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ABSTRACT 

A ground motion prediction equation estimates the mean and variance of ground shaking with 

distance from an earthquake source.  Current relationships use regression techniques that treat 

the input variables or parameters as exact, neglecting the uncertainties associated with the 

measurement of shear wave velocity, moment magnitude, and site-to-source distance.  This 

parameter uncertainty propagates through the regression procedure and results in model 

uncertainty that overestimates the inherent variability of the ground motion.  This report 

discusses methods of estimating the statistical uncertainty of the input parameters, and 

procedures for incorporating the parameter uncertainty into the regression of ground motion data 

using a Bayesian framework.  This results in a better measure of the uncertainties inherent in the 

phenomena of ground motion attenuation and a reduced and more accurately defined model 

variance.  A reduced model variance translates to a better constrained estimate of ground shaking 

for projects designed for rare events or events toward the tail of the distribution. 
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1 Introduction 

Recent probabilistic seismic hazard assessments of proposed nuclear sites have shown that long-

return period (i.e., rare) events are predicted to produce ground motions that are unreasonably 

high.  There are a number of reasons for these high predictions, one being that measurement 

uncertainty from each of the independent variables in the ground motion prediction equation is 

translated through to the dependent variable.  For rare events a large variance results in large 

ground shaking estimates that are not necessarily statistically accurate.  This report describes 

research into measurement uncertainty and its impact on the variance of ground motion 

prediction equations.   

The most common statistical method for developing a ground motion prediction equation 

is univariate regression on a database using a fixed-effects or random-effects model 

(Abrahamson and Silva 1997; Boore et al. 1997; Campbell and Bozorgnia 2003).  This 

methodology assumes that the input parameters are exact.  There exists, however, measurement 

uncertainty in the input parameters.  Thirty meter shear wave velocity (VS30), moment magnitude 

(MW), and site-to-source distance (R) are all subject to some form of measurement uncertainty.  

For instance, the moment magnitude of a particular seismic event is calculated using a non-

unique inversion process resulting in a specific amount of uncertainty.  By quantifying the 

measurement uncertainty of the input parameters and accounting for this uncertainty in the 

regression procedure, a reduced and more accurate estimate of the model variance can be found.   

This better estimate of the model variance is also more representative of the inherent variability 

of the attenuation phenomena.  A Bayesian framework, used in this study for model fitting that is 

analogous to univariate regression, allows for the treatment of input parameters as inexact, and 

provides the mathematical flexibility to use any type of functional model form (Der Kiureghian 

2000; Gardoni et al. 2002; Moss et al. 2003).  
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This report describes the background, basis, and results of incorporating parameter 

uncertainty into the ground motion prediction equations.  The research is presented in the 

chronological order that it was conducted.  Chapter 2 presents the conceptual and mathematic 

formulation used for Bayesian regression.  Chapter 3 describes a feasibility study that was 

conducted early in this research to demonstrate that this method works, and shows reduced 

model variance results based on rough estimates of the parameter uncertainty.  The Boore et al. 

(1997) attenuation relationship was used for the basis function of the feasibility study.  Chapter 4 

provides details on methods of statistically estimating the parameter uncertainty of each of the 

input parameters.  Most research to date has focused on 30 m shear wave velocity (VS30) because 

it is a sensitive input parameter.  Chapter 5 describes the implementation of Bayesian regression 

and VS30 uncertainty using the NGA (Next Generation Attenuation) model by Chiou and Youngs 

(2006).  A summary and conclusions are presented in Chapter 6.  The Appendix contains a basic 

version of the Matlab code  that was used to perform the Bayesian regression analyses.   
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2 Conceptual and Mathematical Formulation 

The conceptual and mathematical formulation of the model fitting found in this study uses a 

Bayesian-type regression procedure that was first outlined for the application of ground motion 

prediction equations in Moss and Der Kiureghian (2006).  The procedure is regression in the 

sense that a minimized error is found between the data and a best-fit line; however the 

independent variables or input parameters are treated as inexact, possessing statistical uncertainty 

due to some form of measurement error.    

The prediction of strong ground motion uses a univariate-type model.  It is univariate 

because only one quantity of interest is to be predicted from a set of measurable variables 

x=(x1,x2,…xn).  The quantity of interest in this case is the spectral acceleration.  The general 

univariate model can be written as, 

  ),( Θ= xZZ            (2.1) 

where Θ denotes a set of model parameters used to fit the model to the observed data.  In this 

study two models, based on ground motion prediction equations in the literature, will be used.  

The generalized univariate model can then be written as 

  ε+Θ=Θ ),(ˆ),( xzxZ          (2.2) 

where ),(ˆ Θxz  is the selected ground motion prediction equation and ε is a random normal 

variate with zero mean and unknown standard deviation that is the model error term.  Aleatory 

uncertainty is found in the measured variables x and partly in the error term ε.  Epistemic 

uncertainty is found in the model parameters Θ and partly in the model error term ε. 

2.1 MODEL UNCERTAINTY 

In this model formulation the error term ε captures the imperfect fit of the model to the data.  The 

imperfect fit may be due to inexact model form or due to missing variables.  The missing 
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variables can be considered inherently random and that portion of the model error term is 

aleatory uncertainty.  The portion of the model error term that is from the inexact model form is 

epistemic uncertainty. 

2.2 MEASUREMENT ERROR 

Measurement error tends to comprise a large portion of the epistemic uncertainty in geoscience 

problems.  This uncertainty comes from imprecise measurement of the variables x=(x1,x2,…xn).  

These measurement errors are treated as statistically independent, normally distributed random 

variables with zero mean (assuming unbiased measurement errors) and quantifiable standard 

deviation.  The errors are incorporated as xiii exx += ˆ  where xiix̂  is the measured value and xie is 

the measurement error. 

2.3 STATISTICAL UNCERTAINTY 

The size of the sample n will influence the accuracy of the model parameters Θ.  The larger the 

sample size, the less epistemic uncertainty introduced into the model parameters.  In this case, 

there is a limited amount of ground motion recordings for model fitting.  

2.4 PARAMETER ESTIMATION THROUGH BAYESIAN UPDATING 

A Bayesian framework is used to estimate the unknown model parameters, the objective of 

regression.  The Bayesian approach is useful because it incorporates all forms of uncertainty 

related to the problem of ground motion prediction into the regression analysis. 

Bayes's rule is derived from simple rules of conditional probability, yet the simplicity 

portends little of the power of the Bayesian technique.  Bayes's rule can be written as (Box and 

Tao 1992): 

  )()()( Θ⋅Θ⋅=Θ pLcf          (2.3) 

where;  )(Θf  is the posterior distribution representing the updated state of knowledge about Θ, 

)(ΘL  is the likelihood function containing the information gained from the observations of x , 
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)(Θp  is the prior distribution containing apriori knowledge about Θ, and 

∫ −Θ⋅Θ⋅Θ= 1)]()()([ dpLc  is the normalizing constant. 

The likelihood function is proportional to the conditional probability of the observed 

events, given the values of Θ.  The likelihood function incorporates the objective information 

that in this case are the measurements of earthquake ground motions.  The prior distribution can 

include subjective information known about the distributions of Θ.  The posterior distribution 

incorporates both the objective and subjective information into the distributions of the model 

parameters.  The process of performing Bayesian updating involves formulating the likelihood 

function, selecting a prior distribution, calculating the normalizing constant, and then calculating 

the posterior statistics. 

The prior distribution tends to be the most controversial issue for detractors of Bayesian 

methods.  Box and Tiao (1992) have shown that the use of a non-informative prior distribution 

can lead to an unbiased, data-driven estimate of the model parameters.  A non-informative prior 

distribution allows the data, through the likelihood function, to dominate the posterior 

distribution, thereby minimizing the role of the subjective information.  A non-informative prior 

distribution, by definition, has no effect on the shape of the posterior distribution and is used 

when no prior information about the parameters is available.  Gardoni et al. (2002) discuss that 

for a univariate model where the unknown parameters Θ are composed of the coefficients in a 

linear expression in addition to the model error term ε, the non-informative prior distribution 

simplifies to the reciprocal of the vector containing the standard deviations of the coefficients 

and the model error term: 

  ( )
σ

σ 1)( ∝≅Θ pp           (2.4) 

The mean vector MΘ and covariance matrix ΣΘΘ can be calculated from the posterior 

distribution of Θ.  Computation of these statistics and the normalizing constant is non-trivial, 

requiring multifold integration over the Bayesian kernel.  Importance sampling, a sampling 

algorithm as described in Gardoni (2002) was used to efficiently perform these calculations. 
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2.5 LIKELIHOOD FUNCTION 

As defined above the likelihood function is proportional to the conditional probability of 

observing a particular event given values of Θ.  In order to formulate the likelihood function a 

limit state must be defined to provide a threshold for defining the probability of observation. 

To demonstrate the formulation of the likelihood function, the ground motion prediction 

equation from Boore et al. (1997) is used as the basis because it is relatively simple in 

mathematical form; it is used subsequently in this study for the feasibility study.  The function 

form is 

  )/ln()ln()6()6()log( 76
2
5

2
4

2
321 θθθθθθθ sjbww VRMMY −+−−+−+=   (2.5) 

where Y represents the spectral acceleration value, Mw is the moment magnitude, Rjb is the 

Joyner-Boore distance, VS is the shear wave velocity in the upper 30 m, and the θ’s are the model 

parameters. Boore et al. (1997) determined the parameters of this model using what will be 

called in this discussion “classic” regression with a two-step procedure. 

To present this prediction equation as a limit-state function, the equation is rearranged to 

describe the most likely location of a threshold given a value of Θ.  This limit state would be 

where the threshold lies at the zero mean of the error term at a value of Zi for a given xi.  This 

thereby minimizes the error on each side of the threshold at that point.  From Equation 2.2, 

iii xzZ εθ += ),(ˆ  or )(θε ii g= where ),(ˆ)( θθ iii xzZg −=  and εi is the model error term at the 

ith observation.  The attenuation relationship of Boore et al. (1997), shown in Equation 2.5, then 

becomes 

  )]/ln()ln()6()6([)log()( 76
2
5

2
4

2
321 θθθθθθθ sjbww VRMMYg −+−−+−+−=Θ   (2.6) 

The likelihood function for the problem of the ground motion prediction equation is the product 

of the probabilities of observing n values with the limit state collocated with the zero mean of the 

error term.  Given exact measurements and statically independent observations, the likelihood 

can be written as 

  ( ) ( ){ }⎥
⎦

⎤
⎢
⎣

⎡ =∝
=
∩

n

i
iigPL

1

, εθσθ ε         (2.7) 
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where σε is the standard deviation of the error term ε.  Given that ε is a standard normal variate, 

Equation 2.7 can be written as 

  ( ) ∏
= ⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
∝

n

i

igL
1

)(1,
εε

ε σ
θϕ

σ
σθ         (2.8) 

where ϕ is the standard normal distribution function.  When measurement errors are considered, 

the likelihood function becomes 

  ( ) ∏
= ⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
∝

n

i

igL
1 ),(ˆ

)(ˆ
),(ˆ

1,
εεεε

ε σθσ
θϕ

σθσ
σθ       (2.9) 

The above formulation was used to estimate the statistics of the model parameters, Θ, and 

the model error, ε, for a given functional form of the ground motion prediction equation and the 

given database.  These estimated terms are analogous to the coefficients solved for using classic 

regression in Boore et al. (1997).  The mean and standard deviations of the coefficients are used 

to define the predictive model.  
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3 Feasibility Study 

A feasibility study using Boore et al. (1997) as the basis for the limit-state function was 

performed to examine the relative impact that Bayesian regression would have on a ground 

motion prediction equation.  A Bayesian regression was initially performed without parameter 

uncertainty to duplicate the regression results of Boore et al. (1997).  The Bayesian regression 

was then performed with prescribed amounts of measurement uncertainty as shown in Tables 3.1 

and 3.2.   The pie charts, Figures 3.1 and 3.2, show  the relative contribution of the measurement 

error to the total inter- and intra-event error, respectively. 

The reduction in model uncertainty is shown as a “best” estimate.  The Bayesian 

regression produces results that are slightly non-unique because of the iterative nature of the 

solution algorithm.  Importance sampling is used to perform the integration over the Bayesian 

kernel; the accuracy of the results is controlled by the allowable tolerance on the coefficient of 

variation (COV) of the posterior means.  All results shown in the table are mean values with a 

COV on the mean of less than 25%, which is a reasonably accurate result for these purposes.   

Table 3.1  Intra-event uncertainty. 

Parameter σe % Decrease Notes 
Base case with no 
parameter 
uncertainty 

0.486  duplicated Boore et al. (1997) results 

VS30 
 

0.412 15% average COV=15% 

Rjb 
 

0.403 17% average COV=15% 
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Vs30
Rjb
Intra-event

 

Fig. 3.1  Pie chart showing relative contribution of 30 m shear wave velocity (VS30) and 
Joyner-Boore distance (Rjb) measurement uncertainty to overall model intra-event 
uncertainty. 

Table 3.2  Inter-event uncertainty. 

Parameter σr % Decrease Notes 
Base case with no 
parameter 
uncertainty 

0.184  duplicated Boore et al. (1997) results 

Mw 
 

0.147 20% logarithmic function (average 
stdev=0.1) 
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Mw
Inter-event

 

Fig. 3.2  Pie chart showing relative contribution of moment magnitude (Mw) measurement 
uncertainty to overall model intra-event uncertainty. 

The model standard deviation in lognormal units reduces from 0.54 to 0.34 given the 

assigned parameter uncertainty from all three independent variables.  This 37% reduction is 

shown in Figure 3.3 against the mean and standard deviation bounds of Boore et al. (1997).  This 

feasibility study shows that by incorporating parameter uncertainty into the regression procedure, 

that a reduction in the uncertainty of the predictive equation can be realized, and this reduction is 

a function of the measurement error of the independent variables and the how these are related to 

the dependent variable through the limit-state function.  The reduction demonstrates the relative 

contribution of measurement error to the total uncertainty versus inherent variability of the 

phenomena.  The median prediction curve remains relatively constant, whereas the variance as 

defined by the standard deviation curves shows the influence of parameter uncertainty. 
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Fig. 3.3  Comparison plot of ground motion prediction using “classic” regression with exact 
parameters versus Bayesian regression that incorporates parameter uncertainty.  
Black curves are from Boore et al. (1997), red curves from this study.  Plus/minus 
one standard deviation curves are shown as dashed lines.   
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4 Quantifying Parameter Uncertainty 

Once the feasibility study confirmed that Bayesian regression would provide useful results, 

research effort was put into quantifying parameter or measurement uncertainty of the input 

variables; 30 m shear wave velocity, distance, and moment magnitude.  Of these three, 30 m 

shear wave velocity received the most attention, as described in this chapter.  Moment magnitude 

and distance (with its various metrics) require more investigations than what are presented here, 

but preliminary results are shown to document the progress. 

4.1 THIRTY METER SHEAR WAVE VELOCITY (VS30) 

Thirty meter shear wave velocity was thoroughly investigated as part of this research.  The 

results have been published in Moss (2008) and are presented in a similar manner in this report.  

Measurement uncertainty is defined here as the epistemic uncertainty inherent in measuring 

some property such as shear wave velocity.  This uncertainty can be composed of both a bias and 

an equally distributed error term.  If measurement uncertainty is not quantified and treated 

appropriately, it propagates through an analysis and becomes lumped with other uncertainties 

into the model error.  Uncertainty is additive in nature.  The process of measuring some quantity 

is a summation of the different subprocesses that constitute the measurement. 

By quantifying measurement uncertainty upfront it can be separated from inherent 

variability, thereby providing a more accurate estimate of the uncertainty associated with a 

phenomena.  Measurement uncertainty, a type of epistemic uncertainty, can come in many 

forms, affecting both the accuracy and precision of a measurement (accuracy is how correct the 

measurement is, and precision is how repeatable the measurement is).  Both are captured in this 

study, and a best estimate of the magnitude of the respective uncertainty is made based on 

existing data. 
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One difficulty in quantifying the measurement uncertainty associated with shear wave 

velocity is that although many methods can be used to measure or infer 30 m shear wave 

velocity,  no single method provides what can be deemed an unbiased estimate.  Two general 

method classes of measuring shear wave velocity of near-surface materials are (1) invasive and 

(2) non-invasive.   

Invasive methods involve the measurement of the shear wave velocity from a bored or 

displaced hole with the source either at the surface or down the hole.  Invasive types of shear 

wave velocity measurements include (a) seismic cone measurements (SCPT), where there is a 

seismometer in the cone and the source is generated at the ground surface; (b) standard downhole 

(DH) measurements, where a receiver is lowered into an open hole and the source is at the 

surface; (c) suspension logging, where a source and receiver are lowered into an open hole; and 

(d) cross hole, where there are two holes, one for the source and one for the receiver.  The most 

commonly used invasive methods for measuring VS30 are seismic cone, standard downhole, and 

suspension logging.  The seismic cone and the standard downhole methods are subject to 

increasing source to receiver distance with depth and become less accurate as a function of 

depth, number of soil layers or reflectors between the source and the receiver, and amplitude and 

frequency of the source with respect to ambient noise conditions.  Suspension logging provides a 

constant source to receiver distance and therefore measures shear wave velocity on a fixed scale. 

Because of the short distance between source and receiver, the suspension measurements are 

usually smoothed or averaged over a depth range to better represent the shear wave velocity of 

the geologic material.  The accuracy of suspension logging does not diminish with depth as it 

does with the seismic cone or standard downhole methods. 

Non-invasive methods (using both active and passive sources) include SASW (spectral 

analysis of surface waves), MASW (multi-channel analysis of surface waves), f-k (frequency-

wavenumber), SPAC (spatial autocorrelation), ReMi (refraction microtremor), 

reflection/refraction, HVSR (horizontal-vertical spectral ratio), SW (surface wave), and MAM 

(microtremor array) methods. Non-invasive methods are becoming more common for measuring 

VS30.  A number of methods are currently in use and being explored for future applications.  The 

general procedure involves recording surface or body waves at the ground surface and resolving 

the subsurface structure or stiffness through forward or inverse modeling.  Non-invasive methods 

were developed initially by the petroleum industry for exploring underground geologic structure 

and reservoirs, and seismologists for studying deep earth structure.   
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For the PEER (Pacific Earthquake Engineering Research Center) Strong Motion 

Database (http://peer.berkeley.edu/smcat/) at sites where no invasive or non-invasive 

measurements exist, VS30 has also been estimated based on surficial geology using a correlation 

between measured shear wave velocity and mapped surficial geology for a specific geologic 

environment.  (Here strong motion sites refer to sites where seismographs have recorded ground 

motions from past earthquakes where the ground shaking intensity was high enough to result in 

structural and/or nonstructural damage.) 

In this study, measurement uncertainty associated with VS30 are based on the shear wave 

velocity methods used for classifying strong motion sites in the PEER Lifelines NGA (Next 

Generation Attenuation) program: standard downhole, SCPT, suspension logging, SASW, and 

geologic-based estimates.  This section presents the steps taken to quantify the apparent or 

observable VS30 measurement uncertainty for these methods based on existing field studies, and 

how to propagate that uncertainty mathematically.  This research does not attempt to deconstruct 

and present the fundamental uncertainties involved in each specific test nor does it present new 

field test results toward that end. 

4.1.1 Intra-Method Variability 

In order to determine the measurement uncertainty of any individual test, multiple measurements 

need to be carried out at a single controlled location.  To date, research to evaluate the 

measurement uncertainty of individual tests has been limited because of the amount of time and 

money required to run the tests and also because of the lack of appreciation of how measurement 

uncertainty can impact subsequent analyses.  Table 1 lists the studies available in the literature 

(as of 6/2007) used to establish estimates of intra-method variability.  
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Table 4.1   List of comparative studies used to quantify intra-method variability. 

Comparative Study Methods Used 

Xia et al. 2002 Downhole, Suspension log, MASW 

Marosi and Hiltunen 2004 SASW  

Martin and Diehl 2004 Simplified SASW, SASW, ReMi, Suspension log 

Kayen 2005 SASW 

Asten and Boore 2005 Downhole, SCPT, Suspension log, SASW, MASW, 

ReMi, SPAC, f-k, Reflect/Refract, HVSR 

Thelen et al. 2006 Downhole, ReMi 

 

Intra-method variability of non-invasive methods can be composed of the uncertainty 

associated with the inversion process for surface wave methods, curve-fitting procedures, 

waveform analyses, source differences, equipment differences, equipment fidelity, or spacing of 

instruments.  These sources of uncertainty are lumped together so that a composite uncertainty 

measurement can be made.   

Conceptually, intra-method variability does not include the spatial variability that is a 

function of the correlated change of shear wave velocity with distance.  However in comparative 

studies it may be difficult to perform different tests at the same location. Thompson et al. (2007) 

presented some useful results showing spatial variability of shear wave velocity from SCPT and 

SASW data.  Based on these results a distance of 10 m or less between measurements can have 

negligible results on the uncertainty; of course this depends on the depositional environment and 

the spatial heterogeneity of the soil.  

Other sources of uncertainty to consider are the fundamental differences in the testing 

methods.  A wave traveling from a surface source to a subsurface receiver is very different than a 

wave traveling from a source, reflecting off a boundary, and converting into a surface wave 

before being received.  Treating the resulting VS30 values as the same may neglect how 
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anisotropy and shear wave polarization can impact the results.  However there are currently 

insufficient data to separate out the different sources of method variability, so they are lumped 

together as a composite measurement uncertainty in this study.  

Xia et al. (2002) evaluated uncertainty as a function of the number of recording channels, 

sampling interval, source offset, and receiver spacing using MASW.  Important for this study 

was the multiple recordings made at two of the sites which produced a coefficient of variation 

(the coefficient of variation is equal to the standard deviation normalized by the mean; μσ  or 

xs ) of VS30 on the order of 1%.  (Note that throughout this chapter the coefficient of variation 

will be used as a metric for measuring relative uncertainty because it allows for easy cross 

comparisons.  The coefficient of variation values presented in this study have all been calculated 

from the source data.) 

Marosi and Hiltunen (2004) presented a study that looked at the uncertainty associated 

with SASW measurements.  Two sites were investigated and multiple SASW measurements 

were made at each site.  It was found that there was low measurement uncertainty in the phase 

angle and phase velocity data, with a coefficient of variation typically around 2%, and that the 

data appeared to be normally distributed.  When evaluating the resulting shear wave velocity 

data, the coefficient of variation was closer to 5%–10%, and exhibited an increase in uncertainty 

with depth and geologic complexity.  These authors report that the increase in the uncertainty 

that occurs in the step to produce the shear wave data following generation of the phase 

information comes from picking the layer boundaries and fitting a dispersion curve to the data; 

“the inversion process appears to magnify the uncertainty in the dispersion data.”  A shortcoming 

of this study is that the sites were explored to a maximum depth of just under 5 m with shear 

wave velocities in the range of 200–350 m/sec for both sites.  Although this study can not be 

used to assess VS30 uncertainty, it is included here because it presents a good example of how 

multiple measurement field studies should be carried out, and it provides some useful general 

results. 

Martin and Diehl (2004) describe a simplified SASW technique for determining a single 

value of VS30 as opposed to a full shear wave velocity profile.  They compared the simplified 

technique to measurements from SASW, ReMi, and suspension logging.  In this study the 

simplified SASW and standard SASW are treated as the same test with a variation in the 

procedure.  The coefficient of variation for the simplified method is on the order of 6% from 103 

different sites. 
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In an SASW course taught by Rob Kayen at the University of California, Davis, the same 

site was used by the students term after term for field measurements of shear wave velocity and 

VS30 (Rob Kayen personal communication, 2005 and 2006).  This provided a useful data set to 

evaluate SASW intra-method variability, with the results indicating a coefficient of variation of 

VS30 of 4.7% with 6 independent measurements. 

Asten and Boore (2005) carried out a large blind study at Coyote Creek that brought 

together many different researchers and different techniques for measuring shear wave velocity.  

For the purposes of intra-method variability there were 11 different VS30 estimates using SASW 

conducted by three different researchers, two MASW measurements by two different 

researchers, and three invasive measurements (downhole, SCPT, and suspension log) by three 

different researchers.  Particularly useful are the SASW tests because of the large number of 

measurements with different techniques and different researchers, with an average coefficient of 

variation of VS30 of 4.8% with 11 measurements. 

Thelen et al. (2006) performed ReMi cross sections through areas of the Los Angeles 

basin.  To evaluate bias that may be due to forward modeling, the group had three separate 

analysts perform the data analysis and then compared the resulting VS30 estimates.  This provided 

a well-constrained measurement of epistemic uncertainty with the resulting coefficient of 

variation ranging from 2 to 14% from 3 cases.  The ReMi measurements were approximately 

within a few hundred meters from the existing downhole measurements and therefore were not 

used to assess inter-method variability. 

Based on this literature review and discussions with various researchers, intra-method 

variability of SASW comes from the following: 

• a small amount from phase angle and phase velocity data; 

• a small amount from array length vs. frequency sweep observed as the variability of the 

dispersion curves; 

• a greater amount that is a function of the inversion process, picking the layer depths, the 

number of layers, the water table location, the Poisson ratio; 

• some amount from the lithology, non-horizontal bedding, other non-uniform subsurface 

conditions; 

• some amount as a function of the equipment fidelity; and 

• an observed increase in the coefficient of variation with an increase in wavelength, 

indicating that the coefficient of variation is frequency dependent.   
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By combining the quantified results from the above studies, the intra-method variability 

can be estimated.  Figure 4.1 shows the mean or average VS30 measurement versus the coefficient 

of variation for a particular method.  Based on these combined results, it is suggested that a 

reasonable estimate of intra-method variability for SASW is a COV≈5%–6%.  This includes 

different SASW sources, and varying processing and inversion techniques.  MASW appears to 

have a similar coefficient of variation.  ReMi appears to have a slightly lower coefficient of 

variation, but because the sample size is small here, and it is unclear if the lower observed 

coefficient of variation is an artifact of the test or from the paucity of data. 

For invasive methods it is difficult to estimate the intra-method variability because it is a 

destructive test and repeating would require using the same borehole, which is not always 

feasible.  The data shown on Figure 4.1 for the downhole measurements are based on the same 

downhole test with different post-processing of the data.  Using different running averages of 

suspension log data can also result in slightly different VS30 measurements.  It is  anticipated that 

variability is present with the use of SCPT data as well.  A rough estimate of the coefficient of 

variation for invasive tests is approximately 1–3%. 

These suggested coefficients of variation may not be statistically significant because of 

the lack of data, yet represent all the published data that currently exist.  These values do 

compare favorably to studies that have evaluated the coefficient of variation related to other tests 

that measure in situ properties of geologic material.  Kulhawy and Mayne (1990) found that 

when measuring soil penetration resistance with the CPT (cone penetration test), the coefficient 

of variation due to epistemic uncertainty (equipment and procedure variability, not inherent 

randomness) was approximately 8%, which is similar to other in situ tests reported in the same 

reference.  By presenting the existing data for VS30 variability, it is hoped that other researchers 

will be encouraged to perform repeated tests to increase the amount of data.  Until that time the 

suggested coefficient of variation values appear reasonable enough for calculation purposes. 
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Fig. 4.1  Combined results from various studies showing intra-method variability. 

4.1.2 Inter-Method Variability 

The best means to assess the inter-method variability is to perform blind tests at as many sites as 

possible and evaluate the variations in the results.  A deficit of the blind test is that there is no 

means of determining which test is providing a true mean; therefore the comparison is a relative 

measure of uncertainty with the potential for bias.   

Generally, suspension logging measurements are thought to be the most accurate (Asten 

and Boore 2005) because the short, fixed distance between source to receiver means that the 

signal is always unambiguous (unless there are irregularities or breakouts in the borehole wall) 

and there is no increase in uncertainty with depth.  Suspension logging, however, tends to be a 

small-scale measurement of the dynamic properties of the soil.  Therefore it is common to use a 

running average of suspension logging data to represent the shear wave velocity of near-surface 

materials.  Asten and Boore (2005) used a 5-point running average to smooth the suspension 

logging results, which results in 2.5 m resolution for 0.5 m sampling.  Boore (2006) used an 
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average of all invasive methods for comparison with non-invasive methods.  This approach is 

generally followed in this paper. 

The suspension data acquired from various studies had sampling rates of 0.5 m or 1.0 m.  

To provide a consistent running average, a 3.0 m resolution was used here.  For the 1.0 m 

sampling rate this required a 3-point running average.  For the 0.5 m sampling rate this required 

a 6-point running average with two behind and three ahead of the current depth increment.  

Two additional studies are cited here but not used in the analysis.  The EPRI (1993) study 

of Gilroy2 and Treasure Island data was not available in tabular form and the hard copies of the 

Vs profiles were not clear enough for the data to be digitized; therefore this study was not 

included in the analysis.  Liu et al. (2000) performed passive surface wave measurements at two 

sites where downhole measurements exist, but the upper 60 m were not evaluated using the 

surface wave method.   

Table 4.2  List of blind studies used to quantify inter-method variability. 

Blind Study No. Sites Methods Used 

Louie (2001) 1 Suspension log, ReMi, Reflection 

Brown et al. (2002) 10 Suspension log, SASW, Downhole 

Xia et al. (2002) 4 Downhole, Suspension log, MASW 

Rix et al. (2002) 4 SCPT, Reflect, Reflect/Refract, SW passive 

and active, VSP 

Williams et al. (2003) 6 Downhole, Reflect/Refract 

Martin and Diehl (2004) 54 SASW, ReMi, Suspension log 

Asten and Boore (2005) 1 Downhole, SCPT, Suspension log, SASW, 

MASW, ReMi, SPAC, f-k, Reflect/Refract, 

HVSR 

Stephenson et al. (2005) 4 Suspension log, SASW, ReMi 

 

The studies in Table 4.2 used for inter-method uncertainty analysis are described briefly 

below: 

• Louie (2001) presented ReMi measurements at 1 site where there was existing suspension 

logging data.   
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• Brown et al. (2002) evaluated the shear wave velocity (the inverse of slowness) at ten 

strong motions sites where downhole and/or suspension logging existed.  The downhole 

and suspension logging were averaged to represent the invasive velocity measurement 

with which to compare the non-invasive (SASW) measurements. 

• Xia et al. (2002) compared MASW measurements at four sites where there was downhole 

or suspension logging.  

• Rix et al. (2002) investigated ten sites, but only four sites had a comparison of invasive 

versus non-invasive tests.  The four sites included here compare surface wave 

measurements (using both passive and active sources) with SCPT measurements. 

• Williams et al. (2003) compared reflection/refraction measurements at six sites with 

downhole measurements.  They provided some preliminary statistical analysis of the 

comparison and a quick method for estimating VS30 based on first arrival time.   

• Martin and Diehl (2004) evaluated SASW versus suspension logging at one site.  The rest 

of the sites compare a simple SASW technique with SASW alone or SASW combined 

with ReMi measurements. 

• Asten and Boore (2005) presented a blind study including nine different methods for 

measuring the shear wave velocity.  This study evaluated only one site but was useful in 

providing multiple measurements using the same methods by different researchers.   

• Stephenson et al. (2005) provided blind comparisons of ReMi, MASW, and suspension 

logging at four sites, of which two were viable for this study [(one had no shear wave 

velocity measurements above 50 m, and the second was included in Asten and Boore, 

(2005)]. 

• Jaume (2006) measured shear wave velocity at four sites using both SCPT and ReMi. 

Figure 4.2 shows the results of all shear wave velocity methods presented in Asten and 

Boore (2005) with respect to suspension logging.  SASW represents the largest statistical sample 

from this study, with results ranging 10% above and below the suspension logging results. 
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Fig. 4.2  Results from Asten and Boore (2005) showing nine VS30 test methods with 
respect to suspension logging. 

 

A plot of blind study results, Figure 4.3, shows  a bias between invasive methods (DH, 

suspension logging, and/or SCPT) and non-invasive methods (SASW, MASW, and SW).  The 

data were plotted in this format because it provides an easy means of spotting trends or bias, 

similar to a residual plot of measured versus predicted values.  No bias would appear as a 

random pattern around the 1.0 line; positive or negative bias would appear as a rising or falling 

trend in the data.  The NEHRP C/D and B/C (BSSC 2001) site class boundaries are shown on 

Figure 4.3 for reference.  For softer sites (lower shear wave velocities) non-invasive methods 

provide higher estimates than the invasive methods.  For stiffer sites (higher shear wave 

velocities) non-invasive methods provide lower estimates than the invasive methods.  This bias is 

similar but less prominent when evaluating reflection/refraction and ReMi methods (Fig. 4.4).  It 

is important to note that for the reflection/refraction and ReMi there is a much smaller sample 

size than for SASW, MASW, and SW which may influence the trend. 
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Fig. 4.3  Combined results of comparison studies showing inter-method variability for 
SASW and MASW.  
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Fig. 4.4  Combined results of comparison studies showing inter-method variability for 
reflection/refraction and ReMi methods.   

To evaluate the bias between invasive and non-invasive methods, two hypotheses of the 

cause of the bias were tested: (1) near-surface effects and (2) soil disturbance effects.  The first 

hypothesis is that invasive methods tend to have difficulty measuring the upper few meters due 

to the lack of confinement.  To test for this near-surface effect a subset of the data in Figure 4.3 

was evaluated at a shear wave velocity interval from 5 m to 30 m (VS5-30) to eliminate the impact 

of the upper 5 m.  Figure 4.5 shows that based on this subset of data from Brown et al. (2002), 

near-surface effects are not likely contributing to the observed bias between invasive and non-

invasive tests.  The linear trends are roughly parallel, suggesting that no bias can be attributed to 

near-surface effects on invasive methods.   
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Fig. 4.5  Difference between VS30 and VS5-30 are shown to determine if near-surface effects 
are cause of bias between invasive and non-invasive methods.  Diamonds are VS30 
data and circles VS5-30 data, from sites presented in Brown et al. (2002).  Linear 
trend lines show almost parallel slopes indicating no bias can be attributed to near-
surface effects on invasive methods based on this hypothesis. 

The second hypothesis, which can only be loosely examined with the limited data 

available, is that soil disturbance may influence invasive shear wave velocity measurements.  It 

is conceivable that through the process of pushing a SCPT cone, or drilling a hole for the 

suspension logging or downhole measurements, the soil is disturbed enough to alter the shear 

wave velocity.  For softer soils this could result in overall strain softening and in stiffer soils this 

could result in overall strain hardening, thereby producing the observed bias.  Shear wave 

velocity is related to the soil stiffness or initial shear modulus (Gmax) and the soil density (ρ) by 

the following equation: 

   ρmaxGVS =            (4.1)  

This soil disturbance effect should be most pronounced in suspension logging because 

small-scale shear wave velocity measurements are made directly around the device within close 
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proximity of the disturbed soil.  The wave path for the suspension logging may be entirely 

through the zone of disturbed soil.  For the SCPT and downhole the effect should be less 

pronounced because waves are traveling from a source at the surface and encounter disturbed 

soil only within the zone immediately around the receiver, thereby having minimal effect on the 

overall travel time.   

Invasive methods can be considered analogous to pile driving and the results of how 

driven piles disturb the soil can provide insight into the modification of the soil stiffness with 

disturbance.  Work by Hunt et al. (2002) evaluated the effect of pile driving on the dynamic soil 

properties in soft clay (average VS30=111 m/s).  It was found that strain softening occurred 

around the pile during driving, resulting initially in a reduction in shear wave velocity.  The most 

immediate measurements were taken five days after pile driving, with results showing upwards 

of 25% decrease in shear wave velocity within 1 pile diameter from the face of the pile, and 5% 

or more decrease in shear wave velocity at distances greater than 3 pile diameters.  These results 

showing an initial decrease in stiffness or shear wave velocity agree with lab testing in the same 

study and with work by previous researchers studying rate effects on the dynamic shear modulus 

of clays (e.g., Humphries and Wahls, 1968).  

A study by Kalinski and Stokoe (2003) evaluated a new technique of borehole SASW 

testing for estimating in situ stresses.  Great care was taken to minimize disturbance during the 

borehole excavation using incremental reaming, but the influence of soil disturbance on the shear 

wave velocity measurements was still observed.  The soil conditions at the test site were stiff 

clay over silty sand, with testing conducted at a depth of 2.6 m in the silty sand.  The results 

show a pronounced influence of soil disturbance on the shear wave velocity measurements 

within approximately 0.2 borehole diameters.  The shear wave velocity within the disturbed zone 

was lower than in the “free field” soil, showing a 10–30% decrease from an average “free-field” 

shear wave velocity of approximately 200 m/s.  The authors conjectured that shearing occurred 

in the medium-dense silty sand near the borehole wall and that dilation and an increase in void 

ratio was the likely cause of the decrease in shear wave velocity in the disturbed zone. 

In general, laboratory testing of different soils subjected to low and high strains have 

found that the initial shear modulus (Gmax) is a function of two variables that can be altered 

during disturbance, the mean effective stress and the void ratio (e.g., Hardin 1978; Jamiolkowski 

et al. 1991).  An increase in void ratio will result in a decrease in initial shear modulus, whereas 

an increase in the mean effective stress will result in an increase in initial shear modulus.  The 
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mean effective stress will change as a function of undrained soil behavior and pore pressure 

response.  The void ratio will change as a function of drained soil behavior.   

For clays, soil disturbance from invasive tests will result in undrained response because 

of the low permeability and the time it takes excess pore pressures to escape.  For soft clays, as 

in Hunt et al. (2002), undrained soil behavior that results in positive excess pore pressure causes 

a decrease in the mean effective stress and a decrease in the initial shear modulus and shear wave 

velocity.  The opposite would be true for stiff clays.   

For sands the location of the water table will determine if undrained soil behavior is 

feasible, and the need for borehole casing will also impact the soil behavior.  This makes for a 

complex response.  During drilling, sand may initially respond in an undrained manner 

immediately adjacent to the new borehole wall.  Installation of a casing will also result in some 

disturbance and can have uncertain results on the soil state.  For suspension logging or downhole 

seismic enough time may have elapsed following the drilling and/or casing that the excess pore 

pressure will have dissipated and the soil resumes a drained state.  In the case of pushing a cone, 

it has been found that most sandy soils will behave in a drained manner with respect to the 

standard push rate of 2 cm/sec  (Lunne et al. 1997).  Of interest is the cumulative effect and if it 

results in strain hardening or strain softening.  Dense sandy soils will want to dilate and/or 

generate negative pore pressures when disturbed, and loose sandy soils will want to contract 

and/or produce positive pore pressures when disturbed.  Whether shear wave velocity is 

measured when excess pore pressures are present or after the pore pressures have dissipated and 

the void ratio has changed will dictate if strain hardening or strain softening has occurred. 

Although there are not sufficient data to statistically compare suspension logging with 

SCPT or downhole seismic, a qualitative comparison is made to support the soil disturbance 

hypothesis.  Shown in Figure 4.6 are six sites where there was more than one invasive method 

used to measure VS30.  The data indicate that suspension logging tends to have higher shear wave 

velocity measurements for the stiffer sites and lower shear wave velocity measurements for the 

softer sites, when compared to other invasive measurements.  This qualitative assessment and the 

other studies discussed above support the hypothesis that 

• Soil disturbance has an influence on the measurement of shear wave velocity using 

invasive methods; 

• Suspension logging is most influenced by soil disturbance because of its small-scale 

measurement of shear wave velocity; and 
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• Borehole excavation in softer soils can result in overall strain softening and a decreased 

shear wave velocity, and in stiffer soils soil can result in overall strain hardening and 

increased shear wave velocities. 

Further research needed to confirm this hypothesis would include more blind studies with 

multiple invasive methods used at each site, as well as laboratory studies looking at the change in 

soil stiffness (and shear wave velocity) before and after shear failure. 
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Fig. 4.6  Comparison of VS30 from suspension logging and downhole or SCPT at six sites.  
Brown et al. (2002) presented suspension logging and downhole data for each site.  
Asten and Boore (2005) presented one site with suspension logging, SCPT, and 
downhole seismic. 
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Based on the soil disturbance hypothesis and loose confirmation of this hypothesis, it is 

assumed that the VS30 bias is a product of invasive methods and will be treated as such.  A linear 

regression is performed on the data in Figure 4.3 to arrive at a relationship between invasive and 

non-invasive methods.  Figure 4.7 shows the linear regression trend line and the accompanying 

statistics of this linear fit.  The linear fit indicates that for VS30 less than approximately 200 m/s, 

invasive measurements (suspension logging, downhole, and SCPT) will be biased low, and for 

VS30 greater than approximately 200 m/s, invasive methods will be biased high.  Subsequent 

discussion provides guidance on how the bias should be treated in engineering calculations. 
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Fig. 4.7  Linear regression of invasive versus non-invasive; all data from Fig. 4.3.  Statistics 
shown in upper left corner. 



 

 
31 

 

4.1.3 Variability of VS30 correlated Geologic Units 

To provide a broader spatial coverage of VS30 estimates, Wills and Silva (1998) and Wills and 

Clahan (2004) studied the correlation of geologic units to VS30 measurements made within those 

units.  Based on 19 generalized geologic units with sufficient VS30 measurements, Wills and 

Clahan (2004) presented the mean VS30 and standard deviation per unit.  Estimating VS30 from 

surficial geology presents a case of combined measurement error, spatial variability, and model 

error.  Figure 4.8 is the mean VS30 plotted against the coefficient of variation showing the 

measured uncertainty correlated to each geologic unit.  The geologic unit names are shown next 

to each data point and the description of each geologic unit is presented in Table 4.3.  A general 

trend of increasing coefficient of variation can be seen with increasing mean VS30. 

Table 4.3  Description of geologic units shown in Fig. 4.8 (after Wills and Clahan 2004). 

Geologic 
Unit 

Description 

Qi Intertidal Mud, including mud around the San Francisco Bay and similar mud in the Sacramento and San Joaquin delta 
and in Humbolt Bay 

af/qi Artificial fill over intertidal mud around San Francisco Bay 
Qal, fine Quaternary (Holcene) alluvium in areas where it is known to be predominantly fine 
Qal, deep Quaternary (Holocene) alluvium in areas where the alluvium (Holocene and Pleistocene) is more than 30m thick.  

Generally much more in deep basins 
Qal, deep, 
Imperial 
Valley 

Quaternary (Holocene) alluvium in the Imperial Valley, except sites in the northern Coachella Valley adjacent to the 
mountain front 

Qal, deep, 
LA Basin 

Quaternary (Holocene) alluvium in the Los Angeles basin, except sites adjacent to the mountain fronts 

Qal, thin Quaternary (Holocene) alluvium in narrow valleys, small basins, and adjacent to the edges of basins where the alluvium 
would be expected to be underlain by contrasting material within 30m 

Qal, thin, 
west LA 

Quaternary (Holocene) alluvium in part of west Los Angeles where the Holocene alluvium is known to be thin, and is 
underlain by Pleistocene alluvium 

Qal, 
coarse 

Quaternary (Holocene) alluvium near fronts of high, steep mountain ranges and in major channels where the alluvium is 
expected to be coarse 

Qoa Quaternary (Pleistocene) alluvium 
Qs Quaternary (Pleistocene) sand deposits, such as the Merritt Sand in the Oakland area 
QT Quaternary to Tertiary (Pleistocene-Pliocene) alluvium deposits such as the Saugus Fm of Southern CA, Paso Robles Fm of 

central coast ranges, and the Santa Clara Fm of the Bay Area 
Tsh Tertiary (mostly Miocene and Pliocene) shale and siltstone units such as the Repetto, Fernando Puente and Modelo Fms of 

the LA area 
Tss Tertiary (mostly Miocene, Oligocene, and Eocene) sandstone units such as the Topanga Fm in the LA area and the Butano 

sandstone in the SF Bay area 
Tv Tertiary volcanic units including the Conejo Volcanics in the Santa Monica Mtns and the Leona Rhyolite in the East Bay 

Hills 
Kss Cretaceous sandstone of the Great Valley Sequence in the Central Coast Ranges 
serpentine Serpentine, generally considered part of the Franciscan complex 
KJf Franciscan complex rock, including mélange, sandstone, shale, chert, and greenstone 
xtaline Crystalline rocks, including Cretaceous granitic rocks, Jurrasic metamorphic rocks, schist, and Precambrian gneiss 
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Fig. 4.8  Mean and coefficient of variation of VS30 for each of 19 generalized geologic 
units presented in Wills and Clahan (2004). 
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Fig. 4.9  Predicted versus measured VS30 from Wills and Clahan (2004). 

Will and Clahan (2004) presented a comparison of the predicted VS30 at strong ground 

motion stations versus measurements made within 300 m of the station.  Figure 4.9 shows  a 

reasonably good fit between the predicted VS30 based on surficial geology and the VS30 

measurements observed within the vicinity.  The increase of variance with increasing shear wave 

velocity can also be observed in this plot. 

To account for the increase in variance with an increase in shear wave velocity, a linear 

regression trend line is fit to the geologic unit correlated shear wave velocity data.  The results in 

Figure 4.10 show a coefficient of variation of approximately 20–35%. 
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Fig. 4.10  Linear regression fit to trend of increasing coefficient of variation with increasing 
30 m shear wave velocity for VS30 correlated geologic units.  Mean and ± 1 
standard deviation lines are shown.  Regression results in the upper left corner. 

4.1.4 Application of VS30 Uncertainty Point Estimate 

Presented are estimates of apparent or observable measurement uncertainty based on existing 

comparative and blind studies.  The focus is on 30 m shear wave velocity techniques used by the 

PEER Next Generation Attenuation (NGA) program. Based on the above analyses, this study 

finds the following: 

• The intra-method coefficient of variation of the non-invasive method of SASW (and by 

similarity MASW) appears to be approximately 5–6% (Fig. 4.1). 

• The intra-method coefficient of variation of invasive methods is difficult to quantify but 

is thought to be in the range of 1–3% (Fig. 4.2). 

• The inter-method comparison of invasive versus non-invasive methods indicates a bias as 

a function of the VS30 value.  This bias (Fig. 4.3) can be approximated with a linear trend 

line (Fig. 4.7), and is attributed to soil disturbance associated with invasive testing. 
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• The comparison between VS30 values and the correlated geologic units demonstrates an 

increasing coefficient of variation with increasing VS30.  This trend (Fig. 4.10) can be 

approximated with a linear fit. 

The conclusions about the uncertainty in VS30 can be used in subsequent engineering 

calculations in the following manner. 

If the shear wave velocity is based on SASW, a mean coefficient of variation of 5–6% is 

multiplied by the mean VS30 (
30SVμ ) value to calculate the standard deviation estimate ( 30SVσ ).   

Example:  SASW measurements at a site produce a 30 m shear wave velocity of 250 m/s.  The 

standard deviation is then 12.5–15.0 m/s (
3030 %)6  to5(

SS VV μσ ⋅= ). 

If the shear wave velocity is based on a correlated geologic unit the coefficient of 

variation is estimated using the mean linear trend line shown in Figure 4.10.  This is multiplied 

by the mean VS30 ( 30SVμ ) value to calculate the standard deviation estimate ( 30SVσ ).  Example:  A 

site is classified as Qal, deep, LA Basin, which correlates to a mean 30 shear wave velocity of 

281 m/s; the standard deviation is then 72.5 m/s (from Fig. 4.10 the 

165967.0000328.0...
30

+⋅=
SVvoc μ  and 

3030
...

SS VV voc μσ ⋅= ). 

If the shear wave velocity is based on an invasive method (suspension logging, SCPT, 

and downhole) then a coefficient of variation of 1–3% is multiplied by the mean VS30 value 

(
30SVμ ) to calculate the standard deviation estimate ( 30SVσ ).  The mean from the invasive method 

can be adjusted for bias using the linear regression from Figure 4.7.  The bias-corrected mean 

invasive shear wave velocity ( '
30SVμ ) is then 

  ( )bm
SS VV +⋅=

3030

' μμ  

  ( )55451.51760962.0
3030

' +⋅=
SS VV μμ        (4.2) 

Example:  A suspension logging device measures the mean 30 m shear wave velocity at 300 m/s.  

The bias-adjusted mean calculated using Equation 2 is then 279.8 m/s.  The standard deviation is 

then 2.8 m/s to 8.4 m/s ( '
3030 %)3  to1(

SS VV μσ ⋅= ). 

These steps provide a best estimate of the uncertainty associated with VS30 measurements 

given the current state of knowledge and the existing blind and comparison studies available in 

the literature.  These estimates will become more accurate in the future as more data are 

published on inter- and intra-method variability. 
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4.1.5 Spatial Variability of VS30 Measurements 

Section 4.1 has thus far focused on the measurement uncertainty of VS30, which is a point 

estimate of the bias and error in the measured site stiffness along a vertical column of geologic 

materials.  When using correlated geologic units, spatial variability crept into these point 

estimates due to the nature of this method and the spatial distances over which averaged 

measurements were used for correlation.  To better quantify spatial variability on a slightly more 

rigorous basis measured VS30 data were examined.  There have been studies on spatial variability 

of soil properties, but Thompson et al. (2007) is the only study the author is aware of that looks 

at VS30 in particular, which is used here to quantify estimates of the spatial variability.  

The semivariogram has been commonly used for mapping the spatial variability in 

geomaterials for purposes such as mining, geotechnical, and geo-environmental engineering 

(Isaaks and Srivanstava 1989).  The semivariogram is an effective means of visualizing and 

calculating the change in spatial variation with distance.  Thompson et al. (2007) collected a 

database of SCPT and SASW VS30 measurements from the Bay Area and evaluated the spatial 

statistics (Fig. 4.11).  They felt that there were not sufficient data to warrant fitting the SASW 

data with an exponential model and therefore published the results with a linear fit.  However, as 

it was noted by the authors, a linear fit does not make logical sense when the distance approaches 

zero where we expect to see no variation as a function of distance. 
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Fig. 4.11  Spatial variability of SCPT and SASW measured VS30 for an 8 km stretch in the 
Bay Area, from (Thompson et al. 2007) . 

For approximation purposes, in this report the SASW was fit with an exponential model 

to provide an estimate of what an expected semivariogram would look like with sufficient data.  

Figure 4.12 shows this exponential fit which gives estimates of the semivariance for VS30 as 

measured using SASW.  From this figure it can be seen that the spatial variation within 1500 m 

can be up to a standard deviation of 46 m/s (note: spatial standard deviation is the square root of 

semivariance). 
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Fig. 4.12  Plot of Thompson et al. (2007) SASW data fit with exponential model. 

4.1.6 VS30 Variance Results and Conclusions 

Summarizing the above discussions of measurement uncertainty and spatial variability, the 

results can be generalized as 

• For SASW and similar non-invasive VS30 measurement methods the COV ≈ 5–6%. 

• For invasive methods COV≈1–3% and there exists a bias.  A method of correcting for 

this bias was presented. 

• For correlated geology methods the COV≈20–40%.  Geologic unit specific uncertainty 

has been presented based on previous work. 

• An estimate of the spatial variability can be up to σ≈46 m/s (within 1500 m). 

For the PEER NGA database the average VS30 uncertainty from measurement 

uncertainty, bias, and spatial variability for all recordings is approximately a COV ≤ 30% using 

the information gathered in this study.  This compares favorably to the estimated COV≈27% 

presented in (Chiou et al. 2008).  As a confirmation of the quantified uncertainty, this study 

supports the work by Walt Silva as presented in Chiou et al. (2008) and achieves a consensus on 
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the general magnitude of measurement uncertainty and spatial variability present in the NGA 

database.   

4.2 MOMENT MAGNITUDE (MW) 

The uncertainty of the moment magnitude can be attributed mainly to the inversion process used 

to calculate the seismic moment, and thus the moment magnitude.  Moment magnitude is 

reported by seismology laboratories following an event, and iterated on for a week or two until 

the final revised value is reported.  Calculating the moment magnitude involves an inverse 

problem to determine the seismic moment.  The uncertainty in these calculations comes from the 

non-uniqueness of the inversion process.   

Uncertainty in moment magnitude has also been shown to be a function of time.  Kagan 

(2002) has estimated the standard deviation of the moment magnitude as a function of the 

inversion technique used to calculate the seismic moment.  The accuracy and compatibility of 

different inversion techniques has improved over time, thereby providing a reduced standard 

deviation as we approach the present. Kagan reported a constant average standard deviation of 

σM_t=0.081 due to this time component for the moment tensor catalog that was analyzed. 

The standard deviation of moment magnitude for any specific event (constant time) can 

be estimated from multiple reported magnitudes for each event where they exist.  The standard 

deviation reported for the NGA database was based on the consideration of statistical standard 

deviation, time, and quality of the data and method used to derive magnitude (B. Chiou, personal 

communication, 2005). 
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Fig. 4.13  Moment magnitude versus standard deviation of moment magnitude.  Several 
lines have been fit to data, all showing a general decrease of variance with an 
increase in magnitude. 

Figure 4.13 shows magnitude versus standard deviation as reported in the NGA dataset.  

There is a large amount of scatter in the data, but a general decrease in uncertainty with an 

increase in magnitude can be observed.  This trend was conjectured by Moss (2003) based on the 

logic that for the inversion of seismic moment, the dimensions of the fault plane and the amount 

of slip associated with larger magnitude events tend to be easier to define than with smaller 

magnitude events.  Uncertainty also stems from different inversion techniques used: partial or 

complete waveforms, regional or teleseismic recordings, and different Green’s functions.  

(Caltech and Berkeley perform a regional inversion using complete waveforms; Harvard uses 

partial waveforms in a teleseismic inversion; and NEIC focuses on body waveforms in a 

teleseismic inversion.) Larger-magnitude events also have more stations recording the event 

(bigger sample size), generally have a higher signal to noise ratio, and have different seismology 

labs that may be using some of the same stations, resulting in correlated results. 

 



 

 
41 

 

Shown in Figure 4.13 are a linear regression line, logarithmic regression line, and the 

equation fit by Moss (2003).  All three curves exhibit a similar slope, although the intercepts of 

the regression lines are lower.  The Moss equation (2003) can be considered a high estimate 

corresponding to larger events, and the logarithmic regression line a reasonable mean estimate. 

An attempt to elicit more refined results from the data was attempted, but both binning of 

the data and jackknifing produced ambiguous results.  For forward or predictive analysis the 

regression with natural log function resulted in the following equation: 

 

  4355.0)ln(1820.0_ +⋅−= MMMσ         (4.3) 

 

The total measurement error associated with moment magnitude is then the sum of the 

variances: 

  2
_

2
_

2
MMtMM σσσ +=           (4.4) 

More work needs to be done in quantify the uncertainty from moment magnitude.  

The above equations can be used to make rough estimates, but some careful studies 

would be useful in determining the source of  the uncertainty. The final results in this report (i.e., 

how measurement uncertainty influences ground motion prediction equations) do not include the 

quantified impact of measurement uncertainty from moment magnitude; that will be left for 

future studies.  

4.3 DISTANCE (R) 

Attenuation of seismic waves is controlled in a large part by the geometric spreading away from 

the earthquake hypocenter (centroid of energy release), thereby decreasing the energy per unit 

volume.  After an earthquake occurs, the hypocenter is determined by triangulating from 

multiple recordings to find the coincident point of energy release.  Refinement of the hypocentral 

location is part of the same inversion process used to determine the moment magnitude.  This 

means that moment magnitude and distance are correlated.  Some factors that result in 

uncertainty of the site-to-source distance measurement: 

• The acceptable tolerance for resolving the hypocentral distance in the inversion process. 

• Different rupture geometries (e.g., strike-slip versus dip-slip) that can affect the accuracy 

of the measurement of the hypocenter.  
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• Multiple or complex ruptures make determining a hypocenter for the event ambiguous.  

For example, the 2002 Denali, Alaska, earthquake had three subevents that produced the 

observed strong ground shaking (Harp et al. 2003). 

• Several different metrics are used to measure distance within the strong ground motion 

attenuation modeling community.  The most common distance metrics are Rjb, the closest 

horizontal distance to the vertical projection of the rupture, Rrup the closest distance to the 

rupture surface, Rseis the closest distance to the seismogenic rupture surface, Repi the 

closest distance to the epicenter, and Rhypo the hypocentral distance (Abrahamson and 

Shedlock 1997).   

• There is no consensus about the most appropriate metric for measuring distance, which 

indicates some uncertainty as to which distance measure is more accurate or most 

representative. 

• There could be uncertainty introduced into the distance measure as a function of differing 

coordinate systems.  The hypocenter may be located using WGS84 but the distance 

measure may be made in some other coordinate system, resulting in a loss of accuracy.   

• In forward analysis where a ground motion prediction equation is used to predict future 

strong ground shaking, depending on the size of the site in question there may be some 

uncertainty as to the start of the distance measure.  This can be a problem for big sites 

and small site-to-source distances.  An example of this would be a project like the 

Oakland-San Francisco Bay Bridge where the site extends for several kilometers.  This 

can be dealt with by estimating ground motion for multiple site locations, or using 

incoherency or transfer functions to propagate and attenuate motions along the site.  But 

the exact start of the distance measure can present some uncertainty. 

Discussions with UC Berkeley seismologists Doug Dreger and Bob Uhrhammer 

(personal communication, May 2007) provided some useful insight into the uncertainty of site-

to-source distance.  The precision of the location estimate is a function of station density.  

Precision can be approximately 200 m in epicentral location and 300 m in depth with high 

proximal station density, and 10–20 times that with low proximal station density.  The accuracy 

of the hypocentral distance is influenced by the tolerance used for performing the inversion.  For 

high proximal station density the acceptable location tolerance can be approximately 500 m, for 

low proximal station density, as much as 10 times higher.  Differing coordinates systems can 

have an influence on the order of hundreds of meters.  In California the difference between 
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NAD27 and WS84 is approximately hundreds of meters in longitude and tens of meters in 

elevation.  This difference can be greater in other parts of the U.S.  Uncertainty can also arise 

when determining distances geographically rather than geocentrically.  This information has 

been summarized in the table below. 

Table 4.4  Summary of contributors to distance uncertainty. 

Inversion Precision 

  -High station density 

  -Low station density 

 

~200 m horizontal, 300 vertical 

~10 to 20 times the precision above 

Inversion Tolerance 

  -High station density 

  -Low station density 

 

~500 m 

~10 times the tolerance above 

Coordinates System Error 

  (WGS84 vs. other) 

 

 

~100’s m in longitude and 10’s m in elevation 

 

These fixed uncertainties are a function of recording station density and the coordinate 

system, and in total are approximately 1–10 km in epicentral distance and 1–12 km in depth.  

The “three sigma rule” (Dai and Wang 1992) can be used to estimate the standard deviation 

based on the fixed uncertainties.  The uncertainties are added and subtracted from the distance 

estimate to get the highest and lowest potential values, the difference of which is then divided by 

six.  This assumes that the highest and lowest potential values define 99.73% of all possible 

values as measured by three sigma on either side of the mean of a normally distributed random 

variable: 

  
6

)()( −+ −= RR
Rσ              (4.5) 

where +R and −R  are the distance estimates ± the fixed uncertainties.  This uncertainty is present 

in the ground motion database and contributes to the overall uncertainty in ground motion 

prediction equations.  This fixed uncertainty will obviously have a dramatic impact on short 

distances or close in events, particularly for events that are poorly instrumented.   
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A form of uncertainty that comes into play in forward modeling or in the use of ground 

motion prediction equations for seismic hazard estimates is due to different distance metrics.  

This uncertainty would have an impact when performing a seismic hazard analysis where 

multiple ground motion prediction equations are used in a logic tree.  As discussed, there are five 

common distance measures: Rjb the closest horizontal distance to the vertical projection of the 

rupture, Rrup the closest distance to the rupture surface, Rseis the closest distance to the 

seismogenic rupture surface, Repi the closest distance to the epicenter, and Rhypo the hypocentral 

distance. Scherbaum et al. (2004) studied the relationship of these distance metrics and ran 

simulations to assess the relative variability.  Rjb was treated as the baseline distance metric and 

the variation of Rrup, Rseis, Repi, and Rhypo were calculated using simulated ruptures along a 

rupture plane scaled to magnitude.  There is no justification to use Rjb over the other distance 

metrics, other than one metric needed to be fixed for comparison.  The resulting frequency 

distributions of the variability of distance with respect to Rjb were best fit using a gamma 

distribution.  For lower magnitudes the gamma distributions were approximately lognormal in 

shape, becoming more skewed and approximately exponential in shape at higher magnitudes.  

Figure 4.14 shows the coefficient of variation of each distance metric with respect to Rjb for 

different magnitudes over the distance bin of 5–15 km, the near-fault range where metric 

differences are the largest.  The coefficient of variation can be rather high for larger-magnitude 

events, generally in the range of 50%–100%.  The nominal or mean coefficient of variation for 

all results is shown in Figure 4.15.  This figure better represents the contribution from differing 

distance metrics because no one method is considered fixed and the general contribution of 

uncertainty in a probabilistic logic tree can be estimated from these averaged results.  For close-

in distances (5–15 km) the variation between distance metrics can be large, with standard 

deviations on the same order as the mean values.  This can have a dramatic impact on the 

resulting spectral acceleration values from different prediction equations.  By including the 

uncertainty between distance metrics, the contribution of this form of epistemic uncertainty can 

be quantified and appropriately accounted for. 

It is apparent from these figures that distance uncertainty with respect to distance metrics 

is strongly correlated with magnitude.  This is also the case with the fixed uncertainties of 

distance uncertainty.  At this stage more research needs to be conducted to better refine and 

quantify uncertainty from distance and how the correlation between distance and magnitude 

propagate through the ground motion prediction equation.  From the preliminary analysis 
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included in this report the fixed measurement uncertainties can be large for near-fault distances 

with coefficient of variations in the 50%–100% range.  For forward modeling with multiple 

prediction equations, the variability between distance metrics can be on the same order.    The 

final results in this report (i.e., how measurement uncertainty influences ground motion 

prediction equations) do not include the quantified impact of measurement uncertainty from 

distance, which will be left for future studies. 
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Fig. 4.14  Coefficient of variation of each distance metric with respect to Joyner-Boore, Rjb, 
distance for different magnitudes, and distance bin of 5–15 km (after Scherbaum 
et al. 2004). 
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Fig. 4.15  Nominal or mean trend of the coefficient of variation of distance for various 
distance metrics, magnitudes, and distance bin of 5–15 km, with a polynomial 
fit for estimation purposes. 
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5 Implementation and Results 

The culminating results of this study show the influence of VS30 measurement uncertainty on a 

ground motion prediction equation.  This differs from the feasibility study in that a NGA ground 

motion prediction equation is used as the limit state, and quantified VS30 measurement 

uncertainty is applied to the NGA database.  Bayesian regression was used to fit the (Chiou and 

Youngs 2008) model to the NGA database while accounting for the specific measurement 

uncertainty from the NGA database strong motion recordings.  The Bayesian regression results 

are compared to and corroborated by two approximate solutions using first-order second-moment 

(FOSM) and Monte Carlo simulation (MC) techniques.  These approximate solutions have the 

added benefit that they can be used for quick estimates when using other ground motion 

prediction equations as the basis, rather than resorting to a full Bayesian regression.  Finally the 

Boore et al. (1997) prediction equation from the feasibility study is readdressed using the 

quantified VS30 measurement uncertainty, providing a comparative analysis with a simpler limit-

state function.  

5.1 CHIOU AND YOUNGS ATTENUATION MODEL 

The driving focus of this study was to implement the Bayesian regression procedures with an 

NGA model.  The Chiou and Youngs (2008) model was chosen because at the time of this 

research it was sufficiently complete and readily available.  The ground motion prediction 

equation developed by Chiou and Youngs (2008) is defined by the following equations: 
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where the VS30 dependent function is defined by 
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Bayesian regression was used to mimic the Chiou and Youngs (2008) results using exact 

parameters in what the authors termed step 1 regression of the first phase of the analysis; a 

regression of the NGA database neglecting hanging/footwall effects and soil nonlinearity effects.  

Description of which data from the NGA database were selected for regression can be found in 

detail in Chiou and Youngs (2008).  The Bayesian regression mimicked the “classic” regression 

well as can be seen by the fit of the site-dependent function in Figure 5.1. 
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Fig. 5.1  Plot of VS30 versus natural log of spectral acceleration showing Bayesian regression 
duplicating “classic” regression with Chiou and Youngs (2008) model as limit-state 
function for period of 0.01 sec (PGA).  

For the variance analysis the terms σφφφφ  and , , , , 4321  are treated as random variables 

with parameter uncertainty, the φ terms being regression coefficients, and the σ term being the 

site-dependent or intra-event standard deviation in natural log units.  The measurement 

uncertainty for each ground motion recording station according to the specific measurement 

method was taken into account with an overall database average of  COV≈27%.  Bayesian 

regression was run for the spectral periods of 0.01 (PGA), 0.1, 0.3, 1.0, 3.0, and 7.5 sec.  The 

percent decrease in the standard deviation of the ln(SA) is plotted in Figure 5.2.  The decrease is 

shown with error bars because the Bayesian regression procedure is iterative, using a numerical 

solution that resolves the answer within a prescribed tolerance as specified by a coefficient of 

variation on the mean results (COV ≤ 25% is considered a reasonable convergence).  It can be 
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seen that the average decrease of the site-dependent error term is below 4% in the short periods 

and up to 9% at longer periods.  These results are specific to the model formulation and how the 

inexact parameter, here VS30, is treated in the model.  The period dependent results indicate that 

VS30 influences the correlation more in the longer periods, with the most influence occurring at 

the 3 sec period.  Figure 5.3 shows the 3.0 sec period comparison of Chiou and Youngs (2008) 

versus Bayesian regression results. 
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Fig. 5.2  Percent decrease in standard deviation of ln(SA) for different spectral periods.  
Database average VS30 measurement uncertainty taken into account was 
COV≈27%.  Error bars show convergence tolerance as a standard deviation of 
results for each spectral period. 
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Fig. 5.3  Plot showing 3.0 sec period results.  Decrease of 9% in standard deviation of 
ln(SA) is realized by taking into account VS30 measurement uncertainty using 
Bayesian regression. 

5.2 APPROXIMATE SOLUTIONS 

The Bayesian regression results are promising for reducing the model variance by accounting for 

parameter uncertainty but the procedure can be rather cumbersome.  To provide confidence in 

the Bayesian regression results and provide a simplified method of performing variance analysis, 

two approximate solutions were evaluated; first-order second-moment (FOSM) and Monte Carlo 

simulations (MC). 

5.2.1 First-Order Second-Moment Method 

The first-order second-moment (FOSM) method is a basic approach to propagating uncertainty 

through a function.  In this case we are propagating the uncertainty from input parameters 

through the ground motion prediction equation to determine how much the parameter uncertainty 

contributes to the overall uncertainty of the prediction.  This method tends to be insensitive to 

nonlinear functional behavior and is evaluated only at the mean points.  A Taylor series 
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approximation truncated after the first two terms is used to calculate the partial derivative of the 

ground motion equation with respect to the parameter of interest.  For the case of Chiou and 

Youngs (2008), the FOSM analysis requires partial derivative of the site-dependent function (Eq. 

5.2) with respect to VS30: 
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The variance of the site-dependent function that is a result of VS30 variance is then 
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As seen here in this basic form, propagating the uncertainty is a function of the variance 

of the independent term, in this case VS30, and the sensitivity of the functional form to this 

independent term.  Mean values for all the parameters were substituted, and the database average 

COV≈27% was used to calculate the variance that propagates through the model.  The mean VS30 

for the database varied from 406 m/s to 392 m/s with respect to the spectral ordinate.  The mean 

spectral acceleration of rock, SA1130, was calculated using Equation 5.1 with the mean values 

substituted.  This propagated uncertainty was removed from the overall uncertainty as 

  ) ()( 30
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The results of using FOSM, shown in Figure 5.4, are quite similar to the Bayesian 

regression results in trend and magnitude.  This provides confidence in the results from both 

methods and lends to the use of FOSM as a simplified analysis when Bayesian regression is too 

time consuming and cumbersome. 
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Fig. 5.4  First-order second-moment (FOSM) variance analysis results.  These results 
compare favorably with Bayesian regression results, lending support to results of 
both methods and confirming that simplified methods provide reasonable results. 

5.2.2 Monte Carlo Simulations 

The second approximation method used to propagate the uncertainty through the ground motion 

prediction equation is Monte Carlo (MC) simulations.  The ground motion prediction equation 

with mean values for the parameters is used along with a large number of randomly generated 

realizations of the inexact parameter of interest, VS30.  The statistics of the results show the 

variance of the model with respect to the variance of the randomly generated inexact generated.  

The COV≈27% was used with the mean value of VS30 for each spectral ordinate, and 100,000 

simulations were generated.  Each simulation was pushed through the prediction equation with a 

histogram with mean and standard deviation as the results.  Figure 5.5 shows a comparison of 

MC with the previous Bayesian regression and FOSM results.  There is generally good 

agreement between the FOSM and MC, showing the same trends: a slight drop from PGA to 0.1 
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sec, and a maximum at 3.0 sec with a subsequent drop.  The magnitudes of the three methods are 

within the same range.  For each spectral ordinate the approximate methods either under- or 

overestimate the Bayesian regression results, but the average percent decreases of the model 

standard deviation in natural units for the three methods are quite similar; Bayesian regression 

5.7%, FOSM 4.8%, and MC 5.4%. 
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Fig. 5.5  Monte Carlo (MC) simulation results with respect to FOSM and Bayesian 
regression results.  All three methods show similar general trends.    

5.3 OTHER GROUND MOTION PREDICTION EQUATIONS 

Ideally Bayesian regression, FOSM, and MC methods would be applied to all the NGA models 

to compare how VS30 uncertainty influences each one, the influence being a function of how each 

ground motion prediction equation mathematically treats the parameter.  And ultimately the 

measurement uncertainty from each parameter (VS30, Mw, and R) would be accounted for in this 

type of variance analysis.  At this stage those tasks are still to be tackled.  For comparison 
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purposes the Boore et al. (1997) ground motion prediction equation is readdressed using the 

same variance analysis techniques that were applied to Chiou and Youngs (2008).  The results 

are limited to PGA because that is all the database information available from Boore et al. 

(1997).  The results show a similar trend.  The Bayesian regression results showed a 20% 

decrease in the standard deviation for PGA; FOSM showed no decrease; and MC showed a 4% 

decrease. Figure 5.4 shows that the MC results for PGA were a factor of 4 less than the Bayesian 

regression results, which agrees with the results using Boore et al. (1997).  The FOSM results are 

curious in that no decrease was measured.  This appears to be a by-product of the specific model 

formulation of Boore et al. (1997) and that this equation is linearly insensitive to VS30 for the 

PGA ordinate.  This favorable comparison of the Bayesian regression and MC results using two 

different ground motion prediction equations provides additional confidence in the methodology 

and the usefulness of this type of variance analysis. 

5.4 IMPACT OF RESULTS 

Up to this point the discussion has focused on the technical aspects of performing variance 

analysis, in quantifying the parameter uncertainty, and in translating that uncertainty through 

ground motion prediction equations using different techniques.  The discussion will now focus 

on the usefulness of this analysis by showing the impact of the results in engineering terms.  

Figure 5.6 is a plot of the lognormal probability density functions (PDFs) of the 0.01 sec (PGA) 

and 3.0 sec periods.  The first curve is the PDF of the Chiou and Youngs (2008) results for the 

noted earthquake and site conditions, the second is the PDF that reflects the Bayesian regression 

results.  The taller, narrower distribution of the Bayesian regression shows a reduced standard 

deviation which translates to more certainty in the ground motion measure.   

The locations of the median plus one and two standard deviations noted as 1 sigma and 2 

sigma, respectively, are also shown.  The difference or spread of the 1 sigma and 2 sigma 

predictions demonstrates the impact and benefit of variance analysis.  A more accurate estimate 

of the seismic demand is afforded through variance analysis, which becomes particularly 

important for rarer events that fall to the right of the median.  This can be important for critical or 

long-lived structures that are designed for long-return periods (e.g., 2500 year events or greater).  

An example where this might have a dramatic impact is the Yucca Mountain project, where the 

10,000 year event is considered within the design life.  The plots account for parameter 
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uncertainty in only VS30.  Further research will include the parameter uncertainty in both Mw and 

R, which will narrow the distribution further and result in even better estimates of the rarer 

events.   
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Fig. 5.6  Chiou and Youngs (2008) probability density function predictions for PGA and 3.0 
sec period, given earthquake, distance, and site conditions compared to probability 
density function that accounts for parameter uncertainty in VS30.  Difference in 1 
sigma and 2 sigma results demonstrates the impact of variance analysis on ground 
motion prediction of rarer events. 
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6 Summary and Conclusions 

This report is the culmination of several years of research into the variance analysis of ground 

motion prediction equations.  The goal was to account for parameter uncertainty of the 

independent variables and to demonstrate how through Bayesian regression a better estimate of 

the dependent variable can be achieved.  This report documents the mathematical formulation of 

the Bayesian regression technique used.  A feasibility study was conducted in the early phase of 

the research to verify that the technique would produce useful results.  Research efforts were 

invested in quantifying the parameter uncertainty of the independent variables, with VS30 

receiving the bulk of the attention.  Finally an NGA model was used as the limit-state function, 

and the parameter uncertainty of VS30 was accounted for using Bayesian regression, which 

resulted in a more accurate assessment of NGA model uncertainty.  Two approximate solution 

methods were evaluated against the Bayesian regression results and provided reasonable average 

results, which affords simplified methods for evaluating the impact of parameter uncertainty.  A 

more accurate assessment of model uncertainty is particularly important in an engineering sense 

for rarer, or long-return period, events, the types that can dominate the design of critical 

structures with a long design life.  Future research endeavors will evaluate other NGA models 

using Bayesian regression, and further quantify the parameter uncertainty of Mw and R so that 

these two independent variables can be accounted for in the Bayesian regression.   
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Appendix 

MatLab code for Bayesian regression procedure using a simple linear example. 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Using Bayes Framwork to perform linear regression with  
%  example from Ang and Tang (1975) E71 p290-291  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%  Importance sampling is used in this program 
%  to carry out the necessary integrations over the Bayesian kernel. The 
%  joint lognormal distribution with specified means, standard deviations 
%  and correlation matrix is used for the sampling distribution. 
%  Convergence will be faster if the statistics of the sampling 
%  distribution are close to the corresponding statistics of the 
%  posterior distribution that are to be computed. The program may be 
%  run several times to adjust the statistics of the sampling distribution. 
% 
%  For numerical stability, it is important that the normalizing factor 
%  k in the Bayesian updating formula be neither too small nor too large. 
%  This factor can be adjusted by scaling the likelihood function. In this 
%  program this is done by adjusting the "scale" parameter. 
% 
%  Run the program with trial estimates of the means, standard deviation 
%  and correlation matrix of the sampling density, and of the scale 
%  parameter.  This will give a first estimate of the reciprocal of the 
%  normalizing factor k and the posterior statistics of the parameters. 
%  A good first estimate for the sampling mean is the argmax(g(x)), and 
%  a good first sampling correlation matrix is the inverse of the Hessian. 
%  Make sure that the sampling density has sufficiently large standard 
%  deviations (no smaller than the posterior standard deviations estimated). 
%  Use the first posterior estimates as the new means, standard deviations 
%  and correlation matrix of the sampling distribution and adjust the 
%  scale parameter (decrease it if k is too large, increase it if k is too 
%  small). Run the program again to obtain a 2nd set of posterior estimates. 
%  Repeat this process until sufficient accuracy in the posterior estimates 
%  is achieved. 
% 
%  The accuracy is measured in terms of the coefficients of variation of 
%  the posterior mean estimates (denoted cov_p_mean in this program). 
%  A value less than 25% for each element of cov_p_mean is a good level 
%  of accuracy. 
% 
%  The results of the computation are stored in the file "Results2.mat" 
%  as follows: 
% 
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%          nmin   minimum number of simulations 
%          nmax   maximum number of simulations 
%          npar   number of parameters 
%             k   normalizing factor in the updating formula 
%        p_mean   posterior mean vector 
%    cov_p_mean   c.o.v. of the posterior mean estimates 
%      p_st_dev   vector of posterior standard deviations 
%         p_cov   vector of posterior c.o.v.'s 
%         p_cor   posterior correlation matrix 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear all; 
load E71data.mat; %Data from Ang and Tang example E71 (see below) 
tic; 
disp(' '); 
disp('updating...........please wait'); 
  
errDepth=0.10.*Depth;  %COV of Depth 10% 
 
%----- Specify the means, standard deviations and correlation matrix 
%----- of the sampling density 
  
M = [0.0517   
     -0.0029   
     0.200];   
  
D = [0.01      0.0000   0.0000  
     0.0000    0.03     0.0000  
     0.0000    0.0000   0.09  ]; 
  
R = [1.0000    0.6839   -0.1591 
    0.6839    1.0000   -0.0334 
   -0.1591   -0.0334    1.0000]; 
  
%----- Specify the scale parameter 
  
scale = .01; 
  
%------ Specivy the c.o.v. for convergence 
  
convergence = 0.50; 
  
%----- Set minimum and maximum number of simulations: 
  
nmin = 50; 
nmax = 100000; 
  
%----- Begin calculations 
  
d = diag(D);                  % vector of standard deviations 
cov = d ./ M;                 % c.o.v.'s 
z = sqrt(log(1+(cov).^2));    % zeta parameters of lognormal distribution 
LAM = log(M) - 0.5 * (z).^2;  % lambda parameters of lognormal dist. 
Z = diag(z);                  % diagonal matrix of zeta's 



 

 
A - 3 

 

S = Z*R*Z;                   % covariance matrix of transformed normals 
L= chol(S)';                  % lower choleski decomposition of S 
iS = inv(S);                  % inverse of S 
  
%----- Initialize integral values: 
I1 = 0; 
I2 = 0; 
I3 = 0; 
I4 = 0; 
  
npar = length(M);           % number of parameters 
ndata = length(Strength);    % number of ordinates 
i_counter = 0; 
flag = 1; 
constant = 1/( (6.28318531)^(npar/2) * sqrt(det(S)) ); 
  
%----- Begin importance sampling: 
  
for i = 1:nmax 
  
    %-- simulate standard normal random variables; 
    u = randn(npar,1); 
    theta = exp( LAM + L*u);   % simulated lognormal theta's 
     
    %-- define three kernels 
    K1 = 1;             % this is for computing the normalizing constant k 
    K2 =  theta;       % this is for computing the mean 
    K3 =  theta*theta'; % this is for computing the mean squares 
   
    %-- initialize product functions 
    lhood = 1; 
     
    %-- compute likelihood function 
    g = theta(1).*Depth - theta(2); 
    errg = Strength-g; 
    
    for k = 1:ndata 
        sq_std(k) = theta(3)^2 + theta(1)^2*errDepth(k)^2; 
        norm_value(k) = errg(k)/sqrt(sq_std(k)); 
        value(k) = normpdf(norm_value(k)).*sign(norm_value(k)); 
        lhood = exp(log(((lhood*value(k))/sqrt(sq_std(k))))+scale); 
    end 
      
    %--- compute the prior distribution (non-informative): 
    p = 1/(theta(1)*theta(2)*theta(3)); 
  
    %--- compute the sampling probability density  
    h = constant * exp(-0.5*(log(theta)-LAM)'*iS*(log(theta)-LAM)); 
    h = h/(theta(1)*theta(2)*theta(3)); 
     
    %--- compute (kernel*likelihood*prior)/sampling-density: 
    I1 = I1 + K1*lhood*p/h; 
    I2 = I2 + K2.*lhood.*p/h; 
    I3 = I3 + K3*lhood*p/h; 
    I4 = I4 + (K2.*lhood.*p/h).^2;  % this is for computing cov_p_mean 
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    %--- reciprocal of the normalizing constant 
    k = I1/i; 
  
    %--- posterior mean and its c.o.v. 
    p_mean = I2/I1; 
    cov_p_mean = sqrt(( 1/i*(I4/(k.^2*i)-(I2/(k*i)).^2) ))./abs(p_mean); 
  
    %--- posterior covariance matrix 
    p_cov = I3/I1 - p_mean*p_mean'; 
    
    
     
    % check if c.o.v is <= convergence for all the posterior means, but 
    % make sure that at least nmin simulations are performed. 
    % flag = 0 means that convergence has been achieved. 
     
     i_counter = i_counter+1; 
     if max(cov_p_mean) <= convergence &  i_counter>nmin 
     flag = 0; 
     break 
     end 
     end 
  
toc; 
t=toc/60; 
  
%----- display results: 
beep; 
disp('--- Number of simulations') 
disp(i_counter); 
  
disp('--- Number of parameters') 
disp(npar); 
  
disp('--- Run time (min)') 
disp(t); 
  
disp('========== Bayesian Posterior Estimates ==========') 
  
disp('--- Reciprocal of normalizing factor k') 
disp(real(k)); 
  
disp('--- Posterior means') 
disp(real(p_mean')); 
  
disp('--- c.o.v.s for the posterior means') 
disp(real(cov_p_mean')) 
  
for i=1:npar 
       p_st_dev(i) = sqrt(p_cov(i,i)); 
       p_c_o_v(i) = p_st_dev(i)/abs(p_mean(i)); 
end 
disp('--- Posterior standard deviations') 
disp(real(p_st_dev)) 
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disp('--- Posterior c.o.v.s') 
disp(real(p_c_o_v)) 
for i=1:npar 
        for j=1:npar 
                p_cor(i,j)=p_cov(i,j)/(p_st_dev(i)*p_st_dev(j)); 
        end 
end 
disp('--- Posterior correlation matrix') 
disp(real(p_cor)); 
  
%plotting mean results against linear regression results 
x=Depth; 
y=0.0515*x+0.029;  %linear regresssion coefficients 
y_prime=p_mean(1).*x-p_mean(2); 
y_plus=y+0.192; 
y_minus=y-0.192; 
y_prime_plus=y_prime+p_mean(3); 
y_prime_minus=y_prime-p_mean(3); 
plot(Strength,-Depth,'o',y,-x,'g',y_prime,-x,'r',y_plus,-x,'--g',y_minus,-
x,'--g',y_prime_plus,-x,'--r',y_prime_minus,-x,'--r'); 
 

Data file containing E71data.mat 

>> load E71data.mat 

 

>> who 

Your variables are: 

Depth        Strength     errDepth     errStrength   

 

>> Depth' 

ans = 

     6     8    14    14    18    20    20    24    28    30 

 

>> Strength' 
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ans = 

    0.2800    0.5800    0.5000    0.8300    0.7100    1.0100    1.2900    1.5000    1.2900    1.5800 

 

>> errDepth' 

ans = 

     3     4     7     7     9    10   115    12    14    15 

 

>> errStrength' 

ans = 

    0.0840    0.1740    0.1500    0.2490    0.2130    0.3030    0.3870    0.4500     0.3870    0.4740 
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Linear Regression Example Results 

 

Fig. A1  Bayesian regression results that mimic “classic” regression results using Ang and 
Tang E71 example.  Median and plus and minus standard deviation lines are 
shown along with data. 

 

Fig. A2  Bayesian regression results where parameter uncertainty of depth is taken into 
account.  Reduced model uncertainty is realized by including parameter 
uncertainty.  
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