of large structural systems. Proceedings,
2007 Structures Congress. Long Beach, CA.

Schneider, S. P. and Roeder, C. W. [1994]. "An inelastic substructure technique for the pseudodynamic test
method." Earthquake Engineering & Structural Dynamics 23(7): 761-775.

Scott, M. H. and Fenves, G. L. [2003]. A Krylov subspace accelerated Newton algorithm. ASCE Structures
Congress. Seattle, WA.

Shampine, L. F. [1982]. "Implementation of Rosenbrock methods." ACM Transactions on Mathematical Software
8(2): 93-113.

Shing, P. B., et al. [1994]. "Pseudodynamic tests of a concentrically braced frame using substructuring techniques."
Journal of Constructional Steel Research 29(1-3): 121-148.

Shing, P. B. and Mahin, S. A. [1983]. Experimental error propagation in pseudodynamic testing. Berkeley, CA,
Earthquake Engineering Research Center: 175 pages.

Shing, P. B., et al. [2002]. Conceptual design of fast hybrid test system at the University of Colorado. Proceedings,
Seventh U.S. National Conference on Earthquake Engineering. Boston, MA.

Shing, P. B., et al. [2004]. Nees fast hybrid test system at the University of Colorado. Proceedings, 13th World
Conference on Earthquake Engineering. Vancouver, BC, Canada.

Shing, P. S. B. and Mahin, S. A. [1984]. Pseudodynamic test method for seismic performance evaluation: theory and
implementation. Berkeley, CA, Earthquake Engineering Research Center: 162 pages.

Shing, P. S. B. and Mahin, S. A. [1987]. "Cumulative experimental errors in pseudodynamic tests." Earthquake
Engineering & Structural Dynamics 15(4): 409-424.

Shing, P. S. B. and Mahin, S. A. [1987]. "Elimination of spurious higher-mode response in pseudodynamic tests."
Earthquake Engineering & Structural Dynamics 15(4): 425-445.

Shing, P. S. B., et al. [1996]. "Application of pseudodynamic test method to structural research." Earthquake Spectra
12(1): 29-56.

Shing, P. S. B. and Vannan, M. T. [1991]. "Implicit time integration for pseudodynamic tests: convergence and
energy dissipation." Earthquake Engineering & Structural Dynamics 20(9): 809-819.

Shing, P. S. B., et al. [1991]. "Implicit time integration for pseudodynamic tests." Earthquake Engineering &
Structural Dynamics 20(6): 551-576.

Simo, J. C. and Hughes, T. J. R. [1998]. Computational inelasticity. New York, NY, Springer.

 265

Sivaselvan, M. V. [2006]. A unified view of hybrid seismic simulation algorithms. Boulder, CO, NEES at CU-
Boulder.

Smith, S. W. [1997]. The scientist and engineer's guide to digital signal processing. San Diego, CA, California
Technical Pub.

Systran. [2008]. "SCRAMNet+ network." from http://www.cwcembedded.com.
Tada, M. and Pan, P. [2007]. "A modified operator splitting (OS) method for collaborative structural analysis

(CSA)." International Journal for Numerical Methods in Engineering 72(4): 379-396.
Takahashi, Y. and Fenves, G. L. [2006]. "Software framework for distributed experimental–computational

simulation of structural systems." Earthquake Engineering & Structural Dynamics 35(3): 267-291.
Takanashi, K. and Nakashima, M. [1987]. "Japanese activities on on-line testing." Journal of Engineering

Mechanics 113(7): 1014-1032.
Takanashi, K., et al. [1975]. "Non-linear earthquake response analysis of structures by a computer-actuator online

system--Part 1: detail of the system." Transactions of the Architectural Institute of Japan (229): 77-83.
Tcl Developer Xchange. [2008]. "Tcl/Tk." from http://www.tcl.tk.
Tedesco, J. W., et al. [1999]. Structural dynamics: theory and applications. Menlo Park, CA, Addison-Wesley.
Thewalt, C. R. and Mahin, S. A. [1987]. Hybrid solution techniques for generalized pseudodynamic testing.

Berkeley, CA, Earthquake Engineering Research Center: 142 pages.
Thewalt, C. R. and Mahin, S. A. [1995]. "An unconditionally stable hybrid pseudodynamic algorithm." Earthquake

Engineering & Structural Dynamics 24(5): 723-731.
Thewalt, C. R. and Roman, M. [1994]. "Performance parameters for pseudodynamic tests." Journal of Structural

Engineering 120(9): 2768-2781.
Thiele, K. [2000]. Pseudodynamische Versuche an Tragwerken mit grossen Steifigkeitsanderungen und mehreren

Freiheitsgraden. Zurich, Switzerland, Federal Institute of Technology. Ph.D.: 168.
Timoshenko, S. [1961]. Theory of elastic stability. New York, NY, McGraw-Hill.
Uriz, P. [2005]. Towards earthquake resistant design of concentrically braced steel structures, University of

California, Berkeley. Ph.D.: 436.
US NSF. [2008]. "George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES)." from

http://www.nees.org.
Verwer, J. G. [1981]. "An analysis of Rosenbrock methods for nonlinear stiff initial value problems." SIAM Journal

on Numerical Analysis 19(1): 155-170.
Wallace, M. I., et al. [2005]. "Stability analysis of real-time dynamic substructuring using delay differential equation

models." Earthquake Engineering & Structural Dynamics 34(15): 1817-1832.
Wallace, M. I., et al. [2005]. "An adaptive polynomial based forward prediction algorithm for multi-actuator real-

time dynamic substructuring." Proceedings of the Royal Society of London A 461(2064): 3807-3826.
Wang, T., et al. [2006]. "On-line hybrid test combining with general-purpose finite element software." Earthquake

Engineering & Structural Dynamics 35(12): 1471-1488.
Wang, Y.-P., et al. [2001]. "Modified state-space procedures for pseudodynamic testing." Earthquake Engineering &

Structural Dynamics 30(1): 59-80.
Wolfram. [2008]. "Mathematica." from http://www.wolfram.com.

 266

Wu, B., et al. [2007]. "Equivalent force control method for generalized real-time substructure testing with implicit
integration." Earthquake Engineering & Structural Dynamics 36(9): 1127-1149.

Yang, T. Y. [2006]. Performance evaluation of innovative steel braced frames, University of California, Berkeley.
Ph.D.: 245.

Zayas, V. A., et al. [1989]. Feasibility and performance studies on improving the earthquake resistance of new and
existing buildings using the friction pendulum system. Berkeley, CA, Earthquake Engineering Research Center:
302 pages.

Zayas, V. A., et al. [1987]. The FPS earthquake resisting system: experimental report. Berkeley, CA, Earthquake
Engineering Research Center: 98 pages.

Zhong, W. [2005]. Fast hybrid test system for substructure evaluation, University of Colorado at Boulder. Ph.D.:
123.

PEER REPORTS

PEER reports are available individually or by yearly subscription. PEER reports can be ordered at
http://peer.berkeley.edu/publications/peer_reports.html or by contacting the Pacific Earthquake Engineering Research Center, 1301
South 46th Street, Richmond, CA 94804-4698. Tel.: (510) 665-3448; Fax: (510) 665-3456; Email: peer_editor@berkeley.edu

PEER 2009/02 Improving Earthquake Mitigation through Innovations and Applications in Seismic Science, Engineering,
Communication, and Response. Proceedings of a U.S.-Iran Seismic Workshop. October 2009.

PEER 2009/01 Evaluation of Ground Motion Selection and Modification Methods: Predicting Median Interstory Drift Response of
Buildings. Curt B. Haselton, Ed. June 2009.

PEER 2008/10 Technical Manual for Strata. Albert R. Kottke and Ellen M. Rathje. February 2009.

PEER 2008/09 NGA Model for Average Horizontal Component of Peak Ground Motion and Response Spectra. Brian S.-J. Chiou
and Robert R. Youngs. November 2008.

PEER 2008/08 Toward Earthquake-Resistant Design of Concentrically Braced Steel Structures. Patxi Uriz and Stephen A.
Mahin. November 2008.

PEER 2008/07 Using OpenSees for Performance-Based Evaluation of Bridges on Liquefiable Soils. Stephen L. Kramer, Pedro
Arduino, and HyungSuk Shin. November 2008.

PEER 2008/06 Shaking Table Tests and Numerical Investigation of Self-Centering Reinforced Concrete Bridge Columns. Hyung
IL Jeong, Junichi Sakai, and Stephen A. Mahin. September 2008.

PEER 2008/05 Performance-Based Earthquake Engineering Design Evaluation Procedure for Bridge Foundations Undergoing
Liquefaction-Induced Lateral Ground Displacement. Christian A. Ledezma and Jonathan D. Bray. August 2008.

PEER 2008/04 Benchmarking of Nonlinear Geotechnical Ground Response Analysis Procedures. Jonathan P. Stewart, Annie
On-Lei Kwok, Yousseff M. A. Hashash, Neven Matasovic, Robert Pyke, Zhiliang Wang, and Zhaohui Yang.
August 2008.

PEER 2008/03 Guidelines for Nonlinear Analysis of Bridge Structures in California. Ady Aviram, Kevin R. Mackie, and Božidar
Stojadinović. August 2008.

PEER 2008/02 Treatment of Uncertainties in Seismic-Risk Analysis of Transportation Systems. Evangelos Stergiou and Anne S.
Kiremidjian. July 2008.

PEER 2008/01 Seismic Performance Objectives for Tall Buildings. William T. Holmes, Charles Kircher, William Petak, and Nabih
Youssef. August 2008.

PEER 2007/12 An Assessment to Benchmark the Seismic Performance of a Code-Conforming Reinforced Concrete Moment-
Frame Building. Curt Haselton, Christine A. Goulet, Judith Mitrani-Reiser, James L. Beck, Gregory G. Deierlein,
Keith A. Porter, Jonathan P. Stewart, and Ertugrul Taciroglu. August 2008.

PEER 2007/11 Bar Buckling in Reinforced Concrete Bridge Columns. Wayne A. Brown, Dawn E. Lehman, and John F. Stanton.
February 2008.

PEER 2007/10 Computational Modeling of Progressive Collapse in Reinforced Concrete Frame Structures. Mohamed M. Talaat
and Khalid M. Mosalam. May 2008.

PEER 2007/09 Integrated Probabilistic Performance-Based Evaluation of Benchmark Reinforced Concrete Bridges. Kevin R.
Mackie, John-Michael Wong, and Božidar Stojadinović. January 2008.

PEER 2007/08 Assessing Seismic Collapse Safety of Modern Reinforced Concrete Moment-Frame Buildings. Curt B. Haselton
and Gregory G. Deierlein. February 2008.

PEER 2007/07 Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns. Michael P. Berry and Marc
O. Eberhard. April 2008.

PEER 2007/06 Development of Improved Procedures for Seismic Design of Buried and Partially Buried Structures. Linda Al Atik
and Nicholas Sitar. June 2007.

PEER 2007/05 Uncertainty and Correlation in Seismic Risk Assessment of Transportation Systems. Renee G. Lee and Anne S.
Kiremidjian. July 2007.

PEER 2007/04 Numerical Models for Analysis and Performance-Based Design of Shallow Foundations Subjected to Seismic
Loading. Sivapalan Gajan, Tara C. Hutchinson, Bruce L. Kutter, Prishati Raychowdhury, José A. Ugalde, and
Jonathan P. Stewart. May 2008.

PEER 2007/03 Beam-Column Element Model Calibrated for Predicting Flexural Response Leading to Global Collapse of RC
Frame Buildings. Curt B. Haselton, Abbie B. Liel, Sarah Taylor Lange, and Gregory G. Deierlein. May 2008.

http://peer.berkeley.edu/publications/peer_reports.html

PEER 2007/02 Campbell-Bozorgnia NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and
Spectral Ground Motion Parameters. Kenneth W. Campbell and Yousef Bozorgnia. May 2007.

PEER 2007/01 Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and
Spectral Ground Motion Parameters. David M. Boore and Gail M. Atkinson. May. May 2007.

PEER 2006/12 Societal Implications of Performance-Based Earthquake Engineering. Peter J. May. May 2007.

PEER 2006/11 Probabilistic Seismic Demand Analysis Using Advanced Ground Motion Intensity Measures, Attenuation
Relationships, and Near-Fault Effects. Polsak Tothong and C. Allin Cornell. March 2007.

PEER 2006/10 Application of the PEER PBEE Methodology to the I-880 Viaduct. Sashi Kunnath. February 2007.

PEER 2006/09 Quantifying Economic Losses from Travel Forgone Following a Large Metropolitan Earthquake. James Moore,
Sungbin Cho, Yue Yue Fan, and Stuart Werner. November 2006.

PEER 2006/08 Vector-Valued Ground Motion Intensity Measures for Probabilistic Seismic Demand Analysis. Jack W. Baker and
C. Allin Cornell. October 2006.

PEER 2006/07 Analytical Modeling of Reinforced Concrete Walls for Predicting Flexural and Coupled–Shear-
Flexural Responses. Kutay Orakcal, Leonardo M. Massone, and John W. Wallace. October 2006.

PEER 2006/06 Nonlinear Analysis of a Soil-Drilled Pier System under Static and Dynamic Axial Loading. Gang Wang and
Nicholas Sitar. November 2006.

PEER 2006/05 Advanced Seismic Assessment Guidelines. Paolo Bazzurro, C. Allin Cornell, Charles Menun, Maziar Motahari,
and Nicolas Luco. September 2006.

PEER 2006/04 Probabilistic Seismic Evaluation of Reinforced Concrete Structural Components and Systems. Tae Hyung Lee
and Khalid M. Mosalam. August 2006.

PEER 2006/03 Performance of Lifelines Subjected to Lateral Spreading. Scott A. Ashford and Teerawut Juirnarongrit. July 2006.

PEER 2006/02 Pacific Earthquake Engineering Research Center Highway Demonstration Project. Anne Kiremidjian, James
Moore, Yue Yue Fan, Nesrin Basoz, Ozgur Yazali, and Meredith Williams. April 2006.

PEER 2006/01 Bracing Berkeley. A Guide to Seismic Safety on the UC Berkeley Campus. Mary C. Comerio, Stephen Tobriner,
and Ariane Fehrenkamp. January 2006.

PEER 2005/16 Seismic Response and Reliability of Electrical Substation Equipment and Systems. Junho Song, Armen Der
Kiureghian, and Jerome L. Sackman. April 2006.

PEER 2005/15 CPT-Based Probabilistic Assessment of Seismic Soil Liquefaction Initiation. R. E. S. Moss, R. B. Seed, R. E.
Kayen, J. P. Stewart, and A. Der Kiureghian. April 2006.

PEER 2005/14 Workshop on Modeling of Nonlinear Cyclic Load-Deformation Behavior of Shallow Foundations. Bruce L. Kutter,
Geoffrey Martin, Tara Hutchinson, Chad Harden, Sivapalan Gajan, and Justin Phalen. March 2006.

PEER 2005/13 Stochastic Characterization and Decision Bases under Time-Dependent Aftershock Risk in Performance-Based
Earthquake Engineering. Gee Liek Yeo and C. Allin Cornell. July 2005.

PEER 2005/12 PEER Testbed Study on a Laboratory Building: Exercising Seismic Performance Assessment. Mary C. Comerio,
editor. November 2005.

PEER 2005/11 Van Nuys Hotel Building Testbed Report: Exercising Seismic Performance Assessment. Helmut Krawinkler,
editor. October 2005.

PEER 2005/10 First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures. September
2005.

PEER 2005/09 Test Applications of Advanced Seismic Assessment Guidelines. Joe Maffei, Karl Telleen, Danya Mohr, William
Holmes, and Yuki Nakayama. August 2006.

PEER 2005/08 Damage Accumulation in Lightly Confined Reinforced Concrete Bridge Columns. R. Tyler Ranf, Jared M. Nelson,
Zach Price, Marc O. Eberhard, and John F. Stanton. April 2006.

PEER 2005/07 Experimental and Analytical Studies on the Seismic Response of Freestanding and Anchored Laboratory
Equipment. Dimitrios Konstantinidis and Nicos Makris. January 2005.

PEER 2005/06 Global Collapse of Frame Structures under Seismic Excitations. Luis F. Ibarra and Helmut Krawinkler.
September 2005.

PEER 2005//05 Performance Characterization of Bench- and Shelf-Mounted Equipment. Samit Ray Chaudhuri and Tara C.
Hutchinson. May 2006.

PEER 2005/04 Numerical Modeling of the Nonlinear Cyclic Response of Shallow Foundations. Chad Harden, Tara Hutchinson,
Geoffrey R. Martin, and Bruce L. Kutter. August 2005.

PEER 2005/03 A Taxonomy of Building Components for Performance-Based Earthquake Engineering. Keith A. Porter.
September 2005.

PEER 2005/02 Fragility Basis for California Highway Overpass Bridge Seismic Decision Making. Kevin R. Mackie and Božidar
Stojadinović. June 2005.

PEER 2005/01 Empirical Characterization of Site Conditions on Strong Ground Motion. Jonathan P. Stewart, Yoojoong Choi,
and Robert W. Graves. June 2005.

PEER 2004/09 Electrical Substation Equipment Interaction: Experimental Rigid Conductor Studies. Christopher Stearns and
André Filiatrault. February 2005.

PEER 2004/08 Seismic Qualification and Fragility Testing of Line Break 550-kV Disconnect Switches. Shakhzod M. Takhirov,
Gregory L. Fenves, and Eric Fujisaki. January 2005.

PEER 2004/07 Ground Motions for Earthquake Simulator Qualification of Electrical Substation Equipment. Shakhzod M.
Takhirov, Gregory L. Fenves, Eric Fujisaki, and Don Clyde. January 2005.

PEER 2004/06 Performance-Based Regulation and Regulatory Regimes. Peter J. May and Chris Koski. September 2004.

PEER 2004/05 Performance-Based Seismic Design Concepts and Implementation: Proceedings of an International Workshop.
Peter Fajfar and Helmut Krawinkler, editors. September 2004.

PEER 2004/04 Seismic Performance of an Instrumented Tilt-up Wall Building. James C. Anderson and Vitelmo V. Bertero. July
2004.

PEER 2004/03 Evaluation and Application of Concrete Tilt-up Assessment Methodologies. Timothy Graf and James O. Malley.
October 2004.

PEER 2004/02 Analytical Investigations of New Methods for Reducing Residual Displacements of Reinforced Concrete Bridge
Columns. Junichi Sakai and Stephen A. Mahin. August 2004.

PEER 2004/01 Seismic Performance of Masonry Buildings and Design Implications. Kerri Anne Taeko Tokoro, James C.
Anderson, and Vitelmo V. Bertero. February 2004.

PEER 2003/18 Performance Models for Flexural Damage in Reinforced Concrete Columns. Michael Berry and Marc Eberhard.
August 2003.

PEER 2003/17 Predicting Earthquake Damage in Older Reinforced Concrete Beam-Column Joints. Catherine Pagni and Laura
Lowes. October 2004.

PEER 2003/16 Seismic Demands for Performance-Based Design of Bridges. Kevin Mackie and Božidar Stojadinović. August
2003.

PEER 2003/15 Seismic Demands for Nondeteriorating Frame Structures and Their Dependence on Ground Motions. Ricardo
Antonio Medina and Helmut Krawinkler. May 2004.

PEER 2003/14 Finite Element Reliability and Sensitivity Methods for Performance-Based Earthquake Engineering. Terje
Haukaas and Armen Der Kiureghian. April 2004.

PEER 2003/13 Effects of Connection Hysteretic Degradation on the Seismic Behavior of Steel Moment-Resisting Frames. Janise
E. Rodgers and Stephen A. Mahin. March 2004.

PEER 2003/12 Implementation Manual for the Seismic Protection of Laboratory Contents: Format and Case Studies. William T.
Holmes and Mary C. Comerio. October 2003.

PEER 2003/11 Fifth U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced
Concrete Building Structures. February 2004.

PEER 2003/10 A Beam-Column Joint Model for Simulating the Earthquake Response of Reinforced Concrete Frames. Laura N.
Lowes, Nilanjan Mitra, and Arash Altoontash. February 2004.

PEER 2003/09 Sequencing Repairs after an Earthquake: An Economic Approach. Marco Casari and Simon J. Wilkie. April 2004.

PEER 2003/08 A Technical Framework for Probability-Based Demand and Capacity Factor Design (DCFD) Seismic Formats.
Fatemeh Jalayer and C. Allin Cornell. November 2003.

PEER 2003/07 Uncertainty Specification and Propagation for Loss Estimation Using FOSM Methods. Jack W. Baker and C. Allin
Cornell. September 2003.

PEER 2003/06 Performance of Circular Reinforced Concrete Bridge Columns under Bidirectional Earthquake Loading. Mahmoud
M. Hachem, Stephen A. Mahin, and Jack P. Moehle. February 2003.

PEER 2003/05 Response Assessment for Building-Specific Loss Estimation. Eduardo Miranda and Shahram Taghavi.
September 2003.

PEER 2003/04 Experimental Assessment of Columns with Short Lap Splices Subjected to Cyclic Loads. Murat Melek, John W.
Wallace, and Joel Conte. April 2003.

PEER 2003/03 Probabilistic Response Assessment for Building-Specific Loss Estimation. Eduardo Miranda and Hesameddin
Aslani. September 2003.

PEER 2003/02 Software Framework for Collaborative Development of Nonlinear Dynamic Analysis Program. Jun Peng and
Kincho H. Law. September 2003.

PEER 2003/01 Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames. Kenneth
John Elwood and Jack P. Moehle. November 2003.

PEER 2002/24 Performance of Beam to Column Bridge Joints Subjected to a Large Velocity Pulse. Natalie Gibson, André
Filiatrault, and Scott A. Ashford. April 2002.

PEER 2002/23 Effects of Large Velocity Pulses on Reinforced Concrete Bridge Columns. Greg L. Orozco and Scott A. Ashford.
April 2002.

PEER 2002/22 Characterization of Large Velocity Pulses for Laboratory Testing. Kenneth E. Cox and Scott A. Ashford. April
2002.

PEER 2002/21 Fourth U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced
Concrete Building Structures. December 2002.

PEER 2002/20 Barriers to Adoption and Implementation of PBEE Innovations. Peter J. May. August 2002.

PEER 2002/19 Economic-Engineered Integrated Models for Earthquakes: Socioeconomic Impacts. Peter Gordon, James E.
Moore II, and Harry W. Richardson. July 2002.

PEER 2002/18 Assessment of Reinforced Concrete Building Exterior Joints with Substandard Details. Chris P. Pantelides, Jon
Hansen, Justin Nadauld, and Lawrence D. Reaveley. May 2002.

PEER 2002/17 Structural Characterization and Seismic Response Analysis of a Highway Overcrossing Equipped with
Elastomeric Bearings and Fluid Dampers: A Case Study. Nicos Makris and Jian Zhang. November 2002.

PEER 2002/16 Estimation of Uncertainty in Geotechnical Properties for Performance-Based Earthquake Engineering. Allen L.
Jones, Steven L. Kramer, and Pedro Arduino. December 2002.

PEER 2002/15 Seismic Behavior of Bridge Columns Subjected to Various Loading Patterns. Asadollah Esmaeily-Gh. and Yan
Xiao. December 2002.

PEER 2002/14 Inelastic Seismic Response of Extended Pile Shaft Supported Bridge Structures. T.C. Hutchinson, R.W.
Boulanger, Y.H. Chai, and I.M. Idriss. December 2002.

PEER 2002/13 Probabilistic Models and Fragility Estimates for Bridge Components and Systems. Paolo Gardoni, Armen Der
Kiureghian, and Khalid M. Mosalam. June 2002.

PEER 2002/12 Effects of Fault Dip and Slip Rake on Near-Source Ground Motions: Why Chi-Chi Was a Relatively Mild M7.6
Earthquake. Brad T. Aagaard, John F. Hall, and Thomas H. Heaton. December 2002.

PEER 2002/11 Analytical and Experimental Study of Fiber-Reinforced Strip Isolators. James M. Kelly and Shakhzod M. Takhirov.
September 2002.

PEER 2002/10 Centrifuge Modeling of Settlement and Lateral Spreading with Comparisons to Numerical Analyses. Sivapalan
Gajan and Bruce L. Kutter. January 2003.

PEER 2002/09 Documentation and Analysis of Field Case Histories of Seismic Compression during the 1994 Northridge,
California, Earthquake. Jonathan P. Stewart, Patrick M. Smith, Daniel H. Whang, and Jonathan D. Bray. October
2002.

PEER 2002/08 Component Testing, Stability Analysis and Characterization of Buckling-Restrained Unbonded BracesTM. Cameron
Black, Nicos Makris, and Ian Aiken. September 2002.

PEER 2002/07 Seismic Performance of Pile-Wharf Connections. Charles W. Roeder, Robert Graff, Jennifer Soderstrom, and Jun
Han Yoo. December 2001.

PEER 2002/06 The Use of Benefit-Cost Analysis for Evaluation of Performance-Based Earthquake Engineering Decisions.
Richard O. Zerbe and Anthony Falit-Baiamonte. September 2001.

PEER 2002/05 Guidelines, Specifications, and Seismic Performance Characterization of Nonstructural Building Components and
Equipment. André Filiatrault, Constantin Christopoulos, and Christopher Stearns. September 2001.

PEER 2002/04 Consortium of Organizations for Strong-Motion Observation Systems and the Pacific Earthquake Engineering
Research Center Lifelines Program: Invited Workshop on Archiving and Web Dissemination of Geotechnical
Data, 4–5 October 2001. September 2002.

PEER 2002/03 Investigation of Sensitivity of Building Loss Estimates to Major Uncertain Variables for the Van Nuys Testbed.
Keith A. Porter, James L. Beck, and Rustem V. Shaikhutdinov. August 2002.

PEER 2002/02 The Third U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced
Concrete Building Structures. July 2002.

PEER 2002/01 Nonstructural Loss Estimation: The UC Berkeley Case Study. Mary C. Comerio and John C. Stallmeyer.
December 2001.

PEER 2001/16 Statistics of SDF-System Estimate of Roof Displacement for Pushover Analysis of Buildings. Anil K. Chopra,
Rakesh K. Goel, and Chatpan Chintanapakdee. December 2001.

PEER 2001/15 Damage to Bridges during the 2001 Nisqually Earthquake. R. Tyler Ranf, Marc O. Eberhard, and Michael P.
Berry. November 2001.

PEER 2001/14 Rocking Response of Equipment Anchored to a Base Foundation. Nicos Makris and Cameron J. Black.
September 2001.

PEER 2001/13 Modeling Soil Liquefaction Hazards for Performance-Based Earthquake Engineering. Steven L. Kramer and
Ahmed-W. Elgamal. February 2001.

PEER 2001/12 Development of Geotechnical Capabilities in OpenSees. Boris Jeremi . September 2001.

PEER 2001/11 Analytical and Experimental Study of Fiber-Reinforced Elastomeric Isolators. James M. Kelly and Shakhzod M.
Takhirov. September 2001.

PEER 2001/10 Amplification Factors for Spectral Acceleration in Active Regions. Jonathan P. Stewart, Andrew H. Liu, Yoojoong
Choi, and Mehmet B. Baturay. December 2001.

PEER 2001/09 Ground Motion Evaluation Procedures for Performance-Based Design. Jonathan P. Stewart, Shyh-Jeng Chiou,
Jonathan D. Bray, Robert W. Graves, Paul G. Somerville, and Norman A. Abrahamson. September 2001.

PEER 2001/08 Experimental and Computational Evaluation of Reinforced Concrete Bridge Beam-Column Connections for
Seismic Performance. Clay J. Naito, Jack P. Moehle, and Khalid M. Mosalam. November 2001.

PEER 2001/07 The Rocking Spectrum and the Shortcomings of Design Guidelines. Nicos Makris and Dimitrios Konstantinidis.
August 2001.

PEER 2001/06 Development of an Electrical Substation Equipment Performance Database for Evaluation of Equipment
Fragilities. Thalia Agnanos. April 1999.

PEER 2001/05 Stiffness Analysis of Fiber-Reinforced Elastomeric Isolators. Hsiang-Chuan Tsai and James M. Kelly. May 2001.

PEER 2001/04 Organizational and Societal Considerations for Performance-Based Earthquake Engineering. Peter J. May. April
2001.

PEER 2001/03 A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Buildings: Theory and Preliminary
Evaluation. Anil K. Chopra and Rakesh K. Goel. January 2001.

PEER 2001/02 Seismic Response Analysis of Highway Overcrossings Including Soil-Structure Interaction. Jian Zhang and Nicos
Makris. March 2001.

PEER 2001/01 Experimental Study of Large Seismic Steel Beam-to-Column Connections. Egor P. Popov and Shakhzod M.
Takhirov. November 2000.

PEER 2000/10 The Second U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced
Concrete Building Structures. March 2000.

PEER 2000/09 Structural Engineering Reconnaissance of the August 17, 1999 Earthquake: Kocaeli (Izmit), Turkey. Halil Sezen,
Kenneth J. Elwood, Andrew S. Whittaker, Khalid Mosalam, John J. Wallace, and John F. Stanton. December
2000.

PEER 2000/08 Behavior of Reinforced Concrete Bridge Columns Having Varying Aspect Ratios and Varying Lengths of
Confinement. Anthony J. Calderone, Dawn E. Lehman, and Jack P. Moehle. January 2001.

PEER 2000/07 Cover-Plate and Flange-Plate Reinforced Steel Moment-Resisting Connections. Taejin Kim, Andrew S. Whittaker,
Amir S. Gilani, Vitelmo V. Bertero, and Shakhzod M. Takhirov. September 2000.

PEER 2000/06 Seismic Evaluation and Analysis of 230-kV Disconnect Switches. Amir S. J. Gilani, Andrew S. Whittaker, Gregory
L. Fenves, Chun-Hao Chen, Henry Ho, and Eric Fujisaki. July 2000.

PEER 2000/05 Performance-Based Evaluation of Exterior Reinforced Concrete Building Joints for Seismic Excitation. Chandra
Clyde, Chris P. Pantelides, and Lawrence D. Reaveley. July 2000.

PEER 2000/04 An Evaluation of Seismic Energy Demand: An Attenuation Approach. Chung-Che Chou and Chia-Ming Uang. July
1999.

PEER 2000/03 Framing Earthquake Retrofitting Decisions: The Case of Hillside Homes in Los Angeles. Detlof von Winterfeldt,
Nels Roselund, and Alicia Kitsuse. March 2000.

PEER 2000/02 U.S.-Japan Workshop on the Effects of Near-Field Earthquake Shaking. Andrew Whittaker, ed. July 2000.

PEER 2000/01 Further Studies on Seismic Interaction in Interconnected Electrical Substation Equipment. Armen Der Kiureghian,
Kee-Jeung Hong, and Jerome L. Sackman. November 1999.

PEER 1999/14 Seismic Evaluation and Retrofit of 230-kV Porcelain Transformer Bushings. Amir S. Gilani, Andrew S. Whittaker,
Gregory L. Fenves, and Eric Fujisaki. December 1999.

PEER 1999/13 Building Vulnerability Studies: Modeling and Evaluation of Tilt-up and Steel Reinforced Concrete Buildings. John
W. Wallace, Jonathan P. Stewart, and Andrew S. Whittaker, editors. December 1999.

PEER 1999/12 Rehabilitation of Nonductile RC Frame Building Using Encasement Plates and Energy-Dissipating Devices.
Mehrdad Sasani, Vitelmo V. Bertero, James C. Anderson. December 1999.

PEER 1999/11 Performance Evaluation Database for Concrete Bridge Components and Systems under Simulated Seismic
Loads. Yael D. Hose and Frieder Seible. November 1999.

PEER 1999/10 U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete
Building Structures. December 1999.

PEER 1999/09 Performance Improvement of Long Period Building Structures Subjected to Severe Pulse-Type Ground Motions.
James C. Anderson, Vitelmo V. Bertero, and Raul Bertero. October 1999.

PEER 1999/08 Envelopes for Seismic Response Vectors. Charles Menun and Armen Der Kiureghian. July 1999.

PEER 1999/07 Documentation of Strengths and Weaknesses of Current Computer Analysis Methods for Seismic Performance of
Reinforced Concrete Members. William F. Cofer. November 1999.

PEER 1999/06 Rocking Response and Overturning of Anchored Equipment under Seismic Excitations. Nicos Makris and Jian
Zhang. November 1999.

PEER 1999/05 Seismic Evaluation of 550 kV Porcelain Transformer Bushings. Amir S. Gilani, Andrew S. Whittaker, Gregory L.
Fenves, and Eric Fujisaki. October 1999.

PEER 1999/04 Adoption and Enforcement of Earthquake Risk-Reduction Measures. Peter J. May, Raymond J. Burby, T. Jens
Feeley, and Robert Wood.

PEER 1999/03 Task 3 Characterization of Site Response General Site Categories. Adrian Rodriguez-Marek, Jonathan D. Bray,
and Norman Abrahamson. February 1999.

PEER 1999/02 Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDF Systems.
Anil K. Chopra and Rakesh Goel. April 1999.

PEER 1999/01 Interaction in Interconnected Electrical Substation Equipment Subjected to Earthquake Ground Motions. Armen
Der Kiureghian, Jerome L. Sackman, and Kee-Jeung Hong. February 1999.

PEER 1998/08 Behavior and Failure Analysis of a Multiple-Frame Highway Bridge in the 1994 Northridge Earthquake. Gregory L.
Fenves and Michael Ellery. December 1998.

PEER 1998/07 Empirical Evaluation of Inertial Soil-Structure Interaction Effects. Jonathan P. Stewart, Raymond B. Seed, and
Gregory L. Fenves. November 1998.

PEER 1998/06 Effect of Damping Mechanisms on the Response of Seismic Isolated Structures. Nicos Makris and Shih-Po
Chang. November 1998.

PEER 1998/05 Rocking Response and Overturning of Equipment under Horizontal Pulse-Type Motions. Nicos Makris and
Yiannis Roussos. October 1998.

PEER 1998/04 Pacific Earthquake Engineering Research Invitational Workshop Proceedings, May 14–15, 1998: Defining the
Links between Planning, Policy Analysis, Economics and Earthquake Engineering. Mary Comerio and Peter
Gordon. September 1998.

PEER 1998/03 Repair/Upgrade Procedures for Welded Beam to Column Connections. James C. Anderson and Xiaojing Duan.
May 1998.

PEER 1998/02 Seismic Evaluation of 196 kV Porcelain Transformer Bushings. Amir S. Gilani, Juan W. Chavez, Gregory L.
Fenves, and Andrew S. Whittaker. May 1998.

PEER 1998/01 Seismic Performance of Well-Confined Concrete Bridge Columns. Dawn E. Lehman and Jack P. Moehle.
December 2000.

ONLINE REPORTS

The following PEER reports are available by Internet only at http://peer.berkeley.edu/publications/peer_reports.html

PEER 2009/104 Advanced Implementation of Hybrid Simulation. Andreas H. Schellenberg, Stephen A. Mahin, Gregory L. Fenves.
November 2009.

PEER 2009/103 Performance Evaluation of Innovative Steel Braced Frames. T. Y. Yang, Jack P. Moehle, and Božidar
Stojadinović. August 2009.

PEER 2009/102 Reinvestigation of Liquefaction and Nonliquefaction Case Histories from the 1976 Tangshan Earthquake. Robb
Eric Moss, Robert E. Kayen, Liyuan Tong, Songyu Liu, Guojun Cai, and Jiaer Wu. August 2009.

PEER 2009/101 Report of the First Joint Planning Meeting for the Second Phase of NEES/E-Defense Collaborative Research on
Earthquake Engineering. Stephen A. Mahin et al. July 2009.

PEER 2008/104 Experimental and Analytical Study of the Seismic Performance of Retaining Structures. Linda Al Atik and Nicholas
Sitar. January 2009.

PEER 2008/103 Experimental and Computational Evaluation of Current and Innovative In-Span Hinge Details in Reinforced
Concrete Box-Girder Bridges. Part 1: Experimental Findings and Pre-Test Analysis. Matias A. Hube and Khalid M.
Mosalam. January 2009.

PEER 2008/102 Modeling of Unreinforced Masonry Infill Walls Considering In-Plane and Out-of-Plane Interaction. Stephen
Kadysiewski and Khalid M. Mosalam. January 2009.

PEER 2008/101 Seismic Performance Objectives for Tall Buildings. William T. Holmes, Charles Kircher, William Petak, and Nabih
Youssef. August 2008.

PEER 2007/101 Generalized Hybrid Simulation Framework for Structural Systems Subjected to Seismic Loading. Tarek Elkhoraibi
and Khalid M. Mosalam. July 2007.

PEER 2007/100 Seismic Evaluation of Reinforced Concrete Buildings Including Effects of Masonry Infill Walls. Alidad Hashemi
and Khalid M. Mosalam. July 2007.

	w1_SCHELLENBERG_etal.pdf
	PEERlist_9104e_Schellenberg.pdf
	PEER 2003/03 Probabilistic Response Assessment for Building-Specific Loss Estimation. Eduardo Miranda and Hesameddin Aslani. September 2003.
	PEER 2003/02 Software Framework for Collaborative Development of Nonlinear Dynamic Analysis Program. Jun Peng and Kincho H. Law. September 2003.
	PEER 2002/24 Performance of Beam to Column Bridge Joints Subjected to a Large Velocity Pulse. Natalie Gibson, André Filiatrault, and Scott A. Ashford. April 2002.
	PEER 2002/23 Effects of Large Velocity Pulses on Reinforced Concrete Bridge Columns. Greg L. Orozco and Scott A. Ashford. April 2002.
	PEER 2002/22 Characterization of Large Velocity Pulses for Laboratory Testing. Kenneth E. Cox and Scott A. Ashford. April 2002.
	PEER 2002/21 Fourth U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures. December 2002.
	PEER 2002/20 Barriers to Adoption and Implementation of PBEE Innovations. Peter J. May. August 2002.
	PEER 2002/19 Economic-Engineered Integrated Models for Earthquakes: Socioeconomic Impacts. Peter Gordon, James E. Moore II, and Harry W. Richardson. July 2002.
	PEER 2002/18 Assessment of Reinforced Concrete Building Exterior Joints with Substandard Details. Chris P. Pantelides, Jon Hansen, Justin Nadauld, and Lawrence D. Reaveley. May 2002.

