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ABSTRACT 

One concern in the design of base isolated structures is the selection of isolation system 

properties so that optimal performance is achieved over a range of seismic levels and 

performance metrics. To withstand very rare ground motions, isolation bearings are 

frequently designed with significant strength or damping, and as a result such devices 

provide reduced isolation effect for more frequent seismic events. To investigate possible 

improvements to the design of isolated structures, an extensive research program is 

conducted. Analytical and experimental investigations are presented to characterize multi-

stage spherical sliding isolation bearings capable of progressively exhibiting different 

hysteretic properties at different stages of response. Shaking table tests are conducted on a 

1/4-scale seismically isolated steel braced frame on multi-stage bearings, including harmonic 

characterizations tests and earthquake simulations. These tests included various input 

intensities, multi-component excitation, bearing uplift, and superstructure response. A newly 

developed analytical model is implemented as part of a parametric study of single- and multi-

story buildings incorporating a wide class of isolation systems. Behavior of the new triple 

pendulum bearing is compared with that of linear isolation systems with both nonlinear 

viscous and bilinear hysteretic energy dissipation mechanisms. The results of parametric 

analyses are used to develop a design framework based on targeting a multi-objective 

Seismic Performance Classification (SPC). This SPC is introduced to describe satisfaction of 

a complex seismic performance objective, defined as aggregate damage state limitation over 

multiple levels of seismic hazard. The probability of satisfying specific SPCs is computed for 

three- and nine-story buildings on all classes of isolators investigated. 
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1 Introduction 

One of the most significant developments in structural engineering in the past twenty years 

has undoubtedly been the emergence of performance-based design as a means of selecting, 

proportioning, and building structural systems to resist seismic excitations. This 

methodology is an ideal framework for design due to its flexibility with respect to the 

selection of performance objectives, characterization and simulation of both demand and 

resistance, and the overarching treatment of uncertainty. A great strength of the methodology 

is that performance objectives may be defined in terms of structural performance, 

architectural function, socio-economic considerations, and environmental sustainability. This 

framework has the attractive feature of providing a metric of performance that can be 

implemented by a wide variety of infrastructure stakeholders, including architects, building 

owners, contractors, insurance providers, capital investment proprietors, and public officials. 

As civil engineers train their focus on broadly defined solutions to the challenges posed by 

maintaining and improving civilization, performance-based design will increasingly play a 

central role. This design approach requires the use of innovative structural systems to 

achieve the complex and potentially multi-objective performance goals that the various 

stakeholders are likely to envision. Given the uncertainty that is unavoidably present in any 

earthquake resistant design framework, innovative systems must not only be capable of 

predictable response to deterministic input, but also be sufficiently robust to respond reliably 

to a broad range of potential input. 

1.1 GOALS OF PERFORMANCE-BASED SEISMIC DESIGN 

Performance-based seismic design of structures is currently undergoing significant 

development in response to consequences experienced in recent earthquakes. Not only has 
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there been substantial loss of human life as a result of damage caused by major earthquakes, 

the economic toll resulting from direct losses (repair of infrastructure, replacement of 

damaged contents) and indirect losses (business disruptions, relocations expenses, supply 

chain interruption) has also been significant [Brookshire et al., 1997]. As a result of the 

significant socio-economic turmoil due to the occurrence of earthquakes worldwide, major 

research efforts have been aimed at identifying the sources of losses, and the correlation of 

specific damage states to these losses to identify strategies for mitigation. 

A description of earthquake engineering has been proposed by Bertero and Bozorgnia 

[2004] that embodies the modern approach to seismic hazard mitigation: 

Earthquake engineering encompasses multidisciplinary efforts from various 
branches of science and engineering with the goal of controlling the seismic 
risks to socio-economically acceptable levels. 

This description is appropriate because the objective of earthquake-resistant design is 

intentionally left open to interpretation. What may be an appropriate seismic design 

philosophy for critical facilities such as hospitals, mass data storage centers, or public utility 

buildings may be inappropriate and/or excessively costly for conventional facilities whose 

functionality or damage state following a major earthquake is not critical to either the public 

welfare or the financial solvency of an organization. 

A philosophical framework for Performance–Based Seismic Design (PBSD) was 

recently proposed by Bertero and Bertero [2002], who suggest the following: 

To satisfy the objectives of a reliable PBSD philosophy and procedure it is 
necessary to start with a multi-level seismic design criteria, to consider a 
probabilistic design approach, to consider local structural and non-structural 
damage and therefore design spectra for buildings (n degrees of freedom), to 
take into account the cumulative damage, and to control not only 
displacements but also ductility (minimum strength) to limit damage. Finally, 
it is concluded that a transparent and conceptual comprehensive preliminary 
design approach is necessary. 

It is within this framework of multi-level seismic design criteria that appropriate 

decisions regarding seismic design may be made. Moreover, the reliability of achieving a 

targeted seismic performance objective must by quantifiable. Only with a measurable 

reliability in place can strategies for improving this reliability be implemented. Reliability in 

this context can be thought of as limiting the probability of failure to some level deemed 
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acceptable given the consequences of failure. Once the significance of a probabilistic, multi-

level design criteria is realized, the need is clear for innovative seismic systems whose 

response is both robust and optimized to minimize damage in accordance with the defined 

performance objectives.  

1.2 ENHANCED SEISMIC PERFORMANCE THROUGH BASE ISOLATION 

In the past 20 years, seismic isolation and other response modification technologies have 

seen a variety of applications in the design of structures to mitigate seismic risk. A summary 

of specific devices for isolating structures and prior implementation is summarized in 

Chapter 2 of this report. While such technologies provide a means of controlling the demands 

imposed by earthquakes, very few new seismic isolated buildings have been constructed in 

the U.S., compared to other countries with significant seismic hazards, such as Japan, China, 

and Taiwan. While a number of reasons for this have been identified, one is the lack of a 

transparent design method for choosing isolator properties that can minimize damage to the 

structure from various sources, while achieving isolator designs and displacement demands 

that are practical. The introduction of new technologies, such as supplemental energy 

dissipation devices and new types of isolator devices, has only compounded this problem. 

As such, performance-based seismic design provides a useful framework for 

developing an understanding of the relationships among the characteristics of the ground 

motion, superstructure and isolation system, and to evaluate the ability of various design 

approaches and isolator system properties to reliably achieve targeted performance goals. 

While significant effort has been devoted to these areas by organizations devoted to 

collaborative research, less attention has been given to the role of innovative seismic 

isolation devices and systems in achieving the goals of a performance-based design 

framework described above. These types of devices are ideally suited for implementation 

within a performance-based framework because (a) robust characterization of their behavior 

can be made through experimentation; (b) the uncertainty associated with their behavior is 

generally low relative to conventional structural elements; and (c) it can be challenging, or 

even impossible, to reliably achieve an enhanced performance objective without their use. 

These benefits, combined with the fact that the implementation of innovative systems in 

practice is often met with resistance from building officials, owners, contractors, and even 
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design professionals, make future research critical to the continued evolution of 

performance-based design. Such structural systems have been developed and investigated by 

both the research and practicing communities for decades, but implementation has been slow, 

and mainstream application has yet to emerge. As a result, there is a need for strategies and 

techniques that broaden the use of innovative structural systems, and it is in the context of 

performance-based design that an effective methodology may be developed. 

1.3 OBJECTIVES OF RESEARCH 

The research described in this report focuses on  

(a) the improvement of techniques used to both quantify and qualify descriptors and 

parameters used in performance-based design of base isolated buildings;  

(b) the application of innovative base isolation technologies in achieving multiple-

objective performance classifications; and  

(c) the distillation and packaging of results such that their advantages can be 

realized within a probabilistic framework.  

A major component of this research is the investigation of the cyclic behavior of a 

new class of multi-stage friction pendulum bearings. These isolation devices are 

characterized by parameters that can be selected such that the bearing exhibits cyclic 

performance that evolves with the amplitude of displacement demand. Characterization of 

the behavior of these devices and validation of the derived model though extensive 

experimentation provides a basis for further parametric analytical studies and performance 

assessment. 

The analytical research described in this report investigates the potential for 

innovative isolation systems to reliably target multiple, independent performance objectives 

corresponding to different seismic hazard levels (i.e., functional after a frequent seismic 

event; immediately habitable after a rare seismic event; or near collapse, but structurally 

stable, following a very rare seismic event). Isolation systems studied include linear isolators 

with nonlinear viscous and bilinear hysteretic damping, and a new triple pendulum sliding 

isolator. Current design practice (for both conventional and isolated buildings) restricts the 

designer to target a particular level of performance at a particular level of seismic hazard. 
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Characteristics of isolation systems are investigated with respect to which parameters lead to 

the satisfaction of generally defined complex performance objectives. 

1.4 ORGANIZATION OF REPORT 

This report is organized into eight chapters. Chapter 2 summarizes the current status of 

seismic isolation as both an applied technology and a subject of continued research. Chapter 

3 introduces a class of innovative spherical sliding isolators exhibiting multi-stage force-

deformation behavior. A monotonic relationship is developed from fundamental mechanics, 

which is then extended to a cyclic model that responds to general displacement input and is 

therefore appropriate for nonlinear response history analysis. Chapter 4 summarizes the 

experimental specimen and test program conducted to investigate the behavior of two types 

of multi-stage sliding bearings under both harmonic and earthquake excitation. Chapter 5 

presents the results of the experimental program, including comparisons of the newly 

developed cyclic model with observed behavior of the specimen, and experimental 

assessment of superstructure behavior under seismic excitation.  

Chapter 6 summarizes a comprehensive series of parametric analytical studies carried 

out using the validated numerical isolator model on the newly introduced multi-stage 

spherical sliding system. For comparative purposes, these parametric studies are also 

conducted for nonlinear viscous and bilinear hysteretic isolation systems. Studies are first 

conducted on a canonical two-degree-of-freedom isolated model considering incremental 

dynamic analysis under single realization of ground acceleration. These results are supported 

by further studies on three- and nine-story isolated models considering the same three classes 

of isolation systems, subjected to an ensemble of ground motions developed for three levels 

of seismic hazard. Chapter 7 summarizes a probabilistic performance assessment 

methodology within which a wide variety of isolation systems may be compared and 

optimized to reliably target complex seismic performance objectives. These objectives are 

termed “complex” because they are defined by the satisfaction of prescribed deformation- 

and acceleration-sensitive damage states that are potentially distinct for multiple levels of 

seismic hazard.  
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Chapter 8 summarizes the key results of this report, makes recommendations for 

practical applications of seismic isolation as well as directions for further research. A list of 

references immediately follows Chapter 8. 
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2 Review of Seismic Isolation 

2.1 THE CONCEPT OF SEISMIC ISOLATION 

Seismic isolation has its roots in the need to control structural response due to harmonic 

vibrations. This need stems from a) the discomfort caused to occupants as a result of 

oscillatory motion of floor-supported equipment and b) the potential for damage to sensitive 

equipment caused by vibrations of the supporting structure [Clough and Penzien, 1993]. The 

sources of such vibrations have traditionally been rotating machinery, ambient traffic 

conditions, and walker induced floor vibrations. A common method of reducing the 

accelerations due to harmonic excitation is to provide a compliant base (either from steel 

springs or elastomeric pads) that adjusts the natural frequency of the supported equipment 

such that it is unable to reach resonance under the operating frequency of the excitation 

[Rivin, 2003]. This idea is behind the concept of “transmissibility,” or the ratio of the 

response amplitude to the input amplitude. For example, in vibration isolation, one can 

define the transmissibility as  where  is the peak total acceleration of the 

equipment and  is the peak input acceleration of the support. TR is generally a function of 

the forcing frequency, the natural frequency of the supporting hardware, and the amount and 

type of damping present. Whereas the forcing frequency may be a function of the operating 

speed and weight (and therefore a fixed quantity independent of the support), the natural 

frequency and damping of the supporting hardware may be adjusted to limit the total 

acceleration due to harmonic excitation. 

The reduction of transmissibility is also the goal of seismic isolation. Unlike 

traditional equipment isolation, however, the excitation is due to ground shaking, and cannot 

be characterized by harmonic input. Ground shaking resulting from a seismic event is 

stochastic in nature, and this excitation may contain a rich array of frequency content. Data 

/tot sTR u u= �� �� totu��

su��
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collected from numerous historical seismic events has demonstrated that the predominant 

frequency of seismic excitation is generally above 1 Hz, and hence systems having a lower 

natural frequency than this will experience a reduction in transmissibility of acceleration 

from the ground into the structure. The reduction of natural frequency (or elongation of 

natural period) provides the so-called “decoupling” of the motion of the structure with that of 

the ground. This reduction in natural frequency has the undesirable consequence of 

increasing deformation demand under the input excitation. These undesirable deformations 

can be mitigated to some extent through the addition of damping, typically through a 

combination of velocity-dependent (termed viscous damping) and deformation-dependent 

(termed hysteretic damping) energy dissipation mechanisms. As a result, a properly designed 

isolation system will have the appropriate combination of stiffness and damping such that 

substantial dynamic decoupling is achieved without detrimental deformation demands in the 

isolation hardware. 

Period elongation is not, however, the only necessary component to a seismic 

isolation system. Indeed, if adding flexibility were sufficient to reduce seismic response, then 

an effective design strategy would be to use the most flexible members possible given the 

consideration of stability under gravity. An equally important aspect of isolation is the 

change in fundamental mode shape. The introduction of a layer that is compliant relative to 

the supported structure introduces a key modification to the free vibration characteristics of 

the structure. The more similar the fundamental mode shape is to rigid-body behavior, the 

less mass participation is present in higher modes. Such rigid-body behavior is associated 

with the relative compliance of the isolation layer. Hence, as the natural period of the 

isolation system increases relative to the natural period of the supported structure, the 

participation of higher modes becomes closer to zero and the seismic deformation is 

concentrated at the isolation layer and not in the superstructure. A mathematically rigorous 

treatment of the dynamics of base isolated structures is presented in Chapter 7 of this report.  

2.2 CURRENT STATUS OF SEISMIC ISOLATION 

The concept of seismic isolation has been documented since the early 1900s, and its 

development surely extended prior to that. Naeim and Kelly [1999] recount the infancy of 

seismic isolation for civil construction, where the concept was simply to detach a structure at 
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its foundation, and provide some interstitial joint with a low-friction interface. This method 

of isolating a structure from the ground represents a simple, if not indelicate, way of 

reducing transmission of horizontal ground movement into the supported structure. 

Obviously, if some zero-friction interface is introduced (akin to the structure suspended in 

mid-air), any ground movement will excite zero movement of the structure relative to its 

original position. However, these methods of isolation have proved impractical, and more 

sophisticated methods of decoupling the motion of a structure and the ground was sought. 

Modern seismic isolation found its origins in the mid-1960s with the New Zealand 

Department of Scientific and Industrial Research [Skinner et al., 1993]. Many researchers 

contributed to the development of reliable devices to achieve the requisite flexible layer for 

successful isolation while retaining sufficient vertical stiffness to resist service loading. 

These isolation bearings exploited the beneficial properties of natural rubber to provide 

flexibility. A brief description of modern isolation devices can be found in Section 2.3 of this 

Chapter. Since the development of reliable seismic isolation hardware in the mid-1970s there 

has been significant adoption of isolation as a design strategy for seismic hazard mitigation.  

Naeim and Kelly [1999] provide a detailed description of substantial isolation 

projects undertaken in various parts of the world. Higashino and Okamoto [2006] summarize 

the worldwide adoption of seismic isolation and describe the current state of the practice, 

including specific applications and regulatory environments, in the following countries: 

China, Italy, Japan, Korea, New Zealand, Taiwan, and the United States. They also include 

detailed design and construction information for many specific projects. Below is a brief 

summary of notable practical achievements in seismic isolation of buildings. 

 The first modern building to incorporate base isolation was the Pestalozzi School in 

Skopje, Macedonia, constructed in 1969. This project used rubber blocks in the basement to 

provide flexibility between the structure and foundation. The first building to be seismically 

isolated in the United States, and the first in the world to incorporate high-damping rubber 

bearings, was the Foothill Community Law and Justice Center in Rancho Cucamonga, 

California. The first rehabilitation of an existing structure with seismic isolation was in 1986 

with the City and County Building in Salt Lake City, Utah. This project pioneered many 

construction methods of jacking and post-installation of bearings that are still used today. 

The existing United States Court of Appeals Building in San Francisco, California, was 

renovated in 1994, and was the first building (new or existing) to be isolated with friction 
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pendulum bearings. The first seismic isolated hospital in the world was the USC University 

Hospital in Los Angeles, California, constructed in 1991. 

A number of isolated buildings have been subjected to strong ground motion in both 

the United States and Japan, and recorded data are available for many. In all post-earthquake 

observations and analysis of recorded data, the performance and behavior of isolated 

buildings has been consistent with expectations, and very little damage has been reported. 

For descriptions of observed behavior of isolated buildings in past earthquakes, see Clark et 

al. [1994], Nagarajaiah and Sun [2000], and Higashino et al. [2006]. 

2.2.1 Evolution of Code Provisions for Seismically Isolated Buildings 

The first document describing prescriptive design requirements for seismic isolated buildings 

was published by the Structural Engineers Association of Northern California in 1986 

[SEAONC, 1986]. This was informally referred to as the “Yellow Book,” ostensibly to avoid 

confusion with the existing Blue Book that described lateral force requirements for 

conventional structures. This document was created in response to the design and 

construction of isolated buildings and bridges that had already taken place. A need was 

identified for some minimum standard to assure the safety of the general public who may 

occupy isolated facilities. These early provisions sought to provide a margin of safety 

comparable to that of conventional structures. To this effect, the 1986 Yellow Book states: 

[These] limits on isolation system and superstructure response are intended to 
ensure that seismically isolated buildings will be at least as safe as 
conventional buildings during extreme events considering the uncertainties in 
the new and developing technology of seismic isolation. 

In these recommended provisions, a clear process for selecting and proportioning the 

isolation system and the supported structure is provided. This process mimics that for 

conventional structures in an effort to maintain consistence between the design 

methodologies. Several key distinctions for the design requirements were introduced, 

including the following: 

1. The design base shear for the isolated superstructure is intended to limit ductility 

demand in the design basis earthquake relative to that expected for the conventional 

fixed-base structure in the same level of earthquake. 
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2. A review of the isolation concept and design is required, as established by the 

governing regulatory agency. Significantly, no prescriptive requirements for the scope 

of this review are established in recognition of the diverse nature of potential projects 

and the agencies charged with permit issuance.  

3. Testing requirements for isolation devices are required as part of the plan approval 

process. 

Since the publication of the 1986 Yellow Book, these requirements were included as 

an Appendix to the 1991 UBC. The isolation provisions remained as an Appendix through 

each edition of the UBC, although revisions were made alongside those for conventional 

structures. Subsequent to the final version of the UBC in 1997, provisions for isolated 

structures have been contained in the International Building Code, the current version of 

which [ICC, 2002] directly references provisions contained in ASCE 7 [ASCE, 2002]. A 

carefully detailed summary of the progression of code provisions through this development 

process is given by Aiken and Whittaker, summarized in Higashino and Okamoto [2006]. 

Shenton and Lin [1993] report a study on the relative performance of a 1991 UBC-

conforming fixed-base and base isolated frames using response-history analysis. This 

research concluded that a base isolated concrete moment frame building could be designed to 

25% to 50% of the base shear for a fixed-base building, and the two designs would perform 

comparably when based on superstructure ductility, roof displacement, and interstory drift. 

For shear wall buildings, the isolated building designed to the same fraction of the equivalent 

fixed-base building performed superior in all above categories. An interesting discussion is 

presented regarding the philosophical differences in code-based design of isolated buildings. 

The authors conclude that provisions requiring isolated buildings to be designed for lower 

ductility-based reduction factors inherently penalize the isolated superstructure and lead to 

unnecessarily high costs for the superstructure. A recommendation is put forth that future 

code provisions include optional performance requirements for conventional isolated 

buildings, where the design forces are reduced substantially compared to the fixed-base 

counterpart, while the expected performance is at least equivalent between the two. This is 

one of several discussions of the impediments to the implementation of seismic isolation in 

the context of the current code. Other discussions on impediments are provided in Naeim and 

Kelly [1999], Naaseh et al. [2001], and Mayes [2002]. 
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2.3 CATEGORIES OF ISOLATION DEVICES 

A critical ingredient of seismic isolation is the introduction of a specially designed stratum 

between the structure and the foundation that is both horizontally flexible and vertically stiff. 

A stratum with these properties is generally achieved through a series of manufactured 

isolation bearings, whose required performance is specified on a set of contract documents, 

and acceptance is verified through prototype (quality assurance) and production (quality 

control) testing.  

Manufactured bearings primarily fall into two categories: elastomeric-based or 

sliding-based. Elastomeric-based bearings take advantage of the flexible properties of rubber 

to achieve isolation, while sliding-based bearings rely on the inherently low stiffness of a 

structure resting on its foundation with no connection other than friction at the interface. 

Devices that are designed and manufactured to effectively achieve the goals of 

seismic isolation possess three general characteristics:  

1. High axial stiffness to resist gravity and other vertical loads (both sustained and 
transient) without excessive deformation that would compromise the serviceability of 
a structure. 

2. Sufficiently low horizontal stiffness such that the fundamental frequency of the 
isolated structure is substantially lower than the predominant frequency content of the 
expected ground motions, and adequate separation is provided between the natural 
frequency of the superstructure and that of the isolated structure. 

3. An effective mechanism for energy dissipation 1  to mitigate excessive lateral 
deformations for practical reasons or to avoid instability of the isolation devices and 
connected structural elements due to combined horizontal and vertical forces. 

Categories of devices currently manufactured to exhibit these characteristics are 

discussed in this section. 

2.3.1 Elastomeric Bearings 

A broad category of seismic isolation devices is elastomeric bearings. Such bearings rely on 

the flexible properties of natural and synthetic elastomeric compounds to achieve the desired 

characteristics of an isolation system. Elastomeric bearings can be divided into three sub-

                                                 
1 Energy dissipation is not a requisite property to achieve the advantages of seismic isolation; however, this 

quality is typically seen as favorable by designers. 
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categories: lead rubber (LR), high-damping rubber (HDR) and natural rubber (NR). Any 

elastomeric isolation bearing is constructed of alternating layers of rubber pads and steel 

shims, bonded together with a robust, non-degrading adhesive. The steel shims prevent the 

rubber pads from excessive bulging at their perimeter, and hence enhance the vertical 

stiffness of the device. The layers of rubber pads in natural rubber bearings are compounded 

with an unfilled rubber that exhibits very little inherent damping. In contrast, the rubber 

layers in high-damping rubber bearings are specially compounded with a blend of synthetic 

elastomers and fillers, such as carbon black, which enhances the internal energy dissipation 

capability of the rubber matrix. Lead rubber bearings generally consist of natural rubber 

bearings with a lead core press-fit into the central mandrel hole. This mandrel hole is 

required of any elastomeric bearing type since the vulcanization process requires heating 

from both the center and the exterior surface of the bearings. Sections showing natural and 

high-damping rubber bearings are shown below in Figure 2.1(a) and a lead-rubber bearing is 

shown in Figure 2.1(b). A detailed treatment of the mechanical characteristics of elastomeric 

isolation bearings is provided by Kelly [1996]. 

  

 (a) NR/HDR (b) LR 

Figure 2.1: Sections depicting two common types of elastomeric bearings (a) natural 
rubber (NR) bearing or high-damping rubber (HDR) bearings and (b) lead rubber (LR) 

bearing 

2.3.2 Sliding Bearings 

Another class of isolation devices is the “sliding bearing,” in which the action of sliding is 

the basis for achieving low horizontal stiffness. Energy dissipation is achieved at the sliding 

interface through Coulomb (or friction) damping. One such isolation device is the friction 



 

14 
 

pendulum (FP) bearing, shown below schematically in section in Figure 2.2. In this type of 

bearing, an articulating slider rests on a spherical stainless steel surface. The lateral restoring 

force arises from the spherical shape of the sliding surface. Where the lateral displacement is 

small relative to the radius of curvature of the surface, the force-displacement relationship is 

linear and defined completely by the spherical radius. A detailed treatment of this and similar 

classes of sliding isolation bearings is given in Chapter 3 of this report. 

 

Figure 2.2: Section depicting a single concave 
 friction pendulum (FP) bearing  

2.4 SUPPLEMENTAL DAMPERS TO CONTROL ISOLATOR DEFORMATION 

Although typical isolation hardware is manufactured with an inherent energy dissipation 

mechanism to control peak isolation system displacement, specific applications exist where 

supplementary energy dissipation mechanisms are required. Such applications include: sites 

located in close proximity to a controlling seismic source, sites underlain by soft and/or weak 

soil strata, isolation devices that are susceptible to instability under large lateral deformation, 

architectural considerations that limit the allowable seismic separation (isolation moat), and 

practical limits on the ability of flexible utility lines to accommodate displacement across the 

isolation interface. 
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Figure 2.3: Supplemental viscous damper at isolation plane to control displacement 
(New de Young Museum, San Francisco, CA, courtesy of Rutherford & Chekene) 

2.5 PREVIOUS RESEARCH ON SEISMIC ISOLATION 

2.5.1 Elastomeric Isolation Systems 

The pioneering work in modern seismic isolation was undertaken at the New Zealand 

Department of Scientific and Industrial Research, and this work is reported in Skinner, Kelly, 

and Heine [1975] and Skinner, Beck, and Bycroft [1975]. The focus of this research was the 

development of reliable mechanical devices for seismic isolation and energy dissipation with 

applications to civil structures. Energy dissipation devices studied were metallic yielding 

elements in either flexure or torsion. The need to develop substantial movement to obtain 

damping from these devices motivated the study of isolation systems. Here, isolation was 

identified as a reliable method to protect against both structural and nonstructural damage. 

Not only did this research present a theoretical framework for seismic isolation systems, but 

an in-depth discussion is included on a variety of practical implementation topics. 

The mechanical behavior of laminated elastomeric bearings typical of modern 

practice is described by Kelly [1996]. This behavior includes force deformation in shear, 

axial compression, and bending; instability of bearings; and methods of design to achieve 

target properties. Clark et al. [1997] summarized a series of earthquake simulator tests on a 

three-story isolated model subjected to severe seismic excitation. These tests identified the 

behavior of high-damping elastomeric bearings under large cyclic deformation and provided 

important limit states for both the bearings and the supported structure.  
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2.5.2 Sliding Isolation Systems 

Among the earliest contributions to sliding isolation systems is the seminal work on steady-

state harmonic forced vibration of a linear oscillator with Coulomb friction damping, an 

exact solution to which is due to Den Hartog [1947]. The result of this solution is a response 

spectrum for harmonic input that demonstrates the benefit of reduced transmissibility 

resulting from a reduction in natural frequency below that of the excitation, even with the 

presence of dry friction as a damping mechanism. 

Early studies of multi-story buildings isolated with systems incorporating sliding 

elements are reported by Kelly and Beucke [1983] and Constantinou and Tadjbakhsh [1984]. 

In this work, the effect of friction on an otherwise linear isolation system is investigated, and 

found to mitigate large isolation system displacements while retaining the benefits of 

decoupling due to the linear elastomeric bearings. 

The first analytical and experimental studies on friction pendulum (FP) isolation 

bearings was conducted by Zayas et al. [1987]. This research program identified the potential 

to achieve reliable base isolation through the introduction of a spherical sliding surface, 

thereby simulating pendulum behavior. Substantial experimental characterization of FP 

bearings and development of nonlinear analytical models was reported by Zayas et al. [1989], 

Mokha et al. [1990, 1991, 1993], Nagarajaiah et al. [1992], and Constantinou et al. [1993]. 

Almazán and De la Llera [1998, 2002] summarized bidirectional modeling considering first- 

and second-order displacement and velocity effects in computing the deformation response 

and base shear of structures isolated on FP bearings. Experimental characterizations of FP 

under multi-component excitation and validation of nonlinear models to describe such 

behavior was reported by Anderson [2003] and Mosqueda et al. [2004]. Roussis and 

Constantinou [2006] conducted analytical and experimental investigations on the behavior of 

FP bearings with the ability to resist tensile forces.  

Recently, multi-stage friction pendulum bearings have been introduced and applied on 

projects worldwide. Tsai et al. [2008] proposed a multiple friction pendulum system (MFPS) 

consisting of multiple sliding interfaces and an articulating slider. Such bearings exhibit 

large displacement capacity relative to bearings consisting of only a single spherical surface. 

Fenz and Constantinou [2006] presented further work on friction pendulum (FP) bearings 

with two spherical surfaces and distinct friction coefficients on each sliding interface, 
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leading to sliding behavior that exhibits multi-stage hysteretic response. The analytical 

behavior of triple pendulum (TP) bearings, including suitable cyclic models with 

experimental verification, has been reported by Fenz and Constantinou [2008a,b] and Becker 

and Mahin [2010]. These types of bearings are described further in Chapter 3 of this report. 

2.5.3 Behavior of Secondary Systems 

It has long been recognized that damage to secondary systems (elements not part of the 

primary structure) is a major source of earthquake-induced losses. Secondary systems 

include both a) nonstructural components, such as interior partitions, cladding, glazing, 

piping, and ceilings; and b) contents, such as mechanical and electrical equipment, stored 

inventory, cabinetry, and assorted freestanding objects. Many studies have been conducted 

summarizing the overall potential for damage to both nonstructural components and contents, 

and the effect of base isolation on the mitigation of damage to these. Some of the relevant 

research in these areas is summarized in this section. 

2.5.3.1 Nonstructural Component and Content Damage  

One of the earliest attempts to quantify damage to nonstructural components through 

experimental evaluation is summarized by Bouwkamp and Meehan [1960]. They describe a 

research program to investigate the behavior of glazing systems under in-plane shear 

demands. Subsequent to this research, many experimental programs have sought to quantify 

damage to nonstructural elements as a function of demand parameters that can be estimated 

by analysis. 

An early study on the performance of secondary structural elements under seismic 

loading was conducted by Sakamoto [1978]. In this work, both interstory deformations and 

inertial forces due to absolute acceleration were identified as major contributors to 

nonstructural damage. A damageability index was introduced for assessment relative to some 

established criteria. Also, observed nonstructural damage was summarized for the following 

earthquakes: 1964 Niigata, 1968 Tokachi-oki, 1971 San Fernando, and 1972 Managua. 

As part of the PEER research program, Filiatrault et al. [2002] summarized previous 

analytical and experimental investigations on the seismic response of nonstructural 

components, including building contents, service equipment, interior and exterior 
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architectural systems, and performance in past earthquakes. Taghavi and Miranda [2003] 

describe the development of a database for organization, storage, and retrieval of information 

related to seismic performance on nonstructural components and contents. This database is 

designed for simple implementation within a performance-based design framework, 

including item-specific cost functions describing losses or repair costs given a damage state. 

2.5.3.2 Protection of Secondary Systems through Seismic Isolation 

Significant initial research on secondary system response for isolated structures was 

conducted by Kelly and his collaborators. Early studies (Kelly [1981]; Kelly and Tsai 

[1985]) indicated that natural rubber isolation devices were expected to provide the best 

protection to equipment and contents, given the state of knowledge at that time. Earthquake 

simulator experiments on a five-story isolated model were conducted, and observed results 

were presented and substantiated by analytical studies. These studies identified the effect of 

the presence of lead and its effect on higher-mode response. Fan and Ahmadi [1990] reported 

extensive floor response spectra analysis for various base isolation systems and ground 

motions. The potential drawback of friction as an energy dissipation mechanism is identified 

with respect to the inducement of high-frequency floor acceleration response. Juhn et al. 

[1992] presented experimental results of a five-story building on a sliding isolation system 

and reported observed acceleration in the superstructure and the corresponding floor 

response spectra. Skinner et al. [1993] also summarized the effect of supplemental hysteretic 

damping on the excitation of higher-mode acceleration response in an isolated superstructure. 

Hernried and Lei [1993] investigated the response of equipment in structures isolated 

with a hybrid friction-elastomeric bearing. These bearings, originally described by Mostaghel 

[1986], incorporate a central elastomeric core to provide restoring force, and a series of 

stacked PTFE plates to dissipate energy thorough friction. Conclusions drawn as part of this 

study include the relative reduction in equipment demands are greatest for strong ground 

shaking, and the lower friction coefficients lead to more substantial reductions in equipment 

response. 

Dolce and Cardone [2003] conducted earthquake simulator tests on isolated building 

specimens to examine various isolation systems effect on damage to equipment and contents. 

Although the study focused on a newly developed shape-memory alloy isolation device, 

results from high-damping rubber and hysteretic systems were also investigated. Their results 
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indicate that not only do highly nonlinear isolation systems (such as those where damping is 

dominated by metallic yielding) excite high-frequency vibrations, but available analytical 

methods capture the frequency content of the acceleration response with fidelity. 

Wolff and Constantinou [2004] summarized analytical and experimental 

investigations on the response of secondary systems in isolated structures. A six-story 

building model on both LR and FP bearings was tested on an earthquake simulator platform. 

It was concluded that increased energy dissipation through either hysteretic or nonlinear 

viscous damping results in decreased isolator displacement at the expense of increased 

primary and secondary system response. However, no definitive relationship was drawn 

between the nonlinearity of the isolation system and the amplitude of high-frequency floor 

spectral accelerations. 

A study by Pavlou [2005] examined the sensitivity of nonstructural response 

parameters to the properties of isolated buildings. Two moment-frame buildings, each having 

distinct natural periods, were subjected to earthquake records having various source 

characteristics and soil types. The isolation systems considered were bilinear with a variation 

of characteristic strength and elastic period. The results of this research verified that all 

considered isolation systems showed favorable nonstructural response compared to the 

equivalent conventional structure. However, analyses were carried out with reported 

numerical instabilities that likely affect high-frequency acceleration response in the isolated 

structure. In addition, the effect of property modification factors for long-term changes in 

isolator properties were accounted for, as was the presence of vertical acceleration. These 

last two effects were concluded to be of minor consideration in the estimation of secondary 

system response. 
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3 Multi-stage Friction Pendulum Bearings 

In this chapter, common types of friction pendulum (FP) bearings currently available in the 

United States are summarized, including mechanical characteristics, analytical models, and 

important considerations for design. Multi-stage FP bearings are defined as those 

characterized by more than one pendulum mechanism. Emphasis is placed herein on multi-

stage FP bearings since there is scant documentation on these devices in the available 

literature, and investigations into their modeling and behavior serve as the basis for several 

of the studies contained in this report. 

3.1 SINGLE-PENDULUM BEARINGS 

The single concave friction pendulum bearing is the original Friction Pendulum System 

described by Zayas et al. [1987] and represents the first manufactured sliding-bearing to 

make use of the pendulum concept. This bearing consists of an articulated slider resting on a 

concave spherical surface. The slider is coated with a woven PTFE (polytetrafluoroethylene) 

composite liner, and the spherical surface is overlain by polished stainless steel. A picture 

showing an FP bearing and a cross-section is shown in Figure 3.1, indicating the above-

described components. 



 

22 
 

  

Figure 3.1: Photo (left) and section (right) of a typical FP bearing 

 

Figure 3.2: Idealized equilibrium of slider in displaced configuration 

Although there is an abundance of published work on the cyclic behavior of FP 

bearings (e.g., Zayas et al. [1987], Constantinou et al. [1990], Alamzán et al. [1998], 

Mosqueda et al. [2004]), it is useful to recapitulate the essential aspects of their behavior 

since the modeling of multi-stage FP bearings is an extension of the single-concave case. To 

develop a mathematical model of the force-displacement relationship of an FP bearing, the 

geometry of the device must be fully understood. In the formulations that follow, only the 

horizontal degree of freedom is considered, and both vertical deformation and rotation are 

ignored. This is appropriate given the applications to isolated structures considered in this 

report include only horizontally flexible bearings between flexurally rigid elements, and the 

vertical stiffness of FP bearings is very high compared to the stiffness of elements to which 

the bearing is typically attached. 
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First, we can write the equilibrium equations of the bearing in its displaced condition 

(as seen above in Figure 3.2), summing forces along the horizontal and vertical axes, and 

obtaining  

  (3.1) 

Or, in matrix form, the mapping from local tractions to global external forces is through a 

simple linear coordinate transformation, shown below. 

  (3.2) 

From geometry, it is clear that  and , hence Equation (3.2) 

can be written as 

  (3.3) 

Assuming the tangential traction  is related to the normal traction  through Coulomb 

friction by the equation  (where μ is the coefficient of friction), and defining a 

normalized shear force , Equation (3.3) reduces to 

  (3.4) 

Equation (3.4) returns a normalized shear force in the bearing given an imposed 

displacement u, and is nonlinear in u. While in some cases it may be important to consider 

the large displacement formulation of the normalized restoring force , a common 

simplifying assumption here is useful. For virtually all FP bearings, the effective radius of 

curvature is much greater than the maximum expected displacement. The consequence of this 

assumption can be seen by expanding  in a Taylor series about the point u = 

0. Carrying out this expansion yields the following series 
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From this series, it is clear that for , . Substituting this approximation into 

Equation (3.4) and simplifying, the actual restoring force is 

  (3.6) 

This is the well-known force-deformation relationship for a single-concave FP bearing at a 

particular sliding displacement and velocity  and , respectively. The function  is 

the signum function, and returns 1 (or -1) if the argument is positive (or negative). The 

inclusion of the signum function is necessary since the direction of the friction force always 

opposes that of the sliding velocity. A normalized force-deformation plot of a single-concave 

FP bearing under one complete cycle of loading, based on Equation (3.6) is shown below in 

Figure 3.3. 

 

Figure 3.3: Idealized hysteresis loop of single-concave FP bearing  
based on Equation (3.6) 

An implication of Equation (3.6) is that the frequency characteristics of a rigid 

structure isolated on FP bearings are independent of its mass. This can seen by writing the 

equation of motion for an undamped single-degree-of-freedom oscillator with an FP bearing 

as the restoring force (where m is the supported mass, hence W = mg). Neglecting friction, 

the natural frequency is seen as  

  (3.7) 

The above derivations of the force-displacement behavior of the FP bearing will form the 

basis for extension to multi-stage FP bearings, discussed below. 
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3.2 DOUBLE PENDULUM BEARINGS 

Recent developments in the design and manufacturing of FP bearings have centered on the 

use of multiple pendulum mechanisms. Whereas the single-concave FP bearing has two key 

parameters that characterize cyclic behavior (R and μ), a multi-stage FP bearing has greater 

design flexibility because the pendulum length and friction coefficient are specific for each 

independent pendulum mechanism. In the case of a double-concave FP bearing, shown below 

in Figure 3., the parameters characterizing the cyclic behavior are (R1, μ1) for one concave 

sliding interface, (R2, μ2) for the other, and  for the kinematic relation between the 

position of the two sliding surfaces. The behavior of the double pendulum (DP) bearing has 

been described by Fenz and Constantinou [2006].  

 

Figure 3.4: Section through a typical DP bearing 

Since each sliding surface must resist the same force, the hysteretic model for the bearing 

can be derived by considering single-pendulum bearings in series. To develop this 

relationship, a general model of n single-pendulum bearings in series is first considered, then 

specialized to the double-concave case. From Equation (3.6) let 

 ,  (3.8) 

represent the shear force in the ith FP element in a series system of n FP elements. In this 

equation, the effective pendulum length  is defined as  , as the slider height 

reduces the radius along which the restoring force acts. Regardless of the configuration, each 

of the n FP elements resists the same vertical force W, and therefore the subscript is omitted. 

Here, we reintroduce the normalized shear  to simplify notation and non-
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dimensionalize the equilibrium equations. Substituting this normalization into Equation (3.8) 

and writing the system of uncoupled equilibrium equations in matrix form, we obtain 

  (3.9) 

or in compact notation 

  (3.10) 

Equation (3.10) can be rearranged to solve for the displacement in each bearing in the series 

  (3.11) 

Implicit in the above relationship is that each of the n FP elements is sliding, or that 

 for all k. Indeed, this may not be the case, so a slight modification is necessary. If 

we define the Heaviside operator as 

  (3.12) 

and assume no reversal of displacement, then Equation (3.11) may be more generally written 

as 

  (3.13) 

where  is an n-dimensional vector of ones. The desired result, however, is a scalar 

displacement in the bearing in terms of a scalar force, since the internal mechanics of the 

multi-stage bearing are insignificant in determining global system response. Let Vb be the 

force in the bearing, and ub the displacement. Since the bearing is a series system, each 

 for all k, and . Extending the matrix notation defined above and 

rearranging slightly, the bearing displacement is  

  (3.14) 

Applying Equation (3.14), a bearing shear can be mapped to a bearing displacement knowing 

the effective length matrix L and the friction matrix M of the n-component multi-stage FP 

( )

( )

1
1 1 1 1 1sgn 0 0

0 sgn 0n n n n n

V u L u

V u L u

μ

μ

−⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎛ ⎞
⎜ ⎟ ⎢ ⎥ ⎜ ⎟⎢ ⎥= +⎜ ⎟ ⎢ ⎥ ⎜ ⎟⎢ ⎥

⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦⎝ ⎠

� �
# % % #
� �

( ) 1sgn −= +V M u L u� �

( )sgn⎡ ⎤= −⎣ ⎦u L V M u� �

0k kV μ− ≥�

0
( )

0 0
x x

H x
x

≥⎧
= ⎨ <⎩

1nH ×⎡ ⎤= −⎣ ⎦u L V M1�

1n×1

k bV V= 1
n

b i iu u== Σ

( )1 1n

T
b b n n nu H V

× × ×= −1 L I M 1�



 

27 
 

bearing. Recall that L is simply a function of the concave radii and slider heights, and 

therefore the entries are geometric quantities.  

If we consider the DP bearing, and assume sliding occurs on both surfaces (i.e., 

, k = 1, 2) Equation (3.14) becomes 

  (3.15) 

  (3.16) 

  (3.17) 

Rearranging to express the force in terms of the displacement, replacing the normalized shear 

with the actual shear, and substituting , Equation (3.17) becomes 

  (3.18) 

This expression for the force-displacement relationship for the entire bearing is identical to 

that developed for the DP bearing by Fenz and Constantinou [2006]. A force-displacement 

relationship for a DP bearing under one complete cycle of loading is shown below in Figure 

3.5. 
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Figure 3.5: Idealized hysteresis loop of DP bearing  
based on Equation (2.18) 

In the above hysteresis plot, the transition displacement at which sliding on both surfaces 

occurs, , can be determined by dividing the difference between μ2 and μ1 by the slope. 

Doing so, and substituting for , yields 

  (3.19) 

The key improvements of the DP bearing over the FP bearing are as follows: 

1. The lateral deformation is divided between the top and bottom concave surfaces; 

consequently the required plan diameter of each concave dish is significantly less than 

the equivalent single-concave FP bearing.  

2. Equilibrium in the displaced condition shows that the internal moments are 

distributed to the top and bottom plates in proportion to their displacement from the 

centerline of the undeformed condition. 

3. The radii and friction coefficients of the two pendulum mechanisms may be 

independently selected to achieve a particular tri-linear force-displacement 

relationship. 

4. By making the radii and friction coefficients the same (that is, R1 = R2 = R, μ1 = μ2 = 

μ), a bilinear relation such as that shown in Figure 3.3 can be achieved, in which the 

effective friction and radii are represented by  and . 
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3.3 TRIPLE PENDULUM BEARINGS 

The triple pendulum bearing introduced by EPS, Inc., consists of four concave surfaces and 

three independent pendulum mechanisms. The outer slider consists of concave surfaces on 

either side of a cylindrical inner slider with a low-friction interface on both ends. This forms 

one pendulum mechanism, and defines the properties of the isolation system under low levels 

of excitation. The outer slider also consists of sliding interfaces between top and bottom 

outer sliders and the major spherical surfaces of the bearing. The bottom sliding surface is in 

contact with a spherical surface of a particular radius of curvature, forming the second 

pendulum mechanism. This mechanism defines the primary properties of the isolation system 

under moderate levels of excitation. The upper sliding surface is in contact with another 

spherical surface of a particular radius of curvature, forming the third pendulum mechanism. 

The friction coefficient of this third sliding interface is sufficiently large to prevent sliding 

until an extreme level of excitation occurs. The mode of behavior described represents one 

likely to be selected by a designer; however, other types of behavior could be achieved 

through variation of the frictional characteristics. The properties of these three pendulum 

mechanisms may be selected to optimize the performance of the seismic isolated structure 

considering multiple levels of seismic hazard. A section through the TP bearing is shown 

below in Figure 3.6. An identification of all components of the TP bearing is shown in Figure 

3.7, including geometric parameters and friction coefficients. For derivations involving the 

radius of curvature, it will be assumed that this is the effective pendulum length, which is the 

nominal radius minus the slider height. That is, the following relationships will be assumed: 

  (3.20) 1 1 1 2 2 2 3 3 3, ,L R h L R h L R h= − = − = −
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Figure 3.6: Section through a typical TP bearing 

 

 

Figure 3.7: Parameters characterizing each component of the TP bearing 

A schematic description of each sliding mechanism as the TP bearing is subjected to 

increasing displacement demand in shown below in Figure 3.8. In this figure, the friction 

coefficient on the lower major spherical surface is less than the friction coefficient on the 

upper major spherical surface. A photograph of a full-scale TP bearing depicting all sliding 

components is shown in Figure 3.. 
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Figure 3.8: Schematic description of sliding mechanisms for TP bearing, where u1 < u2 
< u3 < u4 (adapted from figure courtesy of EPS, Inc.) 

 

Figure 3.9: Photograph showing components of full-scale TP bearing (courtesy of EPS, 
Inc.) 

Given the geometry and properties of the TP bearing, the force-displacement 

relationship for the element can be derived by taking equilibrium in the deformed 

configuration, similar to the DP case. However, the TP bearing cannot be treated simply as a 

series of three single-pendulum elements, as shown below. As a result, the general 

formulation developed for the DP bearing cannot be simply extended to the TP bearing. This 

would ignore the relative rotation of the inner slider relative to the outer concave surfaces. In 

the subsequent section, the displacement of the bearing given the applied external forces is 

derived for each stage of sliding. 
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3.3.1 Stages of Lateral Displacement 

3.3.1.1 Deformation of Inner Slider 

Consider a free-body diagram of the inner slider in the deformed condition indicated by 

Figure 3.. It is assumed that the top and bottom outer surfaces are restrained against rotation. 

This is a valid assumption if sliding is restricted to the inner slider only.  

 

Figure 3.10: Free-body diagram of inner slider in deformed condition  

In the deformed condition, equilibrium of the inner slider yields the coordinate 

transformation below 

  (3.21) 

Recognizing the coupling of the tangential and normal forces through friction, we let 

 and . Furthermore, the normalized shear force on the bearing is 

defined as . Equation (3.21) becomes 
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Assuming small angles, or , and rearranging to solve for the unknown 

rotation angles   

  (3.23) 

Generally, it can be assumed that  because (a) the friction coefficient is a number 

typically less than 0.05; and (b) the normalized isolator shear is roughly equal to the pseudo-

spectral acceleration demand (in units of g) which, for isolated structures, rarely exceeds 0.4. 

Therefore, it is expected that , and the rotations of the inner slider can be 

approximated as . Recognizing that, from geometry, , the 

total lateral displacement under this stage of loading can be described as 

  (3.24) 

3.3.1.2 Deformation of Inner Slider and Sliding on Lower Surface 

The second stage of movement is that of the inner slider and bottom surface. This stage 

initiates when the normalized shear force exceeds the friction coefficient of the lower slider, 

that is, . As before, we begin by solving the equilibrium equations on the deformed 

configuration, shown graphically in Figure 3. (bearing is shown separated for clarity). 
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Figure 3.11: Free-body diagram of TP bearing in deformed condition when sliding 
occurs on the bottom dish but not the top dish 

Similar to the derivation above for the inner slider, the basic coordinate transformation of the 

forces on the bottom slider is given by 

  (3.25) 

After performing the same operations as Equations (3.22) and (3.23), the rotation of the 

bottom slider can be expressed as  

  (3.26) 

Isolating a free-body diagram of the inner slider, whose rotation relative to a vertical datum 

is , yields the following expression of equilibrium: 

  (3.27) 

And after substituting Equation (3.26) and rearranging terms, the following two expressions 

are obtained for the rotations of the inner slider relative to the lower and upper concave 

dishes, respectively: 

  (3.28) 
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not rotate relative to the bottom dish, but does rotate relative to the vertical datum (and hence 

the top dish). The implications of this will become clear in the final derivation of the force-

displacement relationship for the bearing. 

From geometry, the lateral displacement u can be obtained from the slider rotations as 

. After substituting Equations (3.26) and (3.28), the total bearing 

displacement can be expressed as 

  (3.29) 

It should be noted that this expression differs slightly from that from the series-formulation 

presented from the FP-DC bearing. Specifically, from Equation (3.17) above, the 

displacement for a two-component series FP bearing would be 

  (3.30) 

which is less than the displacement computed from Equation (3.29) by the quantity 

. If the inner slider were designed to have a friction coefficient greater than the 

bottom dish ( ), the additional term would vanish and the bearing behave like a two-

component series model. This indeed follows intuition, as for , the inner slider is 

essentially rigid, which is the case for the DP bearing. 

3.3.1.3 Simultaneous Sliding on Lower and Upper Surfaces 

The third stage of movement is that of all three pendulum mechanisms deforming 

simultaneously. This stage initiates when the normalized shear force exceeds the friction 

coefficient of the upper slider; that is, when . This condition is shown graphically in 

Figure 3. below. 
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Figure 3.12: Free-body diagram of TP bearing in deformed condition when sliding 
occurs on all three pendulum mechanisms 

Equilibrium of the deformed slider is found by the coordinate transformation 

  (3.31) 

This expression is sufficient to develop an expression for the bearing displacement, u, as a 

function of the normalized shear force, . Using the same small angle approximation as 

before, and substituting the normalized shear, Equation (3.31) becomes 

  (3.32) 

Substituting (3.26) and (3.28a) above for the known rotation angles  and , and solving 

gives 

  (3.33) 

In this stage of deformation, the rotation of the inner slider is now constant as neither  nor 

 depends on the applied forces. The constraint that there is no relative rotation of the top 

of the bearing relative to the bottom is defined by the following equality: 

  (3.34) 

Substituting (3.32) into (3.33) yields 

  (3.35) 
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With all slider rotations known, the familiar expression for bearing displacement, 

, gives a total displacement  

  (3.36) 

where the contributions to the total displacement for each of the three pendulum mechanisms 

are denoted u1, u2, and u3. Of interest in the above equation is by how much the displacement 

at a particular level of shear differs from the three-component series model derived above in 

Section 3.2. We let the difference in displacement be defined as  where  is the 

displacement of the series model as described by Equation (3.14) and  is the displacement 

of the TP bearing described by Equation (3.36) above. Computing this difference gives 

  (3.37) 

where u2 and u3 are the contributions to the total displacement from the second and third 

concave surfaces, respectively. Therefore, the pure series model yields a higher bearing 

displacement for a given shear force, and this difference is proportional to the overall bearing 

shear.  

3.3.1.4 Deformation of Inner Slider and Sliding on Upper Surface 

The sliding stage described in Section 3.3.1.3 continues until the bottom slider reaches its 

displacement capacity, defined as . This displacement is a function of the plan diameters of 

the bottom plate and the slider, and is therefore a geometric quantity. From geometry, the 

displacement capacity of the bottom concave surface is defined as 

  (3.38) 

where D2 is the plan diameter of the bottom concave surface and d2 is the plan diameter of 

the inner slider. At the initiation of this sliding stage, the rotation of the bottom slider can be 
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expressed as , and remains constant under increased deformation. The same 

reasoning leads to the conclusion that the rotation of the bottom inner slider does not change 

when the top surface does not slide also applies when the bottom surface does not slide, but 

instead is applicable to the top inner slider. As a result, any additional displacement must be 

due to rotation of the bottom of the inner slider, denoted above as . 

3.3.1.5 Deformation of Inner Slider Only (final stage) 

The final sliding stage is when displacement capacity of the upper slider has been reached. 

This displacement is a function of the diameter of the top plate and the diameter of the top 

slider. From geometry, the displacement capacity of the top concave surface is defined as 

  (3.39) 

where D3 is the plan diameter of the top concave surface and d3 is the plan diameter of the 

inner slider. At the initiation of this sliding stage, the rotation of the top slider, which can be 

expressed as , may not increase. Any additional displacement must occur through 

deformation of the inner slider only. This sliding stage persists until the displacement 

capacity of the inner slider, , has been reached, at which point the bearing lateral 

deformation capacity has been reached, and behaves as laterally rigid under excess lateral 

demand. The displacement capacity of the inner slider is defined as 

  (3.40) 

3.3.2 Construction of a Force-Displacement Relation 

To develop a force-displacement relation, the key transition points must be accurately 

identified. These transition points are described above in Sections 3.3.1.1 through 3.3.1.5.  

First, the displacement at which sliding initiates on the lower surface must be 

identified. This is done by substituting  into Equation (3.29), and denoting this 

displacement . This substitution yields 

  (3.41) 
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The displacement at which sliding initiates on the upper surface can also be identified in the 

same fashion, that is, substitute  into Equation (3.25), thereby obtaining 

  (3.42) 

The displacement at which sliding ceases on the bottom surface is defined by its 

displacement capacity . By computing the additional displacement between  and the 

limiting displacement of the bottom surface, we determine 

  (3.43) 

We also compute the lateral displacement at which both top and bottom surfaces have 

reached their displacement limits. The incremental displacement beyond  (described 

above) is due to rotation of the top of the inner slider and the top slider on the upper concave 

surface. Therefore, the transition displacement can be described as 

  (3.44) 

Finally, it is useful to derive the equivalent pendulum lengths for each stage of sliding. This 

is done by determining the slope of the force-displacement relation, and setting this to the 

reciprocal of some effective length. For each portion of the curve, the following is then used 

to solve for the effective pendulum radius: 

  (3.45) 

For initial movement, defined in Section 3.3.1.1 above, the effective radius is 

  (3.46) 

Similarly, the expressions for the effective radii for sliding stages II and III are: 

  (3.47) 
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  (3.48) 

The expressions for the effective pendulum length for sliding Stage IV can be directly 
computed from Equation (3.43) as 

  (3.49) 

The effective pendulum length for sliding Stage V is the same as that for Stage I, or  

  (3.50) 

This is shown graphically on a force-displacement plot in Figure 3.3. 
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Figure 3.3: Idealized monotonic force-displacement relationship  
for TP bearing 

Another way of interpreting the behavior of the TP bearing is to compare the individual 

displacements of each sliding component at a particular normalized shear force. This is 

effective because each element is subject to the same shear, and this shear yields a unique 

displacement in each sliding mechanism. The total displacement at a given shear is simply 

taken as the sum of the individual displacements. The normalized force-displacement 

relationships for each sliding mechanism are shown below in Figure 3.4. 
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Figure 3.4: Normalized force-displacement relationship for  
each sliding mechanism of the TP bearing 

The definition of each transition shear, denoted above in Figure 3.11 by a superscript asterisk, 

can be readily computed from the transition displacements described in Equations (3.40)–

(3.43). These transition shears are defined as follows: 

  (3.51) 

3.3.3 The Suitability of Small-Deformation Theory 

One question that may arise is whether a small angle approximation is appropriate for an 

inner slider with an effective radius that is small with respect to the lateral displacement. To 
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investigate this issue, a reasonable example is considered. Following the notation of the 1997 

Uniform Building Code, suppose a site has a 1-sec spectral acceleration of Cv (in units of g) 

for a 72-year return period seismic event. A typical value of this Cv for a far-field site in the 

Los Angeles metropolitan area is approximately 0.4. If we are to restrict sliding to the inner 

slider for this level of earthquake, we can make a reasonable estimate of the expected lateral 

displacement. If we write the spectral displacement as 

  (3.52) 

where T is the natural period of the building sliding only on the inner slider. Substituting 

, and letting the isolator displacement equal the spectral displacement, 

equation (3.52) becomes 

  (3.53) 

which gives the ratio of displacement to radius as 

  (3.54) 

Rewriting Equation (3.4) above assuming zero friction, and making use of the second-order 

Taylor expansion in Equation (3.5), the normalized restoring force for the inner slider is 

  (3.55) 

where ε is the approximation error. By substituting Equation (3.53), the error can be written 

as 

  (3.56) 

Therefore, the error in the first-order approximation is proportional to the square of the 

spectral demand at the site, and inversely proportional to the effective radius of curvature of 

the dish (and hence the square root of the natural period). Figure 3.5 below shows the 
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magnitude of this error for various inner slider natural periods and 1-sec spectral 

accelerations (Cv).  

 

Figure 3.5: Variation of first-order approximation error for inner slider 

3.3.4 Development of Cyclic Model 

To extend the monotonic force-displacement model for the multi-stage FP bearing to 

generalized loading, it is important to recognize the path-dependent behavior of each 

component of the FP bearing. The cyclic behavior of each FP element is hysteretic because 

of the force reversals due to the friction force being proportional to the sign of the velocity. 

Therefore, given a generalized displacement signal, the analytical model must be able to 

follow the individual deformations of each FP element, recognizing that the force in each is 

equal to the external force, and the imposed displacement is the sum of the deformations of 

each FP element. 

One major difficulty in developing a model for the multi-stage FP bearing that 

responds to displacement control is that, at a particular imposed displacement, there are n 

unknown element deformations (where n is the number of pendulum mechanisms). The 

condition that defines these individual deformations is the constraint that all element forces 

must be equal to each other. Because of this unique set of constraints, a force-based approach 
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must be taken to generate the global force output of the bearing at an imposed total 

displacement. This formulation is developed in this section. 

3.3.4.1 Model Components 

Here we consider an n-component FP bearing, which can be specialized to the two- or three-

component bearing as necessary. In the case of the TP bearing, care must be taken in 

defining each pendulum mechanism since it is not strictly a series system, but can still be 

formulated as one with careful definition of each element. 

Here we define U as the lateral displacement of the bearing, and P as the resultant 

shear at this displacement. These represent external deformations and forces, and correspond 

to those imposed by adjacent elements in a finite element analysis. Similarly, we define the 

vector as the local lateral deformations of each of the n-pendulum mechanisms. The 

local shear forces are defined by the vector .  

3.3.4.2 Equilibrium Conditions 

The equations of equilibrium can be expressed by relating the internal element force vector s 

to the scalar external force P through the relation  

  (3.57) 

This relation is a consequence of each element shear being identical to the external force. 

Because of this, the equilibrium map  is simply an n-dimensional column of ones. 

3.3.4.3 Compatibility Conditions 

The compatibility equations may be obtained through the principle of virtual forces, also 

known as the principle of complementary virtual work. This principle expresses the 

compatibility between external (global) and internal (local) deformations for any arbitrary 

force field that is in equilibrium. 

We let  and  be a pair of virtual external and internal forces, respectively. These 

forces are assumed to be in equilibrium. We also let U and v be real external and internal 

deformations, respectively. The external work on this system is the virtual force  acting 
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through the real displacement U, and the internal work is the sum of each virtual force  

acting through its corresponding real deformation . Therefore, the complementary external 

work is expressed by , and complementary internal work by . 

Since these two expressions must be equal, we obtain 

  (3.58) 

However, since  and  are assumed to be in equilibrium, Equation (3.57) holds, giving the 

following 

  (3.59) 

Or, rearranging to one side 

  (3.60) 

As Equation (3.60) must hold for any arbitrary virtual force , it must be true that 

  (3.61) 

This establishes the well-known contragradience relationship between the equilibrium 

mapping (Eq. 3.57) and the compatibility mapping (Eq. 3.61). Therefore, the compatibility 

map  is simply an n-dimensional row of ones. Expanding Equation (3.61) gives 

, or the external displacement is the sum of the local deformations. Indeed, this is 

true for any series system, and could have been stated outright; however, the application of 

virtual work is a more general method of developing equations of compatibility from 

imposed equilibrium. 

3.3.4.4 Constitutive Relations 

With the equilibrium and compatibility equations for the n-component FP element defined, a 

relationship between element forces and element deformations is necessary to formulate the 

behavior of the system. Here, we define the constitutive relation for each element as 

 where  is the flexibility relation for the kth element, and may be generally 

nonlinear. In the formulation developed here, the flexibility relation is assumed to be bilinear 
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hysteretic. Given the parameters μk, Lk, and dk, (friction coefficient, pendulum length, yield 

displacement) for the kth element, the bilinear model is described completely. This model is 

shown graphically below in Figure 3.6, including the path-dependent behavior under load 

reversal. 

 

Figure 3.6: Idealized bilinear hysteretic flexibility relation, with parameters indicated 
(dashed lines indicate negative  
incremental change in force) 

The yield displacement dk may be taken either arbitrarily small, or may be estimated from 

experimental data. Based on the work of Constantinou, et al. [1999], it is assumed to be 0.01 

inches or nearly rigid prior to slip. With the parameters of each element defined, the 

assembly of a model for the entire bearing may proceed. 

3.3.4.5 Force-Based Hysteretic Model 

The model being developed is designed to take a displacement input, and return a force 

output. This displacement input must be a displacement history because of the path-

dependency of each element. This is a desirable form of a hysteretic model since the 

numerical integrations algorithms of finite element software are generally set up to predict a 

displacement at a particular time step, and iterate to find force equilibrium. 

Let  be the imposed displacement at a load step i. This can be considered the ith 

entry in a vector of displacements as part of an input displacement signal. Given this 

displacement , we assume an initial force field that is in equilibrium with an external force 

 (the superscript indicates the j = 0 iteration). This is an initial guess of the external force 

resulting from . Applying Equation (3.57), the initial guess of basic element forces is 

  (3.62) 
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Applying the simple bilinear hysteretic constitutive model defined in Section 3.3.4.4, the 

element deformations are 

  (3.63) 

Given this iteration of element deformations, the tangent flexibility is  

  (3.64) 

where  is a diagonal element flexibility matrix whose kth diagonal entry is . This 

tangent flexibility is used to iterate to a solution, as will be seen shortly. From the element 

deformations, the external displacement is computed using the compatibility relation of 

Equation (4.5), and is 

  (3.65) 

To assess the adequacy of this external displacement with respect to the imposed 

displacement, a residual displacement  is defined. If this residual is not suitably 

close to zero, the imposed displacement is not compatible with the internal deformations, and 

a new trial external force must be assumed. This new trial force is  where 

. This method of iteration is the well-known Newton-Raphson procedure, and is 

commonly used to find solutions to a variety of nonlinear problems. This iteration continues, 

whereby 

  (3.66) 

then continues until , at which point  is recorded as a converged external force, 

and the next global displacement  is imposed and the process repeats for all U. Sample 

hysteretic curves and element deformation histories resulting from two types of displacement 

input are shown below in Figure 3.7 and Figure 3.8. 
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Figure 3.7: Model hysteresis (left) and individual slider deformation histories (right) for 
exponentially growing displacement input 

 

   

Figure 3.8: Model hysteresis (left) and individual slider deformation histories (right) for 
exponentially decaying displacement input 

 

3.3.4.6 Selection of Cyclic Series Model Parameters 

The cyclic series model (CSM) described above behaves under the assumption that, once 

sliding commences on a pendulum mechanism, deformation is linearly accumulated in that 

spring over the entire global displacement excursion. However, Section 3.3 above describes 

the behavior of each spherical surface, and it is clear that the inner slider does not 

accumulate displacement consistently, thereby violating the assumption of the series model. 

Despite this, it is possible to construct a CSM with parameters tuned to exhibit exactly the 

force-deformation characteristics described in Section 3.3. This formulation is particularly 
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attractive since each element is based on simple nonlinear elements, each of which can be 

implemented in widely used commercial analysis software packages. 

Consider the available parameters for a particular element of the CSM. Each bilinear 

element is completely characterized by an initial stiffness (k1), yield force (fy), and a 

secondary stiffness (k2). To model the deformation capacity of each dish, a gap and hook 

element may be implemented with gap (or hook) distance G (or H) and gap (or hook) 

stiffness kG (or kH). The objective is to select the value for each of these parameters, for each 

of the three elements in the series, given (a) the geometric properties of the bearing (dish 

radii, slider heights, and dish diameter); and (b) the three friction coefficients. For the 

remainder of this section, all parameters are assumed to be normalized with respect to the 

supported weight W. 

We first consider the properties of each of the three bilinear elements. Since each 

element behaves nearly as a Coulomb friction element, the initial stiffness k1 is large, and 

can be computed knowing a yield force and yield displacement. The yield force of the jth 

element is taken as the friction coefficient, or , since this is the force level at which 

movement along the secondary slope occurs. From a previous discussion, the yield 

displacement of the frictional slider may be assumed to be . The magnitude of 

this yield displacement, however, is not significant so long as it is arbitrarily small with 

respect to the displacement demand across the spring. Based on the yield displacement, the 

initial stiffness of the jth element is computed as .  

The second stiffness k2 of each spring is based on the effective pendulum length, 

subject to a slight modification. Consider a displacement that induces Stage I sliding. Under 

this level of displacement, only Spring 1 accumulates deformation, since Springs 2 and 3 

have yet to reach their respective yield forces. Hence, the second stiffness must be equal to 

the reciprocal of the effective pendulum length for Stage I, or . Once the force 

across the series reaches , sliding commences on both Spring 1 and Spring 2. The 

aggregate flexibility must equal that for Stage II sliding, or . Recalling that, for 

springs in series, the total flexibility is the sum of individual flexibilities, the flexibility of 

Spring 2 must be equal to . Therefore, we compute the second stiffness of Spring 2 as 

the reciprocal of the required flexibility, or . Similarly, under Stage III 
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sliding, all three springs accumulate deformation, and the aggregate flexibility must be equal 

to . This implies a required flexibility of Spring 3 equal to , or . 

Given the above computed secondary stiffness parameters, the total element stiffness 

matches exactly that derived for Stages I, II, and III in Section 3.3. 

To properly characterize the stiffening of the TP bearing in Stages IV and V due to 

the displacement capacity of each dish, it is necessary to calibrate gap and hook elements for 

each of the three elements. As previously discussed, the major shortcoming of a series model 

versus the actual behavior of the TP bearing is the difference in accumulation of deformation 

on each sliding mechanism during lateral displacement. Whereas the physical displacement 

limits of each mechanism would typically define the gap dimension in the model, the CSM 

exhibits deformation accumulation across all pendulum mechanisms. In contrast, Figure 3.4 

indicates a nonlinear flexibility of the inner slider over a linear increase in shear force. 

Therefore, at a particular normalized shear force , the deformation of each pendulum 

mechanism in the CSM formulation generally varies from the true deformation. Therefore, a 

correction must be made to the gap sizes, G1, G2, and G3, corresponding respectively to 

pendulum mechanisms 1, 2, and 3. 

Figure 3.9 below is a convenient representation of the pendulum flexibility 

relationship over a monotonically increasing normalized shear force. This plot indicates the 

behavior of each pendulum in the actual TP bearing (shown dashed, based on Figure 3.4 

above) and the CSM model. The corrected CSM model exhibits a sliding stage at a shear 

force equal to the actual TP bearing. Each transition shear is shown, as are the actual 

displacement limits of each pendulum, . In this figure, the second and third 

pendulums have the same displacement limit, but the derivations of corrected gap sizes that 

follow assume arbitrary and potentially distinct displacement limits.   

2 3L L+ 3 1L L− ( )2,3 3 11/k L L= −

V�

1 2 3, ,u u u
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Figure 3.9: Stages of sliding for each pendulum mechanism in the actual TP bearing 
(shown dashed) and the CSM formulation (shown solid) 

The calculation of the gap size for the first pendulum mechanism is clear from Figure 

3.9 above. Since, in general,  for pendulum j, it follows that 

  (3.67) 

Similarly, for the second pendulum mechanism, the gap size is 

  (3.68) 
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Finally, for the third pendulum mechanism, the gap size is 

  (3.69) 

Each parameter of the CSM has been calibrated to exhibit precisely the force-displacement 

behavior derived above in Section 3.3. As a summary, the following matrix is useful for 

assigning parameters to the CSM given a set of bearing geometric properties and target 

friction coefficients. 

Table 3.1: Parameters of calibrated CSM elements 

Element 1 2 3 

k1    

fy    

k2 1/  1/( ) 1/( ) 

G  

 

Chapter 4 of this report describes an experimental program to characterize DP and TP 

bearings subject to harmonic and earthquake input. Chapter 5 describes the results of this 

experimental program, and includes a comparison of the experimental force-displacement 

relations with those resulting from the above-described cyclic series model. 
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4 Experimental Program 

A series of experiments was designed and conducted to examine the behavior of actual 

double pendulum (DP) and triple pendulum (TP) bearings under a variety of conditions. This 

chapter outlines the purpose of the experiments, describes the facilities and test apparatus, 

and details the specimen, its instrumentation, and each class of excitation, and the nature of 

the data collected. The purposes of this experimental program are the following: 

1. Characterize the cyclic behavior of multi-stage FP bearings at multiple levels of 

displacement, sliding velocity, and axial pressure. 

2. Identify the parameters necessary for the development of a robust analytical model for 

double- and triple pendulum bearings that captures observed cyclic characteristics. 

3. Record structural response quantities of interest (interstory drifts, floor accelerations, 

base shear) and compare these observations with response quantities computed from 

nonlinear response history analysis. 

4. Examine behavior as bearings approach displacement and force limits. 

The objectives of the studies described here center on the verification of anticipated 

seismic behavior of multi-stage isolation bearings, in particular double- and triple pendulum 

bearings, and the investigation of the ability of nonlinear analytical models and solution 

algorithms employed by commercially available structural analysis software to predict 

response quantities of interest. In particular, while the estimation of deformations in both the 

isolation system and superstructure appear quite robust from past response history analyses, 

the amplitude and frequency content of floor acceleration histories appear to be quite 

sensitive to both the nonlinear model used for the bearing and the selected time integration 

method. 
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In this chapter, a complete description of the experimental program is given, 

including the details of the specimen, bearing types, instrumentation, cyclic characterization 

tests, and earthquake excitation tests. 

4.1 DESCRIPTION OF TEST FACILITY 

The facility used for large-scale dynamic testing at the Earthquake Engineering Research 

Center (EERC) in Richmond, CA, is the Earthquake Simulator Laboratory (or shaking table). 

The supporting platform of this simulator is 20' 0" square in plan, and consists of a 12" thick 

reinforced and post-tensioned concrete slab with a two-way girder system. The combined 

self-weight of the table and the specimen is supported by pneumatically pressurized chamber 

beneath the platform. Eight horizontal actuators and four vertical actuators drive the platform, 

providing three translational and three rotational degrees of freedom. Key performance 

parameters characterizing the earthquake simulator are described below in Table 4-1. 

The table is perforated by 2.25" diameter through-holes at 36" on center, each way. 

These holes provide a means of post-tensioning a specimen to the table using high-strength 

rods to prevent unintended sliding or overturning during testing. 

The actuators are driven by command signals sent from the digital control system. 

This control system imposes and monitors two components of horizontal displacement (X 

and Y), a vertical displacement (Z), rotation about the principle in-plane directions (pitch  

and roll ), and rotation about the axis normal to the table (twist ). The command signal 

can be any digitized displacement/rotation history subject to the performance limitations 

indicated in Table 4.1. Also reported in this table are the scale limits, that is, the limits 

expressed for an assumed length scale factor. These experiments were designed with a length 

scale L = 4, and time scale T = 2, resulting in equal acceleration at both model and prototype 

scales. 

 

 

 

 

Xθ

Yθ Zθ
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Table 4.1: Performance limits of earthquake simulator 

 

4.2 EXPERIMENTAL SPECIMEN 

To facilitate collection of response data for both isolation bearings and the supported 

structure (i.e., superstructure), an experimental specimen was developed. The development of 

this specimen considered a number of factors: 

1. Friction pendulum bearings need adequate axial pressure on the slider such that the 
observed friction coefficient is consistent and repeatable over numerous tests. 
Therefore, the total ballast supported by the specimen must be sufficiently large to 
develop such a face pressure. 

2. Variation of axial load due to overturning effects, including possible bearing uplift, is 
an important parameter of interest. Therefore, the height-to-width aspect ratio of the 
superstructure must be large enough to induce uplift under the selected table 
excitations. 

3. In characterizing the amplitude and frequency content of story acceleration histories, 
a multi-story specimen with observable lateral flexibility (but sufficient strength to 
prevent yielding during repeated testing) is necessary to capture contributions to the 
response from multiple modes of vibration. 

4. The connection of the isolation bearings to the base plate of the superstructure was 
required to allow bearings to be replaced. 

4.2.1 Supported Model Structure 

A three-story concentrically braced steel frame was used as the isolated building specimen. A 

rendering and photograph of the frame are shown in Figure 3-1. This frame has seen 

extensive prior experimentation. It was originally fabricated as part of a research program to 

Performance Parameter Limit Scale Limit1

Horizontal Displacement ±5.0 in. ±20 in

Vertical Displacement ±2.0 in. ±8.0 in

Horizontal Acceleration 1.5 g 1.5 g

Vertical Acceleration 4.0 g 4.0 g

Horizontal Velocity 25 in./sec. 50 in./sec.

Payload 165 kips 2640 kips
1Assumes length scale = 4, time scale = 2



 

58 
 

investigate modeling procedures for predicting seismic response of steel moment-resisting 

frames. In the original tests, a moderate ballast of approximately eight kips per floor was 

applied. Details of the design and construction of the test structure can be found in Clough 

and Tang’s report [1975]. The original test specimen was modified through the addition of 

braced frames in series with Added Damping and Stiffness (ADAS) elements [Whittaker et 

al., 1987]. This specimen was tested as a small structural system and not a similitude-scaled 

replica of a full-scale building. However, the ballast at each floor level was increased to 

approximately 30 kips, for the purpose of developing a realistic relationship between the 

stiffness and strength of the ADAS elements. A diaphragm bracing system was added for 

these tests, consisting of wide-flange infill beams and double-angle diagonal bracing to resist 

the increased inertial forces compared to the original tests. A transverse angle bracing system 

was also added to compensate for the increased lateral demands. This test specimen was 

further modified through the addition of Slotted Bolted Connections (SBCs) to the 

longitudinal bay in a chevron configuration (Grigorian and Popov, 1994). In this series of 

tests, a ballast of approximately 30 kips per floor was also used to sufficiently activate the 

SBCs. Because the existing structure tested with SBCs installed was subjected to story shears 

much larger than those expected for an isolated structure, and because the SBCs were 

designed to slip at a relatively substantial first-mode spectral acceleration, it was chosen as 

the test specimen superstructure for this experimental program. Pertinent details of this frame 

are described below.  

The longitudinal bay of this frame is 12' 0" between column centerlines, and the 

transverse bay is 6' 0". Story heights are 6' 8" for the first floor, and 5' 4" for the upper two 

floors. Each of the four columns are W5 × 16 rolled sections of ASTM A36 structural steel, 

and beams are W6 × 12. In the transverse bays, double L2 × 2 × 3/16 angle bracing elements, 

produced from ASTM A500 Grade B steel, were installed. Longitudinal chevron bracing is 

structural steel tubing with SBCs at the gussets. The details of the SBCs are described 

extensively by Grigorian and Popov [1992], although these connections are not intended to 

slip in any of the tests described herein.  

At each of the three levels, there were four concrete blocks, each of which had 

dimensions 40" × 6" × 48". At the first two levels, there were 36 pallets of lead ingots, each 

pallet weighing approximately 0.51 kips. At the roof level, there were 12 pallets of lead 

ingots. Layers of non-shrink grout were set between all concrete-steel and concrete-lead 
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interfaces for increased resistance to sliding. High-strength threaded-rod (ASTM A193, 

Grade B7) was used to post-tension the ballast components to the steel frame. In total, the 

first two levels support approximately 22 kips of ballast, and the roof supports approximately 

10 kips of ballast. The total steel weight of the specimen is approximately 6 kips, giving a 

total test specimen weight of approximately 60 kips. This corresponds to an axial load on 

each of the four bearings of about 15 kips. A photograph depicting attachment of floor ballast 

is shown in Figure 4.2. 
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Figure 4.1: Rendered longitudinal elevation (left)  
and photograph (right) depicting specimen 

 

 

Figure 4.2: Photograph depicting attachment of floor ballast 
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Figure 4.3: Schematic description of specimen showing elevations (left) and typical 
framing plan (right), reproduced from  

Grigorian and Popov [1992] 

4.2.2 Model Friction Pendulum Bearings 

For the purposes of the research described in this report, sets of four double pendulum and 

four triple pendulum scale-model isolation bearings were manufactured by Earthquake 

Protection Systems, Inc. (EPS) in Vallejo, CA. This section described each of these isolation 

systems and their pertinent characteristics. 

4.2.3 Double Pendulum Bearings 

The first isolation system implemented in the experimental program consists of four double 

pendulum (DP) bearings. A section through a typical scale DP bearing used for 

experimentation is shown in Figure 4.3, including all parameters necessary for 

characterization. A photograph of a typical scale DP bearing, disassembled for clarification 

of each component, is shown in Figure 4.5. These bearings consist of two concave surfaces 

and an articulating slider with PTFE sliding surfaces on each end. The mechanics of the DP 

bearing are discussed in Section 3.2 of this report. Each of the sliding surfaces is designed to 

have the same friction coefficient, and as a result, the cyclic behavior is exactly like that of a 

traditional single-pendulum bearing. Given the dish radii of R = 18.64" and a slider height of 
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h = 2.6", the effective pendulum length is . This corresponds to an 

isolated natural period of  in model scale. In prototype scale, this is 

equivalent to , which is representative of a typical target period for a full-scale 

isolated building. 

The displacement capacity of the scale bearings in an important parameter since this 

limits the amplitude of input table motions. It is desirable for most tests that the isolator 

displacements remain below the displacement capacity to limit unintended damage to either 

the bearings or the superstructure. From Chapter 3, Equation (3.38), the displacement 

capacity of the jth concave dish is 

  (4.1) 

where Dj is the plan diameter of the concave surface and dj is the diameter of the inner slider. 

Substituting the values of these parameters for the model DP bearing, the displacement 

capacity for each dish is 

  (4.2) 

Therefore, the total displacement capacity of the bearing is . This is 

equivalent to 22.3" in prototype scale, a reasonable displacement limit for an isolated 

structure located a moderate distance from an active fault.  

Given the slider diameter of 3", the axial load on each bearing of 15 kips corresponds 

to a face pressure on the PTFE composite liner of approximately 2.0 ksi. With overturning 

from seismic excitation, this axial load was expected to increase to about 30 kips (or a slider 

face pressure of 4.0 ksi). 
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Figure 4.4: Section through a reduced-scale double pendulum bearing 

 

 

Figure 4.5: Photograph of a scale DP bearing, disassembled for clarification of each 
component 

4.2.4 Triple Pendulum Bearings 

The second isolation system investigated as part of this experimental program consists of 

four triple pendulum (TP) bearings. A section through a typical scale TP bearing used for 

experimentation is shown in Figure 4.6, including all parameters necessary for 

characterization. A photograph of a typical scale model inner slider, disassembled for 

clarification of each component, is shown in Figure 4.7. These bearings consist of two outer 

concave surfaces and a slider with PTFE sliding surfaces on each end. The slider itself has an 
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1 3.0 "D =

2 2.6 "h =

1 18.64 "R =

2 18.64 "R =

2 9 "D =
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inner pendulum mechanism that behaves essentially as a DP bearing. The mechanics of the 

TP bearing are discussed in Section 3.3 of this report. Each of the sliding mechanisms is 

designed to have a distinct friction coefficient, and can be determined experimentally. The 

inner sliding surface is lubricated to achieve a very low friction coefficient, whereas the 

major spherical surfaces are not lubricated. From the geometric parameters given in Figure 4-

4, the three effective pendulum lengths are  

  (4.3) 

Given the above pendulum lengths, the pendulum-based period of the bearing in model scale 

in each of the first three phases of sliding is  

  (4.4) 

In prototype scale, these correspond to , , , which 

represent plausible periods for full-scale base-isolated buildings. 

The displacement capacity of the scale bearings is computed in the same manner as 

for the DP bearing above, using Equation (4.1). Substituting the values of these parameters 

for the model TP bearing gives the displacement capacity for each outer dish as 

  (4.5) 

The displacement capacity for each inner dish is 

  (4.6) 

Therefore, the total displacement capacity of the bearing is 

  (4.7) 

This is equivalent to 23.3" in prototype scale, or very similar to that computed for the DP 

bearing. 
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4.2.5 Attachments 

Each bearing is bolted to a 1" thick steel end plate. The top end plate is fillet welded to the 

column base plate, and the bottom end plate has four tapped holes that accept high-strength 

bolts through a load-cell connection plate. A photograph of an isolation bearing connection at 

the base of each column is shown in Figure 4.8. This condition is typical of both DP and TP 

bearings, at all four column locations.  

 

Figure 4.6: Section through a reduced-scale triple pendulum bearing 

 

 

Figure 4.7: Photograph showing TP inner slider, disassembled for clarification of each 
component 
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Figure 4.8: Photograph showing bearing connection at base of column, typical for all 
four columns and both DP and TP bearings 

4.3 DATA ACQUISITION AND INSTRUMENTATION 

The data acquisition system for the earthquake simulator tests was set up to collect 76 

channels of data for each test conducted. The first 16 channels were reserved to record the 

displacement and acceleration of the simulator platform in each translational direction. 

Twelve channels were used to record load cell data for each of the four load cells. Each load 

cell measured axial force, and two orthogonal components of horizontal shear. Twenty 

channels were used to record displacement as measured from linear potentiometers at each of 

the four levels of the structure, two in each principal direction of the structure. Twenty 

channels were used to record acceleration as measured from accelerometers, located 

identically to the linear potentiometers. Finally, six channels were used to measure interstory 

deformations from Novatec displacement transducers. These transducers were oriented 

diagonally between beam-column centerlines, at each story level for both longitudinal frames. 

A summary of instrumentation is described for each of the above channels at the end of this 

Chapter in Table 4-10. A plan layout of accelerometers at each floor level is shown below in 

Figure 4.9, including channel numbers, north orientation, and definition of principal axes X 

(longitudinal) and Y (transverse). A plan layout of linear potentiometers is shown in Figure 

4.10. A photograph depicting instrumentation for recording bearing and structural response is 

shown in Figure 4.11. 
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Figure 4.9: Layout of superstructure accelerometers 

 

 

Figure 4.10: Layout of superstructure linear potentiometers 
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Figure 4.11: Instrumentation to record bearing force, acceleration,  
and displacement response 

4.4 HARMONIC CHARACTERIZATION TESTS 

To characterize and validate the cyclic hysteretic behavior of the double and triple pendulum 

bearings, sinusoidal input excitations consisting of three cycles at an input frequency equal to 

the natural frequency of the model was used as the table command signal. This led to a wide 

array of displacement and velocity demands, and thus yielded cyclic data that is suitable for 

the assessment of both displacement-sensitive and velocity-sensitive parameters. 

To generate a displacement command signal that would achieve a sinusoidal 

excitation while maintaining velocity and displacement of zero at the beginning and end of 

the excitation, a modification to the typical sine input signal was necessary. If we consider 

the sinusoidal displacement input as 

  (4.8) 

where A is the amplitude and  is the excitation frequency; it is clear that the velocity is 

nonzero at t = 0. This condition causes very high initial accelerations because the table 

actuators generate a non-zero velocity over a short time-step. To mitigate these high initial 

accelerations, a third-order polynomial is generated that achieves the desired initial 

conditions. Consider the general third-order polynomial displacement input 

, subject to the following constraints: 

load cell
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  (4.9) 

where  is the time at which the polynomial displacement transitions to the sinusoidal 

displacement. This modified displacement input has the advantages of zero initial 

displacement and velocity, and displacement and velocity equal to that of the sinusoidal 

signal at the transition time. This well-behaved analytic function mitigates potential 

unwanted high table acceleration input at the beginning and end of the excitation. The four 

conditions in (4.8) are sufficient to solve the unknown coefficients  and therefore 

characterize . Solving for this transition polynomial displacement yields 

  (4.10) 

Therefore, the displacement command signal can be summarized as 

  (4.11) 

Here, T is the total duration of the excitation signal, and can be defined as . 

The functions  and  are as defined in Equations (4.8) and (4.10), respectively. For 

the table displacement signal, zero-padding of two seconds is added to the beginning and end 

of  in Equation (4.11). A generated harmonic table displacement signal is shown in 

Figure 4.12, including inset figures showing the transition polynomials. Such a signal may be 

imposed on the platform in either orthogonal translational direction (X and/or Y). 
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Figure 4.12: Harmonic signal scaled to platform span setting of 1,000 (beginning and 
end transition polynomials shown inset) 

As part of the experimental program, the harmonic displacement signal described 

above was input to the simulator platform at six levels of amplitude, all at the same 

excitation frequency. These amplitudes were chosen to excite the isolated model to a range 

of displacement demands. Table 4.2 summarizes the amplitudes and frequencies of the 

harmonic characterization signals implemented as part of the experimental program. A 

platform span setting of 1,000 corresponds to a command displacement equal to the 

displacement limit of the simulator platform (5 inches). The sequence of harmonic 

characterization tests for both DC-FP and TC-FP specimens is described below in Section 

4.5 of this chapter. 

Table 4.2: List of harmonic characterization signals 

 

Test Name Frequency Num. cycles Span1 Amplitude2

SIN-10.DSP 0.56 Hz 3 63 0.32 in

SIN-25.DSP 0.56 Hz 3 158 0.79 in

SIN-50.DSP 0.56 Hz 3 316 1.58 in

SIN-80.DSP 0.56 Hz 3 500 2.50 in

SIN-95.DSP 0.56 Hz 3 600 3.00 in

SIN-100.DSP 0.56 Hz 3 630 3.15 in
1Platform span setting
2Displacement amplitude of platform
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4.5 EARTHQUAKE SIMULATION TESTS 

To assess the behavior of the above-described specimen under seismic excitation, a series of 

earthquake simulation tests was conducted. These tests are conducted to investigate the 

behavior of the superstructure and isolation bearings under various types and levels of input. 

This section describes the details of the ground-motion records run as part of the earthquake 

simulation tests. 

4.5.1 Selection of Ground-Motion Recordings 

To facilitate selection of ground-motion recordings, the PEER Strong Motion Database 

(http://peer.berkeley.edu/smcat) was used to search for appropriate acceleration histories. 

The key factors influencing the selection of input table motions were 

(a) the capability of the simulator to replicate the input signal given the performance 

limitations of the hydraulic actuators (see Table 4.1 above); and 

(b) the response of the isolation system to the scaled record, which reflects the 

expected deformation under a severe level of seismic shaking without exceeding 

the deformation capacity of the bearings. 

After a review of the available strong motion records from the PEER database, 

subject to the two considerations listed immediately above, the three recordings listed in 

Table 4.3 were chosen for the earthquake simulation test program. 

Table 4.3: Summary of selected ground motion recordings 

 

Each of the above ground motions recordings contains three components of 

excitation: two horizontal components and one vertical component, all mutually orthogonal. 

ID Event Recording Station Ma Rb Soilc

G03 1989 Loma Prieta Gilroy Array #3 6.9 14.4 C

CHY 1999 Chi-Chi CHY028 7.6 7.31 C

SYL 1994 Northridge Sylmar - Olive View Med FF 6.7 6.4 C
aMoment magnitude
bDistance (in kilometers) closest to fault rupture
cUSGS soil classification
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Important parameters for each acceleration history from the records listed above are listed in 

Tables 4.4 through 4.6. Among the listed parameters are: HP (high-pass filter frequency), LP 

(low-pass filter frequency), PGA (peak ground acceleration), PGV (peak ground velocity), 

and PGD (peak ground displacement). Consideration of these parameters is important in 

evaluating the capability of the simulator to replicate these records in light of the 

performance limitations. 

Table 4.4: Properties of G03 Earthquake Records 

 

 

Table 4.5: Properties of CHY Earthquake Records 

 

 

Table 4.6: Properties of SYL Earthquake Records 

 

4.5.2 Scaling of Records for Simulation 

Implementation of the selected ground motions records as part of a simulation test program 

required processing of the raw records described in Section 4.5.1. Processing included high-

pass and low-pass filtering of acceleration records, and scaling in both time and amplitude. 

Record/Component HP (Hz) LP (Hz) PGA (g) PGV (in/s) PGD (in)

LOMAP/G03-UP 0.1 50 0.338 6.1 2.8

LOMAP/G03000 0.1 33 0.555 14.1 3.2

LOMAP/G03090 0.1 40 0.367 17.6 7.6

Record/Component HP (Hz) LP (Hz) PGA (g) PGV (in/s) PGD (in)

CHICHI/CHY028-V 0.04 50 0.337 14.3 5.3

CHICHI/CHY028-N 0.1 50 0.821 26.4 9.2

CHICHI/CHY028-W 0.12 50 0.653 28.7 5.8

Record/Component HP (Hz) LP (Hz) PGA (g) PGV (in/s) PGD (in)

NORTHR/SYL-UP 0.12 23 0.535 7.5 3.4

NORTHR/SYL090 0.12 23 0.604 30.8 6.3

NORTHR/SYL360 0.12 23 0.843 51.0 12.9



 

73 
 

To improve the performance of the simulator platform actuators in reproducing the 

command displacement signal, a low-pass/high-pass trapezoidal window filter was applied to 

each acceleration record. For each record, the parameters of this filter were: low cut = 0.1 Hz, 

low corner = 0.15 Hz, high corner = 10 Hz, high cut = 15 Hz. These filter parameters 

resulted in processed records whose spectral parameters (i.e., displacement and pseudo-

acceleration) were virtually indistinguishable from the unprocessed records. 

For all records, time scaling was necessary to match the similitude requirements of 

the model. The specimen was developed with equal acceleration at both model and prototype 

scales, and was achieved using a length scale L = 4 and a time scale T = 2. To preserve the 

frequency content of the original acceleration records, a time scale of 2 was applied to the 

acceleration records. Hence, , where  is the time step of the original record, and 

 is the modified time step used for simulation. The amplitude of each record was modified 

such that replication by the platform was possible, and that displacement capacity of the 

isolators was not exceeded. However, amplitude scaling was equal for a given ground motion 

triplet, thereby preserving the relative intensity of each record in the three orthogonal 

directions. 

An important aspect of the research presented in this report is the response of base 

isolated structures to multiple levels of seismic hazard. Consequently, the earthquake 

simulator program was designed to address three distinct levels of seismic hazard, termed: 

SLE (Service Level Event), DBE (Design Basis Event) and MCE (Maximum Considered 

Event). Following guidelines such as FEMA 440 [BSSC, 2003], these three levels of hazard 

correspond to seismic events having respective return periods of 72 years, 475 years, and 

2,475 years. An important clarification regarding scaling is that the scaled ground motion 

input is not necessarily representative of the level of seismic hazard being targeted. Rather, 

the scaling is developed such that the resulting isolator displacement demand is consistent 

with that expected under the targeted level of seismic hazard. To consider these three levels 

of hazard in the simulation program, each of the three ground motion records was first scaled 

such that the resulting isolator displacement would be approaching the displacement limit of 

the bearings. This scale factor was used for the MCE, since it is under this hazard level that 

the isolation system must remain stable [BSSC, 2003]. The scale factor for the DBE was 

taken as 75% of the MCE, and the scale factor for the SLE was taken as 35% of the MCE. 

These values are by assumption, and do not correspond to any particular site. However, using 

/ 2d t d t′ = dt

dt′
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the methodology of FEMA 356 [BSSC, 2000], the constant-velocity spectral ratio, 

, is 0.44 for sites in California, compared with 0.47 under the above assumption. 

The constant-velocity spectral ratio  is approximately 0.75 for many sites in 

California, as evidenced by USGS hazard maps [USGS, 2007]. 

A summary description of the table input signals corresponding to the MCE level of 

seismic hazard is shown in Figure 4.13 through Figure 4.21. For each signal, the 

displacement, velocity, and acceleration history is shown, and the Fourier amplitude 

spectrum of the acceleration. The response spectra for the table input motions, with scale 

factor of 1.0, are shown in Figure 4.22 through Figure 4.27. 

 Three recorded ground motions were selected, and these ground motions were 

simulated at three levels of seismic hazard. Additionally, ground motion was simulated along 

the three principal axes of the specimen, X (transverse), Y (longitudinal), and Z (vertical). 

There are a total of 21 earthquake simulation tests for each of the two specimens, and the 

combinations of ground motion, hazard level, and direction of shaking is summarized in the 

test matrix shown below in Table 4.7. The effect of vertical acceleration is investigated for 

all three input motions, and at all three levels of seismic hazard. The tri-directional behavior, 

and hence the effect of three-dimensional coupling, is investigated for all three records, but 

only at the DBE hazard level. 

1, 1,/SLE DBES S

1, 1,/DBE MCES S
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Table 4.7: Summary of earthquake simulation program 

 

4.6 SUMMARY OF SHAKE TABLE TEST SEQUENCE 

The complete sequence of shake table tests is summarized, described for the DP and TP 

specimens, in Table 4.8 and 4.9, respectively. In these tables, the headings are defined as 

follows: 

Test ID:   a distinct number assigned to the test by the data acquisition system 

Signal:   the command signal sent to the table control system. SIN is the 

sinusoidal signal described above in Section 4.4, and CHY, G03, and 

SYL are the earthquake inputs, defined above in Section 4.5 

Span:   the amplitude of motion in X, Y, or Z direction (span setting of 1,000 

corresponds to simulator displacement limit) 

%  of signal: the scale factor applied to input signal 

 

G03 CHY SYL

X X X

X+Z X+Z X+Z

X X X
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Table 4.8: Complete shake table test sequence for DP specimen 

 

 

Table 4.9: Complete shake table test sequence for TP specimen 

 

 

 

Test ID Signal X Y Z % of signal Test ID Signal X Y Z % of signal

112603 SIN 63 0 0 10% 145554 CHY 329 512 650 65%

112706 SIN 158 0 0 25% 150149 G03 202 0 0 25%

112811 SIN 316 0 0 50% 150249 G03 524 0 0 65%

113601 SIN 316 0 0 50% 150338 G03 645 0 0 80%

115010 SIN 316 0 0 50% '15054 G03 202 0 250 25%

134223 SIN 0 158 0 25% 150550 G03 524 0 650 65%

134411 SIN 0 316 0 50% 150743 G03 645 0 800 80%

134810 SIN 0 316 0 50% 151024 G03 524 0 650 65%

142803 CHY 127 0 0 25% 151716 SYL 153 0 0 25%

143439 CHY 329 0 0 65% 151806 SYL 397 0 0 65%

143915 CHY 405 0 0 80% 151905 SYL 488 0 0 80%

144255 CHY 127 250 0 25% 152037 SYL 153 0 93 25%

144558 CHY 127 0 250 25% 152150 SYL 397 0 241 65%

144808 CHY 329 0 650 65% 152330 SYL 488 0 297 80%

144942 CHY 405 0 800 80% 152502 SYL 397 0 241 65%

Span SettingsSpan Settings

Test ID Signal X Y Z % of signal Test ID Signal X Y Z % of signal

151647 CHY 177 0 0 35% 161459 SYL 192 0 0 35%

151910 CHY 329 0 0 65% 161636 SYL 397 0 0 65%

152532 CHY 430 0 0 85% 161901 SYL 549 0 0 90%

152851 CHY 177 0 350 35% 165220 SYL 397 0 241 65%

153033 CHY 329 0 650 65% 165852 SYL 329 512 650 65%

153252 CHY 430 0 850 85% 170258 SYL 610 0 0 100%

153452 CHY 329 512 650 65% 170355 SYL 610 0 371 100%

153920 G03 282 0 0 35% 170733 SIN 63 0 0 10%

154042 G03 605 0 0 75% 170830 SIN 158 0 0 25%

155005 G03 524 0 0 65% 170912 SIN 316 0 0 50%

155236 G03 282 0 350 35% 171402 SIN 500 0 0 79%

155539 G03 524 0 650 65% 171519 SIN 600 0 0 95%

155744 G03 605 0 750 75% 173337 SIN 660 0 0 104%

155950 G03 524 0 650 65% 173916 SIN 700 0 0 111%

160559 SYL 192 0 0 35% 172230 SIN 0 200 0 32%

160705 SYL 397 0 0 65% 172305 SIN 0 400 0 63%

161130 SYL 549 0 0 90% 172857 SIN 0 600 0 95%

Span Settings Span Settings
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Figure 4.13: Characteristics of scaled G03 input signal, N-S component 
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Figure 4.14: Characteristics of scaled G03 input signal, E-W component 
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Figure 4.15: Characteristics of scaled G03 input signal,  
vertical component 
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Figure 4.16: Characteristics of scaled CHY input signal, N-S component 
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Figure 4.17: Characteristics of scaled CHY input signal, E-W component 
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Figure 4.18: Characteristics of scaled CHY input signal,  
vertical component 
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Figure 4.19: Characteristics of scaled SYL input signal, N-S component 
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Figure 4.20: Characteristics of scaled SYL input signal, E-W component 
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Figure 4.21: Characteristics of scaled SYL input signal, vertical component 
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Figure 4.22: Response spectra of scaled CHY input signal, N-S component  

 

Figure 4.23: Response spectra of scaled CHY input signal,  
E-W component 
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Figure 4.24: Response spectra of scaled G03 input signal, N-S component  

 

Figure 4.25: Response spectra of scaled G03 input signal, E-W component 
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Figure 4.26: Response spectra of scaled SYL input signal, N-S component  

 

Figure 4.27: Response spectra of scaled SYL input signal, E-W component 
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Table 4.10: Instrumentation List 

 

 

Channel Label Description Units

1 H1O Longitudinal Table Displacement inches

2 H2O Transverse Table Displacement inches

3 H3O Longitudinal Table Displacement inches

4 H40 Transverse Table Displacement inches

5 V10 NW Vertical Table Displacement inches

6 V20 SW Vertical Table Displacement inches

7 V30 NE Vertical Table Displacement inches

8 V40 SE Vertical Table Displacement inches

9 H1-2 Longitudinal Table Acceleration g

10 H3-4 Longitudinal Table Acceleration g

11 H4-1 Transverse Table Acceleration g

12 H2-3 Transverse Table Acceleration g

13 V1ACC NW Vertical Table Acceleration g

14 V2ACC SW Vertical Table Acceleration g

15 V3ACC NE Vertical Table Acceleration g

16 V4ACC SE Vertical Table Acceleration g

20 LC4S1 NE Load Cell - Shear Y kips

21 LC4S2 NE Load Cell - Shear X kips

22 LC4A NE Load Cell - Axial kips

23 LC3S1 SE Load Cell - Shear Y kips

24 LC3S2 SE Load Cell - Shear X kips

25 LC3A SE Load Cell - Axial kips

26 LC7S1 SW Load Cell - Shear Y kips

27 LC7S2 SW Load Cell - Shear X kips

28 LC7A SW Load Cell - Axial kips

29 LC8S1 NW Load Cell - Shear Y kips

30 LC8S2 NW Load Cell - Shear X kips

31 LC8A NW Load Cell - Axial kips
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Table 4.10: Instrumentation List (Continued) 

 

 

Channel Label Description Units

32 ACCNYT NW Accelerometer Y - Table Level g

33 ACCSYT SW Accelerometer Y - Table Level g

34 ACCEXT SW Accelerometer X - Table Level g

35 ACCWXT SE Accelerometer X - Table Level g

36 ACCNYB NW Accelerometer Y - Base Level g

37 ACCSYB SW Accelerometer Y - Base Level g

38 ACCEXB SW Accelerometer X - Base Level g

39 ACCWXB SE Accelerometer X - Base Level g

40 ACCNY1 NW Accelerometer Y - First Level g

41 ACCSY1 SW Accelerometer Y - First Level g

42 ACCEX1 SW Accelerometer X - First Level g

43 ACCWX1 SE Accelerometer X - First Level g

44 ACCNY2 NW Accelerometer Y - Second Level g

45 ACCSY2 SW Accelerometer Y - Second Level g

46 ACCEX2 SW Accelerometer X - Second Level g

47 ACCWX2 SE Accelerometer X - Second Level g

48 ACCNYR NW Accelerometer Y - Roof Level g

49 ACCSYR SW Accelerometer Y - Roof Level g

50 ACCEXR SW Accelerometer X - Roof Level g

51 ACCWXR SE Accelerometer X - Roof Level g

52 POTNYT NE Potentiometer Y - Bearing-to-table inches

53 POTSYT SE Potentiometer Y - Bearing-to-table inches

54 POTEXT NW Potentiometer X - Bearing-to-table inches

55 POTWXT NE Potentiometer X - Bearing-to-table inches

56 POTNYB NW Potentiometer Y - Base Level inches

57 POTSYB SW Potentiometer Y - Base Level inches

58 POTEXB SW Potentiometer X - Base Level inches

59 POTWXB SE Potentiometer X - Base Level inches
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Table 4.10: Instrumentation List (Continued) 

 

  

Channel Label Description Units

60 POTNY1 NW Potentiometer Y - First Level inches

61 POTSY1 SW Potentiometer Y - First Level inches

62 POTEX1 SW Potentiometer X - First Level inches

63 POTWX1 SE Potentiometer X - First Level inches

64 POTNY2 NW Potentiometer Y - Second Level inches

66 POTSY2 SW Potentiometer Y - Second Level inches

67 POTEX2 SW Potentiometer X - Second Level inches

68 POTWX2 SE Potentiometer X - Second Level inches

69 POTNYR NW Potentiometer Y - Roof Level inches

70 POTSYR SW Potentiometer Y - Roof Level inches

71 POTEXR SW Potentiometer X - Roof Level inches

72 POTWXR SE Potentiometer X - Roof Level inches

73 NOVAE1 Level 1 NOVATEC - East Frame inches

74 NOVAW1 Level 1 NOVATEC - West Frame inches

75 NOVAE2 Level 2 NOVATEC - East Frame inches

76 NOVAW2 Level 2 NOVATEC - West Frame inches

77 NOVAE3 Level 3 NOVATEC - East Frame inches

78 NOVAW3 Level 3 NOVATEC - West Frame inches
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5 Experimental Results 

The previous chapter of this report describes the experimental program developed to 

characterize the behavior of multi-stage friction pendulum bearings and simulate the 

response of a multi-story structure isolated using such devices. A description of the 

significant results of this experimental program is presented in this chapter, including cyclic 

characterization and earthquake simulation tests for both Double Pendulum (DP) and Triple 

Pendulum (TP) bearing specimens. 

5.1 CYCLIC CHARACTERIZATION OF ISOLATOR BEHAVIOR 

The harmonic shaking table tests described in Chapter 4 were conducted to establish the 

properties of the isolation devices, and to calibrate analytical models for use in subsequent 

parametric studies. Two classes of friction pendulum bearings were tested on the three-story 

steel frame described in Section 4.2.1 of this report. This test program was designed such 

that a range of isolator demands were observed and recorded. The demand parameters 

targeted for investigation as part of this test program were (a) isolator displacement; (b) 

isolator velocity; and (c) axial load/uplift. 

For each cyclic characterization test, the force-displacement behavior was recorded at 

each bearing using wire potentiometers between the simulator table and the base plate of the 

columns, and load cells under each isolator specimen. In general, hysteresis of each bearing 

is reported as normalized shear force vs. displacement, where the normalized shear force at 

time ti is the actual shear force at time ti divided by the normal force at time ti. This is a 

convenient representation that can be compared to the theoretical normalized shear vs. 

displacement relations developed in Chapter 3. Only in cases where uplift occurs in a bearing 

is this normalization abandoned, since dividing by an axial force of zero yields a singularity. 
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5.1.1 Double Pendulum Bearings 

The DP bearings used for the experimental program  are described in Section 4.2.2.1 of this 

report. The composite liner for each sliding mechanism was designed to provide the same 

friction coefficient. This results in the initiation of sliding on each surface at the same lateral 

force, leading to cyclic behavior that is in principle indistinguishable from a single pendulum 

bearing [Fenz et al., 2006]. This provides a valuable basis of comparison with the results of 

the triple pendulum experimental program, particularly with respect to isolator demand and 

floor accelerations. 

5.1.1.1 Force-Displacement Behavior 

The double pendulum bearing specimens for this test program are not expected to exhibit 

multi-stage behavior. Therefore, a single, carefully designed test is capable of exciting the 

structure to a sufficient number and variety of displacement and velocity excursions to 

completely characterize the parameters of the isolation system. Recall that the DP bearing 

supporting weight W, with two distinct friction coefficients (μ1 and μ2), dish radii (R1 and R2), 

and slider heights (h1 an h2) follows the force-displacement relationship 

  (5.1) 

For this specimen, μ1 = μ2, R1 = R2, and h1 = h2, therefore substituting these values and the 

normalized shear force , Equation (5.1) reduces to 

  (5.2) 

Therefore, there are only two physical parameters necessary to completely describe the 

behavior of the DP bearing specimen, μ and L. The pendulum length L is a geometric 

quantity, and therefore need not be estimated from experimental data. Based on Section 

4.2.2.1 of this report, this pendulum length is , or a pendulum 

period of T = 1.88 sec. The friction coefficient, however, is a quantity that must be 

determined based on experimental results. In general, friction between the composite liner 

and stainless steel is velocity dependent. A relationship for the friction coefficient μ given 

the sliding velocity  is given by Mokha et al. [1993] as  
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  (5.3) 

where  and  are the friction coefficients at high velocity and at rest, respectively, and α 

is a positive number that characterizes the velocity at which the friction becomes essentially 

rate independent. A suggested value for α in the case of the single-pendulum bearing is 50 

sec/m, or 1.28 sec/inch. However, for a particular DP bearing velocity, the sliding velocity 

on each surface is some fraction of the total velocity, subject to the constraint that . 

If the friction coefficients of each sliding interface are equal, then it is easy to show that 

  (5.4) 

Since compatibility dictates that , the sliding velocity on each surface is computed 

as  

  (5.5) 

In particular, for a DP bearing of equal friction coefficients and dish radii, each surface slides 

at a velocity exactly half of the total sliding velocity. This implies that for the parameter α in 

Equation (5.3) an appropriate value is 0.64 sec/in. Given this parameter, the parameters  

and  may be estimated from the experimental data by linear least-squares regression [Stone, 

1996]. Here, the response variable is the measured friction force, and the input variable is the 

sliding velocity. From the harmonic characterization tests, the friction force was measured as 

the load cell recording at each zero-displacement crossing, neglecting any breakaway friction 

force. This friction force was normalized by the instantaneous vertical load. Based on least 

squares estimation, and assuming α = 0.64 sec/in, the following parameters were obtained for 

Equation (5.3): . Figure 5.1 describes the data collected and analyzed 

to develop these estimates of friction coefficients. Figure 5.2 shows a comparison of cyclic 

behavior from the experimental results and the model of Equation (5.2) considering the 

calibrated rate-dependent friction model in Equation (5.3). 
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Figure 5.1: Friction coefficient as a function of sliding velocity from sinusoidal 
experimental data, including least-squares fit of Eq. (5.3) 

 

 

Figure 5.2: Comparison of hysteresis for DP system from experimental results and 
analytical model considering friction according to Eq. (5.3) 
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5.1.2 Triple Pendulum Bearing 

A complete description of the TP bearings used for the experimental program can be found in 

Section 4.2.2.2 of this report. This section reports the significant results of the cyclic 

characterization program described in Section 4.4. 

5.1.2.1 Force-Displacement Behavior 

Figure 5.3 shows the cyclic behavior of each of the four isolator specimens under low-level 

harmonic excitation (25% of the full-scale signal, span setting = 158). This level of 

excitation was sufficiently low such that the shear force in each bearing caused sliding of the 

inner sliders, but did not overcome the friction coefficient of the lower dish, and hence the 

upper dish. This corresponds to Stage I sliding, as defined in Section 3.1.1 of this report. It is 

clear from each of the hysteresis loops (Figure 5.3) for this low-level test that the behavior is 

identical to the single-pendulum bearing with a coefficient of friction varying between 0.01 

and 0.02. It is noteworthy that the face pressure of 2 ksi is much less than the 8 to 10 ksi 

expected of a full-scale building. It has been noted that such low pressure on the slider can 

lead to inconsistent estimates of friction coefficients from bearing to bearing. However, the 

data of Figure 5.3 suggests relative consistency of the inner slider friction coefficient for all 

four bearings. There is also a noticeable lack of increase in first-cycle force output due to 

breakaway friction, indicating that the lubricated spherical surface is likely not prone to 

breakaway frictional effects. 

Figure 5.4 shows the cyclic behavior of each bearing under a moderate-level 

harmonic test (50% of the full-scale signal, span setting = 316). It is evident from the 

recorded hysteresis for each bearing that this level of excitation induced sufficient shear 

force to initiate sliding on the lower dish, thus corresponding to Stage II sliding. There is an 

observable increase in first-cycle force output at the second sliding interface. This effect and 

its likely source are addressed later in this section. 

Figure 5.5 shows the cyclic behavior of each bearing under a high-level harmonic test 

(79% of the full-scale signal, span setting = 500). From these data, it is clear that the 

hysteresis shows the expected softening at the largest displacement excursion. This observed 

multi-linear force displacement indicates that this level of excitation induced sufficient shear 

force to initiate sliding on the upper dish, thus corresponding to Stage III sliding. The data of 

Figure 5.6, showing response under a high-level harmonic test (95% of the full-scale signal, 
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span setting = 600) gives clear indication of Stage III sliding, although there no evidence of 

stiffening due to the bottom slider reaching the deformation capacity of the lower dish. There 

is also a noticeable first-cycle increase in friction along the second sliding interface, in both 

the initial initiation of sliding and on the first instance of velocity reversal, but a lack of this 

same first-cycle effect along the third sliding interface. 

Based on extensive investigations into the cause of the increase in friction in the first 

cycle of slip along the second sliding interface of the model bearings, the manufacturer has 

concluded that a number of simultaneous factors contributed to the observed effect. These 

factors are related to changes in the bonding agent utilized, a result of the scale bearings 

described in this report as being part of a research and development effort. Further 

experimentation is expected to verify that the first-cycle force increase effect is peculiar to 

these tests. In any case, bearings are tested as part of a prototype and production program in 

actual applications, and specifications limit such first-cycle effects as observed from project-

specific tests. 

Figure 5.7 describes the cyclic behavior of each bearing under the most extreme 

harmonic test conducted as part of this characterization program (112% of the full-scale 

signal, span setting = 710). From these data, there is observable stiffening of each specimen, 

indicating Stage IV and V sliding. The extreme stiffening beyond a displacement amplitude 

of 5 in. indicates Stage V sliding, or deformation along the second and third sliding 

interfaces that has reached the physical limit of both the lower and upper spherical surfaces. 

It is noteworthy that the north bearings exhibit Stage V sliding on the negative displacement 

excursion, whereas the south bearings show the same response, but on the positive 

displacement excursion. This is likely evidence of some permanent internal offset of the 

slider at the start of the test, since there must have been a difference in the accumulated 

deformation on the second and third pendulum mechanisms. However, the hysteresis of the 

combined isolation system, shown in Figure 5.8, indicates symmetric cyclic behavior. It is a 

general observation that the initial internal deformations of each pendulum mechanism do 

not affect the global cyclic behavior of the system. 

A description of an experimental single-cycle hysteresis loop from each level of 

displacement demand for the TP isolation system is shown in Figure 5.9. All five sliding 

stages can be observed from these data. Additionally, Figure 5.10 and Figure 5.11 show a 

summary of normalized experimental hysteresis and platform displacement, respectively, of 
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the overall TP system for select sinusoidal characterization tests. The overall DP bearing 

hysteresis is shown in the lower right for comparison. In the next section, the experimental 

data are used to estimate the friction coefficient of each sliding interface. These estimates of 

friction are then used to calibrate the cyclic model described in Section 3.3.4. 
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Figure 5.3: Cyclic behavior for all TP bearings  
in Sine-10 Test (ID 170830) 
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Figure 5.4: Cyclic behavior for all TP bearings  
in Sine-50 Test (ID 170912) 
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Figure 5.5: Cyclic behavior for all TP bearings  
in Sine-79 Test (ID 171402) 
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Figure 5.6: Cyclic behavior for all TP bearings  
in Sine-95 Test (ID 171519) 
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Figure 5.7: Cyclic behavior for all TP bearings  
in Sine-117 Test (ID 174624) 
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Figure 5.8: Cyclic behavior for overall TP isolation system  
in Sine-117 Test (ID 174624) 

 

 

Figure 5.9: Single-cycle hysteresis for overall TP system considering multiple levels of 
displacement 
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Figure 5.10: Summary of normalized experimental hysteresis for overall TP system, for 
select sinusoidal characterization tests (DP bearing shown lower right for comparison) 
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Figure 5.11: Summary of recorded simulator platform displacements for select 
sinusoidal characterization tests (experimental hysteresis for these tests shown in Figure 

5.10) 
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5.1.2.2 Estimation of Friction Coefficients 

The cyclic model for a TP bearing developed in Chapter 3 accepts the three pendulum 

lengths, L1, L2, and L3, and the three friction coefficients, μ1, μ2, and μ3, as input parameters. 

Therefore, for a particular bearing test specimen, it is necessary to estimate these parameters 

to calibrate a cyclic model for comparison. Whereas the pendulum lengths are each a 

function of two precise geometric quantities (dish radius and slider height), the friction 

coefficients can only be determined experimentally. In practice, these friction coefficients are 

specified by a range of acceptable values, and a prototype test program is conducted to verify 

that the measured friction is within this acceptable range. These prototype tests are generally 

conducted only in a single direction, on a bearing that is initially undeformed (and hence all 

mechanisms are aligned). A natural question therefore emerges: given a set of cyclic data, 

how is each friction coefficient measured? For the single-pendulum bearing, where there is 

only one friction coefficient, the measured friction coefficient is simply the measured shear 

force divided by the measured vertical load at the instant of zero lateral displacement. Where 

there are numerous displacement cycles, multiple samples of this friction coefficient are 

measured, and the “true” friction coefficient may be estimated as the mean of the sample. 

Where there are multiple distinct pendulum mechanisms, however, an alternate procedure is 

necessary to form estimates of each distinct friction coefficient. As with a single-pendulum 

bearing only one cyclic test is necessary to characterize the friction coefficient, it will be 

shown that for a triple pendulum bearing, three cyclic tests are necessary to characterize the 

three friction coefficients. In general, n independent cyclic tests are necessary to characterize 

a bearing with n independent pendulum mechanisms, so long as each test induces 

deformation on a distinct pendulum mechanism. 

5.1.2.2.1 Friction Coefficient of Inner Slider (μ1) 

The task of estimating the friction coefficient of the inner slider is identical to that of the 

single-pendulum bearing, since the cyclic behavior is equivalent for both. From the harmonic 

tests that only activate sliding on the first pendulum mechanism, the measured friction 

coefficient is simply half the height of the hysteresis loop at a displacement of zero. That is, 

let H1 be the height of the hysteresis loop, shown below in Figure 5.12. Then, an estimate of 

μ1 is given as , where the hat denotes a parameter that is measured experimentally. 1 1ˆ / 2Hμ =
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The zero-displacement intercept is a particularly convenient measurement from experimental 

data since it is uniquely defined, and hence forms a basis for our measurements of friction in 

this section. 

 

Figure 5.12: Idealized hysteresis loop for Stage I sliding, indicating the measured height 
H1 at zero displacement 

5.1.2.2.2 Friction Coefficient of Bottom Slider (μ2) 

Once the first friction coefficient has been estimated, it is then possible to estimate the 

second friction coefficient. A second cyclic test is required, the displacement amplitude of 

which must be such that sliding on the lower surface is initiated, but not so large as to induce 

sliding on the upper surface. The resulting hysteresis loop exhibits two zero-displacement 

intercepts, and the height between them is denoted H2. We can define an effective second 

friction coefficient as , where H2 is shown below in Figure 5.13.  
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2 2ˆ / 2e Hμ =



 

110 
 

 

Figure 5.13: Idealized hysteresis loop for Stage II sliding, indicating the measured 
height H2 at zero displacement 

This effective friction coefficient  is not equal to the second friction coefficient μ2 

since the force at which sliding initiates is slightly larger than the zero-displacement 

intercept (due to flexibility in the first pendulum mechanism). However, we are interested in 

estimating the second friction coefficient μ2 as part of calibrating the cyclic model, so a 

minor computation is required. Knowing the pendulum lengths L1 and L2 (by geometry), and 

having obtained an experimental estimate of the first friction coefficient  above in Section 

5.1.2.2.1, the second friction coefficient is estimated as 

  (5.6) 

5.1.2.2.3 Friction Coefficient of Top Slider (μ3) 

After the first two friction coefficients have been estimated, it is possible to estimate the 

third and final friction coefficient μ3 through an additional cyclic test where sliding on the 

upper surface is activated. The resulting hysteresis loop again exhibits two zero-displacement 

intercepts, and the height between them is denoted H3. Similar to Stage II sliding above, we 

can define an effective third friction coefficient as , where H3 is shown below in 

Figure 5.14. 
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Figure 5.14: Idealized hysteresis loop for Stage III sliding, indicating the measured 
height H3 at zero displacement 

We are again interested in estimating the actual third friction coefficient μ3 as part of 

calibrating the cyclic model, so another computation is required. Knowing the pendulum 

lengths L1, L2, and L3, and having obtained experimental estimates of the first and second 

friction coefficients  and  above in Sections 5.1.2.2.1 and 5.1.2.2.2, the third friction 

coefficient is estimated as 

  (5.7) 

Given the estimates of all three friction coefficients, is it possible to fully calibrate, 

based on experimental results, the cyclic model previously developed. This friction 

coefficient estimation procedure is also useful in determining acceptance of the results of 

prototype and production tests compared to project specifications. Whereas the design 

engineer assumes a set of friction values (and their allowable variation) for design, the 

outlined procedure above can be used to verify that test results demonstrate compliance with 

the assumed friction coefficients. 

5.1.2.3 Behavior Subject to Uplift 

To investigate the stability of TP isolators under significant overturning-induced axial forces, 

including uplift, a series of harmonic tests was conducted along the transverse axis of the 

building specimen. This direction has a height-to-width aspect ratio of approximately 3:1, 

slender enough such that uplift in the bearings is possible given the performance limits of the 
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simulator platform. Figure 5.15 presents the axial force histories for each bearing, and 

instances of bearing uplift are noted. The duration of observed uplift did not exceed 0.25 

seconds in any case. However, subsequent to uplift, each bearing underwent one full cycle of 

displacement, and ejection of the slider would be evident from the hysteresis. Figure 5.16 

and Figure 5.17 present the hysteresis for each bearing and of the total isolation system, 

respectively, under the uplift test. It is clear that the cyclic behavior does not degrade or 

change significantly following the uplift excursion. The model was instantaneously 

supported by only two of the four isolators, exhibiting a rocking mode of behavior. Full-scale 

buildings have overturning restricted to only those columns engaged as part of the lateral 

force resisting system, whereas most columns resist gravity load only. As a result, the 

majority of isolators do not experience seismic-induced variation of axial load beyond that 

due to vertical acceleration. The importance of the uplift test was to demonstrate stability of 

the slider assembly in the event of short-duration uplift and re-engagement under a very rare 

earthquake. 
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Figure 5.15: Axial loads for all bearings in  
uplift harmonic test (ID 181700) 

uplift 

uplift 

uplift 
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Figure 5.16: Cyclic behavior for all bearings in  
uplift harmonic test (ID 181700) 
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Figure 5.17: Cyclic behavior for overall isolation system in uplift harmonic test (ID 
181700) 

5.2 COMPARISON OF OBSERVED BEHAVIOR WITH CYCLIC MODEL OF THE 
TRIPLE PENDULUM BEARING  

This section describes the cyclic response of the TP isolation system and compares the 

experimentally observed behavior with the analytical behavior determined from the Cyclic 

Series Model (CSM) developed in Section 3.3.4. 

5.2.1 Stage I Sliding 

A series of low-amplitude cyclic tests was performed to characterize the behavior of the 

inner pendulum mechanism. This mechanism defines the initial sliding phase described in 

Section 3.3.1.1 of this report. Under small excitation, from either wind, ambient lateral 

vibration, or low-level seismic activity, deformation of the bearings will occur entirely on the 

inner slider.  

The necessary parameters to define the behavior of the inner slider are the effective 

pendulum length, L1, and the coefficient of friction, μ1. The cyclic behavior under small 

deformation is identical to the original single-pendulum FP bearing, and a method to estimate 

the first friction coefficient is described above in Section 5.1.2.2.1. This procedure leads to 

an estimate of friction coefficient . Figure 5.18 below shows a force-displacement 1ˆ 0.012μ =
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relationship from a low-level cyclic test (SINE-10) including both experimental and 

analytical results given this friction estimate. 

 

Figure 5.18: Comparison of experimental and analytical results of total system 
hysteresis for test SINE-10. 

The same data are prepared using a typical displacement-based model, which can be 

implemented for a single-pendulum mechanism as 

  (5.8) 

where  is the normalized shear force introduced in Chapter 3, and  is the 

friction coefficient, which generally depends on the velocity. Setting  is equivalent 

to the previous velocity-independent formulation. An alternate expression for the friction 

force can be taken as that of Equation (5.3). Implementing this model gives the alternate 

comparison of force-displacement loops shown below in Figure 5.19. For the remainder of 

the comparisons in this chapter, the slight velocity dependence of the friction force will be 

neglected. 
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Figure 5.19: Comparison of experimental and  
analytical results of total system hysteresis for test SINE-10  

(rate dependence of friction coefficient included) 

5.2.2 Stage II Sliding 

To evaluate the model for sliding in Phase II, or both the inner slider and bottom spherical 

surface, the data of the test SINE-50 is observed. In particular, a value of friction must be 

selected for the model that compares favorably with the experimental data. The friction 

coefficient estimation procedure of Section 5.1.2.2.2 is implemented. Based on the previous 

estimate of  and the data of the test SINE-50, an estimate of the second friction 

coefficient is . As a basis of evaluation of the adequacy of this estimate, the 

energy-dissipation history is computed for the model and the experimental data. This 

comparison is appropriate here since the energy dissipation history is entirely a function of 

the friction coefficients. Energy dissipation is defined as 

  (5.9) 

where p is the force, and u is the displacement. This may be specialized to the case of 

discrete time intervals by observing that the force at a time step may be approximated as the 

average force at the beginning and the end of the time step. So too can the differential 

displacement be approximated by the displacement step over the time step. Making these 

substitutions, Equation (5.9) becomes 

1ˆ 0.012μ =

2ˆ 0.052μ =
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  (5.10) 

The above equation is used in subsequent calculations of energy dissipation over time. 

Assuming a friction coefficient at the second sliding interface of , a 

comparison of the force-displacement relation for the SINE-50 test is shown below in Figure 

5.20, and the energy dissipation history is shown in Figure 5.21.  

 

Figure 5.20: Comparison of experimental and analytical results of total system 
hysteresis for test SINE-50. 

 

Figure 5.21: Comparison of experimental and analytical results of total energy 
dissipation for test SINE-50. 
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5.2.3 Stage III Sliding 

The process of selecting a proper friction coefficient for the third and final slider is 

summarized above in Section 5.1.2.2.3. The SINE-95 test was used for this purpose because 

the imposed displacements were sufficient to cause sliding on both upper and lower concave 

surfaces, but not to the extent that stiffening was initiated. Given the previous estimates of 

 and , implementing the estimation procedure for the third friction 

coefficient yielded . A comparison of the force-displacement relation for the SINE-

95 test is shown below in Figure 5.22, and the energy dissipation history is shown in Figure 

5.23.  

 

Figure 5.22: Comparison of experimental and analytical results of total system 
hysteresis for test SINE-95. 

1ˆ 0.012μ = 2ˆ 0.052μ =

3ˆ 0.14μ =
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Figure 5.23: Comparison of experimental and analytical results of total energy 
dissipation for test SINE-95. 

5.2.4 Stage IV Sliding 

Given the above estimated friction coefficients and the geometry of the TP bearing specimen, 

the cyclic behavior under any displacement amplitude may be computed. Of particular 

interest is the stiffening regime of the TP bearing, since this mode of sliding is intended to 

control isolator displacements under very large earthquakes. A comparison of the 

experimental hysteresis and the analytical CSM under Stage IV sliding is shown below in 

Figure 5.24. Here it is evident that the transition to isolation system stiffening is correctly 

captured for both positive and negative displacement excursions greater than 4 inches.  
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Figure 5.24: Comparison of experimental and force-based analytical results of total 
system hysteresis for test SINE-112 (ID 174624) 

5.3 SEISMIC RESPONSE OF ISOLATION SYSTEMS 

An extensive earthquake simulation program was described in Chapter 4 of this report. The 

observed response of both DP and TP isolation systems to this test program is reported here. 

The key behavioral characteristics investigated as part of the earthquake simulation program 

are (a) behavior of isolators under a range of levels of seismic intensity; (b) dependence of 

isolator behavior and demand parameters on presence of multi-component ground excitation; 

and (c) variation in frequency content of recorded floor accelerations over multiple 

amplitudes of ground excitation. In this section, the reported behavior of the isolation system 

is the combined response of all four bearing specimens. 

5.3.1 Unidirectional Ground Motion 

This section describes the cyclic properties of DP and TP bearing specimens under 

unidirectional ground-motion input for three levels of seismic hazard. 

5.3.1.1 Service Level Earthquake (SLE) 

To investigate the behavior of the DP and TP bearing specimens under moderate levels of 

seismic input, a series of shake table tests were conducted with ground motions scaled to 
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induce small isolator displacements. The input signal scale factor for each specimen is not 

equal because of the differences in cyclic properties for the two types of bearings, and 

therefore the expected displacement demand. However, the goal of the SLE test program was 

to capture isolator behavior under minor levels of shaking and, for the TP specimen, evaluate 

the response of each sliding mechanism. 

The isolation system cyclic response for both DP and TP specimens under the CHY, 

G03, and SYL signals, scaled to an SLE intensity, are shown in Figure 5.25, Figure 5.26, and 

Figure 5.27, respectively. Several important observations are made. At the sliding velocity 

excited by the SLE signals, the effective friction coefficient under Stage II sliding is 

approximately 0.04, ignoring the first-cycle friction effect explained in Section 5.1.2.1. A 

similar effect is not observed for the DP specimen. 

 

 (a) DP bearings CHY-25 (ID 142803) (b) TP bearings CHY-35 (ID 151647) 
Figure 5.25: Cyclic behavior of DP and TP isolation systems  

for CHY-SLE input 
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 (a) DP bearings G03-25 (ID 150149) (b) TP bearings G03-35 (ID 153920) 
Figure 5.26: Cyclic behavior of DP and TP isolation systems  

for G03-SLE input 

 

 (a) DP bearings SYL-25 (ID 151716) (b) TP bearings SYL-35 (ID 153920) 
Figure 5.27: Cyclic behavior of DP and TP isolation systems  

for SYL-SLE input 

5.3.1.2 Design Basis Earthquake (DBE) 

To investigate the behavior of the DP and TP bearing specimens under severe levels of 

seismic input, a series of shake table tests were conducted with ground motions scaled to 

induce an isolator displacement approximating that of a 475-year return period event. 
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 (a) DP bearings CHY-65 (ID 143439) (b) TP bearings CHY-65 (ID 151910) 

Figure 5.28: Cyclic behavior of DP and TP isolation systems  
in CHY-DBE input 

 

 

 (a) DP bearings G03-65 (ID 150249) (b) TP bearings G03-65 (ID 155005) 
Figure 5.29: Cyclic behavior of DP and TP isolation systems  

in G03-DBE input 
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 (a) DP bearings SYL-65 (ID 151806) (b) TP bearings SYL-65 (ID 160705) 
Figure 5.30: Cyclic behavior of DP and TP isolation systems  

in SYL-DBE input 

5.3.1.3 Maximum Considered Earthquake (MCE) 

To investigate the behavior of the DP and TP bearing specimens under severe levels of 

seismic input, a series of shake table tests were conducted with ground motions scaled to 

induce an isolator displacement approximating those expected when the structure were 

subjected to a 2475-year return period event. 

 

 (a) DP bearings CHY-80 (ID 143915) (b) TP bearings CHY-85 (ID 152532) 
Figure 5.31: Cyclic behavior of DP and TP isolation systems  

in CHY-MCE input 
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 (a) DP bearings G03-80 (ID 150338) (b) TP bearings G03-75 (ID 154042) 
Figure 5.32: Cyclic behavior of DP and TP isolation systems  

in G03-MCE input 

 

 (a) DP bearings SYL-80 (ID 151905) (b) TP bearings SYL-90 (ID 161130) 
Figure 5.33: Cyclic behavior of DP and TP isolation systems  

in SYL-MCE input 

5.3.2 Effect of Vertical Ground Motion on Cyclic Behavior of Isolators 

To investigate the effect of vertical ground motion on behavior of DP and TP bearings, a set 

of shake table experiments was conducted with the same horizontal input as that described 

above in Section 5.3.1, but with the addition of recorded vertical motion for each record 

under consideration. These tests allow for the direct comparison of important isolation 

system demand parameters, such a peak force output, peak isolator displacement, and total 

energy dissipation. 

The results of nine pairs of experiments are available, for reviewers to evaluate the 

sensitivity of the DP isolation system to the presence of vertical ground acceleration. These 
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consist of three records, each at three excitation amplitudes. An example of pertinent 

experimental results for the CHY-80 input is shown below. For this record with and without 

vertical acceleration input, a comparison of the total vertical load on all isolators is shown in 

Figure 5.34. It is clear from this figure that the total vertical load W varies from 52 kips to 70 

kips without vertical acceleration (or a variation of approximately , 

where  is the total dead weight of the specimen). The same horizontal input is applied 

with vertical acceleration, and the total vertical load varies from 42 kips to 74 kips (or a 

variation of approximately ). For the same pair of CHY-80 tests, a 

comparison of the cyclic behavior of the isolation system with and without vertical 

acceleration is shown in Figure 5.35. It is evident from these data that, even with a 

substantial variation in total axial load between the two tests, virtually no observable 

difference exists between the peak shear force, peak displacement demand, or total energy 

dissipation by including (or omitting) vertical acceleration input. 

 

Figure 5.34: Comparison of total weight on DP isolation system, with/without vertical 
ground acceleration, CHY-80 (ID 143915/144942) 

0.86 / 1.16DLW W≤ ≤

DLW

0.69 / 1.22DLW W≤ ≤
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Figure 5.35: Comparison of cyclic behavior of DP isolation system, with/without vertical 
ground acceleration, CHY-80 (ID 143915/144942) 

As with the DP specimen, the results of nine pairs of experiments are available, for 

reviewers to evaluate the sensitivity of the TP isolation system to the presence of vertical 

ground acceleration. An example of pertinent experimental results for the CHY-85 input is 

shown below. For this record with and without vertical acceleration input, a comparison of 

the total vertical load on all isolators is shown in Figure 5.36. It is clear from this figure that 

the total vertical load W varies from 50 kips to 70 kips without vertical acceleration (a 

variation of approximately ). The same horizontal input is applied with 

vertical acceleration, and the total vertical load varies from 45 kips to 74 kips (a variation of 

approximately ). For the same pair of CHY-85 tests, a comparison of the 

cyclic behavior of the isolation system with and without vertical acceleration is shown in 

Figure 5.37. It is evident from these data that, as with the DP bearing specimen, virtually no 

observable difference exists between the peak shear force, peak displacement demand, or 

total energy dissipation due to including (or omitting) vertical acceleration input. 

0.83 / 1.16DLW W≤ ≤

0.74 / 1.22DLW W≤ ≤
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Figure 5.36: Comparison of total weight on TP isolation system, with/without vertical 
ground acceleration, CHY-85 (ID 152532/153252) 

 

Figure 5.37: Comparison of cyclic behavior of TP isolation system, with/without vertical 
ground acceleration, CHY-85 (ID 152532/153252) 

5.3.3 Effect of Tridirectional Ground Motion on Cyclic Behavior of Isolators 

To investigate the effect of tridirectional ground motion on the performance of DP and TP 

bearings, a test was conducted for each record including three components of ground motion. 

This is an important consideration since, regardless of the assumptions, all seismic events 

induce such tridirectional motion, and isolation systems must be capable of responding in a 

robust and predictable manner under such motion.  



 

130 
 

For the DBE level of hazard, each of the three input signals was run with a single 

longitudinal component, a longitudinal and vertical component, and all three components. In 

Section 5.3.2, the insensitivity of the bearing response to the presence of vertical ground 

motion was established. It has been shown in previous experimental studies (e.g., Mosqueda 

et al. [2004]) that FP bearings generally follow a circular bidirectional interaction surface. A 

consequence of this is isotropic behavior in any planar direction, and coupling of orthogonal 

components of force under bidirectional displacement. This coupling is evident in the 

experimental results presented in this section. Figure 5.38 shows a comparison of cyclic 

behavior, along the longitudinal axis, for the CHY-65 record with one- and three-component 

excitation. The peak displacement shows an apparent increase due to the presence of 

orthogonal force, leading to decreased longitudinal force and hence less energy dissipation 

along this axis. In the absence of orthogonal coupling, there would be no difference in 

response between these two cases. Figure 5.39 shows the same comparison as described 

above subject to the CHY-65 signal, but for the TP specimen. A slight increase in 

longitudinal deformation is also evident due to orthogonal coupling of each pendulum 

mechanism. The data presented here are meant to establish evidence of coupling, however, 

they are also intended to validate future analytical models for TP bearings considering multi-

component excitation.  
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Figure 5.38: Comparison of cyclic behavior of DP isolation system, with/without 
tridirectional ground acceleration,  

CHY-65 (ID 143439/145554) 

 

Figure 5.39: Comparison of cyclic behavior of TP isolation system, with/without 
tridirectional ground acceleration,  

CHY-65 (ID 151910/153452) 
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5.4 SEISMIC RESPONSE OF SUPPORTED STRUCTURE 

5.4.1 System Identification of Steel Superstructure 

An important consideration in evaluating the experimental data collected from the response 

of the steel superstructure is an estimate of its vibration properties. Specifically, the 

fundamental natural frequency and the associated damping in that mode of vibration are 

important system parameters since transmissibility of ground acceleration to the 

superstructure is a consideration in these experiments. Therefore, the identification of higher 

mode response can be readily identified from the acceleration transfer functions for each 

earthquake simulation test. 

5.4.1.1 Fundamental Frequency of Vibration 

To estimate the frequency of vibration in the steel frame specimen, the Fourier spectrum of 

the roof acceleration was computed over some duration where sliding on the supported 

bearings had clearly ceased. The test chosen for this identification is the low-amplitude 

sinusoidal excitation for the DP specimen, or Test ID 112603 (SINE-10, span setting = 63.) 

By observing the acceleration history at the end of the excitation, a signal was recorded that 

is uncontaminated by flexibility contribution by the isolation devices. Displacement records 

from the table to the bearings were observed to verify that no sliding occurs during this 

portion of the acceleration signal. By obtaining the Direct Fourier Transform by the FFT 

algorithm (Cooley and Tukey [1965]) the principal harmonic components of this signal may 

be obtained. The Fourier amplitude spectrum for the free vibration of the steel frame is 

shown below in Figure 5.40. From this, the lowest frequency of vibration is 5.316 Hz, or a 

fundamental period of 0.19 seconds. This corresponds to  sec in prototype scale, a 

reasonable period for a three-story braced frame structure. From Figure 5.40, the second and 

third mode frequencies are approximately 7.87 and 12.12 Hz, (or 0.127 seconds and 0.083 

seconds), respectively. 

0.38nT =
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Figure 5.40: Fourier spectrum of roof acceleration under  
small-amplitude free vibration 

5.4.1.2 Damping in First Mode 

To estimate the inherent damping in the steel frame specimen, the decay of acceleration 

amplitude was observed over some duration where sliding on the supported bearings had 

ceased. To approximate the first-mode damping ratio, the log decrement approach was 

applied [Chopra, 2007]. This is an appropriate technique for estimating damping given this 

response since the structure undergoes free vibration. Using the log decrement approach, the 

damping ratio is estimating from a structure undergoing free vibration as 

  (5.11) 

where n is the number of the first peak acceleration, j is the total number of observed cycles, 

and  is the acceleration of the kth peak. Given the free vibration data of Figure 5.41, this 

damping ratio is estimated as  critical. This estimate is reasonable given commonly 

assumed damping ratios for bare steel frames. Also shown in Figure 5.41 is the superimposed 

exponential decay relationship of the acceleration envelope given a damping ratio of 

. This comparison shows good agreement with the experimental data. 
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Figure 5.41: Roof acceleration history under  
small-amplitude free vibration (ID 112602) 

5.4.2 Interstory Drifts 

For all shake table tests, interstory deformations were measured at each of the three levels for 

the two longitudinal brace frames. As the structure is isolated from the shake table, the 

motion of each story was expected to follow essentially rigid-body behavior. Hence, very 

little interstory deformation was expected, and instrumentation was provided primarily to 

monitor any slippage of the slotted-bolted connections in the braces. In no test was there any 

observed bolt slippage, and measured interstory drift demands were negligible. 

5.4.3 Floor Accelerations 

5.4.3.1 Unidirectional Ground Motion 

A key feature of multi-stage FP bearings is the ability to provide effective isolation under a 

range of ground-motion intensities. In particular, whereas traditional isolation systems 

exhibit high initial stiffness and strength, the inner slider of the triple pendulum bearing has 

very low strength and a stiffness that is defined by its geometry and may therefore be 

specified by the designer. An optimally tuned isolation system filters out high-frequency 

acceleration content over a broad range of intensities of ground shaking. To investigate the 

effectiveness of the bearing specimens to filter high-frequency acceleration, acceleration 

transfer functions are computed from experimental data at each story. The jth transfer 
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function, , is defined as the mapping of the Fourier spectrum of the table acceleration 

to the Fourier spectrum of the total acceleration at the jth level. Mathematically, this 

definition can be written as 

  (5.12) 

where  denoted the Discrete Fourier Transform. While this transfer function is 

generally complex-valued, a plot of its modulus, , versus frequency provides 

information as to the predominant frequencies of the accelerations transmitted to the 

superstructure from the ground by the isolation system. Figure 5.42 indicates the levels 

where floor accelerations are reported: Table (just below the isolation plane,) Base (just 

above the isolation plane), 1st, 2nd, and 3rd floors. At each floor, longitudinal accelerometers 

are mounted on the southwest (SW) and southeast (SE) corners.  

 

Figure 5.42: Floor labels for description of longitudinal acceleration data 

To evaluate the frequency content of the acceleration response of the superstructure 

for both DP and TP specimens, the roof acceleration transfer function is computed and 

compared at the three intensity levels for the three input ground motions. The frequencies at 

which the peaks of these transfer functions occur indicate the nature of the filter that is 

provided by the isolation system. A transfer function with peaks only in the low frequency 

range is an indication of effective isolation under that particular input, and the limiting case 
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is an undamped linear spring, which has only one peak (at infinity) at precisely the natural 

frequency of the system. 

Figure 5.43 shows a comparison of the roof acceleration transfer function amplitude, 

, for both the DP and TP specimens, and at three levels of scaling for the CHY input. 

In comparing the results from the SLE scaled record, it is evident that the DP specimen 

transmits significant frequency content between 5 and 10 Hz. This corresponds to the first 

and second fixed-base frequencies of the superstructure, indicating comparatively weak 

isolation effect for this input. For this same level of input, the TP acceleration transfer 

function shows virtually no transmission of acceleration above about 2 Hz, with small 

amplitude spikes around the fixed-base frequencies. Overall observation of the character of 

the transfer function for the CHY-SLE input indicates a more efficient low-frequency filter 

for the TP specimen as compared with the DP specimen. The efficiency of the DP isolator as 

a filter is shown to increase as the level of excitation becomes more severe, with the results 

of the CHY-MCE record indicating a low participation of high modes in the acceleration 

response relative to that of the isolated mode. It is noteworthy that the DP specimen shows 

significant excitation of first fixed-base mode response at the SLE hazard level, but virtually 

none at the DBE and MCE levels. 

The data of Figure 5.44 and Figure 5.45 present the same comparison of roof 

acceleration transfer functions at discussed above, but for the G03 and SYL inputs, 

respectively. In both of these figures, there is clear high-frequency content in the acceleration 

response due to less efficient filtering by the DP bearing at the SLE hazard level. The 

capability of the DP system to filter high-frequency accelerations increases with more severe 

excitation, a trend observed for the CHY signal. For the TP specimen, there is some higher 

mode participation for the G03-MCE signal, though the exact source is not immediately clear. 

It is expected, however, that the stiffening properties of the TP system would lead to a 

reduction in isolation effectiveness at extreme displacement demands, though performance of 

acceleration-sensitive components is typically not a design consideration in such a rare 

seismic event. 

5.4.3.2 Effect of Vertical Ground Motion on Floor Accelerations 

A potential factor influencing the frequency content of floor accelerations in structures 

isolated with sliding-based bearings is the presence of vertical ground motion. Vertical 

2
3 ( )H ω
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ground motion is generally dominated by high-frequency acceleration [Kramer, 1996], and 

while isolator peak forces, deformations, and energy dissipation appear insensitive to such 

motion, the frequency content of the bearings force output is likely to mimic the vertical 

acceleration. This is due to the direct relationship between shear output force and normal 

force, the latter of which is directly related to vertical acceleration. No studies have been 

directed at the experimental evaluation of the sensitivity to vertical ground motion of floor 

accelerations in isolated structures. This experimental program included nine such 

comparative tests for each of the two specimens. The results of a subset of these tests are 

presented in this section, however, the trend for all tests results matched those presented. 

First, the effect of vertical ground acceleration is investigated for a moderate level of 

excitation. Consider the CHY input signal, scaled to the SLE hazard level. Figure 5.46 shows 

a comparison of the Fourier spectra of the total horizontal acceleration response at each floor 

level of the supported structure, with and without vertical acceleration input, for the DP 

specimen. From these data, there is no observable variation due to vertical ground motion in 

either the magnitude of each frequency contribution, or the predominant frequencies of 

response. While a direct comparison of acceleration response histories does not generally 

lead to clear conclusions, by converting each history to the frequency domain, substantial 

variations in the output become much clearer. Figure 5.47 shows the same comparison, but 

for the TP specimen. From these data, it is clear that the frequency content of each floor 

acceleration is less rich than the DP case, and the TP bearings focus much of the response in 

the low-frequency range. However, as with the DP case for the CHY-SLE input, there is very 

little discernable difference in either the magnitude of each frequency contribution, or the 

predominant frequencies of response with the inclusion of vertical ground motion. 

It is necessary to perform the same comparison under a severe level of excitation, 

since the variation in axial load history becomes more substantial with higher vertical 

acceleration. Here we consider the CHY input signal, scaled to the MCE hazard level. Figure 

5.48 shows a comparison of the Fourier spectra, with and without vertical acceleration input, 

for the DP specimen. From these data, the low-frequency acceleration content is much more 

pronounced than for the same record scaled to the SLE. This is an indication of the improved 

isolation effectiveness of the traditional Friction Pendulum as the displacement demand 

increases. However, there is also no observable variation in superstructure acceleration 

response due to vertical ground motion. These is some change in frequency content of base 



 

138 
 

level acceleration in the 6–8 Hz range, but the difference does not appear to be substantial. 

Figure 5.49 shows the same comparison, but for the TP specimen. From these data, it is clear 

that the frequency content of each floor acceleration is comparable to that of the DP 

specimen at the MCE, an indication of parity in achieving effective isolation. As with the DP 

case for the MCE input, there is very little discernable difference in characteristics of the 

acceleration response with the inclusion of vertical ground motion. 

5.5 CONCLUSIONS 

The experimental results summarized here confirm the behavior of the triple pendulum 

bearing presented in Chapter 3 of this report. Behavior was investigated under multiple 

amplitudes of both sinusoidal excitation and earthquake excitation. Key parameters 

investigated include: multiple levels of isolator displacement, variation of axial load, uplift 

of bearings, and multi-components of base excitation. The experimental results indicate 

cyclic behavior is predicted well by the cyclic model developed for TP bearings. The 

behavior of bearings subject to large overturning conditions shows stability under transient 

uplift and stable performance in the cycles that follow uplift. Additionally, both the isolation 

system and superstructure response appear largely insensitive to the presence of vertical 

ground acceleration.  
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Figure 5.43: Comparison of DP and TP roof acceleration transfer functions for CHY 
inputs 
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Figure 5.44: Comparison of DP and TP roof acceleration transfer functions for G03 
inputs 
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Figure 5.45: Comparison of DP and TP roof acceleration transfer functions for SYL 
inputs 
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Figure 5.46: Comparison of Fourier spectra of total acceleration at each level for DP 
specimen, CHY-SLE input, with/without vertical input  

(ID 142803/144558) 
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Figure 5.47: Comparison of Fourier spectra of total acceleration at each level for TP 
specimen, CHY-SLE input, with/without vertical input  

(ID 151647/152851) 
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Figure 5.48: Comparison of Fourier spectra of total acceleration at each level for DP 
specimen, CHY-MCE input, with/without vertical input  

(ID 143915/144942) 
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Figure 5.49: Comparison of Fourier spectra of total acceleration at each level for TP 
specimen, CHY-MCE input, with/without vertical input  

(ID 152532/153252) 
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6 Analytical Simulations 

In this chapter, parametric numerical simulations are conducted to identify the effect of 

various isolation system characteristics on several engineering demand parameters of interest. 

Given the development and validation of an accurate model for the triple pendulum (TP) 

bearing in Chapters 3 through 5, it is important to generate a significant body of analytical 

results not only for the TP bearing, but also for other classes of isolation systems, so 

comparisons may be drawn. The goal of the studies described in this chapter is to provide the 

technical background against which a methodology can be devised for selecting isolation 

devices consistent with targeted performance objectives. Particular emphasis is given to the 

performance enhancement capabilities of TP bearings compared to more traditional isolation 

systems. 

6.1 INTRODUCTION 

The studies described first consider a canonical two-degree-of-freedom structure subjected to 

a single ground motion input. All isolation systems are studied with a range of parameters 

considered. These studies are meant to provide a rudimentary indication of the sensitivity of 

seismic demand on the intensity of excitation for all isolation systems under consideration. 

Subsequent to these simple analyses, parametric studies are conducted on three- and nine-

story buildings, considering an ensemble of ground motions developed for multiple levels of 

seismic hazard. With the range of isolator types and properties considered, the results of 

these studies are appropriate to quantify isolation effectiveness of linear elastomeric systems 

with supplemental viscous dampers, lead-rubber isolation systems, traditional friction 

pendulum bearings, and the new triple pendulum bearing. 
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6.2 THE ROLE OF INTERSTORY DRIFT AND FLOOR ACCELERATION IN 
SEISMIC PERFORMANCE OF STRUCTURES 

To evaluate the effect of various isolation system parameters on the seismic performance of 

the base-isolated structure, it is important to select a set of demand parameters that 

appropriately characterizes performance. Earthquake-induced damage to structures can often 

be related to global and local interstory deformations and floor level accelerations. Detailed 

treatment of the importance of these two demand parameters to performance-based 

earthquake engineering is given by Taghavi and Miranda [2003]. 

Even elastic deformation of a structure may induce damage in non-structural 

components that are unable to accommodate differential movement at their boundaries, or at 

the contact points of the nonstructural components to adjacent structural and nonstructural 

elements. Examples of such components include interior gypsum wall partitions, exterior 

glazing systems, precast concrete cladding, stairs, elevators, and vertical plumbing risers. 

Deformations that exceed the elastic limit of the structural components lead to greater 

nonstructural damage, but also to a variety of structural damage such as: buckling or fracture 

of steel beam-column connections and braces, spalling of exterior cover concrete, diagonal 

cracking of concrete piers, and cracking and dislocation of masonry walls. Additionally, 

severe inelastic deformations often lead to permanent deformations once seismic shaking has 

ceased. Such deformations are extremely expensive to rehabilitate, and in many cases may 

lead to a life-safety hazard if means of egress are rendered useless. 

Accelerations in the structure induce inertial forces that must be resisted by either 

anchorage in components rigidly attached to the structure, or by overturning resistance in 

freestanding components. Additionally, accelerations induce forces in the primary structural 

elements such as diaphragms, chords, and collectors. Acceleration-sensitive components 

include exterior cladding, equipment, parapets, piping, and ceilings. Because flexible 

nonstructural components can amplify the forces imparted to them by the acceleration of 

their supports, several descriptors of acceleration are necessary. For essentially rigid 

components, the peak floor acceleration (PFA) is generally sufficient to characterize the 

potential for damage in those components. However, many nonstructural components are 

non-rigid, and as a result, a spectral representation of acceleration at a particular location in 

the structure is necessary. Such an acceleration spectrum at a point other than the ground 
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level is referred to as a floor spectrum. Given the likely natural frequency range of 

nonstructural components, a second descriptor of acceleration damage is peak floor 

acceleration, PFSA, which is implicitly taken here as the maximum floor spectral 

acceleration computed over the frequency range 2–10 Hz for a damping ratio of 5%. 

Based on the above discussion, the engineering demand parameters considered in the 

subsequent analytical studies are peak interstory drift ratio (PIDR), peak floor acceleration 

(PFA), peak floor spectral acceleration (PFSA) and peak isolator displacement (Uiso). 

6.3 PARAMETRIC STUDIES OF TWO-DEGREE-OF-FREEDOM SYSTEMS 

The linear theory of seismic isolation as originally presented by Kelly [1996] considers a 

two-degree-of-freedom (2-DOF) isolated structure, one base mass just above the isolation 

system, and one structural mass connected to the base mass through an elastic structural 

system. Viscous damping is considered in the form of linear viscous elements in parallel with 

both the isolation system and the superstructure. A schematic representation of this 2-DOF 

structure is shown below in Figure 6.1. Such a simple formulation is useful because it 

facilitates the study of the response of seismically isolated structures by retaining the 

simplicity of the canonical single-degree-of-freedom (SDOF) system prevalent in the study 

of earthquake-resistant design. The theory presented by Kelly is a specialization of general 

modal dynamic analysis concepts for conditions where the stiffness of the isolation system is 

much less than that of the superstructure. In this section, this 2-DOF model is extended to 

assess the influence of nonlinear restoring force and energy dissipation characteristics of the 

isolation and structural system on demand parameters such as isolator displacement, 

interstory drift, and floor accelerations. Therefore, an extension of the initial model to treat 

nonlinear behavior is necessary. While response under dynamic excitation is not computed 

herein using linear modal expansion techniques, results from the nonlinear analyses will be 

examined in such a way that comparison with linear modal analysis is meaningful. 
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Figure 6.1: Schematic of 2-DOF isolated structure 

Here it is useful to state the equations of motion for a 2-DOF isolated structure, 

considering global displacements at each DOF [that is,  is the displacement of the  

DOF with respect to its undeformed position]. Here, the damping forces and spring forces are 

left general, in recognition of the possibility of nonlinear response in these elements. We let 

the masses at DOFs 1 and 2 be  and , respectively. Since the displacements  are 

relative to an absolute frame of reference, each entry of the mass matrix m is simply 

, where  is the standard Kronecker delta function. As a result, the vector of 

global inertial forces can be represented as . The vector of global 

damping forces at each DOF are represented by  and the global spring forces 

by . These two force vectors are the result of a mapping of local damping and 

spring element forces, respectively, to global coordinates by a transformation matrix 

  (6.1) 

Note that the columns of B are linearly independent, which implies the existence of . 

Given this transformation,  and  where  is a vector of element damper 

forces between each level, and  is a vector of element spring forces between each level. 

Both of these vectors are generally nonlinear. Writing the equations of motion at each DOF 

for base earthquake acceleration  yields the following system of equations 

  (6.2) 
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The damping and spring element forces are left general. The exact analytical form of  and 

 is described in the sections below. 

6.3.1 Effect of Nonlinear Damping Elements 

In classical dynamics, the damping force is assumed to be a linear function of velocity. 

Under this assumption, and in the notation introduced, the ith damping force would be 

 where  is the local velocity for the ith damping element. In this case, the vector of 

global damping forces simplifies to  

  (6.4) 

Here, c is the traditional global damping matrix, and although not necessarily classical (i.e., 

diagonal in the eigenspace), it defines a linear transformation between global velocity and 

global force. This formulation is a convenient approximation for systems with natural 

damping, which is a result of multiple sources of energy dissipation, such as friction 

associated with architectural elements and nominal inelastic material behavior. While these 

types of energy dissipation are not necessarily velocity dependent, they generally contribute 

small amounts of damping, and the error introduced is considered negligible. However, it is 

increasingly common in engineering practice to consider the implementation of 

manufactured damping devices, such as fluid viscous dampers (FVDs), to control structural 

response. An overview of the use of manufactured damping devices to control isolator 

deformations is discussed in Chapter 2.  

In designing structural systems with FVDs, it is now common to investigate the use of 

damping elements manufactured to exhibit a nonlinear force-velocity relationship. A general 

class of nonlinear FVDs follows the force-velocity relationship 

  (6.5) 
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function. The coefficient cd is the damping coefficient, whose magnitude describes the 

damper force output at some velocity demand. These types of dampers have been considered 

attractive because, at a particular output damper force capacity, the total energy dissipation 

per cycle is greater for a nonlinear FVD where  [Lin and Chopra, 2003]. 

Applying a transformation similar to Equation (6.4) above, the global damping force 

can be expressed as 

  (6.6) 

6.3.1.1 Nonlinear Spring Elements 

A similar extension of spring force to nonlinear behavior is described here. Under the 

assumption of spring linearity, and in the notation introduced, the ith spring force would be 

 where  is the local deformation for the ith spring element. In this case, the vector 

of global spring forces simplifies to  

  (6.7) 

Here, k is the traditional global stiffness matrix, and it defines a linear transformation 

between a compatible global displacement field and global force field in equilibrium. It is 
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The response of structures to severe seismic excitation may extend elements of the 
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the expected inelastic force-deformation properties of the subject structural element. One 

model that captures nonlinear cyclic behavior is the Bouc-Wen hysteretic constitutive 

relationship [Wen, 1976]. This model is appropriate for both superstructural yielding 

elements and a wide class of seismic isolation devices. This nonlinear spring element follows 

the force deformation relationship 

  (6.8) 

where  and  are the spring element force and deformation, respectively. The elastic and 

hysteretic portions of the force are explicitly identified. The parameter α defines the ratio of 

plastic stiffness to elastic stiffness ( ) and  is the yield force at which the stiffness 

transition from elastic to plastic occurs. The non-dimensional hysteretic parameter  

follows the differential equation 

  (6.9) 
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  (6.10) 

where the vector z follows the differential equation 

  (6.11) 

6.3.1.2 Normalized Equations of Motion 

Since the behavior of seismic isolated structures can be significantly affected by the 

nonlinear behavior of both spring and damping elements, it is convenient to recast the 
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below is for a 2-DOF structure, and is for the purpose of defining the nonlinear system of 

equations in terms of convenient non-dimensional design parameters. 

To develop a system of equations of motion that are in terms of non-dimensional 

design parameters, we first express the structural displacements in terms of element 

deformations, rather than global displacements relative to an absolute frame of reference. 

This transformation was used by Kelly [1996] to approximate dynamic characteristics of 

linear isolated structures. The extension here is to nonlinear behavior in the isolation system 

and superstructure. Let  where the square equilibrium transformation matrix B is 

defined in Equation (6.1). Recalling that B is both square and full rank, the global 

displacements can then be expressed as . Substituting this transformation into 

Equation (6.3) yields 

  (6.12) 

Premultiplying this by  gives 

  (6.13) 

To obtain the transformed mass matrix on the right side of Equation (6.13), it is necessary to 

solve for a modified influence vector r from . Doing so yields , 

and; hence Equation (6.13) becomes 

  (6.14) 

where 

  (6.15) 

The forces  and  are defined above in Equations (6.5) and (6.8), 

respectively. The linear portions of this system follow the results of Kelly [1996]. 

The system of equations in (6.14) is not in its most convenient form for parametric 

nonlinear analysis, since the explicit appearance of a mass matrix indicates that information 

about the supported structure is necessary. Additionally, in most common applications 

viscous damping associated with the supported structural elements may be considered small, 

T=v B u

T−=u B v

( ) ( , , ) ( , , ) ( )T
d s gt t t u t− + + = −mB v Bq v v Bq v v m1�� � � ��

1−B

1 1( ) ( , , ) ( , , ) ( )T
d s gt t t u t−− −+ + = −

m
B m B v q v v q v v B m 1

�
�� � � ���	


T− =B r 1 [ ]1 0 TT= =r B 1

( ) ( , , ) ( , , ) ( )d s gt t t u t+ + = −mv q v v q v v mr� ��� � � ��

1 2 21

2 2

1
,

0
T m m m

m m
− − +⎡ ⎤ ⎛ ⎞

= = = ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

m B mB r�

( , , )d tq v v� ( , , )s tq v v�



 

156 
 

and therefore approximated as being linear. Therefore, the elements of  are simply 

. To normalize this system of equations, each DOF is considered separately.  

6.3.1.2.1 First Degree of Freedom 

In developing a normalized system of equations of motion, consider the first row of Equation 

(6.14): 

  (6.16) 

Diving by , this becomes 

  (6.17) 

Following the notation of Kelly [1996], the superstructure mass ratio is defined as 

. Recognizing the viscous damping ratio of the isolated structure, where the 

supported structure is completely rigid, as , 

  (6.18) 
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  (6.19) 

Here, we define a normalized isolator spring force , or the spring force as 

a fraction of the weight above the isolation system. This normalized spring force has the 

advantage of (a) being non-dimensional; and (b) approximating the pseudo-acceleration 

demand as a percentage of gravity. Therefore, a normalized yield strength follows the same 

definition, that is, . The ratio of isolator spring force to yield force is 

defined as . Here, we also define a normalized ground acceleration 

. Applying these definitions, and substituting  yields  

  (6.20) 

This equation of motion has units of [sec-2], so it is desirable to multiply by . Doing so 

leads to the non-dimensional nonlinear equation of motion below: 

  (6.21) 

6.3.1.2.2 Second Degree of Freedom 

We now consider the second row of (6.14): 
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Dividing by , and recognizing that the viscous damping ratio of the superstructure can be 

expressed as , this becomes 
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the equation of motion becomes 

  (6.24) 

( )
2 1

1 2 1 1 1
1 1 2 1 1

( ) 1( ) ( ) 2 ( ) ( )y s
g

f f f

v q ty t y t y t u t
v m m v v

γ ζ ω+ + + = −
+

�� �� � ��

( )1 1 1 2/s sq q m m g= +

( )1 1 1 2/y yq q m m g= +

1 1 1/s yR q q=

( ) ( ) /g gu t u t g=�� �� 1 1 1/f yv q k=

2 2 2
1 2 1 1 1 1 1 1

1 1

1( ) ( ) 2 ( ) ( ) ( )y
g

f y

v
y t y t y t R t u t

v q
γ ζ ω ω ω+ + + = − ���� �� �

2
1ω −

2 1
1 2 1 12 2

1 1 1 1 1

21 1( ) ( ) ( ) ( ) ( )y
g

y y

q
y t y t y t R t u t

q q
ζγ

ω ω ω
+ + + = − ���� �� �

2 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( )s gm v t m v t c v t q t m u t+ + + = −�� �� � ��

2m

2 2 2 2/ 2c mζ ω=

2
1 2 2 2 2

2

( )( ) ( ) 2 ( ) ( )s
g

q tv t v t v t u t
m

ζ ω+ + + = −�� �� � ��

2 2 2/ yy v v=

1 2
1 2 2 2 2

2 2 2

( ) 1( ) ( ) 2 ( ) ( )f s
g

y y

v q ty t y t y t u t
v m v

ζ ω+ + + = −�� �� � ��



 

158 
 

It is noted that, by its above definition, the normalized displacement  is also the 

superstructural ductility demand. It is also convenient to introduce a normalized 

superstructure spring force , or the spring force as a fraction of the weight of 

the superstructure (analogous to the spectral acceleration in units of g). Therefore, a 

normalized yield strength follows the same definition, that is, . The ratio of 

spring force to yield force is defined as . Applying these definitions, and 

substituting  yields  

  (6.25) 

Premultiplying by  leads to the non-dimensional equation of motion below: 

  (6.26) 

6.3.1.2.3 Results of Normalization 

Combining the developed normalized equations of motion in a convenient matrix form gives 

the following non-dimensional system of nonlinear differential equations 

  (6.27) 

Substituting definitions for each matrix and vector above, we express compactly as 

  (6.28) 

This non-dimensional form may be implemented in a numerical integration algorithm to 

determine the nonlinear response to ground acceleration given parameters that are generally 

of practical interest to the designer and have important physical interpretations. These 

equations form the basis for the analyses presented in subsequent 2-DOF parametric studies. 
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6.3.2 Effect of Linear Viscous Energy Dissipation on Seismic Performance 

To investigate the effect on the performance of base isolated structures to linear 

supplemental viscous damping devices acting in parallel with linear isolators, a methodology 

must be developed to select appropriate damping parameters. This investigation is important 

for the studies described herein, as the linear viscous isolation system forms a basis of 

comparison for other isolation system incorporating either bilinear hysteretic or triple 

pendulum behavior. 

6.3.2.1 Selection of Isolation System Parameters 

Based on the previous formulation in Section 6.3.1, a designer can choose the following 

parameters to characterize a linear isolation system with supplemental nonlinear fluid 

viscous dampers: , cd, and η. Recall that  defines the natural frequency of the isolated 

building assuming superstructure rigidity, and cd and η define the damping coefficient and 

velocity power law, respectively, of the generally nonlinear damper. Here it is assumed that 

all energy dissipation in the isolation system is due to the supplemental dampers, and 

therefore  is the only parameter needed to characterize the isolation bearings. 

The properties of the isolation system should be selected considering the seismic 

environment in which the structure is located, and the desired response. For any location in 

the U.S., a set of seismic hazard curves has been developed by the United States Geological 

Survey [USGS, 2007.] From these hazard curves, spectral ordinates (such as spectral 

displacement at damping ζ = 0.05) may be computed at any natural frequency , and for 

any mean annual frequency (MAF) ν. In current model building codes in the United States 

[ASCE, 2005] the isolation system and all interconnected components must remain stable 

under a Maximum Considered Event (MCE) ground motion. The level of hazard, where not 

controlled by a fault scenario-based deterministic event, is defined as a seismic event having 

a 2% probability of exceedance in a 50-year interval, or a 2475-year return period. This event 

corresponds to . Therefore, the seismic hazard curve for the site provides 

the parameter , which approximates the 5% damped MCE isolator displacement 

for a linear isolation system having natural frequency .  

1ω 1ω
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Typically, the isolation frequency is selected to provide substantial frequency 

separation from the superstructural natural frequency, and to minimize the base shear in the 

Design Basis Event (DBE). If we take  as a result of the structural design and treat it as 

given, the bearing stiffness is simply , where m is the total mass of the isolated 

structure. This selection of  leads to an estimate of the MCE isolator displacement, 

. However, this spectral displacement is typically computed at a damping 

of ζ = 0.05, which is generally considered appropriate for fixed-base structures with cladding, 

partitions, and other sources of nominal energy dissipation under small vibration. For a linear 

isolation system, composed of either natural rubber bearings or lubricated spherical sliding 

bearings, damping is very close to zero, so the estimate of MCE isolator displacement must 

be modified in the absence of supplemental energy dissipation. An approximation for the 

IBC-based damping reduction factor is given by Christopolous et al. [2006] as 

  (6.29) 

where Sd is the spectral displacement and  is the target damping ratio of the isolation 

system. If a displacement limit of the isolation system is defined as , then it is feasible to 

estimate the target viscous damping ratio for supplemental linear viscous dampers by 

imposing the constraint 

  (6.30) 

If we assume a damping ratio in the linear isolation system without supplemental energy 

dissipation as being negligibly small, Equation (6.30) can be rearranged to solve for the 

target damping as 

  (6.31) 

This estimate of the target damping ratio for a linear supplemental energy dissipation system 

can be used to compute the parameters cd and η for a nonlinear system by assuming the 

energy dissipation by the nonlinear supplemental dampers during a representative cycle 

equals the energy dissipated by the linear system with viscous damping ration . 
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For a system comprised of nonlinear viscous damping elements having the same 

power for the velocity, recall that the damping force of the system is given by 

  (6.32) 

where cd is the damping coefficient of all dampers in the system. Here we will estimate the 

peak velocity by considering a representative cycle of response having a frequency  and 

peak displacement  of the isolation system. Given the force-velocity relationship of 

Equation (6.32), and assuming one cycle of displacement demand is given by , 

the viscous damping force can be expressed as 

  (6.33) 

We wish to compute the total energy dissipated in one cycle of displacement, and 

recognizing that, for an infinitesimal displacement du, the energy accumulation over that 

displacement is . Integrating over some displacement interval  gives the 

expression for total energy dissipation in one cycle as 

  (6.34) 

However, substituting , this integral becomes 

  (6.35) 

Substituting the expressions for damper force and velocity yields 

  (6.36) 

The cosine function is positive-valued for  and , and negative-

valued for , so Equation (6.37) may be expressed as 

 (6.37) 

This summation of integrals has a closed form solution, and is given by Soong and 
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  (6.38) 

where  is defined by the Gamma function, and is given by 

  (6.39) 

For the above displacement cycle, the peak damper force is  for a peak 

displacement of . From Equation (6.38), Ed may be expressed as 

  (6.40) 

The variable  may be interpreted as a shape modification factor for the damper 

hysteresis. Taking two natural cases of the velocity exponent:  (velocity independent) 

and  (linear viscous), computing λ for each gives  and . This same 

result is found by recognizing that for velocity-independent damping force, the hysteresis is 

rectangular, and for linear viscous damping force, the hysteresis is elliptical. In the former 

case, the peak damper force is in-phase with the peak displacement, whereas for the latter, it 

is exactly out of phase by π/2 radians. The implications of this for isolation structures will 

become clear in subsequent discussions regarding different mechanisms of energy dissipation 

at the isolation interface. 

The final goal of this section is to compute a required set of damper parameters cd and 

η such that a nonlinear viscous damper dissipates the same energy as a linear one having a 

target damping ratio ζt. The approach is to equate the energy dissipation for linear viscous 

and nonlinear cases for a cycle of displacement having the same peak displacement and 

frequency. In light of the above derivations, this is a straightforward process. While this 

approach has been derived assuming rigid superstructure, it may be extended to the case of 

the non-rigid superstructure so long as there is sufficient period separation that earthquake-

induced deformation is primarily concentrated at the isolation interface.  

Consider the canonical 2-DOF isolated structure, having total mass m1 + m2 = m, 

isolated frequency , and negligible inherent damping. If a linear viscous damper is 

installed to act in parallel with the isolators, the viscous damping ratio is defined as 

. From Equation (6.38), taking η = 1, the peak displacement as  and the 
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frequency of response as , the energy dissipation per cycle is given as . 

Therefore, the damping ratio may be expressed as  

  (6.41) 

While only valid for linear viscous damping, the expression above is often used to 

approximate the equivalent linear viscous damping coefficient for a nonlinear damping 

element if the proper energy dissipation per cycle, Ed, is substituted. This approach was first 

taken by Jacobsen and Ayre [1958] in their definition of equivalent viscous damping for 

inelastic systems subjected to harmonic vibrations. Substituting Ed from Equation (6.38) into 

Equation (6.41) yields 

  (6.42) 

For earthquake excitation of isolated structures, the frequency of response is normally very 

close to the structure’s natural frequency during strong shaking. Therefore, it is reasonable 

for the level of approximation we are seeking here to assume that . Making this 

substitution and solving for the required normalized damping coefficient  (as a fraction of 

the supported weight) to achieve a target effective damping ratio ζt gives 

  (6.43) 

It is useful to define a new coefficient  and examine its properties. The 

functional form of  is 

  (6.44) 

While this may be computed with relative ease using digital computers, a more tractable 

form amenable to preliminary design is preferred. A plot of  for , a likely 

bound on values for structural engineering applications, is shown below in Figure 6.2. 

Observation of the values of this function indicates a nearly linear relationship between 

 and η over the given range. Also shown in Figure 6.2 is the linear least-squares 
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estimate of  over the same range. As a result, an appropriately accurate simplification 

of the required nonlinear damping exponent to achieve target damping ratio ζt is 

  (6.45) 

Importantly, for the linear case of η = 1, the actual damping coefficient is computed as 

, the result from classic linear dynamics. For a velocity-independent device 

having η = 0, such as one based on metallic yielding or friction, the required normalized 

coefficient is . However, for such a device, the damping coefficient is equal 

to the yield (or slip) force of the device, and the term  is close to the maximum 

restoring force of the isolation system, , for small amounts of added damping force. 

Therefore, the necessary yield force of the device can be computed as . This can 

be taken a step further, since the restoring force of the isolator can be taken directly from the 

spectral acceleration at the natural frequency and target damping, or . 

Therefore, the necessary normalized yield force can be obtained from  

  (6.46) 

This is a very useful form for the designer, since the yield force coefficient normalized yield 

force can be taken directly from the elastic response spectrum for the given site. By Equation 

(6.46), for an isolated structure with an elastic spectral acceleration of 0.2g at a target 

equivalent damping ratio of 0.15, the supplemental devices must be designed to yield at 

0.047mg, or about 5% of the structure’s weight.  
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Figure 6.2: Exact equation for  compared with linear approximation 

Finally, we combine the discussion of target damping for a particular isolator displacement 

limit with equivalent damping for nonlinear viscous damping systems. Setting the expression 

for equivalent damping in Equation (6.42) equal to the target damping computed in Equation 

(6.31), we have the inequality 

  (6.47) 

Since the target displacement is generally equal to the displacement limit of the isolation 

system in the MCE, it can be assumed that . The required normalized damping 

coefficient becomes 

  (6.48) 

Careful inspection on the above relation reveals a possible further simplification. Noting that 

the target MCE spectral acceleration, in units of g, can be expressed as , 

Equation (6.48) becomes 

   (6.49) 

where , and is the target MCE spectral acceleration. This form allows the 

designer to estimate the required damping coefficient of the nonlinear viscous damping 
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system as a function of the structure’s weight, which is conveniently analogous to the 

specification of the required base shear of a structure. 

6.3.2.2 Sensitivity of Demand Parameters to Viscous Damping 

In the previous section, a simplified method of selecting generalized nonlinear viscous 

damping parameters to meet particular isolation system displacement limits was presented. 

The performance characteristics of the supported structure were not considered, since the 

primary function of supplemental damping at the isolation interface is usually prevention of 

excessive deformation of the isolators. In this section, a specialization to linear viscous 

damping is made in order to form a baseline to which subsequent studies may be compared. 

Consider the idealized isolated structure depicted in Figure 6.1. The equations of 

motion for this structure were developed for both nonlinear spring and nonlinear damper 

properties at both the isolation level and the superstructure level. To identify the effect of 

linear damping on superstructure performance, both the isolation system and superstructure 

are assumed linear. 

The engineering demand parameters (EDPs) considered are the following: 

1. : isolator displacement 
2. : story drift of superstructure 
3. : peak floor acceleration at the second floor 
4. : peak floor spectral acceleration of superstructure over the frequency 

range  

To clarify the sensitivity of these EDPs to ground-motion intensity, a single ground motion 

was selected and scaled incrementally to different intensities. For the purposes of the 

sensitivity analysis presented here, the characteristics of the acceleration record may be 

considered to be arbitrary. Here, the LA01 record developed by Somerville et al. [1996] as 

part of the FEMA/SAC Steel Project was used as the basis of the response history analyses. 

This motion, having a peak ground acceleration of 0.46 g, was part of an ensemble of records 

scaled to represent the 10% in 50-year hazard level on firm ground conditions in 

metropolitan Los Angeles. Ground-motion intensity is characterized herein as the scale factor 

by which the input acceleration record is amplified. The scale factor, SF, is varied to crudely 

simulate various levels of seismic hazard. This type of analysis has been termed Incremental 

Dynamic Analysis (IDA) by previous researchers (e.g., Vamvatsikos and Cornell [2006]), 
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and provides a clear method of observing the magnitude of changes to the EDPs of nonlinear 

systems as a function of linear increases in demand input. While it is not generally 

acceptable to model differences in seismic hazard with ground-motion scale factors due to 

the relationship between dynamic characteristics and earthquake magnitude, IDA can provide 

general insight as to the interrelationships between intensity of input and important response 

parameters such as acceleration and deformation. 

To gain understanding of the effect of linear fluid viscous damping parameters on 

seismic performance over a range of seismic hazard, a number of viscous damping ratios, 

superstructure periods, and isolation periods. The primary objective of this study is to 

observe trends of each EDP as a function of the intensity measure for a given set of isolation 

system and superstructure parameters are considered. 

Three fixed-base natural periods are considered in this study:  0.5 sec, 1.0 sec, 

and 1.5 sec. Additionally, two isolated periods are considered:  3 sec and 4 sec. Finally, 

two levels of isolation system viscous damping are considered:  = 0.10 and 0.25. Damping 

in the superstructure is taken as 0.05. In relation to the non-dimensional equations developed 

for the 2-DOF system in Section 6.3.1.2,  and . For illustrative 

purposes, sample hysteresis loops of several cases of the combined linear isolation system 

with dampers is shown in Figure 6.3. Figure 6.4 and Figure 6.5 present analytical results of 

the above-described IDA, where the scale factor defines the intensity measure. The EDPs 

reported are peak isolator displacement, peak interstory drift, and peak floor spectral 

acceleration. Each plot compares the evolution of the EDP with SF for the levels of damping 

considered. 

Consider the data presented in Figure 6.4, which presents EDP versus SF for Tiso = 3 

sec. All EDPs exhibit a linear relationship with respect to the scale factor (SF) of the input 

ground motion. This is expected, due to the linearity of the system. Whereas the isolator 

displacement appears equally sensitive to damping regardless of the superstructure period, 

the sensitivity of drift demand to damping is more significant for Tfb = 0.5 sec and 1.0 sec, 

and less significant for Tfb = 1.5 sec. The peak floor spectral acceleration does not appear 

sensitive to the damping in the isolation system for all fixed-base periods.  

Inspection of the data of Figure 6.5 for Tiso = 4 sec. shows similar trends to those of 

Figure 6.4 for the sensitivity of isolator displacement to viscous damping. However, the 
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trends for peak interstory drift and peak floor spectral acceleration are opposite of those 

observed for the 3 sec isolation system. The drift demand shows virtually no sensitivity to 

isolation system viscous damping, whereas the floor spectral acceleration shows similar 

sensitivity to damping regardless of the fixed-base period. 

 

Figure 6.3: Sample cyclic behavior for several cases of linear viscous isolation systems 
considered in parametric studies 
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Figure 6.4: Comparison of peak isolator displacement, interstory drift, and peak floor 
spectral acceleration for linear viscous Tiso = 3 sec  

and the LA01 record 
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Figure 6.5: Comparison of peak isolator displacement, interstory drift, and peak floor 
spectral acceleration for linear viscous Tiso = 4 sec  

and the LA01 record 
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6.3.3 Effect of Bilinear Hysteretic Energy Dissipation on Seismic Performance 

An investigation similar to that for linear isolation systems with nonlinear viscous damping 

is conducted here for linear isolation systems having purely bilinear hysteretic damping, and 

superstructure damping of 0.05. Such mechanisms have seen wide implementation in seismic 

isolation design, principally due to the ease of incorporating hysteretic damping within the 

isolation device. Two main sources of hysteretic damping internal to isolation bearings are 

(a) yielding of lead for the lead rubber (LR) bearing and (b) friction for the friction pendulum 

(FP) bearing. In Japanese design practice, there is prominent use of supplemental hysteretic 

damping devices. Such devices include helical and U-shaped steel dampers, lead dampers, 

and sliding dampers, the characteristics of which are summarized by Higashino and Okamoto 

[2006]. To investigate the effect of supplemental hysteretic damping devices on the 

performance of base-isolated structures, a method must be developed to select the behavioral 

parameters for the isolation system subject to a particular seismic environment.  

6.3.3.1 Selection of Isolation System Parameters 

The following parameters characterize a linear isolation system with hysteretic damping: , 

, and vy. Recall from Section 6.3.1.1 that  defines the natural frequency of the isolation 

system assuming a rigid superstructure and no hysteretic damping, and  and vy define the 

normalized yield strength and yield displacement, respectively, of the hysteretic damping 

mechanism. Here it is assumed that all energy dissipation in the isolation system is due to the 

supplemental damping mechanism, and therefore  is the only parameter characterizing the 

isolation bearings. However, if a LR or single-concave FP isolation system is considered, the 

friction or lead yield force is taken into account by the damping parameters. 

The derivations of Section 6.3.2 for nonlinear viscous dampers can be specialized to 

hysteretic dampers by recognizing the implications of rate-independence of both metallic 

yielding and friction. Additionally, energy dissipation per cycle, Ed, is virtually independent 

of yield displacement and therefore may be omitted from subsequent discussions on 

parameter selection. By Equation (6.46), the following relationship was established to 

determine the necessary normalized yield force of a hysteretic damping system given a target 
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effective isolated natural frequency  and target equivalent damping ζt , and a spectral 

acceleration : 

  (6.50) 

where  is the assumed isolator displacement at the target effective natural frequency and 

damping ratio. 

By equating the target equivalent damping ratio of Equation (6.31) to the damping 

resulting from a hysteretic system with normalized yield force , the following inequality 

results from substituting η = 0 into Equation (6.49): 

  (6.51) 

where , and is the target MCE spectral acceleration. This form allows 

the designer to specify the yield force of the hysteretic damping system as a function of the 

structure’s weight, which is conveniently analogous to the specification of the minimum base 

shear of a structure. In this case, the assumed isolator displacement  can be taken as the 

equivalent linear viscous MCE isolator displacement , which is readily available 

from the target MCE elastic spectrum under consideration. 

6.3.3.2 Sensitivity of Demand Parameters to Hysteretic Damping 

In the previous section, a simplified method of selecting hysteretic damping parameters to 

meet particular isolation system displacement limits was presented. In this section, an 

investigation of the implications of hysteretic damping on the performance of isolated 

superstructures is conducted. 

As with the viscous damping system investigation in the previous section, consider 

the idealized isolated structure depicted in Figure 6.1. To identify the effect of hysteretic 

damping on superstructure performance, the superstructure is assumed linear, and only 

hysteretic damping in the isolation system in considered. The remaining aspects of the 

analysis methodology remain identical to that presented above in Section 6.5.2.2. 
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For each level of target damping, the yield force of the damper is selected based on 

Equation (6.50) above, assuming as in the previous case that the target effective isolated 

frequency and damping ratio is achieved at an isolator displacement equal to that of the 

equivalent linear viscous case. The primary objective is to observe trends of each EDP as a 

function of the intensity measure for a given set of isolation system and superstructure 

parameters. 

Figure 6.7 and Figure 6.8 present analytical results of the above-described IDA, 

where the LA01 ground motion defines the seismic input, and the scale factor defines the 

intensity measure. As before, the EDPs reported are peak isolator displacement, peak 

interstory drift, and peak floor spectral acceleration. Each plot compares the evolution of the 

EDP with SF for a set of target damping ratios,  = 0.10 and 0.25. Three fixed-base natural 

periods are considered in this study:  0.5 sec, 1.0 sec, and 1.5 sec. Additionally, two 

effective isolated periods are considered:  3 sec and 4 sec. The yield displacement is 

assumed to be fixed at 0.02 inches, or nearly rigid. For illustrative purposes, sample 

hysteresis loops of several cases of the combined linear isolation system with hysteretic 

damping are shown in Figure 6.6. 

The first case considered is the moderate-period isolation system, Tiso = 3 sec. These 

data are presented in Figure 6.7, and each plot shows a comparison of the two levels of target 

damping considered. It is an expected result that increased target damping results in a lower 

peak isolator displacement, and the effect of hysteretic damping on isolator displacement is 

not noticeably sensitive to the fixed-base period of the structure. However, the drift demand 

appears quite sensitive to the damping for a range of levels of excitation and fixed-based 

periods. For Tfb = 0.5 sec, there is a marked increase in drift demand for SF < 1.5, and this 

amplification can be as high as 50% for an increase in target damping from 0.10 to 0.25. For 

longer fixed-base period structures, this increase, for the same change in damping, can 

approach twofold. This indicates a high sensitivity of deformation in the superstructure to the 

amount of hysteretic damping in the isolation system. There is also an increase in peak floor 

spectral acceleration due to the addition of hysteretic damping. For Tfb = 0.5 sec, there is a 

greater than twofold increase on acceleration demand for a change in hysteretic damping of 

0.10 to 0.25, and this amplification does not appear sensitive to the ground-motion intensity. 

As the fixed-base period increases, this amplification in peak spectral acceleration is less 

tζ

fbT =

isoT =
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pronounced for the low intensity ground motions, and for SF = 0.25 (the lowest intensity 

considered), there is virtually no increase in PFSA as the damping increases from 10% to 

25%. However, for SF = 0.5, there is no sensitivity in PFSA to damping for Tfb = 1.5 sec, 

however there is significant sensitivity for Tfb = 1.0 sec. 

From the data of Figure 6.8, the above-described trends in EDP as a function of 

intensity are similar for the case of Tiso = 4 sec. It appears, based on comparison of the 

isolator displacements with those of Figure 6.7 (in which Tiso = 3 sec), that the addition of 

hysteretic damping shows less significant reduction for the long-period isolation system 

relative to the moderate-period system. For the case of Tiso = 3 sec and Tfb = 0.5 sec, an 

increase in damping from 0.1 to 0.25 results in a 35% decrease in peak isolator displacement 

for SF = 2. In contrast, for the case of Tiso = 4 sec and Tfb = 0.5 sec, the same increase in 

damping results in only a 20% decrease in peak isolator displacement. For both of the above 

parameter cases, the same increase in damping results in an increase in interstory drift of 

about 100% for low intensity ground motion ( ). This increase in drift becomes less 

pronounced as the intensity increases for both moderate and long period isolation systems. 

Interestingly, the increase in drift demand at low-intensity shaking becomes less significant 

as the fixed-base period of the superstructure elongates. Expectedly, the amplitude of the 

peak drift demand increases significantly with elongation of the fixed-base period. Lastly, 

the peak floor spectral acceleration shows significant sensitivity to the presence of hysteretic 

damping, as was the case for the moderate-period isolation system. While the amplitude of 

the PFSA is lower than for the moderate-period isolation system, the amplification with the 

increase in damping is similar. For the case of Tiso = 3 sec and Tfb = 0.5 sec, an increase in 

damping from 0.1 to 0.25 results in a 230% increase in PFSA at SF = 1. For the case of Tiso = 

4 sec and Tfb = 0.5 sec, the same increase in damping results in a 180% increase in PFSA. 

Both also show similar trends in PFSA with elongation of fixed-base period. The 

amplification tends to be lower as Tfb increases. This can likely be attributed to the tendency 

of the superstructural properties to drive the system response as the period separation 

decreases. As a result, where acceleration response is dominated by the behavior of the 

superstructure (e.g., at low intensities of ground motion), the isolation system properties 

become less influential.  

A general conclusion regarding the use of hysteretic dampers to control isolator 

displacements is that, particularly for long isolation periods, such devices are inefficient at 

0 .5S F ≤



 

175 
 

large levels of displacement response. That is, the reduction in displacement at large levels of 

shaking (where isolator displacement control is a performance goal) is quite modest. In 

contrast, the increase is response in the superstructure due to the presence of hysteretic 

damping is significant, particularly at low and moderate levels of shaking. As a result, the 

investigation of innovative seismic isolation systems that substantially reduce isolator 

displacements in very large earthquakes while optimally limiting superstructural deformation 

and acceleration response in more frequent earthquakes is warranted. 

 

Figure 6.6: Sample cyclic behavior for several cases of bilinear hysteretic isolation 
systems considered in parametric studies 
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Figure 6.7: Comparison of peak isolator displacement, interstory drift, and peak floor 
spectral acceleration for bilinear hysteretic Tiso = 3 sec and the LA01 record 
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Figure 6.8: Comparison of peak isolator displacement, interstory drift, and peak floor 
spectral acceleration for bilinear hysteretic Tiso = 4 sec and the LA01 record 
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6.3.3.3 Frequency Content of Total Accelerations for Hysteretic Damping 

An important consideration for isolated structures is the degree to which high frequency 

acceleration are attenuated in the superstructure by the isolation system. It is well known that 

a purely linear, undamped isolation system filters virtually all frequency content of 

acceleration not near the natural frequency of the structure, so long as the period separation 

is sufficiently large. Since this isolated natural frequency is typically quite low, these 

accelerations do not generally pose a risk to non-structural elements and building contents 

that resonate at higher frequencies. However, it has also been shown that the presence of 

hysteretic damping significantly amplifies the high-frequency accelerations in the isolated 

structure, particularly for low to moderate levels of ground shaking. The causes for this are 

investigated further to identify potentially beneficial aspects of an isolation system that 

would effectively isolate the structure from high-frequency accelerations over a range of 

ground-motion intensity. 

Consider the following equation of motion for an SDOF structure isolated on a linear 

isolation system with a hysteretic damper of yield strength qd, and negligibly low yield 

displacement: 

  (6.52) 

Dividing by m and substituting the natural frequency ωn we obtain 

  (6.53) 

Since Equation (6.53) is almost a linear differential equation, we move the hysteretic 

component to the right-hand side to obtain 

  (6.54) 

If we define some new displacement , then (6.54) becomes 

   (6.55) 
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But , so 

  (6.56) 

Comparing Equations (6.54) and (6.56), it is clear that in multiplying both the ground 

acceleration and yield strength by the same factor n, the response becomes , or, 

in other words, each response quantity (displacement, velocity, acceleration) scales up by the 

same n. However, the time variation of the response (and hence the frequency content) 

remains unchanged due to the scaling of both the ground motion and yield strength by the 

exact same amount. This is an important result because, if the objective of isolation were to 

preserve equal frequency content in superstructural accelerations over a range of seismic 

intensity, one strategy would be to devise a hysteretic device whose effective yield force 

varies depending on the amplitude of the ground-motion input. Such a device with a variable 

effective yield force is the triple pendulum (TP) bearing, whose behavior has been described 

extensively in this report. The next section contains analytical studies for 2-DOF structures 

isolated on TP bearings. 

6.3.4 Effect of Triple Pendulum Bearings on Seismic Performance 

A third investigation, similar to those described for isolation systems with either viscous or 

hysteretic damping, is conducted and described here for triple pendulum (TP) isolation 

systems. To investigate the effect of TP bearings on the performance of base-isolated 

structures, a set of parameters must be selected that highlights the sensitivities of each 

demand parameter to the properties of the isolation system. For proper comparison with the 

above parameter studies, the same IDA approach is taken, and the same EDPs (isolator 

displacement, interstory drift, and peak floor spectral acceleration) are reported. 

A feature of the TP isolation system is the multiple geometric and frictional 

parameters that characterize its cyclic behavior. The parameters open to selection by the 

designer include spherical radii (R1, R2, R3), slider heights (h1, h2, h3), pendulum 

displacement capacities ( ), and friction coefficients (μ1, μ2, μ3). In practice, these 

parameters do not assume arbitrary and necessarily distinct values, but are selected based on 

standard manufactured sizes and specialized to the particular seismic environment. In this 
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investigation, parameters are selected to achieve practical design properties that are 

equivalent to the viscous and hysteretic isolation systems described in the previous sections. 

The four sets of radii and slider heights selected for this investigation are summarized 

below, and are classified as Type X-YY where X is the effective period and YY is the 

percent of critical damping at a displacement equal to that of the equivalent linear viscous 

system. 

  

In general, the order of entries in the above vector notation denotes the parameters for the 

first, second, and third pendulum mechanisms. The spherical radii and slider heights are 

based on representative sizes used by the manufacturer, EPS, Inc. Recalling from Chapter 3 

that , these correspond to the following pendulum lengths for each mechanism: 

  

Recalling the effective stiffness for each stage of sliding described in Chapter 3, the natural 

period for each stage of sliding is summarized below in Table 6.1. 

Table 6.1: Pendulum natural periods for parametric study  

 

Additionally, four sets of friction coefficients are selected for each bearing type, and are 

summarized below. 
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Classification Stage I Stage II Stage III

TP-3-10 1.06 sec 2.58 sec 3.32 sec

TP-3-25 1.24 sec 3.24 sec 4.24 sec

TP-4-10 2.12 sec 4.12 sec 4.99 sec

TP-4-25 1.30 sec 4.12 sec 5.54 sec
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Finally, three sets of displacement capacities are selected for one of the outer spherical 

surfaces. The inner pendulum mechanism is assumed to have no deformation limit, since 

reaching this limit implies the bearing has exceeded its overall displacement capacity and the 

structure therefore is subject to pounding. Additionally, the third pendulum mechanism is 

assumed to have no deformation limit, since the last stage of sliding is intended to function 

as a “soft stop” that gradually increases the shear resistance as the isolator reaches its 

displacement capacity. Since this stage of sliding functions as a displacement restraint, it is 

not included in the analysis because performance beyond the isolator displacement capacity 

is not considered for any systems investigated in this Chapter.  While important to the 

ultimate performance of isolated structures, this limit state is not considered here; it is 

assumed that sufficient capacity has been provided by the designer based on analysis. The 

three displacement capacities considered for the outer surfaces are 

  

where NL = “no limit” and denotes the lack of consideration of loss of total bearing travel in 

the analyses. Recall from Chapter 3 that the selection of these parameters defines the 

transitions to the hardening regime of Stage IV sliding. Sample hysteretic behavior for each 

of the four bearing types is summarized in Figure 6.9. 

First we consider the moderate isolation period Tiso = 3 sec. These data are presented 

in Figure 6.10, and each plot shows the variation of all three EDPs with intensity for the two 

levels of effective damping considered. An interesting result is that, while the high damping 

bearing exhibits a reduction in isolator displacements over the low damping bearing (a 

decrease of about 20% for SF = 2 and Tfb = 0.5 sec), this increase in damping leads to 

virtually no amplification of drift except at the lowest levels of shaking ( ) for Tfb = 0.5 

sec. It is apparent from the data for peak floor spectral acceleration that there is amplification 
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due to the increase in damping. However, the magnitude of the PFSA and the associated 

amplification both appear to be less significant than that for the equivalent bilinear hysteretic 

isolation system. 

Figure 6.11 presents analytical results for the long isolation period system Tiso = 4 sec. 

An observation regarding the isolator displacements is that, for the low damping bearing, the 

isolators appear to be activated even at the smallest level of excitation. This response was not 

observed for any other system studied. This is an indication of effective isolation even under 

small and moderate seismic events. Compared to the TP isolation system with Tiso = 3 sec, 

the sensitivity of both drift and peak floor spectral acceleration to the increase in damping is 

more significant. However, for both TP systems studied, the magnitude and amplification of 

the drift and PFSA demands are less than for the equivalent bilinear hysteretic system. 

 

Figure 6.9: Sample cyclic behavior for TP bearings considered  
in parametric studies 
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Figure 6.10: Comparison of peak isolator displacement, interstory drift, and peak floor 
spectral acceleration for TP Tiso = 3 sec  

and the LA01 record 
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Figure 6.11: Comparison of peak isolator displacement, interstory drift, and peak floor 
spectral acceleration for TP Tiso = 4 sec  

and the LA01 record 
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6.4 SEISMIC RESPONSE OF MULTI-STORY ISOLATED STRUCTURES 

The objectives of the previous section were to identify relationships between isolation 

system parameters and important engineering demand parameters. To provide clarity to the 

results of these investigations, a 2-DOF structure subjected to a single ground-motion input 

was selected as representing the structure and its seismic demand. The intensity was modeled 

as a scale factor applied to the ground motion, a simple but ultimately inaccurate reflection 

of varying seismic hazard. To study the above-described parametric relationships for multi-

story isolated structures subject to a variety of ground motions, a study is undertaken here to 

evaluate the previously drawn conclusions considering more realistic models of the system 

and the associated variability in seismic input. 

6.4.1 Ground-Motion Selection 

To both facilitate the development of statistical descriptions of EDPs and to consider a 

variety of seismic characteristics, an ensemble of ground motions was selected to represent 

possible realizations of ground motion at a site. As part of the SAC Steel Project, several 

ensembles of ground motions were developed for the Los Angeles basin. Since the objectives 

of these studies are to identify demand parameter sensitivities to inputs having multiple 

frequencies of occurrence, three ground-motions ensembles were selected. Each of the three 

ensembles contains 10 pairs of acceleration records, and was developed for return periods of 

72 years, 475 years, and 2475 years. The selected records and their amplitudes have 

magnitude-distance pairs that are compatible with the disaggregation of the probabilistic 

seismic hazard at the subject site [Barroso, 1999]. Further details of the development of the 

SAC ground motions are described by Somerville et al. [1997]. 

Figures Figure 6.12 through Figure 6.14 show the elastic response spectra for each 

ground motion for the 72-year, 475-year, and 2475-year ensembles, respectively. Figure 6.15 

shows a comparison of the median spectra for all three return periods, including an overlay 

of the USGS prescriptive spectra with best-fit parameters. These parameters are described in 

Table 6.2. Best-fit parameters are determined by selecting SDS and SD1 such that the error 

between the median spectrum and the USGS spectrum is minimized for both constant 

acceleration and constant velocity regions, for all three return periods. 
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Figure 6.12: Elastic response spectra for 72-year records  
(median shown red and bold) 

 

 

 

 

Figure 6.13: Elastic response spectra for 475-year records  
(median shown blue and bold) 
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Figure 6.14: Elastic response spectra for 2475-year records  
(median shown magenta and bold) 

 

 

 

  

Figure 6.15: Median elastic response spectra for all three ground-motion ensembles, 
including overlay of best-fit USGS prescriptive spectra 
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Table 6.2: Best-fit USGS spectral parameters 

 

6.4.2 Methodology for System Parameter Selection 

A procedure is described in this section for selecting structural system parameters given 

general information about the structure and the seismic environment in which it is located. 

Consider the task of developing generally nonlinear shear spring elements for an n-story 

shear building. Each story has mass  and interstory height  ( ) and may be 

generally distinct (although often they are approximately equal for vertically regular 

structures). 

The following notation is used throughout this section: 

:  global force vector 

:  global displacement vector 

:  local spring force vector 

:  local spring deformation vector 

For the n-story shear building, the equilibrium matrix mapping local spring forces to global 

forces, , can be determined by inspection as 

  (6.57) 

TR PGA (g) SDS (g)1 SD1 (g)2 To (sec.)
3

72-yr 0.32 0.8 0.32 0.40

475-yr 0.48 1.2 0.68 0.57

2475-yr 0.68 1.7 1.35 0.79

1 Spectral acceleration at 0.2-sec
2 Spectral acceleration at 1.0-sec
3 Transition period from const. accel to const. veloc.
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By contragradience, it can be stated that the global displacements are mapped to the spring 

deformations by the equation . Additionally, each spring has a constitutive relation 

, where , the yield spring force of the jth shear spring. It is noted, however, 

that structural systems generally have a yield drift ratio that is independent of strength, and is 

noted as . This yield drift ratio is assumed constant for all stories. It will be shown that 

steel concentric braced frames have . Recall that the yield drift at the jth story is 

defined as . A necessary definition is the strength reduction factor R. Here, the 

nominal design base shear for the structure is computed by dividing the elastic base shear 

demand by R. The R factor may be considered the product of two independent factors, and 

can be written as  [SEAOC, 1999]. The factor  is the ductility-based component, 

and  is the overstrength-based component. In this procedure, the ductility-based portion 

 must be specified. Some guidance is given by modern building codes (such as the IBC 

[2006]) as to how to select these for a particular structural system. For isolated structures, 

essentially elastic behavior is generally assumed to result on average from setting .  

With the above definitions, it is possible to uniquely determine the nonlinear spring 

properties of a general n-story shear building. For the seismic demand, some site-specific 

response spectrum must be defined. This procedure is independent of the type of spectrum 

(e.g., uniform hazard, attenuation model given Mw, RJB, etc.). This spectrum is defined as 

 for some frequency ω and damping ζ. Hence, to get a first-pass estimate of the 

global elastic seismic forces applied to our shear building, we need a first-pass estimate of 

the fundamental frequency, , and some shape function, , that defines an estimate of the 

first mode shape. The selection of  is nearly arbitrary, since iteration will be employed to 

find its solution. However, an estimate implied by the building code is  

where  depends on the system but in this case could simply be called , and 

 is the total building height (which must be in feet for this equation). The initial 

estimate of the shape function  could be taken as triangular, and therefore is 

mathematically expressed as . With all these definitions, the first 

mode global force vector is simply  
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  (6.58) 

From equilibrium, , and noticing that B is both square and full rank, the elastic spring 

forces are simply . Assuming the equal-displacement rule2 from Newmark and 

Hall [1982], , and the yield spring force vector is . This defines the 

yield forces for each of the n nonlinear shear springs. In finding the elastic stiffness of each 

spring, we need only notice that each spring has the identical yield displacement . 

Therefore each elastic spring’s stiffness may be computed as . This 

gives an element stiffness matrix 

  (6.59) 

Applying the compatibility relation , the global stiffness matrix k mapping u to p is 

computed as . Now, we have a mass matrix m and a global stiffness matrix k, so 

by eigenvalue analysis we obtain a first iteration of the n mode shapes and n natural periods. 

Our next iteration of global earthquake forces is, for each mode . 

  (6.60) 

The elastic spring forces for each mode are computes as , and the modal 

combination of spring forces is simply the SRSS of each mode, or 

  (6.61) 

                                                 
2 This is not strictly required if we apply an appropriate R-μ-T relationship. 
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The current iteration of spring yield forces becomes , which by Equation 

(6.59) gives a new element stiffness matrix . Applying  provides an updated 

global stiffness matrix, which in turn yields a new set of frequencies and mode shapes. This 

iteration continues until the previous trial set of natural frequencies converges suitably close 

to the currently computed set. 

The converged shear building design consists of a set of spring stiffnesses and yield 

forces for each of the n springs. Assuming some hardening parameter , which 

defines the ratio of plastic-to-elastic stiffness, this is sufficient to specify bilinear (or Bouc-

Wen plasticity) springs at each story and conduct parametric studies with a suite of ground 

motions. For parametric studies described in this section, however, only the isolation systems 

are nonlinear, and therefore the masses, spring stiffnesses, and assumed damping matrix 

completely characterize the response of the superstructure. 

6.4.2.1 Yield Story Drift Ratio of Braced Frame Structures 

An important input parameter for the above design procedure is the yield story drift ratio. For 

a concentric braced frame structure, it can be shown that the yield drift ratio is a function 

only of material and geometric properties, and not the selected design strength or stiffness. 

First, observe that the strength and stiffness of a particular story are perfectly coupled. 

Consider a one-story, single-bay subassemblage having axially inextensible beams and 

columns with ideal pin connections at their ends. Given a typical story height, h, and a 

typical bay width, b, equations for both the story stiffness, ks, and the story strength, qy, may 

be derived in terms of the brace cross-sectional area, Abr. From the geometry of a single 

diagonal braced bay, the story stiffness and story strengths can be described by the equations 

below, 

  (6.62) 

where Es is the Young’s modulus of steel, σy is the yield stress of the brace material, and β is 

a modification factor to account for the flexible length of a brace that is less than the work-

point length (i.e., Leff = βLwp) and therefore increases the effective axial stiffness. Where 

brace strengths are controlled by bucking (that is, ) the same reasoning applies, 
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however, for simplicity, that case is not considered here. By combining Equations (6.62) 

above, we get an equation for the story strength directly in terms of the story stiffness: 

  (6.63) 

The term in brackets is the yield displacement, and is only a function of either material 

properties or geometric assumptions. Dividing by the story height gives the interstory drift 

ratio at yield as 

  (6.64) 

For example, given a brace fabricated from ASTM A36 material (with expected yield stress 

σy = 42 ksi), a bay width of 24', a story height of 12', and a yield length modification factor 

of 0.8, the yield drift is computed by Equation (6.64) as  radians. Such a 

formulation is convenient because the stiffness of each story may be computed considering 

strength or drift limitations alone, and the resulting parameters may then be incorporated for 

use with nonlinear response-history analysis to compute statistics of engineering demand 

parameters such as ductility demands, interstory drifts, and floor accelerations.  

6.4.3 Parametric Studies 

Given the above-described ensemble of ground motions and methodology for selecting 

parameters for a multi-story structure, it is possible to gain understanding of the effect of 

isolation system properties on key demand parameters. Of primary interest is the comparison 

of key EDPs for a variety of isolator types and, within each type, a variety of parameters. 

Trends in these key EDPs as a function of intensity were studied in Section 6.2.4 for the 

canonical 2-DOF isolated structure subject to a single ground motion. Here, we extend this 

simple analysis to MDOF structures subject to an ensemble of ground motions. 

6.4.3.1 Superstructure 

In assigning parameters to the superstructure, three-story and nine-story shear buildings are 

considered. All floor weights and interstory heights are assumed equal over the height of the 
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building. The buildings are designed assuming , and according to a prescriptive elastic 

spectrum with parameters equal to those in Table 6.2 for the 475-year event. This follows the 

design provisions of the 1997 UBC whereby structural elements are proportioned according 

to a seismic event having this return period. Note there is an implicit assumption here that 

the isolated R-factor, RI, is equal to the overstrength, . However, in subsequent analyses, 

inelastic behavior of the superstructure in not considered, and the design strength is used for 

the purpose of developing estimates of the member sizes, and hence story stiffnesses. For all 

buildings, braced frame construction is assumed based on predominant practice for isolated 

buildings. From the discussion in Section 6.3.2.1, a yield drift ratio of  is assumed 

and selection of story stiffnesses is according to the iterative response-spectrum analysis 

method described in Section 6.3.2. Masses were assumed to be equal at each floor, and may 

be arbitrarily set equal to one. Viscous damping is based on Rayleigh damping matrix with 

1% critical in the fundamental mode (isolated mode) and 5% in the second mode (which 

corresponds to significant deformation in the superstructure.) Damping or nonlinearity in the 

isolation layer is accounted for separately in the isolator elements, and is not included as 

Rayleigh damping. Response history analysis was carried out using a custom Matlab® 

[Mathworks, 2006] script. Implicit Newmark time integration was implemented, and a time 

step of dt = 0.0025 was used for improved convergence of nonlinear isolator elements.  

Given the above design assumptions, the properties of the three- and nine-story 

buildings are summarized below: 

Three-Story Building 

Equivalent design base shear: 0.168W 

First three natural periods: T1 = 0.83 sec, T2 = 0.35 sec, T3 = 0.21 sec 

Nine-Story Building 

Equivalent design base shear: 0.163W 

First three natural periods: T1 = 1.36 sec, T2 = 0.58 sec, T3 = 0.37 sec 

6.4.3.2 Linear Isolation System with Viscous Damping 

Parameters considered for studies on linear isolation systems with linear viscous damping 

include variations of both target effective isolation period and damping ratio. The isolation 

1Rμ =

0Ω

0.003yθ =
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periods and damping are equivalent to those considered in Section 6.3, that is, effective 

isolation periods of and  and target isolator damping ratios considered 

are  and m in addition to the above-described Rayleigh damping. The 

isolator displacements at which these effective properties are targeted are taken from the 

median elastic MCE spectrum at the appropriate level of damping. The isolation systems are 

denoted LV-3-10, LV-3-25, LV-4-10, and LV-4-25, where LV-X-Y denotes a linear viscous 

system with period X and viscous damping Y%. Properties for LV systems are summarized 

in Table 6.3. 

6.4.3.3 Bilinear Hysteretic Isolation System 

Parameters considered for studies on hysteretic isolation systems include variations of 

effective isolation period and target damping ratio for a fixed yield displacement. As for the 

viscous isolation system, effective isolation periods of and  are 

considered. Target isolator damping ratios considered are  and . Yield 

displacement is fixed at . The isolation systems are denoted BL-3-10, BL-3-25, 

BL-4-10, and BL-4-25, where BL-X-Y denotes a bilinear hysteretic system with effective 

period X and equivalent viscous damping Y% at the respective median isolator displacement 

observed for the equivalent linear viscous system described in Section 6.4.3.2. Properties for 

BL systems are summarized in Table 6.3. 

6.4.3.4 Triple Pendulum Isolation System 

Parameters considered for studies on triple pendulum isolation systems include variations of 

both slider friction coefficients and slider displacement capacities. Four sets of surface radii, 

slider heights, and friction coefficients were considered for TP parameter studies. This is 

based on achieving equivalent period and damping properties to those selected for the 

viscous and hysteretic systems described above. Properties of each of the four TP systems 

selected are described above in Section 6.3.4, and are denoted TP-3-10, TP-3-25, TP-4-10, 

and TP-4-25, where TP-X-Y denotes a triple pendulum system with effective period X and 

equivalent viscous damping Y% at the respective median isolator displacement observed for 

the equivalent linear viscous system described in Section 6.4.3.2. Properties for TP systems 

are summarized in Table 6.3. 
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Table 6.3: Summary of isolation system properties 

 

6.4.4 Analytical Results 

To investigate the response of multi-story base-isolated structures, a parametric study is 

conducted to identify sensitivity of structural response to the cyclic characteristics of the 

isolation system. This study is also useful in evaluating the newly developed triple pendulum 

(TP) system relative to other available isolation systems. In this section, analytical results are 

presented and described for three general classes of isolation system: 1) linear isolators with 

linear supplemental dampers, 2) bilinear hysteretic isolators, and 3) triple pendulum isolators. 

The parameters included and subjected to variation are described above in Section 6.3.3.  

6.4.4.1 Linear Viscous Isolation System 

This section presents results of the parametric studies on linear isolation systems with linear 

viscous damping mechanisms. This presentation is divided into two sections, one for each of 

the two buildings considered. 

6.4.4.1.1 Linear Isolators, Three-Story Building 

Figure 6.16 presents empirical probabilistic data describing the distribution of peak isolator 

displacement for seismic events having three return periods: 72-year, 475-year, and 2475-

year. Also shown for each isolation system is the CDF of the lognormal distribution with 

parameters estimated from the observed data. From these data, the median linear viscous 

MCE isolator displacements as a function of isolation system are as follows: Uiso(LV-3-10) = 

29.2 in., Uiso(LV-3-25) = 23.1 in., Uiso(LV-4-10) = 31.3 in., and Uiso(LV-4-25) = 21.6 in. 

These displacements are useful for subsequent comparisons with nonlinear isolation systems. 

T eff ζeff L eff μ

3 sec 0.10 0.01135 0.00108 0.00960 0.05460 24" / 63" / 63" 0.01 / 0.06 / 0.14 13.8"

3 sec 0.25 0.01135 0.00271 0.00691 0.10520 12" / 114" / 114" 0.02 / 0.09 / 0.20 13.1"

4 sec 0.10 0.00639 0.00081 0.00540 0.03240 44" / 105" / 105" 0.01 / 0.035 / 0.065 17.5"

4 sec 0.25 0.06386 0.00203 0.00388 0.05667 16" / 156" / 156" 0.02 / 0.05 / 0.08 11.0"

Units: 11/in, 2sec/in, 3nondimensional

Linear Viscous (LV) Bilinear Hysteretic (BL) Triple Pendulum (TP)

isok dc isok yf1 12 3
2u
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Figure 6.17 presents peak interstory drift ratio (PIDR) response over the height of the 

isolated building for all linear viscous systems considered. Additionally, for each hazard 

level, the median response is reported along the middle column with the 16th and 84th 

percentile response reported to the right and left, respectively. This gives an indication of the 

dispersion in response and therefore identifies conditions under which significant variation 

from the median may exist. A clear result of the PIDR data presented is that, for all return 

period events, there is an insignificant sensitivity of drift to damping at all floor levels except 

the third story. The third floor drift demand shows amplification due to increased damping, 

likely a result of excitation of higher modes. Note that where drifts exceed 0.3%, yielding of 

the structure is not accounted for. Nonetheless, the results are useful in showing trends and 

indentifying sensitivity of drifts to various damper characteristics. 

Figure 6.18 presents similarly organized data as for PIDR above, but for peak floor 

acceleration (PFA). Floor accelerations appear to be more sensitive to isolation viscous 

damping compared to drift demands. Interestingly, median PFA for the 475- and 2475-year 

events shows negligible sensitivity to the isolation period for a fixed level of damping. This 

suggests that, to reduce rare- and very-rare event PFA in an isolated structure, it is preferable 

to specify lower viscous damping and shorter isolation period rather that higher viscous 

damping and longer isolation period. This effect is less pronounced for the 72-year event, 

where LV-3-0.10 and LV-4-0.25 give comparable median PFA results. 

While PFA is a commonly adopted EDP for evaluating the potential for damage to 

non-structural components, the frequency content of floor accelerations is important for non-

rigid secondary systems. To investigate the effect of linear viscous damping mechanisms on 

the response on such non-rigid components, floor response spectra are developed at the roof 

for all isolation systems investigated. The median of these spectra are shown in Figure 6.19 

for all levels of seismic hazard considered in this study. In examining the roof spectra for the 

72-year event, it is clear that that an increase in damping from 10% to 25% leads to 

approximately a 50% increase in peak floor spectral acceleration in above 1 Hz. This may be 

an important consideration when isolating a structure for protection of secondary components 

that have a variety of dynamic characteristics. 
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6.4.4.1.2 Linear Isolators, Nine-Story Building 

Figure 6.20 through Figure 6.23 show the peak isolator displacement, PIDR, PFA, and roof 

acceleration spectra for the nine-story building isolated by a linear isolation system with a 

nonlinear viscous damping mechanism. Variation in the observed response trends relative to 

the three-story model are identified and discussed.  

From Figure 6.28, the median MCE isolator displacements as a function of isolation 

system are as follows: Uiso(LV-3-10) = 27.8 in., Uiso(LV-3-25) = 22.8 in., Uiso(LV-4-10) = 

31.3 in., and Uiso(LV-4-25) = 21.6 in. From these data, there is very little observable 

difference in median estimates of isolator displacement relative to the three-story case. There 

is a slight decrease in the nine-story median isolator displacement in the 72- and 475-year 

events due to the relative increase in flexibility of the superstructure. However, this decrease 

becomes less pronounced for the 2475-year event, which is the level of hazard at which 

isolator displacement is generally a critical response quantity. 

 Evaluating the PIDR and PFA response data of Figure 6.21 and Figure 6.22, 

respectively, many observed trends remain unchanged relative to the discussion of the three-

story building above. The effect of increased target isolator damping on the excitation of 

higher-mode response is clear, but less pronounced for the nine-story building compared to 

the three-story building. There is increased amplification of roof acceleration and drift 

demand compared to lower stories, likely due to higher mode effects and the associated 

increase in effective roof inertia. Despite this higher-mode excitation, the overall amplitude 

of PIDR and PFA response is similar between both the three- and nine-story buildings. This 

is an indication of the general effectiveness of the selected isolation systems in controlling 

drift demands and acceleration response for buildings of varying height and natural period. 

In examining the median roof acceleration spectra shown in Figure 6.23, it is evident 

that the 72-year predominant frequency content shows a similar level of sensitivity to the 

level of damping compared to the three-story building. The increase in 72-year peak roof 

spectral acceleration above 1 Hz due to increasing damping is about 50%.  

It is evident from the above discussion that the effect of the parameters of linearly 

viscously damped isolation systems is consistent for the three- and nine-story buildings 

designed according to response spectrum analysis. The effects of increased viscous damping 

for the moderate- and long-period isolation systems were not observed to be significant for 

the demand parameters investigated.  
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Figure 6.16: Comparison of empirical CDFs of isolator displacement for three levels of 
seismic hazard (fitted lognormal CDF shown solid), 3-story building on linear viscous 

damped isolation system 
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Figure 6.17: Comparison of peak interstory drift ratio (PIDR) at each floor level for 3-
story building on linear viscous damped isolation system 
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Figure 6.18: Comparison of peak floor acceleration (PFA) at each floor level for 3-story 
building on linear viscous damped isolation system 
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Figure 6.19: Comparison of median roof acceleration spectra for 3-story building 
isolated on linear viscous damped isolation system 
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Figure 6.20: Comparison of empirical CDFs of isolator displacement for three levels of 
seismic hazard (fitted lognormal CDF shown solid), 9-story building on linear viscous 

damped isolation system 
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Figure 6.21: Comparison of peak interstory drift ratio (PIDR) at each floor level for 9-
story building on linear viscous damped isolation system 
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Figure 6.22: Comparison of peak floor acceleration (PFA) at each floor level for 9-story 
building on linear viscous damped isolation system 
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Figure 6.23: Comparison of median roof acceleration spectra for 9-story building 
isolated on linear viscous damped isolation system 
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6.4.4.2 Bilinear Hysteretic Isolation System 

This section presents results of the parametric studies on bilinear hysteretic isolation systems. 

This presentation is divided into two sections, one for each for each of the two buildings 

considered. 

6.4.4.2.1 Bilinear Hysteretic Isolators, Three-Story Building 

Figure 6.24 presents empirical probabilistic data describing the distribution of peak isolator 

displacement for seismic events having three return periods: 72-year, 475-year, and 2475-

year. Also shown for each isolation system is the CDF of the lognormal distribution with 

parameters estimated from the observed data. From these data, the median MCE bilinear 

hysteretic isolator displacements as a function of isolation system are as follows: Uiso(BL-3-

10) = 28.6 in., Uiso(BL-3-25) = 20.4 in., Uiso(BL-4-10) = 27.2 in., and Uiso(LV-4-25) = 24.0 

in. These displacements are comparable in magnitude to those medians observed for the 

linear viscous isolation system in Section 6.4.4.1. 

Figure 6.25 presents peak interstory drift ratio (PIDR) response over the height of the 

isolated building for all bilinear hysteretic systems considered. Additionally, for each hazard 

level, the median response is reported along the middle column with the 16th and 84th 

percentile response reported to the right and left, respectively. An interesting result of the 

PIDR data presented is that, for the 72- and 475-year return period events, there is an 

insignificant sensitivity of drift to a change in effective isolation period of 3 to 4 sec. 

However, for these moderate and rare levels of excitation, there is a noticeable effect on 

PIDR due to an increase in damping from 10% to 25%, and this effect is similar for both 3- 

and 4-sec effective isolation periods. For the 2475-year event, the third floor median drift 

demand shows significant amplification due to increased damping, however, the 

amplification to decreased effective isolation period is similar for all floors. This is an 

indication that the increased damping has a more pronounced effect on higher-mode 

excitation relative to decreased period. 

Figure 6.26 presents similarly organized data as for PIDR above, but for peak floor 

acceleration (PFA). Floor accelerations appear to show sensitivity to both effective isolation 

period and equivalent damping for all levels of seismic hazard considered. For both 72- and 

475-year events, the median PFA is nearly identical for the BL-3-0.10 and BL-4-0.25 

isolation systems. Whereas the profile of PFA indicates higher-mode participation for all 
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isolation systems, this effect is most pronounced for the systems with 25% damping. It is 

worthwhile to note that, for all isolation systems considered, the magnitude of both PIDR and 

PFA observed for the bilinear hysteretic systems is significantly larger than the equivalent 

linear viscous system described above.  

To investigate the effect of bilinear hysteretic damping mechanisms on the response 

on non-rigid components, floor response spectra are developed at the roof for all isolation 

systems investigated. The median of these spectra are shown in Figure 6.27 for all levels of 

seismic hazard considered in this study. From these data, there is very little acceleration 

frequency content near the effective isolation frequency compared to the linear viscous 

system. However, there is noticeable acceleration content at higher frequencies, which 

correspond to higher modes of the isolated structure. Such behavior is an indication that the 

bilinear hysteretic isolation system does not serve as an efficient filter for acceleration in 

higher modes compared to the linear viscous system. 

6.4.4.2.2 Bilinear Hysteretic Isolators, Nine-Story Building 

Figure 6.20 through Figure 6.31 show the peak isolator displacement, PIDR, PFA, and roof 

acceleration spectra for the nine-story building isolated by a bilinear hysteretic isolation 

system. Variation in the observed response trends relative to the three-story model are 

identified and discussed.  

From Figure 6.28, the median MCE isolator displacements as a function of isolation 

system are as follows: Uiso(BL-3-10) = 27.5 in., Uiso(BL-3-25) = 20.4 in., Uiso(BL-4-10) = 

24.2 in., and Uiso(BL-4-25) = 22.0 in. From these data, there is a slight decrease in the nine-

story median isolator displacement compared to three-story for all levels of seismic hazard. 

This is an expected result given the increase in superstructure flexibility. 

In evaluating the PIDR and PFA response data of Figure 6.29 and Figure 6.30 

respectively, many observed trends remain unchanged relative to the discussion of the three-

story building above. As with the linear viscous case, the effect of increased target damping 

on the excitation of higher-mode response is clear, but less pronounced for the nine-story 

building compared to the three-story building. 

In examining the median roof acceleration spectra shown in Figure 6.31, it is evident 

that the 72-year predominant frequency content shows a similar level of sensitivity to the 

level of damping compared to the three-story building. For the 72-year event, there appears 
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to be excitation of multiple higher modes of the superstructure, further indicating the 

inefficiency of bilinear systems in filtering higher-mode accelerations. 

As with linear viscous systems, it is evident from the above discussion that the effect 

of the parameters of bilinear hysteretic isolation systems is consistent for the three- and nine-

story buildings designed according to response spectrum analysis. For both buildings there 

appears to be significant amplification of both drift and acceleration response due to an 

increase in equivalent hysteretic damping regardless of the effective isolation period 

considered. 
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Figure 6.24: Comparison of empirical CDFs of isolator displacement for three levels of 
seismic hazard (fitted lognormal CDF shown solid), 3-story building on hysteretic 

isolation system 



 

210 
 

 

Figure 6.25: Comparison of peak interstory drift ratio (PIDR) at each floor level for 3-
story building on bilinear hysteretic isolation system 



 

211 
 

 

Figure 6.26: Comparison of peak floor acceleration (PFA) at each floor level for 3-story 
building on bilinear hysteretic isolation systems 
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Figure 6.27: Comparison of roof acceleration spectra for 3-story building isolated on 
bilinear hysteretic isolation system 
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Figure 6.28: Comparison of empirical CDFs of isolator displacement for three levels of 
seismic hazard (fitted lognormal CDF shown solid), 9-story building on bilinear 

hysteretic isolation system 
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Figure 6.29: Comparison of peak interstory drift ratio (PIDR) at each floor level for 9-
story building on hysteretic isolation system 
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Figure 6.30: Comparison of peak floor acceleration (PFA) at each floor level for 9-story 
building on hysteretic isolation system 
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Figure 6.31: Comparison of roof acceleration spectra for 9-story building isolated on 
hysteretic isolation system 
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6.4.4.3 Triple Pendulum Isolation System 

This section presents results of the parametric studies on triple pendulum (TP) isolation 

systems. This presentation is divided into two sections, one for each of the two buildings 

considered. 

6.4.4.3.1 Triple Pendulum Isolators, Three-Story Building 

Figure 6.32 presents empirical probabilistic data describing the distribution of peak isolator 

displacement for seismic events having three return periods: 72-year, 475-year, and 2475-

year. Also shown for each isolation system is the CDF of the lognormal distribution with 

parameters estimated from the observed data. From these data, the median MCE triple 

pendulum isolator displacements as a function of isolation system are as follows: Uiso(TP-3-

10) = 30.2 in., Uiso(TP-3-25) = 25.9 in., Uiso(TP-4-10) = 31.8 in., and Uiso(LV-4-25) = 24.5 in. 

As with the bilinear hysteretic systems, these displacements are comparable in magnitude to 

those medians observed for the linear viscous isolation system in Section 6.4.4.1. 

Figure 6.33 presents peak interstory drift ratio (PIDR) response over the height of the 

isolated building for all TP systems considered. Additionally, for each hazard level, the 

median response is reported along the middle column with the 16th and 84th percentile 

response reported to the right and left, respectively. For the PIDR data presented, there is 

sensitivity of drift to a change in both effective isolation period and equivalent viscous 

damping, particularly at the roof level. This is in contrast to the bilinear system, for which 

very little sensitivity to the effective isolation period was observed. However, for all cases 

considered, the peak interstory drift for the TP isolated structure is smaller than that observed 

for the equivalent bilinear isolation system. 

Figure 6.34 presents similarly organized data as for PIDR above, but for peak floor 

acceleration (PFA). As with bilinear systems, floor accelerations appear to show sensitivity 

to both effective isolation period and equivalent damping for all levels of seismic hazard 

considered, which high-damping systems leading to amplified acceleration under 72- and 

475-year events. However, median PFA shows little sensitivity to damping at the 2475-year 

event. As with PIDR, for all isolation systems considered, the magnitude of PFA observed 

for the TP isolation systems is less than that observed for the equivalent bilinear hysteretic 

system described above. 
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To investigate the effect of TP isolation systems on the response of non-rigid 

components, floor response spectra are developed at the roof for all isolation systems 

investigated. The median of these spectra is shown in Figure 6.35 for all levels of seismic 

hazard considered in this study. From these data, there is more observable acceleration 

frequency content near the effective isolation frequency compared to the bilinear hysteretic 

system. Additionally, the magnitude of the roof spectral acceleration in the 1–10 Hz range is 

significantly lower than that for the bilinear hysteretic system, especially for the 72- and 

475-year events. These observations are an indication that the TP isolation system serves as a 

more efficient filter for acceleration in higher modes compared to the bilinear hysteretic 

system, particularly for low- and moderate levels of shaking. 

6.4.4.3.2 Triple Pendulum Isolators, Nine-Story Building 

Figure 6.36 through Figure 6.39 show the peak isolator displacement, PIDR, PFA, and roof 

acceleration spectra for the nine-story building isolated by a TP isolation system. Variation 

in the observed response trends relative to the three-story model are identified and discussed.  

From Figure 6.36, the median MCE isolator displacements as a function of isolation 

system are as follows: Uiso(TP-3-10) = 29.4 in., Uiso(TP-3-25) = 25.5 in., Uiso(TP-4-10) = 

30.9 in., and Uiso(TP-4-25) = 23.5 in. As with the other isolation systems investigated, there 

is a slight decrease in the nine-story median isolator displacement compared to three-story 

for all levels of seismic hazard. 

In evaluating the PIDR and PFA response data of Figure 6.37 and Figure 6.38 

respectively, many observed trends remain unchanged relative to the discussion of the three-

story building above. As with both the linear viscous and bilinear hysteretic cases, the effect 

of increased target damping on the excitation of higher-mode response is clear, but less 

pronounced for the nine-story building compared to the three-story building. Compared to 

the bilinear system, there is also an increased higher-mode PFA response, particularly for the 

72- and 475-year events. 

In examining the median roof acceleration spectra shown in Figure 6.39, it appears 

that the 72-year predominant frequency content shows a similar level of sensitivity to the 

level of damping compared to the three-story building. For the 72-year event, there is 

evidence of excitation of multiple higher modes of the superstructure, but the amplitude of 
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this higher-mode spectral acceleration is less than that for the equivalent bilinear hysteretic 

system.  

As with both linear viscous and bilinear hysteretic isolation systems, it is evident 

from the above discussion that the effect of parametric variation of triple pendulum isolation 

systems is consistent for the three- and nine-story buildings designed according to response 

spectrum analysis. For both buildings there appears to be some amplification of both drift 

and acceleration response due to an increase in equivalent hysteretic damping at a particular 

effective isolation period. However, the amplitude of all response quantities considered is 

less for triple pendulum isolation systems compared to the equivalent bilinear isolation 

system. 

6.5 CONCLUSIONS 

This chapter summarizes the results of a series of parametric studies on single- and multi-

story isolated buildings. Isolation systems considered were linear bearings in combination 

with either linear viscous or bilinear hysteretic energy dissipation mechanisms, and the 

newly developed triple-pendulum isolation system. For the purpose of this study, no 

maximum limit of isolator displacement was imposed. These studies show that high-damping 

isolation systems, while effective in limiting isolator displacements, tend to produce 

relatively large superstructural demands compared to low-damping isolation systems, 

particularly in low- and moderate-level events. A remarkable result is that the triple-

pendulum bearing is generally effective at limiting isolator displacements in very rare 

earthquakes while controlling drifts and accelerations for low- and moderate-level excitations 

when compared to the equivalent bilinear hysteretic isolation system. 
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Figure 6.32: Comparison of empirical CDFs of isolator displacement for three levels of 
seismic hazard (fitted lognormal CDF shown solid), 3-story building on TP isolation 

system 
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Figure 6.33: Comparison of peak interstory drift ratio (PIDR) at each floor level for 3-
story building on TP isolation system 
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Figure 6.34: Comparison of peak floor acceleration (PFA) at each floor level for 3-story 
building on TP isolation system 
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Figure 6.35: Comparison of roof acceleration spectra for 3-story building isolated on TP 
isolation system 
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Figure 6.36: Comparison of empirical CDFs of isolator displacement for three levels of 
seismic hazard (fitted lognormal CDF shown solid), 9-story building on TP isolation 

system 
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Figure 6.37: Comparison of peak interstory drift ratio (PIDR) at each floor level for 9-
story building on TP isolation system 
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Figure 6.38: Comparison of peak floor acceleration (PFA) at each floor level for 9-story 
building on TP isolation system 
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Figure 6.39: Comparison of roof acceleration spectra for 9-story building isolated on TP 
isolation system 
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7 Performance-Based Seismic Design 
Methodology for Base Isolated Structures 

In selecting a seismic design strategy for any facility, the cost of a particular structural 

system must be weighed against the desired performance given the expected earthquake 

hazard at the site. In this chapter, a methodology is introduced for the selection of a base 

isolation system given the goal of achieving some complex performance objective. Herein, a 

complex performance objective is defined as one having a set of potentially distinct damage 

state limits at a corresponding set of seismic hazard levels. The methodology generally 

follows that developed for performance-based earthquake engineering by the Pacific 

Earthquake Engineering Research Center [Deierlein, 2004] with notable deviations and 

simplifications described within each section as appropriate. 

7.1 INTRODUCTION 

In identifying the parameters that frame the problem of earthquake resistant design of 

structures, the two main factors are the location of the site relative to sources of fault rupture, 

and the nature of the facility being considered. The site location determines the seismic 

hazard curves, and hence the probabilistic description of ground shaking that can be 

described in terms of either response spectra or an ensemble of ground acceleration records. 

The nature of the facility dictates geometric considerations such as story masses, number of 

stories, floor heights, and other parameters necessary even for preliminary structural analysis. 

Additionally, the nature of the facility provides some indication of the target seismic 

performance following a level of seismic hazard. Whereas owners of conventional structures 

may be able to tolerate some degree of damage in an earthquake having a 72-year return 

period, the interest of public welfare likely requires a hospital or fire station to be completely 

functional following such an event.  
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An effective seismic design and evaluation framework considers the above factors of 

site location and facility type, and allows for the selection of structural system parameters 

(both type and proportion) that satisfy some complex performance objective with a 

quantifiable level of confidence. To develop such a framework, the following are described 

in subsequent sections of this chapter: 

• probabilistic methods of computing the reliability of some random vector of 
engineering demand parameters (such as peak forces and deformations associated 
with a seismic event) being below a prescribed damage state limit 

• estimation of the parameters describing the uncertainty associated with the above 
random vector given an ensemble of analytical results 

• definition of a multi-objective Seismic Performance Classification for a facility 
• establishment of limits on engineering demand parameters to satisfy some target 

damage state 

The above framework requires the generation of analytical results to estimate 

engineering demand parameters and both their uncertainty and correlation. The analytical 

data presented in Chapter 6 of this report forms the basis of an application of the framework 

to base isolated buildings. Both three- and nine-story buildings are considered, and three 

isolation systems are studied: nonlinear viscous, bilinear hysteretic, and triple pendulum. 

This application begins with a description of the seismic hazard environment based on the 

SAC ground motions, and presents the analytical data in terms of median EDP at each 

seismic hazard level considered. Given median EDPs and their dispersion and correlation, 

the reliability of meeting a target complex performance objective is estimated for each 

building, isolation system and its parameters. From this assessment, conclusions are drawn as 

to favorable attributes of base isolation to meet a target Seismic Performance Classification. 

7.2 PROBABILISTIC ASSESSMENT OF SEISMIC PERFORMANCE 

Given the occurrence of a seismic event, a structure will be subjected to a set of engineering 

demand parameters (EDPs), each of which generally describes some peak response of 

interest. A set or vector of EDPs could be a combination of global or local response peak 

amplitudes that are of interest to the designer or that can be used to estimate severity or cost 

of damage. Examples of EDPs include peak interstory drift ratios, peak floor accelerations, 

peak or cumulative plastic deformation demands, peak column axial loads, etc. A set of limit 

states can be defined for each EDP that describes the transition between damage states for 
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that category of EDP. For example, for a conventional steel brace we may have limit states 

related to having no damage, minor damage not requiring repair, moderate damage requiring 

limited repair to the element and adjacent nonstructural components, major damage requiring 

extensive repair or replacement of components, and severe damage leading to possible 

instability of the structure as a whole. While it is possible to track damage in each element 

individually, it is more common to reduce the number of EDPs to a more manageable 

number, by relating them approximately to other response parameters. As noted in Chapter 6, 

it is possible, for example, to relate deformations in individual braces, beam-to-column 

connections and so on to interstory drift. As such, it is convenient to use the peak interstory 

drift at each story or, more simply, the maximum peak interstory drift over all stories as a 

measure of potential damage. Given a probabilistic description of a set of EDPs, and 

appropriate threshold values corresponding to the occurrence of various damage limit states, 

it is of interest to assess the likelihood of the structure experiencing some damage state for a 

given level of seismic hazard. 

Consider a vector of engineering demand parameters (EDPs) given the occurrence of 

a seismic event having a prescribed probability of exceedance. That is, from the observed or 

computed response of the facility to an earthquake having a return period of TR years, a 

vector of n EDPs, , is formed. We can also define a vector of limit states  

whose entries define the joint limits on X to meet Damage State (DS) . The variable  

may take on descriptive values that indicate the level of damage (i.e., DS-F = Functional, 

DS-IO = Immediate Occupancy, DS-LS = Life Safety, etc). It follows that, given the 

occurrence of an earthquake with return period TR, the condition of a structure suffering 

damage classified by the state DS-  is mathematically defined as the event  

  (7.1) 

This event is defined as each observed EDP simultaneously not exceeding the prescribed 

limit set for DS- . The uncertainty in the definition of each damage state is not considered, 

and therefore the limits are treated as deterministic quantities. This approach is taken so that 

each isolation system can be compared without obfuscation by uncertainties related to 

damage.  
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7.2.1 Multivariate Probability Density 

Here we introduce the definition of the multivariate density function for a vector of random 

variables, , where X is a random vector defined on , and is generally continuous. 

This density function is required to describe not only the uncertainty in each EDP, but also 

any potential correlations between EDPs. Later, this uncertainty is used to estimate the 

probability of some set of EDPs simultaneously exceeding a prescribed limit (and hence 

failing to meet a designated performance objective). 

Following Stone [1996], we can define the probability that  where B is some 

subset of  as 

  (7.2) 

This definition of probability is quite general. However, it is made less abstract when the set 

B is defined as some n-dimensional hypercube3 of infinitesimal size. That is, let 

  (7.3) 

The subset B is therefore an n-hypercube cornered at  having volume equal to 

. The probability defined in Equation (7.2) therefore becomes 

  (7.4) 

or the probability of the random vector X being within the n-hypercube B is the probability 

density of X multiplied by the volume of B. If we are interested in the probability of some 

element  not exceeding some deterministic threshold , this corresponds to 

. By considering all elements of X simultaneously not exceeding the associated 

threshold vector , this probability can be expressed by integrating Equation 

(7.4) up to and including , or 

  (7.5) 

                                                 
3 A hypercube is simply a generalization of a three-dimensional cube to n-dimensions. For example, a 

square is a two-dimensional hypercube, and higher than three dimensions is a challenge to visualize. 
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The right-hand-side of (7.5) is the cumulative density function (CDF), and is formally 

written as  

    (7.6) 

To be explicit about the form of the CDF, this function is characterized by parameters that 

are defined depending on the assumed distribution function. If we let the vector of 

parameters characterizing the CDF be , then we formally write the CDF as 

. These parameters may be assumed based on prior experience, left unknown, or 

estimated based on a sample of data. Returning to the original task of estimating the 

probability of the event that each observed EDP simultaneously does not exceed the 

prescribed limit state vector set for DS- , as first presented above in Equation (7.1), we can 

state this probability as 

  (7.7) 

A consequence of this formulation is that the probability of failure to meet the damage state 

defined by DS-  is the complementary CDF, or 

  (7.8) 

As a result, the probability of meeting a damage state for a particular seismic hazard scenario 

becomes a function of a) the limit states  defining the transitions between damage states 

and b) the joint CDF of the demand parameters, including the distribution model and 

associated parameters . 

7.2.2 Estimation of Demand Parameter Distribution 

Consider first the task of estimating the joint CDF of the demand parameters, including 

distribution model and associated parameters . As described in Chapter 6, an ensemble of 

ground-motion records can be developed for a number of levels of seismic hazard. In our 

previous study, a total of 20 records were used for each of three hazard levels: TR = 72 years, 

TR = 475 years, and TR = 2475 years. We wish to estimate the probabilistic structure of the 

1

1( ) ( )nx x

nF f dx dx
−∞ −∞

= ∫ ∫X Xx x" "

( )1, ,θ rθ θ= …

( )FX x θ

ϒ

1

( )θ
n

j j
j

P X x Fϒ ϒ

=

⎡ ⎤
≤ =⎢ ⎥

⎣ ⎦
X x∩

ϒ

1

1 ( )θ
n

f j j
j

P P X x Fϒ ϒ ϒ

=

⎡ ⎤
= > = −⎢ ⎥

⎣ ⎦
X x∩

ϒx

θ

θ



 

234 
 

EDP vector X for each level of hazard. Here, this EDP vector is left general, but the entries 

are a mixture of peak accelerations, deformations, ductility demands, or other EDPs that are 

of interest in describing the state of damage of the structural system under consideration. In 

subsequent sections, this EDP vector is infused with actual peak response parameters 

relevant to the multi-story base isolated buildings under investigation. 

7.2.2.1 Selection of Distribution Function 

To form an estimate of the parameters characterizing the probabilistic structure of a random 

variable, a distribution model must first be selected that adequately describes the uncertainty 

inherent in the process that produces the response of interest. Often, the selection of a 

distribution model is inherent to a physical process. For example, the number of coin flips 

landing either heads or tails out of a fixed number of trials follows the binomial distribution. 

This is a consequence of the underlying mathematical process of Bernoulli trials from which 

the binomial distribution arises. Since a single coin flip constitutes a Bernoulli trial (where 

the observation of “success” and “failure” have equal probability for a fair coin,) estimating 

the probability that fewer than x heads are observed in n coin flips is naturally taken from the 

binomial distribution. In the case of an assumed fair coin, no estimation of the binomial 

parameter p (describing the success rate of a single trial) is necessary. However, if one were 

interested in testing the bias of a coin of unknown attribute, it would be necessary to conduct 

many trials, observe the number of successes over some large number of trials, and estimate 

the binomial parameter  where s is the number of observed heads and n is some 

(large) number of trials 4 . Despite the need for estimation in this simple example, the 

selection of assumed distribution is obvious from the underlying physical process. 

It is often the case, however, that no feature of a random process reveals the 

appropriate distribution for which parameters should be estimated. In the case of structural 

response to input ground motion, there is a special case where the normal (Gaussian) 

distribution appropriately characterizes the output response. This case is the time-variant 

response of a linear structural system subjected to stationary Gaussian ground acceleration 

input [Lutes and Sarkani, 2004]. Here, there is a physical process that might reasonably lead 

to an assumption of Gaussian ground input. The successive reflection and refraction of 

                                                 
4 A carat over a variable designates it as an estimate of some otherwise unknown parameter. 

ˆ /p s n=
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seismic waves through various strata of rock and soil leads to a surface response, which is 

the superposition of many randomly occurring seismic waves. By the Central Limit Theorem 

[Stone, 1996] a random process that is the summation of random variables having a common 

(but unknown) distribution becomes normally distributed as the number in the summation 

becomes very large. Despite the convenience of the Gaussian distribution for the above 

special case, the type of response quantities we are concerned with do not fit the necessary 

conditions described. First, the assumption of structural linearity is clearly violated, since 

highly nonlinear isolation systems are the focus of these studies. Additionally, we are 

concerned with peak responses over the duration of a single trial (ground motion) repeated 

over many trials. Finally, the ground motion inputs cannot be characterized as a Gaussian 

stationary signal. There is nothing inherent in these three significant departures from the 

original linear Gaussian assumption that would make the selection of distribution model clear.  

It has been suggested in the available literature (Miranda and Aslani [2003] and 

McGuire [2004], among others) that the EDPs of peak interstory drift ratio (PIDR) and peak 

floor acceleration (PFA) are both lognormally distributed given some level of ground motion 

intensity. Based on the abundance of work suggesting the lognormality of EDPs, this 

distribution is assumed a priori to characterize the elements of the EDP vector X. Two 

significant consequences of the lognormal assumption are (a) the demand parameters are 

necessarily non-negative and (b) the distribution is characterized by positive skew. Both of 

these attributes of the lognormal distribution are appealing in their description of peak 

structural response of nonlinear systems because (a) peaks are non-negative by their 

definition, and (b) nonlinear response excursions tend to produce a few observations that are 

significantly larger than the majority of the sample. Moreover, since the EDP vector X 

contains multiple random variables, something must be stated regarding their dependence. 

Clearly, the peak response of the two demand parameters (e.g., deformation and acceleration) 

are subject to the same, uncertain seismic input, exhibit statistical dependence. Without 

compelling evidence to suggest strong independence, the potential for correlation must be 

accounted for in the estimation of probabilistic structure. For this reason, the EDP vector X 

is assumed to be jointly lognormal for a particular level of seismic hazard.  
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7.2.2.2 Multivariate Lognormal Density Function 

Now that the assumption of joint lognormal distribution of X has been established, it is 

possible to estimate the necessary parameters characterizing the distribution. Consider the 

general problem of determining a joint CDF for a vector of multivariate lognormally 

distributed random variables. As before, let  be a random vector of EDPs. The 

expectation of  is given as , and the covariance matrix is 

defined as 

  (7.9) 

That is, given a transformation , the random vector Y is multivariate normal with 

mean vector Λ and covariance matrix Ψ. This definition of the distribution of Y and its 

parameters is written . Equivalently, the distribution of X is written as 

. From Stone [1996] it follows that the joint PDF of the multivariate normal 

random vector Y is 

  (7.10) 

The multivariate normal joint CDF is computed in the standard way, as described in Equation 

(7.6). Noting that the probability of each random vector X and Y being within some 

infinitesimal n-hypercube is equal (due to one being a transformation of the other), we have 

  (7.11) 

From the definition of probability density in Equation (7.4) this gives 

  (7.12) 

According to the change of variable theorem for injective mapping, the density of X becomes  

  (7.13) 
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where  is the standard Jacobian matrix. Given the transformation  implies 

, and the determinate of the Jacobian above is therefore . 

Substituting this determinate and the variable change  into (7.13) gives the 

multivariate lognormal density as 

  (7.14) 

7.2.2.3 Estimation of Joint Lognormal Parameters 

To characterize the joint PDF of X, it is necessary to estimate the mean vector and 

covariance matrix, respectively denoted  and , for each considered level of seismic 

hazard. Here we consider three hazard levels (72 years, 475 years, 2475 years), so for a 

particular set of structural system parameters, the estimation of three mean vectors, 

, and three covariance matrices, , is required. 

Consider an ensemble of p ground motions developed to represent a single level of 

seismic hazard of return period TR. From nonlinear response history analysis, we obtain a set 

of observed demand vectors, , where . In general, let the quantity  be the 

ith EDP that is observed in the jth ground motion (  and ). Since each 

random EDP Xi is assumed to be lognormal,  is normally distributed, and the ith 

logarithmic mean can be estimated by the sample mean of the p observations 

  (7.15) 

By taking the exponential of both sides of Equation (7.15), a measure of central tendency of 

the random variable  is 

  (7.16) 
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Similarly, recognizing potential correlation between elements of X, the covariance 

matrix for X based on observations  must be estimated. The ijth entry of the 

covariance matrix Ψ is defined as 

  (7.17) 

For , the diagonal entry is simply the variance of Xi. An unbiased estimator of this 

variance is given as [Stone, 1996] 

  (7.18) 

For , it is convenient to introduce a dimensionless statistical measure termed the 

correlation coefficient. This coefficient is defined as 

  (7.19) 

Hence, we can write . Since an estimate of  is given in Equation (7.18), 

obtaining an estimate of  is sufficient to form a complete estimate of the covariance matrix 

Ψ. For this purpose, the Pearson product-moment correlation coefficient is useful. This 

estimator of  is given as [Weisstein, 2006] 

  (7.20) 

In summary, the covariance matrix Ψ is estimated as 
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where  and  are given in Equations (7.18) and (7.20), respectively. With the distribution 

of X selected and its parameters estimated based on observed response data, it is possible to 

compute the probability of the response given some level of earthquake hazard exceeding a 

prescribed vector of limit states. 

7.2.2.4 Quantiles 

Given the lognormal PDF of Equation (7.14) and specializing to the univariate case, it is 

straightforward to compute any pth quantile . For example, it may be of 

interest to determine the demand x at which there is a 16% probability of exceedance. This is 

called the 84th percentile and is denoted . For a lognormally distributed random variable 

with estimated parameters  and   

  (7.22) 

Solving for  leads to 

  (7.23) 

The values of  are well known and widely tabulated, and several important examples 

are: 

  

Therefore, the demand that has a 16% probability of exceedance, , is computed as 

. Similarly, the inner 95% confidence interval is computed as 

  (7.24) 
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the probability that the structure exceeds a limit state vector . This failure probability is 

defined as , and computing this for practical applications is the subject of this 

section. The failure probability Pf is 

  (7.25) 

While a closed-form solution does not exist for this integral, a number of algorithms have 

been developed to numerically compute the multivariate normal CDF given a mean vector 

and covariance matrix. Therefore, it is convenient to transform the limit state vectors to the 

normal space. Doing so and explicitly recognizing the necessary parameters to characterize 

the multivariate normal distribution, Equation (7.25) becomes 

  (7.26) 

Recognizing the existence of potentially distinct limit state vectors for each performance 

classification, and an estimated mean vector  and covariance matrix  that depends on the 

level of hazard, a general statement of the probability that a structure meets Damage State  

in an earthquake having return period TR is given as 

  (7.27) 

This multivariate normal CDF can be numerically computed by a quasi-Monte Carlo 

integration algorithm described by Genz [1992] and implemented in Matlab® [Mathworks, 

2006]. This algorithm employs a simulation technique whereby uniform random numbers are 

transformed to uncorrelated standard Gaussian random numbers in the usual way. By 

Cholesky decomposition of the covariance matrix Ψ, an uncorrelated standard Gaussian 

random vector may be rotated into the correlated Gaussian space with a prescribed mean Λ 

and covariance Ψ. This simulation continues until a stable Monte Carlo estimate of the 

probability expressed in Equation (7.27) converges within some selected error tolerance.  

7.3 APPLICATIONS TO PERFORMANCE-BASED EARTHQUAKE 
ENGINEERING 

The section provides a specific framework within which the subject three- and nine-story 

isolated buildings from Chapter 6 are evaluated. First, the concept of a multi-objective 
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Seismic Performance Classification (SPC) is defined. This definition is contrasted with the 

procedures contained in modern building code provisions, which explicitly consider a single 

performance objective at a single level of seismic hazard. Since an important component of 

determination of the SPC for a facility is the set of limits defining damage state transitions, 

explicit limit state vectors are defined for each damage state considered. Lastly, a set of SPC 

designations is defined in the multi-objective context. These definitions are applied to 

isolated buildings in Section 7.4 to compute reliability estimates.  

7.3.1 A Multiple-Objective Seismic Performance Classification 

The form of Equation (7.27) is sufficiently general to allow evaluation of the reliability of a 

particular structural system to meet some complex performance objective. This performance 

objective is termed “complex” because it need not be a single damage state limit for a single 

return period event (i.e., Life Safety damage state for TR = 475 years, as is the case for 

traditional building codes). It is possible to specify multiple performance criteria, and 

subsequently assign a performance objective to each level of seismic hazard considered. In 

this case, the Seismic Performance Classification (SPC) is a function of simultaneously 

meeting each deterministic damage state limit at the level of hazard prescribed. Given the 

mathematical expression of Equation (7.1) that describes the event of meeting Damage State 

 for a seismic event having return period TR, this notion of multiple-objective SPC is 

defined as the simultaneous satisfaction (or nonexceedance) of k damage states at the 

corresponding k levels of seismic hazard, expressed as the event  

  (7.28) 

Note that each damage state need not be distinct, as the same damage limit could be targeted 

for multiple levels of hazard. Indeed, the same damage state could be targeted for all levels 

of seismic hazard in which case the SPC framework remains general. Additionally, some 

damage states may rely on the same EDP, such as partition damage and structural damage 

both relating to interstory drift. This framework is described further in this section, including 

implicit consideration of multiple performance objectives that appear in modern building 

codes. 
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7.3.2 Treatment of Performance Objectives in Building Codes 

The design of structures in the United States and throughout the world is governed by 

minimum standards documented in building codes. The design provisions that appear in 

these codes have historically represented professional consensus without the consideration of 

explicit performance states. The commentary to the 2003 NEHRP provisions for new 

buildings [BSSC, 2003] states 

Although the Provisions explicitly require design for only a single level of 
ground motion, it is expected that structures designed and constructed in 
accordance with these requirements will generally be able to meet a number of 
performance criteria, when subjected to earthquake ground motions of 
differing severity. 

This is clearly an implicit multi-level performance objective, as there is an expectation of 

satisfying multiple performance criteria for each level of seismic hazard considered. 

However, no methodology is described for either estimating the probability of exceeding or 

improving the reliability of achieving the intended multi-level performance objective.  

The shortcomings of existing building codes were recognized by the structural 

engineering community, and a set of interim recommendations were developed to promote 

what was termed “Performance-Based Seismic Engineering” [SEAOC, 1995]. The intent of 

these recommendations, titled Vision 2000, was to define the following series: 

1. standard seismic performance levels 

2. reference seismic hazard levels 

3. uniform design performance objectives for buildings depending on their occupancy 

classification and importance 

4. recommendations for engineering practice 

Vision 2000 promoted a holistic treatment of earthquake resistant design, and 

identified many key research needs to achieve such a design methodology. Many of the 

research areas identified remain active today. Based on the move toward performance-based 

seismic design, current building code provisions are more explicit about the intended seismic 

performance of structures designed in their accordance. The 2006 International Building 

Code largely adopts the provisions of the 2003 NEHRP Recommended Provisions for 

Seismic Regulations for New Buildings and Other Structures [BSSC, 2003], which presents 
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the expected building performance in a matrix, recreated in Figure 7.1. A qualitative 

description of each damage state in terms of structural and non-structural damage is 

contained in Table 7.1. 

 

Figure 7.1: Expected building seismic performance as expressed in 2003 NEHRP 
Recommended Provisions [BSSC, 2003] 

In the above performance matrix, the Seismic Performance Classification (denoted “Group” 

in 2003 NEHRP) can be interpreted within the framework introduced in this section. A 

facility could be designated Group III if the following intersection of events occurs: 

  (7.29) 
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Table 7.1: Damage state definitions  
(adopted and expanded from ASCE-41 [2006]) 

 

7.3.3 Establishment of Limit State Vectors  

A crucial step in the assessment of seismic performance is the establishment of limits on 

demand parameters that identify a transition between damage states. A simple example is the 

deformation of a wall partition consisting of gypsum board attached to light-gage metal studs. 

If a partition specimen is placed in a loading frame, and an actuator imposes monotonically 

increasing deformation, several damage states may be observed throughout the deformation 

history. As some stage of deformation, cracking will occur in the brittle outer gypsum that 

would require patching and painting (and hence labor and materials). At some greater level 

of deformation, the board will experience opening of cracks that requires replacement of the 

outer gypsum, but does not compromise the integrity of the metal studs. Even greater 

deformation triggers buckling of the metal studs and hence replacement of the entire wall 

partition. Each of these increasing damage states has repair costs associated with it that 

escalate with the deformation demand. As a result, limits may be imposed on the allowable 

deformation to prevent the triggering of these repair costs in a particular seismic event. The 

definition of these damage states as a function of the imposed demand (termed “fragility 

function”) is a subject of significant research. Such fragility functions are being developed 

for structural elements, deformation-sensitive nonstructural elements, acceleration-sensitive 

Functional Immediate 
Occupancy Life Safety Collapse Prevention

Overall Damage Very Light Light Moderate Severe

Structural No permanent drift. 
Structure substan- 
tially retains original 
strength and 
stiffness.

No permanent drift. 
Structure substan- 
tially retains original 
strength and 
stiffness.

Residual strength 
and stiffness remain 
at all stories. Gravity 
load system intact. 
No out-of-place wall 
or para- pet failure. 
Some permanent drift

Virtually no residual 
strength of stiffness 
remains. Gravity load 
system functioning. 
Large permanent drift. 
Failure of parapets and 
out-of-place wall 
anchorages.

Nonstructural Minor cracking of 
facades, partitions, 
and ceilings. Power 
and utilities avail- 
able. All systems 
important to normal 
operation are 
functional.

Minor cracking of 
facades, partitions, 
and ceilings. Elevat- 
ors can be restart- 
ed. Equipment and 
contents generally 
secure but may not 
operate due to me- 
chanical failure or 
loss of power.

Extensive damage to 
facades, partitions, 
and ceilings. Falling 
hazards mitigated. 
No loss of egress.

Extensive damage to 
all nonstructural 
systems, falling 
hazards not mitigated.
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nonstructural elements, and contents. The form of a fragility function is always an estimate 

of exceeding a particular damage state given the occurrence of a demand. In our example of a 

partition wall, a fragility function for that wall (based on experimentation on many samples) 

may indicate that, at an interstory deformation of 1.5”, there is a 50% chance the gypsum 

will have cracked, a 10% chance the gypsum needs to be replaced, and a 2% chance the 

metal studs need to be replaced. This information can be used to associate an economic or 

downtime loss triggered by the occurrence of a deformation demand, since each damage state 

causes either expense to repair, some duration of time where a portion of the facility may not 

be occupied, or often both. Aslani and Miranda [2003, 2005] provide excellent discussions 

on fragility functions and provide references to several developmental sources. Given the 

variety of fragility functions that currently exist, the rate at which new ones are being 

developed, and their dependence on facility type and occupancy, the studies described herein 

do not attempt to develop specific damage state limits, as might be done for an actual 

building project, nor do they account for dispersion in observing some damage state given 

the occurrence of an EDP value. 

In these studies, a vector of EDPs must be selected that can be compared to their 

associated damage state limit. To capture the effect of various demand types on the overall 

damage state on the structure, the following demand parameters have been chosen: 

1. peak interstory drift ratio (PIDR) 
2. peak floor acceleration (PFA) 
3. peak isolator displacement (Uiso)  
4. peak floor spectral acceleration at the roof level (PFSA) over the frequency range 

[1 Hz, 10 Hz] at 5% damping  

Thus, the EDP vector X, which is assumed to be jointly lognormal, is defined for the 

following studies as: 

  (7.30) 

In an actual building, this set of EDPs would be expanded or truncated as called for by the 

project specifics. A set of limit state vectors, , must be constructed to describe the 

transition of each EDP to each damage state .  

To select limit state vectors for specific damage states, a generic approach is taken 

herein, employing representative numerical values for the specific damage states considered. 

[ ]T
isoPIDR PFA U PFSA=X

ϒx

ϒ
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There are a number of recommended nonstructural damage state limits that are non-specific 

to the type of structure, but are based on the widely available research and include median 

and dispersion estimates to account for the uncertainty, assuming the customary lognormal 

distribution. Aslani and Miranda [2005] have developed statistical parameters for fragility 

functions of generic nonstructural drift-sensitive and acceleration-sensitive components. 

These are summarized below in Table 7.2. Recall that some quantile for a lognormal 

distribution, xp, is given above as . Therefore, in the simplest 

probabilistic formulation of the limit state vector, we could choose to limit the demand to the 

50th, 16th or other percentile estimate of the tabulated value to meet a particular damage state, 

depending on the desired level of reliability. It should be recognized that nonstructural 

elements having fragility functions far different from those tabulated below can be used in a 

structure, which could result in more or less robust performance. Therefore, the observations 

made below regarding performance of various isolated systems are conditioned on this 

particular set of damage states, and other conclusions might be reached if other numerical 

values were selected. 

Table 7.2: Statistical parameters for fragility functions of generic nonstructural drift-
sensitive and acceleration-sensitive components [Aslani and Miranda, 2005] 

 

Damage states must also be established to assess performance of the structure. These 

damage states are generally defined to identify transitions to modes of failure that either 

cause a significant increase in repair cost, or have the potential to compromise the gravity 

load-carrying ability of the structure. Limiting the former category of damage is often 

targeted for more frequent events, while the latter is mandated by building codes for rare 

events. 

1ˆ ˆexp ( )px pλ ζ −⎡ ⎤= + Φ⎣ ⎦

Damage State Median (%) Dispersion1 Median (g) Dispersion1

DS1: Slight damage 0.4 0.5 0.25 0.6

DS2: Moderate damage 0.8 0.5 0.50 0.6

DS3: Extensive damage 2.5 0.5 1.00 0.6

DS4: Complete damage 5.0 0.5 2.00 0.6
1 Defined as the logarithmic standard deviation of the demand

Peak Interstory Drift Ratio Peak Floor Acceleration
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The studies conducted in Chapter 6 are focused primarily on steel braced frame 

construction. This was chosen because stiff structural systems are often utilized for isolated 

buildings to maximize the separation of the fixed base and isolated periods. Therefore, 

damage state limits assumed for the structural system will correspond in some fashion to 

those developed for steel braced frames. 

 A study by Kinali [2007] examined fragility functions for various steel frames in the 

central and eastern United States. For steel concentric X-braced frames, the performance 

levels and their associated drift limits considered in this study are summarized below in 

Table 7.3. These performance limits are adopted for the studies conducted here. These 

damage states are for a single class of braced frames, and may not represent all types of 

detailing and configurations. However, the limits can be incorporated in further analysis with 

the realization of their limitations. Clearly, other drift ratios and their estimated dispersions 

would be appropriate for other structural systems and detailing. 

Table 7.3: Performance limits for X-braced steel (after Kinali [2007]) 

 

For isolated buildings, an important damage state is that of the peak isolator displacement 

exceeding the seismic gap provided by the surrounding moat. The moat size can be selected 

by the designer, and is therefore not a function of the isolation system used. However, in 

practical situations, the designer is encouraged by the owner and architect to limit the size of 

the moat because of architectural impact and cost considerations. Therefore, the minimum 

code provisions often dictate the final size of the moat. Using modern code provisions, the 

moat size must be greater than the expected isolator displacement (including the effects of 

real and accidental torsion) for the seismic event having a return period TR = 2475 years. For 

simplicity, the same moat size (28 inches) is assumed for all isolation system considered in 

this study, since the penalty for excessive isolator displacement should be captured in the 

limit state vector. This limit is based on the 2475-year spectral displacement at 4 seconds, 

modified by a factor to account for 25% damping in the isolation system. For the results 

presented, this limit is only included to evaluate the ability of the various isolation systems 

Damage State Peak Interstory Drift Ratio (%)

IO: Immediate Occupancy 0.4

SD: Structural Damage 1.3

CP: Collapse Prevention 5.0
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considered to limit the isolator displacement to a reasonable moat size. However, for 

simplicity of this conceptual demonstration, the effect of impact of the base of the structure 

against the moat wall has not been included in the estimates of story drifts, floor 

accelerations, and floor spectra accelerations, as would be required for an actual evaluation. 

Further consideration of the moat size and its role in probabilistic performance assessment is 

given in Section 7.4.3. 

Given the discussions above, and recalling the definition of the random demand 

vector from Equation (7.30), the limit state vectors chosen are summarized below: 

  

where F = Functional, IO = Immediate Occupancy, LS = Life Safety, and NC = Near 

Collapse. The definition of each damage state is qualitatively defined in Table 7.1. The 

PFSA limit is chosen as a constant multiplier of four applied to PFA. This is a result of 

typical anchorage forces computed as four times the floor acceleration. In practical 

applications, these values would be selected according to project-specific conditions.  

7.3.4 Definition of Seismic Performance Classifications 

A set of multiple-objective Seismic Performance Classifications (SPC) can be defined as an 

intersection of damage state nonexceedance events, shown in Equation (7.29). Table 7.4 

describes the selected SPC designations, approximately following the definitions of Seismic 

Use Group in NEHRP 2003. SPC-I corresponds to the intended performance classification of 

a typical facility. SPC-II is an enhanced performance classification, and may be appropriate 

for buildings of vital importance to the economic viability of an organization. SPC-III is a 

safety-critical performance classification, and would be expected for facilities having 

emergency-response function such as acute-care hospitals, fire stations, and government 

agency headquarters. SPC-IV is the highest performance classification considered, and might 

be appropriate for facilities storing extremely hazardous materials, the release of which could 

lead to significant and widespread public health concerns. 
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Table 7.4: Definition of Seismic Performance Classifications as a function of required 
damage state limit following a seismic event  

of given return period 

 

Given the procedure described to estimate the joint density function of the demand vector at 

a level of seismic hazard, and the definition of limit state vectors describing transition 

between damage states, it is possible to compare the isolated buildings studied in Chapter 6 

within the context of performance assessment. 

7.4 RELIABILITY ANALYSIS OF SEISMIC ISOLATION SYSTEMS 

With a multiple-objective performance-based seismic assessment procedure defined, it is 

possible to evaluate a wide class of isolation systems as to their ability to satisfy specified 

complex performance objectives. The assessment is designed to address not only if a 

particular isolated building will satisfy a given SPC designation, but also the probability of 

exceeding this SPC designation. This is an important decision-making tool for engineers and 

building stakeholders in their selection of the appropriate set of isolation system parameters 

to economically achieve the desired building performance considering multiple levels of 

seismic hazard. 

As described above, the analytical results of Chapter 6 form the basis for the 

probabilistic seismic demand analyses conducted in this section. These demands are 

combined with the limit state vectors developed in the previous section to identify damage 

states in the three seismic hazard levels considered in Chapter 6: 72-year, 475-year, and 

2475-year. First, trends for each EDP as a function of seismic hazard are identified for all 

isolation systems considered. This identifies sensitivities that exist between EDPs and 

isolation system parameters. These EDPs are then compared to deterministic limits assumed 

for each damage state. The probabilistic description of the vector of EDPs is combined with 

Seismic Event T R SPC-I SPC-II SPC-III SPC-IV
Frequent 72-yr IO F F F
Rare 475-yr LS IO F F
Very Rare 2475-yr NC LS IO F
T R : Earthuake Return Period, SPC: Seismic Performance Classification
F: Functional, IO: Immediate Occupancy, LS: Life Safety, CP: Collpase Prevention
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the damage state limits to estimate the probability of achieving a series of Seismic 

Performance Classifications, defined in Section 7.3.4. Conclusions are drawn as to isolation 

systems and parameters capable of achieving enhanced SPC designations. 

7.4.1 Probabilistic Seismic Hazard Analysis 

The first step towards assessing the seismic demands on a structural system is the 

development of probabilistic estimates of the expected ground motions at a site. The process 

of developing these estimates is broadly defined as Probabilistic Seismic Hazard Analysis 

(PSHA). The background of PSHA is described by Kramer [1996] and is based on the work 

of Cornell [1968] and others. In performing a PSHA for a particular site, an inventory is 

taken of all faults, their potential moment magnitude (Mw) and their distance (R) to the site 

under investigation. Then, using recurrence relationships for each fault, the mean rate (in 

events/year) of earthquakes having a moment magnitude exceeding some threshold is 

computed. Given some magnitude and distance, a median measure of seismic intensity (such 

as spectral acceleration at some natural vibration frequency), and its dispersion can be 

estimated from attenuation models of the form . Assuming all possible 

earthquake magnitudes and distances and their probabilistic distributions, a probability of 

exceeding a threshold seismic intensity is computed. Finally, given the recurrence 

relationships of earthquake arrivals for each fault, total probability theory can be applied to 

find the chance of a seismic intensity exceeding a threshold value in a time period of one 

year. This is known as the mean annual frequency (MAF) of exceedance, or the hazard rate, 

and if we define some random spectral acceleration S, the MAF can be mathematically 

defined as 

  (7.31) 

The larger the threshold intensity , the lower the probability of exceeding  in a one-year 

period. For this reason,  is always a monotonically decreasing function. It has been 

suggested [Cornell, 1996] that  may be approximated by the function , 

which is linear in log-log space. In the case of this form, knowing the median spectral 

acceleration at two mean annual frequencies is sufficient to completely describe the hazard 

curve. This form is generally a good approximation for closely spaced values of ν; however, 

( ),wS M R= F
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the shape of the hazard curve is of little importance since our methodology is concerned with 

discrete mean annual frequencies.  

The SAC ensemble of ground motions has been developed considering three return 

periods: 72 years, 475 years, and 2475 years. The return period is defined as the average 

waiting time between event arrivals. If events are assumed to be described by a Poisson 

process with constant arrival intensity over time, then the return period TR is simply the 

reciprocal of the mean annual frequency ν. This is obvious considering that ν is defined as 

“mean events per year” and TR is defined as “mean years per event.” As a result, the three 

MAFs for which the SAC ensemble is developed are (from most frequent to rarest): 0.0139 

events/year, 0.00211 events/year, and 0.000404 events/year. Taking the median values of 

spectral acceleration, , at three frequencies for each of the three ensembles, three points 

can be plotted on the general hazard curve . These points are plotted below in Figure 

7.2. Also included is the general hazard curve for each frequency considering the form 

. The general form was found by taking the natural logarithm of both sides of the 

equation, then applying linear least-squares regression using three output observations and 

three factor levels. These seismic hazard curves are provided for reference, since generally 

these relationships can be estimated for a site. For the study presented here, the ground 

motions have been developed for three distinct hazard levels; hence the continuous hazard 

function is not used. 

s

( )S sν

( ) b
S s asν =
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Figure 7.2: Median probabilistic ground-motion hazard curves based on SAC ensemble, 
for f = 5 Hz, f = 0.5 Hz, f = 0.25 Hz 

7.4.2 Probabilistic Seismic Demand Analysis 

 With a probabilistic description of the seismic hazard at the site defined, it is possible to 

develop a probabilistic description of any number of demand parameters of interest. 

Previously, we described the collection of these demands as the random vector X, and 

assumed this vector is characterized by a joint lognormal distribution whose parameters can 

be estimated by observed data. The response data presented for three- and nine-story isolated 

buildings in Chapter 6 of this report is used for parameter estimation, which includes a mean 

vector  and covariance matrix  for each of the three levels of seismic hazard considered. 

In presenting median demand hazard, a general form is assumed and fitted to the 

observed data. A function to describe central tendency of structural response as a function of 

ground-motion intensity has been proposed by Miranda and Aslani [2003], and is of the form 

  (7.32) 

 Where  is the median of the jth observed response parameter, ν is the intensity measure 

(which in this case has been extended to be the mean annual frequency of exceedance) and 

α1 through α3 are parameters to be estimated. Given the form of Equation (7.32), it is 

possible to estimate the parameters by taking the logarithm of both sides, giving 

Λ̂ Ψ̂

3
1 2ˆ jx ανα α ν=

ˆjx
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  (7.33) 

By simple substitution of alternate parameters, this becomes  

  (7.34) 

The form of Equation (7.34) can be solved by linear least-squares regression where the basis 

functions are . Since these basis functions are linearly independent and span the 

space of dimension equal to the number of observations, the space is identifiable and the 

parameters β1 through β3 may be estimated. Finally, applying the relation  yields a 

complete expression for the median structural response described in Equation (7.32). 

Figure 7.3 through Figure 7.8 present the median demand hazard curves for both 

three- and nine-story buildings on linear viscous (LV), bilinear hysteretic (BL), and triple 

pendulum (TP) isolation systems. Each plot is for a particular isolation system class. The 

solid squares indicate computed median EDPs from response history analysis using the SAC 

ensemble of ground motions, 20 records at each of the three MAF of exceedance. The solid 

line interpolating the data points are the regression lines fitting Equation (7.32) above. While 

the shape of this line does not always follow the expected shape (since it may not always be 

one-to-one), the curvature is interesting because it indicates the sensitivity of the response to 

the MAF. That is, a regression curve that is concave-left indicates a response that is 

insensitive to its MAF relative to a regression curve that is concave-right. As the regression 

curve becomes nearly vertical, the response approaches the characteristic response in which 

the peak observed over some time interval is independent of the duration of that interval (and 

so is intensity of seismic input). This is important only because the limit state vector does not 

display this type of behavior, an indication that eliciting response that is sensitive to its MAF 

is an efficient strategy to satisfy the limit state vector. This is discussed further with respect 

to individual cases. 

Figure 7.3 presents median demand hazard curves for the three-story building on 

linear viscous isolation systems. These data are useful in that they form an estimate of EDPs 

for a linear system to which “equivalent” nonlinear systems may be easily compared. From 

these data, the isolator displacements and PFSA are sensitive to both period and damping. 

Interestingly, the PIDR shows little sensitivity to either period or damping for the cases 

considered. Additionally, the PFA appears to be sensitive only to period, but not damping. 

1 2 3ˆln ln ln lnjx α α ν α ν= + +

1 2 3ˆ lny β β ν β ν= + +

{ }1, , lnν ν

1,2
1,2 eβα =
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These observations should be considered when evaluating the behavior of subsequent 

nonlinear isolation systems. 

Figure 7.4 presents demand data for the three-story building on bilinear hysteretic 

isolation systems. The isolator displacement demands show similar trends to those for the LV 

system, in that isolator displacement decreases with decreased period and increased damping. 

However, all superstructural demand parameters show significant sensitivity to isolator 

period and damping characteristics. While drift demands under the 72- and 475-year seismic 

events show noticeable sensitivity to damping, they are relatively insensitive to the isolation 

period. However, under the 2475-year seismic event, drifts are sensitive to both period and 

damping. Floor accelerations, however, are sensitive to both period and damping at all levels 

of seismic hazard. Bilinear isolation systems with low damping display “concave-right” 

behavior, that is, the PFA tends to be sensitive to the level of seismic hazard. Systems with 

high damping, however, exhibit PFA demands that vary less significantly with seismic 

hazard, particularly for the lower period isolation system. However, for all BL isolation 

systems, PFSA demands appear to be approximately proportional to the MAF in linear-log 

space. One interesting observation is that, while the BL-3-10 and BL-4-25 systems exhibit 

nearly equivalent isolator displacements over all ranges of seismic hazard, PIDR demands 

are significantly lower and PFA demands are slightly lower for the BL-3-10 isolation system 

in the 72-year and 475-year seismic events compared to the BL-4-25 system. 

Figure 7.5 presents demand data for the three-story building on triple pendulum 

isolation systems. The isolator displacement demands also show similar trends to those for 

the LV system, in that isolator displacement decreases with decreased period and increased 

damping. However, all superstructural demand parameters show similar shapes and 

sensitivities to isolator period and damping characteristics as the BL systems described 

above. However, while the BL-3-10 and BL-4-25 systems also exhibit nearly equivalent 

isolator displacements over all ranges of seismic hazard, PIDR demands are also similar for 

these two systems, and PFA demands are nearly equal for the 72- and 475-year events. 

Figure 7.6 though Figure 7.8 present median demand hazard curves for the nine-story 

building on a linear viscous, bilinear hysteretic, and triple pendulum isolation systems, 

respectively. The general trends remain remarkably consistent between the three- and nine-

story buildings for all cases. In general, the magnitude of all demand parameters is greater 

for the 9-story 
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To draw clear comparisons between isolation systems, it is useful to present median 

demand hazard curves at fixed damping parameters. Figure 7.9 through Figure 7.12 also 

present the median demand hazard curves for the three-story buildings on linear viscous, 

bilinear hysteretic, and triple pendulum isolation systems. However, each plot is for a 

particular isolation system effective stiffness and damping. In this way, conclusions may be 

drawn about the relative performance of equivalent classes of isolation systems.  

Figure 7.9 presents median demand hazard curves for the three-story building on all 

short-period, low-damping isolation systems (Teff = 3 sec, ζeq = 10%) considered in this study. 

Examination of these data reveals that the isolator displacement under the 2475-year event is 

approximately equal for all isolation systems, resulting is an equal isolation gap (or moat 

size). This is an expected result from targeting equivalent period and damping at the linear 

viscous isolator displacement. This criterion of “equal moat size” establishes equivalence of 

various isolation systems in these studies. Despite this equivalence there are clear differences 

in superstructural response for the systems investigated. Whereas the LV and TP systems 

show nearly equal median PIDR and PFA response for the 475- and 2475-year seismic 

events, the BL system shows significant amplification relative to LV and TP systems.  For 

the 72-year event, the increase in PIDR and PFA is more significant relative to LV and TP 

systems. This is an indication that the BL isolation system is not activated under moderate 

levels of ground motion. This amplification is also clear from the PFSA demands, where the 

BL system clearly displays “concave right” behavior, or demand that is not sensitive to the 

intensity in seismic input. 

Figure 7.10 presents median demand hazard curves for the three-story building on all 

short-period, high-damping isolation systems (Teff = 3 sec, ζeq = 25%) considered in this 

study. As before, the isolator displacement under the 2475-year event is approximately equal 

for all isolation systems, establishing general equivalence. For the high-damping system, the 

LV and TP systems do not exhibit close agreement for PIDR and PFA except for the 2475-

year event. For other cases, the TP system demands exceed the LV system demands. In all 

cases, the BL system demands exceed those of both the LV and TP systems. 

Figure 7.11 presents median demand hazard curves for the three-story building on all 

long-period, low-damping isolation systems (Teff = 4 sec, ζeq = 10%) considered in this study. 

Expectedly, the isolator displacement under the 2475-year event is approximately equal for 

all isolation systems. Contrary to data observed for the short-period systems, the TP system 
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shows lower PFA and PIDR demand compared to the LV system. However, the PFSA 

demand is approximately equal for all levels of seismic input for both LV and TP systems. 

As before, the observed BL system demands exceed all those of both the LV and TP systems 

for all superstructure demands considered. 

Figure 7.12 presents median demand hazard curves for the three-story building on all 

long-period, high-damping isolation systems (Teff = 4 sec, ζeq = 25%) considered in this study. 

As before, the isolator displacement under the 2475-year event is approximately equal for all 

isolation systems. There is a light increase in all TP system demands compared to the 

equivalent LV system. However, the BL system exhibits significant increase in all 

superstructure demands when compared with both the LV and TP systems. 

Figure 7.13 through Figure 7.16 also present the median demand hazard curves for the 

nine-story buildings on linear viscous, bilinear hysteretic, and triple pendulum isolation 

systems for a particular isolation system’s effective stiffness and damping. The conclusions 

regarding the comparative demands of LV, BL, and TP isolation system remain unchanged 

from those reached for the three-story isolated building described above. This reinforces the 

earlier observation that the flexibility of the superstructure does not appear to affect the 

general conclusions regarding comparative performance of the isolation systems investigated 

herein.  

These data have compared median demand hazard curves across various types of 

isolation systems. However, the dispersion in these demand estimates has not yet been 

considered, nor has the joint probability of meeting a target complex performance objective 

been computed and compared. This analysis is the subject of the section that follows. 
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Figure 7.3: Comparison of median demand hazard curves for 3-story building on linear 
viscous isolation systems 



 

258 
 

 

Figure 7.4: Comparison of median demand hazard curves for 3-story building on 
bilinear hysteretic isolation systems 
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Figure 7.5: Comparison of median demand hazard curves for 3-story building on triple 
pendulum isolation systems 
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Figure 7.6: Comparison of median demand hazard curves for 9-story building on linear 
viscous isolation systems 
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Figure 7.7: Comparison of median demand hazard curves for 9-story building on 
bilinear hysteretic isolation systems 
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Figure 7.8: Comparison of median demand hazard curves for 3-story building on triple 
pendulum isolation systems 
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Figure 7.9: Comparison of median demand hazard curves for 3-story building on 
isolation systems with Teff = 3 sec, ζeq = 10% 
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Figure 7.10: Comparison of median demand hazard curves for 3-story building on 
isolation systems with Teff = 3 sec, ζeq = 25% 
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Figure 7.11: Comparison of median demand hazard curves for 3-story building on 
isolation systems with Teff = 4 sec, ζeq = 10% 
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Figure 7.12: Comparison of median demand hazard curves for 3-story building on 
isolation systems with Teff = 4 sec, ζeq = 25% 
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Figure 7.13: Comparison of median demand hazard curves for 9-story building on 
isolation systems with Teff = 3 sec, ζeq = 10%  
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Figure 7.14: Comparison of median demand hazard curves for 9-story building on 
isolation systems with Teff = 3 sec, ζeq = 25% 
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Figure 7.15: Comparison of median demand hazard curves for 9-story building on 
isolation systems with Teff = 4 sec, ζeq = 10% 
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Figure 7.16: Comparison of median demand hazard curves for 9-story building on 
isolation systems with Teff = 4 sec, ζeq = 25% 
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7.4.3 Reliability-Based Seismic Performance Classification 

The median demand hazard curves presented in the previous section are useful in comparing 

the sensitivities of various isolation system parameters on the expected performance limit 

states considering multiple levels of seismic hazard. The main purpose of these studies is to 

identify sets of isolation system properties that most reliably meet some complex 

performance objective. Such a complex performance objective is defined here as a multiple-

objective Seismic Performance Classification, a concept introduced in Section 7.3.1. 

7.4.3.1 Effect of Damage State on Isolation Gap 

To provide meaningful estimates of the probability of exceeding a near-collapse limit state, a 

revised limit state for peak isolator displacement is appropriate. It is unreasonable to assign a 

particular value to this limit irrespective of analysis results, since the designer is free to 

select an isolation gap (or moat size) that accommodates the expected displacement within 

some confidence bound. For example, current code provisions stipulate that the isolation gap 

must be larger than the computed isolator displacement (including torsion) for an earthquake 

having a return period of 2475 years. If the computation of this displacement is based on the 

mean of an ensemble of response history analysis (which is permitted by code), then the 

probability of exceeding the moat displacement given a 2475-year event is approximately 

50%. Therefore, the probability of meeting a near collapse damage state for this level of 

seismic hazard can be no greater than 50% if moat collision is considered unacceptable for 

such a classification. However, without explicit consideration of impact in the analysis, it is 

not possible to assess the implications of moat collisions on the damage state of the structure. 

Indeed, such a consideration of moat collision of damage state is a subject of ongoing 

research, and no consensus has been reached. 

To overcome the difficulty of assessing the damage state given a moat collision, the 

demand parameter is omitted from the random EDP vector X. Instead, the median isolator 

displacements for the 2475-year seismic event are reported for each isolation system. This 

approach has the advantage of illuminating the merits of each isolation system in achieving 

complex performance objectives while allowing these merits to be weighed against the likely 

moat size necessary to provide reliability of non-collision. 
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7.4.3.2 Superstructure Performance Classification 

For all isolated structures considered in these studies, the same design approach was taken as 

is described in Chapter 6 of this report. The required stiffness of each story was determined 

based on assumed elastic behavior for the 475-year earthquake. Therefore, for each building, 

the superstructure is identical, and only the isolation system has properties that vary. Given 

the design approach taken, a vital question is: what is the probability that the building 

satisfies the requirements for some target Seismic Performance Classification? In the context 

of a complex performance objective, this probability is of the intersection of multiple events. 

Recall the definition of the event of simultaneous satisfaction (or nonexceedance) of k 

damage states at the corresponding k levels of seismic hazard: 

  (7.35) 
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assumed to be statistically independent of the others. Therefore, to compute the probability 

of meeting some SPC designation, the fact can be used that 

  (7.36) 

for mutually independent events E1, E2, and E3. Moreover, the probability 

  (7.37) 

for , where  is the multivariate Gaussian CDF. Taking the probability 

of each SPC event defined above and using the properties of assumed statistical 

independence and lognormality of X, we obtain the following probabilities of achieving 

some Seismic Performance Classification: 

 

 

 

 

Given the estimation of all mean vectors Λ and covariance matrices Ψ in Section 7.2.2.3, and 

limit state vectors  in Section 7.3.3 (omitting isolator displacement limits), these 

probabilities may be computed numerically following the procedure of Section 7.2.3. These 

results are presented in the tables that follow. Table 7.5 and Table 7.6 describe the 

probability of the three- and nine-story buildings meeting some complex performance 

objective given the type of isolation system and its period and damping parameters. Also 

shown, for reference, is the required moat size based on the median 2475-year peak isolator 

displacement. These data are useful because they answer the question posed at the beginning 

of this section: what is the probability that a facility satisfies the requirements for some 

target Seismic Performance Classification? 

Considering the three-story building data, it is clear that nearly all isolation systems 

satisfy the most basic performance classification, SPC-I, with a high degree of certainty. The 
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only system that is unlikely to meet SPC-I is the bilinear hysteretic isolation system BL-3-25. 

Since seismic isolation is well known to provide superior seismic performance relative to 

that of conventional buildings (for which SPC-I is a common performance objective), it 

would be expected that all isolation systems would meet this basic performance objective. In 

meeting the more stringent performance classification of SPC-II, it appears that all triple 

pendulum systems except TP-3-25 have a greater than 90% probability of meeting this 

performance classification without modification of design. All linear viscous systems have a 

greater than 90% probability of meeting SPC-II. 

Satisfying the SPC-III objective appears highly dependent on the target effective 

period of the isolation system. None of the bilinear hysteretic systems exhibit a likelihood of 

meeting the SPC-III objective. Among linear viscous and triple pendulum systems, the long-

period systems show an increased probability of meeting SPC-III compared to short period 

systems. For the short period LV systems, an increase in damping from 10% to 25% only 

decreases the probability of meeting SPC-III from 0.44 to 0.43. However, for the long period 

LV systems, the same increase in damping decreases the probability from 0.83 to 0.72. A 

similar trend is observed for triple pendulum systems. For the short period TP systems, an 

increase in damping from 10% to 25% decreases the probability of meeting SPC-III from 

0.38 to 0.25 and, for the long-period TP systems, the same increase in damping decreases the 

probability from 0.91 to 0.57. 

It can be seen that none of the isolated buildings studies exhibits likelihood of 

meeting the SPC-IV objective. Of course, they were not specifically designed for this 

performance objective, so this is an expected result. However, for the design approach taken, 

the triple pendulum system TP-4-10 exhibits the highest reliability in achieving SPC-IV, 

with a probability of 0.47, whereas the equivalent linear viscous system LV-4-10 has a 

probability of 0.25. It is evident from the median demand hazard curves presented in the 

previous section that the induced peak drift demands and peak acceleration demands well 

exceed the functional damage state for the very rare event. However, the data of Table 7.5 

suggests that, for the three-story structure under investigation, long-period, low-damping 

isolation systems provide the most reliable means of meeting this extremely stringent 

performance classification unless purely bilinear hysteretic damping is employed. 

From the probabilistic data for the 9-story building in Table 7.6, many isolation 

systems clearly provide reliable means of achieving SPC-I performance. It is apparent, 
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however, that the bilinear hysteretic systems are the least reliable, with only BL-4-10 having 

a greater than 50% probability of meeting this basic performance objective. From Figure 7.4, 

this is clearly due to high floor acceleration demands for the frequent and rare events and, to 

a lesser extent, drift demands in the frequent event. For the SPC-II classification, only the 

low-power-law viscous damping, and low damping, high yield point hysteretic damping 

provide greater than 80% probability of achieving this performance objective. Among 

currently available isolation systems, only the low-friction TP system provides a non-

negligible probability of meeting the SPC-II objective for the flexible structure considered. 

For the SPC-III objective, only low-damping, low-power-law viscous and high-yield-point 

hysteretic systems show a greater than 30% probability of meeting this performance 

objective. None of the isolation systems considered show appreciable reliability of meeting 

the SPC-IV performance objective. 

7.5 CONCLUSIONS 

A multi-objective Seismic Performance Classification (SPC) was introduced to describe 

aggregate damage state limitation over multiple levels of seismic hazard. From the analytical 

data presented in Chapter 6 of this report, a probabilistic seismic demand analysis was 

performed to estimate the joint density functions of a vector of EDPs. Based on a series of 

limit state vectors assumed to describe discrete damage states, the probability of satisfying 

specific SPCs was computed for three- and nine-story buildings on nonlinear viscous, 

hysteretic, and triple pendulum isolation systems. The results demonstrate the importance of 

limiting interstory drift and floor acceleration to satisfy enhanced SPCs, and the sensitivity of 

these responses to the level and type of energy dissipation present. 
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Table 7.5: Probability of the 3-story building meeting each defined Seismic 
Performance Classification for all isolation systems considered 

 

 

  

SPC-I SPC-II SPC-III SPC-IV Moat

3-10 1.00 0.99 0.44 0.05 29.2 in.

3-25 1.00 0.97 0.43 0.04 23.1 in.

4-10 1.00 1.00 0.83 0.25 31.3 in.

4-25 1.00 0.99 0.72 0.12 21.6 in.

3-10 0.94 0.04 0.00 0.00 28.6 in.

3-25 0.40 0.00 0.00 0.00 20.4 in.

4-10 1.00 0.51 0.10 0.01 27.2 in.

4-25 0.90 0.01 0.00 0.00 24.0 in.

3-10 1.00 0.93 0.38 0.07 30.2 in.

3-25 0.96 0.40 0.25 0.00 25.9 in.

4-10 1.00 1.00 0.91 0.47 31.8 in.

4-25 1.00 0.91 0.57 0.10 24.5 in.

TP

LV

BL

Seismic Performance Class
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Table 7.6: Probability of the 9-story building meeting each defined Seismic 
Performance Classification for all isolation systems considered 

 

  

SPC-I SPC-II SPC-III SPC-IV Moat

3-10 1.00 0.92 0.12 0.00 29.2 in.

3-25 0.99 0.80 0.04 0.00 23.1 in.

4-10 1.00 0.98 0.60 0.05 31.3 in.

4-25 1.00 0.91 0.23 0.00 21.6 in.

3-10 0.44 0.01 0.00 0.00 28.6 in.

3-25 0.19 0.00 0.00 0.00 20.4 in.

4-10 0.74 0.04 0.00 0.00 27.2 in.

4-25 0.35 0.00 0.00 0.00 24.0 in.

3-10 0.98 0.55 0.01 0.00 30.2 in.

3-25 0.86 0.40 0.00 0.00 25.9 in.

4-10 1.00 0.96 0.68 0.14 31.8 in.

4-25 0.94 0.26 0.01 0.00 24.5 in.

TP

LV

BL

Seismic Performance Class
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8 Conclusions and Recommendations 

8.1 SUMMARY AND CONCLUSIONS OF RESEARCH PROGRAM 

This report describes a research program that was conducted to investigate the ability of 

innovative isolation systems to reliably satisfy multi-objective seismic performance 

classifications. Phases of this research included analytical and experimental investigations on 

the cyclic behavior and seismic performance of multi-stage friction pendulum bearings, 

parametric studies on the seismic response of isolated multi-story buildings, and comparative 

performance assessment of isolated buildings in a probabilistic framework. A summary of 

each phase is provided in this section.  

8.1.1 Multi-Stage Friction Pendulum Bearings 

Initial studies focused on the characterization of a new class of friction pendulum bearings 

capable of progressively exhibiting different hysteretic properties at different stages of 

response. Based on basic mechanical principles of equilibrium, compatibility, and 

constitutive relations, force-deformation behaviors for single-, double-, and triple pendulum 

bearings were derived. It was shown that, for all friction pendulum bearings studied, the 

behavior is a function of the geometric properties of the spherical sliding surfaces and the 

coefficients of friction of each sliding interface. The newly developed model for the triple 

pendulum (TP) bearing demonstrates five unique stages of sliding behavior, the transitions of 

which can be explicitly computed given the bearing geometry and assumed friction 

coefficients of each slider. The nonlinear monotonic behavior of the TP bearing was 

extended to predict cyclic behavior under generalized displacement input, a necessary 

formulation for implementation in a response history analysis. This cyclic model was 

developed as a series formulation of three bilinear-gap elements in series, whose stiffness, 
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strength, and gap dimension parameters were computed to reproduce the derived sliding 

stages. 

To validate the analytically derived behavior of the TP bearing and to motivate 

further studies, a series of shake table experiments was conducted on an isolated three-story 

steel braced frame specimen. Bearings investigated included a DP bearing with equal friction 

on each slider, and a TP bearing with three unique friction coefficients on each slider. 

Harmonic characterization tests identified cyclic behavior at various levels of displacement, 

velocity, and axial load. For each bearing specimen, earthquake simulation tests were 

conducted in a single horizontal direction at three levels of hazard, each with and without the 

inclusion of vertical acceleration. Acceleration records from three different historical 

earthquakes were applied to the model for each hazard level. For the moderate level of 

shaking, three components of excitation were applied such that bidirectional interaction with 

vertical acceleration could be observed. In all tests, displacement and acceleration data was 

collected at each level of the specimen, as well as shear and axial force reactions at each 

bearing. 

The results of the cyclic characterization experiments provided validation of both the 

assumed model for the DP bearing and the newly developed model for the TP bearing. Tests 

were conducted such that lateral deformation of the TP bearing occurred in all five stages of 

sliding identified previously. Additionally, a procedure was described to estimate the friction 

coefficient for each sliding interface. The transitions between sliding stages observed from 

experimentation correspond well with those derived considering the estimated friction 

coefficients. A comparison of hysteretic behavior from the developed model and the 

observed behavior from collected data indicates excellent correlation between analysis and 

experiment for the stiffness of each sliding mechanism and the energy dissipation history. 

For all characterization tests, both DP and TP specimens show stable, repeatable 

performance with no degradation in properties over numerous cycles of deformation. 

Moreover, large deformation tests with substantial induced global overturning in the TP 

specimen shows stable performance following bearing uplift with no dislodgement of any 

sliding mechanism. This is an important limit state since uplift is often expected for a limited 

number of friction pendulum bearings under very rare levels of ground shaking. 

The results of the earthquake simulation tests validated much of the behavior 

observed in the characterization tests. Under moderate levels of ground shaking, an increase 
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in force output for initial sliding on the second pendulum mechanism was observed. However, 

the causes of this were judged to be a result of the experimental specimens having used a 

new resin under development, and subsequent testing of TP bearings are expected to reveal 

very little increase in first cycle friction on any single-pendulum mechanism. Otherwise, 

cyclic behavior for both DP and TP bearings was as predicted from the developed analytical 

models for all levels of earthquake hazard investigated. For DP and TP specimens, the effect 

of vertical ground motion on both the hysteretic response of the isolation systems and the 

frequency content of superstructural accelerations was found to be negligible. Additionally, 

the experimental results considering two components of horizontal excitation validated the 

assumed coupling of the force output for both DP and TP specimens; however, the TP model 

has not yet been extended to capture the effects of bidirectional motion. 

The observed response of the superstructure for earthquake testing revealed several 

key issues. For the specimen considered, there was negligible observed drift demand at any 

floor level, for all ground motions and levels of hazard. As expected, there was no slippage 

of the brace slotted bolted connections. Spectral analysis of recorded acceleration response at 

each floor level revealed that high-frequency acceleration content was reduced in the TP 

specimen relative to the DP specimen, particularly for low levels of excitation. The 

differences between DP and TP acceleration response became less pronounced as the level of 

shaking increased. 

8.1.2 Analytical Simulations 

To investigate the response of isolated buildings to earthquake excitation, an extensive 

parametric study was undertaken. These studies considered the height and flexibility of the 

isolated structure, and three classes of isolation systems: linear isolators with bilinear 

hysteretic damping, linear isolators with linear viscous damping, and triple pendulum 

isolators. Within each class of isolation system, parameters of stiffness and energy 

dissipation were varied to study the sensitivity or response parameters. Additionally, a 

method of selecting isolation system parameters to target a displacement limit for a level of 

seismic hazard was presented. 

The first series of parametric studies was on a canonical two-degree-of-freedom 

(2-DOF) isolated structure. The superstructure is considered linear, and the fixed-based 
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period was varied between 0.5 sec and 1.5 sec. The linear isolation systems considered had 

an elastic period of 3 and 4 sec. The linear viscous damping parameters were varied to 

consider target equivalent damping of 0.10 and 0.25 critical. The hysteretic damping 

parameters were varied to consider the same target damping as above for the viscous 

damping. Triple pendulum bearings considered had variations in pendulum radii, friction 

coefficient, and dish displacement capacity to achieve target stiffness and damping properties 

that were equivalent to those for the linear viscous system. To avoid the complication of 

multiple ground motions, a single acceleration record was chosen and varied in amplitude to 

simulated earthquake intensity. 

A remarkable result is that the triple pendulum bearing is generally effective at 

limiting isolator displacements in very rare earthquakes while controlling drifts and 

accelerations for low- and moderate-level excitations. While an increase in friction on all 

sliding surfaces results in an increased drift and acceleration, the increases are modest 

relative to those observed for the equivalent bilinear hysteretic systems. 

8.1.3 Performance Assessment 

A methodology is introduced to estimate the probability of achieving a target Seismic 

Performance Classification (SPC). An SPC is defined as simultaneously satisfying a series of 

prescribed damage states at their corresponding target levels of seismic hazard. The 

reliability of each isolation system in terms of meeting a target SPC is evaluated based on the 

analytical results for three- and nine-story buildings. To define each SPC, a series of limit 

state vectors are assumed to describe damage state levels for conventional braced frames. 

These damage states consider structural damage, nonstructural damage, and content damage. 

The observed analytical data was fitted to joint lognormal multivariate distributions for each 

level of seismic hazard. Based on the fitted distributions, the probability of meeting a target 

SPC is computed for each isolated system and comparisons are drawn. 

Based on the results of this study, it is evident that low-damping isolation systems 

show enhanced reliability in achieving multiple-objective performance goals relative to high-

damping systems for a fixed set of parameters. This improved reliability generally comes at a 

cost of higher peak isolator displacements. The triple pendulum bearing shows improved 
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performance reliability compared to bilinear hysteretic systems, combined with a moderate 

isolator displacement demand in the very rare seismic event. 

8.2 RECOMMENDATIONS FOR FURTHER RESEARCH 

While the analytical and experimental investigations described in this report constitute a 

valuable contribution to the study of performance-based earthquake engineering and seismic 

isolation, many issues identified could benefit from further study.  

8.2.1 Triple Pendulum Model 

The cyclic model developed for the triple pendulum bearing has several simplifications 

which, while appropriate for the studies described in this report, may be insufficiently 

detailed for certain applications. Potential improvements include the following: 

1. Rotation in the formulation of the cyclic behavior could be considered. For some 

isolation applications, particularly flexible bridge piers where rotations at the top of 

the bent cap may be non-negligible, the imposed rotations may have a substantial 

effect on the deformation of each pendulum mechanism. Experimentation with such 

rotationally flexible specimens is crucial toward calibration of a coupled rotational-

translational model. 

2. Bidirectional interaction through a circular plasticity surface could be addressed. In 

fact, virtually all isolated structured are expected to undergo horizontal bidirectional 

motion during a seismic event, and prediction of peak isolator displacement is only 

possible with a model that captures this behavior. Data acquired as part of the 

experimental studies described in this report are appropriate to validate such a model. 

3. While ultimate limit state behavior of bearing uplift was captured experimentally, the 

other important limit state of loss of bearing travel was not captured. In evaluating the 

performance of isolated buildings under very rare levels of seismic hazard, there is 

always a probability that the isolator displacement capacity will be less than the 

imposed demand. In estimating the likely performance of the building given such an 

event, it is important to have a reliable isolator model that captures the loss of travel 

and resulting impact. While this condition is widely considered detrimental to 
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performance, few studies exist to quantify the consequence, particularly for the triple 

pendulum bearing. Such studied would further the performance-based design of 

isolated buildings. 

4. These studies are limited to reduced-scale devices, and validation of behavior at 

prototype scale, including rate dependency, is desired. 

8.2.2 Analytical Simulations 

A number of key simplifications were introduced in the analytical work described in this 

report. Those issues requiring further consideration include the following: 

1. The investigation of superstructure yielding is an important consideration in 

estimating the probabilistic distribution of interstory drift and floor accelerations. 

While isolated buildings are traditionally designed to remain elastic in all but the 

rarest seismic events, this is generally only targeted in some average sense. For even 

moderate levels of shaking, there is a chance of yielding, and this may affect the 

estimated central tendencies, dispersions, and correlations of drift and acceleration. 

Additionally, the effect of hysteretic behavior in the superstructure on the behavior of 

isolated buildings is largely unknown. Studies conducted to date have considered 

simple structural systems with elastoplastic hysteresis, while isolated building 

routinely incorporate steel braces, moment frames, and concrete elements, all of 

which can exhibit degradation in strength and stiffness, and asymmetrical force-

deformation behavior. 

2. A consideration of residual drift as a demand parameter is important in the assessment 

of structural performance. Future studies, in combination with the consideration of 

superstructure yielding, should identify isolation system parameters that affect the 

residual drifts in the structure. 

8.2.3 Performance Assessment 

In the probabilistic assessment of Seismic Performance Class, the following issues deserve 

further treatment: 
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1. Given the lack of information on fragilities for steel braced frames, the dispersion in 

the estimation of damage state given a level of peak response should be considered. 

There is significant research being devoted to braced frame performance, and a 

reformulation of the described performance methodology accounting for the 

uncertainty in damage state is appropriate. This should be extended to other structural 

systems to elucidate their relative benefits on the performance of isolated buildings. 

2. Given the attention to loss modeling in the research and practicing communities, an 

inclusion of an appropriate loss model given some damage state, incorporating both 

direct and indirect losses, would be a significant improvement to the methodology 

described in this report. 

3. The two-degree-of-freedom studies would benefit significantly from consideration of 

an ensemble of ground motions. 

4. The parametric studies of multi-story isolated buildings should be extended beyond 

shear buildings, to capture a greater variety of types of structural behavior. 
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