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ABSTRACT

This work presents the development of a simplified procedfreéhe analysis of liquefaction—
induced lateral spreading using a beam on nonlinear Wirfklendation approach. A three-
dimensional finite element model, considering a singleipikesoil continuum, is used to simulate
lateral spreading and two alternative lateral load case$s &p—y curves representative of the
soil response in the 3D model are computed for various silsgstems. The affects of pile kine-
matics on these curves are evaluated and a computatiorc@dane forp —y curves is proposed.
The computed curves are compareg tey curves defined by existing methods commonly used in
practice to evaluate the applicability of these methodateral spreading analysis.

Comparison of they—y curves resulting from homogenous and layered solil profitesshich a
liquefied layer is located between two unliquefied layersisisd to identify reductions in the ulti-
mate lateral resistance and initial stiffness of phey curves representing the unliquefied soil due
to the presence of the liquefied layer. These reductionshaeacterized in terms an exponential
decay model. A simple procedure utilizing dimensionlesapeeters is proposed as a means of
implementing appropriate reductions for an arbitrary pooffile and pile diameter. Beam on non-
linear Winkler foundation analyses of lateral spreadirgg@nducted to validate and demonstrate
the use of the proposed reduction procedure.
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1 Introduction

Pile foundations are used extensively to provide suppotirfidges and wharf facilities, very often
in seismically active regions where there is potential fguéfaction-induced lateral spreading.
The kinematic demands placed upon a pile during such an axenbmplex. Due to the challenges
presented by this problem, it is difficult to obtain reasdeastimates of the bending moment and
shear force demands placed upon a pile. Design procedurp#e® subject to this load case must
therefore rely on simplified, and often over-conservatarglytic methods. A simplified method
of analysis that captures essential elements of the ligtiefainduced lateral spreading load case
would be ideal for use as a design procedure.

The purpose of this study is to investigate the pile and ssibonses to lateral spreading, and to
evaluate the applicability of conventional analysis mdthtw this load case, in order to develop a
simplified design procedure for the lateral spreading laeskc This evaluation is conducted with
respect to one of the current state-of-the-practice dgsegadigms for the analysis of laterally-
loaded piles, the —y method (McClelland and Focht, 1958; Matlock and Reese, 1Bg&@se
and Van Impe, 2001), as well as with respect to other conweatianalysis tools. These goals
will be accomplished through investigation of the respooisa single pile to a simulated lateral
spreading event using the OpenSe&st p: / / opensees. ber kel ey. edu) finite element (FE)
analysis platform developed at the Pacific Earthquake Emging Research (PEER) Center. The
investigation will involve several sizes of piles embeddedoil systems consisting of varying
soil profiles and properties, and will utilize both one- ahtee-dimensional finite element (FE)
models. This work is an extension of past research condbgtedm et al. (2009), who used linear
elastic 3D FE models to develop a simplified method for ptetiche magnitude and location of
the maximum bending moment and shear force demands for aytiject to lateral spreading.

It is hypothesized that 1D soil response curves reflectimgkinematic loading, the effects of
depth, and the interaction between the soil layers ocayiduring a lateral spreading event can be
computed using 3D FE models. The resulting force densgptdcement(—y ) curves can then
be used to evaluate the applicability of conventionallfirol curves to lateral spreading analysis,
as well as to further investigate the behavior of the piléssstem during this type of event. This
report describes the development of all of the necessarelmaad discusses the findings made.
A simplified design procedure for piles subject to laterakesging is proposed, validated, and
demonstrated.



1.1 BACKGROUND

The problem of liquefaction-induced lateral spreading esyvimportant in the design of deep
foundation systems in certain situations. Common scesidiowhich this phenomenon must be
considered include bridge piers and foundations for parnilifees that lie in seismically active
regions. Often, in the areas in that these structures argremted, layered soil systems will be
encountered in which a potentially liquefiable layer is presbetween two layers which have
a lower liquefaction potential. The system presented irufgdl.1 is an example of one such
situation. In this soil system, a relatively loose sand tasaparates two denser layers of sand.
The potential for liquefaction is much greater in the loogedslayer than it is in the surrounding
material.

A
]

Dense sand
Loose sand
(liquefiable)

Dense sand

| ——

Figure 1.1 Schematic depicting the layered lateral spreadg soil-pile system.

During or slightly after a seismic event, a liquefied coraditcan develop in the loose liquefiable
layer with the potential for lateral displacement of the eppon-liquefiable layer relative to the
bottom soil layer. Under these circumstances, a pile endzbddsuch a soil profile is subject to
kinematic demand, causing it to deform in a manner similéina shown in Figure 1.1. If the pile

is embedded to a sufficient depth, the base of the pile wilaiarassentially fixed in the lower soll

layer while the upper portion of the pile is displaced laigraesulting in large bending moment

and shear force demands within the pile.

There are many challenges that arise when modeling thenssymd a pile to lateral loads. Due to
these challenges, the most common method employed durmgnizal analysis of piles is the-

y method (McClelland and Focht, 1958; Matlock and Reese, 1Ré@se and Van Impe, 2001).
There are other simplified approaches that may be employéésigning piles to resist lateral
loads, but with the advent of easily-implemented computeggams based on the-y method, it
has become the most prevalent.



In this analytic method, the 3D laterally-loaded pile peahlis emulated using a beam on nonlinear
Winkler foundation (BNWF) approach in which uncoupled rineér force density-displacement
(p—y )?* curves are used to describe the lateral soil-pile intevactor cohesionless soils, the ma-
jority of the p—y curves currently used in practice are based on the lateadltsts and associated
semi-empirical analysis of Reese et al. (1974). In the tyfdeaxing used, the pile deforms in
such a manner that the soil response near the surface is@aptell, however, there is a lack of
information at depth.

The p—y curves recommended by Reese et al. have been used in mamy fake design ap-
plications, often with great success. However, applicatibthese curves to analyses outside the
original scope of the work, such as large diameter pileiedrshafts, or a different load case, can
prove difficult due to problems inherent to the analysis apph and to the —y curves developed
by Reese et al. (1974). These problems include:

1. The tendency for the—y curves to be too stiff with depth.
2. The reliance upon the single pile kinematic represenyatidoempirical results.

3. The uncoupled behavior of the individyat y curves with depth.

Most of the effects of these problems can be circumventeditiir careful modeling decisions. For
example, Finn and Fujita (2002) compared the results of tyeBNWF analyses with centrifuge

and 3D FE analysis data, and found good agreement at loweaatieh levels and with certain

curve parameters. Despite known shortcomings inherehetmethod, the —y analysis approach

can be used successfully in lateral pile analysis.

For the case of liquefaction-induced lateral spreadinggrsg considerations must be made in order
to obtain sensible results from a BNWF analysis. Large p#fanations may occur below the
near surface zone, and depending upon the depth of the kguafier, the pile kinematics may be
completely different than those of a top-loaded latera flt. Additionally, the liquefied zone of
soil within the soil profile must be properly accounted fothe soil response represented by the
p—1y curves.

Modifications to thep—y curves can circumvent problems associated with a lack ofmmtion

at depth in the original experiments of Reese et al. (1974yand@enberg et al. (2007) showed
that p—y curves with modified initial stiffness produce results whixre reasonably similar to
centrifuge test data for the lateral spreading case — hawawetailed examination of the effect
of pile kinematics on the measured soil response has not t@m®iucted. With respect to the
liquefied layer of soil, recommendations have been made m®thfications to they—y response
to account for the liquefaction itself (Brandenberg et 2007), however, no recommendations
exist to account for the strength differential between ihedfied and unliquefied material. Using
3D FE analysis, Yang and Jeremic (2005) and Petek (2006)dewenstrated that in a soil profile

1n the usually employed nomenclature, which appears tofdatethe 1950s, the symbplis used to denote the
pressure acting on the pile in units BZL—2, although in the final curves it usually represents the ieadorce per
unit length of the pileL—!, and the pile deflection is given by the symiolTo be consistent with solid mechanics
convention, the displacement should be taken,asis a coordinate direction, however, the original symboéndy
will be used to remain consistent with practical usage (5t881).



in which a single weaker layer of soil is located between tworgyer soil layers, the presence of
the weaker layer effectively reduces the available latesponse of the surrounding material. The
potential for a liquefied zone of soil to act in a similar manaed the corresponding effect this

may manifest irp—y curves has not yet been explored.

1.2 SCOPE OF WORK

This report details the work related to the development oéteos 3D FE models for the lateral
spreading case and the evaluation of the results obtairfedwdrk encompasses the development
and validation of all of the necessary FE models, lateraaqting analysis using the 3D FE model,
computation of representatiye-y curves from the 3D model for several types of pile kinematics
the evaluation of the applicability of a BNWF analysis usingy curves to the lateral spreading
load case, and the proposal of a simplified analysis proeefdurpiles affected by liquefaction-
induced lateral spreading using a BNWF approach.

This study does not intend to include the simulation of tlg@difaction process. In all cases, it
is assumed that the liquefiable soil has lost most of its gtheand only the residual strength is
considered. This simplification allows the use of quadikstsimulations to represent the post-
liquefaction effects of lateral spreading.

Finite Element Model Development

Chapters 2, 3, and 4

e Atemplate 3D soil-pile interaction model is created. Thisd®l employs beam-column el-
ements to model the piles, solid brick elements for the aail, beam-solid contact elements
to define the soil-pile interaction.

e Fiber section models are developed for a series of tempdatéorced concrete piles. The
nonlinearity of the piles is captured through these fibetiges, which define the behavior
of the piles at a cross-sectional level.

e A Drucker-Prager elastoplastic constitutive model is exgdl for the soil elements.

e Itis important to ensure that computer models exhibit \egiff-correct behavior when ap-
plied to simple load cases. Validating simulations areqrened to ensure that all compo-
nents of the models display predictable responses.

e From the template model, specialized cases with variousegié types, input parameters,
and loading conditions are generated for use in this study.



3D Lateral Spreading Analysis

Chapter 5

e The bending response of piles subject to a lateral spreasliagt is evaluated through a
parametric study conducted using the developed 3D FE models

e Several parameters are considered such as the diameter pifehthe constitutive models
for both the pile and the soil, and the support condition$efgile head.

e The observed trends in pile and soil behavior are discussedmalyzed.

Computation of Representative—y Curves

Chapter 6

e Using the developed 3D FE modety curves are computed considering elastic pile ele-
ments and an elastoplastic soil constitutive model.

e The computational process is discussed and various fastah as pile kinematics, that can
influence the computeg—y curves are identified and discussed.

Evaluation of Computed and Conventional—y Curves

Chapter 7

e Several conventional means for estimating the lateraloresp of a given soil profile are
identified and compared to each other, and tgthg curves computed from 3D FE analysis.

e Several additional FE models are developed to further egglee individual merits of the
conventional and computed setsefy curves.

Influence of a Weak Liquefied Layer on Response of Soil System

Chapter 8

e The influence of the weaker liquefied soil layer on the strorsggrounding unliquefied
material is characterized.

e A series of new 3D FE models are developed that consider etyani liquefied layer depths
and thicknesses.

e A parameter study is conducted using the new FE models tonoatanathematical model
for the observed reductions in the response of the unliqlieferial.

e A procedure to reducg—y curves to account for the presence of a liquefied layer is pro-
posed.



Beam on Nonlinear Winkler Foundation Analysis of Lateral Spading

Chapter 9

e Thep—y curves obtained from the 3D models are extended for use in@Bhhodel, which
is analyzed for the lateral spreading load case. A set ofardionally derivedh—y curves
are also utilized in this model.

e Using the BNWF model, a parameter study investigating thetive responses obtained
using the two sets gi—y curves is conducted. The parameter study considers batticela
and elastoplastic pile elements.

e The pile bending demands obtained from the BNWF analysesarpared to equivalent
results obtained in the 3D modeling effort.

e The proposed procedure for reducimgy curves to account for the presence of a liquefied
layer of solil is validated and demonstrated for computed @nentionally definegh—y
curves. Recommendations are made for the analysis of fiiéeted by liquefaction-induced
lateral spreading using a BNWF approach.



2 Three-Dimensional Finite Element Model

2.1 INTRODUCTION

The response of a single pile embedded in a laterally sprgdayered solil profile is investigated
using a 3D FE model. During liquefaction-induced lateraksgpling, complex events occur, espe-
cially at the soil-pile interface and the layer boundariBsie to this complexity, it is difficult to
accurately represent this problem using 1D or 2D modelsthepurposes of this research, it was
important to account for the fundamentally three-dimenaimature of the problem; leading to the
creation of a 3D FE model of the soil-pile system.

The open-source FE framework OpenSées p: / / opensees. ber kel ey. edu), developed through
the Pacific Earthquake Engineering Research (PEER) Centesed for all numerical simulations.
The commercial program GiD (CIMNE, 2008) is used as a grabhce- and post-processor for
OpenSees.

2.2 MODEL OVERVIEW

A typical FE mesh used in this study is shown in its deformeafigaration in Figure 2.1. The
model includes three distinct layers of soil. These soitayconsist of two thick layers of unlique-
fiable soil between which a relatively thin layer of liquef@Boil is located. The elements of the
embedded pile are located in the middle of the soil systensh&svn, this model takes advantage
of the inherent symmetry of the problem.

There are three pile designs considered in this research.sizk and layout of the layers in the
lateral spreading model are dependent upon the diametéreaérnbedded pile, leading to the
creation of three separate base models differing only iir timensions. In these models, the
thickness of the upper and lower soil layers are set arbjtraqual to ten pile diameters. This
thickness is adequate to essentially hold the base of tedixéd in place relative to the top of the
pile. The thickness of the liquefiable layer is arbitrarigt as one pile diameter in this study.

It is critical to define a sensible horizontal extent for thé 81 the model to ensure that boundary
effects do not affect the results. Past work with lateralgded piles found in the literature (Brown
and Shie, 1990; Yang and Jeremic, 2005) used thirteen anelngbile diameters on either side of
the pile, respectively. Using this information and past elod) experience, the models include a
horizontal extent of ten pile diameters from the pile cdirter The ten-diameter lateral distance
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Figure 2.1 Typical finite element mesh for soil-pile systenm deformed configuration.

is considered to be wide enough to allow for the effectivauotidn of the free-field kinematic
demand imposed upon the soil system in the areas surroutidimle. Additionally, this distance
is deemed sufficiently wide so as to remove the pile from afgcef imposed by the applied
boundary conditions at the extents of the model.

Chapters 3 and 4 discuss the pile and soil models incorgbnate the three-dimensional lateral
spreading model as well as the motivations behind theicgetes. All further information per-
taining to these components of the model can be found there.

2.2.1 Selective Mesh Refinement

When a pile is pushed through a soil profile with a liquefiecetayt is important to capture the
interaction between the pile and the soil near the solitigieefied layer interface with a relatively
high degree of resolution. For this case, the regions neaofhand bottom of the pile are compar-
atively less important. The models are built to take adwgatat the relative levels of importance
assigned to the various sections along the length of thelpibeigh the use of selective refinement.
The vertical size of the soil and pile elements is somewhggelat the top and bottom of the mesh.
These large elements gradually transition into smallemelds from either side of the liquefied
layer, with the smallest elements existing in the middlerattlayer. Similarly, the horizontal
size of the soil elements is large at the boundaries of thénraed becomes smaller as the radial
distance to the center of the pile decreases. This patteselettive refinement is illustrated in
Figure 2.1. Effectively, the models have been developet that the mesh is refined in the areas
of importance and left unrefined in the other areas.



2.3 BOUNDARY AND LOADING CONDITIONS

In order for a FE model to be effective in modeling a specifsecappropriate boundary conditions
must be defined. The lateral spreading model requires boyidaditions that offer support to
the elements as well as those that restrict unnecessargmsofs shown in Figure 2.1, symmetry
is employed in the model, and only the soil on one side of tie ipiconsidered. This use of
symmetry introduces additional boundary conditions ih®rodel.

The boundary conditions on the soil nodes are relativelypm These nodes are created with
only three translational degrees of freedom. To suppomrtbdel against gravity loading, the soil
nodes on the base of the model are held fixed against dispéaxtenm the vertical direction (the
direction parallel to the axis of the pile). To enforce thensyetry condition, all of the nodes on
the symmetry plane are held fixed against translation noten#ilis plane. Additionally, all of
the soil nodes lying on the outer surfaces of the model ar firedd against horizontal in-plane
translations and translations normal to their surface tmeoe the stability of the model.

The base node of the pile is held fixed against translatiohenvertical direction (parallel to the
pile axis), a required stability condition. The pile is alled to rotate in the plane of loading at
each node with the exception of cases where a fixed suppaditannis imposed at the head of
the pile. The pile requires fixing of the torsional rotatiordaut-of-plane rotations (rotation axis
in-plane) to enforce the symmetry of the model.

2.3.1 Loading Conditions

The first step in the analysis of the lateral spreading mal&d mpply gravity loads. All of the
soil elements are assigned a unit weightyof= 17 kN/m3. During the self-weight analysis,
gravity is switched on and the soil elements generate arlijngereasing stress profile with depth.
This procedure creates an appropriate distribution of norgipressures in the model, critical to
determining the effective strength of the soil elementstarabtaining sensible results. Only after
the self-weight analysis has successfully converged dmasmdbdel move on to the lateral analysis.
The self-weight of the pile is neglected.

During a simulated lateral spreading event, the lower wetiggd layer is assumed to remain sta-
tionary while the upper unliquefied layer and the liquefieddie layer experience lateral trans-
lations relative to the lower layer. This kinematic loadisgchieved in the model by gradually
imposing a set displacement profile to the soil nodes on &draurfaces of the model excluding
the symmetry face. This displacement profile representwtkesld kinematic demands on the soil
system, with the upper layer translating relative to thedolayer. The presence of the pile alters
the behavior of the soil, creating a near-field kinematic aedto which the pile will be subjected.
The imposed profile is only applied to the boundary nodes d@eioto allow ample distance over
which the far-field kinematic demand can be reduced to themmanageable near-field demand.

The horizontal displacement is imposed as constant upoertive height of the upper unliquefied
layer and as linearly increasing over the height of the ligaelayer. No displacements are im-
posed upon the lower unliquefied layer. The imposed displace profile is shown in Figure 2.2.
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Figure 2.2 A depiction of the imposed displacement profile fothe lateral spreading model.

Excepting those restrictions, all other soil nodes aretivaaove in any direction. The magnitude
of the constant horizontal displacement in the upper lag/taken to be one pile radius.

2.4 MODELING THE SOIL-PILE INTERFACE

It is important to recognize that the behavior of a laterbipded pile embedded in a soil system is
governed, in part, by the complex interaction between tileasd the pile. Before the pile begins

to move, the stresses applied by the soil should be unifana(@iven depth) and normal to the pile
surface. After the pile has deflected laterally, the stiessethe leading side of the pile increase,
while the stresses on the following side of the pile decreAsdéitionally, these stresses may now
have both normal and shear components, depending uponrtiwifza loading conditions (Reese

and Van Impe, 2001). The amount of resistance provided bgdh&epends upon the amount of
pile deflection that has occurred, which in turn depends dipermmount of resistance provided by
the soil (among other factors). This interactive relatitopbetween the soil and the pile is crucial
to the lateral spreading problem and must be accounted tbeiRE model.

One suitable means to account for the interaction betweiéalsments and any embedded struc-
tural components is the use of contact elements. In thiy st interaction between the soil and
the embedded pile is defined through beam-solid contactezitntdeveloped and implemented in
OpenSees by Petek (2006).

2.4.1 Beam-Solid Contact Elements

As shown in Figure 2.3, the soil elements form a semi-cir¢lblank space around the pile ele-
ments. Because standard beam-column elements have noglsyze, this blank space is included
to represent the extents of the pile. Existing between thglesirow of pile elements and the adja-
cent perimeter of soil elements are contact elements tligtedeoth the physical size of the pile
and the ways in which the pile and soil elements interact.

10



Figure 2.3 Atop view of the finite element mesh for the soil mas The pile is the dot in the
center of the lower edge.

@) (b)

Figure 2.4 Details of the deformation in the soil elements aund the pile using beam-solid
contact elements.

The contact element developed by Petek (2006) is formulatedeate a link between the pile,
modeled using beam-column elements, and the solid brickexiés of the surrounding soil. The
ability to use beam-column elements is highly advantagéousa modeling standpoint. The con-
tact element creates a frictional interface allowing faekshg, slip, and separation that is capable
of modeling the coupling between vertical and horizontapticements. Figure 2.4 provides an
example of how these elements function within the latere¢aging model, showing the way in
which the soil elements deform around the pile as it movesddy. The ability of these elements
to create a gap between the trailing edge of the pile and threwsuding soil elements is visible
at the top of Figure 2.4(a). Further information into the @lepment and formulation of these
beam-to-solid contact elements is available in Petek (R006

2.5 SURFACE LOAD ELEMENTS

In order to achieve the goals of this research, it is necgssdrave models in which the liquefied
layer is located at varying depths within the soil system.e Do the computational limitations
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induced by working with 3D FE models, the mesh is selectivefined in the area of the liquefied

layer as opposed to a uniform refinement. This strategy,engehsible for computational opti-

mization, necessitates the creation of customized mestesput files for each case. In lieu of

laboriously creating a series of models for each pile fondiied layers at various depths, a uni-
form overburden pressure is applied to the ground (fredasearof the soil elements in the model.
This overburden pressure, applied as a surface load, sretss conditions in the soil that are
equivalent to moving the liquefied layer to a deeper location

In OpenSees, there is no built-in surface loading capgbibtces can only be applied at a nodal
level. Due to the irregular shape of elements in the latgnaading model, as shown in Figure 2.3,
determination of the equivalent nodal forces for a unifotnface load is a tedious task. One that
would need to be performed for every increment of overbupdessure in every model. Instead of
pursuing that strategy for the application of overburdesspure in the FE model, a new element
is developed in OpenSees which is able to determine the ppat® nodal forces for a given
magnitude of uniform pressure in a quadrilateral element aNditional stiffness is provided
by these surface load elements, and the increase in congmatiatost is minimal, as only the
assembly phase is affected. This new element eases themi@piation of surface loads for the
purpose of this research, while also increasing the capabibf the OpenSees platform.

2.5.1 Formulation of Surface Load Elements

The developed surface load element is based upon a rejasiveple strategy. The internal force
vector for each element is replaced by the external forcevétat would result from the applica-

tion of a uniform surface loading. By creating a force imipaiin the elements, for equilibrium

to be satisfied there must exist an equal-but-opposite settefnal forces applied to each of the
elements on the surface. This set of external forces is msteid in the application of energetically
conjugate nodal forces representing the uniform surfaaeihmg.

The formulation of the surface load elements begins withwteak form of the principle of virtual
displacements

—/U:VSndV+/b-ndV+/ t-ndS=0 (2.1)
|4 1% oV

whereo is the stress tensoW* is the symmetric vector operatay,is an arbitrary displacement
function, V' is the volume of the bodyb is the body force acting on the body,s the surface
traction vectorpV, is the portion of the surface of the body with prescribedsstes, and is the
surface of the body.

Equation (2.1) expresses equilibrium for the system in $avfran arbitrary displacement function
n. The vector of external forces, which follows from the thtedm of Equation (2.1), can be
determined by, first, expressing the arbitrary displacdragn

n=>_ Ni(&n)-n; (2.2)
I

whereN; are the (linear) shape functions, the subscfiptfers to each of the four nodes for the
element, andy, are arbitrary nodal displacements. The shape functiipscan be expressed for
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these quadrilateral elements as

Lotz oarmm (2.3)

Ny 4(

by mapping a bi-unit square onto the quadrilateral surfaterp The normalized coordinatés
and7, represent the nodal coordinates on the bi-unit square.
Applying Equation (2.2) to the external force term of Eqaat{2.1) results in
Z (/f : Nl(§777><]d§d77) M= Zfzm "M (2.4)
1 I

which must hold for any arbitrary nodal displacemgntthus uniquely defining the nodal force

= [T Niten) e (2.5)

where J is the Jacobian determinant necessary for the coordirateformation tg and», and
the integration is performed over the bi-unit square to Whihe element has been mapped.

For a uniform surface pressure applied perpendicular teengurface, the traction vectar,is

£= —pn(&,) (2.6)

in which p is the scalar magnitude of the pressure, and the unit vector defining the outward
normal of the surface. To establish the outward normal fergturface elements, general base
vectors are defined for each element. There are two genesalvegtors, one in thedirection,

ge, and the other in the direction on the elemeng,. This general base can be found from the
nodal position vector as

n)=> Ni&n) x (2.7)
1
wherex; are the nodal position vectors. The base vectors follow as
ON; & _
Z lez(l +7n) X (2.8)
and ON o
I o, =N L8 ey,
XI: ,_XI: L& 8) X (2.9)

A local normal vectorn, for each element is defined by the cross product of the twe bastors
as
n=ge:xg, (2.10)

This vector contains information about both the area anditieetion of the outward normal for its
respective element. It can be shown that the noriisfequal to the surface Jacobian determinant,
J. Thus, the relationship betwe@nandn can be expressed as

n="-n (2.11)

kl'—‘
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This relation is used to express the surface traction of gué2.6) in terms of the local normal
vector as
t=-Lq (2.12)

wherep is the magnitude of the surface pressure dnslthe Jacobian determinant.

Applying Equation (2.12) to Equation (2.5), the externat®acting at nodé is obtained as

£t = —p / A(€, )N (€, m)dedn (2.13)

The integral of Equation (2.13) is evaluated using foump@aussian integration of the form

2
£ =3 N —pii(a, 15) Ni(6a mp)waws (2.14)
a=1 =1
in which the Gaussian quadrature and weightS&rew,) = (73, wg) = (i%, 1).

In each surface element, the internal force vector is sedléquhe vector of forces resulting from
a uniform surface traction as determined by Equation (2.Id)satisfy equilibrium, the elements
must be subject to a set of nodal forces in opposition to teequibed external force.

2.5.2 Validation of Surface Elements

A simple model is created in order to validate the successfplementation of the surface load
elements in OpenSees. The model is meshed using irregslaalyed elements as depicted in
Figure 2.5. The newly created surface load elements arésddplthe upper surface of this model
over four layers of linear-elastic isotropic brick elemsenthe irregular shape of the mesh allows
the elements to be tested for generality, as they shouldecesergetically consistent nodal loads
across the surface regardless of the shape of the quadiilatements, and thus create a constant
stress in the solid.

Figure 2.5 Irregularly-shaped mesh used for surface load ement validation.
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Figure 2.6 Distribution of vertical stress in the surface lad element validation model.

The validation test used for the surface load elements jstsref the application a uniform loading
of 10 kPa to the upper surface of the model. The base of the modelddiked against translation
in the direction of the loading. As shown in Figure 2.6, whettows a 3D view of the validation
model, the surface load elements are able to create nodaisftinat create an equivalent loading
to the assumed uniform load, resulting in a constant versicass distribution of-10 kPa. This
result validates that the surface load elements creatagstoin OpenSees perform as intended.
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3 Modeling the Piles

3.1 INTRODUCTION

This study includes three deep foundation models that vadyameter and bending stiffness. For
simplicity, the term pile will be used to refer to all foundat elements discussed in the remainder
of this report. Each pile model is based upon a templateoriatl concrete pile known to have
been used in practice. All three pile designs are modelel euitular cross sections. The three
piles are selected such that they represent a reasonatalgorain size and stiffness; thus providing
data that is relevant to the range of size and stiffness winexs practical pile designs fall. The
study includes a small pile, a mid-sized pile, and a large pith respective diameters of 0.61 m,
1.37 m, and 2.5 m. Both linear elastic and nonlinear elaattjol constitutive models are created
for each pile diameter.

3.2 TEMPLATE PILE DESIGNS

Figure 3.1 shows scale section views of the three templége fm emphasize their relative sizes.
The majority of piles that are commonly used in practice haess-sectional areas falling some-
where in the range defined by these three piles. Defining amabte range of pile sizes encour-
ages interpolation of computed results as opposed to etatagmn.

The selected 0.61-m-diameter pile is a design common todhteolPLos Angeles, where piles of
this type are employed in wharf foundations. This pile igespntative of one of the smallest pile

‘ O
(a)
(b)
()

Figure 3.1 Template pile designs (to scale). (a) 0.61-m-dieeter; (b) 1.37-m-diameter; (c)
2.5-m-diameter.
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Figure 3.2 Dimensions and details of the three template pige (a) 0.61-m-diameter; (b) 1.37-
m-diameter; (c) 2.5-m-diameter.

designs that would commonly be encountered in applicatiamsre potentially liquefiable soils
are present. The actual pile design has a 0.61-m-wide awdéhgooss section, however, to ease
implementation in the numerical model, a circular crosgigeds created having an equivalent
area. The amount and location of the longitudinal and sp@aforcement found in the actual
octagonal pile is left unchanged in the equivalent circaladel.

A 2.5-m-diameter pile used on the Bay Bridge in the San FemcdBay is selected to be represen-
tative of one of the larger pile designs that would be encenextin practice, thus establishing the
higher end of the range of practical piles. The templaten2-pie is a drilled-shaft, with a steel
casing surrounding an inner core of concrete and reinfgrsteel. This casing greatly increases
the bending stiffness of the 2.5-m-diameter pile as contptoehe other selected designs, even
more so than the increased size.

The third template pile is included to establish an intenaectase. The selected 1.37-m- diameter
pile was used on the Dumbarton Bridge (Menlo Park to Fren@alifornia) replacement project.
The actual pile design called for a precast concrete ringghlmvas to be filled in with a core of
concrete and reinforcing steel after being driven into @la€or ease of modeling, it is assumed
that once the infill has cured, the pile acts as a solid cragose

A summary of the relevant dimensions and details for eaclhetiiree template pile designs is
provided in Figure 3.2. The reinforcing steel layouts shama incorporated into fiber section
models which simulate the composite behavior of thesearietl concrete piles.

3.3 PILE ELEMENTS

The piles are modeled using beam-column elements with dadesment-based formulation. The
OpenSees designation for the beam-column elements usdt imodel isdispBeamColumn
These elements are able to include distributed plastiaitg, integration within the elements is
based on the Gauss-Legendre quadrature rule. These béamacelements are used in conjunc-
tion with elastic and elastoplastic constitutive formidat incorporated by means of fiber section
models. No geometric nonlinearity is considered. The pildes have six degrees of freedom (3
translational, 3 rotational).

18



Angular

divisions

Figure 3.3 Typical fiber discretization for a circular fiber section model.

3.3.1 Fiber Section Models

The three pile designs display differing responses to menldiads based upon the strength, distri-
bution, and size of the concrete and steel available in tnegs section. In order to incorporate the
unique behavior of each pile into a FE model, fiber sectionefsoare created for each pile design.
These fiber section models incorporate all of the relevareets of the template pile designs, and
define the behavior of each pile model at a cross-sectionall IBue to symmetry considerations,

only one-half of each pile is modeled, resulting in semewaiar fiber section models.

Fiber section models are effective when modeling compaos#ierials such as reinforced concrete
piles. Fiber sections have a geometry defined in two levalsyarall geometry, in this case semi-
circular, within which exists many smaller subregions afular shape. A circular shape, or any
sector thereof, lends itself well to the discretizatiomfeavork shown in Figure 3.3 with a set of
divisions set at even intervals along the radius of theej@$ well as divisions that are set at equal
angular increments. Reinforcement steel is included asitl fiber regions with appropriate
areas and locations. This type of fiber discretization isleyga in all of the fiber models created
for this research.

Each subregion of the fiber model is assigned its own uniquaxiah constitutive model. In
the case of reinforced concrete, it follows that the sulomegirepresenting the reinforcement are
given the uniaxial behavior of steel, and the surroundingresgions representing the concrete
portion of the cross section are assigned uniaxial cotisgtbehavior based upon that of concrete.
Through defining the fiber model in this manner, a compositestitutive behavior is achieved
which approximates the 3D behavior of an actual pile whileestabling the use of standard beam
elements.
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Table 3.1 Material and section property values in linear elatic pile models.

Pile Diameter A (m?) FE (GPa) G (GPa) I (m%)

0.61-m- 0.154 31.3 12.52  0.0038
1.37-m- 0.739 28.7 11.48 0.0869
2.50m 2.454 102.4 40.96  0.9587

3.4 LINEAR ELASTIC PILE CONSTITUTIVE BEHAVIOR

Linear elastic constitutive behavior is assigned to therbealumn elements using elastic cross-
sectional models. The elastic sections are based upon ri@atke pile designs, however, no
composite action is considered. For each pile diametegrtiss-sectional area, and the second
moment of the areal, are determined based on half-pile cross sections. An pppte elastic
modulus,F, is selected for each pile such that the linear elastic mgnsiiiffness,F 1, is equal

to the initial bending stiffness of the corresponding @pkistic pile model. Poisson’s ratio, is
assumed to be.25, allowing a shear modulus;, to be defined. The linear elastic constitutive and
section properties are summarized in Table 3.1

3.5 ELASTOPLASTIC PILE CONSTITUTIVE BEHAVIOR

Fiber section models are used to incorporate elastoplpsgiconstitutive behavior into the FE
model. Two uniaxial constitutive models are defined for ddmdr section model, one each for the
concrete and steel portions of the cross section, respéctiVhe resulting behavior will consider
the composite action of the reinforced concrete piles ommasesectional level.

OpenSees provides a series of predefined uniaxial comgitabdels that can be effectively incor-
porated into fiber section models. From this index of prodidenstitutive models, theoncrete02
andSteel0Imodels are chosen to model the concrete and steel portidhs pile cross sections,
respectively. Figure 3.4 shows the general forms of thesstitative models, slightly exagger-
ated for clarity, along with the input parameters requiregtoperly define the behavior. The
corresponding input values for each pile diameter are geavin Tables 3.2 and 3.3.

The selected uniaxial concrete model has the ability to @atictor the effects of confinement on
the compressive behavior and the ability to link the tensédkavior to the development of cracks
in the pile. The uniaxial steel model has elastoplastic ienand a relatively simple set of input
parameters. When these individual materials are combimeedhe fiber models, the resulting
constitutive behavior of the pile model is suitably reprgative of that expected for a reinforced
concrete pile.
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Table 3.2 Steel material property input values in fiber secton models.

Pile Diameter o, (MPa) E (GPa)

b

0.61-m- 1860 200
1.37-m- 1860 200
2.50m 520 200

0.001
0.001
0.001

Table 3.3 Concrete material property input values in fiber setion models.

Pile Diameter f!(kPa) e, ' (kPa) e., fi(kPa) E,(MPa)

0.61-m- 44816 0.003 8960 0.015 4170 -2080
1.37-m- 43170 0.003 8270 0.011 4000 -1400
2.50 m 20684 0.003 4140 0.013 2830 -13800
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3.5.1 Steel in Tension and Compression

The chosen uniaxial steel material model, while not inteinstdely for use in reinforcement mod-
eling, has many of the salient features that are desiraldesieel constitutive model. As shown
in Figure 3.4(b), the&steelOImodel is a bilinear plasticity model that incorporatesrgpic strain
hardening in the post-yield behavior. The initial portidritee model is linear elastic, with a slope
defined by the modulus of elasticiti, The hardening slope of the curve is defined as the product
of the elastic modulus and a specified hardening ratiwhich was taken as a somewhat arbitrary
value of0.001. Although this constitutive model is relatively simplegtbilinear model creates
a situation in which there is a constant tangent in the masgion, thus, simplifying the com-
putations without significantly affecting the results. Tbagitudinal reinforcement fibers in all
three pile models, as well as the steel tube in the 2.5-mnpildel, are defined using this uniaxial
constitutive model.

3.5.2 Concrete in Compression

In compression, the selected uniaxial concrete constiumiodel is based upon the work of Kent
and Park (1971), who derived the model from tests conducti¢ldl @onfined concrete beam-
columns. This model has three distinct regions of behaviat define the initial, crushing, and
post-crushing relationships between the axial stress tnach $n each subregion of the fiber ele-
ments. Whenever possible, the material parameters usags/alues in the constitutive models
are based on the corresponding properties in the templatdgsigns.

In the initial loading region, from the origin up to the maxim compressive stress and strain,
the behavior is parabolic. The maximum strength in compuasg’, for each model was taken
directly from the template pile designs (see Table 3.3 ftwes). Per American Concrete Institute
(ACI) recommendations, all three piles are assumed to haeala strain of,. = 0.003 when their
maximum compressive stress has been reached (ACI, 2008)inifial tangent of this region of
the model is equal to the modulus of elasticity,which is defined as

Foale (3.1)
Ec

Once the strain in the model exceeds the set valug,dhe concrete begins to soften due to the
onset of crushing. This is represented by the descendiegrliregion of the material behavior
shown in Figure 3.4(a). The speed at which this softeningiecs based upon the amount of
confinement provided by the longitudinal bars and spiral itireluded in the cross section. With
greater levels of confinement, larger axial strains can besged in the concrete core before the
contribution of that concrete to the strength of the piledmees minimal. To account for the
influence of the amount of confinement in each pile model, th&-prushing behavior for the
respective concrete constitutive models are defined inrdacce with a procedure detailed in Park
and Paulay (1975). Using this procedurg, the strain at which the concrete is considered entirely
crushed, can be defined based upon the known geometry of teeacd the amount of steel by
which it is confined. The crushed strains for each model aveiged in Table 3.3.
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Figure 3.5 Detail of tensile behavior in uniaxial concrete onstitutive model.

After the strain in a particular subregion of the fiber modsd heached..,, the concrete is consid-
ered to be completely crushed, however, confined concret¢ghieadocumented ability to sustain
small levels of stress at very large strains. To accountisr & residual strength is defined for each
pile model, as shown in Table 3.3. In all cases, the residuatrete strength is set &s, = 0.2f/
per Park and Paulay (1975).

3.5.3 Concrete in Tension

When the concrete subregions of the fiber models are subljézteensile strains, it is desirable
for there to be a limited amount of tensile strength folloviyda region of tension softening due
to the onset of cracking in the material. The selected ualaxdnstitutive model includes both of
these features. An enlargement of the tensile portion ofitfi@xial concrete constitutive behavior
is provided in Figure 3.5. As shown, the tensile behaviortfioes model can be fully described
through three variables: the tensile strengihthe elastic modulugy, and the tension softening
stiffness,t;.

The tensile strength of the concrete in each pile model imdéfbased on the ACl recommended
modulus of rupture for concrete in bending

fr=0.62\/f (3.2)

with f,. and f! in units of MPa (ACI, 2005). The modulus of rupture is slighgreater than the
strength of concrete in uniaxial tension, however, tersilesses will be generated in the models
due to the application of bending loads, not uniaxial tenlsibds. Therefore, defining the tensile
strength to be the modulus of rupture may yield more realissults.

The tension softening stiffnesk;, which is the slope of the linear softening portion of thesitn
stress-strain curve shown in Figure 3.5, defines the ratbiatvthe stress degrades with increasing
tensile strains. In this region of the model there is a lirmarstitutive relation between the stress
and the strain is assumed to be

do = —FE;de (3.3)

Sensible values faF; are determined for each pile based upon the principles cfura mechanics
as they apply to plain concrete. A discussion of this protepsovided in Section 3.5.4.

Eventually, when the tensile strain becomes large enoughconcrete will have cracked suf-
ficiently such that it can no longer provide any resistancentoeasing tensile strains. This is
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Figure 3.6 Simplified fracture model for concrete in uniaxid tension.

represented in Figure 3.5 by the point at which the softenunge crosses the strain axis. This
limiting value of strain varies for each model based uponrtrespective tensile strengths and
softening moduli.

3.5.4 One-Dimensional Fracture Mechanics of Concrete in Tesion

When concrete approaches its tensile capacity, definedsmtbdel by the modulus of rupture,
cracks will begin to form. Though the cracks may propagal&tively rapidly, the surrounding
concrete does not lose all tensile strength instantangoustead, the tensile stress in the region
of the crack is assumed to degrade over time as a functioreokitith of the crack openingy.
The rate at which this occurs varies depending upon the rabitequestion.

Models of varying levels of complexity have been develomedédscribe the relationship between
the tensile stress and the rate at which cracks will open im@mnal, (e.g. Kaplan, 1961; Bazant
and Becg-Giraudon, 2002; Xu and Zhang, 2008). For the pegostthis research, a simplified
crack propagation model has been adopted. This model isrshofsigure 3.6, where the tensile
stress is plotted as a linear function of the crack openingis &ssumed relationship between
incremental stresses and crack widths is defined by the gnaglagation slopels,, and can be
written as
do = —E,dw (3.4)

an expression that is helpful in relatirg to the desired input value df,.

As shown in Figure 3.6, there is a certain amount of energy rthest be expended before the
concrete in the area of the crack loses its tensile stremgitely. This energy is called the fracture
energy, or fracture toughness, and is commonly denoté&d,asracture energy is a fundamental
material property that can be determined via laboratorg teisfrom empirical formulas present
in the literature. The fracture energy for each pile modeleBned as shown in Table 3.4; values
determined using the empirical procedure developed bymaral Becq-Giraudon (2002).

In a general sense, the value of the fracture energy for angivaterial is dependent upon the
specific relationship between the tensile stress and tlok opening width, defined by the function
o(w). The fracture energy is equal to the following integral

+oo
Gy = /0 o(w) dw (3.5)
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Table 3.4 Concrete fracture energies and crack propagatioslopes.

Pile Diameter G (kJ/n?) E; (MN/m?)

0.61-m- 0.155 55450
1.37-m- 0.150 53100
2.50m 0.109 36520

which essentially states thét; is equal to the area under the curve definedrby). Applying
this to the simplified model shown in Figure 3.6, the fractenergy can be related to the tensile
stress at the onset of cracking, and the crack propagation raté,, as

1
Gf = §ft w

ft
= e 3.6
o7, (3.6)

Solving Equation (3.6) for the unknown crack propagatiapslresults in

= _ [
E, = 3.7
e (3.7)

which defines_E in terms of the known values for concrete fracture energytandile strength.
The values off; calculated for each pile diameter are summarized in Taldle 3.

A consideration of what is happening in a single pile elengeming cracking is beneficial when
attempting to relate the stress degradation sl@peto the tension softening slopg;. Figure 3.7
shows such an element both before-€ 0) and after (v > 0) the onset of cracking. For simplicity
itis common to assume that there is a single crack in eachegletimat occurs at the midpoint of its
length. This assumption defines the characteristic ledgtkyhich is the distance between cracks,
to be equal to the element length.

A
[ (] —
- -
‘ |:> c=A4
w 7.
A
—
[ (]

Figure 3.7 Relationship between elongation, crack width, ad element length for a single
pile element.
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The change in length of the elemetit), can be related to the change in strain within the element,
de by the simple kinematic relation
dA = (. de (3.8)

As implied by Figure 3.7, the addition of a crack with incriegswidth into the element modifies
Equation (3.8) into the form
dA = 0. de® + dw (3.9)

whereds© is the change in elastic strain add is the change in crack opening width. Assuming
linear elastic behavior in the uncracked zone, Equatid) (&n be written in terms of stress as

dA = % do + dw (3.10)

in which E is the elastic modulus. Expanding Equation (3.10) usingafigos (3.4) and (3.8)
yields

(1 _ L Et) dw =0, de (3.11)
E
which can be solved for the incremental change in crack widéiding
le
dw = ———=——de (3.12)

El.
()

The constitutive relation defining the behavior of the tenssoftening portion of the concrete
model follows from Equations (3.4) and (3.12) as

E L,

El.
()

which when compared with Equation (3.3) defines the tensafteising modulus to be

do = — de (3.13)

B Pl (3.14)

Etgc
(-7%)

This result, combined with Equation (3.7), enables theutaton of the tension softening modulus
for any finite element discretization using known matereigmeters and element sizes.

3.5.5 Implementation of Tension Parameters

The resultant tension softening modulus from Equatiordd@sllargely dependent upon the chosen
characteristic lengtt,.. The other terms are material-dependent parameters,duhtracteristic
length is somewhat arbitrary. As was discussed previodslis initially taken to be equal to
the element length, thus implying that a single crack dgy&in each element. As the length
of an element increases, this assumption becomes less ®a&iming that there is an adequate
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Table 3.5 Characteristic length and tension softening modus in pile models.

Pile Diameter /. (m) E; (kPa)

0.61-m- 0.07 -2.08e6
1.37-m- 0.05 -1.40e6
2.50m 0.42 -1.38e7

amount of longitudinal and shear reinforcement provided frile, it could be expected for cracks
to develop at spacings in the range’®10 cm. Specifying/. to be equal to the expected crack
spacing can reduck; considerably. Reducing the tension softening modulus esmitrin models
that exhibit fewer convergence issues without altering@seilts in a significant manner.

Preliminary sensitivity studies performed with the thréle pnodels have shown that the 0.61-m
and 1.37-m-diameter models are very sensitive to the spddaifput value for;. In these models,
there is a significant reduction in stiffness when the cameoceacks in tension. If; is set at too
large a value, the resulting softening behavior is too séeejthe elements are unable to converge.
An example of this severe softening behavior can be seeteise circled region of the moment-
curvature response shown in Figure 3.8. The convergengessacountered for these two pile
models identified the need for a more careful selection othaacteristic length values.

Because the 2.5-m-diameter model is encased in a steelitub@es not display a similar loss
of strength at the onset of tension cracking. This is illaistd by Figure 3.9, which shows the
moment-curvature behavior for the 2.5-m-diameter crosisefor two extreme values of..
There is no discernable difference, thus the charactelstigth and the corresponding tension
softening stiffness can be set at any sensible value.

Characteristic lengths of. = 7 cm and/. = 5 cm are selected for the 0.61-m and 1.37-m-
diameter models, respectively. For the 2.5-m-diameterahédis set as the length of the smallest
pile element. Table 3.5 summarizes the characteristidtesigd softening stiffness values.

As shown in Figures 3.10 and 3.11, reducing the tension soffemodulus for the 0.61-m and
1.37-m-diameter models results in a smoother transititvvdzn the initial and ultimate behavior
of the cross section, and the convergence issues assowidtedl large tension softening stiffness
disappear. The validation work performed in order to supgh@ reduction in these parameters is
discussed in Section 3.6.2.
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Figure 3.8 Moment-curvature behavior for 0.61-m-diametermodel illustrating softening
behavior resulting from a large characteristic length, /..
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3.6 VALIDATION OF PILE MODELS

In all computer simulations, it is important to ensure thsgracreated models exhibit reasonable
behavior in response to easily verifiable loading cond#ioBach step in the creation of the pile

models, from the behavior of the cross section to the ovieetdavior model, must first be validated

before implementation into the lateral spreading model.

To ensure that the fiber section models for each pile areedestd implemented correctly, the
behavior of each is evaluated and verified through a serissngfle analyses. The first step is
to verify the moment-curvature relation for each fiber motlalis providing reassurance that the
models are created properly. Once this has been estahlishezohtilever beam model is imple-
mented to test the global behavior of the pile models. Untgksrwise noted, all of the fiber
section validation work is performed using the half-pilesfilsection models created for use in the
lateral spreading model.

3.6.1 Moment-Curvature Response

Using OpenSees, zero-length element models are createtheipreviously defined semi-circular
fiber section models. One node is held fixed, and the othetftisdée with respect to rotation. The
element is then subjected to, first, a constant axial loadpcesent the self weight of the pile, and
second, a linearly-increasing applied moment. The forckedafiormation responses of the section
are recorded during this process, from which a moment-turgaliagram can be created. This
procedure is a relatively simple way to establish the morsentature behavior for a fiber section
model in OpenSees.

Computer aided hand-calculations are performed to vdndy the correct initial tangents and the
true moment-curvature behaviors of the cross section hage baptured in the OpenSees analy-
sis. These calculations are implemented inTMAB and utilize a numeric integration algorithm
in combination with a Newton-Raphson iterative procedu@amputing the moment-curvature
response of a cross section requires iteratively solviadahowing equation

N—f odA
R:{M—ijadA}ZO (3.15)

whereR is the residualV is the applied normal forcel/ is the applied momeny is the axial
stress,A is the area of the cross section, apds distance from the neutral axis. Incremental
changes in the residual are computed using the followingisou

[ = [05/0e - [0c/0¢
= { s —fyao/aqb} (3.16)

in which ¢ is the axial strain an@ is the curvature. The curvature is increased incrementally
in constant steps towards a pre-defined ultimate value. &cin eurvature step, the axial strain
distribution in the cross section can be computed as

E(y) = Ecurrent T QY (3.17)
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wheree(y) is the axial strain as a function of positign ¢ is the curvature at the current step,
andeqyrrent IS the mean axial strain at the beginning of each iteratidme distributions of stress
resulting from this computed strain distribution are cédted using the appropriate constitutive
models for the concrete and steel portions of the crossosecti

The cross section is divided into subregions. Rectangularcacular subregions are used for the
concrete and steel portions of the cross section, respéctizach subregion has a particular center
position,y;, and aread;. Using these subregions, the internal normal force and moawing on
the cross section can be approximated using the followingssu

/ odA Y g (3.18)
A

/ yodA =~ Z YioiA; (3.19)
A

whereo; is the stress acting at the center of each stibregions. Additionally, the terms of
Equation (3.16) are computed as

Jdo
T E. A, + E.A,, 2
/ 86 Z C Cl + S S (3 O)
Jdo
ey Ec ciAci Es siAsi 321
9 > EgyeAe+ By (3.21)
Oo
T Ey,A, + EuysA, .22
/y 05_ Z CyCZ Cl + Sysl S (3 )
8—“~ZE1<+E1- (3.23)
ya¢ ~ clct stsi .

in which E,, y.;, andA.; are the concrete elastic modulus and the center locatioar@adfor each
concrete subregion, respectively, aAd v.;, and A,; are the corresponding terms for the steel
portion of the cross section.

The internal normal force and moment obtained from Equat{8ti8) and (3.19) are used to com-
pute the residual using Equation (3.15). If the residuabisarzero vector, an updated strain distri-
bution is computed using the newly computed residual andhttremental change in the residual
determined in Equations (3.20)—(3.23). The process theeats, iterating until Equation (3.15)

is satisfied for the current curvature step before movingoothé next. The moment-curvature
response of the cross section is determined by recordingaierged values of the moment for
each curvature step.

The converged final stress and strain distributions actugy the cross section are recorded and
shown in Figure 3.12 for the 0.61-m-diameter section. Theilarity to the specified uniaxial
steel and concrete constitutive models shown in Figure &#ies that the constitutive models are
correctly implemented in the independent calculation pdore.

The moment-curvature response of each pile model obtanoad ®penSees is compared to the
corresponding response computed using the developed M8 scheme in Figures 3.13 to 3.18.
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Figure 3.12 Distributions of stress and strain determineddr 0.61-m-diameter cross section.

Calculations are conducted for full, circular fiber modelsaaddition to the semi-circular section
models developed for use in the 3D lateral spreading modsl.sifown, there is considerable
agreement between the independently calculated and Opg8eves for each model; the general
shapes are nearly identical and the calculated initialaatggmatch the OpenSees results. Any
differences can be attributed to the differing degrees ofigy in the discretization of the cross
sections. These analyses provide verification that the fitzetels are displaying predictable and
intended responses as implemented in OpenSees.

The circular cross sections are analyzed in order to veréythe semi-circular fiber section models
have been correctly implemented. The resulting pile momand forces in the lateral spreading
model should be half as large as would be expected for thefodls sections due to symmetry
considerations. The semi-circular models (Figures 3.145,3and 3.18) display moments which
are exactly one-half of those returned by the circular mod@ a given curvature value. This
verifies the correct implementation of the semi-circulagfiection models.
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Figure 3.13 Comparison of moment-curvature responses for.81-m-diameter full (circu-
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500

4501 b

400 b

w w
o [
(=) (=]
T T
| |

Moment (kN-m)
o
o

200F b
150 b
100 b
“‘ —— OpenSees
S0f o Matlab I
Initial Tangent
0 | | | I
0 0.02 0.04 0.06 0.08 0.1

Curvature (m_l)

Figure 3.14 Comparison of moment-curvature responses for .81-m-diameter half-pile
(semi-circular) model.
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Figure 3.15 Comparison of moment-curvature responses for.37-m-diameter full (circu-
lar) pile model.
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(semi-circular) model.
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Figure 3.19 Cantilever beam analysis. The horizontal load?, is increased linearly until the
pile tip deflects a distance of one pile radius.

Cantilever Beam Implementation

In order to ensure that the behavior of the section modelsnsistent regardless of the loading
configuration, a simple cantilever beam model is used. Arsetie of this model is provided in
Figure 3.19. The cantilever beams utilize the fiber sectiauels for each pile. The moment-
curvature responses for the 0.61-m and 2.5-m-diametes pilthe element adjacent to the fixed
base are compared to previous results in Figures 3.20 add 3f2e similarity shown provides
verification that the cross-sectional model can be sucaigghplemented into a 3D simulation.

3.6.2 Validation of Tension Parameters

As discussed in Section 3.5.5, the 0.61-m-and 1.37-m-dexm@odels exhibit convergence prob-
lems when assigned large values of the tension softeningulued;. While it is important to
select input parameters that allow for convergence, it isaltg important to validate that any
changes in the parameters are sensible and do not signifiedter the resulting behavior of the
pile models. To show that a suitable compromise betweerracgidetail resolution and numerical
stability in the tension softening parameter does not &ggmitly affect the results, the behavior of
the pile models for several values Bf is compared via two validation studies.

In the first validation study, the moment-curvature behaeidhe pile models is compared for three
separate values df;. This behavior is generated for each model using the zegitheelement
approach discussed in Section 3.6.1. Two of the three terssiftening stiffness values are based
upon characteristic lengths set equal to the sizes of thesaand smallest elements, respectively,
in each pile model. These characteristic lengths deriven filee assumption that a single crack
develops in each element. The third valuefhfis determined by setting the characteristic length

to be the assumed crack spacings listed in Table 3.5.

For the lateral spreading model, it is important that thealvedr of the pile elements at large curva-

ture and displacement demands remains unaffected by changee tension softening modulus.
Part of the goal of this research is to evaluate the maximumemds, shear forces, and curvatures
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Figure 3.22 Force-displacement behavior for 0.61-m-pileextion model as implemented in
a cantilever beam model with various values of..

that develop in a pile embedded in a laterally spreadingsgstem. For this reason, the behavior at
middling curvature and displacement demands is relativelgnportant. Also, since the stiffness
of the pile is crucial in determining how the free-field curw& demand on the soil will affect the
embedded pile, it is desirable that change#ireave the initial tangent stiffness of the models
similarly unaffected.

As shown in Figures 3.10 and 3.11, the initial tangent sg@of the pile model is not affected by
the selected characteristic lengths, validating thatialje/. to improve numerical stability does
not alter the initial stiffness of the pile models. These ffiegualso show that at larger curvature
demands, above abot)15 m~! in the 0.61-m-diameter model and ab6ui07 m-! in the 1.37-
m-diameter model, the moment-curvature behavior is uredtby the magnitude of the tension
softening modulus. Thus, validating that the respectivectiens of/. are sensible with respect
to the resulting moment-curvature response of the pile hsddethe range of curvatures that is
important to this research.

Further validation of the selected tension softening miogdunade through a second validation
study. This second study is an examination of the forcelatgment behavior of cantilever beams
modeled with the 0.61-m-and317 m diameter sections. A schematic of this model is presented
in Figure 3.19, and the results of this validation exercrgeshown in Figures 3.22 and 3.23. Each
model is assigned a tension softening modulus resulting fribaracteristic lengths of decreasing
magnitude, starting from setting as the smallest element length in the respective models. The
cantilever beam models for each pile section model mimiarbsh and geometry of the piles as
used in the lateral spreading models exactly.
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Figure 3.23 Force-displacement behavior for 1.37-m-pileextion model as implemented in
a cantilever beam model with various values of..

The effects of the changes in magnitude of the tension sofiggarameter are more apparent in

the cantilever model, where the elements have lengths, mpar@d to the zero-length element

approach used to generate the moment-curvature behawtoe afodels. This is demonstrated by

the observation that the cantilever models for both pile ef®dre unable to converge past a few
time steps when the characteristic length is set as theseetgment length. Once the tensile stress
in the cross section reaches that which signals the onseacking, no converged solution can be

found. The models display convergence issues even Whsrset as the smallest element length,
though, unlike the case where the characteristic lengthusleo the largest element length, the

models will converge, albeit with a large number of smaldateps. As in the moment-curvature

study, the initial behavior is the same regardless of patanselection, and all of the cases reach
essentially the same reaction force at the final displacemen

The selections of. summarized in Table 3.5, and the resulting tension softemaduli are made
with consideration towards a realistic crack spacing a$agelvith respect to the convergence be-
havior of the pile models. The cantilever verification studlidates that the selected characteristic
length parameter will allow the pile models to reach congagg when implemented in a model
with actual geometry, validation that the zero-length edata cannot provide. Additionally, the
cantilever study demonstrates that the magnitude of tredeisoftening modulus only affects the
middle range of the models’ behavior; the initial and finalges are unaffected.
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4 Modeling the Soil

4.1 INTRODUCTION

The behavior of the soil surrounding the piles is importanthte problem of a pile embedded in
laterally spreading soils as it is both the source of and tedium through which the kinematic
demands of the moving soil mass are transmitted to the engldguite foundations. In the layered
soil system considered in this study, the thickness of teefiied layer and the various material
properties of the surrounding soil layers are integral tiindeg how a pile experiences a lateral
spreading event. Seemingly minor changes in the materglgpties or the configuration of the
layers can significantly alter the resultant behavior of medded pile. In order for the results of
this study to be valid for most piles in different soils, itastical to select appropriate values for
the soil parameters.

The typical considered soil system consists of three iddial soil layers modeled as a 3D con-
tinuum surrounding the pile. A global view of the complete faBdel is shown in Figure 2.1, in
which the various soil layers and the general layout of theedements are clearly visible. Soil
modeling decisions are made based upon the assumptiorilttiaea layers are made up entirely
of homogenous (within each layer) cohesionless soil.

Two separate soil constitutive models are considered. @tieese models considers the soil to be
linear elastic while the other soil model considers eldsisifc behavior using a Drucker-Prager
constitutive model developed and implemented for use imSpes (Petek, 2006).

4.2 SOIL ELEMENTS

The soil continuum is modeled using eight-node brick eleiehe soil nodes defining these
elements are created with three translational degreeseflém. The number of soil elements
ranges from2720 to 3360 depending upon pile diameter considered in each particalse. The
degree of mesh refinement is increased in the middle of thehasccompared to the regions near
the top and bottom of the model. This meshing scheme alloe/sitbas of importance, i.e. the
areas near the liquefied interface, to have a relatively fieghywhile leaving the outlying regions
with a coarser level of refinement.

Unless otherwise noted, the elements of all three soil fagee assigned a unit weight, =
17 kN/m?3, which is typical for most soil conditions. The first step ietlateral spreading analysis
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is to apply the self-weight of the soil elements, thus creptin appropriate distribution of verti-
cal stress in the model. This is critical to determining tb# shear strength and soil-pile contact
resistance with depth. Using this approach, both the sdiltha embedded pile will behave in a
manner consistent with a real soil-pile system when subfetd the simulated lateral spreading
event.

4.3 LINEAR ELASTIC SOIL CONSTITUTIVE MODELING

For certain aspects of this research, the elements of sotbwuding the piles are assumed to
display isotropic linear elastic behavior. This simplifioa allows for a means of comparison
between elastoplastic pile and elastic soil lateral spngachodels with simpler, entirely elastic
models, as well as a basic case with which to test the elasttippile models in the global lateral
spreading model. The isotropic linear elastic materiahpeaters in each soil layer are provided
in Table 4.1. The elastic modulug;, of the unliquefied layers explicitly considers a modulus
reduction, per the guidelines of Kulhawy and Mayne (199@prapriate for the levels of shear
strain expected in the lateral spreading analysis. Thershedulus,G, and bulk modulusk,
values are included for comparison with the elastoplasiicenstitutive model.

Table 4.1 Material parameters in isotropic linear elastic ®il constitutive model.

Soil Layer FE (kPa) v G (kPa) k (kPa)

Unliquefied 25000 0.350 9260 27777.8
Liquefied 2500 0.485 842 27777.8

During liquefaction of the middle layer, the pore water gree in the layer increases, thus reducing
the effective stress in the layer. As the magnitude of the pater pressure becomes closer to the
total mean stress in the layer, the shear strength becogreBcantly smaller. The compressibility
of the layer, however, should not change quite as drasticéor this reason, the soil material
parameters are selected based upon an assumption thatkhmdululus, <, remains consistent
throughout the soil mass. In a fully liquefied state, the riadubil layer should have a Poisson’s
ratio close td).5, matching that of an incompressible fluid. Using a value ef 0.5 would create
an infinite bulk modulus, and cause a multitude of numergsiés. To avoid this result, a value of
v = 0.485 is selected for the liquefied middle layer. Using this paremand the consistent bulk
modulus ofx = 27777.8 kPa, appropriate values for the elastic and shear modub@rguted.
These values are summarized in Table 4.1.

4.4 ELASTOPLASTIC SOIL CONSTITUTIVE MODELING

The material nonlinearity considered in this research tiduced in the soil models through a
Drucker-Prager constitutive model. The Drucker-Pragedeh@s the simplest constitutive model
that is appropriate for use with cohesionless soils. Otnere sophisticated constitutive models
have been developed, however, the Drucker-Prager mode¢med sufficient to meet the goals of
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Figure 4.1 Drucker-Prager failure surface plotted in principal stress space.

this research. The particular model employed is one thatimvpkemented in OpenSees by Petek
(2006). The following section includes a basic discussiotime various components defining the
Drucker-Prager model, as implemented in OpenSees. Set#dod includes a discussion on the
particular material parameters used in the models and tpetim behind their use.

4.4.1 Drucker-Prager Constitutive Model

The Drucker-Prager constitutive model is one of the edrbed plasticity models, developed as
an extension of the von Mises yield criterion from one to twatenial parameters by Drucker and
Prager (1952). Whereas the von Mises criterion is usefuhfetals, where independence from
hydrostatic pressure is observed, the Drucker-Prageariomt was developed to account for the
effects of hydrostatic pressure on the behavior of soil nmedte As with the von Mises criterion,
isotropic and kinematic strain hardening laws can be inm@ied into the Drucker-Prager model,
though it is not a required feature.

In a 3D principal stress space, the Drucker-Prager yielthsars a circular cone centered around
the hydrostatic stress axis, where = 0, = o3. This surface is shown in Figure 4.1 using
a standard continuum mechanics sign convention (i.e.jaerzositive). The conical shape is

the direct visual result of the effects of hydrostatic pueeson the behavior of a Drucker-Prager
material. As compressive hydrostatic pressure increasascreasing amount of deviatoric stress
must be applied in order to bring the material to yield.

The material model can be fully defined by the free energy tfang¢ ), state equations, the
Drucker-Prager yield conditionf(o) < 0, and evolution laws (flow rule and hardening law);
all of which follow from classical rate-independent plagti theory. For a 3D formulation, in-
cluding linear isotropic and kinematic strain hardenimg free energy function can be written as
a function of the state variables, which include: the strairthe plastic straing?, the and the
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respective isotropic and kinematic hardening parametéisanda*™", as

’ 4 1 1 . 1 4 4
¢ (8, 8107 O/so, akzm) — 5 (E _ EP) -C - (8 _ Ep) + §K (azso)Z + 5Olkm SH - akzm (4_1)
where

C = 3kI" 4 2GT4* (4.2)

is the elastic tensor, expressed in terms of the bulk and sheduli (¢ and &), and the fourth-
order volumetric and deviatoric operatof¥! andl?. The fourth-order tensdil, characterizing
a shift of the yield surface in the deviatoric plane, can biénéd in terms of the scalar kinematic
hardening variablel/, as

H = 2 e (4.3)
3

and K is a constant (scalar) isotropic hardening parameter. Rr@anfree-energy function of
Equation (4.1), the three state equations can be writtatimglthe state variables to the stress

__ . p
a—aE—C.(E e’), (4.4)
the isotropic hardening stress
¢ = — 0¢ = —Ka™°, (4.5)
80[250
and the kinematic hardening stress (or back-stress)
_ o ,
kin __ — T - okin
O = =5 H: ™. (4.6)

When implementing this model in an algorithm using comprds®atrix representations for the
involved second- and fourth-order tensors, it is importamote the difference between stress-type
(contravariant) second-order tensors, such andq*®™, and strain-type (covariant) second-order
tensors such as and o (Helnwein, 2001). Due to these differences, it is often fiera to
express the yield condition entirely in terms of one typearable. Written in terms of stress-type
variables, the yield condition for the Drucker-Prager mad@ be expressed as

. ‘ . 2 9
floq™,a™) = lls+a™| +ph + \[gq - \@o—y <0 (4.7)
in which .
s=dev(o) =0 — 5111 (4.8)

is the deviatoric stress tensor,
L =tr(o) (4.9)

is the first invariant of the stress tensor, and the two parer®e and oy are positive material
constants. Itis common to define an additional variajpseich that

n=s+q™" (4.10)
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The adoption of this additional variable allows for the egsion of Equation (4.7) in the form

2 .
F=liml+ ot 2 (o = ) <0 @11)

which is useful for its relative simplicity in notation.

The final set of equations characterizing the Drucker-Rragmdel are the three evolution laws
that describe how the state variabks o’*°, anda*™™ change over time. These laws are defined
in terms of various derivatives of the loading function

. 2 .
9(n.11,q") == |l +plL — \/; (ov —¢") (4.12)

in which p is a non-associative parameter ranging from< p < p, and a nonnegative scalar
consistency parameter, The evolution law for plastic strains, known commonly asflow rule,

can be written as
e a9 (i +p1) (4.13)
oo

The parametep controls the evolution of plastic volume change. Wies p, the plastic flow is

said to be fully associative and= f. The evolution laws for the hardening variables, commonly
referred to as hardening laws, are expressed as

’ dg 2
V0 =y =y [ 4.14
=m0 =N 3 (4.14)
and 5
aFin =y — (i) (4.15)
og+ [l

The Drucker-Prager model implemented in OpenSees by P2@£6] includes a tension-cutoff
surface in addition to the standard Drucker-Prager yiefthsa. This tension-cutoff better captures
the limited tensile capacity of a cohesionless soil. Additilly, the condition of|s|| > 0, which
follows from a basic property of norms, requires a seconthsar

The tension cutoff surface can be defined by the yield canditi
folo,q™) =L +¢" <0 (4.16)
whereg'“" is a stress-type variable associated with the softenirighiar;«'“", by the state equation
¢ = =T, exp (—6a'") (4.17)

in which ¢ is a softening coefficient arif], is a constant related to the Drucker-Prager yield surface
as
2 Oy

T,=1/%

T (4.18)
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The flow rule of Equation (4.13) is extended for the tensiaioifsurface as

0 0
EP_%&_‘_%Q = (l _|_p1) + 1 (4.19)
do 0o Iull
and the softening law is formulated as
- ten 8
q

4.4.2 Determination of Material Parameters

The material constants defining the Drucker-Prager carisgtmodel are selected such that there
is consistency with the elastic soil elements, as well agyae#eof realism in the magnitudes used
for each soil layer. To this end, the elastic constants ok lamd shear moduli defined for the
linear elastic soil models are used in the elastoplasticatsodo create a more realistic pressure-
dependent elastic stiffness in the elastoplastic modekldstic parameters are modified to include
the ability to update the bulk modulus according to the retat

‘Um‘

|Ores]

in which &, is the reference bulk modulus listed in Table 412, = I;/3 is the mean stress in
each element, and.. is a reference pressure taken to be equal to atmosphersupegs)1 kPa).
A similar relation is used to update the shear modulus in tbdef) in whichG,, is the reference
shear modulus listed in Table 4.2.

In order to obtain sensible values for the Drucker-Pragdena constantg andoy, the following
correlations have been made with the somewhat more commdmmaasurable, Mohr-Coulomb
material constants of cohesian,and friction angleg, after the discussion detailed in Chen and
Saleeb (1994) as follows:

2\/§sin¢
= — 4.22
V3 (3 — sin ¢) ( )
6ccos ¢
oy = ——— 4.23
v V2 (3 — sin ¢) ( )

Assuming a small amount of cohesion for numerical stabitity 3.56 kPa, and internal friction
angles ofp = 36° in the unliquefied layers ang = 0° in the liquefied layer, the Drucker-Prager
material constants are computed for each layer using Ensa(¥4.22) and (4.23). These values
are summarized in Table 4.2. With respect to associativenanehssociative plastic flow, several
combinations are explored. Models are run with the non&agwee parametep set equal to both

p, creating fully associative flow, and zero, creating isohoon-associative flow. Additionally,
based on the assumptions of drained conditions and a meditiad density for the unliquefied
layers, an intermediate case where= 0.150 is used. This is done so that there will be some
dilation of the soil, but not quite as much as would occur fer tase witlp = p.
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Table 4.2 Material input parameters used in Drucker-Pragersoil constitutive model.

Soil Layer &k, (kPa) G, (kPa) ¢ (°) o (kPa) p ~v (KN/m?)

Unliquefied 27777.8 9260 36 5.00 0.398 17
Liquefied 27777.8 842 0 4.97 0.000 17

It is interesting to note that when settisg= 0°, resulting inp = 0, the Drucker-Prager yield
condition of Equation (4.7) reduces to the von Mises yieltedon. In effect, the elastoplastic
lateral spreading model is constructed by considering thiguefied layers to be Drucker-Prager
materials and the liquefied middle layer as a low shear ssfrvon Mises material. To provide a
degree of simplicity in the model, the linear isotropic heshg and tension softening parameters
are set to zero in the lateral spreading simulations.

4.5 VALIDATION OF SOIL MODELS

As with all of the other aspects of this research, itis imaotto validate the elastoplastic soil mod-
els through simple tests before installing them into a langedel. The Drucker-Prager soil model
is evaluated through a series simulated geotechnical we#tisa single element of elastoplastic
soil. The chosen tests are all commonly performed to ewaltiee mechanical characteristics of
soil samples, and allow for validation that the OpenSeedementation of the Drucker-Prager
model is performing as expected. The selected geotechegislare:

1. Confined compression (CC) test
2. Conventional triaxial compression (CTC) test
3. Simple shear (SS) test

4. Hydrostatic extension (HE) test.

With the exception of the hydrostatic extension test, alihaf simple, single element, tests start
from an initial hydrostatic stress staie, = 0o = 03 = —p,, Wherep, is an initial confining
pressure. Each test is conducted for various initial comfmressures both with and without the
inclusion of linear isotropic hardening. Unless otherwisticated, the material parameters used
in each test are those listed in Table 4.2.

When dealing with 3D stress states, plots of the variousiiants of the stress and strain tensors
are often the most effective means for visualizing the bemaf a particular material. If chosen
carefully, such plots can display data in a more meaningfahmer than traditional stress-strain
plots. For each material test, four plots are chosen witlrtteat of fully characterizing the stress-
strain response of the Drucker-Prager soil element. Thearhmvariant axes include the norm of
the deviatoric stress tensdls||, the first invariant of the stress tenséy,= tro, the norm of the
deviatoric strain tensolie||, the trace of the strain tenser,e), and the mean stress,/3.
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Figure 4.2 Schematic depiction of the simulated CC test. (aMydrostatic compression
phase; (b) Confined compression phase.

4.5.1 Confined Compression Test

In a CC test the soil element is first brought to an initialestathydrostatic stress. While holding
the displacements fixed in the first and second principasstd&ections, the displacement in the
third principal direction is increased, creating an insgeis the compressive stress in that direction.
To achieve this in the context of the single element modekrdirely strain-controlled approach
is adopted. The approach used to model this test is depickexhstically in Figure 4.2.

As with the models in all of the solil tests, this model conssde soil element to be a unit cube.
The nodes inthe -y, y - z, andz - x planes are held fixed with respect to displacements normal to
their faces. The nodes on the element faces opposite theféiged are moved inwards by equal
increments to create the hydrostatic stress state. Aftedélsired hydrostatic stress state has been
reached, the nodes on the positiveandy-faces are held fixed againstandy-direction displace-
ments, respectively, while the nodes on the positiace of the element are moved downwards,
see Figure 4.2(b). The stresses acting insthandy-directions do not stay constant, instead, the
strains in those directions are held constant.

The stress path for the CC test is shown on the meridian plane (s|| axes) in Figure 4.3 for
three values of initial confining pressure, (= 10, p, = 20, andp, = 40 kPa). As expected, the
normal stress increases along thexis during the hydrostatic loading phase, and then dewato
stresses begin to develop during the confined compresseasepliror the particular loading ratio
used in the CC test, the soil element remains in the elastgesanever reaching the yield state, an
event that would be evident by the stress path intersedtiedjrie of the failure surface. Because
the element remains entirely elastic during this test, rarshardening cases are considered.

The material-response summary presented Figure 4.4 shewsress-strain behavior of the soil
element during the CC test on a series of four axes. Since #terial remains entirely elastic
during this test, the slopes of the curves in all four plotaae constant. This verifies both the
initial expectations for this test as well as the stress phtwn in Figure 4.3.
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Figure 4.4 Stress-strain responses of Drucker-Prager soeglement subjected to CC test
stress path.
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Figure 4.5 Schematic depiction of the CTC test as performecdhiOpenSees. (a) Hydrostatic
compression phase; (b) Application of deviator stress.

4.5.2 Conventional Triaxial Compression Test

The CTC test is one of the most widely used test in soil medsann this test, after the initial
hydrostatic loading phase, two of the principal stressekapt constant (i.eq; = 02 = —p,),
while the third principal stress;; is increased. This test differs from the confined compressio
test in that the first and second principal stresses do natgehtom their initial value at the the
end of the hydrostatic phase, whereas the first and secamdyal stresses in the CC test increase
in proportion to the applied stress increase in the thirdgypial direction.

The CTC testis achieved in a single element model as depitteédure 4.5. This test uses mixed
stress and strain control as opposed to the pure strairmotofthe CC test, however, the geometric
boundary conditions are the same as those in the CC test mdthel hydrostatic stresses are
applied under stress control, by applying compressivedaathe free degrees of freedom. Once
the desired hydrostatic state is achieved, the loads onasite x- andy-faces are held fixed for
the duration of the test, ensuring that the principal seggstwo directions remain constant, while
the nodes on the positiveface of the element are moved downwards under strain ddotcoeate
the increase in the third principal stress. The nodes ondhefired faces of the element are left
free to displace outward during this process.

Verification that the material model behaves in a predietatinner during this test can be obtained
through a comparison of the predicted slope of the stressrpatilting from the CTC test with the
data returned from OpenSees. It can be shown that the slofiee &ETC test stress path on a
meridian (; — ||s||) plane, is equal tq/2/3. A line with this slope is plotted against the stress path
returned from OpenSees for the = 10 kPa case. As shown in Figure 4.6, the single element test
slope is identical to the theoretical slope, thus providimther validation that the Drucker-Prager
material model has been successfully implemented into Sges

The simulated CTC stress paths for a soil element with nangtierdening are shown in Figure 4.7
for three values of initial confining pressurg,. A corresponding plot is shown in Figure 4.8
for a soil element including linear isotropic strain harhgn For the strain hardening cases, the
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Figure 4.6 Comparison of simulated and theoretical CTC tesstress paths.

hardening parametéx is set t0100, 000 kPa to enhance visualization. The CTC test brings the
element to failure for all cases. For the three cases witbtvain hardening, once the deviatoric
stress has increased to the point where the stress patbectethe failure surface, the material
yields and the stresses no longer increase with increasiaig.sThis behavior is consistent with
the expectations for a perfectly plastic material.

When linear isotropic hardening is included, the model leitbbehavior that is somewhat altered.
Instead of displaying perfectly plastic behavior, the st@ment hardens with increasing strain,
allowing for the stresses to increase beyond the initiatilirg values for the perfectly plastic cases.
The inclusion of strain hardening effectively acts to expdme failure surface with increasing
plastic strain. Again, the Drucker-Prager soil elementavek as expected, providing assurance
that the OpenSees implementation is correct.

The stress and strain invariant plots of Figures 4.9 and gr@@ide a more complete look at the
plastic behavior of the soil element during the CTC test. Jéréectly plastic behavior of the model
for the cases without strain hardening is even more evigeRigure 4.9 than in Figure 4.7. After
the elastic portion of the loading, the slopes of the curllg®do zero, indicating increases in shear
and normal strain with no corresponding increases in sheaomnal stress. For the cases with
strain hardening, there is a change in slope at the end ofdhgarange, however, here the slopes
do not go to zero, instead they change according the the amnobstrain hardening considered.
The behavior displayed in these two figures validates thatQpenSees implementation of the
Drucker-Prager model displays the intended post-yielcgibie when the soil is brought to yield
by an increase in normal stress.
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Figure 4.7 Stress paths for CTC test in the perfectly plasticase (no strain hardening).
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Figure 4.8 Stress paths for CTC test the linear isotropic stain hardening case.
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Figure 4.9 Stress-strain responses of Drucker-Prager sa@lement subjected to a CTC stress
path for the perfectly plastic case (no strain hardening).
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Figure 4.10 Stress-strain responses of Drucker-Prager doelement subjected to a CTC
stress path for the linear isotropic strain hardening case.
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Figure 4.11 Schematic depiction of the SS test as performed OpenSees. (a) Hydrostatic
compression phase; (b) Simple shear phase.

4.5.3 Simple Shear Test

In the SS test, the soil element is brought to failure in phess, i.e. Al; = 0. The OpenSees im-
plementation of the SS stress path is conducted entirelgnsicain control. Figure 4.11 provides
a visual representation of the single element SS test agzathin OpenSees. The initial hydro-
static state is induced in an identical manner to the prelyodescribed CC test. From this initial
hydrostatic state, the nodes at the base of the element krdiderd while the upper nodes are
displaced in the negativedirection by equal increments. During this test, the upypetes are not
displaced in the:- or z-directions, resulting in an isochoric deformation. Tlyise of deformation
results in the desired state of pure shear stress (smali sinly).

The SS test s run for three values of initial confining presshioth with and without the inclusion
of linear isotropic strain hardening. Figure 4.12 showsdtress paths for the three confining
pressures on the meridian plane for the perfectly plassesaand Figure 4.13 shows the stress-
strain behavior during this test. In the elastic range, fleenent only experiences an increase
in deviatoric stress, the expected behavior. Once the koilent yields, the mean normal stress
decreases (increased compression), and the deviat@$s stontinues to increase with increasing
deviatoric strain. However, there is no change in the tadéimetric strain. The initial drop in
volumetric straintr €, indicated in Figure 4.13 corresponds to the hydrosta#dilog phase.

Figures 4.14 and 4.15 show the stress paths and the strassksthavior, respectively, for a soil
element with linear isotropic strain hardening. A hardgnooefficient of K = 100, 000 kPa is
selected for for enhanced visualization. For these cakesglastic behavior is unchanged; the
stress path lies in the deviatoric plane from the initial fogtiatic state up until the initial yield
point. Subsequent yielding under the inclusion of strairdéaing allows for greater increases in
deviatoric stress during the continued application oféasing deviatoric strains.

The results of the single element simple shear tests prduideer validation that the Drucker-
Prager material model reproduces the expected behavioes whbject to known stress/strain
paths. When implemented in an element subject to pure sheanaterial model is able to produce
consistent results for all of the investigated cases.
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Figure 4.12 Stress paths for SS test in the perfectly plasticase (no strain hardening).
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Figure 4.13 Stress-strain responses of Drucker-Prager da@lement subjected to a SS test
stress path for the perfectly plastic case (no strain hardeing).
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Figure 4.14 Stress paths for SS test in the linear isotropictsain hardening case.
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Figure 4.15 Stress-strain responses of Drucker-Prager daélement subjected to a SS test
stress path for the linear isotropic strain hardening case.
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Figure 4.16 Schematic depiction of the HE test as performediOpenSees.

4.5.4 Hydrostatic Extension Test

The final single element test performed in pursuit of valithe OpenSees implementation of

the Drucker-Prager material model is a hydrostatic exten@iE) test. In this test, the soil element

is subject to equally increasing principal stresses uaiilife is achieved. The resulting stress path
follows the hydrostatic axis in the tensile direction, enetly reaching the tip of the cone depicted

in Figure 4.1.

To achieve the HE test in a single element model, the proeeduessentially the opposite of
the hydrostatic compression phases of the prior tests. fnensame base model and boundary
conditions, the free nodes are displaced outward in equegmnents as represented schematically
in Figure 4.16. The HE test is performed both to test the termhavior of the model and to
evaluate the effectiveness of the tension-cutoff impletatgm.

Due to the nature of this test, multiple confining pressuresewmot included in the results. How-
ever, the HE test is conducted for three values of the tersiftening coefficienty. As shown

in Figure 4.17, the intended stress path is returned by th@eidProviding assurance that the
Drucker-Prager material model can handle tensile stressegell as compressive stresses. The
stress and strain invariant plots of Figure 4.18 verify thatelement develops no deviatoric strains
nor stresses during the single element HE test. As is exghemtdy normal stresses and strains are
experienced by the soil element.

The effect of changes in the the magnitudeja$ evident in the lower left plot of Figure 4.18.
When§ = 0, the element displays perfectly plastic behavior aftertdresile limit is reached,
indicating that no softening occurs. The degree of sofggimicreases with increasing values of
0, just as intended by the inclusion of the tension softenungase in the material model. All
of the behavior displayed by the Drucker-Prager soil eldnrethe HE test is consistent with
expectations, thus providing further verification as to ¢berect implementation of the material
model in OpenSees.
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Figure 4.19 A representation of the load case modeled by the utti-element plane strain
test for the Drucker-Prager material model.

455 Multi-Element Plane Strain Test

In the mechanical behavior tests described in Sectiong thsough 4.5.4, the OpenSees imple-
mentation of the Drucker-Prager material model is testati thie use of a single element. To
assess the model in a somewhat broader context, a multeatgstane strain test is conducted. A
schematic of this test is shown in Figure 4.19. In this tedistributed load is applied to a portion
of the upper surface of a wall of soil material. The base ofrttoglel is held fixed against verti-
cal displacements, and the large planar surfaces of thelracgléeld fixed against out-of-plane
displacements to create plane strain conditions. The symirsigown in Figure 4.19 is applied by
fixing displacements in the horizontal direction. The pwgof this plane strain test is to evaluate
the behavior of the Drucker-Prager material model in théedrof a multi-element model.

The mesh for the plane strain tes8im wide,3 m tall, andl m thick. The soil elements are defined
with the unliquefied layer material parameters summariredable 4.2. A distributed load is
applied over d m square. This load is increased linearly until the two nadése symmetry plane
have undergone amm downward displacement. The deformed shape of the megnifiea by

a factor of ten, is shown in Figure 4.20 along with the disttidn of the vertical stress component,
a,,. As shown, the model is reacting in a manner consistent witial expectations. Compressive
stresses develop in the left hand portion of the model (tba deneath the load), while tensile
stresses are generated in the right hand portion as thoséesnents expand. Though the presented
results are only for a twenty-four element square meshstnse test was conducted with differing
numbers of elements. In all cases the model displays pedddé&cbehavior as well as a quadratic
rate of asymptotic convergence, further validating the rit3ees implementation of the Drucker-
Prager material model.

To further illustrate and verify the abilities of the Druckerager material model, the stress paths
for several Gauss points along the top row of the mesh aréedloin the meridian plane in Fig-
ure 4.21. As shown, several elements are brought to yieldtim tension and compression, while
others remain in the elastic range during the test. Figu2é provides further validation that
the Drucker-Prager soil elements can be successfully immgiéed in a multi-element model, one
which causes the elements to undergo a variety of stress.path
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5 Three-Dimensional Finite Element Analysis

5.1 INTRODUCTION

Piles embedded in laterally spreading cohesionless saitt be able to withstand large bending
demands. The magnitude and location of the largest sheamantent demands are dependent
upon many factors. Among these factors are the size andes#fof the pile, the strength of the

surrounding soil, the boundary and support conditions efpite, the amount of lateral displace-

ment that occurs, and the depth of the liquefied layer.

Single piles in laterally spreading soil systems are amalylay means of a 3D FE model (see
Chapter 2). This model includes beam elements for the piesk elements for the soil, and

beam-solid contact elements to define the interaction e¥ivlee pile and the surrounding soil.
Two separate pile head support conditions are considerdtese simulations: (1) a fixed-head
condition and, (2) a free-head condition. The fixed-headlitmm restricts the rotation of the pile

head and is the most representative of an actual pile agiplicavhile the free-head cases allow
the pile head to rotate freely and provide a means of conparis

In all of the considered cases, the piles are subject to thesed displacement profile discussed
in Section 2.3 having a magnitude of one pile radius in theeumoil layer. This distance is
sufficient to cause inelastic behavior in the elastoplaste and soil models, while remaining
small enough to facilitate relatively short run-times inédfees. Run-time per case ranges from
approximately four hours in linear elastic caseg@dours in elastoplastic cases, and varies for
the three pile models. For all cases the thickness of thefied layer is set at one pile diameter.
The dimensional scheme discussed in Section 2.2 is utjlizid a liquefied layer located ten pile
diameters below the ground surface.

The behavior of a single pile in a laterally spreading sastteyn is evaluated through comparisons
between the data returned from each of 24 cases run withugaciombinations of piles, soil, and
pile support conditions. The models are evaluated via thdibg behavior of the piles, the stresses
that develop in the soil, and the soil-pile interface fordegeloping in the contact elements, among
other factors. The individual results of each modeling apph are examined and compared in
order to provide further insight into the lateral spreadangblem.

61



5.2 SUMMARY OF CONSIDERED CASES

Various combinations of pile and soil constitutive modets@onsidered. With respect to the piles,
these combinations create two general sets of lateraldipgeeases; those with elastic pile models
and those with elastoplastic pile models. The pile modedsi s each set are discussed in detail
in Chapter 3. Two soil constitutive models are used in comuem with each set of pile models,
an elastic soil model, and an elastoplastic soil model whioploys a Drucker-Prager constitutive
model. The details of each of these soil models are discuss®ections 4.3 and 4.4, respectively.
When combined with the variation in the pile head fixity, thét of parameter combinations yields
a set of cases that are divided into four main categoriesguigted as Series-4. The four test
Series each consider the following six pile cases:

1. Free-hea@.5-m-diameter pile.
. Free-head.37-m-diameter pile.
. Free-head.61-m-diameter pile.

2
3
4. Fixed-hea@.5-m-diameter pile.
5. Fixed-head .37-m-diameter pile.
6

. Fixed-head.61-m-diameter pile.

This creates a total of 24 distinct analysis cases. Eaclstests is differentiated by means of the
type of pile and soil constitutive models that are employeds respective set of six cases. The
highlights of each Series are presented in the followingudision. A brief summary of the four
test Series is presented in Table 5.1.

5.2.1 Series 1: Elastic Piles with Elastic Soil

Using linear elastic piles in the lateral spreading modeled for general behavioral mechanisms
to be developed for the lateral spreading case. The elagtiembedded in linear elastic soill
models are the simplest cases that are evaluated using tla¢e38l spreading model. These cases
are computationally cheap when compared to the other casegifne per case approximately
four hours), however, the data returned by these modelstjsmiself, indicative of the type of

Table 5.1 Overview of the four considered test Series.

Series 1| Series 2| Series 3| Series 4
Elastic Pile X X
Elastic Soill X X
Elastoplastic Pile X X
Elastoplastic Soi X X
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behavior that would occur in an actual lateral spreadingiev@stead of offering direct insights
into pile behavior, the fully elastic cases provide a benatkior comparison and evaluation of
more computationally intensive models.

5.2.2 Series 2: Elastoplastic Piles with Elastic Soll

The use of elastoplastic pile models allows for the exanonaif the interaction between the soil
and the pile during a lateral spreading event in a more teateshion than that which is returned
by elastic pile models. When using elastoplastic piles,ites are able to yield and develop
plastic hinges under the influence of the imposed displaneprefile. This changes the way in
which the soil and pile interact in the model, often in dramshion. This Series is considered as
an intermediate set of cases through which comparisonsednawn between the entirely linear
elastic cases (Serid$ and the entirely elastoplastic series of cases (Sejieddditionally, this
series allows for the effects of plastic behavior in thegptlebe examined in an isolated fashion.

5.2.3 Series 3: Elastic Piles with Elastoplastic Soll

These six cases offer a direct means of evaluation for thextsffof yielding in the soil on the
behavior of the pile in the lateral spreading case. Leaumggpile elastic creates a situation in
which the only differences between these cases and thelgrgiastic cases must be due to the
plastic behavior of the soil, allowing any mechanisms to imp@inted. Additionally, the elastic
pile in elastoplastic soil series allows for the extractdp —y curves at various depths within the
soil system, providing a means of comparison for the resilthe 3D lateral spreading model
with other, more commonly used models for the lateral amsalgt piles. Thep—y curves are
determined from the resulting contact forces applied tt gdle node and the displacement of the
pile relative to the soil at each of these positions. Furthgetussion on this process can be found
in Chapter 6.

5.2.4 Series 4: Elastoplastic Piles in Elastoplastic Soill

The fully elastoplastic cases offer the most realistic gminto the behavior of the lateral spread-
ing problem, though at the highest computational cost {immes approximatelp4 to 26 hours).
This set of cases enables observations to be made into tlawibeshthat develop when both the
piles and the soil yield and display plastic behavior. Aiddially, it is of interest to evaluate if
the results found in the fully elastoplastic series can loeessfully reproduced by using a BNWF
analysis with elastoplastic pile models and they curves computed from the Series 3 model.
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Figure 5.1 Deformed shape and distribution of lateral stres for the Seriesl free-head case
with a 0.61-m-diameter pile. Stresses are given in kPa.

5.3 GENERAL BEHAVIOR OF PILES IN LATERALLY SPREADING SOIL

In all of the cases, the interaction between the soil and tlee governed by their respective
material properties, defines the resulting behavior of yls¢esn. General patterns of behavior are
observed through consideration of several comparativesanea. These results are deemed most
indicative of the pile behavior as a whole, and include thgmitades of the maximum moment
and shear force demands in the pile, and the locations of #xdgeme values. Also of interest are
the evolution of the extreme moments in in the pile, and thg iwavhich the lateral spreading soil
deformation profile manifests itself as a load on the pile.

As the upper layer of soil begins to displace laterally weébpect to the immobile lower layer, the
entire pile provides resistance to this motion as the uppetign is pushed along with the flow
of soil. This behavior is illustrated in Figure 5.1, whichosls the the distribution of horizontal
normal stress (in the direction of motion) in the soil eletseas well as the deformed shape of the
system, for the Serielsfree-head case with@61-m-diameter pile.

The entirely linear elastic case is selected for Figure & illustrate the lateral stress distribution
in the soil because it allows truly large stresses to develldpe locations of the largest tensile
and compressive lateral stress in the elastic soil elendensify where initial yielding is likely to
occur in both the elastoplastic soil models and in an actib$gstem. If the elements are assigned
elastoplastic behavior, the yielding that may occur woikely obscure the marked differences in
stresses that are able to develop in the linear elastic wadeng it difficult to differentiate between
the stresses in adjacent locations.

From the lateral stresses developed in the vicinity of theg gican be clearly seen that the imposed
displacement profile puts the pile in bending. In the lowdiddayer, the distribution of compres-
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sive stresses shows that the pile pushes back into the s$wilatse while it is pushed into the soill
at the interface with the liquefied soil layer. The oppostebserved in the upper soil layer, where
the pile resists the ground motion at the interface with ihedfied layer and is pushed into the
soil at the pile head. Additionally, at each location of Ei@pmpressive stress on the leading and
trailing faces of the pile, there is a corresponding zoneespsile stress in the soil. These tensile
regions signify where the soil elements are being pulledtdpaeither the passive or active pas-
sage of the pile through the soil. While the results of Figakare for &.61-m-diameter pile,
this same pattern of lateral stress is present in all of ttegdaspreading models.

In addition to the lateral stress near the pile, it is alsontériest to observe the distribution of
lateral stresses in the remainder of the soil system. Thedlttresses in the liquefied layer remain
relatively small during the simulated lateral spreadingrgyhowever, the imposed ground motion
causes large compressive and tensile stresses to devétapsalid soil layers at the boundaries of
the model. These zones of increased stress are higher eeamtimetry plane. Though these dis-
tributions are most certainly at least partially due to tbarmary and loading conditions imposed
upon the model, these results suggest that the pile is abduence a far wider area than just its
immediate vicinity during a lateral spreading event.

Figure 5.2 shows a series of plots that detail exactly howldheral spreading ground motion
affects the embedded pile. This figure presents resultsnautdrom the same@.61-m-pile case
as the lateral stress distribution shown in Figure 5.1, tiieady linear elastic, free pile head case.
This series of summary plots illustrates the general patérshear force and bending moment
demands that develop in a pile during a lateral spreadingteas well as the deflected shape of
the pile. All of the piles display distributions of bendingrdands that are similar in form to the
general shapes presented here.

The maximum shear force demand occurs at the center of thefiggl layer, depicted as the shaded
region in Figure 5.2, where the differential motions of th tsolid layers are felt most strongly
by the pile, and minimal resistance is provided by the liqaeefioil. It can be expected that in any
lateral spreading event, the largest shear force demanhaaeeilir at, or very near, this location.
There are also extreme values of shear in each of the twolagkds, located approximately two-
thirds of the total layer thickness away from the interfagthwthe liquefied layer. The extreme
shear demand in the lower layer is greater due to the increasmfining stress with depth.

The locations of minimum moment occur at the center of thadiftpd layer, where there is zero
moment, and due to the boundary condition of this model, eh @nd of the pile, where the
moment is also zero. The extreme moments in the pile cornesfthe locations of zero shear
force, with one maximum in each of the unliquefied soil lay@ise absolute maximum moment
occurs in the lower solid layer. As with the extreme sheatdatemand in that layer, the extreme
moment demand here is larger than the extreme value in ther ugper due to the increased
overburden pressure with depth. The locations of the exdremaments in each layer tend to
stay relatively constant in this entirely linear elasticdab The distance between these locations
defines an effective lengtld,., for the pile, as shown schematically in Figure 5.3. Theactife
length is a parameter signifying, in part, the influence & liquefied layer on the pile. The
effective length is a convenient parameter to use in sinepliinalyses of the lateral spreading
problem, as well as a useful parameter for comparing thetsefeu the various pile sizes.
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Figure 5.3 The effective length,L./, is the distance between the extreme moments in each
solid soil layer, as shown in this moment diagram.

In addition to the plots related to the deformation and begdiemands in the pile, Figure 5.2 also
shows the distribution of load imposed upon the pile by ther#d flow of the upper soil layer. This
plot of the load distribution on the pile is determined frdme slope of the shear diagram using the

familiar relation
av.

dx
in which w(z) is the distributed load antl is the shear force. The plot of the load distribution
provides a insight into how the displacement of the surrcumdoil manifests as load acting upon
the pile and corresponds well to the distribution of latstegss in the soil, as shown in Figure 5.1.
The magnitude and shape of this load profile varies from pifgle and also shows a dependence
on the constitutive models used to represent the pile anddhethough the shape presented in
Figure 5.2 is indicative of the general shape resulting feaoh case.

—w(x) (5.1)

It is also observed that the liquefied layer of soil affects blehavior of the solid soil layers. The
degree of this influence depends upon a few factors, inajuthie stiffness of the pile and the
constitutive model used for the soil. Additionally, the degof influence of the liquefied layer on
the soil near its boundaries is most significant in the vigiof the pile, becoming less apparent as
distance from the pile increases. The cases with elastapsasls exhibited an increased amount
of interaction between the unliquefied and liquefied soiktay with the unliquefied layers being
pushed into the weaker liquefied layer. Figure 5.4 shows ifleeppshing the unliquefied (dark)
soil elements into the liquefied (light) layer for the Seresase for &.61-m-diameter pile. The
motion of the upper layer is to the right. As shown, this bétrawccurs on either side of the pile
in the areas in which the pile is cutting into the soil. In ddfi to the push-out observed on the
leading edges of the pile, there is significant gapping tkiace on the trailing edges of the pile,
leading to the evident mesh distortion.

The behavior displayed in Figure 5.4 during the lateral agireg motion lessens the amount of
lateral resistance that can be provided by the soil in tha smerounding the liquefied layer. The
unliquefied soil can be pushed into the adjacent weaker tagee easily than it can be pushed into
the adjacent solid soil elements or flow around the pile céffely reducing the strength and stiff-
ness of the unliquefied soil near the liquefied layer. Thisicédn in resistance can significantly
alter the behavior of the pile, causing increased curvateneands and increasing the potential for
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Figure 5.4 Soil deformation pattern in the vicinity the pile for the Series4 case highlighting
the unliquefied soil elements pushing into the liquefied laye

the formation of plastic hinges. Additionally, this redioct in soil strength results in a smaller
effective length for the pile, which results in an increasaaiment and curvature demand on the
pile and a corresponding increase in the potential for pilefe due to the lateral spreading event.

5.4 SUMMARY OF RESULTS FROM THREE-DIMENSIONAL LATERAL
SPREADING SIMULATIONS

A small parametric study consisting of 24 distinct casesrgicicted using the 3D lateral spreading
model. There are three pile designs included in the studsh @ath elastic and elastoplastic

constitutive formulations. These piles are given two safgaboundary conditions: a fixed pile

head condition and a free pile head condition. There are div@snstitutive models incorporated

into the study, one linear elastic and the other an elasttplBrucker-Prager model. In all of the

simulations the liquefied layer is assigned a thickness effle diameter, this layer is centered
between two 10 pile diameter thick unliquefied soil layensg #éhe lateral displacement of the
upper unliquefied layer with respect to the lower layer is piteradius.

The results of all 24 lateral spreading cases are summanzibles 5.2, 5.3, and 5.4 for tRe5-
m, 1.37-m, and0.626-m piles, respectively. These tables list the maximum \sabfeshear force,
max V', momentmax M, curvaturemax ¢, and displacementnax U, for the pile, as well as the
effective length,L.;;. The data in these tables is separated based upon the [srpasameters
and constitutive models used in each of four Series, as wélydhe fixity of the pile head in each
simulation. The specifics of each of the four Series are suizethin Table 5.1.

From the results presented in Tables 5.2, 5.3, and 5.4, adbawvoral trends are observed. The
stiffness of the pile, or more importantly the ratio of théemtiffness to the lateral stiffness of the
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Table 5.2 Summary of 3D lateral spreading analyses for the 3-m-diameter pile.

Pile-Soil Type maxV (kN) max M (KNm) max¢ (Mm™') maxU (M) L.sp (M)

Series 1: Free 46100 235500 0.0012 1.47 17.62
Series 2: Free 40600 186600 0.0021 1.43 16.19
Series 3: Free 54000 300500 0.0015 1.57 16.14
Series 4: Free 48800 227200 0.0036 1.51 15.11
Series 1: Fixed 53500 389500 0.0020 1.27 35.51
Series 2: Fixed 42600 195500 0.0023 1.30 18.32
Series 3: Fixed 63200 393500 0.0020 1.30 18.77
Series 4: Fixed 50900 230100 0.0039 1.33 15.96

Table 5.3 Summary of 3D lateral spreading analyses for the 37-m-diameter pile.

Pile-Soil Type maxV (kN) max M (KNm) max¢ (Mm™') maxU (M) L.sp (M)

Series 1: Free 10600 24300 0.0049 0.76 8.12
Series 2: Free 5070 6460 0.0191 0.73 5.17
Series 3: Free 12000 30600 0.0061 0.80 7.54
Series 4: Free 4970 6575 0.1046 0.69 4.74
Series 1: Fixed 10800 24900 0.0050 0.71 8.47
Series 2: Fixed 5076 6467 0.0190 0.71 5.16
Series 3: Fixed 12500 31000 0.0062 0.73 7.65
Series 4: Fixed 4969 6574 0.1045 0.69 4.74

Table 5.4 Summary of 3D lateral spreading analyses for the 681-m-diameter pile.

Pile-Soil Type maxV (kN) max M (KNm) max¢ (Mm™') maxU (M) L.sp (M)

Series 1: Free 2130 2228 0.0095 0.34 3.63
Series 2: Free 1200 804 0.0248 0.32 2.66
Series 3: Free 2027 2569 0.0109 0.38 3.62
Series 4: Free 1258 981 0.0443 0.31 2.86
Series 1: Fixed 2196 2293 0.0097 0.32 3.83
Series 2: Fixed 1198 805 0.0249 0.31 2.65
Series 3: Fixed 2200 2592 0.0110 0.33 3.74
Series 4: Fixed 1258 981 0.0445 0.31 2.86
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soil, plays a significant role in defining the interactionvbetn the piles and the soil. This is mani-
fested not only in the observation that increased pile aapleads to increased bending demands,
but also in the way in which the dependent variables from &metes relate to those from the other
Series for each respective pile. The fixity of the pile hea alffects the resultant behavior of the
soil-pile system during the lateral spreading event, tihocgytain trends are consistent in both the
free-head and fixed-head cases.

The degree of plasticity incorporated into the models alagga significant role in the resultant
behavior of the soil-pile system. Comparison between thieeSeand2 cases gives a feeling for
what happens when the piles yield. Similarly, comparisawben the Series and3 data allows
the effects of soil plasticity to be analyzed. The fully étgastic cases of Serigsoffer obser-
vations into the behavior of the soil-pile system when eleimién each medium display plastic
behavior. These observations are discussed in furtheit otetlhhe subsequent sections.

5.4.1 The Effects of Pile Stiffness on the Soil-Pile System

As the size of the pile increases, so does the bending sfide/, of the pile. The bending
stiffness of the pile is an important factor in defining howila peacts to a lateral spreading event.
More important, perhaps, is the ratio of the pile bendinifr&ss to the lateral stiffness provided by
the soil. For large pile-to-soil stiffness ratios, the bebrof the soil-pile system during a lateral
spreading event is governed primarily by the pile. ConJgrse this ratio becomes smaller, the
influence of the soil becomes more apparent in the overalilbehof the system. The piles can
no longer cut easily into the soil, instead the soil is ableetst the piles, increasing the curvature
demand and altering the locations of the maximum moments.

0.61 m diameter pile 2.5 m diameter pile
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Figure 5.5 Load distributions resulting from the lateral spreading ground motion for the
free-head Series 1 cases for 0.61-m and 2.5-m-diameter sle
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The load distribution plots of Figure 5.5, which show thediogy applied to the pile by the imposed
lateral spreading displacement for the Setiéi®e pile head cases for61-m and2.5-m-diameter
piles, typify the differences between small and large mlsoil stiffness ratios. It is important to
note that the load distributions shown in Figure 5.5 arethd$ that are felt by the piles over their
respective lengths. These loads are the result of both theusihing against the pile in the upper
layer and the pile pushing against the soil in the lower lalfehe pile-to-soil stiffness ratios for
each model were set to be equal, the resulting load disimisitvould be identical despite the
increased size of the larger pile.

For the0.61-m-diameter pile, which has a relatively small stiffnedsx,e¢he magnitude of the load
applied by the surrounding soil is much smaller than it istf@2.5-m-diameter pile.
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Figure 5.6 Deflected shapes of free-head piles for various s@s. (a) Series 1, 0.61-m-

diameter; (b) Series 1, 2.5-m-diameter; (c) Series 2, 0.6h-diameter; (d) Series

2, 2.5-m-diameter.
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This indicates that the stiffet.5-m-diameter pile is cutting further into the solil, activegimore
resistance from the surrounding soil elements. This is ooefil by the displaced shapes for these
two piles shown in Figure 5.6. In the entirely linear elaSeriesl case shown in Figure 5.6(b),
the 2.5-m-diameter pile remains almost straight during the de&dirom due to its high stiffness
ratio. The corresponding case for thé1-m-diameter pile shown in Figure 5.6(a) displays visible
curvature, indicating that the soil imposes larger cumeatind bending demands on the pile with
the smaller pile-to-soil stiffness ratio.

The elastoplastic pile in elastic soil Seriesases of Figures 5.6(c) and (d) accentuate this obser-
vation. Even with elastoplastic pile elements creatingaibkential for plastic hinge formation, the
displaced shape of the stiffer pile remains essentialfigitt and is much further from the imposed
displacement profile than the softer pile, providing vesifion that this trend is not isolated to the
entirely elastic cases.

The effects of the pile-to-solil stiffness ratio can also bersin the locations of the maximum
moments for each of the piles. As depicted in Figure 5.2 fa6&-m-diameter pile, the maximum
moments occur somewhat beyond the extents of the liquefjed [&he ratio of the effective length
of the pile, which is the distance between the maximum mosjeatpile diameter decreases as
the stiffness ratio decreases. This normalized compairstinates that the maximum moments
become closer together as the pile-to-soil stiffness demeases, thus creating a larger curvature
demand and a proportionally larger moment and shear deméhd pile.

The larger the ratio of a pile’s bending stiffness to therkltstiffness of the soil in which it
is embedded, the more the pile controls the overall behafitine laterally spreading soil-pile
system. Larger, stiffer, piles are better able to cut inegbil during the lateral spreading event.
As the pile pushes further into the soil, this leads to angased potential for yielding in the soil.
Additionally, the larger the stiffness ratio becomes, tirgér the potential for push-out of the solid
soils into weaker adjacent layers becomes.

A larger pile-to-soil stiffness ratio also sees increagsgdraction between the unliquefied and
liquefied layers. For a given soil stiffness, more unliquwkfieaterial is pushed into the liquefied
layer for a stiffer pile. The free surface at the top of the el@des similar behavior. As shown in
Figure 5.7, the soil is pushed out above the ground surfat¢kégile. The magnitude of this soil
heave increases with increasing stiffness ratio. As moliquefied material is pushed into both
the free surface at ground level and the liquefied interfdeesoil becomes less able to resist the
motion of the pile in those areas, increasing the pile deflestand the potential for failure of the
pile head connection during a lateral spreading event.

5.4.2 The Effects of Pile Head Fixity

The fixed pile head condition simulates a rigid pile cap oeo#tructure affixed to the top of the
pile, preventing the pile head from rotating. The free-heasks represent the opposite end of the
spectrum, piles which are not subject to significant rotetioesistance at the pile head connection.
In actual applications, the support or connection at treelplad will likely fall somewhere between
these two extremes, although the condition is often clas#ré fixed-head piles than not.
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Figure 5.7 Upward heave of soil elements at the ground surfacfor the Series 4 case with a
2.5-m-diameter pile (magnification factor = 1).

For all three pile diameters, the inclusion of a fixed pile ch@#o the lateral spreading model
results in maximum moment and shear force demands thateaegthan, or approximately equal
to, the demands resulting from the corresponding free-hases. The magnitude of the difference
between these extreme values is related to the pile-tes8fiiiess ratio. For theé.5-m-diameter
pile, which has a large stiffness ratio, the relative défeze between the maximum demands for
the fixed-head and free-head piles are significantly largealf analysis Series. For the other two
piles, which have relatively smaller pile-to-soil stifggeratios, the differences are less significant.

The addition of in-plane rotational fixity at the pile headn@ases the amount of curvature in the
pile in this layer, thus increasing the magnitude of the ltegyextreme moment. Additionally, for
larger stiffness ratios, the inclusion of a fixed pile heatlordy increases the extreme moment in
the upper solid layer of soil, it shifts the absolute maxinmaoment from below the liquefied layer,
where it was located in the free-head cases, to above thefiegllayer. The moment diagrams of
Figure 5.8 demonstrate this observation. Fa@riam-diameter pile, the largest curvature demand
occurs at the fixed pile head and the absolute maximum moneent®at this point. For &37-
m-diameter pile, which has a smaller pile-to-soil stiffeiestio, a large curvature demand occurs at
the fixed head; however, the soil in the lower unliquefied laygoses a larger demand, resulting
in the absolute maximum moment demand remaining below duefied layer.

The deflected shapes of each pile shown in Figure 5.8 supmerobservation. The lower half
of the 2.5-m-diameter pile remains almost perfectly straight thfoaug the lateral spreading de-
formation while there is visible curvature at the top of thie plue to the pile head fixity. For
the softer 1.37-m-diameter pile, there is visible curvatoccurring in both the upper and lower
portions of the pile and the bending demand in the uppergoisidue to a combination of the pile
head condition and the imposed soil deformation. In deguptieations, it would be conservative
to assume a fixed-type pile head condition if there is anycatibn that the pile may be less apt
to rotate at that location. Considerations to this end becmreasingly important for cases with
large pile-to-soil stiffness ratios.
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Moment distribution for 2.5 m pile Moment distribution for 1.3716 m pile
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Figure 5.8 Moment distributions and deflected shapes for théxed-head Series 1 cases with
2.5-m and 1.37-m-diameter piles.

Another interesting observation to be made with regardbeqoile head fixity is the location of
the extreme moments for the fixed-head cases. With the agoept the Seriesl case for the
2.5-m-diameter pile shown in Figure 5.8, the extreme momeritérupper soil layer is not located
at the pile head. The magnitude of the moment at the pile teeadtizero in these cases, but it is
not the largest value in the upper layer. Instead, the exdma@ment is located further down in the
layer, near the boundary of the liquefied layer, in a simaation as found in the free-head cases.
In the single case in which the extreme upper moment is ldctéhe pile head, the combination
of the large pile-to-solil stiffness ratio and fact that theséc soil is able to continuously pick-up
load results in the boundary condition, rather than thedatayer motion, thereby imposing the
largest curvature demand on the pile. In all of the othergabe fixity at the pile head causes the
extreme moment in the upper layer to move slightly upwardlendffecting little or no change in
the location in the extreme moment in the lower layer.
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5.5 THE EFFECTS OF PLASTICITY ON THE LATERALLY SPREADING SYS TEM

Including plasticity in the constitutive models for eithite piles or the soil creates a limit on the
amount of stress that can build up in either component ofatezdl spreading system. When the
pile yields, plastic hinges develop, exacerbating thectsfef the lateral spreading deformation
on the pile. Similarly, when the soil surrounding the pilelgs, no further resistance is offered
against the passage of the pile, leading to increased kgpddimands.

5.5.1 The Effects of Pile Plasticity

When the pile models are assigned elastoplastic behawan analysis Serie® and4, certain
new trends develop in the behavior of the laterally spragdoil-pile system. In general, the cases
run with elastoplastic pile models display smaller extranmement and shear demands than their
elastic-pile counterparts. Additionally, the locatioridlte extreme moments in each of the solid
soil layers move closer to the boundary of the liquefied lagading to a significant reduction in
the effective length of the pile. These general trends agsgmt for all three piles and for both
boundary conditions.

The decrease in the maximum moment and shear force magsiisi@dtributed to the inelastic
behavior in the piles. The bending stresses in the pilesaltieetlateral spreading ground motion
are significant enough to cause the piles to leave their cispelastic ranges, leading to a reduced
pile-to-soil stiffness over time. The reduction in thisoanhdicates that more of the stress generated
by the imposed displacement profile is carried by the soihel@s. The lower stiffness ratio also
indicates that the soil controls more of the behavior of theére system, resulting in piles that
experience far more deformation than in the elastic-pitesa

In the elastoplastic pile cases, the piles not only expedenore deformation than in the elastic
pile cases, this deformation is concentrated over a smatfigth of the pile. Essentially, the lateral
spreading ground deformation causes two plastic hingesueldp in the pile. This is illustrated
in Figures 5.6(a) and 5.6(c), which show the deflected shipebe free-head.61-m-diameter
pile cases for Seriesand2, respectively. Compared to the entirely linear elastiecasere the
deformation is spread out over most of the pile, the deflesteghe of the the Seri@scase shows
that the curvature demand is focused in two areas, one insgdichsoil layer. The tendency for
the pile to become inelastic allows the soil to control thetes, leading to a deformed shape that
is closer to the imposed displacement profile.

5.5.2 The Effects of Soil Plasticity on the Pile

To evaluate the effects of considering plastic behavioh@doil on the behavior of the pile, the
results of Serie$ and3 are compared. Seridsconsiders both the pile and soil to be elastic, while
Series3 considers the pile to be elastic and the soil to be elastopl&or each pile and boundary
condition combination, any differences between the resflSeriesl and3 can be assumed to be
attributable to the plastic behavior of the soil elements.
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To illustrate the differences between these two cases$,lam-diameter pile is used. This pile has
the lowest pile-to-soil stiffness ratio of the three pilesldaherefore shows the effects of plastic
soil in the most dramatic visual fashion, although the ol@yns made for this pile are consistent
across all three pile sizes. The results of the Series 3hiead, analysis for the 0.61-m-diameter
pile are shown in Figure 5.9. The plots shown are actuallgyfaimilar to the corresponding
plots for the Series 1 analysis shown in Figure 5.2, howdweretare some differences in certain
behaviors. The general shape of the shear, moment, and ilagohs are unchanged across the
two cases, although the results of the soil going plastiecai@ent in the more rounded shape of
the load distribution. Additionally, the effects of yieldj in the soil can be seen in the evolution
of the extreme moments in each layer. In the Seriease, the moments grow in an almost linear
fashion, while in the Seriescase there is visible nonlinearity in the moment history.

The main difference between the two cases is the increaseakinmmm moment observed in
the case with elastoplastic soil elements. The maximum mobinethe entirely elastic case is
2228 kNm. In the elastic pile with elastoplastic soil case, theximaim moment increases to
2569.3 KNm. The locations of the extreme moments in each layer after thetween the Series
1 and3 cases, with a larger effective length present for the eastil than that returned for the
elastoplastic soll.

This increase in maximum moment for the elastoplastic sailat limited to the free-head,61-
m-diameter pile cases. Similar increasesnax M between the Serieks and 3 results are also
evident for both the.5-m and1.37-m-diameter piles. Interestingly, as the pile-to-soiffséiss
ratio becomes larger, the increase in maximum moment beconwee significant. For larger
pile-to-soil stiffness ratios, the pile has an increaseguacdy for stress as compared to the soil,
suggesting the presence of a stress transfer from the gbiétpile in the elastoplastic soil cases.
The same type of increase in maximum moment occurs regarofi¢ise pile head fixity, and is also
evident between the Serigand4 cases where the piles are elastoplastic, though the condsy
decrease in it is not observed for the elastoplastic pile cases foothe-m-diameter pile.

5.6 VERIFICATION MODELS FOR PILE BEHAVIOR IN ELASTOPLASTIC  SOIL

In a traditional simplified analysis of a pile during a lalespreading event, the pile is modeled
as a fixed-fixed beam of length ;; undergoing a set end displacement. In this model, the length
of the beam is commonly estimated as the thickness of thefiepilayer combined with a pre-
scribed embedment length on either side of the liquefiedrlaysing this approach, which is
sometimes favored by structural designers, the maximum enbwccurring at either end of the
pile is estimated as

(5.2)

where E'1 is the bending stiffness of the pilé,; is the effective length of the pile, anfi is
the displacement at the end of the beam. If this model is crtiean it would be expected that
an increase irL.;; would correspond to a decrease in the maximum moment, justasserved
in the 3D simulations. This approach is overly simplistiomever, and can lead to poor design
solutions. The two simple beam models discussed in thisoseattempt to model the lateral
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spreading problem in a more accurate manner in order toyvalgerved behaviors and to gain a
better understanding of the problem in general.

The two simple models are shown in schematic form in Figut®.5The beams are fixed at one
end and have a slider capable of resisting rotations but isptatements at the opposite end.
Each model is has a unique load distributiotiz), which approximates the lateral spreading load
case with varying degrees of complexity. These models geoaimore reasonable approximation
of the type of loading that a pile embedded in laterally spireg soil would experience, while
remaining simple enough to solve by hand. It is of interestdtermine the relationship between
the magnitude of the applied loading, representegd imythe models, and both the effective length
of the beams and the maximum moment in the beams for a givestaodrend displacement.
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Figure 5.10 The two simple beam models used for verificationfoesults. (a) The first simple
model. (b) The second simple model.

5.6.1 The First Simple Model

The first simple beam model, depicted in Figure 5.10(a),nslar to the fixed-fixed model dis-

cussed previously in that it models a beam having a lengthléquhe effective length of the pile.

This means that the maximum moments are located at the erlds béam, while the shear force
at those locations is zero. The shear force will have a maxiraumid-span, while the moment
at the middle of the beam should be zero. This model essgnigiresents the region of the pile
located between the maximum moments, and does not conkieleegions of the pile that are
outside of this central region.

The loading assigned to the first simple beam model is a coindistributed load that changes
sign at mid-span. Due to the discontinuity in the loading, &pplied load must be represented as
two separate equations, one for each half of the beam, nitgggsthat the beam be solved in two
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sections. For this model, the governing differential eguradf bending can be written as

L
T —wyi(x)=—p for0<zx< )
El— = (5.3)
dzt L
—wq(x) =p for§<x<L

These expressions can then be solved in order to obtain spéadement of the beam under the
prescribed load case. The following expressions resutt fridiegrating Equation (5.3).

C C C
Elvy(z) = —%ﬁ‘ + Elx?’ + gxz + gx +cy (5.4a)

Elvy(x) = 2%x4 + C—é’x?’ + %xz + %x +cs (5.4b)

In order to solve for the eight unknown constants, four bamdonditions and four compatibility
conditions must be enforced. These boundary conditions are

vi(r=0)=0 (5.5a)
dol (5.5b)
dr |,_,
dual (5.5¢)
de |, _;
3
v, —er 2l g (5.5d)
dad | _;

The compatibility conditions, which describe the relasbip between the two halves of the beam
at the point where they meet, can be expressed as

vy <x = g) = Uy <x = g) (5.6a)

d’Ul dUg
— = — 5.6b
dx =1L dx =L ( )
2 2
d2’U1 d2U2
MLL/Q — EI W m_é - EI W :E_A - M27L/2 (56C)
=3 =
d3’U1 d3U2
Viep=El 5g|  =Elgg| =V (5.6d)
—2 2

Applying the boundary and compatibility conditions of Etjaas (5.5) and (5.6), the unknown
constants in Equation (5.4) can be determined. This resulise following expression for the

79



0.9¢ 1 09t 1 o09f
0.8f 1 08t 1 osf
0.7} 1 07f 1 07f
0.6f 1 0.6f 1 os6f
= osf 1 05} 1 05}
&
0.4f 1 04f 1 04f
0.3} 1 03t 1 03f
0.2} 1 02} 1 02f
0.1t 101t 1 o01f
0 1 1 O 1 1 O 1 1
-0.01 0 0.03 -0.4 0 -01 0 0.1
AET 1% M
pL* pL pL?
Figure 5.11 Displaced shape, shear diagram, and moment dieggn for the first simple
model.

displacement in the beam for the first simple model

o 2 B 2 -
va(w) = 1§2LEI [8 (%)4 - 32 <%>3 + 36 (%)2 -8 <%) + 1} (5.7b)

The displaced shape for the first simple model described matan (5.7), along with the cor-
responding expressions for the moment and shear in the kaanplotted in Figure 5.11 using
the shown dimensionless parameters. As shown, the maximomemts in the beam occur at
the boundaries of the model and the maximum shear force ®acuhe middle. This coincides
with the intention of the first simple model to represent ahly effective lengthL., of the pile
subjected to the lateral spreading load case.

The maximum displacement, as shown in Figure 5.11, occulegiositionr = L. Substituting
this into Equation (5.7b) defines the end displacem&ngs

~ 5pL*
- 192ET

wherep is the magnitude of the applied loafi/ is the beam stiffness, andis the beam length.
Recalling that for this simple model, the length of the bearadual to the effective lengtl,.;/,

A=, (L) (5.8)
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for the lateral spreading load case, Equation (5.8) candreaigged in order to obtain an expression
for the effective length of the beam in terms&f p, andE'1.

192E1A\ %
o= (557) 9

The maximum moment in the beam can be determined in a simdaner. Evaluating the moment
equation atr = L gives an expression for the absolute value of the maximumenoim the beam
of the form 12
% (5.10)
The expressions developed in Equations (5.9) and (5.10bearsed to explore the relationships
between the effective length and maximum moment of the beiimtlae magnitude of the applied
load.

max M =

5.6.2 The Second Simple Model

The second simple model expands the relatively basic cometpnd the first model to include a
beam that represents the entire length of the pile in thedlspreading model and a distributed
loading that varies in magnitude with position. The secantpke beam model is schematically
depicted in Figure 5.10(b). In a way, this model is a roughraxmation of the load distribution
resulting from the imposed displacement profile of the 3@rkitspreading model in the cases
where the piles are entirely elastic. Notice the similaafythis assumed distribution to that re-
turned from the2.5-m-diameter pile in elastic soil shown in Figure 5.5.

As with the first model, the base of the beam is fixed while th@sng end of the beam is assigned
a slider. In the second simple beam model, the maximum mowi#miot occur at the ends of the
beam, instead, the moment should be zero at the ends. Thenomaxinoment will occur at some
location between the mid-span and end of the beam, with taetéacation depending upon the
assigned beam and load parameters. The shear force in tmesheald still be zero at the ends
and have a maximum at the center of the beam.

The distributed load acting upon the beam varies linearly wosition, increasing in the lower
section of the beam from a somewhat arbitrary valuengf at the base to a value pfat mid-
span. This loading pattern is then mirrored in the seconicdofitthe beam, with the load increasing
linearly from a value of p at the center tarp at the top. To increase the generality of this model,
the coefficienty is used to represent a constant loading factor suchitkatnr < 1. For most of
the post-processing associated with this modek, 0.5.

As with the first simple model, there is a discontinuity in tbading at mid-span. For this reason,
the beam must be represented by two sets of equations, eatihgrnly over its respective half

of the beam. For the second simple model the governing diiteal equation of bending can be
written as

L
g —ws(x) = =2p(1 + oz)% + ax for0 <z < 5
E]W = (5.11)
x x L
—wsy(x) :—2p(1+oz)z +p(2+a) forE <z<L

81



Integrating these expressions to obtain the displaceni¢hédeam results in

Elvl(x):—60—L(1+a)x +24ax + Gx + 2x +§x+c4 (5.12a)
c ¢ c
Elvy(z) = — 60L(1+a)x +24(2+a) +€x3+§x2+§7x+08 (5.12b)

For the second simple model, the boundary and compatiloiiditions are unchanged from the
first simple model, a fact that can be verified through exationaof Figure 5.10. Therefore,

Equations (5.5) and (5.6) are applied to determine the umknoonstants of Equation (5.12),
resulting in the following expressions for the displacedshof the beam

i (z) = 250%1 41+ a) (%)5 +10a (%)4 +5(1 - 20a) (%)2 (5.13a)
vy(z) = ggOL;I - 16(1 + a) (%)5 402+ @) (%)4 160 (%)3
+20(7 — 2a) (%)2 40 (%) +5 (5.13b)

The displaced shape and distributions of shear force andifigmoment in the second model are
shown in Figure 5.12 using the shown dimensionless paramelée coefficienty is assigned

a value of one-half. These plots verify that the second ssmmpbdel accomplishes its goal of

approximating the loading applied to a pile in the lateralesging model. The shear force is
zero at each end with a maximum in the center of the beam, andnttiment has maximums

where the shear is zero, occurring at a location betweendhieicand the end of the beam. The
distributions of both moment and shear for this model amyfaimilar to those developed in the

lateral spreading model The results from the simple models®re uniform due to the prescribed
load distribution, but they share the same general shageastore complex counterparts.

An expression for the end displacemeft,occurring at the positiom = L (the top of the beam),
is determined from Equation (5.13b) as
(9 — 16a)pL?
A= —r——— 14
960F T (5-14)

To determine the effective length for the second simple halde location of the maximum mo-
ment is computed in each segment of the beam. This is accsimeplby determining the locations
in which the shear force is zero. These locations are

« 1
& = o for0 <& < 3 (5.15a)
& = L for1<§<1 (5.15b)
2—1+a 2 1 .
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Figure 5.12 Displaced shape, shear diagram, and moment dieggn for the second simple
model.

The effective length of the beam is found as

% :min{l,min {527%}} —max{O,min {fb%}} (5.16)

which defines the effective length for any value of the coigffitc. The maximum moment in
the beam is determined by evaluating the moment equatidre gireviously obtained locations of
maximum moment. For values afwhich satisfy the conditions of Equation (5.15), the maximu
moment in the beam can be expressed as

pL?a? pL?

M = 1-2 A7
max 6(1+a)2+ 24( a) (5.17)

5.6.3 Observations

When elastoplastic soil elements are used in the laterabgprg model, there is a limit to the
amount of resistance the soil will provide. In the areas wheelding occurs, such as near the
liquefied layer, the load on the pile increases as the contee between the soil and pile increases
in length. In the simple models, this behavior could be repnéed as an increase in the magnitude
of p. In order to gain insight from the two simple models, plot® afrsus the effective length of
the beam ang versus the maximum moment in the beam are made for each sieaie model
for a constant end displacement,
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Figure 5.13 Normalized relationships betweerl. s, max M, and p for the two simple mod-
els.

The plots of Figure 5.13 show the variation in the key bendhiagameters, effective length,;/,
and maximum momentpax M, with the magnitude of the applied loading,for a constant end
displacement ofA = 1. In all of the plots of Figure 5.13, dimensionless analysisised to
allow the curves to be shown in a normalized manner. For asing values op, the effective
length of each model decreases while the maximum momeneimtidels increases. This is the
same behavior observed for all three elastic pile modelben3D lateral spreading simulations,
attainable from models easily solved by hand.

It has been shown that the two simple beam models are ableptoxamate the behavior of the
piles in the three-dimensional lateral spreading modethBagures 5.11 and 5.12 show moment
and shear diagrams that are reasonably similar to the mcemenghear diagrams resulting from
the lateral spreading model. With this reassurance, itnslcaed that the behavior of these models
is representative of the behavior of the piles due to the sagalisplacement profile. The observed
tendency for increasing maximum moment and decreasingtigdength for increasing magni-
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tudes of the applied load distribution in the simple modelsfies that the lateral spreading results
are reasonable while also offering a mechanism for thissbehal hese models may also be useful
as a quick method to predict approximate demands for a pilgsuto lateral spreading.

5.7 SUMMARY

During a lateral spreading event, an embedded pile founn&tindamentally alters the deforma-
tion of the soil system while simultaneously undergoingodefation of its own. Many factors
contribute to the resultant behavior of the pile and theaurding soil, among them the bending
stiffness of the pile as compared to the lateral stiffnegh@foil, the ultimate strength of both the
pile and the soil, as well as the degree of fixity at the extehtke pile.

When the soil-pile system is modeled as entirely lineartielaBindamental behavioral mecha-
nisms can be observed in the system. As the lateral moverhémt apper soil layer progresses,
the pile embedded in the soil is pushed in the direction of.flD@pending upon the magnitude
of the ratio of the pile’s bending stiffness to the laterdffrs¢ss of the soil, the pile also offers

resistance to the lateral flow of soil, with greater resiségporovided by those piles with the largest
stiffness ratios. The bending demands which are genenatdetipiles follow consistent patterns
for all pile sizes with the maximum shear force demand deielpat the center of the liquefied

layer due to the change in sign of the applied loading, andidgémum moment demands falling

somewhat outside the boundaries of the liquefied layer, aithextreme value in each of the two
solid soil layers. The distance between the maximum monugfises the effective length of the

pile, L.; ¢, a parameter which provides an indication of the severithefbending demand.

By altering the soil constitutive model to consider plastéhavior, the amount of load that the
pile must carry increases, leading to increased bendingaddsnwhen compared to the linear
elastic models. This phenomenon has been verified throwghdé of simple beam models. In
addition to changing the relationship between the pile &edsbil, considering elastoplastic soil
behavior allows for the observation of the ways in which thealer liquefied layer affects the
surrounding solid soil layers. As the pile is pushed intogbig the solid soil near the boundary of
the liquefied layer is able to be pushed into the adjacenefigd layer, thus effectively reducing
the lateral resistance of the soil in the regions near theefigd layer. This final aspect of the
behavior observed in the system is critical to the latere¢aging problem and is explored further
in Chapter 8.
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6 Computation of Representative p—y Curves
from the Three-Dimensional Model

6.1 INTRODUCTION

In current geotechnical engineering practice, it is comnooanalyze a pile foundation subject to
lateral loads as a beam on a nonlinear Winkler foundatiois. therefore of interest to develop a
lateral spreading analysis procedure that is compatilte this current design paradigm. Repre-
sentativep—y curves are computed from 3D FE analysis in order to evall@pplicability of
this approach to the lateral spreading problem. To thisgeepa reliable method for computing
thep—y curves must be established.

The computational process includes identifying the appatg data recorded during the 3D sim-
ulations as well as evaluating the effects of various factorthe resulting —y curves. Investiga-
tions are made into the ways in which the pile deformatiotegpat(pile kinematics), the selective
mesh refinement scheme employed in the models, and thedoaattithe fixed boundaries af-
fect the computegh—y curves. It is determined that all three of these factors rsftaantial and
solutions to properly handle their respective effects aoppsed.

6.2 COMPUTATION OF FORCE AND DISPLACEMENT HISTORIES

Computing a set o —y curves from the 3D FE model requires knowledge of the forakdis-
placement histories for the pile nodes. The general contiputd process is shown in Figure 6.1.
The forces exerted on the pile by the surrounding soil arerdened directly from the beam-solid
contact elements (Petek, 2006), which integrate the 3Dfate tractions applied by the soil to the
outer surface of the pile into a force vector at each pile n8yerecording this vector, the resultant
force components acting in the direction of loading are @efiat each of the pile nodes.

Due to the symmetry condition present in the model, the madas of these force components re-
flect only one-half of the full pile circumference. To obta@sults consistent with the full diameter
of the piles, these forces are doubled. In order to obtairhAredependent values, each force must
also be normalized by the tributary length of pile over whitdcts. For each respective pile node,
the tributary length is defined as half the distance to thacaljt pile nodes in either direction. For
the end nodes, the tributary length is half the distanced®the adjacent node.
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Figure 6.1 Computation of p—y curves from the 3D FE model.

The desired displacement for generatiomefy curves representative of the soil response is the
differential displacement between the pile and the soithtncase of the lateral spreading models,
the displacement values recorded directly from the pilenatea measure of the distance that the
pile is pushed into the surrounding soil, but a measure o&tteal displacement experienced by
the pile. To obtain the displacement of the pile relativeh® surrounding soil for this case, the
imposed far-field soil displacement profile is subtractedfthe pile displacement profile recorded
by the model, as schematically in Figure 6.2. For analysesinh all or part of the pile is directly
pushed into the surrounding soil, this subtraction prooedsi not required as the recorded pile
displacements are the relative displacements betweenl¢hanal the surrounding soil.

p-y displacement

undeformed pile/i

centerline

imposed soil
displacement
profile

pile displacement
profile

Figure 6.2 Determination of displacements suitable for usén p-y curves for the lateral
spreading case.

88



11w

e

() (b) ©

Figure 6.3 Pile kinematic cases. (a) Lateral Spreading; (bjJop pushover; (c) Rigid pile.

6.3 CONSIDERED KINEMATIC CASES

Three separate pile deformation patterns are considedén to provide a means to evaluate the
effects of varying pile kinematics on the-y curves resulting from the FE analysis. These cases
include the following: (1) a lateral spreading case, Figbu®a), which is the primary focus of
this research; (2) a top pushover case, Figure 6.3(b), imgtthe type of test used to empirically
derivep—y curves; and (3) a rigid pile case, Figure 6.3(c), in whichphe is pushed a uniform
lateral distance into the soil.

The top pushover case simulates a displacement contrafiechl load test. The top node of the
pile is displaced laterally in the symmetry plane while @Her pile nodes are free to translate and
rotate in this plane. The pile head is left to rotate freelpisTkinematic mode results in large

deformations near the surface and small deformations atgrdepths. For the rigid pile case, all
pile nodes are translated laterally into the soil withotation; the remaining boundary conditions
on the soil are unchanged.

All three kinematic cases are modeled using the FE mesh uséei3D lateral spreading sim-
ulations. The piles are modeled using the linear elastimédation discussed in Section 3.4.
Elastoplastic soil behavior is considered using the Dru€kager constitutive model discussed
in Section 4.4. All three of the template pile designs aresatered.

6.4 CURVE-FITTING STRATEGIES

The p—y data returned from the simulations is a set of discrete paipresenting the force,
normalized by element length, applied to the pile at spewticies of displacement. In order
to manipulate and analyze this data mathematically, cumvest be fitted to the data points to
obtain smooth and continuous functions that describepthg curve at each node. To this end,
a least squares curve-fitting strategy is employed for tvpausge functional forms, a polynomial
function and a hyperbolic tangent function. The polynonfigction is utilized to estimate the
initial tangent for thep—y curves, while the hyperbolic tangent function is used tccdbes the
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shape of they—y curves and to define the ultimate resistance of each curveauBe the forces
and displacements may be positive or negative, dependimg tine specific deformation pattern in
each case, the absolute values of the forces and displatearerused for curve-fitting purposes.

6.4.1 Hyperbolic Tangent Function

A hyperbolic tangent function is chosen to allow direct camgon to the APl (1987) recommen-
dations, which describe the shapepefy curves for cohesionless soils using this functional form.
The fitted function has the form
kz

p(y) = p, tanh (— y) (6.1)
in which z is the depth and the parameterwith units of force/length affects the slope of the
function. Equation (6.1) defines the two characteristi@apaaters used to compare and evaluate
sets ofp—y curves: (1) the ultimate lateral resistange; and (2) the initial tangent stiffness,
ky = dp(y)/dy\yzo.

Least squares is used to determine the consigrasdk for thep —y data at each pile node. For
Equation (6.1), the residualy, at each pile node can be expressed as the difference betieen
value returned from the simulation and that estimated bytiee-fitting function.

kz
r; =p; — p,tanh (p_ yj) (6.2)

The best fit for the data is achieved when the error is at a numimFor this problem, the error
function is obtained as

E(py, k) = Z %T? = Z {pj — p, tanh (? yj)} (6.3)

The error is at a minimum when its gradient is zero. Becausesthre two parameters, it is
expedient to perform the solution in vector form by definihg ectorA with two components
A, = p, and\, = k. The gradient equations can thus be written in terms of thesor, \, as

o€ Or;

The necessary derivatives of the residual with respectéawvio parameters, and A\, can be
expressed as

or; 0Or; kz kz kz

N Ope e <pu y]) o ( u y]) ’ (©9)
87’]' o 07“]' . kz o

Dy Ok 2Yj secH (pu yj) =0 (6.6)
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Due to the nonlinear nature of Equations (6.5) and (6.6)teaative procedure must be employed
to obtain values for the unknown parametersandk. For a known value oA’ in the current
iteration, a Taylor series expansion is used to estimateahm ofp(y) in the next iteration as

p(yy A) ~ p(yy AZ) + Z sz‘AAz (6.7)

in which A’ contains the values of, and )\, in the current iterationAX = (A, A),)” is the
change in\ between iterations, and the Jacobidyhas components
or;

Jy; = "o, (6.8)

Plugging the result of Equation (6.7) into the residual give
o=y =y A = T AN
= Ay, —J-AX (6.9)
Applying this result to the minimization problem Equatidn4) leads to
JTIAN = JT Ay (6.10)

from which appropriate values for the component& ghe parameters, andk, can be determined
by iterating with a Newton-Raphson procedure until the g@etconvergence criterion is met. For
the presented results, the process continues to iterate unt

AN,
—1 < 0.001 (6.11)

J

An example of thep—y curve data extracted from the 3D FE model and the associdted fi
hyperbolic tangent curve is shown in Figure 6.4. As showa,averall fit is good, however, the
initial tangent indicated by the data is not represented ethe initial tangent of the hyperbolic
tangent curve. Due to this observation, a polynomial fuorcts fit to the initial data in order to
better resolve the initial stiffness represented by thepdedp —y curves.

6.4.2 Polynomial Function

A cubic polynomial is fit to only the first several points of they curve data, ensuring that the
initial tangent is accurately captured. The selected cpbignomial has the form

p(y) = a1y + azy® (6.12)

in which coefficientsz; andas are constants determined by least squares. The coefficiaat
the initial slope of the curve. Taken in the context of-ay curve, this parameter provides a good
representation of the initial stiffnegss;.
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Figure 6.4 Example of computedp—y data with fitted initial tangent stiffness and hyper-
bolic tangent curve for a 1.37 m diameter pile.

The least squares fit procedure seeks to minimize the ematiéun, &, defined as

£(0) =3 5oy~ ply)f (6.13)

J
wherep; andy; are the values of force density and displacement, resgdgtiketurned from
the model at a given node for time st¢pandp(y;) is the chosen curve-fitting function [i.e.,
Equation (6.12)] evaluated at each of the valueg,ofFor a cubic polynomial, the error function
can be expressed as

1
&= Z 2 [pj —MmyY; — asy?f (6.14)
J

This error function is minimized by computing the derivasvwith respect to both; andas,
setting these to zero, and solving for the unknown constafke resulting equations have the
form

o€

D =0= Z (=Pk + a1yx + azyr) Yx

K
= a1y yitasY yi= Y Prlk (6.15)
K K K

o€

—0= 3
das 0= Z (=pr + a1y + azy) Y,

k
= aa Y yitasd yi=> pi (6.16)
k k k

from which the unknown constanis andaz can be determined using
{al }: [zyi zyé}‘l{ zpkyk} 6.17)
as SYr 2 Up > oy
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An example of the fitted initial tangent stiffness providedthe cubic polynomial is shown in
Figure 6.4. This stiffness is a much better representatidheinitial tangent indicated by the
data. For all subsequent discussion, it can be assumedthegfarence made to the initial tangent
stiffness,k, of thep—y curves refers to that obtained using the cubic polynomidllv&lues of
the ultimate lateral resistange,, are determined from the fitted hyperbolic tangent funation

6.5 EFFECTS OF PILE KINEMATICS ON COMPUTED p-y CURVES

The rigid pile case, Figure 6.3(c), is used as a benchmankalo&te the effects of pile kinematics
on p—y curves. This case eliminates the influence of pile defolwnatin the computed curves
and activates the soil response consistently at all defthep —y curves resulting from the lat-
eral spreading, Figure 6.3(a), and top pushover, Figur@)l.8ases are generally comparable to
those resulting from the rigid pile case, however, in cartacations the curves deviate from the
benchmarks. This observation underscores a potential flahvei assumption that representative
p—y curves can be extracted from the 3D finite element model witbrception and identifies the
need for a more careful approachpte y curve computation.

The lateral spreading, Figure 6.3(a), and top pushoveur€ig.3(b), cases are compared to the
benchmark case with respect to and initial stiffness rdtjorétio), and a lateral resistance ratio
(LRR). The initial stiffness ratio is computed by dividiniget initial tangent stiffness;,, in the
variable kinematic cases, i.e., top pushover and laterabsing, by the corresponding valueiof

in the rigid pile case. Because there are locations at wiieldisplacements are very small and
little soil resistance is mobilized, ultimate lateral stances are not compared in this study.

The LRR compares the resistance provided at a specifieddélaieral displacement for a given
kinematic case to that provided at the same level of dispiace for the benchmark case. This
comparative means was used in a similar manner by Yang aathite2005) in their work with
3D FE analysis of layered soil profiles. An example of how tiRRLworks is illustrated in Fig-
ure 6.5. Four displacement increments are investigatedisnstudy in an effort to gauge how
the relationships between the curves may vary over time.LRf is computed at displacements
equal t00.5%, 1%, 2%, and4% of the pile diameter in each respective case.

p A

)2 iy S

Figure 6.5 The lateral resistance ratio, LRR, is the ratio ofthe soil resistance values com-
puted in two referencep—y curves at a prescribed value of displacement.
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Table 6.1 Overview of the four considered kinematic compagon cases.

Rigid | Top Pushover Lateral Spread
Homogenous Soill X X
Layered (Liquefied) Soil X X

Table 6.1 provides a brief overview of the four kinematic gamson cases considered for each pile
diameter. The top pushover case is run in an entirely honmegensoil system, while the lateral
spreading case is run in the three-layer liquefied soil mdabelussed previously. The results of
these two variable kinematic cases are compared to a rigdapalysis in a corresponding soll
profile.

Computed:; ratios and LRR’s are presented in Figures 6.6 and 6.7 fohthkateral spreading and
top pushover kinematic cases, respectively, for a 1.37tamelter pile. These results are typical of
all considered piles. The evolution of the differentialpdéeement between the pile and the soil is
included to provide a context for the deformation patterthwlepth. The depth and displacement
scales are normalized by pile diameter.

If the resistance indicated by tipe-y curves depended only on relative soil-pile displacement, a
assumed in the Winkler model, both tke ratio and LRR would be equal tb0. Figures 6.6
and 6.7 show that thee; ratio and LRR deviate significantly from0, hence, there are significant
differences in the —y curves computed from the different pile kinematics.

Aside from the top few diameters of the top pushover compasswhich are affected by interac-
tion with the free surface, areas in which the displacenelarge show good agreement between
the respectivey—y curves. However, significant deviations occur in the areashich the dis-
placements are relatively small. At a particular depththe curves for the lateral spreading and
top pushover cases vary with respect to the rigid pile reqadsed upon the magnitude of the pile
displacement and how this displacement changes duringhtdgsas.

Similar observations are made when looking at comparisetwden the actual—y curves com-
puted from the simulations. A selection of compugedy curves for a 0.61-m-diameter pile is
shown in Figures 6.8 and 6.9. As shown, there are locatiomgioh the curves match well and
locations in which they do not. These plots also demonstheténadequacy of the top pushover
and lateral spreading cases in the activation of the ulémegistance of the soil, leading to the
conclusion that a reasonable estimate,pis not possible for these cases.

Differing results for different kinematic cases are obsérfor all three pile diameters. The areas of
greatest divergence do not occur at the same depth foretiff@iles, therefore, depth or meshing
effects can be ruled out as the causes of the difference.llFeases, the only difference between
the compared analyses is the pile kinematics, thus, thenaatdifferences must be attributable to
this factor. An explanation for this observation is offetgdway of the Betti-Rayleigh theorem of
reciprocal work (Megson, 2005).
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Figure 6.6 Comparison of the lateral spreading kinematic cae to the rigid pile case for a
1.37-m-diameter pile. Both analyses use a three-layer liggfied soil system.
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Figure 6.7 Comparison of the top pushover kinematic case tohe rigid pile case for a a
1.37-m-diameter pile. Both analyses use homogenous soibjfites.
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Figure 6.8 Computedp—y curves from the top pushover and rigid pile cases in homogemus
soil for a 0.61-m-diameter pile. The fitted initial tangentsare shown for each
case.
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Figure 6.9 Computedp—y curves from the lateral spreading and rigid pile cases in non
homogenous soil for a 0.61-m-diameter pile. The fitted initil tangents are shown
for each case.
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6.5.1 Betti-Rayleigh Theorem of Reciprocal Work

The Betti-Rayleigh theorem of reciprocal work is a prineipthich relates the work done by two
separate load cases acting on a linear elastic body. Conkglelastic body of Figure 6.10 which
depicts two separate load casBaandQ, acting on the same points of the body, and their respective
displacementss andv.

Py

P3
caseP caseQ

Figure 6.10 Two separate load case® and Q, with respective displacementsu and v,
applied to the same points on a general elastic body.

The reciprocal theorem states that the work done by I&#gdshen moving through the displace-
ments produced by loadg; is equal to the work done by loady; when moving through the dis-
placements produced by loaBs (Megson, 2005). The Betti-Rayleigh theorem can be expdesse

using the dot product as
ZPi'Vi = ZQJ'“J' (6.18)
i j

6.5.2 Application of the Betti-Rayleigh Theorem

To apply this theorem to the problem of a laterally loade@,gilis convenient to designate load
caseP as the nodal forces applied to a pile havingiodes as its passage is resisted by the sur-
rounding soil, indicating that is the corresponding vector of nodal displacements. Thestha
terms that are related to each other to generatg thecurves at each pile node. If load cads

a unit load applied at an arbitrary node,on the pile, therv represents the corresponding nodal
displacements for this load and (6.18) can be written as

Py, + Pyvy + ... Pu, = u; (6.19)
from which a full set of equations can be written, in matrirfo as
[A{P} = {u} (6.20)

in which P carries the lateral pile forces, contains the lateral pile displacements, and the com-
ponentsA,; are the displacements at each naderoduced by a unit load at node Solving
Equation (6.20) for the nodal forces results in

{P} = [A] {u) (6.21)

98



which can be evaluated for the forde, acting at an arbitrary nodeas

P = Aj_llu1 + Aj_21u2 + .. A (6.22)

Jjn “'n
—1 -1
whereA;;" represents the components{af/ ~.

The effects of pile kinematics on the-y curve extraction procedure can be drawn from Equa-

tion (6.22) by considering what happens when the displanéatenode;j is varied in each kine-

matic case. In the top pushover and lateral spreading dasess large, the force acting at noge

is largely dependent upary as the contribution by the termj‘jluj in Equation (6.22) is dominant
Py = Ajtuy 4+ A uy+ . A

~ A-1

Uy, A (6.23)

In this case, the assumption that there is a one-to-oneamsfiip between the force and dis-
placement at a node is relatively good, even though it ikatilapproximation. The regions of
Figures 6.6 and 6.7 in which the. and lateral resistance ratios are nearly unity coincida e

areas in which the displacements are large, thereby supganis explanation.

In contrast, great divergence betweenhe, curves returned by the rigid and top pushover cases
is observed in the regions where the displacements of teeapdl small. Ifu; is small, then the
contributions to the force acting at nodéoy the other terms in Equation (6.22) are no longer
insignificant, meaning that at such a point, the assumpti@nlacal force-displacement relation-
ship is relatively poor. This effect is exacerbated whendisplacement at a particular node is
small compared to adjacent nodes at which the coefficienita joére relatively large. An exam-
ple of this is most clearly made by looking at the middle sewiof the lateral spreading cases.
The nodes that are very near the center of the imposed despkat profile do not tend to move
much during the entire process. The nodes just outside®frilddle region undergo considerably
larger displacements into the surrounding soil, thus #ffgahe results for the nodes in the middle
region.

6.5.3 Proposed Solution to the Problem of Pile Kinematics

The findings discussed above suggest that the kinematibs pfle strongly influence the resulting
p—y curves for the variable pile kinematic cases and this musbisidered when attempting to
define a set of curves suitable for use in the analysis of argkpide deformation. The selected
p—y curves should reflect only the response of the soil, not a amatibn of the soil and pile
responses. The pile response effect should be capturea imyitherical model of choice.

In the rigid pile case the displacements at each node ard¢igdéenin the context of the Betti-
Rayleigh theorem, this indicates that the coefficientsAdfare the determining factor in the force
applied at a given node. This creates a situation wherebgdbemption of a direct relationship
between the forces and displacements at the individualsisdelatively good, afA| is diagonal
dominant. This observation, and the fact that the pile da¢sdaform, indicates that the rigid
pile case produces—y curves that are not influenced by pile kinematics. Therefiiese curves
reflect only the response of the soil. This is the benefit of3beFE analysis in comparison to
full-scale field experiments. It will be shown that-y curves obtained from this pile kinematic
produce reasonable results when applied to lateral sprgadi
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6.6 EFFECTS OF SELECTIVE MESH REFINEMENT ON COMPUTED p-y CURVES

Examining the results for each of the kinematic cases, ibg&eoved that there are fluctuations in
the distributions of initial stiffness;,, and ultimate lateral resistange, with depth in the location

of the liquefied layer. This behavior is present in all cagesfar all piles, even those in which the
soil profile is entirely homogenous. Figures 6.7 and 6.6 lwe/the ratios of two cases run using
the same selectively refined mesh and therefore do not glispialar fluctuations. While these
ratios are valuable evaluation tools, the actual valueseturve parameters must also be verified
as sensible, otherwise any conclusions drawn from thesratie meaningless. In order to gain
confidence in the computed-y curves, the cause of the fluctuations must be discerned.

It is hypothesized that the selective mesh refinement scieresponsible for altering the results.
The areas of inconstancy in the parameter distributiongspond not only to the location of the
liquefied layer, but to the areas of differential mesh refieetnBecause the failure of a cohesion-
less soil is governed by shear, it seems sensible to assathehsize of the elements will affect
the perceived stiffness that the elements display towdwidddilure mechanism. For example, in
the wedge-type soil failure mechanism that is common at@hat depths, all of the gauss points
that are aligned with the failure surface must have reacled in their associated constitutive
models for the model to display the global behavior. Chagglre vertical size of the elements
changes the spacing of the gauss points and may alter theemwihdpauss points that must expe-
rience local failure in order for the global failure to occtlnus, altering the response of the soil as
a whole, and, subsequently, the compyied, curves.

In order to test the hypothesis that the selective mesh meéneis responsible for the observed
fluctuations in soil response, a uniform mesh is generategdfch of the piles. This uniform mesh
has the same outer dimensions and layout as the selectfelgd meshes, however, the soil and
pile elements are all uniformly sized in the vertical direst Two rigid pile cases are run using
this uniform model, one in a homogenous soil profile, and tinerin a three-layer soil profile
with a liquefied center layer. Figure 6.11 shows the distidms of k. andp,,, respectively, over
the length of a 1.37-m-diameter pile in homogenous soilgudie uniform and selectively refined
meshes. As shown, both the stiffness and resistance valigtgdte in the center of the pile for
the selectively refined case. The uniform case does notagispmilar behavior. Instead, the
distributions resulting from the uniform mesh are smootérdtie entire length of the pile. These
results support the hypothesis.

A solution is proposed to smooth the soil response in theckeddty refined cases by using the
results of the uniform mesh cases. This solution is propasdigu of running all previously
analyzed cases a second time, using a uniform mesh, in aydalotdin smooth soil response
while simultaneously losing the valuable mesh resoluticha liquefied interface. Instead of that
laborious pursuit, the selectively refined results are sheted through multiplication with the
ratio of the uniform and refined results obtained from a rigileé in homogenous soil for each
diameter. This proposed solution also allows for furtheifieation of the hypothesis that the
selectively refined mesh scheme is the cause of the fluchsatiocsoil response.

Figure 6.12 shows both the original and smooth distrib@timfrinitial stiffness and ultimate lateral
resistance for several kinematic cases. For the ultimatstamce, only the rigid pile case is
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considered due to the inability of the alternate kinemadises to fully activate the soil response
at all depths. As shown, the smoothing process, involvieg #tios obtained using the rigid pile

cases in homogenous soil profiles, is able to remove the #tions in the parameter distributions
for each of the alternative pile kinematic cases.

Though the stiffness distribution itself is suspect forsas related to the pile kinematics, Fig-
ure 6.12(c) illustrates well the effect of the smoothinggaure. The presented case is a top
pushover in an entirely homogenous soil profile. There acgfations in the data set in the area
where the mesh is more refined (centered approximately gita dé14 m). Through multiplying
the initial stiffness distribution from this top pushovexrse by the ratio of the uniform results to
the selectively refined results for the rigid pile case, tftemnsistencies in the results are removed,
creating a smooth distribution through the depths encosgublsy the increased mesh resolution.

The results of Figure 6.12 demonstrate the effectiveneslseofmoothing procedure and verify

the validity of the hypothesis with respect to the selecthash refinement. The use of a selec-
tively refined mesh can affect the results of a 3D FE simutatbnit through careful diagnosis and

recognition, these effects can be nullified in a relativélgap and simple manner.

6.7 BOUNDARY EFFECTS ON SOIL RESPONSE

The FE models generated for the studies performed in théesrel are intended to include suffi-
cient lateral extents such that the results are relativeffacted by the fixed boundaries on the
outside surfaces of the mesh. In order to gauge the signigcafithe fixed boundaries on the soll
response recorded in the models, a new mesh is generated)hiasreased lateral extents. This
extended mesh is shown in Figure 6.13. The extended mestsshiyout with the standard mesh
used in the other aspects of this research, however, thelspients are extended for an additional
ten pile diameters in the direction of loading. By incregsihe amount of soil between the pile
and the fixed boundary, it is expected that the effects of tmbary on the lateral response of the
soil profile can be discerned. All of the analyses discussedih involve the rigid pile kinematic
case.

The distributions of the characterisgie-y curve parameters are plotted in Figure 6.14. As could
be expected, the initial stiffness values returned fromitiemeshes are very similar. The prox-
imity of the boundary should not significantly affect thepesse of the soil at such low levels of
pile displacement. The differences between the two digiobs are easily attributable to minor
variations in the meshing around the pile between the twoeisod he ultimate lateral resistance,
however, displays a reduction in magnitude for the extemaesh case as compared to the standard
mesh case. This result confirms the suspicion that the fixaddary is able to affect the results
of the laterally-loaded pile models, at least with regaaihe ultimate resistance provided by the
soil elements.

The value ofp, returned by the models reflects the maximum load that thecpiheexert on the
soil before failure. This parameter is directly related ddure of the soil surrounding the pile.
The Drucker-Prager plasticity model has a pressure-degettyield surface, indicating that as the
confining pressure on a particular element increases, thareorresponding increase in the yield
capacity for that element. This indicates thpatshould increase with either increasing depth or
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Figure 6.13 Laterally-extended mesh for 0.61-m-pile desig

with increasing confining stress. As the pile is pushed &diterthe soil elements must deform to
accommodate its passage. At shallow depths, the overbstdess is relatively small, thus, the
soil elements are pushed outwards and upwards by its pasBagelistribution of this soil heave
extends well in front of the pile, and to the side as well, Bsirtated in Figure 6.15, which shows
the distribution of vertical displacement in the soil in apliew.

At increased depth, the overburden pressure in the soilesiestbecomes larger due to both the
self weight of the soil and the active pressure provided leydherlaying elements expanding
upwards. The zone in which the soil elements are pushed dveard outwards by the passage
of the pile therefore reduces in areal extent with increasiapth, naturally forming a wedge-
like shape of moving soil in front of the pile. This type of wgfailure can clearly be seen in
Figure 6.16, which shows the distribution of positive veatidisplacements in the extended mesh
model. The formation of the wedge affects the deeper sometes by actively increasing the
confining pressure as it expands.

In the case of the standard mesh, shown in Figure 6.17, thenpitg of the fixed boundary pre-
vents the formation of a full wedge by limiting the forward weonent of the soil elements. The
boundary also allows for larger compressive lateral ste$s develop. The overburden pressure
can be overcome more easily at deeper locations, leadirtgetmtreased magnitude in vertical
displacements and the increased extents of this upwardiyrg zone displayed in Figure 6.17.

These increases in the volume of soil that is moved upwardstla magnitude of the vertical
displacement leads to an increase in the confining pressiower depths, especially as compared
to the results obtained from the laterally extended mesle sktess increase can be observed in
Figures 6.18 and 6.19, which show the distributions of tts¢ iiivariant of stres9; = o1 +05+03,

in the two models. As shown, the first stress invariant isiantly larger in compression in the
standard mesh than in the extended mesh due to the proxifmite gile to the fixed boundary.
The observed increase in the ultimate lateral resistantieea$oil elements in the standard mesh
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Figure 6.14 Comparison ofp—y curve parameter distributions for extended and standard
meshes for a 0.61-m-diameter pile.

over that displayed by the extended mesh shown in Figure i6.a#tributable to the increased
confining stresses in that model.

The increase in the estimated valueg passociated with the use of the standard mesh is apparent,
but is not necessarily significant. In the current simulaidhe pile is not pushed sufficiently far
into the soil as to fully activate the ultimate resistancéhefsoil at depth. Due to this shortcoming,
the obtained values qf, in these locations are extrapolated by the curve-fittinggdare and
may not represent the true capacity of the soil. This observaalong with alternative plasticity
formulations that alleviate the boundary effects, is anadlyand discussed in Chapter 7.

Figure 6.15 Plan view showing the distribution of vertical dsplacement (i.e., soil heave) in
the soil elements. The areas near the pile indicate the gresdt magnitude of
displacement, while the constantly shaded areas near the bodaries have zero
displacement.

104



T Z-Displacement

I

0.28446
+0.24891
-0.21337
- 0.17782
- 0.14228
- 0.10673

0.071189

I 0.035644

0.0001

Figure 6.16 Contour plot of vertical soil displacements in e extended mesh. Only upward
displacements are considered.
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Figure 6.17 Contour plot of vertical soil displacements fotthe rigid pile case in the standard
mesh. Only upward displacements are considered.
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Figure 6.18 Distribution of the first invariant of stress, I, in the standard mesh for a 0.61-
m-diameter pile.
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Figure 6.19 Distribution of the first invariant of stress, I;, in the extended mesh for a 0.61-
m-diameter pile.
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6.8 SUMMARY

It is of interest to evaluate the results obtained using 3Drfedels of piles embedded in laterally
spreading soils in the context of the commonly uged; method. In order to accomplish this
goal, a method in which to extract reliable and sensiblg curves was developed. Least squares
is used to fit functions to the computed data in order to desdtie computed—y curves and to
identify the key curve parameters of initial stiffnesg, and ultimate lateral resistange,

It is determined that the pile kinematics in these simutetiplay an important role in defining the
success rate fgp—y curve extraction from the FE model. It is observed that initiald to the
known effects of differential soil layer strength on they curves for a given case, there is also
a tangible effect that can only be attributed to the kineosatif the piles. For lateral spreading
and top pushover kinematics, the generated curves diffguatity and consistency based upon the
magnitude of the displacement at their respective nodefiawdhese displacements evolve over
the duration of the deformation. A rigid pile kinematic cas@roposed as an appropriate means
for computingp —y curves from 3D FE analysis.

It is also observed that variations in the size of the meshgatbe length of the pile cause the saill
response to be inconsistently represented in the resultsmifarmly-meshed model is generated,
and the ratios ok, andp,, in this new model to corresponding results obtained usirglecsvely
refined mesh are used in order to smoothen the past resulten \Affalyzing the ratios of two
cases formed using the same mesh, these effects are uramipdrdwever, in order to view the
parameter distributions with their actual values or to carepgesults from a dissimilar mesh, the
smoothing process must be employed.

The effects of the fixed boundaries on the recorded soil respare also explored. Itis determined
that the initial stiffness of the curves is unaffected by pheximity of the boundary to the center
of the pile; however, the ultimate lateral resistance ofdineves is reduced by up t®% when the
lateral extents of the model are increased. This reductisalated to the ability of the extended
soil mesh to allow a full soil failure wedge to develop as vealithe increased capacity for the soil
to compress before the pile begins to feel the boundary. Sthidy indicates that the presence of
the fixed boundary is able to affect the distribution of utibelateral resistance in the soil, though
only to a certain degree.
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7 Applicability of Conventional and Computed
p—y Curves to Lateral Spreading Analysis

7.1 INTRODUCTION

A simplified BNWF analysis of a pile subject to lateral spriegdmust utilizep—y curves that
appropriately represent the soil response and that arécapf@ to the pile kinematics involved.
Many methods have been developed for the purpose of defirtageurves for various soil types.
Ideally, one of these existing definitions, which are readifailable to practicing engineers, can
be used successfully for the lateral spreading load caseeves, the applicability of these con-
ventionalp —y curves to this type of analysis must be verified.

For cohesionless soils, the recommendations of the AnreRedroleum Institute (API, 1987) are
commonly used to define distributions of initial stiffnesglaultimate lateral resistance fpry
curves. Other methods for defining these parameters exmsing them the methods of Broms
(1964), Fleming et al. (1985), and Brinch Hansen (1961). viaduate the applicability of these
methods to the lateral spreading load case, comparisonsate between the previously identified
characteristic curve parameters of initial stiffnéss, and ultimate lateral resistange,, for these
cited methods and the—y curves computed from 3D FE analysis.

Examination of the results from the 3D FE analysis indicata increased mesh resolution is
required to capture the appropriate soil response at ngtaes depths. A solution is provided
through the generation of a series of new meshes that onbkid®emthe soil and pile up to a depth
of 10 m. The decrease in depth allows for increased mesh nedinieover the standard models
with no corresponding increase in computational demandluation of the existing 3D results
indicates that the magnitudesgfreturned from the 3D models at depth are significantly leas th
those predicted using cited methods. Plane strain modelgeaarerated and analyzed in order to
investigate this observation. The results of the neamserfind plane strain 3D FE analysis are
compared to existing methods for definingy curves.

7.2 A BRIEF SUMMARY OF THE CONSIDERED PREDICTIVE METHODS

A laterally loaded pile is a difficult problem to analyze, aisihighly three-dimensional as well as
nonlinear. This inherent complexity lends difficulty to ghetermination of suitable distributions of
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ultimate lateral resistance and initial stiffness to repre the soil response along the length of the
pile. Over the past fifty years, there have been multiple oasiproposed for defining appropriate

distributions of these parameters for cohesionless sbilsse methods often utilize approximate

analyses and semi-empirical strategies. Perhaps due tohtbeent simplifications necessary to

reach these proposed solutions, the results obtained fremarious methods display significant

variation.

7.2.1 Ultimate Lateral Resistance

Four methods for defining ultimate lateral resistance oksadnless soils are considered. In gen-
eral, each method defings as functions of some soil shear strength parameter, suantie of
internal friction, the soil unit weight, the diameter of thiée, and the depth below the ground sur-
face. These are all constant values for a particular probiedicating that the resulting ultimate
resistance values from the various methods should be sjribavever, in practice, the various
methods produce resistances that display significantti@rigor matching input parameters.

This tendency is demonstrated in Figure 7.1, which showsligtebutions ofp, estimated by the
four considered methods for a)a-m-diameter pile in soil having a unit weight,= 20 kN/m3,
and a friction anglep = 35°. The four considered methods vary in complexity and, as show
also vary greatly in their results, especially at depth. Amary of the essentials of each of the
considered methods follows.

0 ‘ ‘ ‘
\ —API (1987)
\ ---Broms (1964)
=2F Fleming et al. (1985) |
- - Brinch Hansen (1961)
< A
g Ve
© —6f ‘\\
_8, ‘\‘
_10 ‘\‘ ‘ \ ‘ ‘
0 1000 2000 3000 4000

ultimate lateral resistance (kN/m)

Figure 7.1 Distributions of ultimate lateral resistance fo a 0.5-m-diameter pile as specified
by four predictive methods.

Method of Broms

Broms (1964) proposed a method based upon the passive ezstupe coefficients,,, calculated
using Rankine earth pressure theory as

K, = tan? (45° + g) (7.1)
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Working under the assumptions that the active earth presstting on the back of the pile can
be neglected and that the shape of the pile has little effeth® mobilized soil resistance, Broms
proposed the following expression for the prediction ofultenate lateral resistanceg,,, in units
of force per unit length of pile

Do = 3K, vzB (7.2)

in which z is the depth;y is the soil unit weight, and is the pile diameter. Broms defined the
distribution of passive pressure on the front of the pile ¢oelgjual to three times the Rankine
earth pressure coefficient based upon correlations wititddhempirical evidence, indicating that
this tends to underestimate the magnitude pWhich in turn leads to conservative results when
applied to a pile. This method creates a distribution ofriteesistance that varies linearly with
depth, making no distinctions for depth-appropriate fa&lmechanisms such as wedge failure at
near-surface depths or flow-around failure at deeper depfssshown in Figure 7.1, Broms’
method estimates the lowest valuegppvith depth of all the considered procedures.

Method of Fleming et al.

Using a similar line of thought to that of Broms, Fleming et(&B85) proposed a distribution pf
that is proportional to the square of the Rankine passiv @aessure coefficient and is described
by the expression

D, = KgyzB (7.3)

The method of Fleming et al. results in a linear distributép, with depth with no consideration
of depth-appropriate failures. Compared to the method ofr3; which tends to underestimate
the magnitude op,,, the values o, calculated using Equation (7.3) compare more favorably
with empirical results. When the angle of internal frictior= 30°, the results of Equations (7.2)
and (7.3) are identical. For most sands encountered in tdedie- 30°. Therefore, in the majority

of cases, the method of Fleming et al. produces larger vatigs with depth than the method
proposed by Broms.

APl Recommended Method

For cohesionless soils, the recommendations of the AnreRedroleum Institute API (1987) are
commonly used to definp—y curves for use in a BNWF analysis. The APl recommendations
adopt the work of Reese et al. (1974) with slight modificadgiamamely in the use of a hyperbolic
tangent function to define the overall shape of phey curves. The distributions gf, and k.
proposed by Reese et al. match those recommended by the &dyeX he method recommended
by the API returns the largest valuespfwith depth of any of the four considered methods.

The ultimate lateral resistance recommended by the APluedsdor two distinct depth-specific
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failure mechanisms, leading to two expressions

- K,ztan ¢sin 6 tan 3
Py =Ayz tan(3 — 9) cosar + tan(3 — ¢)(B + ztan f tan «)
+ K,ztan S(tan ¢ sin § — tana) — K, B (7.4)
pu =Av2B [Ka(tan8 B —1)+ K, tan ¢ tan* ﬁ} (7.5)

of which the lesser result is taken asfor a particular depth. The coefficient, is determined
from the ratio of depthz, to pile diameterp. It is recommended to takk, = 0.4 and define the
other terms of Equations (7.4) and (7.5) as

o=? (7.6)
ﬁ = Z +a (77)
K, = tan? (% — a) (7.8)

At near surface depths, Equation (7.4) accounts for a wéggefailure of the soil. The wedge-
type failure mechanism controls the ultimate lateral tasise resulting from this method from
the ground surface until a certain depth at which the curedised by Equations (7.4) and (7.5)
intersect. At this intersection point, which generally wscwell below the ground surface, the
failure mechanism changes from the wedge failure to a plaaadailure mode in which the soil
must flow around the pile. The depth at which this transitioouss is dependent upon both the
diameter of the pile and the friction angle of the soil. As thagnitudes of these values increase,
the depth of the intersection between the wedge and plaai@ &ilure curves also increases. In
Figure 7.1, this intersection occurs at a depth of approteim&.5 m.

Method of Brinch Hansen

The method of Brinch Hansen (1961) provides a means of estigihe ultimate lateral resistance
for a general frictional soil with cohesion. Brinch Hanseopgnsed a distribution of ultimate lateral
resistance of the form

Py = (szf + CKCD) B (7.9)

wherec is the cohesive intercept,is the soil unit weight; is the depth, and is the pile diameter.
The coefficientst and KP are determined using a methodology developed by Brinch ¢fans
who also approached the problem with consideration towegpgsopriate soil failure mechanisms
with depth. This is accomplished by defining limiting valud#s,, at the ground surface and at
great depth. Using these limiting values, the ultimateréteesistance at any arbitrary depth is
determined through interpolation.
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For a cohesionless soil = 0, and the second term of Equation (7.9) becomes zero. Theweef

K qD must be determined based upon two extreme cases. The gradioe of K qD existing at the
surface ¢ = 0) is designated aKS and is defined as the difference between the passive ané activ
coefficients corresponding to the lateral translation afagh wall, resulting in the expression

Kfl) =exp [(g + gb) tanqb] cos ¢ tan <z + ?)

4 2
— exp [— (g — gb) tan gb} cos ¢ tan (% — %) (7.10)

The limiting value at great depthi >, is based upon the analysis of a deep strip foundation
conducted using a plane strain soil failure mechanism. @hgysis results in the following ex-
pression, which defines the largest possible vaIuE;éf occurring at depth = .

K> = N,dZ®K,tan ¢ (7.11)
The termsV,, d2°, and K|, in Equation (7.11) are defined as
N, = |exp(7 tan ¢) tan? (Z + %) — 1] cot ¢ (7.12)
d>® =1.58 + 4.09 tan* ¢ (7.13)
Ky =1 —sin¢ (7.14)

Using these limiting valuesf{g andK >, Brinch Hansen proposed that the coefficient correspond-
ing to any arbitrary depth be computed using

z

K+ K*>a —
q q q
KP = B (7.15)
1"‘ CLqE
in which the ternm, is determined as
K? K,sin ¢
a, = B —" (7.16)
TOKF K sin(F-9)

The method of Brinch Hansen estimates valuegfothat fall intermediately between the linear
methods proposed by Broms and Fleming et al. and API recometkdistribution.

7.2.2 |Initial Stiffness

The API (1987) recommendations suggest the following hypler tangent function to describe
the shape op—y curves for cohesionless soils

]{/‘Z
= A tanh

u

y) (7.17)
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in which % is the coefficient of subgrade reactiohis a coefficient based on empirical correlations
to account for the type of loading (i.e., cyclic or statichdathe other terms are as previously
defined. Evaluating the derivative of Equation (7.17) webpect tq, at the pointy = 0 leads to a
definition of the initial stiffness ak, = kz.

The API recommends values of the coefficient of subgraddicead:, which are representative

of sands both above and below the water table. Figure 7.2sstimwepresentative coefficient of
subgrade reaction values for each case as functions ofveetinsity and internal friction angle.

As shown, the coefficient of subgrade reaction increasebneamly as the shear strength of the
soil increases (as represented by increasing relativatdemdriction angle).

¢', angle of internal friction

28° 29°¢ 30° 36° 40°  45°
Very Loose Medium Dense Very
300 Loose Dense Dense
250 p
Sand Above
= hy
200 Tavle
2 150}
-

100 ¢

50 p

A

0 20 40 60 80 100
RELATIVE DENSITY, %

Figure 7.2 Recommended coefficient of subgrade reaction &ft API (1987). The conversion
from units of Ib/in 3 is obtained through multiplication with a factor of 271.45 to
obtain units of kN/m?3.

It is somewhat well known, and is shown in this report, thatlihear distribution of initial stiff-
ness recommended by the API does not represent the acttial sail response well. These
recommendations are based on lateral load tests, wherednesuarface response is captured well.
Extrapolation of this near-surface behavior to all dep#agls to significant overestimation of the
initial stiffness at increased depth. Recognizing thatelastic modulus of sand is roughly pro-
portional to the square root of confining pressure, Boulargal. (2003) propose an approximate
correction for the API subgrade reaction modulus. The ctecemodulusk*, is computed as

k= ¢, knp (7.18)
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wherek,p, is the API subgrade modulus from Figure 7.2, and the teraccounts for variation in
vertical effective stressg; , as

0w
/

ref (7.19)

g

g

C, =

/
in which o/ is a reference stress taken to be 50 kPa. Using this comegptaxedure, the initial
stiffness distributionk, = k*z, is parabolic with depth.

7.3 COMPARISON OF COMPUTED AND PREDICTED p-y CURVES

Soil response curves computed from 3D FE analyses are ugackgtigate the applicability of —

y curves defined using the predictive methods cited abovediBfigbutions ofp,, andk,. along the
length of the pile obtained from the 3D model are comparetidsé¢ recommended by the predic-
tive methods to evaluate the validity of each respectivdhowktBecause the considered predictive
methods have no inherent ability for the inclusion of a ligeetlayer, all of the comparisons made
in this section are for a homogenous soil profile.

7.3.1 Comparison of Ultimate Lateral Resistance

Figure 7.3 shows computeq distributions for three pile diameters at left and computgdistri-
butions at right. Plotted with the computggdistributions are corresponding distributions for the
predictive methods discussed previously. These estintas&abutions ofp,, are determined using
the appropriate pile diameter and depths for each case daswlsoil unit weighty = 17 kN/m?
and friction anglep = 36°, values that correspond to the the soil constitutive modehe FE
analyses.

All of the p,, distributions, both computed and estimated, show an isergeresistance with depth;
however, the way in whicl,, increases differs across the methods and the shape of thauten
p,, distribution does not directly correlate to any of the cdesed predictive methods. At shallow
depths, there is a fair amount of agreement for all methols. Similarity occurs from the surface
to a depth of approximately two pile diameters. Beyond thaptd, the distributions begin to
diverge.

The computed and predicteq distributions display a diameter dependence. As pile diame
increases, the corresponding valugpglso increases. A larger zone of soil is affected by a larger
pile, and consequently, more resistance is provided podhé¢ yield of this zone. This effect
becomes more pronounced with increasing depth. As deptle@nfthing pressure increase, the
shear strength of the soil also increases, leading to arlatgmate lateral resistance.

In order to evaluate the applicability of the compugeddistributions, it is important to consider
how well the fitted curve parameters represent the recordtad éigure 7.4 shows computge

y curves at five separate depths for a 2.5-m-diameter piler teaground surface the ultimate
resistance of the soil appears to have been activated argpismiately reflected in the fitted
parameters. As depth increases, it can no longer be asshatdti¢ ultimate resistance has been
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Figure 7.3 Distributions of ultimate lateral resistance aml initial stiffness for each of the
three template pile designs as compared to commonly refereed distributions.
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Figure 7.4 Comparison of computedp —y data with fitted hyperbolic tangent curves for a
2.5-m-diameter pile.

achieved. The fitted curves appear to underestimate theaitiresistance with increasing depth,
and the degree to whigh), is underestimated tends to increase with depth.

Figure 7.5, which shows the distribution of stress in theation of pile motion at the ultimate
displacement of the pile, further supports this obsermatfs shown, the soil elements at shallower
depths have reached a limiting value of stress during theraeftion process, indicative of yielding
in the soil, while the deep elements continue to gain stiedigating that these elements have not
yet experienced failure, nor activated an ultimate restsda

The observation that the deeper curves do not display seisulicating failure of the soil makes
sense in the context of the Drucker-Prager soil model. Th&miog pressure increases with depth,
and an increase in confining pressure leads to an increasktsyiength in the soil model. The
limitations of the current model are such that it is not polgsio push the pile far enough to suf-
ficiently activate the ultimate resistance at increasedhdewithout suffering mesh distortion and
failure of the simulation. Moreover, the small strain/defi@ation assumption already reaches its
limits under the considered deformations. The region ovecknthere is confidence in the ultimate
lateral resistance distributions corresponds to the degittvhich the FE analysis results are similar
to the estimate@, distributions. This observation identifies the need fottar resolution in the
finite element models at shallow depths. To accomplish tlesy-surface models are generated
and analyzed. The results are presented and discussediexhsection.
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Figure 7.5 Distribution of stress in the direction of loading at full lateral displacement of a
0.61-m-diameter pile in the rigid pile kinematic case.

7.3.2 Comparison of Initial Stiffness

The k. distributions obtained from 3D FE analysis vary signifidpifitom the linear variation
suggested by the API. In Figure 7.3, the linear stiffnessvshis based on a subgrade modulus
from Figure 7.2 for an internal friction angle= 36°. At any particular depth, the resulting linear
k. distribution is larger in magnitude than the computed dtigtions. This is especially true below
the near-surface zone.

The computed initial stiffness distributions show an exedaenagnitude increase with increasing
depth, however, the rate of increase is not constant oveetigth of the pile. As shown in Fig-
ure 7.3, the:,. distributions computed from 3D FE analysis display twoididtlinearly-increasing
zones. The stiffness at shallow depths is significantly fleaa those at depth, though the rate of
increase in this near-surface zone is greater. As deptkases beyond this initial zone, the rate
at which the stiffness increase begins to lessen, eventiggthing a constant level marked by the
second zone of linear increase.

The two linear zones displayed by the computeddistributions do not correlate well with the
APl recommendations. There is a diameter dependence shothe inear-surface behavior that
is not captured at all by the AR distribution. For further comparison, approximate valoés
subgrade modulus implied by the slope of the computediistributions are used. In the near-
surface zone, the approximate subgrade moduli for eactapglsummarized in Table 7.1. Taken
in the context of Figure 7.2, these values correspond toramternal friction angles than that
used in the 3D simulations. The subgrade modulus suggetsiect@ased depths has a magnitude
of approximatelyl000 kN/m?, which is less than half of the lowest value lofecommended in
Figure 7.2.

The two zones of differing response observed in the digiohs of initial stiffness computed from
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Table 7.1 Approximate coefficients of subgrade reaction foinitial portion computed £
distributions.

Pile Diameter
0.6Im 1.37Tm 25m
kE (kN/m3) 11750 7650 5550

the 3D models are related to two separate soil constituéispanses. Near the ground surface, the
absence of significant overburden pressure leads to thé/neenediate yield of the soil due to
the shear stresses generated by the passage of the pile tAdatastoplastic tangent, and not the
purely elastic tangent, is reflected in the initial stiffeesturned by the model. At deeper locations,
the overburden pressure is large enough to increase thesgheagth significantly, resulting in an
increased elastic regime for those elements and initiihetis values that are indicative of the
elastic tangent.

The tendency for early yield at shallow depth is illustratedigure 7.6, which shows the distri-
bution of the norm of the deviatoric plastic strajfe?||, a good indicator for yielding in the soll
elements, for the FE mesh related to the 0.61-m-diameter gihe distribution of|e?|| shown
represents the state of the soil in the early stages of Iga@i@econd increment in the total dis-
placement of the pile). At this very low level of deformatjdhe near surface soil elements are
already yielding. This zone of yielding is largest at theface and shrinks with depth. These re-
sults suggest that the soil has yielded up to a depth of appet&ly1.2 to 1.5 m below the ground
surface, which corresponds well with the results shown gufé 7.3 at which the initial stiffness
rate changes for the 0.61-m-diameter pile.

Normm dev Plastic Strain
0.03601
I 0.032064
0.028119
-0.024173
- 0.020228
- 0.016282
-0.012337
0.0083911
0.0044455

0.0005

Figure 7.6 Norm of the deviatoric plastic strain, ||e?

, for a 0.61-m-diameter pile.

In order to explore this idea further, the existing modelsdach pile are run using linear elastic
soil behavior for identical pile displacements. The resoltthese linear elastic simulations are
plotted alongside the elastoplastic results for each piligure 7.7. The elastic distributions in-
crease linearly with depth, and do not start at zero. Thesstielstiffness distributions represent
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Figure 7.7 Linear elastic and elastoplastid:,. distributions computed from 3D FE analysis.

the largest possible values for the resulting from the elastoplastic models. Once increasing
overburden pressure has expanded the elastic regime anffycithe initial stiffness of the elasto-
plastic models should be entirely elastic. Above this pdim¢ elastoplastic tangent is reflected in
varying degrees in the elastoplastic initial stiffnessrehstions, with increasing effects of yielding
towards the surface. The depth at which the elastoplagtitests becomes equal to the elastic stiff-
ness should be similar for each pile, as the overburdenymeessthe deciding factor. As shown in
Figure 7.7, this depth is indeed similar for the three pilsigies, occurring at approximately) m
below the surface.

For circular piles, the elastic stiffness of the soil shontt depend upon the diameter of the
piles. This is confirmed in the lower-right plot of Figure 7which compares the elastoplastic
k. distributions for each pile. As shown, the elastic regiamrseach distribution coincide. This
similarity should not apply to the near-surface depths,reltlee initial stiffness reflects the yield
of the soil. As pile diameter increases, the size of the zdn@asticity on the leading face of
the pile should similarly increase. For tBeé>-m-diameter pile, more of the soil elements near
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Figure 7.8 Computed and APl recommended —y curves for a 1.37-m-diameter pile.

the surface are yielding than for the smaller piles, theeefthe initial stiffness returned for this
larger pile is generally lower than those correspondingpécsimaller piles near the surface. This is
reflected in the extracted curves shown in Figure 7.7 andamapiproximate near-surface subgrade
modulus values summarized in Table 7.1. The stiffness atenglepth increases with decreasing
pile diameter in this plastic zone.

The observation that the computegddistributions for the three pile diameters are similar gitbe

but differ near the ground surface leads to the desire tomhbtdigher degree of resolution on
the near-surface areas. A seried 0fm deep meshes are generated, one for each pile design, and
analyzed using the same pile deformations. These restdtseomeans of validating observations
made, as well as a closer look at the near-surface effects.

7.3.3 Comparison ofp—y Curves

Figure 7.8 shows representative compuyied, data and fitted hyperbolic tangent curves obtained
for a 1.37-m-diameter pile. The APl 1987 recommenged, curves are shown for comparison.
As is expected based upon the observed differencés amdp, between the computed and API
curves, the two sets of curves are comparable at shallovhsleytile differing substantially at
greater depths. For analysis of top-loaded piles, theserdifces are relatively inconsequential;
however, for analysis of a lateral spreading deformatidrene large pile deformation can occur at
depth, the problems created by these differences beconaeeayip

7.4 NEAR-SURFACE MODELS

In an effort to gain better insight in the results near théeza, a series of new meshes are generated
that only consider the first 10 m below the surface. Modelinty ahe upper 10 m allows the
analyses to focus on the zone of pronounced plasticity irstile Due to lessons learned about
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Figure 7.9 Near-surface mesh for a 1.37-m-diameter pile.

selective mesh refinement, the soil and pile elements in dae-surface models are uniformly
sized in the vertical direction. Because these models heseced volume as compared to the
default full-sized models, an increase in vertical mesmesfient can be incorporated without
increasing the number of degrees of freedom or the correpgrcomputational effort. These
alternative models share the santepile-diameter-by20-pile-diameter footprint present in the
full-sized models. This, along with the differential diatewes of the piles, necessitates the creation
of three such models, one for each pile design. The genensi@dsurface mesh for a 1.37-m-
diameter pile is shown in Figure 7.9 as a reference.

Rigid pile cases are run using the near-surface models fibr dastic and elastoplastic soil el-
ements in order to establish representativey curves. These simulations are similar to those
previously discussed; however, in an effort to better aaptiie ultimate resistance, the piles are
pushed further into the soil. This, along with the changas@mesh, produces slightly different
results than those obtained using the standard modelsreFig0 shows the, andk,. distri-
butions resulting from both the default and near-surfacehrag. As shown, there are differences
between the two models, however, these differences argvetyjaminor. With respect to initial
stiffness, only the results from the 2.5-m-diameter pile significant change. This is likely due to
the increase in mesh refinement present in the near-surfadels

The changes in meshing likely affect the ultimate resistathstributions to a degree as well. While
the piles in the near-surface models are pushed furthethiatsoil than in the standard models, this
extra deformation only seems to benefit the results foOthe-m-diameter pile. The larger piles
displace too much soil upwards in front of the piles at thgghleir level of lateral displacement. The
contact elements modeling the pile-soil interface losdaxirdue to this upward movement of soil,
and the results beyond this point become meaningless. Earihm and1.37-m-diameter piles,
the point at which contact is lost is approximately equah®ultimate pile displacement specified
in the previous models. In thie61-m-diameter model, the associated soil heave is much smalle
magnitude and contact is not lost. The resulting ultimatieréd resistances from the near-surface
mesh for this pile are larger than in the standard mesh dueetintreased soil deformation. In
this case, more of the soil elements have reached an ultistatie and the extracted resistance
distribution represents the true soil response in a betéemer.
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Figure 7.10 Comparisonp, and k. distributions for default and near-surface meshes over
the first 10 m below the ground surface.
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Figure 7.11 Distributions of initial stiffness computed from the near-surface models using
both elastoplastic and elastic soil elements.

7.4.1 |Initial Stiffness Distributions in Near-Surface Mockels

The initial stiffness distributions extracted from the nearface models are only slightly different
from those obtained from the standard models. The resuwlis the1.37-m and 2.5-m-diameter
piles show slight increases in stiffness at shallow depikely due to the increased mesh refine-
ment in these models. The benefit of the near-surface modglgaespect to initial stiffness can
be seen in Figure 7.11, which shows the distributions rieguftom the models for each of the
piles. The differences between the initial stiffness inplastic zone can clearly be seen. As the
pile diameter increases, the amount of plasticity in thé atoshallow depth similarly increases.
The computed: . distributions demonstrate this mechanism, as the lardges pkperience smaller
initial soil stiffness than the smaller piles at correspogdiepths. Also of note is the observation
that all three of the models reach the elastic stiffnesseasttime depth. This expected behavior
is due to the fact that the state of stress in the soil that elefine size of the elastic regime is
independent of the size of the pile and merely dependent thigoweight of the overlaying soil.

7.4.2 Ultimate Lateral Resistance Distributions in Near-8rface Models

The distributions of ultimate lateral resistance in therreaface models offer a better glimpse
into the behavior of the soil at shallow depths. The neafasermodels are created such that
the pile nodes for each of the three pile diameters are Idcatthe same series of depths, thus,
direct comparisons can be made betweerpthaistributions resulting from each pile model. Fig-

ure 7.12 shows the computggldistributions, illustrating the relative differences imgnitude due

to changes in pile diameter. This figure clearly shows thahapile diameter increases, the cor-
responding ultimate soil resistance to the passage of tleahlgo increases. As depth increases,
this effect becomes more pronounced. This observationseebe logical. It should take a much

larger effort to push a larger pile through soil than it wotdéte to push a smaller pile through

the same soil. The ultimate resistance of that soil shoudtease with increasing pile diameter
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Figure 7.12 Computedp, distributions for near-surface models.

and with increasing overburden pressure, exactly as obddrom the results of the near-surface
models.

The ultimate resistance of the soil does not become fullyateid at advanced depths in the default
mesh FE analysis. In an effort to gain a better estimate sf#lue with depth, the piles are pushed
further into the soil in the near-surface models. As presipudiscussed, loss of contact between
the larger piles and the soil due to a meshing issue renderextra deformation meaningless
for those models, however, the 0.61-m-diameter pile segeased values gf, over the results
obtained from the standard model because of the extendsdllgile displacement. Though the
results from the larger pile models do not see the benefitseoéxtra push, there is an increase in
the number of adequately estimated points orpthdistribution curves due to the decreased mesh
size in the near-surface models as compared to the fultt¢default) counterparts.

7.5 PLANE STRAIN MODELS

With the current mesh and element formulations primarilydiis this research, it seems unlikely
that the models will be able to capture the true ultimaterdhtessistance at all depths along the
length of the pile. To establish the maximum attainable &alip, at a given depth, a plane strain
soil model is created. This model also allows a direct comsparto the estimateg, distributions
using the methods proposed by Brinch Hansen (1961) and AR7(1 These two methods as-
sumed a plane strain failure mechanism at depth, and the pteain FE model allows insight into
how close conditions in the default 3D model are to planarsattincreased depth.

As this is only a validation exercise, only a single planaistmodel is created. This model
considers the 2.5-m-diameter pile embedded in a soil contm The plane strain mesh shares a
footprint with the corresponding standard mesh; however,plane strain soil mesh is only one
element thick in the vertical direction. The pile is redueedength down to two elements with
the middle pile node located at the center of the layer ofedeinents. In order to compare the
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Figure 7.13 Comparison parameter distributions for defaut and plane strain FE models.

results of the plane strain model with other results, a neetifasimulating depth is devised that
employs the surface load element developed for use in Opsriging this research. A detailed
discussion of these elements is provided in Section 2.5.

In order to obtain a distribution of results with depth at axitmum of modeling effort, a series
of five depths is established. These depths are selectedtisaicthe resulting data provides a
general sense of the-y curve parameter distributions over the full length of tHe pAppropriate
overburden pressures corresponding to each of these dayghapplied to the meshes via the
surface load elements in order to determine the resultisglattements of the upper surface of
the soil elements. When running the plane strain model, gpeunodes of the soil layer are
slowly moved via displacement control through these reedrdisplacements, creating a depth-
appropriate initial stress state in the soil elements, aed held fixed in the vertical direction as
the pile is pushed into the soil layer. In this manner, thpaese of the soil for each of the selected
depths is established for the plane strain condition.

In the plane strain model, there is no free surface. The @#abticity observed in the regular mesh
at shallow depths should not occur. It is expected that thmlirstiffness distribution obtained
from the plane strain model should exceed that obtained thenstandard mesh at shallow depths.
At increased depths, the valueskgf obtained from either model should be approximately equal.
Assuming the conditions in the default mesh at greater degoth nearly plane strain, the increase
in elastic stiffness from the plane strain condition showdtlbe significant.

The ultimate lateral resistances obtained from the plarénsinodel should be larger than those
extracted from the standard model at corresponding deg#ipgcially near the surface where the
assumption of a plane strain failure mode is poor. The plénagnscondition allows significantly
larger confining pressures to develop in the soil elemeeaglihg to a corresponding increase in
strength. For this reason, the ultimate resistances frempldme strain model should represent the
largest possible resistances that the soil can providd&lateral displacement of a pile.

Figure 7.13 shows the distributions pf and %k, obtained from the plane strain model. As ex-
pected, near the surface, thedistribution is in excess of that obtained from the defawdtel; at
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Figure 7.14 Comparison of estimatedp, distributions with corresponding results from
plane strain model for a 2.5-m-diameter pile.

depth the distributions are nearly identical. Thedistribution obtained from the plane strain case
also displays the expected behavior. At each depth, theadlp, resulting from the plane strain
condition is greater in magnitude than the correspondimigeviiom the default mesh case. The
degree to which these values are exceeded decreases with Aep depth ofl m, where the de-
fault models have shown that the plane strain assumptiootiapplicable, the ultimate resistance
in the plane strain model is approximately ten times largantthe previous result, while & m
below the surface, the plane strain resistance is ab8uimes larger.

Figure 7.14 shows estimated distributions for four predéatnethods (Broms, 1964; Fleming et al.,
1985; Brinch Hansen, 1961; API, 1987) alongside the distidn of p, obtained from the plane
strain FE analysis. As shown, the computed values, @it depth are significantly less than those
predicted using the APl method and are more similar to thoséigted by the method of Fleming
et al. (1985) or Brinch Hansen (1961).

7.6 SUMMARY

In current practice, the—y method, which models the soil-pile system as a beam on ameanli
Winkler foundation, is commonly employed in the analysipibés subject to lateral loads. Some
conventional methods that may be employed in the definitigracameters appropriate for use in
p—y curves have been compared. It is observed that there aiéicighdifferences in the distri-
butions of ultimate lateral resistance estimated by thesthods at depths beyond the first few pile
diameters below the surface. Itis also observed that theldisons ofp,, computed from the 3D
FE models generally do not correlate well in their form witly @f the predictive methods, though
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the magnitudes of the resistances are relatively similéinécsofter of the considered predictive
methods. The prevalent distribution of initial stiffneesommended for use jm—y curves is en-
tirely linear and appears to be more appropriately appbatear-surface depths where the effects
of early soil yield are observed. At increased depth, thiedalstic stiffness of the soil is initially
active. These values are significantly less than those stegjby conventional methods.

The method for obtaining ultimate resistances recommehgele API (1987) is one of the most
commonly employed methods in the constructiop efy curves for cohesionless soil. This method
is based essentially upon a single series of field tests inhthie piles are loaded at or above the
ground surface. As discussed in Section 6.5, the pile kitiemgreatly influence the recorded
soil response, suggesting that results obtained from puagpover kinematic are not necessarily
applicable to alternative load cases. Reese and Van Im@d)20ention that there is more con-
fidence in the form of the predicted results than in the magleit which appears to be a fairly
valid conclusion as the plane strain FE analysis resultgigedurther evidence that the predicted
magnitudes may be excessive.

It is important to note that in the analysis of the top-pugtdimematic, an overestimation of the
initial stiffness and ultimate lateral resistance at dagttelatively harmless. In places where the
parameter distributions are excessively large, the pileshat undergoing deflections due to the
kinematics of the loading. However, in the lateral spregdiase, large pile deformations may
occur in the areas whereg. andp,, are too large. In simplified analysis of piles subject torkite
spreading, careful selection pf-y curve parameters is essential.
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8 Influence of Liquefied Layer on the Soil
Response

8.1 INTRODUCTION

In liquefaction-induced lateral spreading, after the owddiquefaction, the shear strength of the
affected soil is reduced significantly. The unliquefied swhr the layer interface is now able
to squeeze into the softer layer near the pile during theiegmn of a lateral load, effectively

reducing the available lateral capacity and stiffness efuhliquefied soil near the liquefied layer.

Similar behavior occurs for laterally-loaded piles embestich layered soil profiles in which a
strength differential exists between two adjacent layeig, a soft clay layer located between two
layers of dense sand. Yang and Jeremic (2005) demonsthasdaethavior using 3D FE analysis,
and with respect to BNWF analysis of piles, Georgiadis ()@&¥eloped a method to modify-y
curves to account for differential layers. In a BNWF anaydi a pile subject to lateral spreading,
thep—y curves should be similarly modified to account for the preseof the liquefied soil layer.

The effect of a liquefied layer on the response of the adjaseliquefied soil layers is evaluated
through comparisons between the results of 3D FE analysistith and without a liquefied layer.
Through the use of overburden pressure applied to the suofathe models, the effect of varying
levels of vertical stress at the liquefied interface is afs@stigated. These initial observations
identify the need for a more comprehensive approach to thielgm.

A series of new FE meshes are generated and used to comprgsejativen—y curves for a
series of soil profiles in which the vertical location anccimess of the liquefied layer are varied.
It is determined that the reduction in the-y curve parameters of initial stiffness and ultimate
lateral resistance is greatest at the layer interface acalydeexponentially with increasing distance
from the liquefied layer. A simplified procedure is developedetermine appropriate reductions
in initial stiffness and ultimate lateral resistance foefy curves representing the unliquefied soil
near the liquefied interface.

8.2 INITIAL OBSERVATIONS

The FE mesh discussed in Chapter 2 is used to evaluate tloé @fieliquefied layer on the initial
stiffness and ultimate lateral resistance of the unliqded@l. In this model, the liquefied layer is
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Figure 8.1 Distributions of p, and %, for homogenous and liquefied soil profiles for a 1.37-
m-diameter pile.

located at a depth of 10 pile diameters below the ground seidad has a thickness of one pile
diameter. This soil profile is not ideal for fully charactnig the influence of the liquefied layer
for a general case; however, it is used in order to deterrhim@nportant factors which affect this
behavior. To this purpose,—y curves are computed for homogenous soil profiles and profiles
with a liquefied middle layer. The resulting curves are coragavith respect to ultimate lateral
resistancep,,, and initial stiffnessk.. Increasing depth to the liquefied layer is simulated thhoug
the application of overburden stresses to the ground sudithe model. This creates a stress state
at the liquefied interface that corresponds to a deeperflegiayer location.

Figure 8.1 presents a comparison of fheand k. distributions resulting from homogenous and
liquefied cases for a 1.37-m-diameter pile with no additi@varburden pressure. These results
are typical of all the considered cases, and have been sgwtitaccount for variations in mesh
size using the procedure discussed in Section 6.6. As shberffects of the liquefied layer on
the adjacent unliquefied layers are more evident in theibligion of p,, than that oft:,.. The curve
data obtained from within the liquefied layer is not alwaysadbrm that lends itself well to a
hyperbolic tangent curve fit. For this reason, valueg,otannot be computed at some of these
nodes. The general trends are still apparent, howeverhandtthe more important consideration.

The portions of the,, and k. distributions in both the upper and lower solid layers afecaéd

by the presence of the liquefied middle layer. The observedateons in these parameters lessen
in magnitude with increasing distance from the liquefie@iface. Near the top and bottom of
the soil profile, the homogenous and liquefied cases dis@aghnidentical results. The observed
reductions in ultimate resistance and initial stiffnessdue to a similar behavior as that observed
and discussed at shallow depths in Section 7.4. As the pilesked laterally into the soil profile,
the soil from the solid layers is able to be pushed into thecet)t weaker layer more easily than it
can be compressed laterally. This behavior is illustratdéigure 5.4, which shows the deformed
shape of the soil elements in the vicinity of the liquefiedelayWwhen the soil is able to expand in
this manner, it results in a decrease in the confining presauhe areas adjacent to the liquefied
layer and a subsequent decrease in the elastic regime B& ghements. The soil in these locations
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yielding sooner and thus cannot offer as much resistant¢etpdssage of the pile before reaching
its ultimate state.

It is of interest to evaluate the differences in effects @f liquefied layer on the two solid layers.
The plots of Figure 8.1 provide a good visual comparison betwthe results obtained from each
soil profile, however, it is difficult to gauge relative redions. In order to provide a better measure
of the relative differences between the homogenous andfieglisoil profiles, the ratios of the ul-
timate resistance and initial stiffness in the liquefiececa® taken with respect to the homogenous

case, e.d.,
(liquefied)

p, ratio = —————— (8.1)

(homogenous)
u

These ratios are plotted for a 1.37-m-diameter pile in Feg@.2 and 8.3 for five considered over-
burden pressures, representing five different locationlseofiquefiable layer. The surcharge pres-
sures are based on hypothetical soll fills with verticalkh&sses of 5, 10, 15, and 20 diameters
of the 1.37-m-diameter pile. This results in surchargegaress of 117, 233, 350, and 466 kPa,
respectively, for a soil unit weight of = 17 kN/m3. In Figures 8.2 and 8.3 the location of the
liquefied layer is indicated by the shaded region, and theegmted results are typical of those
obtained for all three piles.

The soil compacts under the applied overburden pressureadfadieight resulting in settlements.
The diagrams are shown on the deformed soil body. As theepplierburden pressure increases,
the zone of reduced ultimate resistance tends to decre#isiekness, meaning that a lesser extent
of the solid layers are affected by the liquefied layer. Téilustrated well through comparison of
thep,, ratios for all five overburden pressures at lower right inufég8.2. As overburden pressure
increases, corresponding to a deeper location for theflepiayer, the reduction ip, decreases.
At increased overburden pressures, there is increased siheragth in the upper and lower solid
layers, which creates a smaller plastic zone. The two lagepear to be affected approximately
equally at all five overburden pressures. This is a significeservation given the fact that methods
commonly employed in BNWF analysis for accounting for thegaence of a soft soil layer, such
as that proposed by Georgiadis (1983), only consider tleewsfiof a soft layer on the underlaying
solid layer. The observation that both surrounding layeesadfected by a weaker middle layer
confirms similar observations made by Yang and Jeremic (2&@&% Petek (2006).

When the five initial stiffness ratios are shown togethehim lbwer right plot of Figure 8.3, it is
observed that there is little difference in the reductionisitial stiffness for increasing overburden
pressures. The reduction in initial stiffness is also nairlyeas widespread or as significant as the
observed reduction ip,. It appears that for a given liquefied layer thickness, tleces of this
layer on the initial response of the surrounding solid laysrrelatively consistent.
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8.3 UPDATED FINITE ELEMENT MODEL

The findings of these initial studies identify the need foredaded examination of the effects of

the liquefied middle layer on the surrounding unliquefied. géor this purpose, a new FE model

must be created in which the depth and thickness of the liggi¢diyer are not fixed. This model

takes into account previous findings with respect to selectiesh refinement and eliminates the
diameter-dependent depth scheme used in previously dsdusodels. With this new model, the

vertical location and depth of the liquefied layer are vateedreate a series of soil profiles.

The updated model has a height of 40 m and lateral extents jpife@iameters. Figure 8.4 shows
the undeformed configuration of the updated FE mesh. Theesieformulations, boundary and
loading conditions, and general scheme of the model matidettiscussed in previous chapters.
The rigid pile kinematic is used to compuyte-y curves from this model.

8.3.1 Considered Soil Profiles

To obtain results representative of a variety of field candg, a set of 21 soil profiles is considered
for each of three pile diameter8.¢1 m, 1.37 m, and2.5 m). These profiles are differentiated by
the thickness of the liquefied layér, and the depth to the bottom of the liquefied layér, The

set of profiles includes four values @f and six values ofif in order to capture the effects of
these variables on the computedy curves. Table 8.1 summarizes the considered soil profiles.
The symbols corresponding to each depth are used to ideesfyective cases in Figures 8.10
and 8.11. Unmarked depth and thickness combinations ar@nestdered.
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8.4 CHARACTERIZING THE INFLUENCE OF THE LIQUEFIED LAYER

Figure 8.5 shows the distributions pf andk, for p—y curves resulting from 3D rigid pile FE
analysis with a 0.61-m-diameter pile embedded in both a lygemous soil profile and a layered
profile having a liquefied middle layer. For simplicity, tregter profile will be referred to as the
liquefied profile. These results are similar to those foundhdithe initial analyses and presented
in Figure 8.1. The reductions in, andk,. are functions of the depth to the liquefied interface,
characterized by the depth to the bottom of the liquefiedr/dyeand the thickness of the liquefied
layer,T". Similar results are obtained for 1.37-m and 2.5-m-diamgtes (not shown).

8.4.1 Reduction in Ultimate Lateral Resistance

Computedp,, ratios are shown in Figures 8.6 and 8.7 for the upper and lowkguefied layers,
respectively (the FE analysis data are represented as raprk&s shown, for a constant lique-
fied layer depth the reduction j), tends to increase with increasing liquefied layer thickn€ss
though there appears to be a limit to this effect, asptheatios for7” = 5 m and7 = 10 m are
essentially identical. For constait the reduction irp, at a given distance from the liquefied
layer, s, decreases for increasing liquefied layer depth. The ratiosvn in Figures 8.6 and 8.7
are for a single pile diameter. As pile diameter increadesp} reduction at a given distance
increases for a particular soil profile.

8.4.2 Reduction in Initial Stiffness

Figures 8.8 and 8.9 show computegdratios for the upper and lower unliquefied layers (the mark-
ers are the FE analysis data). The reductiorig.ihave the same depth dependence observed in the
p,, ratios, however, changes in liquefied layer thickness offiscaminor changes itk,.. Signifi-

cant reductions ik, are more local to the liquefied interface, especially in tivedr unliquefied
layer. The extents of the affected zone increase with isongapile diameter. The results for a
1.37-m-diameter pile are shown in Figures 8.8 and 8.9 toigeoa better representation of the
form of the computed. ratios.
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Table 8.1 Considered soil profiles for each pile diameter.
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Figure 8.5 Comparison ofp, and k, in homogenous and liquefied soil profiles for a 0.61-m-
diameter pile.
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8.5 REDUCTION MODEL

The reduction ratios shown in Figures 8.6 through 8.9 alteshasimilar functional form, suggest-
ing an exponential decay model to characterize petl) curve parameters (McGann et al., 2010).
The proposed exponential decay function

S

RPM)(s) =1 — RPM exp <_W) (8.2)
defines a reduction factofg, as a function of distance from the liquefied interfagein terms
of two independent parameter?, ands,. The interface reductiorn®,,, defines the magnitude of
the reduction at the layer interface € 0), and the characteristic length),, defines how quickly
the reduction becomes negligible. The reduction factor gquidion (8.2) is applicable to both
p,, andk, distributions, and the superscripts are used to diffeaémtoetween the two, e.gR®
corresponds to a reduction factor foy.

Using least squares, the exponential decay function in f@u#8.2) is fit with thep, and k.
ratio data. Examples of fitted curves are shown in Figurest8diigh 8.9 as solid or dashed lines
(the markers represent points computed from individual DaRalysis). As shown, the chosen
exponential decay function represents the data very welbih the top and bottom layers for both
p—1y curve parameters.

8.5.1 Parameter Identification

In order to establish a means to predict appropriate reshetny, andk,. for a general combi-
nation of pile diameter, liquefied layer depth and thicknessl soil properties, a large parameter
study is conducted. Using the rigid pile kinematic, sets-ef) curves are computed for 126 distinct
cases (3 pile diameters, 21 soil profiles, and 2 soil frickagles,y = 30°,36°). The remaining
soil properties are as listed in Table 4.2.

For each considered case, reduction ratios are obtaineg, fand k£, from the computegh—y
curve data. Exponential decay curves, Equation (8.2), ei@dach set of reduction data, defining
a database of 12&, ands, parameters fop, andk, both above and below the liquefied layer.
By plotting R, ands, against various combinations of pile diameter,liquefied layer thickness,
T, vertical effective stress at the base of the liquefied laygrsoil unit weight,, and friction
angle,¢, in a natural-log plot, dimensionless relations are esthbtl which relate the reduction
parametersk,, s,) to the problem parameter®(7', o., v, ¢).

The relations for which the data displayed the best coicglan the natural-log plots define three
dimensionless parameters: tiienensionless interface reduction

o! tan ¢
= R, 8.3
n 0 ~D (8.3)
thedimensionless characteristic length
o) tan ¢
§=s, D2 (8.4)
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and thedimensionless site parameter

(o) tan ¢)* T

B = A3D*

(8.5)

These dimensionless parameters are computed for all 126fetandk, both above and below
the liquefied layer. Figures 8.10 and 8.11 show the relatiebseen the dimensionless parameters
for p, and k,, respectively. The particular cases can be identified byntaekers used, which
correspond to those identified in Table 8.1. The colors ointlagkers indicate the pile diameter:
black for 2.5 m, gray for 1.37 m, and white for 0.61 m.

Above Liquefied Layer Below Liquefied Layer

Figure 8.10 Dimensionless relations fop,, above and below the liquefied layer.

To test the applicability of these proposed dimensionlekgions, selected soil profiles are ana-
lyzed for extreme values of friction angle & 19°, ¢ = 54°) and soil unit weight{ = 9 kN/m?,

v = 25 kN/m?), which envelope typical values. The dimensionless mtatiare found to be ap-
propriate for even these extreme cases, indicating thalithensionless relations are applicable
for most reasonable cohesionless soils.

8.6 REDUCTION PROCEDURE

As shown in Figures 8.10 and 8.11, the data points display goorelation and a strong linear
trend when plotted using the dimensionless paramete¢s and 5. There are a few outlying
points, especially fof,, however, the linear trend holds for the majority of the sadanes are
fit to the data using least squares in order to identify ma#imal expressions that describe the
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Above Liquefied Layer Below Liquefied Layer

Figure 8.11 Dimensionless relations fof.,. above and below the liquefied layer.

observed trends. Appropriate reductions in they curve parameters can be determined from
these expressions for a general problem.

A straight line in a natural-log plot represents
Inn=blnp+Ina (8.6)

where the coefficients andb are determined from the least squares procedurg fandk, above
and below the liquefied layer. Solving Equation (8.6)faives

n=ap’ (8.7)
Similarly, £ can be expressed in terms®and two coefficients; andd, as
£ =cp (8.8)

Combining Equations (8.7) and (8.8) with Equations (8.3) @4) gives the following expressions
for the interface reductior,, and the characteristic lengt), written entirely in terms of known
guantities for any particular problem.

wk) _ 0Dy
RS =~ S a8 (8.9)
2
sk = D7 (8.10)
ol tan ¢

The reduction coefficients, b, c, andd are defined in Tables 8.2 and 8.3 fgrandk., respectively.
These coefficients have been separated according to redsietbove and below the liquefied layer.
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Table 8.2 Reduction coefficients for ultimate lateral resignce,p,,.

R(()P) Sgp)

a b c d

Above liquefied layer 0.421 0.315 0.474 0.432
Below liquefied layer 0.428 0.343 3.577 0.224

Table 8.3 Reduction coefficients for initial stiffnessk..

R(()k) Sgk)

a b c d

Above liquefied layer 0.346 0.220 0.400 0.341
Below liquefied layer 1.000 0.252 0.299 0.239

For a particular problem, with known geometry and propsrtiethe soil-pile system (i.eD, -,
T, ¢, o)), any distributions op,, andk,. with depth can be modified to account for the presence of
a liquefied soil layer. The process involved is summarizethinle 8.4.

8.7 SUMMARY

3D FE analysis has been used to develop a simple proceduredifym —y curves to account for
the presence of a liquefied layer of soil. It was observedtti@teductions in the characteristic
p—y curve parameters of ultimate lateral resistapgeand initial stiffnessk,, are greatest at the
liquefied interface and decay exponentially with incregslistance away from this point. Dimen-
sionless analysis was used to identify characteristic dgiomless parameters and to determine
appropriate reduction coefficients suitable for use witsamable combinations of pile diameter,
soil properties, and liquefied layer thickness and depth.

The benefits of this proposed reduction procedure will beatestrated and verified via BNWF
analyses of piles subject to liquefaction-induced latepskading in the following chapter. The
results of these BNWF studies will be used to make recomnismdafor simplified analysis of

this load case.
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Table 8.4 Summary of proposed —y curve reduction procedure.

. Select any —y curves for cohesionless soil profile without liquefied layer

. Define distributions of ultimate lateral resistanpg!®°*¥(s), and initial stiff-

(unreducedl

nessjy; (s), as functions of distance from the liquefied layemhoth above

and below the liquefied layer.
. Computes according to Eq. (8.5).

. Compute interface reductioﬁé’“), and characteristic Iengtlsg“), for initial stiff-

ness above and below the liquefied layer using Table 8.3 asd&®) and (8.10).

. Compute reduction factde*) (s) above and below liquefied layer using Eq. (8

. Modify unreduced initial stiffness distribution abovedebelow the liquefied laye
ie.
kgeduced(s> _ R(k)(s) . kgmreduced((s)

. Compute interface reductioR”’, and characteristic lengtk”’, for ultimate lat
eral resistance above and below liquefied layer using TaldeaBd Egs. (8.9
and (8.10).

. Compute reduction factdt”) (s) above and below liquefied layer using Eq. (8

. Modify unreduced ultimate lateral resistance distitiuabove and below liqué
fied layer, i.e.

2).

-

2).

A1 4
1

pgeduced(s> _ R(p)(s) . p(unreduced<8)

u
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9 Beam on Nonlinear Winkler Foundation
Analysis

9.1 INTRODUCTION

Beam on nonlinear Winkler foundation models are used torawte a suitable approach to a
simplified analysis of a pile subject to a lateral spreadwvené It has been shown that common
methods used to define-y curves for cohesionless soils estimatey curves with distributions

of ultimate lateral resistance,,, and initial stiffnessk, which are generally larger than corre-
sponding distributions computed using 3D FE analysis. Besshow these increased parameter
distributions affect the simulated pile response,jthg curves are used in lateral spreading anal-
yses using a BNWF approach.

The BNWF model allows for direct comparison of the effectasihg particular sets gf—y curves
in a lateral spreading analysis. There are several purposte BNWF analyses in this research:

1. Verification that they—y curves obtained from 3D FE analysis are representativeeo3h
soil response and are applicable to alternative pile dedtiom patterns. The pile bending
response obtained from BNWF analyses of lateral spreadiimg the computegd—y curves
are compared to corresponding results from 3D lateral gprganalysis.

2. Evaluation of the applicability of —y curves defined using predicted distribution®ofind
k., to lateral spreading simulation using a BNWF approach. Timulsted pile response
obtained from BNWF analyses using these curves are compa&d FE analysis and the
BNWF analyses using computed-y curves.

3. Verification of the effectiveness of the proposed redurcpirocedure to properly modify
p—y curves to account for the presence of a liquefied layer in @mgésoil profile. The
reduction procedure is applied pe-y curves computed from 3D models with homogenous
soil profiles. The pile response obtained from a BNWF latgpa¢ading analysis using these
reducedv—y curves is compared to 3D results for a corresponding sofilero

4. ldentification of a simplified analysis procedure appiatprfor the analysis of liquefaction-
induced lateral spreading. Recommendations for the seteot predictedp, and k. dis-
tributions are made via comparison of the simulated piledb@nresponse obtained using
BNWF analysis withp —y curves defined using various approaches to the 3D FE analysis
results.
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Each of these items are addressed via simulation of laterehding using a BNWF approach. To
this purpose, a general BNWF model is developed in OpenSéwsresults of these simulations
are used to make recommendations for the simplified anady$ageral spreading using a BNWF
model.

9.2 EVALUATION OF COMPUTED AND PREDICTED p-y CURVES

Evaluation of the computed and conventiopaly curves in the context of the lateral spreading
problem is conducted using a series of BNWF models. Theseslmoeplace the soil continuum
surrounding the pile with a series of nonlinear springs Wwithavior defined by —y curves. The
results of the BNWF analyses are compared to each other ahe toenchmark 3D results dis-
cussed in Chapter 5 with respect to the bending response gflth

9.2.1 Beam on Nonlinear Winkler Foundation Model

In the BNWF model, three sets of nodes exist in the same setcatibns. There are the pile
nodes, which are connected to each other via beam element$wa sets of spring nodes. The
nodes on the pile side of the springs are slave nodes to thapdes, sharing equal displacement
(no rotation) with those nodes. The nodes on the soil sida@prings are held initially fixed.
To simulate a lateral spreading event, an imposed displaseprofile matching that used in the
3D lateral spreading models, is applied to the soil end ofnitvalinear springs. This approach
is similar to that used by Brandenberg et al. (2007). A sclienistrating the BNWF model is
provided in Figure 9.1. For the evaluation simulations gbiéstiffness is assumed to be negligible
in the liquefied layer and thus is set to zero. The BNWF modktes the same beam elements as
the 3D models, with both linear elastic and elastoplastitstitutive formulations.

A

v

Imposed displacement

Equal DOF profile

\ No sprmqs in
L liquefied layer

Pile node
~¥—— Fixed

Figure 9.1 Schematic representation of the BNWF model.
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9.2.2 Modeling thep—y Curves

Thep—y curves are defined in OpenSees using zero-length elemahtea@aprovidedPySimplel
constitutive model, which allows for the definition pfy curves for both cohesive and cohesion-
less soils. Thé?ySimplelconstitutive model is based upon the work of Boulanger ef1£199)

in modeling seismic soil-pile-structure interaction. Jkonstitutive model has an initially linear
force density-displacement relationship and plasticdatensity-displacement behavior described

by

CYs50 "
p*)=p,— (P, — P { } (9.1)
") ( o) Yso + | YP — yb|

in which p,, is the ultimate lateral resistanag,, is the the lateral displacement at which one-half
of p, has been mobilized during monotonic loading, agdandy{ are the values op andy?”

at the beginning of the current plastic loading cycle, respely. The constant;, controls the
tangent modulus at the onset of plastic yielding and theteoms:, controls the sharpness of the
p—y curve. In order to closely approximate the shape of the AB87) recommended curves for
drained sand, Boulanger et al. recommend settiag).5 andn = 2.

Appropriate values gf, andy., must be defined as input values at each pile node. The esi@dblis
p,, values can be used directly in OpenSees, however, the @egesdues of);, are not inherently
defined. Sensible values of this parameter are determioed Equation (6.1) by solving for the
displacement at which the force is equal to one-hajf ofresulting in

Yso = Z—“ tanh™(0.5) (9.2)
T
which definesy, in terms of the known values @f. andp,, at each depth. A similar procedure is
utilized to obtain suitable values of the parametgifor the computeg—y curves. It is important
to note that in théySimpleImodel, the input values gf, must be in units of force instead of the
commonly-used units of force/length. Appropriate valuesabtained through multiplication with
the tributary lengths discussed in Section 6.2.

9.2.3 Consideredy—y Curves

There are two series of BNWF models used to evaluate the curves. In the first, the springs
have behavior defined using the-y curves computed from the 3D simulations. In the second,
the springs are defined -y curves established using the API (1987) recommendatiomseT
pile diameters are considered (0.61 m, 1.37 m, 2.5 m), andrthlyses are split into two separate
cases:

1. Homogenous CaseThe p—y curves are not reduced to account for the presence of the
liquefied layer. Computeg—y curves are obtained from homogenous soil profiles and the
API curves are left unmodified.

2. Reduced CaseThe p—y curves reflect the influence of the liquefied layer. Compuyteg
curves are obtained from layered soil profiles with a liquefieiddle layer. Thep, dis-
tributions of the API curves are reduced through multiglmawith thep, ratios obtained
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Table 9.1 Overview of the considered BNWF analysis cases feach pile.

FE analysis Curves API Curves

Reduced Homogenous Reduced Homogenous
Elastic Pile X X X X
Elastoplastic Pile X X X X

through comparison of the—y curves computed from homogenous and liquefied soil pro-
files (see Figure 8.2).

Because the API curves have been shown to be too stiff witbthdeépe lowest recommended
subgrade reaction coefficierit,= 5000 kN/m?, is used to define the initial stiffness of the API
curves. This value does not correspond to the internaldricingle used in the soil constitutive
model, however, it increases the applicability of the APivess to the lateral spreading case. The
p,, distributions used for these curves are computed usingosoflerties matching those used as
input values in the 3D model. The reductions made to theseesun the reduced analysis case,
while not included in the APl recommendations, creates esemealistic distribution op —y with
depth and enhances the applicability of the API curves tdetfezal spreading case.

All of these cases are analyzed two times, once with elasticrbelements and once with elasto-
plastic beam elements, creating a total of 24 distinct casebrief overview of the considered
cases is presented in Table 9.1.

9.2.4 Results

The results of the BNWF analyses are evaluated with respeélcetmaximum shear forcenax V/,
maximum bending momentyax M, and the maximum curvaturejax ¢, in the pile. The max-
imum pile deflectionmax U, and the effective length.;;, which is the distance between the
extreme moment demands in the pile, are also consideretesTal2, 9.3, and 9.4 summarize the
results of the BNWF analyses for a 2.5-m, a 1.37-m, and a M&liameter pile, respectively.
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Table 9.2 Pile bending response summary for BNWF analysis Wi a 2.5-m-diameter pile.

Elastic Pile Cases

Curve Type max V (KN) max M (KNm) max¢ (m™) maxU (M) L.sr(m)

FE analysis, homogenous 50900 285100 0.0015 1.65 16.30
FE analysis, reduced 46700 278900 0.0014 1.64 16.40
API, homogenous 175000 950100 0.0048 1.96 13.10

API, reduced 150000 920600 0.0047 1.94 13.20

Elastoplastic Pile Cases

Curve Type max V (KN) max M (KNm) max¢ (M) maxU (M) L.sp (M)

FE analysis, homogenous 46200 219600 0.0031 1.59 15.70
FE analysis, reduced 42300 217200 0.0030 1.59 15.80
API, homogenous 92800 240000 0.0882 1.35 9.10
API, reduced 78900 240200 0.0665 1.18 10.10

Table 9.3 Pile bending response summary for BNWF analysis Wi a 1.37-m-diameter pile.

Elastic Pile Cases

Curve Type max V (KN) max M (KNm) max¢ (m™) maxU (M) L.sr(m)

FE analysis, homogenous 11900 29400 0.0059 0.87 8.25
FE analysis, reduced 10700 28800 0.0058 0.86 8.30
API, homogenous 25500 60000 0.0120 1.00 6.45
API, reduced 20900 56700 0.0114 1.00 6.60

Elastoplastic Pile Cases

Curve Type max V (KN) max M (KNm) max¢ (m™) maxU (M) L.sr(m)
FE analysis, homogenous 4190 6170 0.0378 0.50 5.40
FE analysis, reduced 3980 6210 0.0955 0.67 5.05
API, homogenous 5870 6240 0.1532 0.46 3.25
API, reduced 5410 6180 0.2950 0.69 3.30
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Table 9.4 Pile bending response summary for BNWF analysis Wi a 0.61-m-diameter pile.

Elastic Pile Cases

Curve Type max V (KN) max M (KNm) max¢ (M) maxU (M) L.sp (M)
FE analysis, homogenous 2170 2550 0.0108 0.40 3.70
FE analysis, reduced 1870 2450 0.0104 0.40 3.80
API, homogenous 2700 4040 0.0171 0.49 3.40
API, reduced 2150 3790 0.0161 0.48 3.50

Elastoplastic Pile Cases

Curve Type max V (KN) max M (KNm) max¢ (m™) maxU (M) L.sp (M)
FE analysis, homogenous 1290 975 0.0508 0.32 2.80
FE analysis, reduced 1120 950 0.0424 0.33 3.00
API, homogenous 1420 980 0.2640 0.33 2.30
API, reduced 1200 1000 0.0156 0.34 2.65

The maximum shear force, bending moment, and curvaturemtsmwaturned using the API curves
tend to be significantly larger than those returned by the ilyais. As the pile diameter de-
creases, the results become more similar, however, the Ui?¢s still predict larger demands for
the smallest pile. The effective lengths obtained usingMREp —y curves tend to be smaller than
those returned by the extracted curves, indicative of laegeme bending demands on the piles.

In the elastoplastic pile cases, the maximum bending mamehirned using the two sets pf

y curves are similar due to the fact that the piles are reacttiely moment capacity, however,
the curvature demands placed upon the piles using the ARésare significantly larger and the
effective lengths tend to be shorter. Both of these resndtisate that the bending demands on the
piles using the API curves are much more severe than thoasmebtusing the FE analysis curves.

The BNWF results are compared to corresponding resultsraatdrom the 3D modeling effort
(see Chapter 5) in Tables 9.5, 9.6, and 9.7, which show tladivelerror between the BNWF
and 3D pile bending demands. The elastic pile BNWF casesampared to the results of the
free-head 3D Serie3 cases, which consider elastic piles in elastoplastic sthile elastoplastic
BNWEF cases are compared to the free-head 3D Sé¢meses, which model elastoplastic piles in
elastoplastic soil. As a reference, the 3D results for bo¢hSeries$ and4 cases are summarized
in Tables 5.2-5.4 (pages 69-69).

When applied to BNWF models, the-y curves computed from the 3D FE analysis return pile
demands that are reasonably similar to 3D lateral spreautimglations. There is a relatively small
amount of error which can be attributed to inaccuracieserctirve extraction procedure, the trans-
fer of these extracted curves into the nonlinear spring risoead the inherent error in representing
a 3D soil continuum with a series of discrete springs. Thrslarity in the results validates that the
p—1y curves computed using the rigid pile kinematic case in 30¢ckvhare free from the influence
of pile kinematics, can be used successfully in a simplifiBl¥\B- lateral spreading analysis.
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Table 9.5 Relative error between BNWF and 3D FE results for 5-m-diameter pile.

Elastic Pile Cases Relative Error

Curve Type max V (%) maxM (%) max¢o (%) L.sr (%)
FE analysis, homogenous 5.80 5.10 3.20 1.20
FE analysis, reduced 13.7 7.20 5.30 1.50
API, homogenous 223 216 222 18.7
API, reduced 177 206 212 18.1
Elastoplastic Pile Cases Relative Error

Curve Type max V (%) maxM (%) max¢o (%) L.sr (%)
FE analysis, homogenous 5.30 3.30 14.0 3.75
FE analysis, reduced 13.2 4.40 17.9 4.40
API, homogenous 90.2 5.60 2350 40.0
API, reduced 61.7 5.70 1750 334

Table 9.6 Relative error between BNWF and 3D FE results for 37-m-diameter pile.

Elastic Pile Cases Relative Error

Curve Type max V (%) max M (%) max¢ (%) L.y (%)
FE analysis, homogenous 1.00 3.86 3.18 9.20
FE analysis, reduced 11.1 5.97 5.30 10.3
API, homogenous 111 95.9 97.3 14.4
API, reduced 73.3 85.1 86.4 12.8
Elastoplastic Pile Cases Relative Error

Curve Type max V (%) maxM (%) max¢@ (%) L.sr (%)
FE analysis, homogenous 15.7 6.20 63.8 13.3
FE analysis, reduced 19.9 5.55 8.71 6.78
API, homogenous 18.1 5.17 46.5 31.7
API, reduced 8.87 6.02 182 30.4

Table 9.7 Relative error between BNWF and 3D FE results for G1-m-diameter pile.

Elastic Pile Cases Relative Error

Curve Type max V (%) max M (%) max¢ (%) Lcss (%)
FE analysis, homogenous 7.25 0.83 0.94 2.41
FE analysis, reduced 7.45 4.59 4.70 5.02
API, homogenous 33.3 57.3 57.2 6.82
API, reduced 6.07 47.6 47.4 4.03
Elastoplastic Pile Cases Relative Error

Curve Type max V (%) max M (%) max¢ (%) Lcss (%)
FE analysis, homogenous 2.92 0.59 14.7 2.08
FE analysis, reduced 11.0 2.90 4.36 5.65
API, homogenous 13.0 0.42 496 20.6
API, reduced 4.43 1.96 253 7.34
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Figure 9.2 Deflected shape, shear force, and moment diagrarfee® BNWF and 3D FE anal-
yses of lateral spreading for a 1.37-m-diameter pile with hear elastic behavior.

The APIp—y curves, which are inherently tied to a top pushover type lef geformation, tend

to be significantly larger than the 3D FE analysis resultgnewith the modifications made to
enhance the applicability of these curves. The deflectedsphpes shown in Figure 9.2 emphasize
the effects of the overestimated stiffness in the API cunfasshown, when the computed curves
are used, the base of the pile is able to cut backwards intedifigust as is observed in the 3D
model. When this occurs, the pile has a degree of rigid bothtiom in its deformation profile,
lessening the curvature demands incurred during the la@raading event. Using the API curves
leads to a condition in which the base of the pile is held firmlglace during the lateral spreading
event, increasing the curvature demands on the pile, edlygai the lower solid layer.

The shear and moment diagrams of Figure 9.2 further denatagtre differences in pile response
for the two sets ofpp—y curves. The diagrams corresponding to the comppted curves are
similar to those corresponding to the 3D FE analysis, whikAPI curves predict significantly
larger shear and moment demands over the full length of tae pi

The results of the elastoplastic pile analyses demonsraither relative difference between the
analysis approaches. As shown in Figure 9.2, there are tivereg moment demands, one in
each unliquefied soil layer. Figure 9.3 shows the evolutidhese extreme pile moments obtained
from the 3D FE analysis and BNWF models with computed and APJ curves. As a result of
the response overpredictions inherent to the API curvgsifgiantly larger curvature demands are
placed on the pile and large curvatures develop much eanlibe lateral spreading deformation.
The API-based analysis indicates that the pile has readhkedament capacity when the upper
layer has displaced approximately 0.24 m (.18 diameters) relative to the lower layer. In the
computedp—y curve and 3D analyses, the pile moment capacity is reachaldoatt 0.48 m+£
0.35 diameters) of upper soil layer displacement. This is a figant difference in perceived pile
bending demand between the cases, even with the assunradilesestance reductions in the API
curves near the liquefied layer.

It is recommended that—y curves defined using the API (1987) recommendations not&e ins

a simplified analysis of piles for lateral spreading. The BN#halyses have shown that the com-
putedp —y curves produce similar results to the 3D model and that thersignificant differences
between the results obtained using the computed andpARI curves, even with modifications
to the API curves, which serve to increase their applicgbib the lateral spreading case. The
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Figure 9.3 Evolution of extreme moment demands in top and babm layers with increasing
displacement of upper soil layer during BNWF and 3D FE laterd spreading
analyses for a 1.37-m-diameter pile.

BNWF approach can still be used successfully in a simplifiealyssis of this problem, however,
appropriate considerations must be made with respect tiffeeences in the pile kinematics used
to define thep—y curves and the pile kinematics modeled by the analysis. &febapproach to
defining the initial stiffness and ultimate resistance wiépth and in the zone of influence of the
liquefied layer greatly increases the similarity of the tessas compared to 3D FE analysis of
lateral spreading.

9.3 VALIDATION AND APPLICATION OF PROPOSED CURVE REDUCTION
PROCEDURE

The applicability of the proposed reduction procedure &lditeral spreading problem is validated
using a second series of BNWF simulations. Two test profilesiafined that represent arbitrary
liquefied layer locations. Both BNWF and 3D FE models aretexctor these soil profiles. The-

y curves in the BNWF model are defined using several stratégieke purpose of validating the
reduction procedure for the lateral spreading case andsiagehe applicability of this procedure
to existingp —y curve definition methods.

9.3.1 Test Profiles

Two general solil profiles are selected for use as test prabl@hrese profiles have geometries that
do not match any of those used in the parameter study to es$tabé reduction procedure. One
profile has a shallow liquefied layer, with a depth to the bddh® liquefied layerH = 10 m,
while the other has a deeper liquefied layer, with= 24 m. Both profiles have a liquefied layer
thicknessI" = 4 m, a soil unit weighty = 17 kN/m3, and consider a 1.37-m-diameter pile. The
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unliquefied soil layers have an internal friction angle= 38°. The remaining soil properties
are as listed in Table 4.2. 3D models are created for eactpteite. These models are used
to computep—y curves using the rigid pile kinematic as well as to simulateral spreading in

separate analyses.

Separate BNWF models are created for each of the test profitesse models are similar to that
depicted in Figure 9.1, however, in the BNWF analyses usesks@ss the proposed reduction
procedure both the ultimate resistance and initial stifénef thep —y curves in the liquefied layer
are taken to be 10% of their unreduced magnitudes.

9.3.2 Investigated Test Cases

The p—y curves used to describe the soil-pile interaction in the BANMbdels are defined using
five distinct combinations op,, and k. distributions. The five resulting test cases include two
validation casesC1andVC2), modeled using parameters directly obtained from the §id pile
simulations, and three practical case€(, PC2 andPC3), modeled using, andk,. distributions
estimated using methods readily available to practitisn€he investigated cases are summarized
below. Figures 9.4 and 9.5 show the distributiongpfindk,. , respectively, used for each test
case.

e Validation cases

— VCI Thep—y curvesin this case are defined using distributions,@ndk,. computed
directly from the 3D model, resulting im—1 curves which are reduced for the presence
of the liquefied layer specifically for each respective saiffite.

— VC2 This case uses—y curves withp, andk,. distributions computed from a ho-
mogenous soil 3D model in which the soil has the propertigb@unliquefied layers
in the test profiles. These curves are reduced for the presanihe liquefied layer
using the proposed reduction procedure.

e Practical cases

— PC21 Thep—y curves for this case are determined using the APl recomntiendg1987).
The curves representing the unliquefied sand are not redoicgae presence of the lig-
uefied layer.

— PC2 This case uses a distribution pf defined using the method of Brinch Hansen
(1961) and & distribution defined by correcting the API distribution fwrerburden
pressure after Boulanger et al. (2003). No reduction is nmeecount for the presence
of the liquefied layer.

— PC3 This case uses the, andk,. distributions of cas®C2 with the proposed reduc-
tion procedure applied to account for the presence of thuefigd layer.

The validation cases are intended to test the applicalfithhe BNWF model and the proposed
reduction procedure to the lateral spreading load case. pFhecurves forVC1 are obtained
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Figure 9.5 Distributions of &, used in BNWF models.

directly from 3D models of the test profiles. Therefore, aiffedences in the results afCland
the 3D lateral spreading simulations can be attributed ¢oettior induced by representing the
soil continuum as discrefe—y springs. Similarity of the results obtained fronC2 with the 3D
FE analysis verifies the ability of the proposed reductiomcpdure to appropriately predict the
reduction in the unliquefied soil response due to the presehthe liquefied layer.

The practical cases represent the types of predictionsctmbe made in the absence of 3D FE
analysis. These cases are intended to evaluate the aplgiycabthe chosen sets gf—y curves

to the BNWF lateral spreading analysis approach and to dstrada the benefits of the proposed
reduction procedure. Cas¥C1, using the APl recommendations, represents a common cbbice
p—y curves for cohesionless soils. Cd3€2 uses alternative methods to define they curves
for the purpose of contrasting the resultsREE1 Differences between the results BC3 and
PC2demonstrate the effects of the reduction procedure forateed! spreading case.

155



Table 9.8 Maximum pile bending demands in BNWF lateral spreding simulations.

Maximum pile shear force (MN)  Maximum pile moment (MNm)
VCl VvC2 PCl1 PC2 PC3 VC1 VC2 PCl1 PC2 PC3

H=10m 6.52 6.00 10.75 8.74 7.47 36.7 36.0 455 440 375
H=24m 132 127 425 27.8 224 412 410 1136 789 69.3

9.3.3 Results

The results of the BNWF lateral spreading simulations asduated through comparison of the
maximum shear force and bending moment demands developiael pile with corresponding de-
mands obtained from the 3D FE analysis, which is believecttthb most accurate representation
of the problem. Emphasis has been placed on the relativeitndgs of the shear and moment de-
mands rather than on numerical values. The displaced slofpes piles are considered in order
to gain additional insight on the results.

Figure 9.6 and Table 9.8 present the maximum shear and maheemnds obtained from the
BNWF and 3D FE lateral spreading simulations for each texfilpr Comparison o¥/C1with the
3D FE analysis shows the error induced by using the apprdaatnaputingp —y curves from the
3D model and applying them in a BNWF analysis. The error w&dlin this process is relatively
small. With respect to validation, the maximum shear and srdrdemands foyC2are found to
be consistent with botirC1 and the 3D FE analysis, which verifies that the reduction gutace
can be successfully implemented in a lateral loading aisabfsa pile in a general soil profile.
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Figure 9.6 Comparison of maximum pile shear and moment demads.

It is interesting to note that the maximum pile demand¥ G2 are somewhat closer to the 3D
results than those ofCL This relatively small difference can be attributed to tlservation
that the reductions ip, andk,. for VC2are greater than those fulC1 (see Figures 9.4 and 9.5),
leading to smaller pile bending demands. This shows thaewheé reduction procedure does not
exactly reproduce thg, andk,. distributions directly obtained from the 3D model, it isllsain
effective analysis tool, as the resultant pile responsamsrsimilar.
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The results of the practical cases highlight several olasiemns. It has been shown that the API
recommended distributions pf andk, used inPC1lare too large at depth, and when applied to
a BNWEF lateral spreading analysis, produce maximum pileisaaed moment demands that far
exceed those obtained using 3D FE analysis. This findingnéirooed by the results shown in
Figure 9.6, where the pile demandsRi€1are larger than all other cases, especially for the deeper
liquefied layer location.

The methods chosen to define fhey curves forPC2were selected with the knowledge the API
p—y curves have excessive capacity and stiffness at depthp, Téwedk. distributions for this case
are more similar to those obtained from the 3D model, andefbee, the maximum pile bending
demands estimated fétC2 are closer to the 3D FE analysis than thos@GfL. Application of
the proposed reduction procedure to they curves ofPC2improves the prediction of the pile
response even more, BE€3estimates lower maximum moment and shear demands in thiopile
both test profiles. This result shows that the reduction gutface can be used on independently
developed set op—y curves to appropriately account for the presence of a ligddayer in a
BNWF analysis of lateral spreading, producing pile bendiegnands that are more consistent
with a 3D representation of the problem.

While the results of the validation cases are similar to theFE analysis, for the practical cases
there is a significant difference in relative similarity teet3D results depending upon the depth
of the liquefied layer. For the shallower liquefied layer kbma (H = 10 m), the error in the
maximum shear and moment demands between the practicalar@d¢he 3D FE analysis is much
smaller than for the deeper liquefied layer locatiéh £ 24 m). The benefits of informed—y
curve selections are apparent through comparison of théseg PC1with PC2 and the effective-
ness of the proposed reduction procedure is evident in thétseof PC3 however, the smallest
errors between the practical cases and the 3D FE analys#ithlarger than the error induced
through the BNWF approach.

These observed differences in maximum shear and momentndisntan be better understood
by considering the deformed shapes of the pile. Figure oWslthe deflected shape of the pile
for VC2 and PC3 for both test profiles. FoH = 10 m, large pile deformations occur near
the ground surface and the magnitude of the deformatioemsswith increasing depth. Below
the liquefied layer, little or no pile deformation occurs. rg@ pile deformations occur in and
around the liquefied layer falf = 24 m, while little deformation occurs away from this zone.
The significant differences ik, where pile deformations are small are the main cause for the
differences in maximum pile bending demand observed betwee practical BNWF cases and
the 3D FE analysis.

For the shallower liquefied layeH( = 10 m), p, is low enough in the upper unliquefied layer to
control the response of the-y curves. Changes in initial stiffness make little differeni this
region because the pile deformations are large enough ik@tecthe lateral capacity of the-y
curves. Below the liquefied layer, pile deformations arelbaral . controls the behavior of the
p—y curves. Wherk. is large, the lower portion of the pile is effectively heldtsvnary while the
the top is bent over. This concentrates the curvature ofitb@per a narrower length, resulting in
an increased bending moment, and produces a sharp chamgdateral force carried by the pile,
leading to a higher shear force at this point. The lowerrstgt observed for the 3D FE analysis
allows the curvature to be spread out over a longer sectidheopile, leading to lower bending

157



@

H=10m H=24m

£ —ve2 J
D PC3
< /
=20 —
o -
© "‘

30 (

-05 0 05 1.0 15-05 0 05 1.0 15
pile displacement (m)

Figure 9.7 Deformed shapes of pile in th& C2 and PC3BNWF analyses.

demands. These differences in the displaced shape of thargihighlighted in Figure 9.7 for two
analysis cases.

Similar behavior leads to the large bending demands obdevith a deeper liquefied layefH( =

24 m), however, the depth of the liquefied layer alters the disminent profile of the pile such
that two hinges form, whereas only a single hinge developethe shallow liquefied layer. The
combined effect of two hinges and higher valueg péndfk,. at depth for the practical cases leads
to the large discrepancies compared to the 3D FE analysishésn in Figure 9.7, compared to
VC2 the hinge points foPC3are closer to the liquefied layer and the curvature is conatmut
over shorter lengths, both of which are due to the largeresmbfp, andk,. for this case. For a
deeper liquefied layer location, the selectionpefy curves used in the BNWF analysis signifi-
cantly affects the simulated pile response. Careful selectf p —y curves is critical to obtaining
an accurate estimate of the maximum pile bending demands.

9.4 EFFECTS OF SOIL SHEAR MODULUS ON INITIAL STIFFNESS OF p-—y
CURVES

The results of the BNWF analyses have shown that the maximamdibg demands placed on a
pile during a lateral spreading event have a strong depeedam the initial stiffness of the soil
response. As shown in Figure 9.5, thedistribution computed from the 3D model is significantly
lower than either of the estimated distributions. The défee is due to how these distributions
are determined. The API initial stiffness distribution efided as a function of the friction angle,
¢, of the soil, whereas in the 3D model, the initial stiffnessiifunction of the shear modulus,

of the soil constitutive model.

Friction angle is a failure parameter related morg,towhile k.. is related more fundamentally to
G; however, the friction angle and small strain shear modafuen actual sand are both directly
related to the relative density, and therefore to each ptedefining the initial stiffness of the
p—y curves based on is reasonable. No such intrinsic relation betweeand GG exists in the
Drucker-Prager constitutive model. In an actual sand, lleasmodulus decreases with increasing
shear strain. Because the constitutive model used in thelaions does not directly consider
modulus reduction, the shear modulus of the unliquefiedsayeist be taken to represent a large
strain value. This indicates that comparisons made betwakes ofk,, computed based on a
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large strainGG and values determined from which is related to the small strain shear modulus,
may not be entirely appropriate.

For a typical dense sand with a unit weight of 17 kN/rthe small strain shear modulus at one
atmosphere ranges between approximately 50,000 and TOREX) Additional 3D models are
created using these values @}, and used to determine neb. distributions. These models
consider one homogenous soil layer that, with the excemtian increased shear modulus, has
the soil parameters defined for the test profiles. Fhealues are computed using the rigid pile
kinematic, and all three pile diameters are considered.

The k. distributions computed from these models are shown in Ei§u8. Shown for reference
are thek,. distributions used foW¥C2 (G = 9260 kPa) andPC2 The values of:, computed from
the 3D models increase with increasing shear modulus amd @lkitameter dependence at shallow
depths. The values df, computed from the 3D model with larger shear moduli apprpbaohdo
not reach, the values estimated from the friction angle.

0
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—0.61 m dia.

API w/ overburden
correction (¢ = 38°)
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Figure 9.8 Comparison of initial stiffness distributions for various values of soil shear mod-
ulus, G.

To determine how these larggy. distributions affect the pile bending demands, a BNWF &ter
spreading analysis is conducted for each test profile ante\@liG,. These analyses consider a
reduction in initial stiffness based upon the proposedcetdn procedure and the same redupgd
distribution used foWC2 Figure 9.9 compares the results of these analyses to tihts@ed for
VC2 andPC2 andPC3 Table 9.9 presents the values obtained for the two highesarghodulus
cases.

For the profile with a shallow liquefied layer & 10 m), the results of the increased shear modulus
analyses compare favorably with the other cases. With tbepion ofPC2, in whichp, andk,.

are not reduced to account for the presence of the liquefjed leach case produces approximately
the same maximum shear and bending moment demands in theThikeconfirms the previous
observation that the initial stiffness of the-y springs does not control the bending demands in
the pile for types of deformations related to the shallowéified layer.

The deeper liquefied layer location shows a greater deperdamthe initial stiffness of the—
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Figure 9.9 Comparison of maximum pile shear and moment demads for higher shear
modulus cases.

Table 9.9 Maximum pile bending demands in BNWF lateral spreding simulations for
higher shear modulus cases.

Maximum pile shear force (MN) Maximum pile moment (MNm)
G,=50MPa G, =100MPa G,=>50MPa G,=100MPa

H=10m 6.28 7.12 36.6 37.1
H=24m 20.1 22.0 61.5 67.9

y springs. The maximum shear and moment demands in the pileaige with increasing,,
and the practical cases, which have even lafgedistributions, produce bending demands that
are greater still. For both of the considered soil profileg, bending demands predicted using
G, = 100,000 kPa, agree well with those estimatedRC3 This suggests that when working
under the assumption of a small strain shear modulus, théioaton ofp, andk,. distribution
prediction methods used f&*C3 when reduced for the presence of the liquefied layer usiag th
proposed reduction procedure, can be used to predict r@blsomaximum shear and moment
demands in a BNWF lateral spreading analysis.

9.5 SUMMARY

Analysis of pile foundations subject to liquefaction-imed lateral spreads is difficult due to the
complexity of the problem. Simplified BNWF analyses usingy curves are a common design
tool for this load case. Careful and informed selection efithy curves for a particular analysis,
as defined by the characteristie-y curve parameters of ultimate lateral resistapgeand initial
stiffness k., are crucial for the effectiveness of the BNWF approach.

When applied to BNWF models, the-y curves computed from 3D FE analysis return pile de-
mands that are reasonably similar to 3D lateral spreadinglations, thus validating the approach
of computingp —y curves using the rigid pile kinematic. Usipgy curves established using the
procedure recommended by the API, the piles in the BNWF nsoded subject to significantly
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larger curvature demands than those returned by the 3D mgadsfort. These curves are derived
based upon tests of piles loaded at or near the ground swfdgeand it has been shown that
p—y curves established in this manner are not applicable toltheative kinematic of the lateral
spreading case in which relatively large pile displacementur with depth.

Lateral spreading analyses were conducted using BNWF an&BRpproaches to verify and
demonstrate the effectiveness of the propgsed curve reduction procedure. It was shown that a
BNWF analysis using —y curves obtained from a homogenous soil profile and then sstlusing
the proposed procedure estimates maximum pile shear anéntoi@mands which compared well
with 3D FE analysis. It was also shown that the proposed temtuprocedure, when applied to a
BNWEF lateral spreading analysis in tandem with an informeldcion ofp—y curves, produced
maximum pile bending demands that were more similar to thee3DIts than identical unreduced
p—y curves. The effect of the magnitude of the soil shear modutuse initial stiffness of the —

y curves computed from 3D FE analysis is considered, and lissiwed that use of a small strain
shear modulus estimates pile bending demands which aresimoitar to the practical methods.

Based upon this work, it is recommended that a BNWF analyfsigjwefaction-induced lateral
spreading be conducted usipgy curves defined by thg, distribution of Brinch Hansen (1961)
and the API (1987) distribution of;,, corrected for overburden pressure after Boulanger et al.
(2003), in conjunction with the reduction procedure ddsatiin this paper. Use gf—y curves
defined in this manner seems to estimate maximum pile shdanament demands that correlate
well with a 3D representation of the problem, and will allowimmple BNWF analysis to produce
more efficient design solutions.
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10 Summary, Conclusions, and
Recommendations for Future Work

This report presents a kinematic analysis of a single pileezided in a laterally spreading layered
soil profile. An evaluation of the relevancy of conventioaaklysis models to this load case is
conducted, and a simplified design procedure using a BNWFoaph is proposed.

10.1 SUMMARY AND CONCLUSIONS

A summary of the work and associated conclusions of thisarebeis presented in terms of the
following items: FE model development, 3D lateral spregdinalysis, representatiye-y curve
computation, evaluation of conventional and compuyied, curves, influence of liquefied layer,
and BNWF analysis.

Finite Element Model Development

Chapters 2, 3, and 4 presented the majority of the finite elém®del development necessary
to this research. Additional variations on the main tengtabdel that consider increased lateral
extents, near-surface effects, a plane strain conditiod,variable soil profiles were developed
and discussed in Chapters 6, 7, and 8. Each individual coemai the models was validated to
ensure that verifiably-correct behavior is observed whepk load cases are applied. The main
aspects of this work are summarized as follows.

e A 3D soil-pile interaction model was created for the case sfrgle pile embedded in a
soil continuum. This model employs beam-column elementsddel the piles, solid brick
elements for the soil, and beam-solid contact elementsfioedine soil-pile interaction.

e Fiber section models were created for three template neiefbconcrete pile designs. These
models define the constitutive behavior for the beam-colefements used to model the
piles. The moment-curvature responses of the composséglastic fiber section models
were verified by several means.
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e The Drucker-Prager constitutive model used to define tre@déastic behavior for the co-
hesionless soils in the lateral spreading model was vettifieaigh the applications of stress
paths that simulate commonly-used geotechnical testsastaonfirmed that the Drucker-
Prager model is able to produce predictable responses &ppieation of these stress paths.

e Variations in the main soil-pile interaction model were read order to analyze specific
behaviors in greater detail. Models with extended latextérgs were developed and used
to evaluate the effects of the fixed boundary in the standardein Near-surface and plane
strain models were developed and analyzed in order to Vealidlaservations made using
the standard mesh. Models without fixed liquefied layer locatwere used to evaluate the
influence of the liquefied layer on the soil response.

3D Lateral Spreading Analysis

As discussed in Chapter 5, 24 distinct analysis cases wergidered for the lateral spreading
kinematic. These cases were divided into four analysieSeiepending upon the combination of
constitutive models assigned for the pile and soil elementese four Series were analyzed for
two boundary conditions at the head of the pile, fixed and fiegulting in eight analysis cases for
each of the three pile designs. Several findings were madel lgeon this modeling effort.

e For a pile subjected to the kinematic demands of the latgralesling case, the maximum
shear force demand develops at the center of the liquefied &yd there are two extreme
moment demands, one in each solid soil layer. The maximumenodemand exists in the
lower layer for all but one of the 24 considered cases. Thewlie between the extreme
moments defines the effective length factor for the pilg,,, a parameter that provides an
indication of the severity of the bending demand.

e The liquefied interface acts similarly to a free surface &edatdjacent solid soil is able to be
pushed into the weaker center layer during the applicatidateral loads. This effectively
reduces the strength of the solid soil in the regions adjaoethe liquefied layer.

e Plastic hinges form in the pile at the locations of extremeranot in each layer. The plastic
deformation/rotation in these locations becomes conatadrover an increasingly smaller
length of the pile as the pile-to-soil stiffness ratio deses.

e The fixity of the pile head is an important consideration. &€aanalyzed using a fixed
boundary condition at the top of the pile return larger beganoment demands in the piles
than corresponding cases analyzed with a free-head comdiidditionally, the maximum
moment demand does not generally exist at the point of figityrather, occurs further down
in the solil profile. This location depends upon the thickradshe top layer, soil stiffness,
and the bending stiffness of the pile.

e The consideration of elastoplastic soil behavior leadargdr estimated maximum moments
in the pile than occur with linear elastic soil elements du¢hie failure of the soil. This
observation has been confirmed through the use of two singalenbmodels, which can be
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solved by hand in a relatively simple manner. Elastoplastichehavior must be considered
in order to obtain appropriate maximum moment and shear ddsfar piles.

Representative —y Curve Computation

The soil response obtained from the soil-pile interactiardetis is evaluated through the com-
putation of representative force density-displacemgnty) curves at each pile node using the
procedure described in Chapter 6. Smooth curves are fit teettoeded data using a least square
fit. Two functional forms are used: one to establish theahitangent of the —y curves and the
other to define the complete shape of the curves. In additidhd lateral spreading case, two
alternative pile kinematic cases are considered: a topgues case and a rigid pile case in which
there is a uniform displacement profile with depth. The e¢ffexf model-specific phenomena on
the extracted results are explored through investigatodnsriations in the meshing and fixed
boundaries. Several conclusions may be drawn from this atatipnal process.

e The force density-displacement<y ) data returned by the 3D models can be fit reasonably
well using a hyperbolic tangent function, though the usehdd functional form tends to
underestimate the initial stiffness displayed by the FE& datitial stiffness can be established
using a polynomial curve fit.

e The kinematics of the pile plays an essential role in definiggobtained soil response and
can significantly affect the computed-y curves. The top-pushover and lateral spreading
cases produce pile displacement profiles that vary in madaibver the length of the piles.
At nodes for which the pile displacement is small, not onlthis soil response insufficiently
activated, the comparably larger displacements whichragicadjacent nodes influence the
soil response at these nodes, leading +g, curves that are not representative of the true
soil response. The rigid pile kinematic case must be udlineorder to obtain sensible local
p—y curves over the length of the pile.

e Selective mesh refinement results in a condition where iffaests of the soil continuum
varies over the length of the pile. This inconsistent séiffs manifests itself as fluctuations
in the recorded soil response. Models with uniformly-sinegshes are analyzed and the
inconsistent results obtained from the selectively refimeghes can be smoothened through
multiplication with a ratio obtained using the uniform mesbults.

e The fixed boundaries in the model can influence the soil respai large drift. This is
confirmed through the use of an additional model created witreased lateral extents in
the direction of pile loading. In the default meshes, thexpnity of the pile to the boundary
causes confining stresses to develop in the deeper portfaihe coil that are too large.
This effect can be partially alleviated through the use af-associative plasticity in the soll
constitutive model.

165



Evaluation of Conventional and Computeg—y Curves

The representative—y curves computed from the 3D FE model using the proceduresibled

in Chapter 6 were used to evaluate several conventional srfearescribing soil response and
establishingp—y curves. The evaluation of the computedy curve parameter distributions and
comparisons with the conventional methods were discuss€tiapter 7. The considered methods
encompass several commonly referenced methods for thatefiof distributions of ultimate
resistance and initial stiffness with depth. Several olzg@ns were made from these comparisons
and about the extracted parameter distributions and thenfimlg conclusions are drawn.

e Depth appropriate soil failure modes must be considerdwidistributions of both the initial
stiffness and ultimate lateral resistance of the soil. Nlearsurface, the lack of overburden
pressure leads to the early onset of yield while at depthinttreased overburden pressure
leads to the expansion of the elastic regime in the soil. Bbttnese factors significantly
influence both the initial stiffness and ultimate resiseaotthe computeg —y curves.

e The magnitudes of the computed curves are similar to segétht considered methods at
different depths, however, the general form of the resslteot reflected in the predicted dis-
tributions. Itis noted that the current model is not captgthe true ultimate resistance of the
soil at depths beyond a few meters. The extracted valuesdeyds point are extrapolated
by the curve-fitting procedure.

e The linear initial stiffness distribution with depth comnip assumed appears to be based
upon an extrapolated elastoplastic state. The predidfétkests at shallow depths correlates
fairly well with the 3D FE results, though there is a diamatependence that is missing. At
increased depths, there is no clear correlation betweerotih@uted and estimated results.

e The method most commonly employed when establishiag curves for a particular cohe-
sionless soll, that recommended by the API (1987), ovenatéis both the initial stiffness
and ultimate lateral resistance of the soil at depth. Thithoteis based upon field tests in
which loads are applied at or above the ground surface. ikedylthat the kinematics of
the pile in this case contribute to the unrealistically &axglues that are predicted by this
methodology.

Influence of Liquefied Layer

The effects of a liquefied layer on the lateral response ofilssgstem are evaluated in Chapter
8. This is accomplished through the comparisom ey curves computed from homogenous soil
profiles with corresponding curves computed from layeradpsofiles in which a liquefied layer

is located between two unliquefied soil layers. Several masiens are made and conclusions are
drawn.

e The presence of a liquefied layer in the soil profile reducesrittial stiffness and ultimate

lateral resistance of the unliquefied soil layers in the @aegjacent to the weaker liquefied
middle layer.
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It is observed that the reduction is greatest at the layerfete and decays exponentially
with increasing distance from the liquefied layer in both tipper and lower unliquefied
layers. The magnitude of the reduction at a particular degdrom the liquefied interface
depends on the thickness of the liquefied layer, the dianudtédre pile, and the vertical
effective stress.

e An exponential decay model is proposed to describe the vbdgrarameter reductions.

e A parameter study using the-y curves computed from 126 combinations of pile diame-
ter, soil profile, and soil properties is used to develop amada predict reductions for a
particular soil profile.

e A simplified procedure is proposed to estimate approprietiictions in ultimate lateral
resistance and initial stiffness for a given soil-pile systthat includes a liquefied layer.

Beam on Nonlinear Winkler Foundation Analysis

Beam on nonlinear Winkler foundation analyses of laterataging are discussed in Chapter 9.
These models are created in order to validate the computgcturves, to assess the applicability
of conventionally-definegh—y curves to the lateral spreading case, and to validate/dstmabe
the proposed procedure to redycey curves to account for the presence of a liquefied soil layer.
Several observations and conclusions are made.

e Thep—y curves computed from 3D FE analysis produce simulated piteling responses in
BNWF analyses which compare well with corresponding reduttm 3D lateral spreading
simulations. This validates that-y curves computed using the proposed rigid pile method
are representative of the soil response regardless of Higzaal pile kinematics.

e The overestimated values of ultimate lateral resistanderatial stiffness in the API (1987)
recommendegd—y curves lead to very large pile bending demands that greatiyezl those
obtained in 3D analysis. Use of these curves without modidinafor analysis of lateral
spreading, or another load case with deep-seated soilRpaieaction, is not recommended.

e The pile bending responses from BNWF analyses usig curves computed from a ho-
mogenous soil profile, then reduced using the proposed tiedymrocedure, compare favor-
ably with corresponding 3D FE analyses that include a ligagefayer. This validates that
the reduction procedure is able to estimate appropriatecteshs for general combinations
of soil profile, soil properties, and pile diameter.

e Further BNWF simulation of lateral spreading identifiestds@ong readily available meth-
ods for defining distributions of ultimate lateral resistarand initial stiffness fop—y
curves, the method of Brinch Hansen (1961) and the modifiedméthod proposed by
Boulanger et al. (2003) seem to most accurately represergdih response for the lateral
spreading load case.
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e Application of the proposed reduction process to the patantstributions estimated by
these methods produces pile bending responses that maoraiatg represent corresponding
3D FE results.

10.2 RECOMMENDATIONS FOR FUTURE WORK

There are several avenues for future work which are sugtjéstehis research. Though many
findings have been made, there are nearly as many unanswesstibgys. These recommendations
for future work are subdivided into several categories farity.

Finite Element Model Development

¢ It may be advantageous to explore more combinations of adilpile properties to further
assess how these factors affect the simulations.

e The Drucker-Prager constitutive model used in the simaratis a relatively simple model
that does not necessarily capture all aspects of the sodvi@h It may prove useful to
explore the findings of this research using a soil model tledtieb captures the true soill
behavior.

¢ A large-deformation model may prove useful in fully captgrthe ultimate soil behavior.

Experimental Need

¢ It may enhance the understanding of this problem to devisayaimwwhich to perform a
physical lateral spreading test either at full, or nearly; &cale or at a reduced scale using a
shaking table or a centrifuge. This would provide a secohdfs#ata with which to evaluate
the results of the numerical simulations.

e It has been observed that the soil response obtained fromumerical simulations does
not correlate with commonly used empirical methods for [mtath this response, especially
at depth. Perhaps physical tests, performed using a ritgckkpiematic, along with further
numerical simulations can aid in the determination of fuéalistributions of initial stiffness
and ultimate resistance over the length of the piles.

Soil Response Evaluation

e This research identified shortcomings of several conveatimeans for representing the lat-
eral response of the soil with depth, however, this work isaumclusive enough to make
firm recommendations on revised distributions of ultimateral resistance and initial stiff-
ness. Further numerical simulation, perhaps combined exigierimental study, would be
required for this purpose.
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e This research focused on analyses conducted using a siitglenmbedded in a soil profile
in which all surfaces are perpendicular to the pile and tlaeeeonly three layers. It would
be of interest to evaluate the applicability of these finditajany number of additional cases
such as pile groups, battered piles, sloping ground camditiand increased number of soil
layers. Any one of these investigations could prove to belaabde contribution to the
general knowledge of laterally loaded piles.
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