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ABSTRACT 

The report contains the findings of a study on the mechanical behavior of unbonded fiber-
reinforced bearings (FRB). Typical FRBs consist of several layers of rubber that are bonded to 
fiber reinforcing sheets. The purpose of the reinforcement is to prevent the rubber from bulging 
laterally under compressive load. The most important aspects of these bearings are (i) they do not 
have thick end plates; (ii) they are not bonded to the top and bottom support surfaces; and (iii) 
their reinforcements are very flexible. These aspects may seem to be design deficiencies, but 
they have the advantage of eliminating the presence of tensile stresses in the bearing by allowing 
it to roll off the supports when it is sheared. This reduces the typical bonding requirements. The 
weight and the cost of isolators is reduced by using fiber reinforcing, no end-plates, and no 
bonding to the support surfaces, offering a low-cost lightweight isolation system for developing 
countries. This work is the comparison between an approximated linear elastic theory and the 
outputs of finite element analyses. 
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1 Introduction 

1.1 FIBER REINFORCED ELASTOMERIC ISOLATORS 

An analysis is given for the mechanical characteristics of multilayer elastomeric isolation 
bearings where the reinforcing elements normally steel plates are replaced by fiber 
reinforcement. The fiber reinforcement, in contrast to the steel reinforcement (which is assumed 
to be rigid both in extension and flexure), is assumed to be flexible in extension, but completely 
without flexural rigidity. The influence of fiber flexibility on the mechanical properties of the 
fiber reinforced isolator, such as vertical and horizontal stiffness, is studied, and it is shown that 
it should be possible to produce a fiber reinforced isolator that matches the behavior of steel 
reinforced isolator. The fiber reinforced bearing (FRB) will be significantly lighter and could 
lead to a much less labor intensive manufacturing process. 

Seismic isolation technology in the United States is applied almost entirely to large, 
expensive buildings housing sensitive internal equipment, for example, computer centers, chip 
fabrication factories, emergency operation centers, and hospitals. The isolators used in these 
applications are large, expensive, and heavy. An individual isolator can weight one ton and often 
more. To extend this valuable earthquake-resistant strategy to housing and commercial buildings, 
it is necessary to reduce the cost and weight of the isolators. The primary weight in an isolator is 
due to the reinforcing steel plates, which are used to provide the vertical stiffness of the rubber 
steel composite element. A typical rubber isolator has two large endplates (around 1 in. thick) 
and 20 thin reinforcing plates (1/8 in. thick). The high cost of producing the isolators results from 
the labor involved in preparing the steel plates and the assembly of the rubber sheets and steel 
plates for vulcanization bonding in a mold. The steel plates are cut, sandblasted, acid cleaned, 
and then coated with bonding compound. Next, the compounded rubber sheets with the 
interleaved steel plates are put into a mold and heated under pressure for several hours to 
complete the manufacturing process. The purpose of this research is to suggest that both the 
weight and the cost of isolators can be reduced by eliminating the steel reinforcing plates and 
replacing them with fiber reinforcement. The weight reduction is possible as fiber materials are 
available with an elastic stiffness that is of the same order as steel. Thus the reinforcement 
needed to provide the vertical stiffness may be obtained by using a similar volume of very much 
lighter material. The cost savings may be possible if the use of fiber allows a simpler, less labor-
intensive manufacturing process. It is also possible that the current approach of vulcanization 
under pressure in a mold with steam heating can be replaced by microwave heating in an 
autoclave. 

Another benefit of using fiber reinforcement is that it would then be possible to build 
isolators in long rectangular strips, whereby individual isolators could be cut to the required size. 
All isolators are currently manufactured as either circular or square in the mistaken belief that if 
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the isolation system for a building is to be isotropic, it needs to be made of symmetrically shaped 
isolators. Rectangular isolators in the form of long strips would have distinct advantages over 
square or circular isolators when applied to buildings where the lateral resistance is provided by 
walls. When isolation is applied to buildings with structural walls, additional wall beams are 
needed to carry the wall from isolator to isolator. A strip isolator would have a distinct advantage 
for retrofitting masonry structures and for isolating residential housing constructed from concrete 
or masonry blocks. 

The essential characteristic of the elastomeric isolator is the very large ratio of the 
vertical stiffness relative to the horizontal stiffness. This is produced by the reinforcing plates, 
which in current industry standard are thin steel plates. These plates prevent lateral bulging of the 
rubber, but allow the rubber to shear freely. The vertical stiffness can be several hundred times 
the horizontal stiffness. The steel reinforcement has a similar effect on the resistance of the 
isolator to bending moments, usually referred to as the “tilting stiffness.” This important design 
quantity makes the isolator stable against large vertical loads. The first analysis of the 
compression stiffness of the steel reinforced isolator was done using an energy approach by 
Rocard [1973]; further developments were made by Gent and Lindley [1959] and Gent and 
Meinecke [1970]. In modeling the isolator reinforced with steel plates, the plates are assumed to 
be in extension and rigid in flexure. The fiber reinforcement is made up of many individual 
fibers grouped in strands and coiled into a cord of sub millimeter diameter. The cords are more 
flexible in tension than the individual fibers; therefore, they may stretch when the bearing is 
loaded by the weight of a building. On the other hand, they are completely flexible in bending, so 
the assumption made when modeling steel reinforced isolators that plane sections remain plane 
no longer holds. In fact, when a fiber reinforced isolator is loaded in shear, a plane cross section 
becomes curved. This leads to an unexpected advantage in the use of fiber reinforcement. When 
the bearing is displaced in shear, the tension in the fiber bundle (which acts on the curvature of 
the reinforcing sheet caused by the shear) produces a frictional damping that is due to individual 
strands in the fiber bundle slipping against each other. This energy dissipation in the 
reinforcement adds to that of the elastomer. 

Recent tests show that this energy dissipation is larger than that of the elastomer. 
Therefore, when designing a fiber reinforced isolator for which a specified level of damping is 
required, it is not necessary to use elaborate compounding to provide the damping, but to use the 
additional damping from the friction in the fibers. To calculate the vertical stiffness of a steel 
reinforced bearing, an approximate analysis is used that assumes that each individual pad in the 
bearing deforms in such a way that horizontal planes remain horizontal and points on a vertical 
line lie on a parabola after loading. The plates are assumed to constrain the displacement at the 
top and bottom of the pad. Linear elastic behavior in shear is assumed and bulk compressibility 
is included. 

The additional assumption that the normal stress components are approximated by the 
pressure is made which leads to the well-known “pressure solution,” which is generally accepted 
as an adequate approximate approach for calculating the vertical stiffness. The extensional 
flexibility of the fiber reinforcement can be incorporated into this approach, and that predictions 
of the resulting vertical stiffness can be made. A surprising result of this approach to the analysis 
of the combined response of the pad to the apparently unrelated effects of stretching of the 
reinforcement and compressibility in the elastomer is that the mathematical structure of the 
theory is the same for both effects, and that they can be combined in the resulting solution in a 
simple way. The horizontal stiffness and buckling of the steel reinforced isolator is modeled by 
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an equivalent beam theory whereby a bearing with many discrete pads is replaced by a 
continuous composite beam with plane sections normal to the undeformed axis assumed to 
remain plane but not normal to the deformed axis, reflecting the very low shear stiffness of the 
rubber and the flexural rigidity of the steel reinforcement. When the reinforcement is perfectly 
flexible in bending, the beam model must be extended to permit the warping of the cross section. 
The development of lightweight, low-cost isolators is crucial if this method of seismic protection 
is to be applied to a wide range of buildings—such as housing, schools, and medical centers—in 
earthquake-prone areas of the world. 
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2 Flexible Reinforced Bearings under 
Compression 

2.1 INFINITELY LONG STRIP ISOLATORS 

2.1.1 Equilibrium in Elastomeric Layer 

A layer of elastomer in an infinitely long, rectangular isolator is shown in Figure 2.1. The 
elastomeric layer has a width of 2b  and a thickness of t . The top and bottom surfaces of the 
layer are perfectly bonded to flexible reinforcements that are modeled as an equivalent sheet with 
a thickness of ft . A coordinate system ( ), ,x y z  is established by locating the origin at the center 
of the layer and the y -coordinate direction is attached to the infinitely long side. Under the 
compression load P  in the z -direction, the deformation of the elastomer is in a plane strain state 
so that the displacement component in the y -direction vanishes. The displacement components 
of the elastomer in the x - and z -coordinate directions, denoted as u  and w , respectively, are 
assumed to have the form 

( ) ( ) ( )
2

0 12

4, 1 zu x z u x u x
t

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (2.1) 

( ) ( ),w x z w z=  (2.2) 

In Equation (2.1), the term of 0u  represents the kinematic assumption that vertical lines 
in the elastomer become parabolic after deformation; the horizontal deformation is supplemented 
by additional displacement 1u , which is constant through the thickness and is intended to 
accommodate the stretch of the reinforcement. Equation (2.2) represents the assumption that 
horizontal planes in the elastomer remain planar after deformation. The elastomer is assumed to 
have linearly elastic behavior with incompressibility. The assumption of incompressibility means 
that the summation of normal strain components is negligible and produces a constraint on 
displacements in the form  
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Figure 2.1 Infinitely long rectangular pad showing dimensions. 

, , 0x zu w+ =  (2.3) 

where the commas imply partial differentiation with respect to the indicated coordinate. 

Substitution of Equations (2.1) and (2.2) into the above equation gives 

2

0, 1, ,2

41 0x x z
zu u w
t

⎛ ⎞
− + + =⎜ ⎟

⎝ ⎠
     (2.4)  

Integration through the thickness of the elastomer from 2z t= −  to 2z t=  leads to  

0, 1,
3 3
2 2x x cu u ε+ =          (2.5)  

in which cε  is the nominal compression strain defined as 

2 2
c

t tw w

t
ε

−⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= −   (2.6) 

The stress state in the elastomer is assumed to be dominated by the internal pressure p , such 
that the normal stress components xxτ and zzτ  are assumed as 

xx zz pτ τ≈ ≈ −  (2.7) 

Under these stress assumptions, the equilibrium equation of the elastomer in the x -direction   

, , 0xx x xz zτ τ+ =  (2.8) 
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is reduced to 

, , 0x xz zp τ− + =  (2.9) 

The assumption of linearly elastic behavior for the elastomer means that  

( ), ,xz z xG u wτ = +  (2.10) 

with G  being the shear modulus of the elastomer. Using the displacement assumptions in 
Equations (2.1) and (2.2), the above equation becomes  

0 28xz
zGu
t

τ = −  (2.11) 

which gives, from Equation (2.9),  

, 02

8
x

Gp u
t

= −
  (2.12) 

Differentiating the above equation with respect to x and then combining the result with Equation 
(2.5) to eliminate the term of 0,xu , we have  

( ), 1,2

12
xx x c

Gp u
t

ε= −   (2.13) 

2.1.2 Equilibrium in Reinforcing Sheet 

The deformation of the elastomeric layers bonded to the top and bottom surfaces of the 
reinforcing sheet generates the bonding shear stresses xzσ  on the surfaces of the reinforcing 
sheet, as shown in Figure 2.2.  

In an infinitesimal dx  width of the reinforcing sheet, the internal normal farce per unit 
length in the x -direction, F , is related to these bonding shear stresses through the equilibrium 
equation  

,
2 2

0t tx xz xzz z
dF σ σ

=− =
⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

  (2.14)  

The shear stresses acting on the top and bottom surfaces of the reinforcing sheet can be 
derived from Equation (2.11)  

0
2

8
2

txz z

G u
t

σ
=−

=  ; 0
2

8
2

txz z

G u
t

σ
=

= −  (2.15)  

Substitution of these into Equation (2.14) gives 
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Figure 2.2 Forces in reinforcing sheet bonded to layers of elastomers. 

 

, 0
8

x
GF u
t

= −  (2.16)  

The displacement in the reinforcement is related to the internal normal forces through the 
linearly elastic strain-stress relation such that 

1,f x
f f

Fu
E t

ε = =  (2.17) 

where fE  is the elastic modulus of the reinforcement, and F  is the internal normal force per 
unit length in the y -direction. Combined with Equation (2.16) gives 

1, 0
8

xx
f f

Gu u
E t t

= −  (2.18) 

The complete system of equations is 

0
, 2

8
x

Gup
t

= −  (2.19) 

0, 1,
3 3
2 2x xu u

t
Δ

+ =   (2.20) 

1,
8

xx o
f f

Gu u
E t t

= −  (2.21) 

With boundary conditions or symmetric conditions as follows: 

( )0 0 0u =  (2.22) 

( )1 0 0u =  (2.23) 

xzσ

xzσ

( )F x

x

z

2t

2t

ft
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( ) 0xx bτ ± =  (2.24) 

( ) 0F b± =  (2.25) 

Combining Equation (2.20) and Equation (2.21) to eliminate 0u , gives   

1, 1,
12 12

xxx x
f f f f

G Gu u
E t t E t t t

Δ
= − = −  (2.26) 

We define 

212

f f

Gb
E t t

α =  (2.27) 

Leading to 

1
2 cosh sinh
3

u A B x b C x b x
t

α α Δ
= + + +  (2.28) 

Symmetry suggests that 0A = , 0B = , giving 

1 sinhu C x b x
t

α Δ
= +

 (2.29) 

From Equation (2.17) we have 

1, coshf f x f fF E t u E t C x b
b t
α α Δ⎛ ⎞= = +⎜ ⎟

⎝ ⎠
 (2.30) 

which with 0F =  on x b= ±  leads to 

( ) cosh1
coshf f

x bF x E t
t

α
α

Δ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.31) 

The displacements pattern for the reinforcement and the force in the reinforcement for various 
values of α  from 0α = , corresponding to fE = ∞  (the steel pressure solution), to 3α = , 
corresponding to very flexible reinforcement are shown in Figure 2.3 and Figure 2.4. As the 
reinforcement becomes more flexible, the displacement tends to almost linear in x  and the force 
is almost constant. 
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Figure 2.3 Normalized force pattern in reinforcement. 

 
Figure 2.4 Displacement pattern for fiber reinforcement for various values of α . 

2.1.3 Solution of Pressure and Effective Compressive Modulus 

Equation (2.30) with 0F =  on x b= ±  leads to  

( )1

sinh
cosh

b x bu x x
t

α
α α

Δ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.32)  

( )0

3 sinh
2 cosh

b x bu x
t

α
α α

Δ
=  (2.33) 

Also, using Equation (2.13) and the boundary condition 0xxτ =  at x b= ±  gives 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/b

F
/(

ε cE
ft f)

 

 

α=1

α=2

α=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x/b

u 1/(
b ε

c)

 

 

α=1

α=2

α=3
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cosh1
cosh

f fE t x bp
t t

α
α

Δ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.34) 

The load per unit length of the strip, P , is given by 

( )
0

2cosh2 1 tanh
cosh

b
f f f fE t E tx bP dx b
t t t t

α α α
α α

Δ Δ⎛ ⎞= − = −⎜ ⎟
⎝ ⎠∫  (2.35) 

This result can be interpreted as an effective compression modulus, cE , given by 

tanh1f f
c

E tP tE
A t

α
α

⎛ ⎞= = −⎜ ⎟Δ ⎝ ⎠
 (2.36) 

We note that when 0α → , i.e., fE → ∞ , we have 24cE GS→  as for rigid reinforced bearing. 

The formula also shows that 24cE GS<  for all finite values of fE . 

The effect of the elasticity of the reinforcement on the various quantities of interest can 
be illustrated by a few examples. We normalize the compression modulus, cE , by dividing by 

24GS , giving from Equation (2.36) 

2 2

3 tanh1
4

cE
GS

α
α α

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.37) 

which is shown in Figure 2.5 for 0 5α≤ ≤ ; note how the stiffness decreases with decreasing  
fE . The distribution of the pressure for various values from 0α = , corresponding to fE = ∞  

(the steel pressure solution), to 3α = , corresponding to very flexible reinforcement is shown in 
Figure 2.5. 

 
Figure 2.5 Variation of effective compression modulus with bα  in infinitely long strip 

pad. 
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2.1.4 Flexible Reinforcement and Compressibility 

In cases of large shape factors, to estimate cE  including compressibility in a manner consistent 
with the assumptions of the previous analysis, the equation of incompressibility is replaced by 

xx zz
p
K

ε ε+ = −  (2.38) 

where K  is the bulk modulus. Integration through the thickness leads to 

0, 1,
2
3 x x c

pu u
K

ε+ + =  (2.39) 

This is then supplemented by the same equation of stress equilibrium and by the equation for the 
forces in the reinforcement. The system of equation for the combined effects of reinforcement 
flexibility and compressibility is now 

0
, 2

8
x

Gup
t

= −  (2.40) 

0
1,

8
xx

f f

Guu
E t t

= −  (2.41) 

0, 1,
2
3 x x c

pu u
K

ε+ + =  (2.42) 

Two dimensionless parameters, 212 f fGb E t tα =   and 2 212Gb Ktβ = , determine the 
comparative significance of flexibility in the reinforcement and compressibility in the elastomer. 

In terms of α  and β , Equation 2.40 and Equation 2.41 become 

2 2
0

,

2
3x

p u b
K

β⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (2.43) 

2 2
1, 0

2
3xxu u bα= −  (2.44) 

Differentiation of Equation 2.42 once and substitution of p  and 1u  from Equations 2.43 and 
2.44 gives 

( )2 2

0, 02 0xxu u
b

α β+
− =  (2.45) 

from which we have 

0 cosh sinhu A x b B x bλ λ= +  (2.46) 

where 
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2 2 2λ α β= +  (2.47) 

In turn, using Equation 2.40 and Equation 2.41 gives solution for p  and 1u  in the forms 

2 2

1 12 2

2 2cosh sinh
3 3

u A x b B x b C x Dα αλ λ
λ λ

= − + − + +  (2.48) 

and 

2 2

2
2 2sinh cosh
3 3

p A x b B x b C
K b b

β βλ λ
λ λ

= − + − +  (2.49) 

The constants of integration are, of course, not independent of each other but are related through 
the basic equations. Substitution of three solutions into Equation 2.49 gives 

( ) ( )

( )

2

2

1 2

2 2sinh cosh sinh cosh
3 3

2 sinh cosh
3 c

A x b B x b A x b B x b
b b

C A x b B x b C

λ αλ λ λ λ
λ

β λ λ ε
λ

+ − + +

− + + =

 (2.50) 

The coefficients of sinh x bβ  and cosh x bβ  vanish and the result is 1 2 cC C ε+ = . 

For the particular problem of the compression of the strip it is convenient to use the 
symmetry of the solutions. Thus 0u and 1u  are anti-symmetric and p  is symmetric on 

b x b− ≤ ≤ + . It follows that 0A = and 0D =  giving 

0 sinhu B x bλ=  (2.51) 

2

1 12

2 sin
3

u B x b C xα λ
λ

= − +  (2.52) 

2

1
2 cosh
3 c

p B x b C
K b

β λ ε
λ

= − + −  (2.53) 

The boundary conditions for B  and 1C  are that the pressure p  at the edges x b= ±  is zero and 
that the stress in the reinforcement 1,f xE u also vanishes at the edges. Thus 

2

1
2 cos 0
3

B C
b

α λ
λ

− + =  (2.54) 

2

1
2 cosh
3 cB C

b
β λ ε
λ

− − = −  (2.55) 

giving 
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2 2

3 1
2 cosh cB bλ ε

α β λ
=

+
 (2.56) 

2

1 2 2 cC α ε
α β

=
+

 (2.57) 

and the solution becomes 

0
3 sinh
2 cosh c

x bu b λ ε
α λ

=  (2.58) 

2

1 2 2

sinh
cosh c

x x bu b
b

α λ ε
α β λ λ

⎛ ⎞= −⎜ ⎟+ ⎝ ⎠
 (2.59) 

and 

2

2 2

cosh1
cosh c

p x b
K

β λ ε
α β λ

⎛ ⎞= −⎜ ⎟+ ⎝ ⎠
 (2.60) 

Integration of p  from Equation 2.60 gives 

2

2 2

tanh1cE K β λ
α β λ

⎛ ⎞= −⎜ ⎟+ ⎝ ⎠
 (2.61) 

If the effect of compressibility is negligible, then 0β →  and λ α= , and we have 

2
2

2

12GbK
t

β =  (2.62) 

giving 

tanh1f f
c

E t
E

t
α

α
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.63) 

which is the same as the result in the previous section. On the other hand, if the flexibility of the 
reinforcement is negligible, then 0α →  and λ β→ , giving 

tanh1cE K β
β

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (2.64) 

If the compression modulus is normalized by 24GS , then from Equation (2.63) we have  

( )
( )

1 22 2

1 22 2 2 2 2

tanh3 1
4

cE
GS

α β

α β α β

⎛ ⎞+⎜ ⎟= −
⎜ ⎟+ +⎝ ⎠

 (2.65) 
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which demonstrates that the vertical stiffness is reduced by both compressibility in the elastomer 
and flexibility in the reinforcement. Figure 2.6 shows the variation of normalized effective 
compression modulus with α  and β , and Figure 2.7 shows the variation of normalized effective 
compression modulus with β  for various values of α , from 3α = . 

 

 
Figure 2.6 Variation of normalized effective compression modulus with α  and β ,  in 

an infinitely long strip pad. 

 

 
Figure 2.7 Variation of normalized effective compression modulus with β  for 
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2.2 CIRCULAR PAD 

2.2.1 Deformation of Pad under Compression 

The circular pad shown in Figure 2.8 has a radius of R  and a thickness of t , in which we locate 
a cylindrical coordinate system, ( ), ,r zθ , in the middle surface of the pad. The displacements of 

the elastomer along the r - and z -directions, denoted as ru , are assumed to have the forms: 

( ) ( ) ( )
( ) ( )

2

0 12

4, 1

,

r
zu r z u r u r
t

w x z w z

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
=

 (2.66) 

In the first equation, the term of 0u represents the kinematic assumption of quadratically 
varied deformation of the vertical lines in the elastomer and is supplemented by additional 
displacement 1u  to accommodate the stretch of the reinforcement. The second equation 
represents the assumption that horizontal plane remain planar after deformation in the elastomer.  

If the assumption of incompressibility were to be made, further constraint on the three 
components of strain, , ,r zθε ε ε , in the form 0r zθε ε ε+ + =  would be needed; but when the 
material is assumed to be compressible with bulk modulus K , this constraint is replaced by  

r z
p
Kθε ε ε+ + = −  (2.67) 

where p  is the pressure in the elastomer. The three normal strains are given by 
 

 
 

Figure 2.8 Coordinate system for a circular pad of radius R. 
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2
0 1

2

2

12

41

1 1 4 11

r
r

r

z

dudu duz
dr dr t dr

zu u
r r t r
dw
dz

θ

ε

ε

ε

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

=

 (2.68) 

leading to 

2
0 1

0 12

1 4 11du duz dw pu u
dr r t dr r dz K

⎛ ⎞⎛ ⎞+ − + + + = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.69) 

which, when integrated through the thickness with respect to z , leads to 

0 1
0 1

1 3 1 3 3
2 2 2

du du pu u
dr r dr r t K

Δ⎛ ⎞ ⎛ ⎞+ + + = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.70) 

The stress state is assumed to be dominated by the internal pressure, p , such that the normal 
stress components, , ,r zθσ σ σ , differ from p−  only by terms of order ( )2 2t R p , i.e., 

r z pθσ σ σ≈ ≈ ≈ −  (2.71) 

The shear stress component, rzτ , which is generated by the constraints at the top and bottom of 
the pad, is assumed to be of order ( )t R p .The equation of stress equilibrium in the rubber along 
the radial direction 

0rr rzd d
dr dz r

θσ σσ τ −
+ + =  (2.72) 

reduces under these assumptions to 

rzd dp
dz dr
τ

=  (2.73) 

The assumption of elastic behavior means that  

rz rzGτ γ=  (2.74) 

in which G  is the shear modulus of the rubber and rzγ  is the shear strain with 

02

8
rz

z u
t

γ = −  (2.75) 

These give  
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0
2

8Gudp
dr t

= −  (2.76) 

The internal forces per unit length in the reinforcing sheet are denoted by rN  in the radial 
r -direction and in the tangential direction. If the sheet is made of fiber reinforcement, the 
individual fibers are replaced by an equivalent sheet of reinforcement of thickness ft . As shown 
in Figure 2.2, the internal forces of the equivalent reinforcing sheet are related to the shear 
stresses on the top and bottom of the pad through the equilibrium equation 

2 2
0rr

t trz rzz z

N NdN
dr r

θ τ τ
= =−

−
+ − + =  (2.77) 

From Equations (2.74) and (2.75) we have 

0 0

2 2

8 8;
2 2

t trz rzz z

Gu Gu
t t

τ τ
= =−

= − =  (2.78) 

Giving 

08rr N N GudN
dr r t

θ−
+ = −  (2.79) 

The extensional strains in the reinforcement are 

1
1

1;f f
r

du u
dr rθε ε= =  (2.80) 

which are related to the internal forces through the elastic modulus fE  and Poisson’s ratio ν  of 
the equivalent sheet and its thickness ft  such that 

;f fr r
r

f f f f

N N N N
E t E t

θ θ
θ

ν νε ε− − +
= =  (2.81) 

And by inversion 

( ) ( )2 2;
1 1

f f f ff f f f
r r r

E t E t
N Nθ θ θε νε νε ε

ν ν
= + = +

− −
 (2.82) 

Substitution of these relationships into the equation of equilibrium for the reinforcement, 
Equation (2.79), gives 

( ) ( ) ( )
2

1 1 1 1
0 2 22

11 1
8 1

f fE t t d u u du udu
dr dr r r dr rG

ν ν ν
ν

⎡ ⎤⎛ ⎞= − + + − − −⎢ ⎜ ⎟ ⎥− ⎝ ⎠⎣ ⎦
 (2.83) 

which reduces to 
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22 2
1 1 1 1

0 12 2 2 2

3 1 3 1
2 2

d u du u duR R du u
dr r dr r dr dr rα α

⎛ ⎞ ⎛ ⎞⎛ ⎞= − + − = − +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 (2.84) 

in which we define a non-dimensional parameter α  by 

( )2 2
2

12 1

f f

GR
E t t

ν
α

−
=  (2.85) 

A second non-dimensional parameter β  is defined as 

2
2

2

12GR
Kt

β =  (2.86) 

in terms of which the equilibrium equation of the elastomer can be written as 

( ) 2
0

2

2
3

d p K u
dr R

β
= −  (2.87) 

It is convenient at this point to collect together the three equations for the three unknown 
functions 0u , 1u , and p in the form, 

( ) 2
0

2

2
3

d p K u
dr R

β
= −  (2.88) 

2
01

1 2

21
3

udud u
dr dr r R

α⎛ ⎞+ = −⎜ ⎟
⎝ ⎠

 (2.89) 

0 1
0 1

2 1 1
3

du du pu u
dr r dr r t K

Δ⎛ ⎞ ⎛ ⎞+ + + = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (2.90) 

Differentiation of the third equation and substitution of p  and 1u from the first and second 
equation leads to 

2 2
0

0 02

2 1 0
3

du u u
dr r R

α β+⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

 (2.91) 

It is now clear why the two apparently unrelated effects of stretching of the reinforcement 
and compressibility of the elastomer affect the solution in the same way: the parameter α  solely 
determines the effect of stretching and β   that of compressibility. At this point it is convenient 
to define another parameter λ  through 

2 2 2λ α β= +  (2.92) 

The solution of Equation (2.91) is 
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( ) ( )( ) ( )( )0 1 1u r AI r R BK r Rλ λ= +  (2.93) 

where A  and B  are constants of integration and nI , nK  are modified Bessel functions of the 
first and second kind of order n . In turn, substitution of this into the first two equations provides 
the solutions for p and 1u  in the forms 

( )( ) ( )( )( )
2

0 0 1
2
3

p K AI r R BK r R C
R

β λ λ
λ

= − − +  (2.94) 

and 

( ) ( )( ) ( )( )( )
2

2
1 1 12

2
3 2

C Du r AI r R BK r R r
r

α λ λ
λ

= − + + +  (2.95) 

The constants of integration A , B , 1C , 2C , and D  are not independent but are related through 
the compressibility constraint equation. Substitution of the three solutions into Equation (2.70) 
gives 

( )( ) ( )( )( )
( )( ) ( )( )( )

( )( ) ( )( )( )

1 1

2

1 12

2 2
2

0 0 1

2 1
3

2 1
3
1 2

2 3 c

d ArI r R BrK r R
r dr

d ArI r R BrK r R
r dr

C rd D AI r R BK r R C
r dr R

λ λ

α λ λ
λ

β λ λ ε
λ

⎡ ⎤+ +⎢ ⎥⎣ ⎦
⎡ ⎤− + −⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎡ ⎤+ + − + + =⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎣ ⎦

 (2.96) 

The first expression becomes 

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1

1 0 1

1 0 1

0 0

2 1
3
2
3

2
3
2 2
3 3

d
ArI r R BrK r R

r dr
A r R

I r R I r R r I r R
r R r

B r R
K r R K r R r K r R

r R r

A I r R B K r R
R R

λ λ

λ
λ λ λ

λ
λ

λ λ λ
λ

λ λ
λ λ

+ =

+ − −

+ + −

= +

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 (2.97) 

The second term becomes by the same process 

( ) ( )
2

0 0 12

2 0
3

A I r R B K r R C
R R

α λ λλ λ
λ

⎡ ⎤− + + +⎢ ⎥⎣ ⎦
 (2.98) 

which with 

( )( ) ( )( )( )
2

0 0 1
2
3

p K AI r R BK r R C
R

β λ λ
λ

= − + +
 (2.99) 
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leads to the result that the terms multiplied by A  and B  both vanish, D  drops out, and we find 

1 2 cC C ε+ =  (2.100) 

If the pad is annular, a r b≤ ≤ , then there are four boundary conditions for the four 
constants A , B , 1C , and D  namely, 

( ) ( )
( ) ( )

0 0
0 0

r rN a N b
p a p b

= =
= =

 (2.101) 

If the pad is a complete circle of radius R , i.e., 0 r R≤ ≤ , we have ( ) 0rN R =  and ( ) 0p R = , 

and boundedness of 1u and p  at 0r = . In fact, by the assumption of radial symmetry, ( )1 0 0u = . 

Since 0.07 mmft =  and ( ) ( )
1

1 2
lnK x

x
→ as 0x → , we must have 0B =  and 0D = . 

With these simplifications the solutions for the complete circular pad become 

( ) ( )( )0 1u r AI r Rλ=  (2.102) 

( )( )( )
2

0 1
2
3

p K AI r R C
R

β λ
λ

= − +  (2.103) 

( ) ( )( )( )
2

1
1 12

2
3 2

c Cu r AI r R rεα λ
λ

−
= − +  (2.104) 

The condition that the pressure is zero at the boundary r R=  means that ( )
2

1 0
2
3

C AI
R

β λ
λ

= ; thus 

the pressure is given by 

( ) ( )( )( )
2

0 0
2
3

p K A I I r R
R

β λ λ
λ

= −  (2.105) 

The remaining constant of integration must be determined from the requirement that the radial 
stress in the reinforcement is zero at the edge, r R=  . From Equation (2.81) we have 

( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

2

0 1 1

2

1 1

2 1 1
3 2
2 1 1
3 2

f
r c

f
c

A I r R I r R C
R r R

A I r R C
R r Rθ

αε λ λ ε
λ λ
αε λ ε
λ λ

⎡ ⎤
= − − + −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= − + −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.106) 

Thus 
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( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

2

0 1 12

2

0 1 12

2 1 11
1 3 2

2 1 11
1 3 2

f f
r c

f f
c

E t
N r A I r R I r R C

R r R
E t

N r A I r R I r R C
R Rθ

α νλ λ ν ε
ν λ λ

α νν λ λ ν ε
ν λ α

⎧ ⎫⎡ ⎤−⎪ ⎪= − − + + −⎢ ⎥⎨ ⎬
− ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫−⎡ ⎤= − + + + −⎨ ⎬⎢ ⎥− ⎣ ⎦⎩ ⎭

  

 (2.107) 

The requirement that ( ) 0rN R =  means 

( ) ( ) ( ) ( )
2 2

0 1 0
2 1 2 1 11
3 3 2 2 cA I I AI

R R
α ν β νλ λ λ ν ε
λ λ λ

− +⎡ ⎤− − − = − +⎢ ⎥⎣ ⎦
 (2.108) 

leading to 

( )

( ) ( ) ( )
2 2

0 1 0

1 1
2 1 2 12
3 3 2

cA
I I I

R R

ε ν
α ν β νλ λ λ
λ λ λ

⎧ ⎫
⎪ ⎪+ ⎪ ⎪= ⎨ ⎬− +⎡ ⎤⎪ ⎪− +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (2.109) 

( ) ( ) ( )

( ) ( )
1

1

0 1

1
12
I r

u r r
t I r I r

r

ν α
να α α

α

⎧ ⎫
⎪ ⎪+Δ ⎪ ⎪= −⎨ ⎬−⎡ ⎤⎪ ⎪−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (2.110) 

( ) ( )
( ) ( )

( ) ( )

0 1

0 1

1

1 12 1
f f

r

I r I rE t rN r
t I R I R

R

να α
α

νν α α
α

−⎡ ⎤−⎢ ⎥Δ
= −⎢ ⎥−− ⎢ ⎥−

⎣ ⎦

 (2.111) 

( ) ( )
( ) ( )

( ) ( )

0 1

0 1

1

1 12 1
f f

I r I rE t rN r
t I R I R

R

θ

νν α α
α

νν α α
α

−⎡ ⎤+⎢ ⎥Δ
= −⎢ ⎥−− ⎢ ⎥−

⎣ ⎦

 (2.112) 

2.2.2 Compression Stiffness and Pressure Distribution 

The vertical stiffness of a rubber bearing is given by the formula 

c
V

r

E AK
t

=  (2.113) 

where A  is the area of the bearing, rt  is the total thickness of rubber in the bearing, and cE  is 
the instantaneous compression modulus of the rubber-steel composite under the specified level of 
vertical load. The value of cE  for a single rubber layer is controlled by the shape factor, S , 



 23

defined as S  = the loaded area/free area, which is a dimensionless measure of the aspect ratio of 
the single layer of the elastomer. For a circular pad of radius R  and thickness t , 

2
RS
t

=  (2.114) 

To determine the compression modulus, cE , we integrate p  over area to determine the resultant 

normal load, P ; cE is then given by 

c cE P Aε=  (2.115) 

where 2A Rπ=  is the area of the pad and c tε = Δ is the compression strain. 

The total axial load P  is 

( )
0

2
R

P p r rdrπ= ∫  (2.116) 

where ( )p r  from Equation (2.103) can be written as 

( ) ( )( )( )0 02

8GRp A I I r R
t

λ λ
λ

= −  (2.117) 

which with Equation (2.104) becomes 

( ) ( )
3

0 12

8 2GR AP I I
t

π λ λ
λ λ

⎡ ⎤= −⎢ ⎥⎣ ⎦
 (2.118) 

which, when A  is substituted from Equation (2.98), becomes 

( ) ( )

( ) ( ) ( )

( )0 1
2

2 22

0 1 0

2
18

2 1 2 1 2
3 3 2

c
I I

GP R
t I I I

R R

λ λ ε νλπ
α ν β νλ λ λ λ
λ λ λ

⎡ ⎤−⎢ ⎥ +⎣ ⎦=
− +⎡ ⎤− +⎢ ⎥⎣ ⎦

 (2.119) 

Using Equation (2.115), we have 

( )
( ) ( )

( ) ( ) ( )

0 1
2

2 2
0 1 0

2

24 1
1 1

2

c

I I
E GS

I I I

λ λ
λν

ν να λ λ β λ
λ

⎡ ⎤−⎢ ⎥⎣ ⎦= +
− +⎡ ⎤− +⎢ ⎥⎣ ⎦

 (2.120) 

In order to confirm the accuracy of this result it is useful to examine number of special 
cases. First assume K →∞  and β → ∞  in which λ α=  and the compression modulus is 
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( )
( ) ( )

( ) ( )

0 1
2

2
0 1

2

24 1
1c

I I
E GS

I I

α α
αν

αα α α
α

⎡ ⎤−⎢ ⎥⎣ ⎦= +
−⎡ ⎤−⎢ ⎥⎣ ⎦

 (2.121) 

and the compression modulus is α → ∞  This reduces to 26GS  independent of ν  as it should. 
For the other special case where fE → ∞ ,, 2α → ∞ , and ν  drops out, we have λ β= , and the 
compression modulus becomes 

( ) ( )

( )

0 1
2

2
0

2

48c

I I
E GS

I

β β
β

β β

⎡ ⎤
−⎢ ⎥

⎣ ⎦=  (2.122) 

In the case where 0β → , this tends to 26GS  as before. 

Figure 2.9 is a three-dimensional plot of the normalized effective modulus as a function 
of α  and β . Plots of the full equation for varying α  and for several values of β  are shown in 
Figure 2.10. Figure 2.11 is a plot of the normalized effective modulus as a function of α  for 

0β =  and 0;1 3ν = . 

 
Figure 2.9 Normalized effective modulus as a function of α  and β . 
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Figure 2.10 Normalized effective modulus as a function of α  for different values of β . 

 

 
Figure 2.11 Normalized effective modulus as a function of ( )0; 0;1 3α β ν= = . 
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2.3 RECTANGULAR PAD 

2.3.1 Equilibrium in Elastomeric Layer 

A layer of elastomer in a rectangular isolator is shown in Figure 2.12. The elastomeric layer has 
a thickness of t . Its side length parallel to the x -axis is 2a  and to the y -axis is 2b . The 
elastomeric layer’s top and bottom surfaces are perfectly bonded to flexible reinforcements that 
were modeled as an equivalent sheet of thickness ft . Let u , v , and w  denote the 
displacements of the elastomer in the x -, y -, and z -coordinate directions, respectively. In 
addition, 1u  and 1v  denote the displacements of the reinforcement in the x - and y -directions, 
respectively. Under the compression load P  in the z -direction, the displacements of the 
elastomer are assumed to have the form 

 

2

0 12

2

0 12

4( , , ) ( , ) 1 ( , )

4( , , ) ( , ) 1 ( , )

( , , ) ( )

zu x y z u x y u x y
t

zv x y z v x y v x y
t

w x y z w z

⎧ ⎛ ⎞
= − +⎪ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞⎪ = − +⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ =
⎪
⎪⎩

 (2.123) 

 
Figure 2.12 Reference system for a rectangular pad showing dimensions. 

In Equation (2.123), the terms of 0u  and 0v  represent the kinematic assumption of 

quadratically varied displacements and are supplemented by additional displacements 1u  and 1v , 
respectively, which are constant through the thickness and are intended to accommodate the 
stretch of the reinforcement. The elastomer is assumed to have linearly elastic behavior with 
incompressibility. The assumption of incompressibility produces a constraint on displacements 
in the form 

, , , 0x y zu v w+ + =  (2.124) 
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where the commas imply partial differentiation with respect to the indicated coordinate. 
Substituting Equation (2.123) into the above equation and then taking integration through the 
thickness from 2z t= −  to 2z t=  lead to 

( )0, 0, 1, 1,
2
3 x y x y cu v u v ε+ + + =  (2.125) 

in which ( ) ( )2 2c w t w t tε ⎡ ⎤= − −⎣ ⎦  is the nominal compression strain. The stress state in the 
elastomer is assumed to be dominated by the internal pressure, p , such that the stress 
components of the elastomer are [Kelly 1997] 

0
xx yy zz

xy

pσ σ σ

σ

≈ ≈ ≈ −

≈
 (2.126) 

The equilibrium equations in the x - and y -directions for the stresses of the elastomer are then 
reduced to 

, ,

, ,

0
0

x xz z

y yz z

p
p

σ

σ

− + =

− + =
 (2.127) 

Using the displacement assumptions in Equation (2.123), the shear stress components of the 
elastomer become 

02

02

8

8

xz

yz

G u z
t
G v z
t

σ

σ

= −

= −
 (2.128) 

with G  being the shear modulus of the elastomer. Substitution of these into the equilibrium 
equations of Equation (2.127) leads to 

, 02

, 02

8

8

x

x

Gp u
t
Gp v
t

= −

= −
 (2.129) 

Differentiating Equation (2.129) with respect to x  and y , respectively, and then adding it up 
yields 

( ), , 0, 0,2

8
xx yy x y

Gp p u v
t

+ = − +  (2.130) 

2.3.2 Equilibrium in Reinforcing Sheet 

The internal forces acting in an infinitesimal dx  by dy  area of the reinforcing sheet are shown in 
Figure 2.13, where xxN  and yyN  are the normal forces per unit length in the x - and y -
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directions, respectively, and xyN the in-plane shear force per unit length. These internal forces are 

related to the shear stresses, xzσ  and yzσ , on the surfaces of the reinforcing sheet bonded to the 
top and bottom layers of elastomer through two equilibrium equations in the x - and y -
directions 

2 2
( ) 0xx xy xz xzz t z t

dN dy dN dx dxdyσ σ
=− =

+ + − =  (2.131) 

2 2
( ) 0yy xy yz yzz t z t

dN dy dN dy dxdyσ σ
=− =

+ + − =  (2.132) 

Substituting Equation (2.128) into the above equations and then combining the results 

with the equilibrium equations of the elastomeric layer in Equation (2.129) to eliminate 0u  and 
0v  lead to 

, , ,

, , ,

xx x xy y x

yy y xy x y

N N tp

N N tp

+ =

+ =
 (2.133) 

 

 
Figure 2.13 Forces in reinforcing sheet bonded to rectangular layers of elastomers. 

 

The displacements in the reinforcement are related to the internal normal forces through the 
linearly elastic strain-stress relation such that 

( )

( )

1, 1,2

1, 1,2

1

1

f f
xx x y

f f
yy y x

E t
N u v

E t
N v u

ν
ν

ν
ν

= +
−

= +
−

 (2.134) 

where fE  and v  are the elastic modulus and Poisson’s ratio of the reinforcement. The in-plane 
shear force has the following relation with the displacements: 

Nxx

Nyy

Nxx+dNxxNxx

z=-t/2

z

x

dx

z=t/2

t

z=-t/2

dx

z

x
z=t/2

t

tf

tf

tf
σyz

σxz

Nxy

Nxy

dy

Nyy+dNyy

Nyy

σy
z|z

=-
t/2

σy
z|z

=t
/2

σxz|z=-t/2

σxz|z=t/2
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( ) ( )1, 1,2 1
f f

xy y x

E t
N u v

ν
= +

+
 (2.135) 

Substitution of Equations (2.134) and (2.135) into Equation (2.133) leads to 

( ) ( )2

1, 1, 1, 1, ,

11
2xx yx yy xy x

f f

t
u v u v p

E t
ννν

−−
+ + + =  (2.136) 

( ) ( )2

1, 1, 1, 1, ,

11
2yy xy yx xx y

f f

t
v u u v p

E t
ννν

−−
+ + + =  (2.137) 

Differentiating Equations (2.136) and (2.137) with respect to v  and y , respectively, and adding 
them yields 

( ) ( )
2

, , , ,

1
xx yy xx yy

f f

t
q q p p

E t
ν−

+ = +  (2.138) 

in which, for clarification, the term q  is used to denote 

1, 1,x yq u v= +  (2.139) 

Combining Equation (2.125) with Equation (2.130) to eliminate the terms of 0u and 0v  
and using the definition of q in Equation (2.139), gives 

( )
2

, ,12c xx yy
tq p p
G

ε= + +  (2.140) 

Substitution of this into Equation (2.138) leads to 

( )2
, , , , ,2 0xxxx xxyy yyyy xx yyp p p p pα+ + − + =  (2.141) 

in which α  is defined as 

( )212 1

f f

G
E t t

ν
α

−
=  (2.121) 

2.3.3 Approximate Boundary Conditions 

In Equation (2.126), the in-plane shear stress of the elastomer, xyσ , is assumed to be negligible 

( ), , 0xy y xG u vσ = + ≈  (2.142) 
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Substituting the displacement assumptions in Equation (2.123) into the above equation and 
taking integration through the thickness of the elastomeric layer lead to 

( ) ( )0, 0, 1, 1,
2 0
3 y x y xu v u v+ + + ≈  (2.143) 

The last term, 1, 1,y xu v+ is the in-plane shear strain of the reinforcement, which means that the in-
plane shear strain of the reinforcement is of the second order and the in-plane shear force of the 
reinforcement, xyN , is negligible. Therefore, we can assume 

( )
( )

,

,

, 0

, 0
xy x

xy y

N a y

N x b

=

=
 (2.144) 

which give, from Equation (2.133), 

( ) ( )
( ) ( )

, ,

, ,

, ,

, ,
xx x x

yy y y

N x b tp x b

N a y tp a y

≈

≈
 (2.145) 

Another equation relating the pressure of the elastomer with the internal normal forces of the 
reinforcement is established by adding Equation (2.134), which gives 

( )1
xx yy

f f

q N N
E t

ν−
= +  (2.146) 

And combining this with Equation (2.140) to eliminate q leads to 

( ) ( )
2

, ,
1

12 xx yy xx yy c
f f

t p p N N
G E t

ν ε−
+ = + −  (2.147) 

According to the assumption of pressure dominance given in Equation (2.126), the stress 
boundary conditions of the elastomeric layer give 

( )
( )

, 0

, 0

p a y

p x b

± =

± =
 (2.148) 

The stress boundary conditions of the reinforcement give  

( )
( )

, 0

, 0
xx

yy

N a y

N x b

± =

± =
 (2.149) 

The boundary condition ( ), 0p x b± =  means ( ), , 0xp x b± =  which, when substituted into 

Equation (2.144), gives ( ),yyN a y±  being constant. From the boundary condition 

( ), 0,yyN x b± =  it is known that ( ), 0yyN a b± ± = , thus 
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( ), 0yyN a y± =  (2.150) 

Bringing this into Equation (2.147) and using the boundary condition ( ), 0yyN a y± =  and from 

( ), 0p x b± =  lead to 

( ), 2

12,xx c
Gp a y

t
ε± = −  (2.151) 

The boundary condition ( ), 0p x b± =  means ( ), 0p x b± =  which gives ( ),yyN a y±  being 

constant. From the boundary condition ( ),yyN x b± , it is known that ( ), 0yyN a b± ± = , thus  

( ), 0xxN x b± =  (2.152) 

Bringing this into Equation (2.147) and using the boundary condition ( ), 0yyN x b± =  and 

( ), , 0xxp x b± =  from ( ), 0p x b± =  lead to  

( ), 2

12,yy c
Gp x b

t
ε± = −  (2.153) 

Note that xyN  is not neglected when we derive the governing equation of the pressure in 
Equation (2.141). To solve for the pressure in this governing equation, we use the approximate 
boundary conditions of the pressure in Equations (2.151) and (2.153), which are derived by 
assuming that the derivatives of xyN  at the edges are negligible and stem from the assumption 
that the stress field of the elastomer is dominated by the pressure. 

2.3.4 Solution of Pressure 

To solve for the pressure, ( ),p x y   is decomposed into two pressure components ( )1 ,p x y and 

( )2 ,p x y  

( ) ( ) ( )1 2, , ,p x y p x y p x y= +  (2.154) 

The boundary conditions for the pressure in Equations (2.148), (2.151), and (2.153) are split into 
two sets. Each pressure component satisfies a different set of boundary conditions. The first set 
of boundary conditions is 

( ) ( ) ( ) ( )1 1, 1 1, 2

12, 0;  , 0;  , 0;  ,xx yy c
Gp a y p a y p x b p x b

t
ε± = ± = ± = ± = −  (2.155) 

and the second set of boundary conditions is 

( ) ( ) ( ) ( )2 2, 2 2,2

12, 0;  , ;  , 0;  , 0xx c yy
Gp a y p a y p x b p x b

t
ε± = ± = − ± = ± =  (2.156) 
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Adding the boundary conditions in Equation (2.156) yields the same boundary conditions 
defined in Equation (2.148). These pressure components are solved from the same governing 
equation in Equation (2.141), that is  

( )2
1, 1, 1, 1, 1,2 0xxxx xxyy yyyy xx yyp p p p pα+ + − + =  (2.157) 

( )2
2, 2, 2, 2, 2,2 0xxxx xxyy yyyy xx yyp p p p pα+ + − + =  (2.158) 

Because the compression loading is symmetric with respect to the x -axis and y -axis, the 
pressure components are even functions of x  and y . The first pressure component can be 
assumed to be a cosine series of y  

( ) ( ) ( )1 1
1

, cosn
n

n
p x y f y xγ

∞

=

= ∑  (2.159) 

where the amplitude ( )
1

nf  is an even function of y  and 

1
2n n

b
πγ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (2.160) 

Substituting Equation (2.159) into Equation (2.157) and using boundary conditions at x a= ±  in 
Equation (2.155) , ( )

1
nf  is solved to have the form [Tsai and Kelly 2001] 

( ) ( ) ( )
( )

1

1 2 2

1 cosh cosh24
1 2 cosh cosh

n
n n n

c
n n

y yGf y
t n b b

γ βε
πα γ β

−− ⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

 (2.161) 

with 

2 2
n nβ γ α= +  (2.162) 

The second pressure component can be assumed to be a cosine series of y  

( ) ( ) ( )2 2
1

, cosn
n

n
p x y f x yγ

∞

=

= ∑
 (2.163) 

where the amplitude ( )
2

nf  is an even function of x  and 

1
2n n

b
πγ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (2.164) 

Substituting Equation (2.163) into Equation (2.158) and using boundary conditions at x a= ±  in 
Equation (2.153) , ( )

2
nf  is solved to have the form [Tsai and Kelly 2001] 
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( ) ( ) ( )
( )

1

2 2 2

124 cosh cosh
1 2 cosh cosh

n
n n n

c
n n

G x yf x
t n a a

γ βε
πα γ β

− ⎛ ⎞−
= −⎜ ⎟− ⎝ ⎠

 (2.165) 

With 

2 2
n nβ γ α= +  (2.166) 

Substitution of ( )1 ,p x y in Equation (2.159) and ( )2 ,p x y  in Equation (2.163) into Equation 

(2.154) gives the solution of the pressure ( ),p x y  

( )
( )

( )
( )

122

2
1

124, 1
1 2

cosh cosh cosh coshcosh
cosh cosh cosh cosh

n

c
n

n n n n
n

n n n n

GS ap x y
b na

y y x xx
b ab a a

ε
π α

γ β γ βγ
γ β γ β

−∞

=

−⎛ ⎞= + ⋅⎜ ⎟ −⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞
− + −⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑
 (2.167) 

in which S  is the shape factor of the rectangular layer of the elastomer defined as 

( )
abS

a b t
=

+
 (2.168) 

2.3.5 Effective Compressive Modulus 

The compression stiffness of an isolator is given by c c rK E A t=  where area 4A ab=  is the area 
of the isolator, rt  total thickness of the elastomer in the isolator, and cE  effective compressive 

modulus for a single bonded layer of elastomer, defined as ( )c cE P Aε= . Using the assumption 
in Equation (2.126), the resultant compression load P  has the form  

( ),
b a b a

zz
b a b a

P dxdy p x y dxdyσ
− − − −

= ≈∫ ∫ ∫ ∫  (2.169) 

Bringing the pressure solution ( ),p x y  in Equation (2.167), the effective compressive modulus 
becomes 

( ) ( )

22

2 22
1

tanh tanh24 1 tanh tanh
1

1 2
n nn n

c
n n n n n

b bGS a a a
E

b b b a aa n

γ β γ β
γ β γ βπ α

∞

=

= + − + −
−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑   

 (2.170) 

When the aspect ratio a b  tends to zero, Equation (2.170) is reduced to 
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( )

2

20

12 tanh1c a b

GS aE
aa
α

αα=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (2.171) 

which is the effective compressive modulus of the infinitely long strip isolator. When a tends to 
zero, Equation (2.170) becomes 

( )

22

440
1

2

2 2 2

12 11
1 2

tanh 1 tanh 1
cosh cosh

c
n

n n

n n n n

GS aE
b n

b b a
b b a a a

α π

γ γ
γ γ γ γ

∞

=
=

⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠ −

⎡ ⎤⎛ ⎞
− + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑
 (2.172) 

which is the effective compressive modulus of the rectangular elastomer with the rigid 
reinforcement. From Equation (2.170), it is known that the ratio ( )2

cE GS  is a function of aα  

and the aspect ratio a b . The variation of ( )2
cE GS  with aα  is plotted in Figure 2.14, which 

shows that the effective compressive modulus decreases with increasing aα . 

To have a high compressive modulus, the value of aα  must be small. Figure 2.14 also 
reveals that a larger value of a b  produces a larger value of the effective compressive modulus. 
For clarification, the in-plane stiffness of the reinforcement is defined as ( )21f f fk E t ν= − , 
from which Equation (2.121) becomes 

12
f

a Gta
t k

α =  (2.173) 

 
Figure 2.14 Variation of effective compressive modulus with aα  in rectangular pad. 

 

Substituting the shape factor S  in Equation (2.168) and aα  in Equation (2.173) into 
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function of the ratios a b , a t ,  and fk Gt= . When a t  tends to infinity, Equation (2.170) 
becomes  

( )42
1

tanh tanh2 1
1 2

f n n
c a t

n n n

k b aE
t b an

γ γ
π γ γ

∞

=∞
=

⎛ ⎞
= +⎜ ⎟

− ⎝ ⎠
∑  (2.174) 

The curves of  cE G  versus fk Gt  are plotted in Figure 2.15 for a b  and several a t  values, 
which shows that the effective compressive modulus increase with an increase in the 
reinforcement stiffness until reaching the asymptotic value in Equation (2.172). The curve of the 
smaller shape factor reaches a plateau at the smaller value of fk Gt The curves of cE G  versus 
a t  are plotted in Figure 2.16 for 0.5a b=  and several fk Gt  values, which shows that the 
effective compressive modulus increases with increasing shape factor until reaching the 
asymptotic value in Equation (2.174). The curve of the smaller value of fk Gt  reaches a plateau 
at a smaller shape factor.  

 

 
Figure 2.15 Variation of effective compressive modulus with reinforcement stiffness in 

rectangular pad (a/b = 0.5). 
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Figure 2.16 Variation of effective compressive modulus with width thickness in 

rectangular pad (a/b = 0.5). 

 

To study the variation of the effective compressive modulus with the aspect ratio a/b, the 
ratio of the compressive modulus between the rectangular layers (a/b > 0) in Equation (2.170) 
and the infinitely long strip layer (a/b = 0) in Equation (2.171) is plotted in Figure 2.17, which 
reveals that the effective compressive modulus varies almost linearly with the aspect ratio a/b. 

 

 
Figure 2.17 Ratio of effective compressive modulus of rectangular pad to infinitely long 

strip pad ( )0a b =  versus aspect ratio. 

Utilizing the regression analysis on the data calculated from the exact formula in 
Equation (2.170), an approximate formula for the effective compressive modulus of rectangular 
reinforced layers is established [Tsai and Kelly 2001]  
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( )
( )

( ) ( )

2
2

2 3 4

0.59 0.026 0.07412 tanh1 1
0.022 0.0019

c

a aGS a aE
a ba a a

α αα
αα α α

⎧ ⎫⎡ ⎤− + + +⎪ ⎪⎛ ⎞ ⎢ ⎥= − +⎨ ⎬⎜ ⎟ ⎢ ⎥⎝ ⎠ − +⎪ ⎪⎣ ⎦⎩ ⎭
 (2.175) 

Because the range of the aα  values used in the regression analysis is between 0 and 5, the 
effective compressive modulus in Equation (2.175) is only applicable to the range of 0 5.aα≤ ≤
The maximum error is smaller than 4% in this range. 

2.4 GENERAL SHAPE PAD 

2.4.1 Equilibrium in Elastomeric Layer 

Consider a layer of elastomer in an arbitrarily shaped pad of thickness t  and locate a rectangular 
Cartesian coordinate system ( ), ,x y z  in the middle surface of the pad as shown Figure 2.18. The 
displacements of the elastomer along the coordinate directions are: 

 

( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )

2 2
0 1

2 2
0 1

, , , 1 4 ,

, , , 1 4 ,

, ,

u x y z u x y z t u x y

v x y z v x y z t v x y

w x y z w z

⎡ = − +
⎢
⎢ = − +
⎢
⎢ =⎣

 (2.176) 

xx yy zz
p
K

ε ε ε+ + = −  (2.177) 

 

 
Figure 2.18 Constrained rubber pad and coordinate system. 
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Where K  is the bulk modulus and 

2

, 1,2

41xx o x x
zu u
t

ε
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 (2.178) 

2

, 1,2

41yy o y y
zv v
t

ε
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 (2.179) 

,zz zwε =  (2.180) 

in which the commas imply a partial differentiation with respect to the indicated coordinate. 

Substituting in Equation (2.177), Equation (2.178), Equation (2.179), and Equation 
(2.180), we have 

2 2

, 1, , 1, ,2 2

4 41 1o x x o y y z
z z pu u v v w

t t K
⎛ ⎞ ⎛ ⎞

− + + − + + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.181) 

When integrated through the thickness this gives: 

( ), , 1, 1,
3 3
2 2o x o y x y

pu v u v
t K
Δ⎛ ⎞+ + + = −⎜ ⎟

⎝ ⎠  (2.182) 

Where Δ  is the change of thickness of the pad (positive in compression). 

Assuming that the stress state is dominated by the internal pressure, p, the equations of 
equilibrium for the stresses 

, , ,

, , ,

, , ,

0

0

0

xx x xy y xz z

xy x yy y yz z

xz x yz y zz z

τ τ τ

τ τ τ

τ τ τ

+ + =

+ + =

+ + =

 (2.183) 

reduce under this assumption to  

, , ,

, , ,

xz z xx x x

yz z yy y y

p
p

τ τ

τ τ

= − =

= − =
 (2.184) 

Assuming that the material is linear elastic, the shear stresses xzτ  and yzτ  are related to the shear 
strains, xzγ  and yzγ , by 

xz xz

yz xz

G
G

τ γ
τ γ

=
=

 (2.185) 

with G  being the shear modulus of the material; thus, 
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0 2

2

8

8

xz

yz o

zGu
t
zGv

t

τ

τ

= −

= −
 (2.186) 

The equilibrium equations now become  

0
, ,2

, ,2

8

8

xx x x

o
yy y y

Gu p
t
Gv p
t

τ

τ

= = −

= = −
 (2.187) 

2.4.2 Stress in the Reinforcement 

The individual fibers are replaced by an equivalent sheet of reinforcement of thickness ft . The 

internal state of stress in the reinforcing layer is denoted by the force field f
fF t σ= . 

Equilibrium requires that  

, , 0xx x xy yF F X+ + =  (2.188) 

, , 0yx x yy yF F Y+ + =  (2.189) 

where  

2 2
t txz xzz z

X τ τ
=+ =−

= − +  (2.190) 

2 2
t tyz yzz z

Y τ τ
=+ =−

= − +  (2.191) 

From Equation (2.186) we have 

0 0

2 2

8 8,
2 2

t txz xzz z

Gu Gu t
t t

τ τ
=+ =−

= − = + ,      (2.192) 

and 

0 0

2 2

8 8,
2 2t tyz yzz z

Gv Gv t
t t

τ τ
=+ =−

= − = + ,       (2.193) 

from which 

8 8,o oGu GvX Y
t t

= = ;       (2.194) 

Remembering that  
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( )21
ff f fxx

xx xx yy
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EF
t

σ ε νε
ν

= = +
−

 (2.195) 

( )21
yy ff f f

yy yy xx
f

F E
t

σ ε νε
ν

= = +
−

 (2.196) 

( )2 1
xy ff

xy xy
f

F E
t

σ γ
ν

= =
+

 (2.197) 

where  

1, 1, 1, 1,, ,f f f
xx x yy y xy y xu v u vε ε γ= = = +       (2.198) 

It can be derived that, 

1, 1,21
f f

xx x y

t E
F u v

v
ν⎡ ⎤= +⎣ ⎦−

 (2.199) 

1, 1,21
f f

yy y x

t E
F v u

v
ν⎡ ⎤= +⎣ ⎦−

 (2.200) 

( ) 1, 1,2 1
f f

xy y x

t E
F u v

v
⎡ ⎤= +⎣ ⎦+

 (2.201) 

2.4.3 Complete System of Equation 

Substituting these relations in Equation (2.188) and Equation (2.189) gives: 

( )
2

0
1, 1, 1, 1,2

81 1 0
1 2 1

f f
xx yx yy xy

t E Guu v u v
v t

νν
ν
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 (2.202) 
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1 2 1
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t E Gvv u u v
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 (2.203) 

A complete system of five equations in five unknowns is derived 

0
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( ), , 1, 1,
3 3
2 2o x o y x y

pu v u v
t K
Δ⎛ ⎞+ + + = −⎜ ⎟

⎝ ⎠
 (2.208) 

The unknowns are ou , ov , 1u , 1v , p . Considering the infinitely long rectangular pad of Figure 2.1 
for which 0ou =  and 0ov = , the complete system of equations, in accordance with Section 2.1 
reduces to: 

0
, 2

8
x

Gup
t

= −  (2.209) 

0
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8
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pu u
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Δ⎛ ⎞+ = −⎜ ⎟

⎝ ⎠
 (2.211) 
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3 Finite Element Analysis of Unbonded 
Bearings 

3.1 INTRODUCTION 

Many studies of the global behavior of steel reinforced rubber bearings by means of FE analysis 
have been conducted: Seki [1987] investigated qualitatively the principal strain distributions in 
an elastomeric bearing denoting the rubber-steel interface as the most likely failure region; 
Takayama [1994] analyzed the principal strain and stress distributions for different values of the 
mean vertical pressure; and Simo and Kelly [1984] considered the stability of multilayer 
elastomeric bearings within the framework of two-dimensional finite elasticity through a finite 
element formulation which is capable of accounting for very general boundary conditions. Only 
few studies, however, have been conducted on the finite element analysis of FRBs. Next we 
investigated the load-displacement behavior and stress state of a strip-shaped, square and circular 
FRB. A series of FE analyses of the bearings were conducted using the general-purpose finite 
element program MSC.Marc 2005 [MSC.Software 2004]. 

Modeling the ultimate behavior of FRB is challenging for finite element codes because 
the problem involves a lot of settings such as the change of contact conditions, sliding, large 
strain (elastomeric behavior) and near-incompressibility of the rubber. Furthermore, the problem 
requires robust contact and self-contact capabilities because the bearing deforms enough to fold 
over upon itself. Use of traditional finite elements that have not been tailored for 
incompressibility analysis will produce extremely poor solutions due to ill-conditioning resulting 
from division by very small numbers. More importantly, the pathological behavior called 
volumetric mesh-locking is very likely to occur. The so-called mixed methods used in modern 
finite element treatments of incompressible and near-incompressible materials are based on the 
Hellinger-Reissner and Hu-Washizu variational principles [MSC Software 2000]. In mixed 
methods, both the stress and stains are treated as unknowns.  

The results of analysis presented in this report are based on the widely popular mixed 
method proposed by Herrmann [1965]. A restricted case of the general Hellinger-Reissner 
variational principle is used to derive the stiffness equations. The software used to run the 
analyses is expressly designed to study elastomeric materials: they can be represented with 
popular material laws as Mooney-Rivlin and Boyce-Arruda, and a built-in curve fitting used that 
computes coefficients from stress-strain data. Moreover specialized element types automatically 
address numerical issues to get accurate solutions to large strain problems. The FE analyses 
consisted of two-dimensional models under the plane strain assumption for strip-type bearings 
and three-dimensional models for the other considered geometries. 
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3.1.1 Material and Mechanical Properties of the Bearings 

For the two-dimensional models, the fiber reinforcement of the bearing is modeled using a rebar 
element: it is a tension element of a liner elastic isotropic material with Young’s modulus E = 
14,000 MPa, and thickness tf = 0,07 mm (SET1) and G = 0.7 MPa (SET1). For the three-
dimensional models, the reinforcing shim is modeled as a four nodes thin shell (i.e., no flexural 
rigidity) of constant thickness with Young’s modulus E = 14,000 MPa and Poisson’s ratio equal 
to zero. 

The rubber is modeled by a single-parameter Mooney-Rivlin material (i.e., Neo-
Hookean) with strain energy function that is described by the shear modulus G = 0.7 MPa, and 
the bulk modulus κ = 2000 MPa. In incompressible Mooney–Rivlin solids, the strain energy 
density function, W, is a linear combination of two invariants of the left Cauchy-Green 
deformation tensor: 

( ) ( )1 1 2 23 3W C I C I= − + −  (3.1) 

In Equation (3.1), 1C  and 2C  are empirically determined material constants, and 1I  and 

2I are the first and the second invariant of the deviatoric component of the left Cauchy-Green 
deformation tensor 

( )2/3 2 2 2
1 1 1 1 2 3, , detI J I I J Fλ λ λ−= = + + =  (3.2) 

4/3 2 2 2 2 2 2
2 2 2 1 2 2 3 3 1,I J I I λ λ λ λ λ λ−= = + + ; (3.3) 

where F is the deformation gradient. For an incompressible material, J = 1. 

The constants 1C  and 2C  are determined by fitting the predicted stress from the above 
equations to experimental data. For a special case of uniaxial tension of an incompressible 
Mooney-Rivlin material, the stress-strain equation can be expressed as: 

( ) ( )( ) ( )( )2 1
1 22 1 1 1c cσ ε ε ε− −= + − + + +  (3.4) 

The initial shear modulus is: 

( )1 22G C C= +  (3.5) 

If the material is incompressible, the initial tensile modulus E is calculated by: 

( )1 26E C C= +  (3.6) 

As mentioned above, the two-dimensional analysis is carried out under the plane strain 
assumption. In the plane models the rubber is modeled by the use of four-node, isoparametric, 
quadrilateral elements [element type 80]. The element uses bilinear interpolation functions, and 
the strains tend to be constant throughout the element. Hence, the use of a fine mesh is required. 
The pressure field is constant in this element. The stiffness of this element is formed using four-
point Gaussian integration. This element is designed to be used for incompressible elasticity 
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only. It can be used for either small strain behavior or large strain behavior using the Mooney or 
Ogden models. 

For the three-dimensional models, the rubber is described by eight-node, isoparametric, 
three-dimensional brick elements with trilinear interpolation [element type 84].The element is 
based on the following type of displacement assumption and mapping from the ( , , )x y z space 
into a cube in the : 

0 1 2 3 4 5 6 7a a a a a a a aξ η ξ ξη ζξ ξζ ξηζΧ= + + + + + + +  (3.7) 

0 1 2 3 4 5 6 7b b b b b b b bξ η ξ ξη ηζ ξζ ξηζΨ= + + + + + + +  (3.8) 

Either the coordinate or function can be expressed in terms of the nodal quantities by the 
integration functions 

8

1
i i

i
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=
Χ= Φ∑  (3.9) 
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1 1 1 1 1 1
8 8
1 1

1 1 1 1 1 1
8 8
1 1

1 1 1 1 1 1
8 8

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

Φ = − − − Φ = + − −

Φ = + + − Φ = − + −

Φ = − − + Φ = + − +

Φ = + + + Φ = − + +

 (3.10) 

These elements use eight-point Gaussian integration as shown in Figure 3.1. Element 84 has one 
extra node with a single degree of freedom (pressure). This element uses a mixed formulation for 
incompressible analysis. 

 
Figure 3.1 Integration points for element type 84. 

Large strain theory was employed for all the analyses. The kinematics of deformation is 
described following the Updated Lagrangian formulation (i.e., the Lagrangian frame of reference 
is redefined at the last completed iteration of the current increment). Furthermore, a full Newton-
Raphson solution method is used. Analysis of elastomeric bearings includes both nonlinear 
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material and nonlinear geometric effects, since the bearings can undergo high shear strains 
during an earthquake 

3.1.2 Contact Bodies, Boundary Conditions 

The top and bottom support surfaces are modeled as rigid lines/surfaces. The contact between the 
rubber and the support surfaces is modeled by Coulomb friction with m = 0.9 for shear tests and 
m = 0 for compression test. The MSC.Marc has a CONTACT option that detects deformable 
body to deformable body or deformable body to rigid body contact as can occur under 
compression and large shear strains where the elastomer can contact the reinforcing shims. 

3.2 INFINITELY LONG STRIP ISOLATORS 

3.2.1 Geometrical Properties 

Finite element models of FRBs with different shape factors are defined (S=B/2tr=43.48; 39.13; 
34.78; 26.09; 21.74; 43.48). The different values of the shape factor are obtained by increasing 
the values of the base of the device (B = 250; 300; 350; 400; 450; 500 mm). The longitudinal 
dimension of the bearings is 750 mm. As shown in Figure 3.2, each device is made of twenty-
eight rubber layers with twenty-nine interleaf fiber sheets. Each rubber layer is 5.75 mm thick 
(=tr), and each fiber sheet is 0.07mm (=tf) thick for SET1 and 0.25 mm thick for SET2. The 
geometrical characteristics are shown in Table 3.1, and the finite element discretization is shown 
in Figure 3.3. It consists of square four-node elements with side length of 2 mm and is denser at 
the contact interface. 

 

 
Figure 3.2 Strip type bearing showing reinforcements and dimensions. 

B

H
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80
m

m
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Table 3.1 Geometrical properties of the long strip bearings. 

 B [mm] H [mm] tr  [mm] tf [mm] S [-] 

N
am

e 
500 

180 5.75 

 
0.07 

(SET1) 
 

0.25 
(SET2) 

 

43.48 

450 39.13 

400 34.78 

350 30.43 

300 26.09 

250 21.74 

 
Figure 3.3 Model mesh and layout of the reinforcement layers [elements 143]. 

3.2.2 Compression Results 

For design purposes, it is particularly important to predict the vertical stiffness and the collapse 
condition of FRBs under compression. Under compression, collapse of the bearing can occur for 
global failure due to buckling of the device, local ruptures of the reinforcement or the 
detachment of the rubber from the fiber sheets. Therefore, an accurate knowledge of the global 
characteristics of the device and of the stress distributions at the rubber fiber interfaces and in the 
fiber reinforcement is necessary. 

Approximate analytical solutions for a pad confined by rigid and flexible reinforcements 
subjected to axial loads have been proposed [Kelly 2002]. Among these, the pressure solution, 
previously reported for strip-type bearings, seems to be particularly suited to provide a simple 
formulation of the vertical stiffness and to describe the stress state in elastomeric bearings. The 
goal of this section is to verify the validity of the results provided by the pressure solution by 
comparing them with results from the FE analysis. 
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Figures 3.4 and 3.5 show the contour maps of the equivalent stress obtained from analysis 
with Marc for bearings 250 and 500 (tf  =0.07 mm) under pure compression. The contours show 
a stress concentration in the core of the bearings. For a given compressive force P (average 
pressure=P/A=3.45 MPa) in the considered range of bases, the maximum equivalent stress in the 
core of the bearing is unaffected by the change of the dimension of the device. Therefore, the 
stress in the core of the bearing is the same when the base dimension is modified. However, as 
expected, a new arrangement of stress distribution along the base length can be observed when 
the dimensions are changed. As a result, for bigger bearings as we move towards the free edges, 
the stress drops less aggressively than for smaller ones. 

 

 
Figure 3.4 Von Mises stress contours at peak vertical force in a bearing of base B=250 

mm [SET2 (tf  =0.07 mm)]. 

 

 
Figure 3.5 Von Mises stress contours at peak vertical force in a bearing of base B=500 

mm [SET2 (tf  =0.07 mm)]. 
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Figure 3.6 Tension contours in the fiber reinforcement (B=250 mm; Sv=3.45 MPa; 

SET2). 

 
 

 
Figure 3.7 Tension contours in the fiber reinforcement (B=500 mm; Sv=3.45 MPa; 

SET2). 

Figures 3.6 and 3.7 show the stress contours in the fiber layers. Note that due to the 
frictional restraint of the supports, the fiber layers closest to the supports are in compression. In 
the vertical direction the force displacement behavior is linear in the considered range of load. 
The results from FE analysis can be compared to the results of the pressure solution. 

Recalling the results of Section 2.1, we can determine the vertical stiffness of the bearing, 
Kv, and the tensile stress in the reinforcement, σf (x),  

( )V c rK E A t=  (3.11) 
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( ) cosh1
coshf c f

xx E
b

ασ ε
α

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (3.12) 

where 

2 12 f fG E t tα =  (3.13) 

and 

2
2 2

2

24 1
5c

bE G b
t

α⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (3.14) 

The previous formula refers to the hypothesis of incompressibility of the rubber. Taking the 
compressibility into account, we have: 

2

2 2

tanh1cE K β λ
α β λ

⎛ ⎞= −⎜ ⎟+ ⎝ ⎠
 (3.15) 

where K is the bulk modulus of the elastomer, 

212G S
K

β =  (3.16) 

2 2λ α β= +  (3.17) 

Table 3.2 summarizes the model characteristics and the results of the pressure solution. 
The values reported in the Table 3.2 are plotted in Figure 3.8. For the considered range of bases 
(Eq. shape factors), the vertical stiffness is linear with respect to the shape factor. Figure 3.8 is a 
plot of the vertical stiffness as a function of the shape factor for the twelve bearings of different 
geometry/reinforcement. 
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Table 3.2 Model characteristics and pressure solution results (long strip bearings). 

Geometrical and Mechanical Properties 

B [mm] 250 300 350 400 450 500 
H [mm] 180 
L [mm] 750 

tf [mm] 0.07 (SET1) 
0.25 (SET2) 

n layers [-] 29 

tr [mm] 6.37 (SET 1) 
6.17 (SET 2) 

Ef [MPa] 14000 
G [MPa] 0.70 

Compression of Pad with Rigid Reinforcement 

24cE GS S b t= =  
Ec [MPa] 1082.93 1559.42 2122.54 2772.30 3508.69 4331.72 
Kv [N/mm] 1140919 1971509 3130683 4673206 6653842 9127356 

Compression Stiffness with Compressibility of the Elastomer 

( ) 2 2 21 tanh 12cE K Gb Ktβ β β= − =

SET 1 (K=2000 MPa) 
β [-] 1.27 1.53 1.78 2.04 2.29 2.55 
Ec [MPa] 658.29 809.58 940.60 1051.90 1145.77 1224.92 
Kv [N/mm] 693539 1023520 1387352 1773163 2172814 2581018 

SET 2 
β [-] 1.31 1.575636 1.84 2.10 2.36 2.63 
Ec [MPa] 682.37 834.8608 965.72 1076.09 1168.63 1246.34 
Kv [N/mm] 740639 1087373 1467451 1868746 2283149 2705508 

 

Compression Stiffness with Flexible Reinforcement 

tanh1f f
c

E t
E

t
α

α
⎛ ⎞= −⎜ ⎟
⎝ ⎠        

2

12
f f

Gb
E t t

α =
 

SET 1 

α   [-] 4.59 5.51 6.43 7.34 8.26 9.18 
Ec [MPa] 120.60 126.19 130.19 133.19 135.52 137.39 
Kv  [N/mm] 127059 159541 192028 224515 257003 289491 

SET 2 
α   [-] 2.46 2.96 3.45 3.94 4.44 4.93 
Ec [MPa] 340.49 376.57 403.26 423.59 439.49 452.25 
Kv  [N/mm] 369562 490469 612775 735607 858636 981738 
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Table 3.2 (continued) 

Flexible Reinforcement and Compressibility 
2

2 2

tanh1cE K β λ
α β λ

⎛ ⎞= −⎜ ⎟+ ⎝ ⎠     
2 2 2λ α β= +  

SET 1 (K=2000MPa) 

β [-] 1.27 1.53 1.78 2.04 2.29 2.55 
λ [-] 4.76 5.72 6.67 7.62 8.58 9.53 
Ec [MPa] 113.10 118.11 121.69 124.37 126.45 128.12 
Kv [N/mm] 119160 149319 179481 209643 239806 269969 

SET 2 
β [-] 1.31 1.58 1.83 2.10 2.36 2.63 
λ [-] 2.79 3.35 3.91 4.47 5.03 5.59 
Ec [MPa] 284.90 310.41 329.02 343.08 354.05 362.83 
Kv [N/mm] 309229 404302 499954 595796 691700 787625 

 

 
Figure 3.8 Vertical stiffness (FE analysis versus pressure solution). 

 
 

The gray and the black lines refer to SET1 and SET2, respectively. The continuous lines 
(FRFEA) are plots of the FE analysis results, FRPS and FRCPS are the theoretical vertical 
stiffness results of FRBs for incompressible and compressible material respectively. The FE 
analysis and pressure solution outputs result are in good agreement. The FE analysis gives higher 
values of vertical stiffness because of a stiffening contribution of the quadratic mesh. 
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Figure 3.9 and Figure 3.10 show the plot of tensile stress as a function of the 
dimensionless length of the device, x/B, for the mid-height fiber layer—where the stresses are the 
largest—for B=250 mm and B=500 mm, respectively. The gray lines refer to tf  = 0.07 mm 
(SET1) while the black lines refer to tf  = 0.25 mm (SET2). In each figure the solid lines 
represent the pressure solution results and the dashed lines represent the FE analysis results. The 
pressure solution and the FE analysis curves have the same trend. 

For all the considered values of shape factor , the pressure solution gives higher values of 
vertical stiffness than the FE analysis. The results show that the pressure solution loses accuracy 
as the shape factor increases. This result is in agreement with [Kelly and Takhirov 2002]. The 
author suggests that the loss of accuracy is due mainly to the assumption of incompressibility of 
the material, and that the results presented there can be considered valid only for low values of 
the shape factors (S < 5). 

The results of the pressure solution (dashed lines) show a good agreement with the output 
of the FE analysis. In Figure 3.11 the ratio between the stresses derived by the FE model and the 
stresses derived by the pressure solution is plotted against the dimensionless length x/B. The 
pressure solution gives accurate results for the description of the stress of the fiber in the 
bearing’s core. Towards the free edges of the bearings, for a length of 10% of the base, the FE 
and the pressure solution results are different. This difference is very low for bearings with lower 
shape factors, but it is significant as the shape factor increases. 

 

 

 
Figure 3.9 Stress distributions in the reinforcement (FE analysis versus pressure 

solution) for B=250 mm. 
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Figure 3.10 Stress distributions in the reinforcement (analyses versus pressure 

solution) for B=500 mm. 

 

 
Figure 3.11 Non-dimensional stress (FE/pressure solution) against non-dimensional 

length (x/B). 
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3.2.3 Shear Results 

In the second part of the analysis, a constant vertical load is applied, and then the horizontal 
displacement is increased in order to investigate the ultimate behavior of the bearings. Figure 
3.12 and Figure 3.13 are Von Mises stress contour maps for B=250 mm and B=500 mm [SET1, 
tf = 0.07 mm)], respectively, at the displacement that corresponds to the peak force in the load-
displacement curve. 

The aforementioned figures clearly show the favorable response of an isolator that is not 
bonded to the top or bottom supports. This is due to the elimination of tension in the elastomer. 
In a bonded bearing under the simultaneous action of shear and compression, the presence of an 
unbalanced moment at both top and bottom surfaces produces a distribution of tensile stresses in 
the triangular region outside the overlap between top and bottom. The compression load is 
carried through the overlap area, and the triangular regions created by the shear displacement 
provide the tensile stresses to balance the moment. These tensile stresses must be sustained by 
the elastomer and also by the bonding between the elastomer and the steel reinforcement plates. 
The provision of these bonding requirements is the main reason for the high cost of current 
designs of isolator bearings for buildings. With the elimination of these tension stresses, the 
bonding requirements for this type of bearing are reduced. 

 

 
Figure 3.12 Von Mises stress contours at peak horizontal force in a bearing of base 

B=250 mm. 
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Figure 3.13 Von Mises stress contours at peak horizontal force in a bearing of base 

B=500 mm. 

 

For both bearings, a concentration of stress in the cores is evident. The stress at peak 
horizontal force is twice the one due to compressive load. For different geometries, the 
maximum value of stress is the same. Changing shape factor has the only effect of changing the 
distribution of the stress in the bearing. Figures 3.14 and 3.15 are the stress contours in the 
reinforcement at peak horizontal force for which the previous considerations are still valid. 
Figure 3.16 plots the horizontal load as a function of the horizontal displacement for the six 
bearings of SET1 under a vertical pressure of 3.45 MPa. The maximum horizontal displacement 
is double for the 500-mm bearing than for the 250-mm bearing, while the peak force is 
quadruple. Figure 3.17 shows the horizontal load versus the dimensionless horizontal 
displacement. The peak lateral displacement that the bearings exhibit is approximately equal to 
half the base. Figure 3.18 is a plot of the shear stress versus shear strain curves. 
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Figure 3.14 Tension contours in the fiber reinforcement at maximum shear (B=250 

mm). 

 
 

 
Figure 3.15 Tension contours in the fiber reinforcement at maximum shear (B=500 

mm). 
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Figure 3.16 Force-displacement curves. 

 
 
 

 
Figure 3.17 Force-displacement/base curves. 
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Figure 3.18 Stress-strain curves. 

 

These curves are straight lines up to the value of the lateral load for which roll-off of the 
right end starts to occur. A progressive reduction of the lateral tangent stiffness is then observed 
with further increase of the lateral load. The large deformation that FRBs experience can be 
modeled accurately in Marc. However, the finite element mesh distorts so heavily that the 
analysis becomes grossly inaccurate or stops due to individual mesh elements turning inside out 
and pre-specified convergence criteria not being satisfied. This problem could be solved by 
employing remeshing, but the program has no algorithm that can be used to automatically 
remesh the rebar elements. Therefore, the ultimate theoretical displacement cannot be verified 
easily, because of the very large distortion in the mesh. The values that describe the ultimate 
behavior for the bearings SET1 are summarized in Table 3.3. 

 
Table 3.3 Ultimate performances of the bearings (SET1) under horizontal load. 

B [mm] S [-] Fh,u [kN] τu [MPa] Δu [mm] Δu/B [-] γu [%] 

500 43.48 170.5 0.45 204 0.4 1.1 

450 39.13 139.9 0.41 195 0.4 1.1 

400 34.78 104.1 0.35 190 0.5 1.1 

350 26.09 77.17 0.29 167 0.5 0.9 

300 21.74 52.13 0.23 136 0.5 0.8 

250 43.48 32.92 0.18 104 0.4 0.6 
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3.3 CIRCULAR BEARINGS 

3.3.1 Geometrical Properties 

Finite element models of FRBs with different shape factors are defined (S=Φ/4, tr= 10.13; 12.17; 
14.18; 16.21; 18.23; 20.26). The different values of the shape factor are obtained by increasing 
the values of the diameter of the device (Φ = 250; 300; 350; 400; 450; 500 mm). As shown in 
Figure 3.19, each device is made of twenty-nine fiber layers with twenty-eight interleaf rubber 
sheets. Each rubber layer is 5.75 mm thick (=tr), and each fiber sheet is 0.07 mm (=tf ) thick for 
SET1 and 0.25 mm thick for SET2. The geometrical characteristics are shown in Table 3.4. The 
FE discretization is shown in Figure 3.20, consisting of 8 + 1-node hexahedron elements with 
side length of ~2 mm. 

 

 

Figure 3.19 Circular type bearing showing reinforcements and dimensions. 

 

Table 3.4 Geometrical properties of the circular bearings. 
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Figure 3.20 Model mesh and layout of the reinforcement layers (elements 143). 

 
 

3.3.2 Compression Results 

The goal of this section is to verify the validity of the results provided by the pressure solution by 
comparing them with results from FE analysis. Figures 3.21–3.24 show the contour maps of the 
equivalent stress in cross sections of a rubber layer obtained from analysis with Marc for 
bearings 250 mm and 500 mm [(tf = 0.07 mm) and (tf  = 0.25 mm)], respectively, under pure 
compression (peak vertical force = average pressure = P/A = 3.45 MPa). The plots show the 
results on half of the bearing. Figures 3.25 and 3.29 show the stress contours in the fiber layers. 
In the vertical direction the force displacement behavior is linear in the considered range of load. 
The results from FE analysis can be compared to the results of the pressure solution. 
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Figure 3.21 Von Mises stress contours at peak vertical force in a cross section of a 

circular bearing (Φ=250 mm–SET1 tf =0.07 mm). 

 
 

 
Figure 3.22 Von Mises stress contours at peak vertical force in a cross section of a 

circular bearing (Φ=500 mm–SET1 tf =0.07 mm). 
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Figure 3.23 Von Mises stress contours at peak vertical force in a cross section of a 

circular bearing (Φ=250 mm–SET1 tf =0.25 mm). 

 

 
Figure 3.24 Von Mises stress contours at peak vertical force in a cross section of a 

circular bearing (Φ=500 mm - SET2 tf =0.25 mm). 
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Figure 3.25 Tension contours in the fiber reinforcement (Φ=250 mm–SET1 tf =0.07 mm, 

Sv=3.45 MPa). 

 

 
Figure 3.26 Tension contours in the fiber reinforcement (Φ=500 mm–SET1 tf =0.07 mm 

Sv=3.45 MPa). 
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Figure 3.27 Tension contours in the fiber reinforcement (Φ=250 mm–SET2 tf =0.25 mm 

Sv=3.45 MPa). 

 
 

 
Figure 3.28 Tension contours in the fiber reinforcement (Φ=500 mm–SET2 tf =0.25 mm 

Sv =3.45 MPa). 
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Recalling Section 2.2, we can determine the vertical stiffness of the bearing, VK , as 

( )V c rK E A t=  (3.18) 

where 

( )
( ) ( )

( ) ( ) ( )

0 1
2

2 2
0 1 0

2

24 1
1 1

2

c

I I
E GS

I I I

λ λ
λν

ν να λ λ β λ
λ

⎡ ⎤−⎢ ⎥⎣ ⎦= +
− +⎡ ⎤− +⎢ ⎥⎣ ⎦

 (3.19) 

In which nI , are modified Bessel functions of the first and second kind of order n , 4 rS t= Φ , 
and  

( )2 2
2

12 1

f f

GR
E t t

ν
α

−
=  (3.20) 

2
2

2

12GR
Kt

β =  (3.21) 

2 2 2λ α β= +  (3.22) 

Table 3.5 summarizes the model characteristics and the results of the pressure solution, and 
Figure 3.29 is a plot of the load displacement relations for the twelve bearings of different 
geometry/reinforcement. 

The values reported in Table 3.5 are plotted in Figure 3.30 where the vertical stiffness is a 
function of the shape factor for the twelve bearings of different geometry/reinforcement. The 
gray curves refer SET1 bearings and the black curves to SET2. Continuous lines describe the 
pressure solution results for flexible reinforcement and the dashed lines refer to flexible 
reinforcement and compressibility. Continuous marked lines are the FE analysis results. The gray 
and the black lines refer to SET1 and SET2, respectively. The pressure solution and pressure 
solution + C lines are the theoretical vertical stiffness results of FRBs for incompressible and 
compressible materials, respectively. The FE analysis results and pressure solution outputs are in 
good agreement. Note that the FE analysis gives higher values of vertical stiffness because of a 
stiffening contribution of the hexahedric mesh. 

Figure 3.31 is the plot of non-dimensional stiffness 0.25 0.07v vK K  as a function of the 
diameter, Φ . The solid line represents the pressure solution result and the dashed line represents 
the FE analysis outputs. The FE analysis and pressure solution outputs are in good agreement 
(see Figure 3.32), although the FE analysis gives higher values of vertical stiffness because of a 
stiffening contribution of the hexahedral mesh. For ft  = 0.25 mm, it is evident that the ratio 
between the different solutions increases with increasing the nominal dimension of the device: 
because the compressibility of the rubber is the main quota of the deformation, it can’t be 
neglected. 
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Table 3.5 Model characteristics and pressure solution results (circular bearings). 

Geometrical and Mechanical Properties 

Φ [mm] 250 300 350 400 450 500 
H [mm] 180 

tf [mm] 0.07 (SET1) 
0.25 (SET2) 

n layers [-] 29 

tr [mm] 6.37 (SET 1) 
6.17 (SET 2) 

Ef [MPa] 14000 
ν [-] 0 
G [MPa] 0.70 

Compression Stiffness with Flexible Reinforcement 

SET 1 
Ec [MPa] 50,04 52,51 54,25 55,55 56,54 57,33
Kv  [N/mm] 14218,00 21485,00 30216,00 40406,00 52055,00 65162,00

SET 2 
Ec [MPa] 142,04 158,64 171,00 180,39 187,73 193,56
Kv  [N/mm] 40362,00 64914,00 95235,00 131220,00 172830,00 220000,00

Flexible Reinforcement and Compressibility 

SET 1( K=2000MPa) 
Ec [MPa] 48,56 50,92 52,58 53,82 54,77 55,53
Kv [N/mm] 13799,00 20835,00 29286,00 39151,00 50428,00 63116,00

SET 2 
Ec [MPa] 130,42 144,51 154,93 162,85 169,03 173,96
Kv [N/mm] 37059,00 59130,00 86287,00 118460,00 155620,00 197730,00
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Figure 3.29 Vertical test results (FE analysis versus pressure solution). 

 
 

 
Figure 3.30 Vertical stiffness results. 
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Figure 3.31 Non-dimensional stiffness versus diameter. 

 

 
Figure 3.32 vFEM vPSK K  as a function of the diameter. 

3.4 SQUARE BEARINGS 

3.4.1 Geometrical Properties 

Finite element models of square type FRBs with different shape factors are defined 
(S=B/4tr=10.87; 13.04; 15.22; 17.39; 19.57; 21.74). The different values of the shape factor are 
obtained by increasing the values of the base of the device (B = 250; 300; 350; 400; 450; 500 
mm). As shown in Figure 3.32, each device is made of twenty-eight rubber layers with twenty-
nine interleaf fiber sheets. Each rubber layer is ~5.7 mm thick (=tr), and each fiber sheet is 0.07 
mm (=tf) thick for SET1 and 0.25 mm thick for SET2. Figure 3.33 shows a cross section of the 
model of the square-type FRB investigated in this study. The geometrical characteristics are 
shown in Table 3.4. 
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Figure 3.33 Square type bearing showing reinforcements and dimensions. 

 

Table 3.6 Geometrical properties of the square bearings. 

B [mm] H [mm] tr [mm] tf [mm] S [-] 

500 

180 5.75 

 

0.07 

(SET1) 

 

0.25 

(SET2) 

 

21.74 

450 19.57 

400 17.39 

350 15.22 

300 13.04 

250 10.87 

 

 

The finite element discretization is shown in Figure 3.34. As assumed in the pressure 
solution, the FE models assumes there is no friction between the rubber and the top and bottom 
surfaces, and the bearings are loaded in pure compression only. Because there isn’t any friction, 
each layer of the bearing deforms equally under compression, and it is sufficient to model only a 
single layer of the device to fully describe the behavior of the bearing. For the specific load 
condition, the model is doubly-symmetric: the symmetry with respect two orthogonal planes will 
be applied as boundary condition. The three-dimensional mesh consists of eight-node, 
isoparametric, three-dimensional brick elements with trilinear interpolation (element type 84). 
Four layers of elements were used through the thickness, and the size of the mesh along the base 
was chosen to have ratio of distortion next to one. 
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Figure 3.34 Model mesh for a single pad (element type 84). 

 

3.4.2 Compression Results 

The results from FE analysis can be compared to the results of the pressure solution. Recalling 
Section 2.3, we can determine the vertical stiffness of the bearing, VK , as 

( )V c rK E A t=  (3.23) 

where 
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2 2
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The previous formula are referred to the hypothesis of incompressibility of the rubber. 
Table 3.7 summarizes the model characteristics and the pressure solution results for square type 
bearings. The values reported in the Table 3.7 are plotted in Figure 3.3.6 and Figure 3.37. For the 
considered range of bases (eq. shape factors), the vertical stiffness is linear with respect to the 
shape factor. Figure 3.35 is a plot of the vertical test results. 

 

 



 72

 

Table 3.7 Model characteristics and pressure solution results (square bearings). 

Geometrical and Mechanical Properties 

B [mm] 250 300 350 400 450 500 
H [mm] 180 

tf [mm] 0.07 (SET1) 
0.25 (SET2) 

n layers [-] 29 

tr [mm] 6.37 (SET 1) 
6.17 (SET 2) 

Ef [MPa] 14000 
G [MPa] 0.70 

Compression Stiffness with Flexible Reinforcement 

SET 1 
α   [-] 0.02 

Ec (n=9) [MPa] 120.60 126.19 130.19 133.19 135.52 137.39 
SET 2 

α   [-] 0.04 
Ec (n=9) [MPa] 340.49 376.57 403.26 423.59 439.49 452.25 

 
Figure 3.35 Vertical force–vertical displacement. 
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Figure 3.36 is a plot of the vertical stiffness as a function of the base (eq. shape factor) for 
the twelve bearings of different geometry/reinforcement. The gray lines refer to ft  = 0.07 mm 
(SET1) while the black lines refer to ft  = 0.25 mm (SET2). In each figure the solid lines 
represent the pressure solution results, and the lines with markers represent the FE analysis 
results. Figure 3.37 is a plot of the non-dimensional vertical stiffness (FE model/pressure 
solution) as a function of the base. Figure 3.38 is a plot of the non-dimensional vertical stiffness 
(FE model/pressure solution) as a function of the base/diameter for the square and the circular 
bearings. 

 

 
Figure 3.36 Vertical stiffness versus base. 

 

 
Figure 3.37 vFEM vPSK K  as a function of the base. 
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Figure 3.38 vFEM vPSK K  as a function of the base-diameter for square and circular 

bearings.  
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4 Ultimate Displacement and Stability of 
Unbonded Bearings 

4.1 INTRODUCTION 

The most important aspects of FRBs are that they do not have thick end plates, they are not 
bonded to the top and bottom support surfaces, and their reinforcements are flexible. These 
features at first sight might seem to be deficiencies of their design, but they have the advantage 
of eliminating the presence of tensile stresses in the bearing by allowing it to roll off the 
supports. This reduces the costly stringent bonding requirements that are typical for conventional 
bearings. The FRBs can deform without damage if displacements of seismic magnitude are 
applied because the top and bottom surfaces can roll off the support surfaces and no tension 
stresses are produced. The unbalanced moments are resisted by the vertical load through offset of 
the force resultants on the top and bottom surfaces. In conventional bonded bearings, the 
compression is carried through the overlap region between top and bottom surfaces, and the 
unbalanced moment is carried by tension stresses in the regions outside the overlap Figure 4.1. In 
unbonded FRB, the moment created by the offset of the resultant compressive loads, P, balances 
the moment created by the shear, V, as shown in Figure 4.2. 

 

 
Figure 4.1 Bonded bearing under compression and shear. 
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displacement. As a result of the limiting displacement analysis, it is possible to determine a 
simple design criterion for this type of bearing. We need only to determine a maximum required 
design displacement that normally would depend on the site, the anticipated isolation period, and 
damping. If we denote this by Δ , then the requirement for positive incremental horizontal 
stiffness requires that the width B  of the bearing in the direction of the displacement be at least 
twice the displacement, i.e., 2B ≥ Δ . 

 
Figure 4.3 Unbonded bearing under shear load. 

4.2.2 No Contact with Horizontal Subgrade 

In FRBs, the fiber sheets are much more flexible compared to the steel reinforcing in current 
designs of building isolators. Under horizontal load this flexibility allows the unbonded surfaces 
to roll off the loading surfaces. Thus the maximum displacement for a bearing of this type can be 
specified as that which transforms the vertical free edge to a horizontal plane. In the normal 
situation, where the bearing thickness is small in comparison to the plan dimension in the 
direction of loading, this can be estimated by studying only the deformation of one side and 
neglecting the interaction between the deformations at each end. 

The basic assumptions used to predict the limiting shear deformation are  

• the material is incompressible 

• the plates are completely flexible 

• the free surface of the roll-off portion is stress free 

The first two are reasonable for the elastomer and reinforcement of these bearings, and the third 
means that the displacement when the vertical surface touches the horizontal support is the 
length of the curved arc of the free surface. 

 

 
Figure 4.4 Schematic of the deformed bearing. 
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The geometry assumed in the derivation is shown in Figure 4.4. The thickness of the 
bearing is one, and the horizontal projection of the curved free surface is a. Assuming that the 
curved free surface S is a parabolic arc, then in the coordinate system  x , y  shown in the figure, 
the curved surface is given by  

2
1/2

2 ;xy x ay
a

= =  (4.2) 

The area of the region enclosed by the curved arc of length S  is 
1/21 1 1/2

0 0 0

2
3

ay
A dy dx ay dy a= = =∫ ∫ ∫  (4.3) 

The requirement of incompressibility means that the volume before deformation and after are 
preserved, thus  

1 2 ,
2 3

S a=    or   3
4

a S=             (4.4) 

The curved arc length S  is given by  

( )1/22 2dS dx dy= +              (4.5) 
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a

=               (4.6) 

And 
1/22

40

41
a xS dx

a
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

∫              (4.7) 

Using the change of variable 22 /u x a= and 22 /du a dx= , we have  

( )
2 1/ 22/ 2

0
1

2
aaS u du= +∫             (4.8) 

Let sinh( )u t= .  Then  
2 arcsinh(2/ ) 2

0
cosh( )

2
aaS t dt= ∫             (4.9) 

Since  ( )2cosh( ) 1/ 2 cosh(2 ) 1t t= + , this leads to  

[ ]
2

arcsinh (2/ )

0
sinh( ) cosh( )

4
aaS t t t= +          (4.10) 

and with ( )1/22cosh( ) 1 sinh( )t t= + , we have 
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1/22

2

2 4 21 arcsinh
4
aS

a a a
⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (4.11) 

The incompressibility condition requires that 4 / 3S a=  leading to an equation for a in the form 

1/2

2

2 16 2 4arcsinh 1
3a a a a

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.12) 

Replacing 2 / a  by t  and inverting the equation leads to a transcendental equation for t  in the 
form  

( )1/228sinh 1
3

t t t⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (4.13) 

which after solving for t  gives a and in turn S . The solution to a high degree of accuracy is 
1.60t = , 1.25a =  and 1.67S = . This is the overall shear strain. The conclusion is that in broad 

terms these bearings can experience a displacement equal to the thickness of the rubber before 
they run the risk of damage by sliding. 

The shear tests conducted in Marc for the different bearings show that the peak horizontal 
displacement is approximately half of the base length. The theoretical model, which used to 
determine the peak horizontal displacement, gives good results even when compared against the 
FE analysis with non-zero vertical load. Note that for a fixed axial load, the shear load goes 
through a maximum as the shear deflection is further increased. The displacement at which this 
maximum occurs decreases with increasing axial load. Therefore, it can be concluded that further 
FE analysis are necessary to precisely evaluate the influence of the vertical load on the horizontal 
behavior of the bearings. Moreover, this study was conducted considering the shape factor, S, as 
the only variable. Analytical results showed that although shape factor is an important 
geometrical parameter that characterizes the mechanics of the bearings; there are other 
parameters—such as the slenderness of the bearing—that should be taken into account to fully 
describe the global behavior of the device. 
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5 Conclusions 

Many large urban centers are extremely vulnerable to the damaging effects of large earthquakes. 
For example, large cities such as Istanbul and Tehran have many thousands of buildings that 
were built prior to the enforcement of stringent building codes. Buildings in the range of two to 
six stories have been constructed using only vertical load designs and no provision for horizontal 
resistance. These are in many cases valuable buildings and are used as residences, offices, and 
shops. There are so many of them that they cannot realistically be demolished and replaced, and 
retrofitting them by conventional methods would be highly disruptive to occupants. 
Development of low-cost seismic isolators that can be mass produced by a relatively simplified 
manufacturing process would stimulate world-wide application of the seismic isolation 
technology to the retrofit of existing structures with deficiencies and to new construction in 
lesser developed countries. 

Modern methods of structural control would be much too expensive for these buildings, 
but it is possible that a system of inexpensive seismic isolation could be adapted to improve the 
seismic resistance of poor housing and other buildings such as schools and hospitals. In at least 
one retrofit project in Armenia, a large multi-family housing block was retrofitted using rubber 
isolators with no need for the families to leave while the work was done. 

This report has described a potential approach to the provision of a low-cost, light-weight 
rubber isolation systems. It has been extensively tested in laboratory test program and a 
theoretical analysis of the mechanical behavior of this type of isolator has also been verified in 
this report by finite element studies. These isolators have much less severe bonding requirements 
than conventional isolators and have the potential of lending themselves to mass production 
manufacturing, which will be required for any type of retrofit of vulnerable buildings in the 
urban environment. 

The most important aspects of these bearings are that they do not have thick end plates, 
they are not bonded to the top and bottom support surfaces, and their reinforcement is very 
flexible. At first sight this might seem to be a deficiency of their design, but in fact it has the 
advantage that it eliminates the presence of tensile stresses in the bearing by allowing it to roll 
off the supports. This reduces the costly stringent bonding requirements that are typical for 
conventional bearings. The weight and the cost of isolators is reduced by using fiber 
reinforcement, no end-plates, and no bonding to the support surfaces, thereby offering a low-cost 
light-weight isolation system for retrofit in large cities such as Tehran and Istanbul, and also for 
new housing and public buildings in developing countries. 
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