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ABSTRACT 

This study suggests a semi-empirical model and an analytical model to predict the shear strength 

of reinforced concrete (RC) exterior beam-column joints without transverse reinforcement 

(denoted as unreinforced) in the joint region. A large experimental data set of unreinforced 

exterior beam-column joints from published literature is collected using consistent criteria. From 

the parametric study of the database, it is proved that the shear strength of unreinforced exterior 

beam-column joints is significantly influenced by two parameters: (1) the joint aspect ratio, and 

(2) the beam reinforcement index, which is related to the amount of longitudinal beam 

reinforcement. Two equations of each parameter are formulated by equilibrium and verified by 

comparison with the database. A semi-empirical model is developed using the derived equations 

of the two parameters. The proposed semi-empirical model shows high accuracy for predicting 

the joint shear strength, compared with other existing models. As another approach, the 

analytical model is developed based on the two inclined struts mechanism in a parallel system. 

The fraction of each diagonal strut is assumed based on the bond strength deterioration between 

the beam reinforcing bars and the surrounding concrete. The proposed analytical model is 

validated by comparison of its predictions with the test data of unreinforced exterior beam-

column joints from published literature. The proposed analytical model is capable of predicting 

the two main types of joint failure, namely joint shear failure without and with yielding of beam 

longitudinal reinforcement, without using modification of the diagonal strut width and without 

the need for the estimation of a ductility factor. Furthermore, demonstration analyses of 

published tests are successfully performed using a representative rotational spring element for 

the beam-column joint based on the proposed analytical model. The proposed semi-empirical 

and analytical shear strength models of unreinforced exterior beam-column joints can be adopted 

to assess the seismic performance of existing RC buildings with deficient seismic details in the 

joint region. 
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1 Introduction 

1.1 BACKGROUND 

Reinforced concrete (RC) buildings designed during the 1960s and 1970s still widely exist in the 

western U.S. and in other seismically active regions worldwide. Those buildings are mostly 

assumed to be vulnerable to earthquake loads due to insufficient shear reinforcement, widely 

spaced column ties, and little or no transverse reinforcement within beam-column joint regions. 

However, the real risk of older RC buildings is still unknown and under investigation. In 

particular, beam-column joints play a key role in integrating a whole structural system, and shear 

failure in beam-column joints may contribute to the collapse of a building as shown Figure 1.1. 

To assess the performance of RC beam-column joints having no transverse reinforcement 

(denoted as “unreinforced”), a large number of tests have been conducted with different joint 

geometries, beam reinforcement ratios and anchorage details, and column axial load ratios, in the 

U.S., Japan, New Zealand, the United Kingdom, and in other places (Fig. 1.2). 

There are some differences in the design of beam-column joints between U.S., Japan and 

New Zealand codes. The main difference is whether the truss mechanism due to joint hoops and 

intermediate column bars is taken into account or ignored. Unreinforced beam-column joints are 

free from this disagreement because a truss mechanism does not take place and joint shear forces 

are transferred into the column by compression through inclined struts. Therefore, the parameters 

affecting the joint shear strength in this type of beam-column joint are limited to the following: 

(1) concrete strength, (2) joint aspect ratio, (3) beam longitudinal reinforcement ratio, (4) column 

axial load and (5) intermediate column bars. In this study, the effect of intermediate column bars 

as expressed in an opposing opinion (Hwang et al. 2005) is ignored because this effect is 

negligible if there are no joint hoops where the inclined strut may not be developed due to its 

steep angle.  
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Traditionally, the shear strength of concrete has been expressed in terms of the square 

root of the concrete standard compressive strength, '
cf , in U.S. codes (ACI 318-08, 2008). The 

shear strength of beam-column joints also follows the same assumption in (ACI 352-02, 2002). 

However, a different assumption is followed in other codes, e.g., the New Zealand code (NZS 

3101, 1995), which specifies that the horizontal shear stress should not exceed '2.0 cf  to avoid the 

diagonal compression failure by crushing. Some existing empirical models (Scott et al. 1994; 

Vollum 1998; Bakir and Boduroğlu 2002) use a function of '
cf , as ACI 352-02 (2002) 

suggests, and two other models (Sarsam and Phipps 1985; Hegger et al. 2003) employ a function 

of 3 '
cf . In the present study, it is assumed that the joint shear strength is proportional to '

cf . 

The other three parameters, namely (1) the joint aspect ratio, (2) the beam longitudinal 

reinforcement ratio, and (3) the column axial load, are investigated from the constructed database 

of unreinforced exterior beam-column joints. 

There has been significant effort to better assess the shear strength of unreinforced 

concrete beam-column joints. As a result, several empirical and analytical models have been 

developed based on the test data and mechanistic concepts. However, a robust shear strength 

model of unreinforced beam-column joints is still lacking. In the case of existing empirical 

models, inappropriate parameters are used or some parameters are obtained from insufficient 

data without an attempt to mechanistically address the significance of these parameters.  In the 

case of existing analytical models that are typically developed for reinforced joints and then 

specialized to unreinforced joints, some conceptual limitations can be directly applied to the 

unreinforced beam-column joints. 

In this study, two shear strength models are proposed by semi-empirical and analytical 

approaches considering the aforementioned effects. Both shear strength models are validated by 

comparison of the collected large experimental data set. 
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Fig. 1.1  Collapse of a building by joint shear failure (Sezen et al. 2000).  

(b) Pantelides et al. (2002)

(d) Wong (2005)

(a) Ortiz (1993) (c) Gohbara and Said (2002)

(e) Hwang et al. (2005) (f) Karayannis et al. (2008)

(b) Pantelides et al. (2002)

(d) Wong (2005)

(a) Ortiz (1993) (c) Gohbara and Said (2002)

(e) Hwang et al. (2005) (f) Karayannis et al. (2008)  

Fig. 1.2  Examples of tests from literature of exterior beam-column joints. 
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1.2 OBJECTIVES AND SCOPE 

The overall objectives of this study are to determine the main parameters affecting the shear 

strength of unreinforced exterior beam-column joints and to suggest shear strength models of 

unreinforced exterior joints including these parameters. This study is limited to RC exterior and 

corner beam-column joints without transverse reinforcement in the joint region and with no 

lateral beams or a lateral beam on one side only.  

The direct objectives of this analytical study are summarized as follows: 

1. To obtain the main parameters affecting the shear strength of unreinforced exterior beam-

column joints; 

2. To propose a semi-empirical model that is expressed as a simple equation but capable of 

predicting the shear strength with high accuracy; 

3. To propose an analytical model to be able to predict two types of joint shear failure 

modes:  joint shear failure without beam reinforcement yielding (J mode) and joint shear 

failure with beam reinforcement yielding (BJ mode); and  

4. To extend the analytical model to the element level of exterior beam-column joint 

modeling with a rotational spring that can be used in many existing nonlinear structural 

analysis programs, e.g., OpenSees, to analyze RC frames. 

1.3 RESEARCH SIGNIFICANCE 

There are several shear strength models for exterior beam-column joints in the literature. Some 

of these models are developed by statistical regression relying on small size experimental data 

sets. More sophisticated models, e.g., the softened strut-and-tie (SAT) model by Hwang and Lee 

(1999) and the modified rotational angle SAT model by Wong (2005), have some conceptual 

limitations to be directly applied to unreinforced beam-column joints. This study proposes two 

rational models to predict the shear strength of unreinforced exterior joints by a mechanistic 

approach. The proposed models are verified by showing better correlation of shear strength 

prediction with a large database of published tests. 

The suggested shear strength models can be adopted to assess the seismic performance of 

existing old RC buildings with deficient seismic details in the joint region. Furthermore, the 

analytical model is used to provide the constitutive relationship of a rotational spring to represent 

the behavior of beam-column joints in structural analysis of frames. 
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1.4 ORGANIZATION OF REPORT 

This paper is organized as follows. A large database of unreinforced exterior beam-column joint 

tests from published literature is collected and the effect of main parameters on joint shear 

strength is investigated in Chapter 2, defining main parameters as joint aspect ratio, beam 

reinforcement, and column axial load ratio. In Chapter 3, existing joint shear strength models are 

illustrated based on the basic concept of those model and currently available joint elements for 

frame simulation are reviewed as a background for developing joint shear strength models and 

elements. A semi-empirical and an analytical model of unreinforced exterior joints are developed 

in Chapters 4 and 5. In particular, the developed analytical model is extended to the joint element 

for simulation. Finally, summary and conclusion are given in Chapter 6. 
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2 Database and Parametric Study 

A large number of tests of unreinforced beam-column joints have been conducted by researchers 

in countries located in high seismic areas as well as in low ones. This chapter includes the 

database of those accessible tests from the 1960s to the present and the parametric studies from 

this database. The parametric studies provide key information to develop the shear strength 

models in the subsequent chapters. 

2.1 DATABASE OF UNREINFORCED EXTERIOR BEAM-COLUMN JOINTS 

A large database of unreinforced exterior beam-column joint tests from published literature is 

collected and analyzed in this chapter. The database includes only tests of corner and exterior 

beam-column joints without transverse reinforcement. To focus on the joints vulnerable to shear 

failure, only exterior joints without or with one lateral beam (Fig. 2.1(b)) are included, i.e., 

interior joints of exterior frames (Fig. 2.1(a)) and exterior joints of internal frames (Fig. 2.1(c)) 

are excluded. It is reported that crushing along the joint diagonal occurred in the joints with no 

lateral beams or with a lateral beam on one side only, and that the shear capacity of joints with 

lateral beams on two sides increased significantly compared with the two other cases in Figure 

2.1(b) (Zhang and Jirsa 1982; Ohwada 1976, 1977). The hook anchorage details are also 

considered as one of the criteria for limiting the database candidates. Several types of hook 

anchorage detail in the joint region were used in gravity load designed buildings. Figure 2.2 

shows the selected anchorage details for collecting database candidates where at least one strut 

mechanism can develop under lateral loading. Among the shown four types, Type B is most 

common in older RC gravity load designed buildings, followed by Type A. Types C and D are 

less common and impractical from a constructability point of view. It is to be noted that the tests 

designed with a wide beam, i.e., with beam width greater than column width, are not included in 

the database due to different confinement condition of the joint region. 
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Tests affected by column or beam shear failure are excluded from the database. For 

instance, tests conducted by Beres et al. (1992) in Figure 2.3 are excluded because the response 

of the tested joints appears to be significantly affected by the column shear failure due to the first 

column hoop located far from the joint region; see the dashed box and arrow in Figure 2.3. It is 

worth mentioning that most experimental research efforts on beam-column joints have focused 

on the verification of strength and ductility of reinforced joints, and the retrofit methods of 

unreinforced joints. Such tests are also not included in the database of this study. 

Based on the discussion above, 62 tests for unreinforced beam-column joints satisfying 

the selection requirements of the database are identified and summarized in Table 2.1. The 

information of each test is extracted from the published literature and consistent assumptions are 

made when available data are incomplete. For instance, the joint shear strength specified in the 

corresponding literature is used in the database, while the joint shear strength is calculated by the 

constant moment arm assumption if only applied beam or column shear force is reported. In that 

regard, the constant moment arm is assumed to be 0.875db for the joint shear failure without 

beam reinforcement yielding and 0.9db for the joint shear failure with beam reinforcement 

yielding. Note that db is the effective depth of beam cross section. The effective joint width, bj, is 

taken as (bc+bb)/2 which gives a reasonable equivalent strut (Zhang and Jirsa 1982). Note that bc 

and bb are the respective widths of the column and beam cross sections. The joint shear strength 

is normalized by '
cf , i.e., '/ ccjjh fhbV=γ , to be compared with the criteria of the current 

U.S. code provisions. Note that Vjh is the maximum horizontal shear force in the joint and hc is 

the total height of the column cross section in the loading direction. The specimen failure 

obtained from tests is categorized into six types: (1) joint shear failure without beam 

reinforcement yielding (J), (2) joint shear failure with beam reinforcement yielding (BJ), (3) 

beam flexural failure (BF), (4) column flexural failure (CF), (5) beam reinforcement pull-out 

failure (P), and (6) anchorage failure (A). From the database, the effects of different parameters 

on joint shear strength are investigated in the following three subsections. 
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or

(a) (b) (c) 

or

(a) (b) (c)  

Fig. 2.1  Beam-column joint types: (a) interior joint, (b) exterior joint with no or one lateral 
beam (selected in this study), (c) exterior joint with two-sided lateral beams. 

T ype  A T ype  B T ype  C T ype  DT ype  A T ype  B T ype  C T ype  D
 

Fig. 2.2  Selected anchorage types for exterior beam-column joints. 

 

far from the jointfar from the joint

 
Note: dimensions are in inches 

Fig. 2.3  Specimen design and test results of Beres et al. (1992).
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Table 2.1  Experimental database of unreinforced exterior beam-column joints. 

Reference Specimen 
'

cf  
(ksi) 

beam,yf  
(ksi) 

sA *1 
(in.2) 

jb  
(in.) 

ch  
(in.) 

bh  
(in.) 

( )'/ ccc fhbP  jhV  
(kip) 

'/ ccjjh fhbV
(psi0.5) 

Failure 
Mode*2 

V 3.30 51.0 4.0 13.5 15.0 20 0.86 138.4 11.9 J Hanson & Connor 
(1967, 1972) 7 5.70 51.0 4.0 13.5 15.0 20 0.50 189.7 12.4 BJ 

Hwang et al. (2005) 0T0 9.76 63.1 3.16 14.6 16.5 17.7 0.02 224.1 9.4 BJ 
SP1 4.46 50.3 3.0 13.5 15.0 20 0.41 140.9 10.4 BJ 
SP2 4.51 50.6 3.0 13.5 15.0 20 0.41 136.9 10.1 BJ Uzumeri (1977) 
SP5 4.63 50.4 3.0 15.0 15.0 20 0.43 136.7 8.9 BJ 

BS-L 4.48 75.4 1.46 11.0 11.8 17.7 0.15 70.9 8.1 J 
BS-U 4.50 75.4 1.46 11.0 11.8 17.7 0.15 76.7 8.8 J 

BS-L-LS 4.58 75.4 1.46 11.0 11.8 17.7 0.15 77.5 8.8 J 
BS-L-300 4.94 75.4 1.46 11.0 11.8 11.8 0.15 113.5 12.4 BJ 
BS-L-600 5.28 75.4 1.46 11.0 11.8 23.6 0.15 63.8 6.7 J 

BS-L-V2T20 4.73 75.4 1.46 11.0 11.8 17.7 0.15 89.7 10.0 J 
BS-L-V4T10 4.10 75.4 1.46 11.0 11.8 17.7 0.15 90.6 10.9 J 

JA-NN03 6.50 75.4 0.97 11.0 11.8 15.7 0.03 56.0 5.3 BJ 
JA-NN15 6.67 75.4 0.97 11.0 11.8 15.7 0.15 69.9 6.6 BJ 

Wong (2005) 

JB-NN03 6.87 75.4 0.97 11.0 11.8 11.8 0.03 70.4 6.5 BJ 
01 4.79 66.5 4.0 16.0 16.0 16.0 0.10 219.0 10.9 J 
02 4.38 66.5 4.0 16.0 16.0 16.0 0.25 213.5 10.6 J 
03 4.93 66.5 4.0 16.0 16.0 16.0 0.10 207.0 10.2 J 
04 4.58 66.5 4.0 16.0 16.0 16.0 0.25 237.5 11.7 J 
05 4.60 66.5 4.0 16.0 16.0 16.0 0.10 218.1 11.1 J 

Pantelides et al. 
(2002) 

06 4.50 66.5 4.0 16.0 16.0 16.0 0.25 221.6 11.3 J 
02 6.70 65.9 4.0 12.0 18.0 16.0 0.10 237.2 12.1 J 
06 5.94 65.9 4.0 12.0 18.0 16.0 0.10 229.9 12.7 J 
04 5.37 65.9 4.0 12.0 18.0 16.0 0.25 240.8 13.2 J 

Clyde et al.  
(2000) 

05 5.82 65.9 4.0 12.0 18.0 16.0 0.25 220.8 13.4 J 
BCJ1 4.93 104.4 1.24 7.9 11.8 15.7 0 68.8 10.5 J 
BCJ3 4.79 104.4 1.24 7.9 11.8 15.7 0 72.4 11.3 J 
BCJ5 5.51 104.4 1.24 7.9 11.8 15.7 0.08 70.6 10.2 J 

Ortiz (1993) 

BCJ6 5.08 104.4 1.24 7.9 11.8 15.7 0.09 70.8 10.7 J 
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Table 2.1—continued. 
C4ALN0 6.15 75.7 0.62 5.1 5.9 8.3 0.05 24.8 10.5 P 
C4ALH0 15.08 75.7 0.62 5.1 5.9 8.3 0.02 42.3 11.4 P 
C6LN0 7.40 75.7 0.62 5.1 5.9 8.3 0.04 23.4 9.0 J Scott & Hamil (1998) 

C6LH0 14.65 75.7 0.62 5.1 5.9 8.3 0.02 35.4 9.7 J 
4a 5.66 82.7 1.52 10.8 11.8 19.7 0 43.0 4.5 CF 
4b 5.66 82.7 1.52 10.8 11.8 19.7 0.09 50.3 5.2 J 
4c 5.66 82.7 1.52 10.8 11.8 19.7 0.16 62.0 6.4 J 
4d 5.66 82.7 1.52 10.8 11.8 19.7 0 54.7 5.7 J 
4e 5.66 82.7 1.52 10.8 11.8 19.7 0.09 58.4 6.1 J 

Paker & Bullman  
(1997) 

4f 5.66 82.7 1.52 10.8 11.8 19.7 0.17 66.7 6.9 J 
U40L 3.52 56.1 1.76 11.0 11.8 15.0 0 57.7 7.5 J 
U20L 3.87 56.1 0.88 11.0 11.8 15.0 0 42.4 5.2 A Kananda et al.  (1984) 
B101 4.63 56.8 1.76 11.0 11.8 15.0 0 78.3 8.8 J 
T-1 4.47 61.6 1.85 9.8 15.7 15.7 0.19 124.5 12.0 BJ Ghobarah & Said  

(2001) T-2 4.47 61.6 1.85 9.8 15.7 15.7 0.10 117.0 11.3 BJ 
Sarsam & Phipps (1985) EX-2 7.61 75.4 0.88 6.1 10.7 12.0 0.13 39.6 7.0 BJ 

Wilson (1998) J1 4.64 75.4 1.04 6.1 11.8 11.8 0.30 57.1 11.7 J 
Woo (2003) Model 5 3.84 55.8 0.44 6.6 6.6 7.9 0 16.8 6.3 BJ 
Liu (2006) RC-1 2.81 46.9 0.66 8.5 9.1 13.0 0 22.8 7.2 BJ 

SP1-NS 3.74 45.7 2.64 13.0 14.0 20 0.02 81.4 7.3 J 
SP1-EW 3.74 45.7 2.64 13.0 14.0 20 0.02 90.4 8.1 J 
SP2-NS 5.02 45.7 2.64 13.0 14.0 20 0.02 91.7 7.1 J Engindeniz (2008) 

SP2-EW 5.02 45.7 2.64 13.0 14.0 20 0.02 96.9 7.5 J 
A0 4.58 84.1 0.22 7.9 7.9 11.8 0.05 18.2 9.9 BJ 
B0 4.58 84.1 0.66 7.9 11.8 11.8 0.05 44.4 7.1 BJ Karayannis et al. (2008) 
C0 4.58 84.1 0.70 7.9 11.8 11.8 0.05 45.9 7.3 BJ 

Gencoğlu & Eren (2002)  RCNH1 4.35 76.1 0.22 4.9 7.9 11.8 0.13 10.9 4.3 BF 
El-Amoury & Ghobara 

(2002) T0 4.44 61.6 1.95 9.8 15.7 15.7 0.20 91.3 8.8 BJ 

C-1 2.83 84.8 0.72 7.9 7.9 11.8 0.06 24.4 7.4 J 
C-2 3.44 84.8 0.72 7.9 7.9 11.8 0.05 24.2 6.7 J Antonopoulos & 

Triantafillou (2003) T-C 3.57 84.8 0.72 7.9 7.9 11.8 0.05 28.1 7.6 J 
Sagbas (2007) ED1 4.51 50.6 3.0 13.5 15 20 0 134.1 9.9 BJ 

*1 As is total area of beam reinforcement in tension 
*2 Failure mode: J = joint shear failure without beam reinforcement yielding, BJ = joint shear failure with beam reinforcement yielding, BF = beam flexural failure,  

CF = column flexural failure, P = pull-out failure, A = anchorage failure 
Note: 1 ksi = 6.90 MPa; 1 kip = 4.45 kN;  1 in. = 25.38 mm 
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2.2 PARAMETRIC STUDY 

In this section, three main parameters, namely (1) joint aspect ratio, (2) beam reinforcement, and 

(3) column axial load, are investigated from the database. These three parameters are selected 

because of their importance in the behavior of unreinforced exterior and corner beam-column 

joints. 

2.2.1 Effect of Joint Aspect Ratio 

The effect of the joint aspect ratio has been investigated experimentally. For the case of a 

reinforced joint, Kim and LaFave (2007) reported that the joint aspect ratio in terms of the total 

beam cross-section height, hb, to the total column cross-section height, hc, i.e., hb/hc, from 1.0 to 

1.6 for exterior joints, had little influence on the joint shear stresses and strains for the case of 

joint failure following beam yielding. Moreover, Kim and LaFave (2007) stated that the increase 

of the joint aspect ratio slightly reduced the joint shear strength for the case of joint shear failure 

without beam reinforcement yielding. Wong (2005) tested unreinforced exterior joints having the 

three joint aspect ratios 1.0, 1.5, and 2.0. These test results showed that the joint strength, 

cj
'

c hbfγ  (lb and inch units), is inversely proportional to the joint aspect ratio, where 

5.0psi7.6=γ  (0.56 MPa0.5) for the high aspect ratio hb/hc=2.0, 5.0psi6.8=γ  (0.71 MPa0.5) for 

the intermediate aspect ratio hb/hc=1.5, and 5.0psi4.12=γ  (1.03 MPa0.5) for the low aspect ratio 

hb/hc=1.0. Bakir and Bouroğlu (2002) and Vollum (1998) made the same observations using 

large data sets of previous test results. Each of these studies developed a separate joint strength 

model including the adverse effect of the joint aspect ratio. 

In the SAT approach, a steeper diagonal strut is developed in the high aspect ratio of a 

joint region if there is no transverse reinforcement in this region because there is no truss 

mechanism. Consequently, the steeper diagonal strut results in less effective shear resistance to 

equilibrate the horizontal joint shear force. Hence, the shear strength of unreinforced exterior 

joints is inversely proportional to its aspect ratio. This trend is supported by the joint database 

presented in this study as shown in Figure 2.4 where the effect of the joint aspect ratio is more 

apparent by selecting the cases of J failure mode. Furthermore, the joint shear strengths by other 
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failure modes do not exceed that by J failure mode except for the pull-out failure and high 

column axial load specimens. 

 

Joint aspect ratio, hb/hc
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Fig. 2.4  Effect of joint aspect ratio. 

2.2.2 Effect of Beam Reinforcement 

According to the ACI Code provisions for beam-column joints (ACI-ASCE 352R-02, 2002), 

joint shear capacity can be determined by the joint types, dimensions, and concrete strength if 

joint details meet the minimum requirements of confinement. However, tests on interior beam-

column joints without joint transverse reinforcement (Walker 2001; and Alire 2002) showed that 

joints failed in shear at different levels of shear stress demand: from 10.9 to 15.7 cj
'

c hbf  (lb)  by 

Walker (2001) and from 8.5 to 25.0 cj
'

c hbf  (lb) by Alire (2002), although all specimens had the 

same geometrical dimensions and column axial load. From these observations, Anderson et al. 

(2008) claimed that joint strength and failure mode depend on joint shear stress demand or the 

amount of beam reinforcement rather than joint shear capacity. A similar observation was made 

in exterior beam-column joint tests by Wong (2005). Two different reinforcement ratios were 

considered in the beam cross section. The test results showed that the specimens having high 

reinforcement ratio experienced joint shear failure without beam reinforcement yielding, while 
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the specimens having low reinforcement ratio experienced ductile behavior followed by joint 

shear failure. Bakir and Bouroğlu (2002) arrived at the conclusion that the normalized joint 

strength is related to the beam reinforcement ratio after investigating the tests by Scott (1992) 

which had three different beam reinforcement ratios. Similarly, the shear strength equation of RC 

beams without stirrups, proposed by Bažant and Yu (2005), includes the reinforcement ratio 

parameter as follows: 

ob

cb
wc dd

f
a
dv

/1
1

'
8/3

+
⎟
⎠
⎞

⎜
⎝
⎛ += ρμ  (2.1) 

where μ is a constant defined by regression, wρ  is the beam longitudinal reinforcement ratio, a 

is the shear span, and do is the size effect parameter. 

In unreinforced joints, the improvement of joint shear strength due to increasing the beam 

reinforcement ratio can be explained as follows: an increase of the beam reinforcement ratio 

must cause an increase in the compression force in the diagonal strut with less loss of bond 

resistance because there is no truss mechanism to transmit horizontal joint shear. This more 

stable bond resistance induces an inclined strut which can carry horizontal joint shear stress. This 

inclined strut will be utilized when developing the analytical model in Chapter 5. From the 

analysis of the database, it is shown that the joint shear strength is approximately linearly 

proportional to the amount of beam reinforcement if beam reinforcement yield strength, yf , and 

geometry are identical; see Figure 2.5. For better understanding, the data of low joint aspect ratio 

( 33.1/89.0 ≤≤ cb hh ) and high joint aspect ratio ( 0.2/4.1 ≤≤ cb hh ) are plotted with different 

symbols in Figure 2.5. It is noted that the following test data marked with open circles in Figure 

2.5 can be excluded from the high joint aspect ratio: (1) six tests by Parker and Bullman (1997) 

whose test results are questionable due to low joint shear strength as discussed by Vollum (1998), 

(2) two tests (C4ALH0 and C6LH0) by Scott and Hamil (1998) due to high joint shear strength 

by using  high strength concrete, and (3) two tests (BS-L-V2T10 and BS-L-V4T10) by Wong 

(2005) due to high joint shear strength by using unusual intermediate column bars. Considering 

the data of low joint aspect ratio, the increase of joint shear strength (y-axis) due to beam 

reinforcement (x-axis) is valid within an approximate range of 4 to 12 of the x-axis in Figure 2.5. 

This range corresponds to where the cases of joint shear failure with beam reinforcement 

yielding (BJ mode) are located. Beyond the value of 12, the joint shear strength does not increase. 

Considering the data of the high joint aspect ratio case, fewer experimental data points are 
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available to analyze compared with those of the low joint aspect ratio case. From these limited 

data points, the joint shear strengths for the same aspect ratio, 5.1/ =cb hh , are compared. The 

minimum joint shear strength is 4.3 cj
'

c hbf  for the beam reinforcement index of 3.6 and 5.4 for 

specimen A0 (Karayannis et al. 2007) and specimen RCNH1 (Gencoğlu and Eren 2002), 

respectively. It is noted that specimen RCNH1 (Gencoğlu and Eren 2002) failed due to the 

widening of beam flexural cracks. The maximum joint shear strength is 8.6 cj
'

c hbf  for the beam 

reinforcement index of 11.0 for specimens BS-L, BS-U, and BS-L-LS from (Wong 2005), where 

beam reinforcements did not yield. Therefore, the maximum joint shear strength for high aspect 

ratio can be assumed to be bounded by the value of 9. Moreover, a similar assumption can be 

made for the high aspect ratio joints as that of the low aspect ratio joints for the range of 4 to 9 

for both the x- and y-axes in Figure 2.5. This assumption will be experimentally investigated in 

future phases of the presented research. 

The non-dimensional parameter reflecting the effect of the amount of beam 

reinforcement is selected as ⎟
⎠
⎞

⎜
⎝
⎛ −

H
h

f

f
hb

A b

c

y

cj

s 85.01
'

 based on the global equilibrium and the joint 

strength normalization, as discussed in the subsequent section. This parameter reflects the joint 

shear demand at the onset of beam reinforcement yielding and beyond yielding if the beam 

reinforcement is assumed elastic-perfectly-plastic (EPP) material. From Figure 2.5, it can be 

stated that joint shear strength is close to joint shear demand within the aforementioned range. 

This observation is similar to that for unreinforced interior beam-column joints (Anderson et al. 

2008). The three approximate values, 12, 9, and 4, shown in Figure 2.5, are explained as follows: 

(1) the value of 12 and 9 are close to the maximum normalized joint shear strength having joint 

aspect ratio, 1.0 and 1.5, respectively, as shown in Figure 2.4, and (2) the value of 4 is coincident 

with the minimum joint shear strength of unreinforced exterior joints suggested by Moehle 

(2008) based on the tests of Hakuto et al. (2000). 
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Note: 1 ksi = 6.90 MPa; 1 kip = 4.45 kN 

Fig. 2.5  Effect of beam reinforcement. 

2.2.3 Effect of Column Axial Load 

The effect of column axial load on beam-column joint strength is not completely known. Some 

researchers, e.g. (Jirsa and Meinheit, 1977; Kurose et al., 1988; Kitayama et al., 1991; 

Pantazopoulou and Bonacci, 1992; Vollum, 1998) conclude that joint strength is influenced little 

by column axial load. On the other hand, some experimental reports, e.g. (Beres et al., 1992; 

Clyde et al., 2000; Pantelides et al., 2002) claim that high axial load on columns increases joint 

strength. In the case of weak column–strong beam design, it is obvious that increasing the 

column axial load up to the balanced point improves the joint shear strength because the column 

moment capacity is positively affected by the axial load. On the other hand, in the case of strong 

column–weak beam design, which is the case of most tests, there have been reports that column 

axial load gives joint shear strength both beneficial and detrimental effects. In summary, for 

column axial load less than gc Af '2.0 , little and unclear influence on the joint shear strength is 

observed as shown in Figure 2.6. Note that ccg bhA =  is the gross area of the column cross section. 
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In the case of higher column axial load, more test data are needed. The positive and negative 

effects are explained briefly in the following paragraphs. 

 

Positive Effects 

From the aspect of the diagonal strut mechanism in the joint region, a compressive diagonal strut 

width is determined by the compression block depth of the column and the beam. The column 

compression block depth is obviously increasing with the increase of the column axial load. Thus 

increasing the column axial load has a positive effect on improving joint strength. Applying 

principal tensile stress as the failure criterion, it is also concluded that high column axial load 

decreases this principal tensile stress and, accordingly, increases joint shear strength. As another 

positive effect, high column axial load improves bond strength between the beam reinforcing 

bars and the surrounding concrete. This leads to increasing joint shear strength because the 

horizontal shear force is transferred into the joint by bond and anchorage of the beam 

reinforcement. 

 

Negative Effects 

Most joint shear failures take place after cracking in the joint panel. The crack width is usually 

transformed into an average principal tensile strain for use in softening a concrete constitutive 

model, such as the Modified Compression Field Theory (MCFT) (Vecchio and Collins 1986). 

Therefore, the crack propagation is accelerated due to the Poisson’s effect as the column axial 

load increases and consequently the joint has less shear strength. Minami and Nishimura (1985) 

reported a similar observation, where the anchorage strength of the hooked bar in the joint region 

increased with column axial load but rapidly deteriorated under high axial load. Considering the 

equilibrium at the strut node, the failure of the diagonal strut can be triggered by the high column 

axial load. P-delta effects and buckling of the column reinforcement lead to further negative 

effects of the column axial load on the joint shear strength. 
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Fig. 2.6  Complex effect of column axial load ratio. 

The principal tensile strain in Equation (2.2), derived by Pantazopoulou and Bonacci 

(1992) has been used to explain the detrimental effect of high column axial load by other 

researchers. 

β
βεε

ε 2

2

1 tan1
tan

−
−

= yx                                                          (2.2) 

where xε  and yε  are the average joint transverse (horizontal) and longitudinal (vertical) strains, 

respectively, and β  is the angle of inclination (from the horizontal axis) of the principal tensile 

joint strain. Note that the positive sign represents the tensile strain in this study. Pantazopoulou 

and Bonacci (1992) concluded that the principal tensile strain, 1ε , increases as the average 

compressive longitudinal strain, yε , increases due to increase of the column axial load. This 

conclusion is based on the assumption that the principal tensile strain direction, i.e., the angle β , 

is fixed while the column axial load increases. However, the shear strain has to significantly 

increase to keep the principal tensile strain direction fixed, which is unacceptable (Fig. 2.7(a)). 

The principal tensile strain seems to change little as the average compressive (negative) 

longitudinal strain, yε , increases if the shear strain increase is not significant considering 
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Equation (2.3a). This is more apparent if the average transverse strain, xε , is assumed to be zero, 

as shown in Equation (2.3b); see Figure 2.7(b). 

( ) 22
1 2

1
2 xyyx

yx γεε
εε

ε +−+
+

=                                                  (2.3a) 
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ε ++=                                                                 (2.3b) 
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Note: εx is assumed to be zero because of negligible axial load in the beam. 

Fig. 2.7  Change of principal strain due to column axial load ratio. 

ε



 

3 Joint Strength Models and Simulations 

Several existing shear strength models are categorized with respect to the type of underlying 

basic concept. Some of these models are selected to perform predictions of tests from the 

database and the given discussion explains the reasons of good and poor predictions. Lastly, 

existing beam-column joint element models for simulation are introduced. In the single spring 

model, it is shown that the relationship of shear stress versus shear strain can be transformed into 

that of moment versus rotation to represent the constitutive behavior of this rotational spring. 

3.1 AVERAGE PLANE STRESS AND STRAIN APPROACH 

3.1.1 Principal Tensile Stress Model 

One approach to assess the shear strength of beam-column joints without joint reinforcement is 

to compare the average principal tensile stress of the joint panel with some critical values 

representing diagonal cracking and shear failure. This approach has been traditionally used by 

many researchers to estimate the concrete shear strength of columns with different limits of 

principal tensile stress. Under the assumption of no axial force in the beam, the principal tensile 

stress is calculated as follows: 
22
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where P is the column axial load (positive for compression), Vjh is the horizontal joint shear 

stress, and Ag is the gross area of the column cross section, i.e., ccg hbA = . 

As shown in Figure 3.1, Priestley (1997) suggested the limit of psi5.3 '
1 cf=σ  

( MPa29.0 '
cf ) for onset of joint shear cracking, and psi0.5 '

1 cf=σ  ( MPa42.0 '
cf ) for 

maximum shear strength of an unreinforced joint. The joint shear strength degradation is also 

considered in terms of joint rotation. Kim and LaFave (2007) collected a large number of test 
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data and observed that the principal tensile stresses of the joint panel are close to 

psi0.4 '
1 cf=σ  ( MPa33.0 '

cf ) at the initiation of diagonal shear cracking. However, the 

principal tensile stress approach may be too conservative because more joint shear can be carried 

by the diagonal compression strut mechanism (Hakuto et al. 2000). Moreover, a high column 

axial load on the joint improves the joint shear strength based on Equation (3.1), which is not 

true, since the column axial load also has a negative effect on the joint shear strength as 

discussed in Section 2.2.3. 

 

 

Fig. 3.1  Principal tensile stress limits (Priestley 1997). 

3.1.2 Pantazopoulou and Bonacci Model 

Pantazopoulou and Bonacci (1992) developed a shear strength model of interior beam-column 

joints based on mechanical considerations, i.e., kinetics, equilibrium, and material constitutive 

relationships, under the assumption that the joint is well confined such that average stress and 

strain values can be used. The average stresses in the transverse direction (x) and longitudinal 

direction (y) satisfy the following relationships, 
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where sρ , bρ , yρ  are the area ratio of transverse reinforcement, beam reinforcement, and column 

reinforcement, respectively; s
xf , b

xf , yf  are the average stress of transverse reinforcement, beam 

reinforcement, and column reinforcement, respectively; xP  is the axial load in the beam; and β  

is zero for perfect bond, while β  is 1 for complete loss of bond resistance. Assuming that the 

concrete tensile strength 1σ  is negligible, the following relationship can be derived using Mohr’s 

circle. 
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where 2σ  is the principal compressive stress and θ  is the angle of inclination of 2σ  from the 

horizontal axis (x). Furthermore, assuming that the direction of principal strain is identical to that 

of principal stress, the stress-strain relationship can be derived from the kinetic relationship, 
1

22

2

22

)()(
tan

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−
−

=
s

x

cs

y

cx

y

E
f

EE
f

E ε
σ

ε
σ

εε
εε

θ  (3.5) 

where 2ε  is the principal compressive strain, xε  and yε  are the average transverse and 

longitudinal strain, respectively, )(εcE  is the secant modulus of concrete as a function of the 

current strain, ε , and sE  is the elastic modulus of reinforcement. Using Equations (3.2)–(3.4) 
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reinforcement in the joint is prior to yielding, the average state of strain is obtained as follows:  
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Pantazopoulou and Bonacci (1992) formulated the relationship between average joint 

shear stress and strain before joint reinforcement yielding. They concluded that the principal 

tensile strain increases with increasing column axial load as well as shear stress based on 

Equation (2.2), which leads to decreasing the compressive strength of the diagonal strut. This 

conclusion has been referred to as evidence of the detrimental effect of column axial load on the 

joint shear strength. However, this conclusion is drawn by the unrealistic assumption that the 

principal direction is not changed regardless of column axial load, as discussed in 2.2.3. 

Pantazopoulou and Bonacci (1992) defined two types of failure without yielding of joint 

reinforcement: (a) column reinforcement yielding and (b) concrete crushing in the principal 

compressive stress direction.  

Case (a): column reinforcement yielding  
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where the yield strength of both joint reinforcement and column reinforcement is assumed to be 

fy. 

Case (b): concrete crushing in the principal compressive stress direction  
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where 'max
cc ff λ=  and 
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, and 0ε  is the concrete compressive (negative) 

strain at the peak compressive stress. 

3.1.3 Tsonos Model 

Tsonos (2007) proposed a new formulation to predict beam-column joint ultimate shear strength 

based on the strut-and-tie mechanism. The main difference of this model from the previous is to 

assume the biaxial concrete strength curve as a fifth-degree polynomial and solve this fifth-order 

polynomial equation. It is assumed that the summation of vertical and horizontal forces equals 

the vertical and horizontal joint shear force as follows: 
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( ) jvsycycy VDD...TTD =+=+++ 21  (3.12) 

( ) jhsxcxxxcx VDDDDD =+=+++ ...21  (3.13) 

where Dcx and Dcy are, respectively, the transverse and the longitudinal components of the 

compression force induced by diagonal strut mechanism, Ti are the tension forces acting on the 

longitudinal column bars in the side faces of the column, and Dix are the transverse component of 

compression force induced by truss mechanism; see Figure 3.2.  

(a) Exterior beam-column joint (b) Diagonal strut mechanism (c) Truss mechanism(a) Exterior beam-column joint (b) Diagonal strut mechanism (c) Truss mechanism  

Fig. 3.2  Equilibrium of exterior beam-column joint (Tsonos 2007). 

The vertical normal compressive stress σ  and the shear stress jhv  uniformly distributed 

over the horizontal joint mid-section are given by 
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The relationship between the average normal compressive stress and the average shear stress is 

defined as follows:  
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where hb is total beam cross-section height, and hc is total column cross-section height. The 

principal compressive and tensile stresses are calculated by 
2

σ
τ
⎟
⎠
⎞

⎜
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⎛+±= 41

222,1
σσσ  (3.16) 
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Equation (3.17) is adopted for the representation of the concrete biaxial strength curve as 

follows: 

110
5

21 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

cc ff
σσ  (3.17) 

where cf  is the increased joint concrete compressive strength due to confinement by transverse 

reinforcement, which is given by the model of Scott et al. (1982) as follows: 

'
c
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+=×= 1  (3.18) 

Let cfγτ =  and using the above equations, one obtains 
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where cb hh /=α . Assuming 
'

cf

γαx
2

=  and 2

41
2 αf

γαψ
'

c

+= , Equation (3.19) becomes 

11010)( 5 =−++ xψψx  (3.20) 

Two terms, x and ψ , can be expressed by the single variable γ  given the aspect ratio 

cb hh /=α . Therefore, the normalized joint shear strength γ  is determined by solving Equation 

(3.20) explicitly.  

3.1.4 Wong Model 

Wong (2005) developed an exterior joint shear strength model, named “Modified Rotating-Angle 

Softened-Truss Model (MRA-STM)”, based on the compatibility equation proposed by him 

modifying three existing softened concrete models, namely (1) modified concrete field theory 

(MCFT), (2) rotating-angle softened truss-model (RA-STM), and (3) fixed-angle softened truss 

model (FA-STM). The effect of aspect ratio is considered by accounting for the effect of the 

shear span to depth ratio as in deep beams. This model is extended to consider the joint shear 

strength degradation in terms of displacement ductility by reducing the effective stress in the 

joint region.  
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Equilibrium 

The total average stress consists of concrete stress and reinforcement stress. The stress states of 

concrete in the joint are expressed by using Mohr’s circle as follows: 

θθθ 2sin
2

,tan,cot 21
11

cc
cxycxyccycxyccx

ffvvffvff −
=−=−=  (3.21) 

where cxf  and cyf  are the average concrete stress in the transverse and the longitudinal 

directions, respectively, 1cf  and 2cf  are the average principal stresses of concrete, cxyv  is the 

average shear stress of concrete, and θ  is the inclination angle of principal compressive stress 

with respect to the transverse direction. 

The constitutive models of the concrete in the directions of principal compressive stress 

and principal tensile stress are defined using the softening concrete model proposed by Belarbi 

and Hsu (1995). For the compression, the stress-strain relationship is defined as follows: 
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where 
11

' 4001
9.0

4001
18.5

cccf εε
ζ

+
≤

+
= , 2cε  is the principal compressive (negative) strain, and 

0ε  is the concrete strain at maximum compressive stress defined as  
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⎞
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⎝
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−−= c

c f
fε (MPa). There is no mention of the cases in 

which concrete strength is less than 20 MPa and greater than 100 MPa. For the tension, the 

stress-strain relationship is defined as follows: 

crcccc Ef εεε ≤= 111 for  (3.23) 
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1
1 for00008.0  (3.24) 

where '3875 cc fE = MPa, 00008.0=crε , and '31.0 ccr ff = MPa. 

Horizontal and vertical effective stresses are defined based on the empirical results of 

shear span to depth ratio in deep beams as follows: 
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where Lv is the span between the horizontal forces, and Lh is the span between the vertical forces 

as shown in Figure 3.3.  

 

Fig. 3.3  Definition of symbols in MRA-STM (Wong 2005). 

To reduce the joint shear strength with increasing ductility, the effective stresses are 

multiplied by a reduction factor as follows: 
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where irp  is the reduced effective stress of the i-th ( 2,1=i ) component ip , and μ  is the 

displacement ductility factor. 

Final equilibrium equations are set up for both the horizontal and vertical directions as 

follows: 
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01 =++ rsxsxcx pff ρ  (3.28) 

02 =++ rsysycy pff ρ  (3.29) 

where sxρ  and syρ  are the area ratio of reinforcement in the x and y directions, respectively, and 

sxf  and syf  are the stress of reinforcement in the x and y directions, respectively. 

 

Compatibility 

The strain state of concrete in the joint is described by the Mohr’s circle as follows: 

( ) 2
21 2cos1

2 c
cc

cx εθεεε +−
−

=  (3.30) 

( ) θεεεε 2cos21 cccxcy −+=  (3.31) 

( ) ( ) θεεθεεγ tan2tan2 12 cxcccycxy −=−=  (3.32) 

where cxε  and cyε  are the average concrete strain in the x and y directions, respectively, 1cε  and 

2cε  are the average principal strains of the concrete, and cxyγ  is the average shear strain of the 

concrete. 

The principal direction of strain is continuously updated once the principal tensile strain 

exceeds the concrete strain at cracking onset, while the principal direction of stress is retained. 

After cracking, the local strains at the cracks are calculated and added to the global average 

strain following the procedure below, 

cmnχcnχ γsΔεsw == and  (3.33) 
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where mxs  and mys  are the mean crack spacing in the x and y directions, respectively, θαβ −=  

where α  is the angle between the crack and the x direction, and α−=χ 90 . 
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Ultimately, the updated strains including local components by cracking are presented as 

follows: 

Δ++= xxwcxx εεεε  (3.39) 

Δ++= yywcyy εεεε  (3.40) 

Δ++= xyxywcxyxy γγγγ  (3.41) 

From the updated strains, maximum stresses in the transverse and the longitudinal directions are 

determined following the assumed softening concrete constitutive model and two equilibrium 

equations, Equations (3.28) and (3.29), are checked. If both equilibriums are not satisfied, all 

procedures are repeated by changing the principal directional angle, θ . Therefore, an extensive 

numerical iteration is required to obtain joint shear strength by this model. The horizontal and 

vertical effective stresses from the analogy of shear span to depth ratio in a deep beam are 

introduced in the equilibrium equation, but it is to be noted that the boundary condition of the 

exterior joints is completely different from that of a deep beam. 

3.2 STRUT AND TIE MECHANISM 

3.2.1 Hwang and Lee Model 

Hwang and Lee (1999) developed a joint shear strength model named “Softened Strut-and-Tie 

(SST) model” to satisfy equilibrium, compatibility, and constitutive laws of cracked reinforced 

concrete. The authors claimed that the SST model showed good agreement with available 

experimental data. The SST model assumes that the joint shear resisting mechanisms are 

composed of these three mechanisms: (1) the diagonal strut mechanism, (2) the horizontal 

mechanism, and (3) the vertical mechanism, as shown in Figure 3.4. 

 

Equilibrium 

θθ cotcos vhjh FFDV ++=  (3.42) 

where D is the compression force in the diagonal strut, Fh is the tension force in the horizontal tie, 

and Fv is the tension force in the vertical tie, and diagonal angle ⎟⎟
⎠

⎞
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⎝

⎛
= −

"

"
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c

b

h
hθ  where ''

bh  is the 

distance between the top and bottom beam reinforcement and ''
ch  is the distance between the tail 
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of the beam reinforcement hook anchorage and the inner side of column reinforcement as shown 

in Figure 3.4. 

 

 

Fig. 3.4  Joint shear resisting mechanisms of SST model (Hwang and Lee 1999). 

The ratios of the horizontal shear Vjh assigned among the three mechanisms are directly defined 

by the diagonal strut angle as follows: 
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where 
3

1tan2 −= θγh and 
3

12cotθγv
−= . The strut angle is limited by 2tan

2
1 ≤≤ θ . The 

fraction of each mechanism depending on the diagonal strut angle is shown in Figure 3.5. The 

maximum compressive stress acting on the nodal zone of the diagonal strut is formulated as 

follows: 
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where Astr is the effective area of the diagonal strut, jsstr bhA = , and  
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and bj is defined following ACI 318-95 (1995). 

 

 

Fig. 3.5  Ratios of force distribution among mechanisms of SST model (Hwang and Lee 
1999). 

Constitutive Laws 

The concrete strength in the diagonal strut follows the softening concrete model by Belarbi and 

Hsu (1995) as follows: 
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(MPa). The SST model defines the joint shear strength as the joint shear at the point where the 

compressive stress and strain of the diagonal strut reach their peaks as follows: 

0
' and εζεζσ == dcd f  (3.49) 

The behavior of the reinforcing steel is assumed to be elastic-perfectly-plastic. Therefore, 

yssss Ef εεε <= for  (3.50) 

ysys ff εε ≥= for  (3.51) 

From the above constitutive relationships, the horizontal and vertical tension tie force is 

determined by  
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ythyhyhhsthh fAFFEAF =≤= andε  (3.52) 

ytvyvyvvstvv fAFFEAF =≤= andε  (3.53) 

where thA  and tvA  are the areas of reinforcement in the horizontal and vertical directions, 

respectively, and hε  and vε  are the average strains in the horizontal and vertical directions, 

respectively. 

 

Compatibility 

The two-dimensional compatibility condition is constructed considering the average strains in 

the joint panel as follows:  

( ) θεεεε 22
21 cot−+= hh  (3.54) 

( ) θεεεε 22
21 tan−+= vv  (3.55) 

An iterative solver is needed to calculate the joint shear strength using the SST model. 

The iterative solver controls a softening coefficient such that this coefficient satisfies both 

equilibrium and compatibility, while other parameters, i.e., joint geometry (actually diagonal 

strut angle), concrete strength, diagonal strut depth, Young’s modulus of reinforcing steel, and 

horizontal and vertical reinforcement ratios, are given as user input values. For unreinforced 

joints, the strain of the beam reinforcement is considered as the horizontal strain hε  in Equation 

(3.54). Similarly, the strain of the column reinforcement in tension is taken as the vertical strain 

vε  in Equation (3.55) if there is no intermediate column bar in the joint. Given the assumptions 

of horizontal and vertical strain in unreinforced joints, this model is not able to predict the joint 

shear failure without beam reinforcement yielding. 

The shear strength of the joint is defined when the compressive stress and strain of the 

concrete diagonal strut reach Equation (3.49). These stress and strain values are dependent on 

each other. Therefore, an iterative procedure is needed to calculate the joint shear strength.  

3.2.2 Ortiz Model 

Ortiz (1993) used the strut-and-tie (SAT) concept to predict the shear strength of exterior beam-

column joints with and without transverse reinforcement. The concrete strength of the diagonal 
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strut is taken as the design strength for cracked concrete proposed by the CEB Model Code 

(1990). The formulation is as follows:  

jve VθD,FD == cossinθ  (3.56) 

cbjhecicve VTVTTPF −=++= ,,,  (3.57) 

)250/1(6.0)/( ''
ccdci ffbwD −== σ  (3.58) 

where P is the column axial load, Tc,i is the tension of the interior column reinforcing bars, Tc,e is 

the tension of the exterior column reinforcing bars, and Tb is the tension of the top beam 

reinforcement (Fig. 3.6). A strut depth is simply assumed to be  

Wwi 45.0=  (3.59) 

where θθ cossin shW c += , ⎟
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= −

jh

ve

V
F1tanθ , and s is the depth to the neutral axis of the beam 

from the extreme compression fiber at the intersection with the column. To determine the joint 

shear strength, Vjh, an iterative solution procedure is needed because W is dependent on both s 

and θ  which are dependent on the applied loading. 
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Fig. 3.6  Free body diagram of joint (Ortiz 1993). 
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3.2.3 Vollum Model 

Vollum (1998) constructed a SAT model for exterior beam-column joints with and without 

transverse reinforcement (Fig. 3.7). The geometry of the top and bottom nodes is defined by the 

section analysis of beam and column under the Bernoulli assumption of a plane section 

remaining plane after bending. From the stress state and experimental observation, this model 

defines the joint shear failure when the maximum diagonal stress at the top node reaches the 

cracked concrete strength. The maximum stress and tensile strain are determined by  
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( ) θεεεε 2
1 cotohh −+=  (3.61) 

where 1ε  and 2ε  are principal tensile and compressive strain, respectively, 0ε  is the maximum 

compressive (negative) strain in the diagonal strut and assumed to be -0.002, and hε  is tensile 

strain in the transverse direction. 

θsin/chk
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Tse

θsin/chk

chk

θsin/chk

chk Tsi

Tse

 

Fig. 3.7  Free body diagram by Vollum (1998). 

Vollum (1998) investigated a coefficient k  (Fig. 3.7) under different levels of column 

axial load using one of the Oritz (1993) test results that failed in joint shear. The value of k is 
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calibrated to be 0.4 under zero axial load as shown in Figure 3.8. Then, two approaches are made 

to simplify the analytical model by: 

 

Approach A 

Two assumptions are made: (1) the column axial load is zero, which means ignoring the column 

load effect and (2) the strut width is taken as θsin/4.0 ch  where θ  can be determined by the 

aspect ratio or the horizontal and vertical shear force ratio. Under these two assumptions, this 

approach finds Tsi required to satisfy the specified strut width of θsin/4.0 ch  by an iterative 

procedure. 

 

Approach B 

All of the forces in the column and beam reinforcements are calculated with increasing column 

axial load by conventional section analysis. This approach adjusts Tsi until the minimum strut 

width is obtained, but it should be kept equal to or greater than θsin/4.0 ch . 

Vollum (1998) indicated that approach B underestimates the joint shear strength at low to 

medium column loads because the resulting strut width is less than required to maintain constant 

joint shear strength. Therefore, approach A is selected due to its simplicity and accuracy for 

estimating the joint failure load.   

 

 

Fig. 3.8  Calibration of coefficient k (Vollum 1998). 
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3.3 SINGLE STRUT MECHANISM 

3.3.1 FEMA 273 Model 

The FEMA 273 (1997) suggests a joint shear stress-strain response envelope with a backbone 

curve. The maximum shear capacity, QCE, is defined as follows: 

jcFEMACE AfΓQ 'λ=  (3.62) 

where FEMAλ = 0.75 for lightweight concrete and 1.0 for normal weight concrete. 

6=Γ  (psi0.5) for exterior joints with 003.0<jρ . 

jρ  is the volumetric ratio of the transverse reinforcement in the joint region. 

Aj is the joint area defined by a joint depth equal to the column dimension in the direction 

of framing and a joint width equal to the smallest of (1) the column width, (2) the beam 

width plus the joint depth, and (3) twice the smaller perpendicular distance from the 

longitudinal axis of the beam to the column side. 

3.3.2 Zhang and Jirsa Model 

Zhang and Jirsa (1982) developed an approach to determine the shear strength and behavior of 

beam-column joints under monotonic and cyclic loading from a large number of published test 

data. This model assumes that the joint shear strength is determined by the failure of a single 

diagonal strut that is affected by several parameters including: the concrete strength, the hinge 

mechanism, the column axial load, the transverse reinforcement ratio, the joint aspect ratio, and 

the existence of lateral beams. The effects of these parameters were derived by a statistical 

approach. The joint strength equation for monotonic loading is given depending on forming 

plastic hinges due to beam reinforcement yielding in the beams adjacent to the joint as follows: 

θγζ cos22'
bcccm aabfKQ +=  for joints without beam hinge (3.63a) 

θγζ cos'
ccc abfK=             for joints with beam hinge (3.63b) 

where K represents the effect of concrete strength such that '' ,1.020.1 cc ffK −=  in (ksi), ζ  

represents the effect of the volumetric transverse reinforcement ratio, sρ ,  as follows:  

06.001.0,20.15.495.0 ≤≤≤+= ss ρρζ  (3.64) 

γ  represents the effect of the lateral beams as follows:  
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Wγ  (3.65) 

where WL is the width of the lateral beam. ac and ab are the depth of the compression zone in 

column and beam, respectively, which are determined considering the effect of column axial 

load. θ  represents the angle of inclined of the strut as follows:  
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The joint strength under cyclic loading was modified from the monotonic loading case by 

adding one parameter η  as follows:  

⎩
⎨
⎧

−
−

==
purposedesignfor0.483.0

valueaveragean as0.40.1
, R

R
QQ mc ηη  (3.67) 

where R is defined as rotation index, 
L

R Δ= , Δ  is total beam end deflection, and L is the length 

from the beam inflection point to the column face. The average value is determined by a 

statistical analysis of literature test data and the design value is the lower limit of those data. 

3.4 EMPIRICAL MODELS 

Several empirical models for the strength of beam-column joints have been suggested by 

researchers in Europe. They extracted some parameters to affect the joint shear strength from 

their tests or from literature and used statistical regression analysis under the assumption that 

each parameter is independent (uncorrelated) from other parameters.  

3.4.1 Sarsam and Phipps Model 

Sarsam and Phipps (1985) proposed the following equation for the design of exterior beam-

column joints under monotonic loading, 
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= ρ  (3.68) 

yvjssd fAV 87.0=  (3.69) 

sdcdud VVV +=  (3.70) 

where fcu is the concrete cube strength (MPa) and cρ  is the column longitudinal reinforcement 

ratio, 
cc

so
c db

A=ρ , where Aso is the area of the layer of steel farthest from the maximum 

compression face in a column (mm2), N is the axial column load (N), Ajs is the total area of the 

transverse reinforcement (mm2) crossing the diagonal plane from corner to corner of the joint 

between the beam compression and tension reinforcement, and fyv is the tensile strength of the 

transverse reinforcement (MPa). 

3.4.2 Taylor Model 

Taylor (1974) employed the deep beam analogy to predict the joint shear strength. The effective 

depth ratio of beam to column in a joint is considered analogous to the shear span to depth ratio 

in a deep beam. The ultimate joint shear strength, uv , is compared with the nominal shear 

strength of a column without stirrups, cv , given in the British Code of Practice CP 110 (1972) by 

using the effective depth ratios in the joints and the following design equation is proposed, 

b

c

c

u

z
d

v
v 23 +=  (3.71) 

where vu is the ultimate joint shear strength, vc is the nominal shear stress, cd is the effective 

depth of column, and bz  is the distance between tension and compression resultant in the beam 

cross section at the column face. The ratio 
b

c

z
d  is analogous to the ratio of shear span to beam 

depth in a deep beam.  

Taylor (1974) also assumed that the column shear is negligible because it is very small 

compared to the joint shear force provided by the beam reinforcement, and finally the total 

design joint shear force is 0.87Asfy. From this assumption, the above equation can be rewritten as 

follows:  
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⎝

⎛
+≤ 23

870
 (3.72) 

3.4.3 Scott et al. Model 

Scott el al. (1994) proposed a model to predict the shear strength of exterior beam-column joints 

based on a single diagonal strut without either horizontal or vertical mechanisms.  

( )colbmbmcolcucrsh zzzzfv ///2 +=  (3.73) 

cccrshcrsh dbvV =  (3.74) 

where fcu is the concrete characteristic strength, colbm zz /  is tanθ  where θ  is the angle between 

the diagonal strut and the horizontal axis. They determined bmz  from a section analysis of a beam 

and defined colz  as the distance between the centers of two outer column bars. Note that the 

subscript crsh  implies crushing of the diagonal strut with 45°. 

3.4.4 Bakir and Boduroğlu Model 

Bakir and Boduroğlu (2002) developed an empirical model based on SI units by regression of 

published test data. Remarkably, this model includes the parameters of the beam reinforcement 

ratio, bbs dbA /100 , and the joint aspect ratio, cb h/h . The total joint shear strength is the sum of: 

(1) concrete contribution using Equation (3.75) and (2) steel contribution using Equation (3.76). 
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 for joints without transverse reinforcement (3.75) 

ysjes fAV α=  (3.76) 

where β  represents the effect of anchorage detail: 0.1=β for anchorage type A (Fig. 2.2) 

                                                                        850.=  for anchorage type C (Fig. 2.2) 

37.1=γ  for inclined bars in the joint and 0.1=γ  for others 

664.0=α  for joints with low amount of transverse reinforcement 

6.0=      for joints with medium amount of transverse reinforcement 
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37.0=    for joints with high amount of transverse reinforcement 

Asb is the total area of beam reinforcement in tension. 

Asje is the total area of the transverse reinforcement in the joint. 

3.4.5 Hegger et al. Model 

Hegger et al. (2003) developed the empirical model in SI units including the parameters of 

column reinforcement ratio and joint aspect ratio. The model is formulated as follows:  

scj VVV +=  (3.77) 

cjc hbCBAV 1α=  (3.78) 

yeffsjs fAV ,2α=  (3.79) 

where 1α  represents the effect of anchorage detail: 95.01 =α  for anchorage type A  

                                                                            85.0=     for anchorage type C  

A represents the effect of aspect ratio: 2/75.0,/3.02.1 ≤≤−= cbcb hhhhA . 

B represents the effect of column reinforcement ratio: 
5.7

5.0
0.1

−
+= colB

ρ
. 

colρ  is the ratio of column longitudinal reinforcement in tension. 

C represents the effect of concrete strength: MPa10020,2 '3 ' ≤≤= cc ffC . 

2α  represents the efficiency of transverse reinforcement according to Table 3.1. 

effsjA ,  is the effective cross section area of transverse reinforcement within the joint 

located outside the compression zone of beam with yield strength yf . 

Table 3.1  Efficiency factor of transverse reinforcement in Hegger et al. (2003). 

Anchorage type* Hairpins Closed stirrups 
Type A 0.7 0.6 
Type C 0.6 0.5 

*Anchorage types are designated in Figure 2.2 
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3.4.6 Vollum Model 

Vollum (1998) developed an empirical strength model based on SI units for exterior beam-

column joints with and without transverse reinforcement. Vollum and Newman (1999) insisted 

that it is not feasible to develop a realistic strut and tie model due to its complexity. The 

difficulties are to define node dimensions and equivalent strut width as well as to calculate 

column bar forces. The following equation is derived and calibrated by published test data, 

[ ] '
ccecbc fhb)/hh(.β.V −+= 2552016420  for joints without transverse reinforcement (3.80) 

( )[ ] [ ]
'

'

33.1

)/2(552.0197

cce

cbccecysj
'

ccecj

fhb

hhfhb0.V,fAfhbαVmaxV

≤

−+≤+−=
 

 for joints with transverse reinforcement (3.81) 

where β  represents the effect of anchorage detail: 0.1=β for anchorage type A (Fig. 2.2) 

                                                                                   9.0=   for anchorage type C (Fig. 2.2) 

α  represents the effect of column axial load and concrete strength taken as 2.0=α . 

Asj is the cross-sectional area of the joint stirrups within the top two thirds of the beam 

depth below the main beam reinforcement. 

3.5 SHEAR STRENGTH DEGRADATION 

Joint shear failure modes are mainly divided into two types: (1) joint shear failure without beam 

reinforcement yielding (J) and (2) joint shear failure with beam reinforcement yielding (BJ) as 

discussed in Chapter 2. The joint shear strength of the BJ failure mode is less than that of the J 

failure mode due to lower beam reinforcement ratio. To obtain the reduced shear strength of the 

BJ failure mode, three modification methods are adopted in the existing models.  

3.5.1 Modification of Strength Factor 

Park (1997) proposed the simple linear degradation model of joint shear strength normalized by 

'
cf  in terms of curvature ductility in the beam plastic hinges at the faces of the column (Fig. 

3.9). 
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Fig. 3.9  Shear strength degradation by curvature ductility (Park 1997). 

Hakuto et al. (2000) suggested the degradation curve of joint shear strength in terms of 

the displacement ductility for joints without transverse reinforcement in which only a diagonal 

strut mechanism exists. The maximum horizontal joint shear stress ratio, '/ cjh fv , is 0.17 at a 

displacement ductility factor μ  of 1 and the minimum horizontal shear stress ratio is 0.05 at μ  

of 8 (Fig. 3.10). The joints having shear demand less than the minimum value do not experience 

shear failure, and beam flexural hinges are developed. 

 

Fig. 3.10  Shear strength degradation by displacement ductility (Hakuto et al. 2000). 

Wong (2005) used a similar approach in the MRA-STM that he developed. The effective 

horizontal stresses in equilibrium equations, Eqs. (3.28) and (3.29), are reduced by the reduction 

factor R which depends on the ductility level as shown Equation (3.27). 
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3.5.2 Modification of Diagonal Strut Width 

Zhang and Jirsa (1982) used two different diagonal strut width equations, Equation (3.63a) and 

(3.63b), depending on the occurrence of a beam hinge mechanism. The diagonal strut width of 

the joint with a beam hinge mechanism is less than that of a joint without one and thus the joint 

shear strength of the former is also less than that of the latter. However, it is not simple to define 

the occurrence of a beam hinge mechanism. and this approach does not consider the ductility as a 

variable parameter. 

Hwang (2001) modified his SST model to add a ductility parameter in the equation to 

determine the strut width, sa , as follows: 

( )
3

12222 −×−+−+= μ
ccbcbs aaaaaa  (3.82) 

where ba is the compression block in the beam section at the column joint face, assuming 

bb ha 2.0= , ca is the compression block in the column section at the beam joint face, assuming 

c
gc

c h
Af

Pa ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= '85.025.0 , and μ  is the displacement ductility factor. As the ductility increases, 

the width of diagonal strut decreases and the joint shear strength also decreases. 

3.6 JOINT ELEMENT MODEL FOR RC FRAME SIMULATION 

There have been several attempts to simulate RC frames by including the deformation of beam-

column joints. Due to the inherent complex behavior of RC beam-column joints, rotational 

spring elements have been used to simply represent the shear deformation of the joint panel 

combined with the rotation due to bar slip. Theiss (2005), and Celik and Ellingwood (2008) 

summarized the published analytical models (Fig. 3.11). 

 

Alath and Kunnath (1995), Figure 3.11(a) 

• Zero length rotational spring and rigid links to represent joint panel geometry 

• Flexibility of rotational spring is determined by empirical joint shear stress-strain 

relationship  

• Including hysterical degradation  
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Biddah and Ghobarah (1999), Figure 3.11(b) 

• Zero length rotational springs to consider separately joint shear deformation and bond-

slip deformations 

• In an interior joint, two rotational springs for bond-slip deformation and one spring for 

joint shear deformation. In an exterior joint, one rotational spring for bond-slip 

deformation and the other for joint shear deformation.  

• Shear stress-strain relationship of a joint is defined as a trilinear idealization based on the 

softening truss model (Hsu 1988).  

• The cyclic behavior included hysteretic degradation without pinching effect. 

• The bond-slip relationship was idealized with a bilinear model and cyclic pinching effect. 

 

Youssef and Ghobarah (2001), Figure 3.11(c) 

• Twelve translational zero length springs located at all four side interfaces between join 

panel and beam or column to simulate inelastic behaviors (e.g., bond slip and concrete 

crushing) 

• Two elastic diagonal springs to simulate joint shear deformation 

 

Lowes and Altoontash (2003) and Mitra and Lowes (2007), Figure 3.11(d)   

• In each side, two 1D-springs for bar slip and one spring for shear at the interface, totaling 

twelve springs between external nodes and internal nodes in the interior joint  

• One rotational spring for joint shear distortion 

Thirteen springs are needed for an internal joint, while ten springs are needed for an external 

joint. 

• Lowes and Altoontash (2003) model used the modified compression field theory (MCFT) 

(Vecchio and Collins 1986) to derive the constitutive relationship of the joint panel.  

• Mitra and Lowes (2007) model derived empirically diagonal concrete strut strength with 

the concept of confinement effect of transverse hoop suggested by Mander et al. (1988). 

• “beamColumnJoint” element object in OpenSees represents the model by Mitra and 

Lowes (2007).  
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Altoontash and Deierlein (2003), Figure 3.11(e) 

• Simplification of the model by Lowes and Altoontash (2003): one rotational spring for 

beam end rotation due to bar slip per each side   

• One rotational spring for joint panel distortion 

• Constitutive relationship of joint panel is still using MCFT (Vecchio and Collins 1986). 

• “Joint2D” element object in OpenSees 

 

Shin and LaFave (2004), Figure 3.11(f) 

• Assemble four rigid elements by hinge to represent the joint panel, and one rotational 

spring is located on one of four hinges.  

• Two rotational springs (in series) are located between the beam and the joint to represent 

beam end rotations due to bar slip and plastic hinge rotation. 

 

(a) (b) (c)

(d) (e) (f)  

Fig. 3.11  Existing simulation models for beam-column joints (Celik and Elingwood 2008): 
(a) Alath and Kunnath (1995), (b) Bidda and Ghobara (1999), (c) Youssef and 
Ghobarah (2001), (d) Lowes and Altoontash (2003), (e) Altootash and Deierlein 
(2003), and (f) Shin and LaFave (2004). 
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Multi-spring models in the above, except for Alath and Kunnath (1995), are intended to 

simulate more realistic behavior of beam-column joints but need significant calibration per each 

spring based on test data. Even though the springs are calibrated from some test data, they do not 

ensure the accuracy of the analysis for other test results. Multi-spring models also have a high 

possibility of causing numerical divergence during frame analysis. Thus, a single rotational 

spring with a rigid panel to represent the joint geometry is adopted by Celik and Elingwood 

(2008), Theiss (2005), and Pampanin et al. (2003). Hertanto (2005) used the same concept but 

split one spring into two springs with identical properties, half of the joint strength and stiffness. 

In the single spring models, a bar slip element can be added separately to the column face. 

The moment-rotation backbone relationship of the rotational springs is calculated from 

the backbone shear stress-strain relationship of the joints once the dimensions of frame and joint 

are known, Figure 3.12. 

λτ jjhj AM =  ,    ( ) cbc LjdLh αλ −−= 1  (3.83) 

jj γθ =   (3.84) 

where jM  is the moment, jhτ  is the shear stress, jA  is the joint area, i.e., jcj bhA ×= , jb  is the 

width of the joint panel, i.e., ( )cbj bbb += 5.0 , bL  is the total length of the left and right beams, 

cL  is the total length of the top and bottom columns, jd  is the distance between the top and 

bottom reinforcements of the beam, α  is a constant which is equal to 2 for the top floor joints 

and 1 for the others, jθ  is the joint rotation, and jγ  is the shear strain of the joint.  

To define the backbone curve for the shear stress-strain relationship of the joints, Celik 

and Elingwood (2008) adopted the Pinching4 material object available in OpenSees (Fig. 

3.13(a)). They defined the key points of the envelope based on the available test data. Hertanto 

(2005) used the hysteresis model with pinching behavior proposed by Pampanin et al. (2003) 

(Fig. 3.13(b)). The yielding point of the envelope is determined by the principal tensile stress 

limit proposed by Priestley (1997). For practicality, a single spring model is planned for 

analyzing the prototype buildings in this study. 
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Fig. 3.12  Interior joint: (a) Global equilibrium and (b) Joint free body diagram (Celik and 
Elingwood 2008). 

  
(a) (b) 

Fig. 3.13  Backbone curves of joint behavior: (a) Pinching4 from OpenSees used in Celik 
and Elingwood (2008), and (b) Proposed by Pampanin et al. (2003). 



 

4 Semi-Empirical Shear Strength Model 

4.1 DEVELOPMENT OF SEMI-EMPIRICAL MODEL 

In this section, the shear strength model is developed by mechanistic and statistical approaches. 

Two parameters, the joint aspect ratio and the beam reinforcement index, are selected to derive 

the shear strength equation, while the effect of column axial load is ignored due to the reasons 

mentioned in the previous section. The joint shear strength is assumed to be proportional to the 

square root of the concrete standard compressive strength. 

4.1.1 Joint Aspect Ratio Parameter 

Assuming that a single diagonal strut (FEMA 273, 1997; Zhang and Jirsa 1982) resists all the 

horizontal shear force in the joint panel (Fig. 4.1), the equilibrium equation is derived as follows: 

θcos0 DcVjh = ,   ( )cb hh /tan 1−=θ   and  sjd hbD σ=                        (4.1) 

where 0c  is a constant to be determined from experimental data, and D is the compressive force 

in the diagonal strut with dσ  as its average compressive stress and hs is its width (Fig. 4.1). To 

express the joint shear strength in terms of '
cf , the softening concrete model suggested by 

Vollum (1998) is adopted to develop a relevant model for the concrete panel of unreinforced 

joints. Vollum (1998) modified the strain-softening concrete model of Collins et al. (1996) as  

1

'
1

1708.0 ε
σ

+
= c

d

fa
                                                  (4.2) 

where a1 is a constant with values of 71.3 (psi units) and 5.92 (MPa units). 

To determine 1ε , the strain compatibility equations in an average sense have been 

adopted in most of the existing analytical models. More simply, the direction of 1ε  is 
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approximated as orthogonal to the assumed diagonal strut (Vollum 1998, Hwang and Lee 1999) 

and the principal tensile strain is accordingly calculated as follows: 

( ) θεεεε 2
1 cotdxx −+=                                                     (4.3a) 

( ) θεεεε 2
1 tandyy −+=                                                     (4.3b) 

where xε is the horizontal tensile (positive) strain, yε  is the vertical tensile (positive) strain, and 

dε  is the compressive (negative) strain in the diagonal strut. 
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Fig. 4.1  Single diagonal strut mechanism. 

The above compatibility equations are derived from the continuum element and extended 

to the membrane element having longitudinal and transverse reinforcement. In the membrane 

element, the angle θ  is determined from the strains of the longitudinal and transverse 

reinforcement and thus the principal tensile strain is the same from these two equations. 

However, these strain compatibility equations are not applicable in the same way to unreinforced 

beam-column joints for two reasons: (1) there is no longitudinal and transverse reinforcement 

and (2) the angle, θ , is defined by the given joint geometry. Furthermore, Equation (4.3a) gives 

smaller principal tensile strain, i.e., larger joint strength, as the joint aspect ratio, 

)/(tan 1
cb hh−=θ , increases, which is opposite to the observation from the database (Fig. 2.4). 
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The softening SAT model by Hwang and Lee (1999) takes the vertical strain as the tensile yield 

strain of column reinforcement to calculate the principal tensile strain by Equation (4.3b). 

Contrarily, this strain is compressive in the nodal zones of the diagonal strut as shown in Figure 

4.1. Moreover, the assumed yield strain is not realistic if the reinforcement does not yield. 

Therefore, one concludes that Equations (4.3a) and (4.3b) are not suitable for calculating the 

principal tensile strain of unreinforced beam-column joints. 

In this study, the principal tensile strain at the joint shear failure is determined by 

comparing the concrete strength calculated by Equation (4.2) with that of the nodal zone 

suggested by previous researchers and current codes. From the observations of published 

experiments, the joint shear failure in most of the tests was initiated adjacent to the top node 

when the beam top reinforcement was in tension (Vollum 1998), C-C-T node in Figure 4.1. This 

behavior is confirmed by the test observation that the transverse reinforcement at the 90° hook 

is effective in increasing the anchorage strength of beam reinforcement (Minami and Nishimura 

1985), which results in increasing the strength of the C-C-T node. It is noted that the top node is 

considered as a node anchoring only one tie, i.e. C-C-T node. The strength reduction factors for a 

C-C-T node in the literature and codes are compared in Table 4.1, where code safety factors are 

excluded for proper comparison. Figure 4.2 shows that the principal tensile strain can be 

considered to have a reasonable value of 0.0035 using Equation (4.2) in comparison with 

different strength reduction factors in Table 4.1 for concrete strength ranging from 3 ksi to 7 ksi 

(20.7 MPa to 48.3 MPa). As shown in Table 4.2, this selected principal tensile strain at joint 

shear failure is justified using the experimental data (mean value plus about one-half standard 

deviation) and based on Equation (2.3b) with 0=yε . 
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Table 4.1  Strength reduction factor for a C-C-T node. 

 Reference η  where '
cnode,c ff η=  

(a) Collins and Mitchell (1986) 0.75 
(b) Schlaich and Schäfer (1991) 0.68 
(c) MacGregor (1997) 185.0 η , '

21 /55.0 cfηη += *1 

(d) Jirsa et al. (1991) 0.80 
(e) ACI-318-08 Appendix A (2008) 0.68 
(f) AASHTO (1996) 0.75 
(g) CEB-FIP 1990 (1993) )/1(60.0 3

' ηcf− *2 

(h) DD ENV 1992-1-1 (1992) 0.70 
(i) CAN A23.3M94 (1994) 0.75 
(j) NZS 3101: Part 2 (1995) 0.55 

*1 152 =η for '
cf psi0.5,  = 25.1  for '

cf MPa0.5 

*2 362503 =η  for '
cf  psi, = 250  for '

cf  MPa. 
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Fig. 4.2  Comparison of strength reduction factors at C-C-T node (see Table 4.1 for (a)–(j) 
designation). 
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Table 4.2  Measured joint shear strain and approximation of principal tensile strain. 

Specimen hb/hc cg fAP ′/  Shear strain, xyγ  xyγε 21 ≈  

Clyde*1-#2 0.89 0.1 7.18× 10-3 3.59 × 10-3 
Clyde*1-#6 0.89 0.1 4.81× 10-3 2.41 × 10-3 
Clyde*1-#4 0.89 0.25 8.45× 10-3 4.23 × 10-3 
Clyde*1-#5 0.89 0.25 4.84× 10-3 2.42 × 10-3 

Pantelides*2-#3 1.0 0.1 8.08× 10-3 4.04 × 10-3 
Pantelides*2-#4 1.0 0.25 4.73× 10-3 2.37 × 10-3 
Pantelides*2-#5 1.0 0.1 6.10× 10-3 3.05 × 10-3 
Pantelides*2-#6 1.0 0.25 6.54× 10-3 3.27 × 10-3 

Mean 3.17 × 10-3 
Standard Deviation 0.69 × 10-3 

*1 from Clyde et al. (2000) 
*2 from Pantelides et al. (2002) 

 

The horizontal length of the C-C-T node (Fig. 4.1) is expressed using the constant k as 

follows: 

cs khh =θsin , 
( ) c

b

bc
h
h

hh
∝

+
=

2/1

1sinθ                                   (4.4) 

Substituting Equations (4.2) and (4.4) into Equation (4.1) and normalizing, the equilibrium 

equation becomes 

( ) θ
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fhb

V
'

ccj

jh cos
sin1708.0 1

1
1

⎭
⎬
⎫

⎩
⎨
⎧

+
=

θε
                                       (4.5) 

where kcc 01 =  is a constant to be determined from the experimental data. The terms in the brace 

reflect the strength of the C-C-T nodal zone, and θsin  in the denominator provides the adverse 

effect of the joint aspect ratio; see Equation (4.4). It is worth mentioning that θsin  remains in 

the brace separated from θcos  because θsin  is related to the size of nodal zone, while θcos  is 

related to the equilibrium in the joint. 

For simplicity, it is assumed that the adverse effect of the joint aspect ratio in the nodal 

zone is included by increasing the average principal tensile strain linearly with the joint aspect 

ratio without changing the nodal zone size. Therefore, one obtains the following approximation: 
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Substituting Equation (4.6) into Equation (4.5) and combining the two constants 1a  and 1c , 

Equation (4.5) becomes 

c

b'
ccj

jh

h
h 

a
fhb

V

085.031.1

θcos
2

+
=                                  (4.7) 

where 2a  is determined from the database. 2a ≈23 (psi units) or 1.91 (MPa units) for the upper 

limit from (Pantelides et al. 2002), 711.=γ , and 2a ≈10 (psi units) or 0.83 (MPa units) for the 

lower limit from the database, 0.5=γ  at the joint aspect ratio of 1.0, i.e. 4/πθ = . The values of 

23 and 10 are obtained by rounding off 23.1 and 9.9, respectively. Equation (4.7) is compared 

with the database for 2.2/8.0 ≤≤ cb hh  in Figure 4.3, where it is shown that Equation (4.7) 

accurately represents the trend for the effect of the aspect ratio from the database. 
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Fig. 4.3  Comparison of proposed joint aspect ratio equation with database. 
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4.1.2 Beam Reinforcement Ratio Parameter 

From Figure 4.4, the global equilibrium equation is presented as follows 

bssbb jdfALVM ×=×=                                                     (4.8) 

b
c

c V
H
hLV 2/+=                                                     (4.9) 

where Vb and Vc are the beam and column shear forces, respectively, L is the length from the 

beam inflection point to the column face, H is the height between upper and lower column 

inflection points, As and fs are the area and stress of the beam reinforcement in tension, 

respectively, db is the effective depth of the beam, and jdb indicates the internal moment arm of 

the beam cross section at the column face. Accordingly, the horizontal shear force of the joint 

panel is calculated as follows: 

⎟
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⎜
⎝
⎛ +−=−=

L
jd

H
hLfAVfAV bc

sscssjh
2/1                                  (4.10) 

It is assumed that the beam reinforcement ratio affects the joint shear strength only in the 

case of joint shear failure with beam reinforcement yielding. This assumption is based on the fact 

that the joint shear strength does not increase with increasing the amount of beam reinforcement 

once the joint shear demand exceeds the maximum joint strength as mentioned in the preceding 

section (Fig. 2.5). Therefore, ys ff =  can be used in Equation (4.10) assuming that the material 

of the beam reinforcement is elastic-perfectly-plastic (EPP). Dividing Equation (4.10) by 

'
ccj fhb , the following equation is obtained, 
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Approximation can be made as follows: 

bb hjd 8.0=                                                     (4.12a) 
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Finally, Equation (4.11) can be simply rewritten as 
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Fig. 4.4  Global free body diagram of exterior beam-column joint. 

Based on the above equation, a non-dimensional parameter, referred to as the beam 

reinforcement index, is defined as ⎟
⎠
⎞

⎜
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⎛ −
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ys 85.01
'

 in this study. This parameter directly 

represents the joint shear demand at the onset of beam reinforcement yielding. 

4.1.3 Semi-Empirical Shear Strength Model 

To develop a semi-empirical model, two basic concepts are assumed as follows: (1) maximum 

and minimum joint shear strengths are affected by the joint aspect ratio without regard to the 

beam reinforcement index and (2) joint shear strength is linearly proportional to the beam 

reinforcement index between maximum and minimum joint shear strengths. In the first 

assumption, the maximum and minimum joint shear strengths' dependency on the joint aspect 

ratio is justified by the plots of Equation (4.7) on Figure 4.3. The second assumption is based on 

the observation of low joint aspect ratio data from the database in Figure 2.5. For the case of high 

joint aspect ratio, the same assumption is also made in this study based on the discussion in 

Chapter 2 related to Figure 2.5 and utilizing the observation that the joint aspect ratio affects the 

equilibrium and nodal zone strength as discussed in the preceding section. 

When the beam reinforcement index causes the joint strength to be between the 

maximum and minimum strengths determined based on the given joint geometry, concrete 
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strength and joint aspect ratio, the joint shear strength is equal to the beam reinforcement index 

multiplied by an over-strength factor 0.1≥Φ . This factor considers the fact that the tensile stress 

of the beam reinforcement in the BJ failure mode is greater than the yield strength, i.e. ys ff > , 

due to strain hardening of the beam reinforcement. The overstrength factor is larger for smaller 

beam reinforcement index due to the expected larger plastic strain. For simplicity, Φ  is assumed 

to be 1.25, i.e. ys ff 25.1= , at the minimum joint shear strength and decreases linearly to 

0.1=Φ , i.e. ys ff =  at the maximum joint shear strength, Figure 4.5. Finally, the shear strength 

equation is proposed as 
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where amin is 10 in (lb and in. units)  and 0.83 in (N and mm units]) and amax is 23 in (lb and in. 

units)  and 1.91 in (N and mm units).  
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Fig. 4.5  Illustration of proposed semi-empirical model. 
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The procedure to predict the joint shear strength using the proposed model is summarized as 

follows: 

1. Input the joint geometry, concrete strength, and joint aspect ratio. 

2. Determine the minimum (Ymin) and maximum (Ymax) joint shear strengths as shown in 

Figure 4.5. 

3. Calculate the beam reinforcement index by Equation. (4.13) 

4. Check if the calculated beam reinforcement index is located between X1 and X2. If so, 

interpolate the corresponding overstrength as shown in Figure 4.5. 

5. Calculate the joint shear strength by Equation (4.14a) and (4.14b) 

4.2 EVALUATION OF THE SEMI-EMPIRICAL MODEL 

To verify the proposed shear strength model, the shear strength of exterior joints from the 

database is evaluated. The accuracy of the proposed model is compared with that of five existing 

strength models proposed by Vollum (1998), Hwang and Lee (1999), Bakir and Boduroğlu 

(2002), Hegger et al. (2003), and Tsonos (2007) in Figure 4.6. The proposed model predicts the 

joint shear strengths of the database with a mean value of 0.97 for the ratio between the test 

results and model predictions and a corresponding coefficient of variation (COV) of 16% as 

shown in Figure 4.6(a). When the six tests by Parker and Bullman (1997) are excluded, the 

accuracy of the proposed model is improved to a mean value of 0.99 for this ratio and a 

corresponding COV of 14%. 

The model by Vollum (1998) includes the detrimental effect of the joint aspect ratio but 

this model does not consider the change of the joint shear strength with the variation of beam 

reinforcement. Due to the lack of the effect of beam reinforcement, this model overestimates the 

joint shear strength of specimens showing the BJ failure mode, while it shows accurate 

predictions of specimens with joint shear strength for the J failure mode where the joint shear 

strength is little influenced by the beam reinforcement. The evaluation results using this model 

are shown in Figure 4.6(b). 

In the model by Hwang and Lee (1999), the following formula is used to determine the 

width of the diagonal strut, 

c
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                                 (4.15) 
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Hwang and Lee (1999) originally developed their model for reinforced joints and assumed its 

extension to unreinforced joints. However, this model is not applicable to unreinforced joints for 

the following reasons: (1) the average strain compatibility equations do not reflect the real 

deformation as previously discussed; (2) intermediate column bars may not develop the inclined 

strut due to its steep angle; (3) it is assumed that the beam and the column reinforcements are 

yielding regardless of the joint shear failure mode; (4) only beneficial effects of column axial 

load on joint shear strength are included; and (5) this model highly depends on the estimate of 

the diagonal strut width (Hwang and Lee, 2002). The evaluation results using this model are 

shown in Figure 4.6(c). 

Bakir and Boduroğlu (2002) developed an empirical model by regression of published 

test data. The model includes the parameters of the beam reinforcement ratio, bbs dbA /100 , and 

the joint aspect ratio, cb hh / . The evaluation results (Fig. 4.6(d)) show good correlation with test 

data due to the inclusion of the beam reinforcement ratio. However, the defect of this model is 

that the exponential parameter including the beam reinforcement ratio in the model is obtained 

with its exponent value of 0.4289, which is less than 1.0, by a statistical approach with a 

relatively small data set. 

Hegger et al. (2003) developed an empirical model including the parameters of column 

reinforcement ratio and joint aspect ratio. The evaluation results (Fig. 4.6(e)) show consistent 

overestimation of the joint shear strength. From the overestimation of joint shear strength by this 

model, it is concluded that the column reinforcement ratio may not be an influencing parameter 

to predict the shear strength of unreinforced joints as assumed in the presented semi-empirical 

model. 

The model by Tsonos (2007) overestimates the unreinforced joint shear strength and this 

overestimation results from the use of the overly simplified average stress equilibrium equation 

and the increase of joint shear strength with increasing joint aspect ratio, which is in 

contradiction with the observation from the database. The evaluation results using this model are 

shown in Figure 4.6(f). 

From the above validation, the proposed semi-empirical model is shown to be accurate 

and consistent compared with existing models and using a large experimental data set. This 

model can be easily implemented in many existing nonlinear structural analysis programs to 

evaluate the seismic response of non-ductile RC frames with unreinforced beam-column joints. 
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Fig. 4.6  Comparison of evaluation results: (a) Proposed model, (b) Vollum (1998), (c) 
Hwang and Lee (1999), (d) Bakir and Boduroğlu (2002), (e) Hegger et al. 
(2003), and (f) Tsonos (2007). 



 

 

5 Analytical Shear Strength Model  

5.1 BACKGROUND  

There have been many analytical studies to better assess the shear strength of unreinforced 

concrete beam-column joints. As a result, several analytical models have been developed based 

on the average stress assumption or the strut-and-tie (SAT) approach with the average strain 

compatibility. As discussed in chapter 3, Priestley (1997) proposed a limit for the average 

principal tensile stress in the joint panel to predict the joint shear failure, and Tsonos (2007) used 

a fifth-order polynomial for the concrete failure surface with the average principal compressive 

and tensile stresses to calculate the joint shear strength. Hwang and Lee (1999) and Vollum 

(1998) developed shear strength models based on the SAT approach. Wong (2005) developed an 

exterior joint shear strength model with the modified rotating-angle softened-truss model 

accounting for the effect of shear span to depth ratio as in deep beams. 

The average principal stresses and strain compatibility equation using beam and column 

longitudinal reinforcement strains are not able to reflect the realistic behavior of unreinforced 

exterior beam-column joints where the joint shear failure is localized. In other words, the tensile 

strains of beam and column reinforcements cannot represent the strain within the joint panel. 

Moreover, the SAT approach faces the critical issue of estimating the diagonal strut area because 

the joint shear strength is very sensitive to this estimated area (Hwang and Lee 2002). 

From the literature review, the analytical joint strength model developed in this study is 

motivated by the following observations. First, it is reported that the unreinforced exterior joints 

having the same concrete strength and geometry fail in shear at different levels of joint shear 

stress demand with changing beam reinforcement ratio. This is an interesting observation 

considering that the unreinforced exterior joint resembles an unconfined concrete rectangular 

cuboid with seemingly unique strength. Second, to obtain the reduced shear strength of 

unreinforced exterior joints for joint shear failure following beam reinforcement yielding, three 
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modification methods are adopted in the existing models: (1) directly reducing the joint shear 

strength by a ductility factor (Park 1997; Hakuto et al. 2000), (2) reducing the area of diagonal 

strut by a ductility factor (Hwang et al. 2001), and (3) reducing the applied joint shear force in 

the average joint stress equilibrium equation by a ductility factor (Wong 2005). The relationship 

between the reduction of joint shear strength and the ductility factor are proposed empirically in 

each model. The ductility factor can be defined in different ways and it includes the deformation 

of other members in addition to the joint distortion. Therefore, the empirically proposed 

relationships are not possible to generalize to other cases. Moreover, all three modification 

methods require monitoring the ductility factor during the analysis of the specimen or the frame, 

which means that it is impossible to predict the joint shear strength before analyzing the whole 

frame. 

The newly proposed analytical approach to predict the joint shear strength in this paper is 

intended to fulfill the following objectives: 

1. Two types of joint shear failure, which are joint shear failure without beam reinforcement 

yielding (J mode) and with beam reinforcement yielding (BJ mode), are considered. A 

consistent procedure is followed for both failure modes without including a ductility 

factor. 

2. Two parameters affecting the shear strength of unreinforced beam-column joints are 

included: the joint aspect ratio and the beam reinforcement ratio. The second parameter is 

related to the bond distribution of beam reinforcement in the joint and the failure mode 

type, i.e., J or BJ. 

3. The new approach does not require the estimation of the diagonal strut area, Astr. 

4. The new approach can establish the envelope of the shear stress-strain relationship that 

can be transformed to the moment-rotation relationship of a rotational spring representing 

the joint region. This objective is essential to simulate the joints in structural analysis of 

frames. 

5.2 DEVELOPMENT OF ANALYTICAL MODEL  

5.2.1 Assumptions 

In the proposed model, two inclined struts are first assumed to resist the horizontal joint shear in 

a parallel system (Fig. 5.1). The major diagonal strut (ST1) is developed by the 90o hook of beam 
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reinforcement, while the minor inclined strut (ST2) is developed by the bond resistance of the 

concrete surrounding the beam reinforcement. In unreinforced joints, ST2 has generally been 

ignored. However, tests by Wong (2005) having the detail of beam reinforcement bent outside 

the joint region show that ST2 has a considerable contribution to resisting the joint shear force 

compared to those with bent inside the joint region; see Figure 5.2. This contribution is also 

inferred from the crack patterns of the joint panels, e.g., the contribution of strut ST2 appears to 

be significant in the case of the J failure mode due to the high beam reinforcement ratio leading 

to distribution of cracks over the whole joint panel. Crack patterns for two types of failure modes 

are illustrated in Figure 5.3. Presumably, the fraction of each strut can be determined by the level 

of beam reinforcement tensile stress which is related to the bond resistance, as discussed later in 

this paper. 
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Fig. 5.1  Two inclined struts in unreinforced exterior joints. 
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(a) Beam reinforcement bent inside the joint

(b) Beam reinforcement bent outside the joint  

Fig. 5.2  Tests of joint with different beam reinforcement anchorage details (Wong 2005). 

 

(a) J failure [Ortiz, 1993] (b) BJ failure [Wong, 2005]  

Fig. 5.3  Crack patterns of two types of joint failure. 
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The second assumption is that the joint shear failures are initiated adjacent to the top 

node of ST1 under the loading condition of top beam longitudinal reinforcement in tension 

(Vollum 1998). This assumption is made for two reasons: (1) the top node is considered as a 

node anchoring one tie, i.e., C-C-T node and (2) the crack width is greatest at the top node. This 

assumption is justified by the test results that the beam bar anchorage strength is increased by the 

transverse reinforcement at the bent portion (Minami and Nishimura 1985). Hence, the joint 

shear failure is defined when the concrete stress of the C-C-T node in ST1 reaches its peak in a 

softening concrete constitutive model. 

The third assumption is that the proposed model uses the softening concrete model 

suggested by Vollum (1998) but the principal tensile strain at the point of joint shear failure is 

not determined by the average strain compatibility equation. Instead, the following principal 

tensile strain equation proposed in Chapter 4 is adopted for developing this analytical model. 
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where hb is the height of the beam cross section, and hc is the height of the column cross section 

in the loading direction. Furthermore, the shear strain xyγ  can be determined from the pre-

defined principal tensile strain by 
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1
2 xyy

y γε
ε

ε ++=                                                     (5.2) 

where yε  is the compressive (negative) strain from the column in the vertical, y, direction. 

Equation (5.2) indicates that the shear strain increases with increasing the compressive strain in 

the column, i.e., the shear strain in the high column axial load is greater than that in the low 

column axial load, under the assumption that the principal tensile strain is fixed. However, the 

increase of joint shear strain with increasing column axial load is not significant compared to that 

of compressive strain, as discussed in Section 2.2.3. In most tests, the compressive strain yε  is 

negligible because the applied column axial load ratio is low, i.e., 2.0/ ' ≤ccc bhfP  where P is the 

column axial load and bc is the width of the column cross section. Therefore, test data with high 

column axial load are needed to justify the increase of the principal tensile stain with increasing 

column axial load. These types of tests are pursued in a future experimental phase of this study. 
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5.2.2 Equilibrium  

The horizontal joint shear force is estimated from the global equilibrium of a joint panel in 

Equation (4.14). For clarity, it is re-written here as follows: 
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h.fAVfAV b

sscssjh 8501                                              (5.3) 

where As and fs are the area and the stress of the beam longitudinal reinforcement in tension, 

respectively, Vc is the column shear force, and H is the height between the upper and lower 

inflection points of the column. This equilibrium equation is decomposed as follows: 

21 STjh,STjh,jh VVV +=                                                              (5.4) 
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where n is the number of beam longitudinal bars in tension with diameter bφ , and Vc is the shear 

force in the column. Note that )( sfμ  is the bond stress distribution along the beam bar (Fig. 5.1) 

as a function of the tensile stress of the bar, fs, which varies with the distance x, i.e., )(xff ss = . 

The x-axis and lh are depicted in Figure 5.1(a). Vollum (1998) and Hwang and Lee (1999) 

approximated the horizontal projection of the width of the diagonal strut ST1 using Equation 

(5.7a) and (5.7b), respectively. 
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Therefore, the horizontal projection of the inclined strut ST2 can be obtained as follows: 

cch ahl −=                                                                  (5.8) 

Equation (5.7a) is selected from the best fit of the Ortiz (1993) test data, and Equation (5.7b) is 

employed from the depth of the flexural compression zone of the elastic column suggested by 

Paulay and Priestley (1992). In this study, the horizontal width lh is investigated in this section 

from 0.6, hc corresponding to Equation (5.7a), to 0.75, hc corresponding to Equation (5.7b) with 

P=0.  
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The column shear force is excluded in the equilibrium of the diagonal strut ST1, Equation 

(5.5), and included in the equilibrium of the inclined strut ST2, Equation (5.6), because most of 

the column shear force is concentrated in the middle of the column cross section due to the shear 

flow distribution in a cracked rectangular cross section of the column due to cyclic loading. This 

decomposition of the total horizontal joint shear force is similar to the truss model of Paulay et al. 

(1978) in which they assumed that the joint shear force is resisted by the combination of the 

diagonal strut action and the panel truss action. 

5.2.3 Fraction Factor 

The shear forces of struts ST1 and ST2 can be expressed using a fraction factor α  as follows: 

jhSTjh VV α=1,                                                                  (5.9) 

jhSTjh VV )1(2, α−=                                                         (5.10) 

This fraction factor is expressed as a function of the tensile stress of the beam reinforcement 

because it is related to the bond deterioration of this reinforcement. Obviously, the fraction factor 

increases as the bond strength deteriorates because the ST1 strut contribution dominates after 

bond failure occurs (Fenwick 1994). In this model, the bi-uniform bond strength model proposed 

by Lehman and Moehle (2000) is extended to be tri-uniform and adopted to represent the 

trilinear behavior of the reinforcing steel. The bond strength in the elastic beam tensile 

reinforcement, Eμ , is '12 cf psi0.5 ( '0.1 cf  MPa0.5) and that in the inelastic beam tensile 

reinforcement, Yμ , is Eμ5.0 . The residual bond strength, Rμ , is selected from the CEB-FIP 

Model code (1990) as Eμ15.0 . The considered bond strength variation is illustrated in terms of 

the beam reinforcement stress in Figure 5.4. 

The proposed model derives the fraction factor α  from the trilinear stress-strain model of 

the reinforcing steel as shown in Figure 5.5. Juxtaposing Equations (5.3), (5.5), and (5.9), the 

fraction factor α  is derived as follows: 
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where 4/2
bs nA φπ=  is used in Equation (5.11). The assumed breaking points of reinforcing steel 

stress (fo, fp, and fr) and intermediate values of fraction factor ( 1α  and 2α ) are derived below. 
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Fig. 5.4  Adopted bond strength model. 
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Fig. 5.5  Trilinear curve of fraction factor. 
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Derivation of fo 

The contribution of ST1 is negligible as long as the bond strength of ST2 is able to resist all of 

the horizontal shear force. The tensile stress of beam reinforcement at this point, fo in Figure 5.5, 

is given by 
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4=                                                   (5.12) 

 

Derivation of 1α  

The fraction factor 1α  corresponds to the onset of yielding of the beam reinforcement at the 

column face. Therefore, 
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where fy is the yield strength of the beam longitudinal reinforcement. 

 

Derivation of fp and fr 

The tensile stress fp is defined when the beam reinforcement yielding propagates over the width 

of ST2. Therefore, the bond strength of concrete surrounding the beam reinforcement is equal to 

Yμ  over the entire length lh. Accordingly and referring to Figure 5.5, one obtains the following, 
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                                     (5.14) 

The tensile stress fr corresponding to 0.1=α  is expressed implicitly using Equation 

(5.11), since the bond distribution cannot be explicitly defined at 0.1=α . It is to be noted that 

the tensile stress fp can be equated to fr if 2α  corresponding to fp is equal to 1.0 (Fig. 5.5). 

Therefore, the tensile stress value of the beam reinforcement fr by letting 0.1α = in Equation 

5.11 is expressed as follows: 
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Derivation of 2α  

The fraction factor 2α is defined when the tensile stress of the beam longitudinal reinforcement 

at the column face reaches fp.  Therefore, 
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5.2.4 Definition of Joint Shear Failure 

Beam-column joint shear strength is defined as the horizontal joint shear force at the maximum 

concrete strength of the C-C-T node in the diagonal strut ST1. Hence, it is predicted as follows: 
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where c is a constant to be determined, and bj = (bc+bb)/2. Note that bc and bb are the respective 

widths of the column and beam cross sections. The expression in Equation (5.17) makes use of 

the findings from Chapter 4 without consideration of the effect of the beam reinforcement. To 

predict the joint shear strength, the constant c is obtained for the case of the minimum joint shear 

strength at which the fraction factor can be set to 1.0. From Hakuto et al. (2000), the normalized 

horizontal joint shear stress '
ccj fhbγ  where 4=γ  psi0.5 (0.33 MPa0.5) is taken as the minimum 

joint shear strength to trigger the joint shear failure with a joint aspect ratio, 

1.1460/500/ ≈=cb hh , i.e., o4.47=θ . Applying this suggestion to define the constant c, one 

obtains 

   

( ) γγ 07.2
1.1085.031.1

83.0cos =⇒=
×+

cc     (5.18) 

Following the fraction factor function in Figure 5.5 and the determined value of c from Equation 

(5.18), the joint shear strength is calculated by an iterative procedure using the algorithm 

illustrated in Figure 5.6. 
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Fig. 5.6  Solution algorithm of proposed analytical joint shear strength model. 

5.3 EVALUATION OF ANALYTICAL MODEL  

5.3.1 Evaluation of Test Data for Literature 

The experimentally determined shear strengths of unreinforced exterior joints from the database 

are compared to the predicted shear strength from the proposed shear strength model in Table 5.1. 

These predications are based on ch hl 65.0= , which is obtained from Table 5.2, indicating that 

the analytical predictions are acceptable for the listed values of hl  and better correlated with the 

experimental results for ch hl 65.0= . The evaluation results using the proposed model are 

compared with those from two existing strength models proposed by Hwang and Lee (1999) and 

by Tsonos (2007) in Figure 5.7. 
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Fig. 5.7  Comparison of evaluation results with existing analytical models. 

 

highα

highα−1

(a) Joint with high reinforcement ratio

Vjh,high

jθ
(b) Joint with low reinforcement ratio

Vjh,ST1=     Vjhα

Vjh,ST1,max

jθ

lowα

lowα−1
Vjh,low

lowhigh αα <

max,1,
,

,
STjh

lowlowjh

highhighjh V
V
V

=
⎭
⎬
⎫

α
α

lowjhhighjh VV ,, >

Joint shear failure point

(c) Joint shear demand of ST1  

Fig. 5.8  Illustration of two different shear strengths in same joint.



 73

Table 5.1  Prediction of joint shear strength and tensile stress of beam reinforcement at joint shear failure. 

Reference Specimen 
'

cf  
(ksi) 

beam,yf  
(ksi) 

test,jhV  
(kip) 

'
test, / cjh fv

(psi0.5) 
model,sf  

(ksi) 
model,jhV  

(kip) 

'
model, / cjh fv
(psi0.5) 

Failure 
mode*2 model,test, / jhjh VV  

V 3.30 51.0 138.4 11.9 37.6  130.7 11.2 J 1.06 Hanson and Connor 
(1967, 1972) 7 5.70 51.0 189.7 12.4 46.1 160.1 10.5 BJ 1.19 

Hwang et al. (2005) 0T0 9.76 63.1 224.1 9.4 73.5(Y*1) 199.3 8.4 BJ 1.12 
SP1 4.46 50.3 140.9 10.4 45.2 116.4 8.6 BJ 1.21 
SP2 4.51 50.6 136.9 10.1 45.5 117.1 8.6 BJ 1.17 Uzumeri (1977) 
SP5 4.63 50.4 136.7 8.9 47.2 121.6 7.9 BJ 1.12 

BS-L 4.48 75.4 70.9 8.1 56.7 71.1 8.2 J 1.00 
BS-U 4.50 75.4 76.7 8.8 56.7 71.2 8.2 J 1.08 

BS-L-LS 4.58 75.4 77.5 8.8 57.1 71.6 8.1 J 1.08 
BS-L-300 4.94 75.4 113.5 12.4 63.9 84.6 9.2 BJ 1.34 
BS-L-600 5.28 75.4 63.8 6.7 55.9 66.2 7.0 J 0.96 

BS-L-V2T20 4.73 75.4 89.7 10.0 57.7 72.4 8.1 J 1.24 
BS-L-V4T10 4.10 75.4 90.6 10.9 55.0 69.0 8.3 J 1.31 

JA-NN03 6.50 75.4 56.0 5.3 80.9(Y) 68.9 6.6 BJ 0.81 
JA-NN15 6.67 75.4 69.9 6.6 81.5(Y) 69.4 6.5 BJ 1.00 

Wong (2005) 

JB-NN03 6.87 75.4 70.4 6.5 86.4(Y) 76.2 7.1 BJ 0.92 
01 4.79 66.5 193.2 10.9 53.7 191.5 10.8 J 1.01 
02 4.38 66.5 179.6 10.6 52.0 185.6 11.0 J 0.97 
03 4.93 66.5 183.4 10.2 54.2 193.5 10.8 J 0.95 
04 4.58 66.5 202.7 11.7 52.8 188.5 10.9 J 1.08 
05 4.60 66.5 192.6 11.1 52.9 188.7 10.9 J 1.02 

Pantelides et al. 
(2002) 

06 4.50 66.5 193.9 11.3 52.5 187.3 10.9 J 1.04 
02 6.70 65.9 213.9 12.1 61.8 217.2 12.3 J 0.98 
06 5.94 65.9 211.4 12.7 59.1 207.7 12.5 J 1.02 
04 5.37 65.9 208.9 13.2 56.9 200.1 12.6 J 1.04 

Clyde et al.  
(2000) 

05 5.82 65.9 220.8 13.4 58.7 206.2 12.5 J 1.07 
BCJ1 4.93 104.4 68.8 10.5 68.9 70.9 10.9 J 0.97 
BCJ3 4.79 104.4 72.4 11.3 68.2 70.2 10.9 J 1.03 
BCJ5 5.51 104.4 70.6 10.2 71.7 73.8 10.7 J 0.96 

Ortiz (1993) 

BCJ6 5.08 104.4 70.8 10.7 69.6 71.7 10.8 J 0.99 
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Table 5.1—continued.  
C4ALN0 6.15 75.7 24.8 10.5 44.7 24.8 10.5 P 1.00 
C4ALH0 15.08 75.7 42.3 11.4 61.0 33.8 9.1 P 1.25 
C6LN0 7.40 75.7 23.4 9.0 47.6 26.4 10.2 J 0.89 Scott and Hamil (1998) 

C6LH0 14.65 75.7 35.4 9.7 60.3 33.5 9.2 J 1.06 
4a 5.66 82.7 43.0 4.5 55.7 66.7 6.9 CF 0.67 
4b 5.66 82.7 50.3 5.2 55.1 65.9 6.9 J 0.78 
4c 5.66 82.7 62.0 6.4 55.1 65.9 6.9 J 0.96 
4d 5.66 82.7 54.7 5.7 55.1 65.9 6.9 J 0.85 
4e 5.66 82.7 58.4 6.1 55.1 65.9 6.9 J 0.91 

Paker and Bullman  
(1997) 

4f 5.66 82.7 66.7 6.9 55.1 65.9 6.9 J 1.04 
U40L 3.52 56.1 57.7 7.5 47.9 66.0 8.5 J 0.91 
U20L 3.87 56.1 42.4 5.2 60.6(Y) 41.7 5.2 A 1.02 Kananda (1984) 
B101 4.63 56.8 78.3 8.8 53.1 73.3 8.3 J 1.07 
T-1 4.47 61.6 124.5 12.0 63.1(Y) 107.7 10.4 BJ 1.05 Gohbarah and Said  

(2001) T-2 4.47 61.6 117.0 11.3 63.1(Y) 107.7 10.4 BJ 1.05 
Sarsam and Phipps (1985) EX-2 7.61 75.4 39.6 7.0 67.3 49.2 8.7 BJ 0.81 

Woo (2003) Model 5 3.84 55.8 16.8 6.3 54.9 19.9 8.2 BJ 0.81 
Liu (2006) RC-1 2.81 46.9 29.3 7.2 54.9(Y) 30.8 7.6 BJ 0.95 

SP1-NS 3.74 45.7 81.4 7.3 48.2(Y) 109.4 9.8 J 0.74 
SP1-EW 3.74 45.7 90.4 8.1 48.2 (Y) 109.4 9.8 J 0.83 
SP2-NS 5.02 45.7 91.7 7.1 53.0(Y) 120.3 9.3 J 0.76 Engindeniz (2008) 

SP2-EW 5.02 45.7 96.9 7.5 53.0(Y) 120.3 9.3 J 0.81 
A0 4.58 84.1 18.2 4.3 95.6(Y) 17.5 4.2 BJ 1.05 
B0 4.58 84.1 44.4 7.1 97.3(Y) 53.3 8.5 BJ 0.83 Karayannis et al. (2008) 
C0 4.58 84.1 45.9 7.3 87.9(Y) 51.2 8.1 BJ 0.90 

Gencoğlu & Eren (2002) RCNH1 4.35 76.1 10.9 4.3 78.6(Y) 14.2 5.6 BF 0.77 
El-Amoury & Ghobara 

(2002) T0 4.44 61.6 91.3 8.8 63.0(Y) 108.1 10.5 BJ 0.82 

C-1 2.83 84.8 24.4 7.4 49.1 28.3 8.6 J 0.86 
C-2 3.44 84.8 24.2 6.7 52.4 30.1 8.3 J 0.80 Antonopoulos & 

Triantafillou (2003) T-C 3.57 84.8 28.1 7.6 53.0 30.5 8.2 J 0.92 
Sagbas (2007) ED1 4.51 50.6 134.1 9.9 45.5 117.1 8.6 BJ 1.15 

Mean 0.98 Note: 1 ksi = 6.90 MPa; 1 kip = 4.45 kN; 12.0 '
cf psi = 1.0 '

cf MPa; 1 in. = 25.38 mm 
*1 Y = beam reinforcement yielding Coefficient of 

Variation 0.15 
*2 J = joint shear failure without beam reinforcement yielding, BJ = joint shear failure with beam reinforcement yielding, BF = beam flexural failure, CF = column 
flexural failure, P = pull-out failure, A = anchorage failure 
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Table 5.2  Statistics of evaluation results for investigated values of lh. 

 ch hl 6.0=  ch hl 65.0=  ch hl 7.0=  ch hl 75.0=  
Mean 1.016 0.985 0.955 0.927 
COV 0.149 0.149 0.150 0.147 

5.3.2 Prediction of Joint Shear Failure Modes 

The proposed model can predict the joint shear strength for both types of beam-column joint 

shear failure modes, i.e., with and without yielding of beam reinforcement. The concept is 

illustrated in Figure 5.8 to explain how to obtain different joint shear strengths in two identical 

unreinforced exterior joints except for the beam longitudinal reinforcement ratio. The one having 

a high reinforcement ratio will show high joint shear strength with a small fraction factor in 

Figure 5.8(a), while the other having low reinforcement ratio will show low joint shear strength 

with a large fraction factor in Figure 5.8(b). In both cases, joint shear failures take place when 

the shear demand of ST1 reaches its capacity (Fig. 5.8(c)).  

From the evaluation results of the test data and failure modes for unreinforced exterior 

beam-column joints, the proposed analytical model is verified to possess high accuracy. It is 

indispensible to assure the prediction of beam reinforcement yielding in this model to justify the 

fraction factor. The accuracy of this model for predicting the beam reinforcement yielding is 

clearly shown in Table 5.1. Therefore, the proposed model is capable of predicting the joint 

failure mode without using modification of the diagonal strut width and without the need for the 

estimation of a ductility factor. 

5.4 SIMULATION OF LITERATURE TESTS USING ANALYTICAL MODEL 

There have been several attempts to simulate RC frames including the deformation of beam-

column joints. Due to the inherent complex behavior of RC beam-column joints, rotational 

spring elements have usually been used to simply represent the combination of the shear 

deformation of a joint panel and the rotation due to bar slippage. The proposed analytical model 

predicts the joint shear strength from the tensile stress of the beam longitudinal reinforcement 

under the assumption that the principal tensile strain is predefined by the joint aspect ratio. 

Therefore, the proposed model can provide the envelope of the joint shear stress-strain 
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relationship that can be transformed into the moment-rotation relationship of the rotational spring. 

From Equations (2.3) and (5.2), the horizontal shear strain and stress are given by 
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In the J failure mode, the joint shear stress-strain relationship is assumed to be linear before joint 

shear failure, while in the BJ failure mode, the joint shear stress-strain relationship is assumed to 

be bilinear, as shown in Figure 5.9(a). Knowing the frame and joint dimensions, the moment-

rotation relationship of the rotational spring is obtained from the shear stress-strain relationship 

of the joint as follows:  

λcjjhj hbvM = ,    ( ) HjdhL
L

bc

1
2

2 −
+

=λ                                    (5.21) 

bslipxyj jd/Δ+= γθ                                                              (5.22) 

where jM  is the moment of the joint panel at the center of the panel, L is the length from the 

beam inflection point to the column face, bjd  is the effective depth of the beam cross section, jθ  

is the joint rotation, and slipΔ  is the relative movement of beam reinforcement with respect to the 

perimeter of the joint panel. The denominator λ  in Equation (5.21) makes use of the global 

equilibrium equation from Chapter 4. The total rotation of the joint spring is defined as the sum 

of the joint shear strain and slip rotation (Fig. 5.9). 
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Fig. 5.9  Relationship of moment versus joint rotation. 

The bar stress-slip relationship is defined as follows:  
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where E and Eh are the elastic and hardening moduli of the beam reinforcement, respectively, 
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= , see Figure 5.10. It is assumed that the elastic 

anchorage length El  can be extended to the tail of the hook, based on the tensile strain 

distribution of hooked bars in the exterior beam-column joints (Scott 1996). 
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Fig. 5.10  Bond distribution along hooked bar (Lowes and Altoontash 2003). 

The analyses of two tests from (Wong 2005) are performed in OpenSees (Mazzoni et al. 2007) 

by replacing the joint region with the rotational spring element obtained from Equations (5.21) 

and (5.22) using the proposed model to compare the analytical results to the experimental ones. 

A zero length rotational spring is used to simulate the joint rotation, and the joint offset option is 

used to rigidly link the center of the joint with the column and beam faces (Fig. 5.11(a)). The 

conventional analysis is also performed without considering the joint rotation or geometry (Fig. 

5.11(b)). The “Hysteretic Material” in OpenSees (Mazzoni et al. 2007) is used for defining a 

multi-linear response of the rotational spring. The comparison of J failure mode due to a large 

amount of beam reinforcement is shown in Figure 5.12(a), and that of the BJ failure mode due to 

a relatively small amount of beam reinforcement is shown in Figure 5.12(b). These comparisons 

illustrate that the proposed model accurately predicts the strength and deformation at joint shear 

failure in both types, i.e., the J and BJ failure modes. It is noted that both specimens are 

symmetrical with respect to positive and negative loading directions. The lower initial stiffness 

in the simulation results from the simplified linear and bilinear joint shear stress-strain 

relationships for the J and BJ modes, respectively. In recent studies by Kim and LaFave (2007), 

and Anderson et al. (2008), high stiffness is assigned in the joint shear stress-strain relationship 

up to the initiation of diagonal cracking, and reduced linear stiffness follows up to the next 

critical point. In this regard, the initial stiffness of the joint shear stress-strain relationships 

assumed in this study underestimates the real initial stiffness, which is more significant in the J 

failure mode. Finally, it is noted that the post-failure behavior of the joint, which is not part of 

this study, is qualitatively represented by dotted lines in Figure 5.12. The initial stiffness and 

post-failure behavior will be investigated as a future extension of this study. 
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(a) Rotational spring with rigid links (b) Conventional center-to-center node(a) Rotational spring with rigid links (b) Conventional center-to-center node  

Fig. 5.11  Modeling of beam-column joint. 
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Fig. 5.12  Simulated results by proposed model. 



 

6 Summary and Concluding Remarks 

From the extensive database of unreinforced exterior beam-column joint tests, parametric studies 

are performed. The variables needed to introduce the influencing parameters of the proposed 

shear strength equation are derived using a consistent mechanistic approach. The main 

concluding remarks from this study are as follows: 

1. The high joint aspect ratio reduces the shear strength of unreinforced exterior beam-

column joints. The first reason is that the steeper diagonal strut is less effective to 

equilibrate the horizontal joint shear force, and the second reason is that the concrete 

strength of a diagonal strut is smaller for higher aspect ratios due to an increase of the 

principal tensile strain. 

2. The shear strength of unreinforced exterior beam-column joints is controlled by the beam 

reinforcement index, which is the joint shear demand, if the beam reinforcement index is 

between the values corresponding to the maximum and minimum joint shear strengths. 

3. The column axial load has little influence on the joint shear strength of unreinforced 

beam-column joints given that the positive effects are canceled by the negative ones. This 

is verified by the observation from a large experimental database. 

4. Two variables for the better prediction of the shear strength are derived as 

( )cb hh
θ

085.031.1
cos

+
  and ⎟

⎠
⎞

⎜
⎝
⎛ −

H
h

fhb

fA b

ccj

ys 85.01
'

 to include the influences of the joint aspect 

ratio and the beam reinforcement index, respectively. 

5. A semi-empirical equation is proposed to predict the shear strength of unreinforced 

exterior beam-column joints. The evaluation of existing experimental data using the 

proposed equation shows high accuracy, which is superior to several existing models 

from literature. 

The proposed semi-empirical model assumes that joint shear strength is governed by joint shear 

demand if the joint shear demand is located between some values, based on the observation from 
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the database. In other words, the unreinforced exterior beam-column joint having the same 

concrete strength and geometry fail in shear at different levels of horizontal joint shear stress 

with changing beam reinforcement ratio. A reasonable failure mechanism of the unreinforced 

exterior beam-column joints is needed to explain this multiple joint shear strength. In addition to 

the strength model, it is also necessary to estimate joint deformation including joint shear 

distortion and beam reinforcement slip for simulation of structural frames. 

A new analytical model to meet these requirements is developed to predict the shear 

strength of unreinforced exterior beam-column joints. The proposed model is developed 

considering the realistic behavior of unreinforced exterior beam-column joints. Two inclined 

struts are assumed to resist the horizontal joint shear in a parallel system and the fraction of each 

strut contribution is formulated using a bond deterioration mechanism. The proposed model is 

validated by the evaluation of a large database of unreinforced exterior beam-column joint tests 

from published literature. Furthermore, the analyses of tests from literature are performed using a 

rotational spring element of the joint panel based on the proposed model. From the validation 

and simulations using the proposed model, the following is concluded: 

1. The proposed analytical model accurately predicts the shear strength of unreinforced 

exterior beam-column joints. 

2. The yielding of beam longitudinal reinforcement is predicted with high accuracy by the 

proposed analytical model and thus two different types of joint shear failure, i.e., with 

and without beam longitudinal reinforcement yielding, are captured without the need for 

the complexity of ductility consideration. 

3. The relationship of moment versus rotation in the joint region is derived from the 

proposed analytical model. Two published tests, which were designed to show different 

types of failure, are analyzed using a rotational spring to represent the joint behavior. The 

force versus displacement relationships accurately simulated the response compared with 

the less accurate predictions using the conventional center-to-center analysis. 
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