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ABSTRACT 

We provide ground-motion prediction equations (GMPEs) for the computation of median peak 
ground motions and response spectra for shallow crustal earthquakes in active tectonic regions. 
The equations were developed as part of the NGA-West 2 project and are based on a composite 
data set [Ancheta et al. 2013] that includes global events from 1935 to 2011 spanning a wide 
magnitude range, plus a large number of small-to-moderate magnitude events from California 
principally from 1998 to 2011. This data set comprises more than 21,000 records, of which we 
use a subset of ~16000 records in our analysis. The equations follow a philosophy, functional 
form, and regression method that is similar to the Boore and Atkinson [2008] (BA08) ground-
motion model from the original NGA project (i.e., the “NGA-West 1” project). That approach, 
which is continued here, provides for what we refer to as base-case GMPEs accounting for 
ground motion scaling with magnitude, distance, and site condition.  

Aside from updating the coefficients based on new data, a principal motivation for the 
revised regression is that the enhanced database enables improved evaluations of numerous 
factors, including: the distinction between mainshock and aftershock motions; the influence of 
depth to top of rupture; basin depth effects; and regional variations of site effects and distance 
attenuation. Of these, only basin depth and regional apparent anelastic attenuation were found to 
be statistically significant and were incorporated into the median model. We treat these 
additional variables as optional adjustment factors to the base-case GMPEs, which maintains the 
simplicity of the base-case GMPEs for general applications. The enhanced data also enables 
evaluation of the effects of magnitude, distance, and site condition on standard deviation terms, 
which are now incorporated into the GMPEs. 

The predicted ground-motion amplitudes from this study are generally similar to those 
from BA08 for larger magnitudes. The most significant differences are for motions from M < 6 
earthquakes, where the new predicted motions are less than those from BA08 as modified by 
Atkinson and Boore [2011], particularly at distances within about 20 km. We were unable to 
identify significant differences between motions from a mainshock and its aftershocks, and 
hence we consider our equations applicable for both event types. We find that over the 
magnitude range of engineering interest (M > 5) the equations are unbiased with respect to 
source depth, as represented by either depth to top-of-rupture or hypocentral depth. Hence, a 
depth term is not introduced. With regard to apparent anelastic attenuation, the base-case GMPEs 
are unbiased for data from California and Taiwan, but other regions exhibit faster (Italy and 
Japan) or slower (China and Turkey) attenuation rates for which adjustment factors are 
introduced. Our equations are found to be centered for basin-depths compatible with an empirical 
relationship between depth parameter 1z  and 30SV , to be negative for depths shallower than the 

mean of such models, and positive for depths greater than the mean. These changes in ground 
motions with depth occur for long period ground motions, and applicable adjustment factors are 
introduced. 

As with BA08, the standard deviation is segregated into between-event and within-event 
components. However, unlike BA08, the between-event component is now M-dependent, 
decreasing as M increases beyond 5.5. The within-event component now has variable trends with 
M for different spectral periods (decreases for short periods, increases for long period), increases 
with distance for RJB > 80 km, and is reduced for soft soil sites. 
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Our GMPEs are considered applicable over a magnitude range of 3 to 8.5 for strike-slip 
or reverse-slip events (M 3 to 7 for normal-slip events), distances up to 400 km, and site 
conditions ranging from 30SV  = 150 to 1500 m/sec and 1 0.0z   to 3.0 km. The equations are 

useful for prediction of the ground-motion intensity measures (IMs) PGA, PGV, and PSA at 
periods T = 0 to 10 sec. 
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In the site amplification model presented in Section 4.2.2, we have a maximum 
velocity (denoted Vc) beyond which there is no scaling of ground motion with VS30. The selection 
of Vc is based on plots of site amplification from data against VS30, as shown in Figure 4.8 of the 
report.  Upon further inspection of these plots, we have increased Vc for short periods. Updated 
plots of Figure 4.8 reflecting these changes are given below.  

The increase of Vc also increases the amount of data used to constrain the VS30-scaling 
parameter c. The resulting change in slope was small, but was consistently in the direction of 
stronger scaling (i.e., values of c became more negative). Updated plots of c vs. period are given 
below (Figure 4.9). Coefficient tables for these two parameters, originally presented I the 
appendix, are also updated as part of this erratum. 

 

 

 

  



 

Figure 4.8a Variation of linearized site amplification [Equation (4.3)] with VS30 for 
combined data set and subset from California. Red line indicates 
model prediction, black dots are binned means and their 95% 
confidence intervals. 

  



 

Figure 4.8b Variation of linearized site amplification [Equation [4.3]) with VS30 for 
subset of data from Japan and Taiwan. 

  



 

Figure 4.9 Variation of slope (c) within spectral periods for combined data set 
and various regions. Data weights refer to the relative contributions 
to the ‘combined’ slope. 

 

 

 

 

  



Updated Coefficients 

Period(sec) c  Vc (m/s)

‐1  ‐0.8400  1300.00

0  ‐0.6000  1500.00

0.01  ‐0.6037  1500.20

0.02  ‐0.5739  1500.36

0.022  ‐0.5668  1500.68

0.025  ‐0.5552  1501.04

0.029  ‐0.5385  1501.26

0.03  ‐0.5341  1502.95

0.032  ‐0.5253  1503.12

0.035  ‐0.5119  1503.24

0.036  ‐0.5075  1503.32

0.04  ‐0.4906  1503.35

0.042  ‐0.4829  1503.34

0.044  ‐0.4757  1503.13

0.045  ‐0.4724  1502.84

0.046  ‐0.4691  1502.47

0.048  ‐0.4632  1502.01

0.05  ‐0.4580  1501.42

0.055  ‐0.4479  1500.71

0.06  ‐0.4419  1499.83

0.065  ‐0.4395  1498.74

0.067  ‐0.4395  1497.42

0.07  ‐0.4404  1495.85

0.075  ‐0.4441  1494.00

0.08  ‐0.4502  1491.82

0.085  ‐0.4581  1489.29

0.09  ‐0.4673  1486.36

0.095  ‐0.4772  1482.98

0.1  ‐0.4872  1479.12

0.11  ‐0.5063  1474.74

0.12  ‐0.5244  1469.75

0.13  ‐0.5421  1464.09

0.133  ‐0.5475  1457.76

0.14  ‐0.5603  1450.71

0.15  ‐0.5796  1442.85

0.16  ‐0.6005  1434.22



0.17  ‐0.6225  1424.85

0.18  ‐0.6449  1414.77

0.19  ‐0.6668  1403.99

0.2  ‐0.6876  1392.61

0.22  ‐0.7243  1380.72

0.24  ‐0.7565  1368.51

0.25  ‐0.7718  1356.21

0.26  ‐0.7870  1343.89

0.28  ‐0.8161  1331.67

0.29  ‐0.8295  1319.83

0.3  ‐0.8417  1308.47

0.32  ‐0.8618  1297.65

0.34  ‐0.8773  1287.50

0.35  ‐0.8838  1278.06

0.36  ‐0.8896  1269.19

0.38  ‐0.9004  1260.74

0.4  ‐0.9109  1252.66

0.42  ‐0.9224  1244.80

0.44  ‐0.9346  1237.03

0.45  ‐0.9408  1229.23

0.46  ‐0.9469  1221.16

0.48  ‐0.9586  1212.74

0.5  ‐0.9693  1203.91

0.55  ‐0.9892  1194.59

0.6  ‐1.0012  1184.93

0.65  ‐1.0078  1175.19

0.667  ‐1.0093  1165.69

0.7  ‐1.0117  1156.46

0.75  ‐1.0154  1147.59

0.8  ‐1.0210  1139.21

0.85  ‐1.0282  1131.34

0.9  ‐1.0360  1123.91

0.95  ‐1.0436  1116.83

1  ‐1.0500  1109.95

1.1  ‐1.0573  1103.07

1.2  ‐1.0584  1096.04

1.3  ‐1.0554  1088.67

1.4  ‐1.0504  1080.77

1.5  ‐1.0454  1072.39

1.6  ‐1.0421  1061.77

1.7  ‐1.0404  1049.29



1.8  ‐1.0397  1036.42

1.9  ‐1.0395  1023.14

2  ‐1.0392  1009.49

2.2  ‐1.0368  995.52 

2.4  ‐1.0323  981.33 

2.5  ‐1.0294  966.94 

2.6  ‐1.0262  952.34 

2.8  ‐1.0190  937.52 

3  ‐1.0112  922.43 

3.2  ‐1.0032  908.79 

3.4  ‐0.9951  896.15 

3.5  ‐0.9910  883.16 

3.6  ‐0.9868  870.05 

3.8  ‐0.9783  857.07 

4  ‐0.9694  844.48 

4.2  ‐0.9601  832.45 

4.4  ‐0.9505  821.18 

4.6  ‐0.9405  810.79 

4.8  ‐0.9302  801.41 

5  ‐0.9195  793.13 

5.5  ‐0.8918  785.73 

6  ‐0.8629  779.91 

6.5  ‐0.8335  775.60 

7  ‐0.8046  772.68 

7.5  ‐0.7766  771.01 

8  ‐0.7503  760.81 

8.5  ‐0.7254  764.50 

9  ‐0.7016  768.07 

9.5  ‐0.6785  771.55 

10  ‐0.6558  775.00 
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1 Introduction 

1.1 PROJECT OBJECTIVES AND SCOPE 

Ground-motion prediction equations (GMPEs) are used in seismic hazard applications to specify 
the expected levels of shaking as a function of predictor variables such as earthquake magnitude 
and distance. GMPEs for active crustal regions are typically developed from an empirical 
regression of observed amplitudes against an available set of predictor variables. The complexity 
and sophistication of GMPEs has evolved over time as ground-motion databases and associated 
metadata concerning source and site conditions has grown. Early GMPEs were very simple 
equations giving peak ground acceleration as a function of magnitude and epicentral distance 
(e.g., Douglas [2003]). Modern GMPEs express peak motions and response spectra as functions 
of moment magnitude, distance to the rupture surface, and site condition variables such as the 
time-weighted average shear-wave velocity over the upper 30 m of the profile ( 30SV ); other 

predictor variables such as focal mechanism, depth to the top of the rupture, and depth to 
basement rock, may also be used (e.g., see NGA-West 1 equations, as described by Power et al., 
[2008] and references therein, as well as the compilation by Douglas [2011]). The larger and 
more comprehensive the available database, the greater the resolving power of empirical 
regression techniques to sort out the many effects that control ground motions. 

In this study, we use a three-phase model building approach to the GMPE development 
(as described in Chapter 4); our aim is to take advantage of the rich NGA-West 2 database to 
develop a GMPE model for shallow crustal earthquakes in active tectonic regions that strikes a 
balance between accuracy of the prediction and simplicity of form and application. Our 
philosophy is as follows: The primary variables that control ground motion at a site are the 
earthquake magnitude (the primary source variable), distance to the fault (the primary path 
variable), and 30SV  (the primary site variable). After constraining some variables based on an 

initial analysis of the data, in what we call Phase 1 of our study, we perform regressions to 
develop a base-case GMPE (for peak ground motions and response spectra) based on a simple 
functional form using just these variables, as well as fault type (Phase 2). We then refine the 
model as required, based on examination of the residuals (defined by the difference, in natural 
log units, between the observed and predicted amplitude of motion) of the regression against 
secondary predictor variables that are available as part of the NGA-West 2 metadata (Phase 3). 
These secondary parameters include the region in which the event occurs, whether the source is a 
mainshock or aftershock, the depth to the top of fault rupture, the depth to basement rock, etc. 
We assess the extent to which these additional variables improve the accuracy of the GMPE in a 
way that is both statistically significant and practically meaningful. We implement the inclusion 
of secondary variables, where warranted, as optional correction factors that may be applied to the 
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base-case GMPEs. In this way, we aim to ensure that our GMPE is centered for the general case 
of future events in regions for which site-specific fault rupture, path and site parameters may be 
unknown. 

The scope of our GMPEs includes the prediction of horizontal-component peak ground 
acceleration (PGA), peak ground velocity (PGV) and response spectra (PSA, the 5% damped 
pseudo response spectral acceleration), for earthquakes of moment magnitude (M) 3.0 to 8.5, at 
distances from 0 to 400 km, at sites having 30SV  in the range from 150 m/sec to 1500 m/sec, for 

periods between 0.01 sec and 10 sec. We consider regional variability in source, path and site, 
and selected secondary source and site effects, but do not address directivity effects. 

1.2  PRIOR RELATED WORK 

This study builds on the GMPEs of Boore and Atkinson [2008], which were part of the NGA-
West 1 project [Power et al. 2008 and references therein]. The NGA-West 1 was founded on the 
development of a comprehensive and consistent database of ground-motion variables for shallow 
crustal earthquakes in active regions, including assembling associated metadata parameters, as 
described by Chiou et al. [2008]. The NGA-West 1 project involved a novel collaborative 
process in which several developer groups interacted in using various subsets of the same master 
database to derive alternative GMPEs. The process was highly successful in initiating significant 
improvements to the GMPEs available for seismic hazard applications. Based on the success of 
NGA-West 1, the NGA-West 2 project was formed to take advantage of new data available since 
NGA-West 1, address some weaknesses in the NGA-West 1 database, and allow the developers 
to reconsider their functional forms. 

One improvement needed to the NGA-West 1 equations involved adding data at small-to-
moderate magnitudes. The need to enrich the database at the low-magnitude end to ensure robust 
magnitude scaling was highlighted by several studies [Atkinson and Morrison 2009; Chiou et al. 
2010; Atkinson and Boore 2011], and two of the NGA-West 1 developers provided amendments 
to improve their equation performance at low magnitudes [Chiou et al. 2010; Atkinson and 
Boore 2011]; the revised Boore and Atkinson GMPEs that account for this adjustment are 
referred to as BA08′. Studies by Atkinson and Morrison [2009] and Chiou et al. [2010] also 
pointed to the need to consider regional variability of path effects, as the attenuation of motions 
with distance is faster in some active regions than in others. 

An important issue not addressed in NGA-West 1 was the regional variability of site 
effects; this issue stems from the inherent limitations of using 30SV  as the primary site condition 

variable. In reality, site amplification depends not only on soil stiffness ( 30SV ), but also on soil 

depth and other factors. There are regional variations in the period at which site amplification 
peaks, due to regional differences in the depths of typical soil profiles; the site amplification 
function versus period for a given value of 30SV  should thus be regionally dependent. In 

particular, peak site response occurs at shorter periods in Japan than in western North America, 
even for the same value of 30SV  [Atkinson and Casey 2003; Ghofrani et al. 2013; Stewart et al. 

2013; Anderson et al. 2013]. Thus we can potentially improve on the NGA-West 1 equations by 
allowing the site response function to vary with region, in addition to 30SV . We wish to note here 

that we recognize different variables could be used to characterize site effects, such as the 
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quarter-wavelength shear wave velocity [Joyner and Fumal 1984, 1985; Douglas et al. 2009] or 

30SV  in combination with peak response period. This option was not pursued in the present work 

because this level of site description is not yet part of the NGA-West database or used in 
common practice. 

Other improvements to the treatment of site effects are also made possible by better data. 
Boore and Atkinson [2008] used empirical site amplification factors based on the work of Choi 
and Stewart [2005]. Stewart and Seyhan [2013] have updated this work based on additional data, 
which now allows a more robust description of linear and nonlinear site amplification effects 
over a wider range of 30SV . 

Finally, the richer database available for NGA-West 2 allows us to improve on prior 
work by considering additional variables that could not previously be adequately resolved. 
However, as described in the next sections, we maintain the same basic functional form for the 
equations as used in Boore and Atkinson [2008]. 
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2 Database 

2.1 DATA SOURCES AND DATA EXCLUSION CRITERIA 

We use the strong-ground motion database developed in the NGA-West 2 project 
(http://peer.berkeley.edu/ngawest2/). As described in Ancheta et al. [2013], the NGA-West 2 
database consists of a site database containing metadata for all stations producing usable 
recordings; a source database containing magnitudes, locations, and geometries of earthquake 
sources producing recordings; and a flatfile that merges critical site and source information with 
distance parameters and computed ground-motion intensity measures (IMs). The flatfile was a 
continuously evolving file over the project duration, hence in referring to the flatfile, it becomes 
necessary to specify a date or version number. Since the development of GMPEs is a gradual 
process, many versions of the flatfile were used in this project, starting with one dated 12 July 
2012 and concluding with one dated 14 March 2013. The changes in the flatfile over this time 
period were substantial, with the number of recordings increasing by almost a factor of three due 
to the inclusion of a large volume of small magnitude recordings from California (details in 
Ancheta et al. [2013]). 

All of the GMPEs developed in the NGA-West 2 project (including the model presented 
in this report) used some version of the flatfile, but each developer team made different decisions 
regarding what portion of the database to use. As will be described further in Chapter 4, we use 
variable subsets of the data for different phases of the analysis. Consistent criteria (i.e., applied in 
all analysis phases) were applied with respect to the following considerations:  

 Availability of critical metadata: We required the presence of magnitude, 
distance, and site metadata in order to include the record in analysis. 

 Co-located stations: We do not use more than one record when multiple records 
are recorded at the same site (e.g. in a differential array or different sensors at the 
same site). 

 Single-component motions: We only use records having two horizontal-
component recordings. 

 Inappropriate crustal conditions: We exclude recordings from earthquakes 
originating in oceanic crust or in stable continental regions. 

 Soil-structure interaction (SSI): We exclude records thought to not reasonably 
reflect free-field conditions as a result of SSI that potentially significantly affects 
the ground motions at the instrument. The flatfile contains site parameters referred 



6 

to as the Geomatrix 1st letter, which indicate housing information for the 
recording stations as shown in Table 2.1. We recognize that the Geomatrix 1st 
letter criteria are not optimized with respect to the identification of possible SSI 
effects on the recorded ground motions [Stewart 2000], but they are the only 
available information at present. The selected stations are marked in bold (with 
highlighting) in Table 2.1. 

 Proprietary data: Data not publicly available are not used. 

 Problems with record: Based on visual inspection by an NGA Database Working 
Group, we exclude records with S-triggers, second trigger (i.e., two time series 
from the same event due to consecutive triggers), noisy records, or records with 
time step problems. 

 Usable frequency range: We only use a given record within its usable frequency 
range (described further in Section 2.2). 

 An earthquake is only considered if it has at least four recordings. 

 Magnitude and distance-dependent screening criteria (details below and in Figure 
2.1). 

The phase of model development in which the base-case model is regressed (referred to 
as Phase 2 in Chapter 4), applies the following additional criteria: 

 Class 2 events (commonly known as aftershocks; Wooddell and Abrahamson, 
[2012]) were excluded. We did not use Class 2 events because there is some 
concern that the magnitude scaling of these events differs from that of mainshocks 
(Class 1 events) (see Boore and Atkinson [1989] and Atkinson [1993]), although 
others have found aftershock and mainshock motions for similar magnitudes to 
not be significantly different [Douglas and Halldórsson 2010]. After some 
experimentation, we used a Centroid JBR distance of 10 km to differentiate 

between Class 1 and 2 events. Excluding Class 2 events per this criterion cut the 
dataset for the regression substantially. 

 Only recordings at a closest distance to the surface projection of the fault ( JBR ) of 

80 km and under were considered in the actual regression. This limit was found to 
be necessary to achieve reasonable magnitude-scaling results from the regression 
when a magnitude-dependent geometric spreading term is used. However, fixed 
apparent anelastic attenuation coefficients were used in the Phase 2 regressions in 
the hope that the resulting GMPEs would be applicable at greater distances. The 
accuracy of the GMPEs at greater distances is subsequently assessed through 
residual analysis. 
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Table 2.1  Geomatrix 1st letter descriptions of station housing. Station types marked 
in bold were considered for use (some H recordings were used if they 
were from toe locations of small dams). Not all records having the 
indicated Geomatrix letters were used, as they could be excluded on the 
basis of lacking metadata, lacking ground-motion values, event class, etc. 

 

GMX 1st 

Letter
Description

I
Free‐field instrument or instrument shelter.  Instrument is located at or within several feet of the 

ground surface, and not adjacent to any structure.

A
One‐story structure of lightweight construction.  Instrument is located at the lowest level and within 

several feet of the ground surface.

B
Two‐ to four‐story structure of lightweight construction, or tall one‐story warehouse‐type building.  

Instrument is located at the lowest level and within several feet of the ground surface.

A,B

Used for small generally lightweight structures for which we can not determine the number of 

stories from the available information. These sites generally have COSMOS site code 4 which 

defines a reference station described as either a 1‐ or 2‐story, small, light building.  This 

classification is mainly used in the small‐moderate magnitude data set. 

C
One‐ to four‐story structure of lightweight construction.  Instrument is located at the lowest level in 

a basement and below the ground surface.

D
Five or more story structure or heavy construction.  Instrument is located at the lowest level and 

within several feet of the ground surface.

E
Five or more story structure or heavy construction.  Instrument is located at the lowest level in a 

basement and below the ground surface.

F
Structure housing instrument is buried below the ground surface about 1‐2 m, at a shallow depth. 

e.g. tunnel or seismic vault (e.g. U. S. Array design) but shallow embedment (use 'T' for deeper 

embedments or 'V' for deeply embedded vaults, both not considered "free‐field")

I,F
These sites generally have COSMOS site code 3 for which the sensors have been buried/set in 

ground at shallow or near surface depths (e.g. the U. S. Array station design). This classification is 

mainly used in the small‐moderate magnitude western and EUS data sets.

G Structure of light or heavyweight construction, instrument not at lowest level.

H Earth dam (station at toe of embankment or on abutment).

J Concrete Dam (none in database).

K
Near a one‐story structure of lightweight construction. Instrument is located outside on the ground 

surface, within approximately 3 m of the structure.

L
Near a two‐ to four‐story structure of lightweight construction. Instrument is located outside on the 

ground surface, within approximately 6 m of the structure.

M
Near a two‐ to four‐story structure of lightweight construction with basement. Instrument is 

located outside on the ground surface, within approximately 6 m of the structure.

N
Near a five‐ to eight‐story structure. Instrument is located outside on the ground surface, within 

approximately 10 m of the structure.

O
Near a five‐ to eight‐story structure with basement. Instrument is located outside on the ground 

surface, within approximately 10 m of the structure. 

T

Associated with a deep tunnel, e.g. a) L'Aquila ‐ Parking: Pleistocene terrace above a pedestrian 

tunnel on the edge'slope of the terrace, nearby structure to the station is a car park. b) Various 

BDSN stations (e.g. WDC, WENL, YBH).

V Deeply embedded seismic vault

W
Structural response e.g roof, penstock, etc. (e.g. CSMIP 23732, San Bernardino ‐ Devil's Canyon 

Penstock)

Z Embedded in a borehole or missile silo

P Castle of masonry construction, massive 1‐3 stories (used for the L'Aquila earthquake sequence).

Q
Associated with a structure, size of structure is not known (used for the L'Aquila earthquake 

sequence).

S
Associated with a structure and in the basement, size of structure is not known (used for the L'Aquila 

earthquake sequence).

U
Il Moro is on an embankment between two roads and retaining walls  (used for the L'Aquila 

earthquake sequence).
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All phases of model development applied the magnitude and distance-dependent 
screening criteria shown in Figure 2.1. These criteria are intended to minimize potential 
sampling bias, which can occur at large fault distances where ground motions are generally 
weak; at large distances, instruments may only be triggered by stronger-than-average motions. 
The inclusion of such records would lead to a bias in the predicted distance decay of the ground 
motion—there would be a tendency for the predicted ground-motions to decay less rapidly with 
distance than the real data. Boore et al. [1997] (BJF) avoided this bias by excluding data for each 
earthquake beyond the closest distance to an operational, non-triggered station (most of the data 
used by BJF were obtained on triggered analog stations). Unfortunately, information is not 
available in the NGA-West 2 flatfile that would allow us to apply a similar distance cutoff, at 
least for the case of triggered analog recordings. Furthermore, a similar bias can also exist in 
non-triggered digital recordings because of the presence of long-period noise. The criteria in 
Figure 2.1, adapted from correspondence with N. Abrahamson [2012, personal communication], 
provides exclusion criteria that we used to avoid this potential bias. 

 

 

Figure 2.1 Magnitude- and distance-dependent cutoff criteria for using 
records. The symbols in the figure represent judgment-based 
cutoffs of data reliability derived from discussions with N. 
Abrahamson [2012, personal communication]. 

2.2 INTENSITY MEASURES CONSIDERED 

The ground-motion parameters comprising the dependent variables of the GMPEs (also called 
ground-motion intensity measures, IMs) include PGA, PGV, and 5%-damped PSA all for the 
horizontal component. Unlike BA08′, we do not use response variables defined as the GMRotI50 
parameter (effectively the median of all possible geometric means for various non-redundant 
horizontal rotation angles; Boore et al. [2006]) due to confusion among some engineers 
regarding its definition. Rather, we use the RotD50 parameter [Boore 2010], which is the median 
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single-component horizontal ground motion across all non-redundant azimuths—no geometric 
means are used in calculating RotD50. As shown in Figure 3 of Boore [2010], RotD50 is about a 
factor of 1.06 larger than GMRotI50 at a period of 10 sec, with the factor decreasing as period 
decreases; the standard deviation of RotD50 is about a factor of 1.05 larger than for GMRotI50 
at short periods, and increasing to a factor of 1.08 at a period of 10 sec. 

The GMPEs described in this report predict PGA, PGV, and 5%-damped PSA for periods 
between 0.01 sec and 10 sec. We do not include equations for peak ground displacement (PGD), 
which we believe to be too sensitive to the low-cut filters used in the data processing to be a 
stable measure of ground shaking. In addition there is some bias in the PGD values obtained in 
the NGA dataset from records for which the low-cut filtering was not performed as part of the 
NGA project. Appendix C of Boore and Atkinson [2007] contains a short discussion of these 
points. We recommend using response spectra at long periods instead of PGD. 

The record processing procedures applied to all records in the flatfile include selection of 
record-specific corner frequencies to optimize the usable frequency range. The most important 
filter applied to the data is the low-cut filter, which removes low frequency noise. For each 
record the maximum usable period used in our analysis was taken as the inverse of the lowest 
usable frequency given by column EA in the NGA-West 2 flatfile. The lowest usable frequency 
is given by 1 2max( * , * )HP HPfactor f factor f , where factor  usually equals 1.25, and 1HPf  and 

2HPf  are the high-pass (equivalent to low-cut) corner frequencies used in the processing the two 

horizontal components. 

2.3 PREDICTOR VARIABLES 

The predictor variables (independent variables in the regression analysis) in the base model are 
moment magnitude M, RJB distance (closest distance to the surface projection of the fault plane), 
and 30SV  (time-weighted average shear-wave velocity over the top 30 m) for site characterization. 

Secondary parameters for which correction factors are developed through residuals analysis 
include depth to top of rupture Ztor and basin depth 1z  (depth from the ground surface to the 1.0 

km/sec shear-wave horizon). 

We also considered the effect of fault type (i.e., normal, strike-slip, and reverse) and 
event type classified as Class 1 and 2 (CL1 and CL2). Each of these predictor variables was 
taken from the NGA-West 2 database. The fault type was specified by the plunge of the P- and 
T-axes, as shown in Table 2.2. This classification method provides the expected mechanism for 
the stress regime, as based on the orientation of the principal stress axes; it produces results that 
are similar to those based on the rake angle of the fault, but is more diagnostic for cases in which 
one of the two possible fault planes is shallowly dipping [Bommer et al. 2003]. 

 

 

 

 

 



10 

Table 2.2  Fault-type definitions (pl is plunge angle, from horizontal). 

P-axis plunge T-axis plunge Fault Type 

40pl    40pl   Normal 

40pl    40pl   Reverse 

40pl    40pl   Strike-slip 

2.4 DATA DISTRIBUTION 

The distribution of data we used to develop our GMPEs is shown in Figure 2.2 by M and RJB. 
For comparison, the distribution of data used in BA08 is also shown. Many more small 
magnitude data are used in the new GMPEs, as well as a few new large events such as the 2008 
M7.9 Wenchuan, China, earthquake. Note that the data used to develop the base-case GMPE is a 
subset of the data shown in Figure 2.2 for mainshock events and distances under 80 km. The full 
data set shown in the figure was used in the Phase 3 analyses described subsequently. 

The data distribution separated by fault type is shown in Figure 2.3. The distribution of 
the data by fault type, rake angle, and dip angle is shown in Figure 2.4. The widest range of 
available magnitudes is for strike-slip earthquakes, while the narrowest range is for normal-slip 
earthquakes (see Figure 2.3). This suggests that the magnitude scaling will be better determined 
for strike-slip than for normal-slip earthquakes—a problem that we circumvented by using a 
common magnitude scaling for all types of events, as discussed later. 

 

Figure 2.2 Distribution of data used to develop present GMPEs (BSSA13) 
compared to that used for BA08. The distributions for PGA and 
periods less than T = 1.0 sec are virtually ideintical to the 
distribution for T = 1 sec. 
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Figure 2.3(a) Distribution of data, according to fault type, used to develop 
present base-case GMPEs. The data distribution shown here is that 
applied during the Phase 2 analysis. SS=strike-slip; NS=normal-
slip; RS=reverse-slip. 

 

Figure 2.3(b) Distribution of data used in residuals analysis of GMPE (Phase 3). 
Same legend  as Figure 2.3(a).  
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Figure 2.4 Distribution of the data we used in rake-angle and dip-angle space. 
The horizontal gray lines indicate boundaries between fault types 
used by Boore et al. [1997], and the symbols and colors indicate our 
classification based on the plunges of the P- and T-axes (our 
classification scheme is indicated in the legend; see Appendix D in 
BA07). 

The number of recordings and earthquakes used in the base-case (Phase 2) regression 
analysis are shown in Figure 2.5. The numbers are differentiated by fault type. As in BA08, there 
is a rapid decrease in available data for periods longer than several seconds, but there are many 
more data available at the longest periods than were available in BA08. For example, there were 
no normal-slip (NS) records available in BA08 for T=10 sec, whereas 23 recordings were used in 
the analysis described in this report. 

The distribution by 30SV  is given in Figure 2.6. Also shown for convenience are the 

NEHRP site classes, although these were not used in the analyses. There are more rock sites 
(Class B) used for the residuals analysis (120 sites and 1022 recordings) than for the base-case 
model development (58 sites and 230 recordings). 

The distributions of the data over the predictor variable space, as shown in Figures 2.2 to 
2.6, necessarily influence the GMPEs. Note in particular the lack of data at close distances for 
small earthquakes. This means that the near-source ground motions for small events will not be 
constrained by observations. In addition, there are many fewer small magnitude data for long 
periods than for short periods, which means that the small-earthquake magnitude scaling will be 
less well determined for long oscillator periods than for short oscillator periods. 
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The distribution by site class (Figure 2.5) shows that very few data were from Class A 
sites (hard rock). The bulk of the data are from Class B to D sites, which range from firm rock to 
medium stiff soil. More detail can be found in Chapter 5, which provides recommendations to 
use in applying our equations at the limits of the 30SV  range. 

 

 

 

Figure 2.5 Number of events (left) and recordings (right) used to develop 
Phase2 model (top) and Phase 3 residuals analysis (bottom). The 
numbers are differentiated by fault type. SS=strike-slip; NS=normal-
slip; RS=reverse-slip. 
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Figure 2.6 Histogram of VS30 for records used in Phase 2 analysis (top) and 
Phase 3 residuals analysis (bottom), with NEHRP site classes 
indicated by the vertical lines. Only two records had a VS30 value 
(1526 m/sec and 2016 m/sec) corresponding to NEHRP class A, and 
thus the abscissa only extended slightly beyond 1500 m/sec. 
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3 Form of the Equations 

3.1 SOURCE AND PATH TERMS 

We followed the philosophy of BJF97 and BA08 in seeking simple functional forms for our 
GMPEs, with the minimum required number of predictor variables. We call these the “base-case 
GMPEs”. The selection of functional form was heavily guided by subjective inspection of 
nonparametric plots of data; many such plots were produced and studied before commencing the 
regression analysis. Figure 3.1 provides an example, in which the data (for strike-slip, CL1 
events) are overlain to gain a sense of the general behavior. Close inspection of data-amplitude 
plots (such as Figure 3.1, and others not shown here) revealed several key features that the 
functional form must accommodate: magnitude-dependent geometric spreading; an apparent 
anelastic attenuation term to account for curvature in the decay of log ground motions versus log 
distance for distances beyond about 80 km; and strongly nonlinear (and period dependent) 
magnitude dependence of amplitude scaling at a fixed distance, with a tendency toward 
saturation (no magnitude dependence) with increasing magnitude for short periods and close 
distances. (Note: We add the modifier “apparent” to “anelastic attenuation” because the decay 
captured by this term represents an average over the propagation path of a number of processes; 
it includes scattering and other effects in addition to anelasticity.) 

The functional forms of the equations used for the base-case GMPEs are the same as 
those used by BA08, except for the site response equations, which are discussed in Section 3.2. 
We investigate the statistical and practical utility of including adjustment factors involving 
additional predictor variables in an analysis of residuals from the base-case GMPEs in Section 
4.4. 

Our base-case equation for predicting ground motions is:
  

       , , 30 30ln , , , , , ,E P B JB S B S JB n JB SY F mech F R F V R R V    M M M M  (3.1) 

where lnY represents the natural logarithm of a ground-motion IM (PGA, PGV, or PSA); EF , 

,P BF , and ,S BF  represent the source-dependent function (“E” for “event”), path function (“P”), 

and site amplification function (“S”), respectively (subscript ‘B’ indicates base-case model; not 
used for event function since the same equations are used for the base-case and adjusted models). 
The predictor variables are M, mech, RJB, and 30SV , which represent moment magnitude, fault 

type, Joyner-Boore distance (defined as the closest distance to the surface projection of the fault), 
and time-weighted average shear-wave velocity over the top 30 m of the site, respectively; n is 
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the fractional number of standard deviations of a single predicted value of lnY away from the 
mean value of lnY (e.g., 1.5n    would be 1.5 standard deviations smaller than the mean 

value);  is the total standard deviation of the model. The EF , ,P BF , ,S BF , and  functions are 

period dependent. 

The total standard deviation  is partitioned into components that represent between-
event variability () and within-event variability () as follows: 

     2 2
30 30, , , ,JB S JB SR V R V   M M M  (3.2)  

The dependence of  and  terms on the predictor variables of M, RJB, and 30SV  is presented in 

Section 4.4.4. 

The base-case model in Equation (3.1) can be supplemented with the optional predictor 
variables accounting for regional apparent anelastic attenuation and basin depth z1. The regional 
attenuation terms appear in the path function (Section 3.1.2). Parameter z1 enters into the site 
amplification terms as described in Section 3.2. 

 

Figure 3.1 PSA at four periods for strike-slip earthquakes. All amplitudes 
corrected to VS30 = 760 m/sec using the soil correction factors of 
this study. 
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3.1.1 Path and Source Functions 

The base-case path-dependent function is given by: 

       , 1 2 3, ln /M M MP B JB ref ref refF R c c R R c R R        (3.3) 

where 

2 2
JBR R h   (3.4)  

and c1, c2, c3, Mref, Rref, and h are the coefficients determined by regression. 

The event-specific function is given by: 

     
 

2

0 1 2 3 4 5

0 1 2 3 6

, h h h
E

h h

e U e SS e NS e RS e e
F mech

e U e SS e NS e RS e

         
     

M M M M M M
M

M M M M
  (3.5) 

where U, SS, NS, and RS are dummy variables (taking on values of 1 or 0, as indicated in Table 
3.1) used to specify unspecified, strike-slip, normal-slip, and reverse-slip fault types, 
respectively; Mh, the “hinge magnitude” for the shape of the magnitude scaling, is a coefficient 
to be set during the analysis. Unlike in BA08, Mh is period-dependent, as discussed below. The 
determination of the coefficients in the distance and magnitude functions is discussed in Chapter 
4. 

Adjustments to the base-case model for the effects of regional apparent aneleastic 
attenuation and basin depth are made on the basis of residuals analysis described in Section 4.4. 
With these adjustments, the main equation for the GMPE becomes: 

     
 

30 1

30

ln , , , , ,

, ,

E P JB S S JB

n JB S

Y F mech F R region F V R z

R V 

   M , M  M  

M
 (3.6)  

Note that the FE term is unchanged, because residuals analysis did not support the addition of 
terms related to Class 2 events or source depth. We discuss the details of the path-specific 
adjustments in the next subsection; the site function is discussed in Section 3.2. 

Table 3.1  Values of dummy variables for different fault types. 

Fault Type U SS NS RS 

Unspecified 1 0 0 0 

Strike-slip 0 1 0 0 

Normal-slip 0 0 1 0 

Reverse-slip 0 0 0 1 
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3.1.2 Adjustments to Path Function  

The adjusted path-dependent function is given in Equation (3.7), in which case 3c  can be 

region-dependent. 

     , 3, ,M, MP JB P B JB refF R region F R c R R     (3.7)  

The tables of coefficients for our GMPEs include 3c  and 3c , with a different column of 3c  

coefficients for each region.  

3.2 SITE TERM 

The nonlinear site amplification component of the base-case GMPE (introduced in Equation 3.1) 
is comprised of two additive terms representing 30SV -scaling and nonlinearity as follows:  

   , ln lnS B lin nlF F F   (3.8) 

where FS,B represents site amplification in natural logarithmic units; Flin represents the linear 
component of site amplification, which is dependent on 30SV ; and Fnl represents the nonlinear 

component of site amplification, which depends on 30SV  and the amplitude of shaking on 

reference rock (taken as 30SV  = 760 m/sec). 

The linear component of the model (Flin) describes the scaling of ground motion with 

30SV  for linear soil response conditions (i.e., small strains) as follows:  

 

30
30

30

ln

ln

ln

S
S c

ref

lin

c
S c

ref

V
c V V

V
F

V
c V V

V

  
      

 
     

  (3.9) 

where c describes the 30SV -scaling in the model, cV  is the limiting velocity beyond which ground 

motions no longer scale with 30SV , and refV  is the site condition for which the amplification is 

unity (taken as 760 m/sec). Parameters c and cV  are period-dependent and are determined by 

regression as described in Section 4.2. Parameter c may be region-dependent, especially at long 
periods, but as discussed later, we do not allow c to be regionally dependent in this report.  

The nonlinear term in the site amplification model ( nlF ) modifies the linear site 

amplification so as to decrease amplification for strong shaking levels. The nlF  term is 

constructed so as to produce no change relative to the linear term for low rPGA  levels. The 

functional form for the nlF  term is as follows:  
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  






 


3

3
21 lnln

f

fPGA
ffF r

nl  (3.10) 

where 1f , 2f , and 3f  are coefficients in the model and rPGA  is the median peak horizontal 

acceleration for reference rock (taken as 30SV =760 m/sec). We take 1 0.0f   to force ln( )nlF to 

zero for PGAr << f3. We set 3 0.1gf  , whereas 2f  is a function of period and 30SV  as follows:  

      2 4 5 30 5exp min ,760 360 exp 760 360sf f f V f       (3.11) 

This functional form for 2f  is the same as that used by Chiou and Youngs [2008]. 

In order to apply the site amplification function, we must first evaluate rPGA  for 

applicable magnitude and distance using Equation (3.1) for rock site conditions. Peak 
acceleration is used to represent the intensity of rock shaking in lieu of PSA at the period of 
interest. We are aware of the convenience of using PSA, but we retain the use of PGA for 
physical reasons. In particular, PGA is directly related to soil shear stress, which in turn is related 
to shear strain in an equivalent-linear sense. 

The adjusted site amplification model used with Equation (3.6) is formulated as:  

     30 1 , 30 1 1 , , , , ,S S JB S B S JB ZF V R z F V R F z  M M  (3.12) 

where 
1z

F  is an adjustment to the base model to consider the effects of basin depth on ground-

motion amplitude. This adjustment is based on residuals analysis described in Section 4.4. It is 
cast as follows:  

 1 1 6 1 1 7 6

7 1 7 6

0 0.65

0.65 &

0.65 &
Z

T

F z f z T z f f

f T z f f
   




  
    (3.13) 

where 6f  and 7f  are estimated as described in Section 4.4, and the ratio 7 6f f  is in units of km. 

The parameter 1z  is the difference between basin depth 1z  and the prediction of an empirical 

model relating 1z  to 30SV  (given in Equation 4.9; Equation 4.9a for California, and Equation 4.9b 

for Japan). The adjustment factor 
1z

F  is an optional feature of the model. For many applications 

1z  may be unknown; in such cases we recommend using the default value of 1 0.0z  , which 

turns off this adjustment factor (i.e., 
1

0zF  ). We believe this to be a reasonable default 

condition, because the remaining elements of the model are ‘centered’ on a condition of no 
1z

F  

correction, as shown in Section 4.4.  
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4 Model Development 

4.1 THREE-PHASE MODEL BUILDING PROCESS 

In this chapter we describe the procedures used to build the GMPE. Model building occurred in 
three phases, which are described in detail in the following sections.  

In Phase 1, we analyze subsets of data and simulation results to evaluate elements of the 
base-case model that would not be well-constrained if left as free parameters in the regression. 
Model elements evaluated in this way are 3c  (for apparent anelastic attenuation) and SF  (for site 

response). Phase 2 comprises the main regression for the base-case model shown in Equation 
(3.1). Phase 3 consists of mixed-effects regression analysis to check model performance and to 
develop adjustment factors for various secondary factors beyond M, mech, JBR , and 30SV . The 

standard deviation model is also developed from Phase 3 analysis.  

4.2 PHASE 1: SETTING OF FIXED PARAMETERS 

There are several parameters that we “pre-set” before beginning the regression in order to ensure 
its stability and force behavior that we wish to constrain. In this section, we describe the 
parameters that are pre-set within the Phase 1 regression. 

4.2.1 Apparent Anelastic Attenuation 

Due to trade-offs between apparent geometric and apparent anelastic attenuation, regression 
cannot simultaneously determine both robustly; this arises because we cannot distinguish 
between the slope and the curvature of the distance decay from data with significant scatter. In 
this section, we describe regressions undertaken to constrain the apparent anelastic attenuation 
term, 3c , as part of Phase 1 model building. 

In BA08, 3c  was constrained using four well-recorded small events (M4.3–6.0) in 

California. Much of the data used in that analysis was not contained in the NGA-West 1 flatfile. 
For the present analysis, we used the large inventory of data from small events ( 5.0M ) in 
California that are now available as part of the NGA-West 2 flatfile (this was a larger subset of 
data than used to derive the Phase 2 base-case GMPEs). Low-magnitude earthquakes were 
chosen to minimize possible complexities in the data associated with possible finite fault effects 
and nonlinear site effects. Using the model described in Section 4.2.2, we apply a site adjustment 
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to correct each observation to a reference 30SV  of 760 m/sec. The data were then grouped into 

magnitude bins 0.5 in width (magnitude units), as shown in Figure 4.1, and regressed using an 
equation similar to Equation (3.3) but without the M-dependent geometric spreading term: 

   1 3ln lnij i ref refY c R R c R R      (4.1)  

where i  is the event term for event i, j indicates a particular observation (and is implicitly 

contained in the distance R), 1.0 kmrefR  , and 1c  and 3c  are parameters fixed by the regression. 

The 1c  term represents the apparent geometric spreading for the magnitude bin; it would be 

expected to change with magnitude. The prime () is used on the event term and apparent 
geometric spreading term to indicate these are associated with the present analyses of binned 
data and are distinct from the Phase 2 regressions. 

 

 

Figure 4.1 Binned groups of California data in NGA-West 2 flatfile used for 
constraint of apparent anelastic attenuation term. The data for the M 
5-5.5 bin was not used due to poor sampling for RJB < 80 km. 

Examples of the distance dependence for several ground-motion IMs for the M4–4.5 bin 
are given in Figure 4.2. Note that the data at high frequencies (e.g., PGA) exhibit substantial 
curvature (indicating negative 3c ) whereas the data for medium to long periods (e.g., PSA at 1.0 

sec) exhibit negligible curvature. The resulting values of 1c  and 3c  are plotted for the various M 

bins in Figure 4.3. As expected, the 1c  terms are all negative, indicating attenuation with 

distance, with the absolute value decreasing (less decay) as magnitude increases. Conversely, the 



23 

3c  terms are relatively independent of M, which is expected if they represent processes other 

than geometric spreading, such as apparent anelastic attenuation. The selected coefficients for 3c  

are also shown in Figure 4.3. The applicability of these coefficients, which are based on 
California data, for other regions is examined in Section 4.4. Figure 4.4 compares the selected 
coefficients with those used in BA08. The 3c  terms are roughly similar between the two models, 

but the BSSA 3c  values are based on many more data. 

 
 

 

Figure 4.2 California data and fit curve [Equation (4.1)] for M44.5 events. Data 
corrected to VS30=760 m/sec. Results show strong effects of 
apparent anelastic attenuation at high frequencies and negligible 
effects for T ≥ 1 sec. 
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Figure 4.3 Trends of apparent geometric spreading (c1′) and apparent anelastic 
attenuation (c3) terms with period and magnitude. Results show 
significant M-dependence for c1′ but not for c3. 

 

Figure 4.4 Apparent anelastic attenuation terms (c3) used in present model 
(BSSA13) and in BA08. 
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4.2.2 Site Response 

The model equations are as given in Section 3.2 with the ln( )linF  term representing 30SV -scaling 

and the ln( )nlF  term representing nonlinear site response. We first constrain the nonlinear 

portion of the site response to enable robust determination of the linear part of the model. The 
nonlinear site response model is described briefly here, with further details given in Stewart and 
Seyhan [2013] (SS13). In this section, we briefly present the process by which the site factors 
were developed.  

Model development occurs in two stages, the first to develop the nonlinear model and the 
second to develop the 30SV -scaling model. (Note: both of these two “stages” are substeps within 

the Phase 1 GMPE model building framework.) 

Stage 1 Analysis of Site Response 

The Stage 1 analyses develop estimates of parameter 2f  (see Equation 3.10) on the basis 

of available simulations and from the interpretation of NGA-West 2 data. The considered 
simulations are of one-dimensional ground response for many site profiles and input motions 
[Kamai et al. 2013; hereafter KEA13]. Our synthesis of the results from KEA13, and the manner 
by which 2f  values were extracted, is described in Section 4.3 of SS13 and is not repeated here. 

The NGA-West 2 data analysis begins with the computation of rock residuals for each 
recording in the selected data set:  

 lnij ij r iij
R Y        (4.2) 

where ijR  is the rock residual, ijY  is the jth observed (recorded) value of the ground-motion IM, 

r  is the mean (in natural log units) of a GMPE for rock conditions, and i  is the event term for 

earthquake i. The rock site condition used in the computations is VS30 = 760 m/sec. Regarding the 
GMPE used to compute r , our analyses were performed iteratively with respect to the 

development of the Phase 2 GMPE. Essentially, we began with an early (November 2012) 
version of the Phase 2 GMPE, from which site terms were regressed. Those site terms were then 
used in a subsequent Phase 2 GMPE derivation, and so on. The final set of site terms are 
consistent with the base-case GMPE described in Section 4.3 and include adjustments for 
regional apparent anelastic attenuation in high-Q and low-Q regions described in Section 4.4. In 
these analyses, we consider a much broader set of distances per the data selection criteria shown 
in Figure 2.1. 

To investigate nonlinearity, we compile values of ijR  within bins of 30SV  (< 200, 200–

310, 310–520, 520–760, > 760 m/sec), which are plotted against rPGA  (median peak 

acceleration on rock) in Figure 4.5. We use least-squares regression to fit to the data an 
expression of the form given in Equation (3.10) with 3f  fixed at 0.1g (justification for this is 

given in Chapter 4 of SS13) to provide estimates of 1f  and 2f . The results illustrate similar 

trends between the simulations and the data. 
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Figure 4.6 shows values of the nonlinear parameter 2f  from data analysis and 

simulations. Also shown are slopes evaluated by Afacan et al. [2013] (using a fitting procedure 
similar to that described above), based on centrifuge modeling of soft clays. The simulation-
based slopes are slightly steeper than the data-based slopes at short periods (T<0.5 sec) but 
flatter (and even positive) for longer periods (T > 1.0 sec). The slopes derived from centrifuge 
modeling (at 100120 m/sec) are similar to those at the lower limit of 30SV  (VS30 = 150200 

m/sec) from simulations and data analysis for T ≤ 1.0 sec. This suggests that a minimum floor on 
nonlinearity may be present for very soft sites, although such a feature is not presently included 
in our model, which we consider applicable for VS30 = 150 m/sec. 

The nonlinear term 2f  is parameterized relative to 30SV  following the functional form of 

Chiou and Youngs [2008] as given in Equation (3.11). Parameter 4f  controls the overall level of 

nonlinearity for soft soils. Parameter 5f  controls the shape of the 30SV  dependency of the slope 

2f . These parameters are plotted against period in Figure 4.7, along with the corresponding 

values used in CY08 (for comparison). 
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Figure 4.5 Variation of site amplification factors with PGAr within VS30 bins 
using full data set. Discrete symbols are intra-event residuals [Rij, 
Equation (4.2)], line is nonlinear fit from Equation (3.10). 
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Figure 4.6 Variation of slope f2 with VS30 from NGA-West 2 data, centrifuge test 
data of AEA13, KEA13 simulation results (using modulus reduction 
curves labeled PEN for Peninsular range and EPRI), and site models 
in CB08 and CY08 GMPEs. The proposed model for this study is 
also given. 
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Figure 4.7 Parameters f4 and f5 for nonlinear site amplification model as 
proposed by Chiou and Youngs [2008] (CY08) and revised for 
present study. Parameter f4 and f5 as used here were denoted 2 and 
3 by CY08. We adopted CY08 values of f5.  

Stage 2 Analysis of Site Response 

We begin with residuals ijR  [Equation (4.2)], which are adjusted by removing nonlinear 

effects as predicted by the nlF  model [Equation (3.10)]: 

 nlji
lin
k FRR ln,   (4.3) 

The modified residual, lin
kR , is intended to apply for linear (small strain) conditions. Subscript k 

in lin
kR  is an index spanning across all available data points; we drop the event and within-event 

subscripts (i and j, respectively) because of the removal of event terms in the computation of ijR , 

which allows all data points to be weighted equally. The residuals for the full (combined) data 
set and individual regions are then regressed in a least-squares sense against 30SV  [using Equation 

(3.9)] to establish the c parameter for 30S cV V . Results for several periods and regions are 

plotted in Figure 4.8. Slopes are generally negative, which is expected, as this indicates stronger 
ground motion for softer soils. Slopes also tend to increase with period over the range 
considered, which is also consistent with past experience (e.g., BJF97 and the 2008 NGA 
models). 

Note that the results from California in Figure 4.8 indicate a break in the 30SV  scaling for 

fast velocities and longer periods (as seen in the results for T = 1.0 sec). It is this break in slope 
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that motivated the use of the corner velocity cV  in the linear portion of the site amplification 

function [Equation (3.9)]. 

 

 

Figure 4.8a Variation of linearized site amplification [Equation (4.3)] with VS30 for 
combined data set and subset from California. Red line indicates 
model prediction, black dots are binned means and their 95% 
confidence intervals. 
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Figure 4.8b Variation of linearized site amplification [Equation (4.3)] with VS30 for 
subset of data from Japan and Taiwan. 

We plot in Figure 4.9 the slope parameter c for 30SV -scaling as a function of spectral 

period for the combined data set and various regions (California, Japan, Taiwan, and other). 
Additional regions are considered in SS13. Since the regression for c is least squares, all data 
points are weighted equally. Accordingly, the ‘combined’ result is influenced strongly by regions 
with large amounts of data relative to those with fewer data (weights are listed in Figure 4.9). We 
find relatively consistent values of c for all regions, especially at short periods. As shown in 
Section 4.2 of SS13, strong regional variations in c could be found if the data were interpreted 
differently. In particular, if a data cut-off distance of 80 km is applied (i.e., to avoid the use of 
recordings having potentially significant effects of anelastic attenuation), c values vary strongly 
between regions. Similar sensitivites of the 30SV  slope parameter have been observed previously 

by Chiou and Youngs [2012]. 
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Figure 4.9 Variation of slope (c) within spectral periods for combined data set 
and various regions. Data weights refer to the relative contributions 
to the ‘combined’ slope. 

At this stage, we are not recommending a regional c term for 30SV -scaling. However, we 

recognize that: (i) the variability of c terms is relatively high, especially at longer periods; and 
(ii) the lack of a dependence of c on region is difficult to reconcile with the findings of previous 
site-response studies pointing to the strong amplification of sites in Japan at short periods (e.g., 
Atkinson and Casey [2003]; Ghofrani et al. [2013]; Stewart et al. 2013; and Anderson et al. 
[2013]). Thus, we may return to this issue of regionalization of the site-response term at a later 
stage. 
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4.3 PHASE 2: TWO-STAGE REGRESSIONS 

4.3.1 Two Stage Methodology 

The selected ground motion IMs of PGA, PGV, and PSA from the NGA-West 2 flatfile were 
regressed against predictor variables using Equation (3.1) to determine ,P BF  and EF , after first 

adjusting all observations to the reference velocity of 760 m/sec, using the site amplification 
model given in Section 3.2. This allows us to perform the regression analyses for the case where 

0SF  . The analyses were performed using the two-stage regression discussed by Joyner and 

Boore [1993, 1994]. In Stage 1, we evaluate the ,P BF  component of the model, the average 

motions at the reference distance refR  (which are used in Stage 2), and the within-event aleatory 

variability,  . In Stage 2, we evaluate the EF  component of the model and the between-event 

variability, τ. All regressions were done period-by-period without smoothing, although some of 
the constrained coefficients were smoothed. 

The coefficients for rPGA  used in the nonlinear site amplification function were 

determined by an iterative series of regressions; this is a refinement relative to the BA08 
methodology. We started with assumed coefficients to determine rPGA , then after Stage 1 

regression we adjusted them to match the coefficients obtained in the regression for PGA. 
Typically around 3 to 6 iterations were required before the rPGA  coefficients had little change 

between iterations. The iteration allows us to ensure that the base-case GMPE for PGA is the 
same as that used in determining the nonlinear site amplification adjustments (in BA08 the 
regression equation for PGA did not exactly match that used to determine rPGA ). 

All computations were performed using Fortran programs developed by the first author, 
in some cases incorporating legacy code from programs and subroutines written by W. B. 
Joyner. 

4.3.2 Stage 1: Distance Dependence 

The distance dependence is determined in the Stage 1 regression, where the dependent ground-
motion IMs are PGA, PGV or PSA at a selected period, in each case adjusted to the reference 
velocity of 760 m/s by subtracting SF  as defined in Equation (3.8) from the ln Y  observed 

ground-motion IM. The adjusted ground-motion IMs for our selected subset of the NGA dataset 
(described in Section 2.1) are regressed against distance using Equation (4.4), which is the same 

as Equation (3.3) but with event-term variables  ln
j

Y  added to represent the average 

observations for earthquake j adjusted to RJB = Rref: 

         , 1 2 3, ln ln /M M MP B JB ref ref ref
j

F R Y c c R R c R R         (4.4) 

In Equation (4.4),  ln
j

Y  is shorthand for the sum 
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     1 21 2
ln ln ln NENE

Y Y Y      (4.5) 

where j is a dummy variable that equals 1 for event j and zero otherwise, and NE  is the number 
of earthquakes. 

In this regression, the apparent anelastic attenuation term c3 is pre-set using the values 
obtained from the Phase 1 study, as described in Section 4.2.1. We consider this to be a 
reasonable initial approach that is tested later by examining residual trends in Section 4.4 for the 
data set as a whole and subsets of data organized by region. 

With 3c  constrained, we performed the regression indicated in Equation (4.4) to estimate 

c1, c2, and h, as well as  ln
j

Y  for each earthquake. All data passing the exclusion criteria 

discussed in Section 2.1 were used, to a maximum distance of RJB = 80 km. The c1 coefficient is 
the apparent geometric spreading rate (slope) for an event of M = Mref, while c2 modifies the 
slope for M greater or smaller than Mref (i.e., magnitude-dependent geometric spreading). A 
preliminary estimate of within-event aleatory uncertainty   is given by the standard deviation of 
the residuals from the Stage 1 regression. 

In the regressions, we assigned values for: (i) the reference distance, Rref, at which near-
source predictions are pegged, and (ii) the reference magnitude, Mref, to which the magnitude 
dependence of the geometric spreading is referenced. The assigned values for these reference 
values are arbitrary, and are largely a matter of convenience. For Mref, we chose a value of 4.5, 
since this is the approximate magnitude of much of the data used to determine the fixed c3 

coefficients. The consequence of this choice is that the magnitude dependence of the slope will 
be referenced to that observed for small events. We use Rref = 1 km, which is convenient because 
the curves describing the distance dependence pivot around R = Rref. The geometric spreading for 
larger magnitudes is flatter than for smaller magnitudes, which can lead to overlap of IM versus 
RJB curves at distances less than the pivot distance. Thus, the selection of 1kmrefR   prevents 

unrealistic “crossing” of the IM versus RJB curves at close distances. (Note: any value of Rref<h 
(minimized over all periods) would prevent undesirable overlapping of prediction curves near the 
source.)  

We encountered a difficulty in the regression having to do with coupling between the 
Stage 1 and 2 regressions, which is a consequence of the magnitude-dependent apparent 
geometric spreading. In our initial regressions, in which we fixed 3c  but used data to RJB=400 

km (as in BA08), we found the Stage 2 magnitude scaling to be very different from that obtained 
by BA08. Following the advice of K. Campbell [2012, personal communication], we redid the 
regressions using data for RJB ≤ 80 km (still including fixed values of c3). This stabilized the 
results and provided better-behaved magnitude scaling. Hence, the rationale for using just the 
data at RJB < 80 km in the Phase 2 regression is that it provides for relatively robust magnitude 
scaling. However, we recognize that the GMPE must perform reasonably well at greater 
distances to be useful for general seismic hazard applications. Thus we address the applicability 
of the attenuation for larger distances from residuals analysis. 
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4.3.3 Stage 2: Magnitude and Fault-Type Dependence 

The  ln
j

Y  terms from the Stage 1 regression (subsequently referred to as lnY ) were used in a 

weighted Stage 2 regression to evaluate the magnitude scaling of ground-motion IMs. As 
described in Section 2.1, only events with more than four observations with RJB ≤ 80 km were 
used in the regression. 

The functional form selected for magnitude scaling matches that used in BA08, but we 
made three significant changes to the BA08 procedure, which we discuss in greater detail below:  

1. Based on examination of plots of lnY  versus M, we determined that the hinge 
magnitude Mh  should increase with T, whereas it had been fixed at 6.75 in BA08. 

2. In BA08 the magnitude regression initially used a single quadratic. If the peak of the 
quadratic occurred at 8.5M , the regression was performed a second time using two 
polynomials hinged at Mh  (quadratic for M ≤ Mh , linear for M > Mh ). If the slope of 
the linear function was negative, the regression was performed a third time, with the 
constraint that the slope of the linear function is zero. Typically the magnitude 
function was made up of two polynomials for periods less than about 2 sec, and one 
polynomial for greater periods. When we used this procedure with the NGA-West 2 
flatfile, we found that when plotted versus period the switch from two polynomials to 
one polynomial led to a discontinuity in PSA for large magnitudes, as illustrated in 
Figure 4.10. We found that the discontinuities could be removed by always using two 
polynomials. 

3. We removed the requirement imposed by BA08 that the slope of the magnitude 
scaling function [e6 in Equation (3.5b)] for M Mh  must be greater than zero. 
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Figure 4.10 PSA from GMPEs developed during an early stage of our analysis. 
“2PO” and ‘2PM” stand for “two polynomials optional” and “two 
polynomials mandatory”. 

Choice of Mh: 

Plots of ln Y  against M were evaluated independently by the three senior members of the 
developer team for various ground-motion IMs, and each member independently picked values 
of Mh  to be used in Stage 2 regressions. Selections of Mh  become quite large for long periods, 
and formal regression using the larger values of Mh  often found small or even negative values of 

6e  for these long-period IMs. This is contrary to general seismological theory, as illustrated by 

the prediction of simulations regarding magnitude scaling shown in Figure 4.11 (and supported 
by the trends in the sparse large magnitude data), and is a consequence of the few data available 
to constrain the slope of the linear function for M Mh  in a formal regression fit to the data. We 

experimented with regressions using different values of Mh roughly consistent with plots of ln Y

against M and found that we could ensure robust scaling on both sides of the hinge, while 
allowing appropriate scaling behavior to be data-driven at all periods, by letting the maximum 
Mh  be 6.2. This is a compromise between using more complex equations for the magnitude 
scaling and using something that is easy to implement. The dependence of Mh  on T that we 
adopted is shown in Figure 4.12; it allows a robust determination of the slope of the linear 
function and provides reasonable agreement with the behavior seen in plots of ln Y against M. 
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Figure 4.11 Theoretical magnitude scaling, normalized to the value at M8. The 
simulations were done using the SMSIM program [Boore 2005], for 
the Atkinson and Silva [2000] source model, for a closest distance 
of 0.01 km, modified by Atkinson and Silva’s [2000] finite-fault 
factor (Equation 4 in AS00 and discussion below that equation). 
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Figure 4.12 Period variation of hinge magnitude Mh . The original function was 

tripartite, with hinges at periods of 0.1 and 0.3 sec; we smoothed 
this slightly to round off the abrupt changes in slope at these 
periods. 

Magnitude Scaling for M>Mh: 

We do not constrain the slope of the linear function for M Mh  (parameter e6) to be 

positive (this is a change from BA08). The NGA-West 2 data strongly support a decrease in lnY  
with M for M Mh at short periods. It is important to realize that even though we allow 

oversaturation (i.e., e6 < 0) of lnY , the resulting GMPEs do not show oversaturation of PSA for 
large magnitudes and close distances, as we illustrate below. The explanation of this apparent 
inconsistency is that the lnY  values are the averages of the observed motions adjusted to a 
reference distance of 1 km [see Equation 3.5)]. The definition of R is such that it can never be 
less than the pseudo-depth h, even when 0 kmJBR  . As h is always greater than 3.9 km, the 

apparent decrease of motion from the magnitude scaling in Equation (3.5) is more than 
compensated for by the magnitude-dependent apparent geometrical spreading in Equation (3.3). 
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Fault-Type Dependence: 

In BA08 the Stage 2 regression was performed several times to compute the fault-type 
coefficients. In the first regression, all lnY  data were regressed against M, and then in the second 
regression this M-dependence was fixed and offsets of lnY  for the fault types SS, NS, and RS 
were determined. We felt that this procedure was too convoluted and could lead to biases, 
depending on the mix of SS, NS, and RS events. In the current work, we compute the magnitude 
scaling coefficients and the fault-type coefficients simultaneously. The coefficient for 
unspecified fault type ( 0e ) is then computed as a weighted average of the SS, NS, and RS 

coefficients ( 1e , 2e , and 3e ). The weights used are 0.58, 0.12, and 0.30 for SS, NS, and RS 

events, respectively. These weights are the relative fractions of all events that we use for 1.0 sec 
PSA with M ≥ 5.0 (the fraction of SS events is larger for smaller events, but we felt that our 
weights should reflect magnitudes of engineering interest). 

4.3.4 Smoothing of Coefficients 

The coefficients obtained from the regression analysis (for which each period was analyzed 
separately) are generally smooth over a wide range of magnitudes and periods, as shown in 
Figure 4.13a. There is some jaggedness, however, for large and small magnitudes at periods 
exceeding about 2 sec. This jaggedness is probably due to the decrease in number of recordings 
available at longer periods (as shown in Figure 2.5). 

Because the jaggedness in coefficients leads to undesirable jaggedness in spectra, we 
removed it by smoothing the regression coefficients. This was done in a series of steps described 
here. We first smoothed the pseudo-depth variable h. As shown in Figure 4.13b, a simple 
running mean did not produce enough smoothing of the variation over a narrow period range 
centered at about 2.5 sec. We are not sure what is controlling this variation, but we know of no 
physical reason for it to occur. For that reason, we smoothed through the oscillation by eye, with 
the result shown by the red line in Figure 4.13b. 
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Figure 4.13a Period variation of model parameters shown in unsmoothed 
(discrete symbols) and smoothed (red line) forms. 
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Figure 4.13b Period variation of pseudo-depth h with smoothing. 

We then re-ran the base-case regression, constraining the values of h at the smoothed 
values shown in Figure 4.13b (we also constrained Mh, using slightly smoothed values that 
removed the discontinuity in slope as a function of period, but the effect of using smoothed 
versus unsmoothed Mh was imperceptible). The next step was to interpolate the coefficients to 
periods with constant log spacing of 0.02 log units (the periods in the flatfile do not have 
constant spacing in log period). These interpolated values were smoothed using a running mean 
of 3, 5, 7, 9, and 11 points. We determined subjectively that the 11-point running mean provided 
the best smoothing. These 11-point smoothed values of coefficients were taken for use in the 
base-case GMPEs (when the periods used in the smoothing function do not align perfectly with 
the GMPE periods, interpolation was used to sample at the GMPE periods). Figure 4.13a shows 
the unsmoothed and smoothed coefficients based on the 14 March 2013 flatfile. 

4.3.5 Regression Results  

Magnitude-Scaling: 

Figure 4.14 shows results of Stage 2 regressions of lnY  against M  for various periods. 
The portion of this plot for M Mh is of particular importance for practical application in the 
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western U.S. and other active crustal regions. The largest M events in the data set are two 7.9M  
earthquakes (Denali, Alaska, and Wenchuan, China) that have relatively low lnY  values. By 
virtue of having the largest value on the abscissa, they influence slope parameter 6e  to a larger 

extent than individual events at smaller M . Two effects in particular were examined carefully 
with respect to the scaling of lnY  against M  for M Mh : (1) oversaturation of lnY  at short 

periods; and (2) sensitivity of 6e  to the Wenchuan event at long periods, due to that earthquake 

being the sole data source for T > 7.5 sec (the Denali data do not meet the low-cut filter criteria 
in a sufficient number of recordings for the event to be used at such periods). 

With regard to the oversaturation issue, Figure 4.14 shows results with and without the 
constraint that the coefficient 6e  be ≥ 0; this examines the importance of allowing oversaturation 

of lnY  for M Mh . Differences only occur at short periods, and appear to be relatively small. 
However, as shown in Figure 4.15, the difference in the predicted motions can be substantial for 
large magnitudes. The maximum difference in Y from the two sets of GMPEs (with and without 
allowing oversaturation of the magnitude scaling term) is a factor of 1.34 for 8.5M . This 
difference decreases as magnitude decreases. We have opted to allow the data to determine the 
magnitude scaling, as these are, after all, empirical GMPEs; furthermore, simulation-based 
studies have provided some support for oversaturation at high frequencies [Schmedes and 
Archuleta 2008]. The issue of whether the scaling observed in the data is physically-justified, or 
may be possibly due to some limitations in the database, is a subject that should be pursued in 
further studies. In the context of the present study, it should be acknowledged that uncertainty in 
the appropriate magnitude scaling at large magnitudes is a source of epistemic uncertainty in the 
development and application of empirical GMPEs. 
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Figure 4.14 Y data points for each event and fit of M-scaling function in 
Equation (3.5). (This figure is based on an earlier version of the 
flatfile than the one we used for the final equations; it is used here 

because the anaysis for constrained 6e  was not done for the recent 

flatfile; the Y values and curves for unconstrained 6e  for the 

analysis using the most recent flatfile are almost identical to those 
shown here.) 
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Figure 4.15 Variation of median predicted PGA versus distance for FM function 
with and without constraint on term e6. VS30 = 760 m/sec. 

At longer spectral periods, oversaturation does not occur, but as mentioned previously the 
results are sensitive to a single earthquake ( 7.9M  Wenchuan, China) for T > 6 sec. To examine 
whether the magnitude scaling at long periods produced by regressions is reasonable, we repeat 
the regression excluding Wenchuan to examine its impact. Figure 4.16 shows the results of these 
two regressions for two example periods. The model predictions are plotted for RJB = 70 km and 
are compared to available data for RJB = 50100 km as well as simulation results. The results 
show that the effect of using the Wenchuan data is to reduce e6. However, the resulting M 
scaling is more consistent with simulations than if Wenchuan is excluded. Accordingly, we 
chose to retain the Wenchuan mainshock data for our base-case regressions at all periods. 

Finally, we note from Figure 4.14 that there is a positive outlier at 3.8M . We reran the 
base-case regression without data from this event, but the predictions of PSA from the two sets 
of GMPE coefficients differed by at most 1% for small magnitudes and short periods. This event 
(having earthquake number 327) was retained for analysis of the final coefficients. 
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Figure 4.16 Variation of PSA at T = 6.0 and 1.0 sec with M from Stage 2 
regressions with and without inclusion of the Wenchuan event. 
GMPE medians shown for RJB = 70 km. Site-corrected data for RJB = 
50100 km are shown along with simulation results (simulation 
procedure and parameter selection protocols are as given in Figure 
4.11 caption). 

GMPE Trends: 

To illustrate the predictions of our GMPEs, we plot median Y for a range of M  and RJB 
in Figure 4.17a and predicted spectra (median Y versus T) in Figure 4.17b. The spectra are drawn 
using both the unsmoothed and the smoothed coefficients, which illustrates the effectiveness of 
the smoothing. 
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Figure 4.17a Variation of median predicted IMs versus distance for M 4, 5, 6, 7, 
and 8 strike-slip earthquakes and VS30 = 760 m/sec. 
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Figure 4.17b  Variation of median predicted PSA versus period (T) for M 3, 4, 5, 6, 
7, and 8 strike-slip earthquakes and VS30 = 200 m/sec and VS30 = 760 
m/sec. 

Some well-known features of ground-motion variations with the considered predictor 
variables are shown in Figures 4.17a and 4.17b. From the PGA plot in Figure 4.17a, we see steep 
M-scaling of the motions for M < 6, as shown by the spread of the medians, but very little 
sensitivity at larger M. Conversely, for long-period PSA, we see substantial M-scaling over the 
full range of magnitudes. The distance attenuation trends in Figure 4.17a indicate amplitude-
saturation, with amplitudes being nearly constant (flat) for distances RJB<~35km. 

For RJB<~10km, the distance attenuation transitions to a nearly linear slope for periods 
above about 1 sec while for shorter periods there is significant downward curvature in the lines. 
This curvature results in apparent anelastic attenuation, which is more important at short periods 
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than at long periods. For any period the curves steepen as magnitude decreases (a result of the 
magnitude-dependent geometrical spreading factor). 

In Figure 4.17b, many of these features are illustrated by the relative positions of the 
spectra. This figure is useful in that it shows the magnitude dependence of the predominant 
period, defined as the period of the peak in the spectrum. For rock-like sites, the predominant 
period ranges from approximately 0.1 sec for 3M  to 0.2 sec for > 6M . Note that for softer site 
conditions, corresponding to deeper sites, the predominant period shifts towards longer periods 
of approximately 0.40.5 sec due to site response effects. 

4.4 PHASE 3: MIXED EFFECTS RESIDUALS ANALYSIS AND MODEL 
REFINEMENT 

In this section, we perform mixed effects residuals analyses having two purposes: (1) to check 
that the base-case GMPEs developed through the Phase 1 and 2 analyses are not biased with 
respect to M , RJB, or site-scaling; and (2) to examine trends of residuals against parameters not 
considered in the Phase 1 and 2 analyses, including regional effects. We also consider a broader 
set of data. Recall that data were excluded from our Phase 2 analyses based on a number of 
criteria. For example, no aftershock recordings were used, because there is some concern that the 
spectral scaling of aftershocks differs from mainshocks (see Boore and Atkinson [1989] and 
Atkinson [1993]. In this section, we consider the influence of additional factors/data not 
considered in Phase 2, using residual analysis. The equations were adjusted on the basis of these 
residuals analyses, as described previously in Chapter 3. 

4.4.1 Methodology 

The methodology for the analysis of residuals employed here is similar to that described in 
Scasserra et al. [2009]. We begin by evaluating residuals between the data and the base case 
GMPE described in Chapter 3 (without the adjustments described in Section 3.1.2). Residuals are 
calculated as:  

 30ln , ,ij ij ij JB SR Y R V  M  (4.6) 

Index i refers to the earthquake event and index j refers to the recording within event i. Hence, Rij 
is the residual of data from recording j in event i as calculated using the base case GMPE. Term 
Yij represents the RotD50 ground-motion IM [Boore 2010] computed from recording j. Term ij   

( M , RJB, VS30) represents the GMPE median in natural log units. 

The analysis of residuals with respect to M , distance, and site parameters requires 
between-event variations to be separated from within-event variations. This is accomplished by 
performing a mixed effects regression [Abrahamson and Youngs 1992] of residuals according to 
the following function:  

ij k i ijR c      (4.7) 
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where ck represents a mean offset (or bias) of the data relative to the GMPE (i.e., kc R ), i 

represents the event term for event i (explained below), and ij represents the intra-event residual 
for recording j in event i. Event term i represents approximately the mean offset of the data for 
event i from the predictions provided by the GMPE median (after adjusting for mean offset ck, 
which is based on all events). Event terms are used to evaluate GMPE performance relative to 
source predictor variables, such as M . Event terms have zero mean and standard deviation= 
(natural log units). Within-event error  is has zero mean and standard deviation=. Mixed-
effects analyses per Equation (4.7) are performed using the NLME operator in program R 
[Pinheiro et al. 2013]. 

Data selection criteria for Phase 3 analysis were relaxed from those for Phase 2 as 
described in Section 3.2. In particular, we consider data to distances much larger than RJB = 80 
km, with cutoff distances being based on magnitude and instrument type (Figure 2.1). We also 
consider Class 2 (CL2) events (aftershocks); as mentioned in Section 2.1, CL2 events are 
differentiated from CL1 events (mainshocks) using a minimum centroid RJB separation of 10 km 
per the criteria of Wooddell and Abrahamson [2012]. The data set obtained with these criteria is 
approximately twice the size of that used for Phase 2 analysis. 

Figure 4.18 shows the average data misfit to the base case GMPE as expressed by 
parameter ck (note: this is not the ,P BF  parameter ic , where i  = 1, 2, or 3). Parameter ck has some 

offset from zero and fluctuates with period, being largest at long periods (T ≥ 5 sec). The non-
zero values of ck result from the difference between the Phase 3 and 2 data sets; ck values from 
the data used in Phase 2 are nearly zero. 

Subsequent sections examine within-event residuals, between-event residuals (event 
terms), and standard deviation terms evaluated from these analyses. 

 

 

Figure 4.18 Period-dependence of mean GMPE bias using Phase 3 and Phase 2 
data sets. 
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4.4.2 Within-Event Residuals Analysis of Path and Site Effects 

We use the within-event residuals ( ij ) to examine the performance of the Phase 2 equations 

relative to the broader Phase 3 data set with respect to path and site effects. The main issue 
examined through the path analysis is regional variations of apparent anelastic attenuation; since 
the base-case model uses c3 terms derived from California data, potential variations for other 
regions are investigated. The site analyses consider trends of residuals ij  with 30SV  (to test the 

base-case model given in Section 3.2) and 1z  (to examine possible sediment depth effects). 

Path Effects: 

In Figure 4.19, we plot residuals ( ij ) against JBR  using the full data set, with means and 

standard errors shown within bins equally spaced with respect to log JBR . The results show no 

perceptible trend, indicating that the base-case path-scaling terms for apparent geometric 
spreading and apparent anelastic attenuation reasonably represent the data trends. This is an 
encouraging finding because the base-case regressions were performed using only data at RJB < 
80 km with constraint of 3c  from small magnitude data in California (Section 4.2.1). The flatness 

of the trends for 80 kmJBR   indicates that the California-derived 3c  values may be a reasonable 

global average for active crustal regions. 
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Figure 4.19 Within event residuals for full Phase 3 data set versus distance, 
with binned medians (red dots with bars indicating standard errors). 

 

Figures 4.20 to 4.22 show within-event residuals (ij) against RJB using data from various 
global regions grouped according to their distance-attenuation trends for RJB >  50100 km. 
Figure 4.20 shows data from California and Taiwan, for which the flat trends in the global data 
set are preserved (these same general features are found if the data are plotted for California-only 
or Taiwan-only). In the figure, this is indicated as an ‘average Q’ result. Figure 4.21 shows data 
from Japan and Italy, for which a downward trend is observed, indicating faster distance 
attenuation (marked as ‘low Q’). Similarly fast distance attenuation trends have been observed 
previously in these regions (e.g., Stewart et al. [2013] and Scasserra et al. [2009]). Figure 4.22 
shows data from China and Turkey, for which slower attenuation is observed (‘high Q’). The 
slower attenuation for China is not surprising given the location of the Wenchuan event near the 
western boundary of a stable continental region as defined by Johnston et al. [1994], with the 
recordings having been made at sites both in stable continental and active crustal regions [Kottke 
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2011]. This result for Turkey was not expected, but has been observed by others using larger 
Turkish data sets [Z. Gulerce 2013, personal communication]. 

For the low and high Q cases, we fit a linear expression through the data according to: 

 3 refc R R     (4.8)
 

where c3 is additive to the c3 terms developed in Section 4.2.1 from California [Equation [3.7]). 
Values of c3 are plotted against period for average, low, and high Q conditions in Figure 4.23. 
These adjustments are considered to be statistically significant, and c3 was used in the 
computation of residuals for the remainder of Phase 3 analyses presented below. 
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Figure 4.20 Within event residuals for regions identified as ‘average Q’ 
(California and Taiwan) within the flatfile. The residuals in this case 
demonstrate a flat trend with distance. The larger scatter of 
California data is due to more small M events. 
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Figure 4.21 Within event residuals for regions identified as ‘low Q’ (Italy and 
Japan) within the flatfile and trend line per Equation (4.8). The 
residuals demonstrate a decreasing trend with distance. 
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Figure 4.22 Within event residuals for regions identified as ‘high Q’ (China and 
Turkey) within the flatfile and trend line per Equation (4.8). The 
residuals demonstrate an increasing trend with distance. 
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Figure 4.23 Additive adjustment factors for apparent anelastic attenuation term 
c3 for regions exhibiting various distance attenuation rates. 
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Check of VS30-Scaling: 

 In Figure 4.24, we plot residuals (ij) against VS30 using the full data set. We find no 
trends, indicating satisfactory performance of the model. When the data is plotted by region, the 
trends remain flat (not shown). 

 

 

Figure 4.24 Within event residuals against VS30. 

Sediment Depth Effects: 

The site parameter VS30 strictly describes only the characteristics of sediments in the 
upper 30 m, even though it has been shown to be correlated to deeper structure (e.g., Boore et al. 
[2011]). There may be additional site amplification effects that are related to the depth of the 
deposit and that are not captured by the use of VS30 alone as a site descriptor. For example, 
GMPE residuals for ground-motion models that include a VS30-based site term (or similar site 
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terms related to surface geology) have been shown to correlate to basin depth parameters (e.g., 
Field [2000]; Lee and Anderson [2000]; Steidl [2000]; Choi et al. [2005]; Abrahamson and Silva 
[2008]; Campbell and Bozorgnia [2008]; and Chiou and Youngs [2008]). This indicates that 
depth is describing elements of the site characteristics relevant for ground motion prediction. 
Since residual trends in prior work are typically strongest at long spectral periods (T >  1.0 sec), 
the depth parameter is descriptive of low-frequency components of the ground motion, which 
may be related to resonances of sedimentary basin structures. The BA08 model did not include a 
basin-depth term; here we investigate whether the data support the use of such a term in the 
present equations. 

Basin-depth parameters used to investigate site effects are generally defined as the 
vertical distance from the ground surface to the first occurrence of a particular shear-wave iso-
surface (typically 1.0, 1.5, or 2.5 km/sec). We consider the shallowest metric of z1 (depth to 1.0 
km/sec iso-surface) due to its greater practical utility (i.e., a 1.0 km/sec velocity can be reached 
through geotechnical drilling in some cases; whereas 2.5 km/sec can rarely be reached) and a 
lack of clear evidence from prior work indicating that deeper metrics are more descriptive of 
long-period site effects [Day et al. 2008]. 

As described in Ancheta et al. [2013], a substantial effort was made in NGA-West 2 to 
update basin depths in the site database based on new information. Depth parameters have been 
updated for basin regions in southern California (SC) and the San Francisco Bay Area (SFBA). 
Depth parameters have also been added for stations in Japan. In total, 54% of the stations in the 
flatfile have an assigned basin depth. Figure 4.25 shows the distribution of z1 values against VS30 
for SC, SFBA, and Japan. Also shown are two correlation relationships developed by B. Chiou 
[2013, personal communication]: 

 
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These relationships can be used to estimate z1 when only VS30 is available. They also provide a 
convenient mechanism for defining a representative depth for any given VS30. The latter point is 
important with respect to understanding the implications for basin depth of using the base case 
GMPE, in which z1 does not appear. The absence of z1 in the model does not mean the sites have 
no depth; rather, when the base-case GMPE is used it is providing estimates of site response for 
an ‘average’ depth, an approximate estimate of which is given by Equation (4.9). 
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Figure 4.25  Sediment depth z1 variation with VS30 for basins in southern 
California (SC), San Francisco Bay Area (SFBA), and Japan. 
Equations for California and Japan are from B. Chiou [Equation 
(4.9)]. 

Figure 4.26 shows residuals (ij) against basin depth z1. There is little trend for short 
periods (T < 1.0 sec), but at longer periods the trend is strong. Interestingly, the residuals are near 
zero, with little dependence on 1z , for z1 < 0.250.5 km, and again show little change with 1z for 

z1 > 1.5 km (but with a nearly constant offset from 0). Since the VS30 component of the GMPE 
already implicitly includes average basin depths [approximately represented by Equation (4.9)], 
we investigate the possibility of using the differential from the average basin-depth predictor 
variable: 

  1 1 1 30z Sz z V    (4.10) 

where z1(VS30) is the mean basin depth from the relations in Equation (4.9). In Figure 4.27a, we 
plot residuals ij against z1 along with the model fit from Equation (3.13). As before, at short 
periods there is no effect. For T ≥ 1 sec, the trends are strong, indicating negative residuals for 
negative z1 and a flat trend beyond approximately z1=0.5 km. The z1 parameter is more 
descriptive of data trends and was adopted as the predictor variable [Equation 3.13]. 
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Figure 4.26 Within event residuals against sediment depth parameter z1. 
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Figure 4.27a Within event residuals against sediment depth differential z1 along 
with proposed basin model  

 

Figure 4.27b Within event residuals against sediment depth differential z1, 
highlighting SFBA sites. Non-SFBA sites shown with grey circles. 
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Figure 4.27c Within event residuals against sediment depth differential z1, 
highlighting Japan sites. Non-Japan sites shown with grey circles. 

 

Figure 4.27d Within event residuals against sediment depth differential z1, 
highlighting SC sites. Non-SC sites shown with grey circles. 
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Figures 4.27b-d show the residuals trends with z1 for the three regions contributing data 
(SFBA, Japan, and SC). The trends are strongest for Japan, particularly for negative values of 
z1, and weakest for SC. The levels of maximum mean amplification for positive z1 are 
relatively consistent across regions, being approximately 0.5 to 0.75 (in natural log units) at long 
periods. Although some regional trends are evident in Figures 4.27, we have chosen to not 
regionalize the Fz1 model, aside from the regional nature of the mean VS30-z1 model [Equation 
4.9)]. 

4.4.3 Analysis of Source Effects Using Between-Event Residuals  

In Figure 4.28, we show event terms for both CL1 and CL2 events against magnitude for the five 
regions contributing most of the data for NGA-West 2. The majority of the events, especially at 
small M , are from California. China contributes a substantial number of events, which are CL2, 
for M  4.5–6. These China CL2 events exhibit unusual trends with respect to M -scaling 
(indicated by the trend for PGA, PGV, and 0.2-sec PSA) or significant negative bias (1.0- and 
3.0-sec PSA). We do not understand these unusual features and have elected to not consider 
further the China CL2 events for subsequent analyses. 

Figure 4.29 shows CL1 event terms against M  along with medians in bins 0.5 M  in 
width. From this figure we see that the magnitude-scaling function adequately captures the trends 
from CL1 events in the broader Phase 3 data set. 
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Figure 4.28 Event terms versus magnitude for CL1 and CL2 events sorted by 
region. 
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Figure 4.29 Event terms versus magnitude for CL1 events sorted by region. 

 

Potential Bias of CL2 Events: 

Recall that all earthquake events in the NGA-West 2 flatfile have been designated as CL1 
(foreshocks or mainshocks) or CL2 (interpreted as aftershocks based temporal and spatial 
attributes; see Wooddell and Abrahamson [2012]). Our examination of the event term results 
from Phase 3 analysis indicated that for selected regions (e.g., Taiwan), a particular feature of 
CL1 event terms was often also seen in the subsequent CL2 events associated with the ‘parent’ 
CL1 event. In Figure 4.30, we examine such correlations for all CL1 events having CL2 
‘children’ events, sorted by region. The plots show the event term for the CL1 event (C1) on the 
x-axis against the mean of the ‘children’ event terms ( 2C ) on the y-axis (similar procedures 

were used to look at mainshock and aftershock site factors by Lee and Anderson [2000]. 
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Although the data do not provide a large correlation coefficient (computed values are generally 
less than 0.3), there are a striking number of events falling on or near the 45 line. Given the 
modest relationship between CL1 and CL2 event terms, we elect to examine aftershock effects in 
the form of the difference 2 1C C     . 

In Figure 4.31, we show   against M for various ground-motion IMs. We see no 
compelling evidence for   being M-dependent nor significantly different from zero relative to 

the data scatter. In Figure 4.32, we show the mean value of   (denoted  ) against period 
using all data except for the China CL1 event at M 6.1, which is a clear outlier and may be 
unreliable for the same unknown reasons as the China CL2 events discussed above. For 
comparative purposes, we have also computed the weighted average of CL2 event terms 
(weights assigned based on the number of data points) for the regions contributing most of the 
aftershock data (California and Italy). This is denoted in Figure 4.32 as  2 ,CL CA IT

 . The values 

are numerically similar to those for  , and are computed for more periods. After studying 
these results, our conclusion is that the data do not justify the use of a CL2 adjustment to the 
base-case GMPEs. 

 

 

Figure 4.30 Event terms versus magnitude for CL1 events sorted by region. The 
numbered events (e.g., 14383980) are California small M events, 
which were not named in the NGA-West 2 database. 
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Figure 4.31 CL2 event term differential  (with standard errors) as function of 
magnitude for various regions and IMs. 

 

 

 

Figure 4.32 Mean CL2 event term differential (with standard errors) and mean of 
CL2 event terms. 
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Source Depth: 

Our path function [Equation (3.3) takes site-source distance as RJB, which is the closest 
horizontal distance of the site to the surface projection of the fault plane. As such, the depth of 
rupture is not considered. This could conceivably lead to overprediction of deep events, because 
the ground motions for such events have a longer travel path to reach recording sites. On the 
other hand, there are some studies indicating that the stress parameter for earthquake sources 
tends to increase with depth (e.g., Fletcher et al. [1984]), which could offset the distance effect. 
In this section, we examine trends of event terms with two depth parameters provided in the 
NGA-West 2 flatfile: depth to top of rupture (Ztor) and depth to hypocenter (Zhypo). 

Figures 4.33 and 4.34 show trends of event terms with Ztor and Zhypo for CL1 and CL2 
events sorted by M (M < 5 and M ≥ 5). The M < 5 data (Figure 4.33) indicate increasing event 
terms as depth increases for short periods (PGA and PSA for T < 0.5 sec) and a reversal towards 
a decreasing trend with depth for T ≥ 1.0 sec PSA. Those trends are present for both considered 
source depth parameters. However, those trends are not apparent for M ≥ 5 data (Figure 4.34). 
Since the hazard for most engineering applications is governed by relatively large magnitude 
events, we opted not to include a source depth adjustment to our base-case GMPEs.  
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Figure 4.33 Event terms against depth to top of rupture (Ztor) (top) and 
hypocentral depth (Zhypo) (bottom) for M < 5 CL1 and CL2 events, for 
which most events are from California. 
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Figure 4.34 Event term variation with depth to top of rupture (Ztor) (top) and 
hypocentral depth (Zhypo) (bottom) for M ≥ 5 CL1 and CL2 events. 
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Focal Mechanism 

Phase 2 regressions include the evaluation of constant terms that depend on dummy 
variables for four variants of focal mechanism (SS = strike-slip, RS = reverse slip, NS = normal-
slip, and U = unknown). Those mechanism descriptors are based on orientations of principal 
stress axes and not strictly on rake angle, although they are strongly correlated, as shown in 
Figure 2.4. 

The GMPE focal mechanism terms [Equation (3.5)] are independent of magnitude. 
Figures 4.35 and 4.36 show the trends of event terms with respect to rake angle for two 
magnitude ranges ( M  < 5 and M  ≥ 5). The M  < 5 results in Figure 4.35 indicate essentially 
zero residuals for SS and RS conditions, but positive residuals for NS. The amount of positive 
bias is comparable to the magnitude of the NS term, suggesting that had that term been zero, the 
bias would be removed. On the other hand, the M  ≥ 5 results appear unbiased for SS and NS, 
but positive bias occurs at long periods for RS, suggesting that the RS term could be increased 
for T > 1.0 sec PSA. This will be considered in future revisions to the GMPE. 

 

 

Figure 4.35 Event term variation with rake angle for M < 5 CL1 and CL2 events. 
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Figure 4.36 Event term variation with rake angle for M ≥ 5 CL1 and CL2 events. 

4.4.4 Standard Deviation Terms 

Our GMPE is formulated with separation of standard deviation terms into between-event and 
within-event components,  and , respectively [Equation (3.2)]. Figure 4.37 plots  and  for the 
base case (Phase 2) GMPE in which the data selection criteria require RJB < 80 km and use of 
only CL1 events. The present standard deviation terms are significantly higher than those in 
BA08 and have a different period-dependence in which a short-period peak is observed. We 
believe there is a physical justification for these trends—PGA and very short-period PSA is 
controlled by longer ground motion periods (in the range of 0.21.0 sec)—so dispersions for 
these periods might be expected to be similar, as observed. At intermediate periods, there is 
likely energy content in the ground motions affecting the oscillator response, which has high 
dispersion perhaps from kappa variability. In the remainder of this section, we investigate factors 
affecting standard deviation and propose appropriate equations for  and . 
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Figure 4.37 Standard deviation terms against period from base-case model 
from this study and BA08′. Base-case model applies for RJB ≤ 80 km 
and CL1 events. 

Using event terms from the Phase 2 data set, we plot in Figure 4.38 values of  within 
0.5M bins for several IMs. We observe that  decreases with increasing M , with most of the 
change occurring between magnitudes of approximately 4.5 to 5.5. Accordingly, we propose an 
M -dependent between-event standard deviation term as follows: 
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Values of 1 and 2 were computed as weighted standard deviations of event terms within the 
respective magnitude ranges using the Phase 2 data set and GMPE without regionalization 
(c3=0). In those calculations, weights are proportional to the number of recordings from which 
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the event terms were established (Ni). Results are shown with the binned values of  in Figure 
4.38 and as a function of period in Figure 4.39a. Next, we investigated several factors not 
considered in the Phase 2 analyses that might influence . In Figure 4.39b, we show 1 and 2 
computed using the same Phase 2 data set, but incorporating regional anelastic attenuation (non-
zero c3) and the basin model into the GMPE (labeled as ‘Complete GMPE’). The effect of 
using the modified GMPE is to reduce 1, although 2 is not much affected. In Figure 4.39c, we 
add CL2 events to the data set (both CL1 and CL2 are now included), which significantly 
increases 2 but does not affect 1. There are a substantial number of CL2 events with M > 5.5, 
which contribute to the 2 increase. These are principally from five California mainshocks 
(including 1994 Northridge and 1983 Coalinga), Chi Chi, Taiwan, Wenchuan, China, and six 
earthquakes in Italy (including 2009 L’Aquila). For application, we propose the use of the 1 and 
2 values in Figure 4.39b, which apply for CL1 events only; if an analysis requires consideration 
of aftershocks, we recommend increasing 2 by 0.06 at all periods. 

 

 

Figure 4.38 Between-event standard deviation terms against magnitude using 
Phase 2 data set and base-case GMPE. Horizontal black lines 
indicate  values for M < 4.5 and M > 5.5.  



75 

 

Figure 4.39 Between-event standard deviation terms against period for (a) base-
case GMPE; (b) complete GMPE, which includes regional anelastic 
attenuation and basin depth terms but not CL2 events; and (c) 
including both CL1 and CL2 events with the complete GMPE. 

In Figure 4.40, we plot values of within-event standard deviation  within M  bins using 
the base-case GMPE and Phase 2 data set. Parameter  has a relatively complex relationship with 
M , decreasing with M at short periods and increasing with M  at long periods. The decreasing 
trends with M  for short periods could result from variability in site-related   (e.g., Douglas and 
Jousset [2011]). For distances under 80 km, we propose an M -dependent within-event standard 
deviation term as follows: 
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Values of 1 and 2 were computed within the respective magnitude ranges using the Phase 2 
data set and GMPE without regionalization (c3=0), with the results shown in Figure 4.40 and 
4.41a. As with the analysis of  terms describe above, we considered the effects of including 
regional anelastic attenuation and the basin depth terms (Figure 4.41b) and including CL2 events 
(Figure 4.41c). These additional factors have a relatively minor effect on  terms; the small 
effect of the regionalized anelastic attenuation resulted from restricting the data set to RJB ≤ 80 
km.  

 

 

 

Figure 4.40 Within-event standard deviation terms against magnitude using 
Phase 2 data set and base-case GMPE. Horizontal black lines 
indicate  values for M < 4.5 and M > 5.5. 
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Figure 4.41 Within-event standard deviation terms against period for (a) base-
case GMPE; (b) complete GMPE, which includes regional anelastic 
attenuation and basin depth terms; and (c) including both CL1 and 
CL2 events. 

Because many applications of our GMPE will involve source-site distances beyond 80 
km, we next consider standard deviations for data beyond 80 km (these analyses use CL1 events 
only). Because data beyond 80 km is poorly suited to the analysis of event terms, we maintain 
the event terms and  evaluated using the Phase 2 data set and ‘complete GMPE’, as described 
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above. We compute within-event standard deviations for various distance ranges beyond 80 km, 
with the results shown in Figure 4.42. We see that  rises as the distance range increases. We 
attribute this increased standard deviation to variability in regional anelastic attenuation effects 
that are not fully captured by our model (e.g., there are regions in the data set for which we do 
not have a regional c3 term). To capture this effect, we adjust the  model from Equation (4.12) 
to include an additive term that is applicable for RJB > 80 km as follows: 
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The term R in Equation (4.13) is computed using data for M ≥ 5.5 only, because we consider 
the small-magnitude and large-distance results to have little practical significance for hazard 
assessment. Terms R1 and R2 are selected by visual inspection of many plots similar to those in 
Figure 4.42; they represent the maximum distance to which the complete GMPE  terms are 
considered applicable (R1, generally 80 to 130 km) and the distance beyond which we capped  
increases with distance (R2, generally 200 to 270 km). Parameter R ranges from about 0.15 at 
short periods to about 0.05 at long periods, with PGA at 0.1. 

It should be realized that the increased value of  at distances beyond 80 km may be 
reflecting regional variability in attenuation amongst the data included in the NGA-West 2 
database. Thus, we expect that this increase is being strongly influenced by epistemic uncertainty 
in regional attenuation rates, not random site-to-site variability. If such epistemic uncertainty is 
being captured in a seismic hazard analysis by the use of alternative GMPEs, it should not be 
double-counted by including it also within the aleatory uncertainty of each GMPE. Mean seismic 
hazard analysis results are insensitive to whether uncertainty is treated as being epistemic or 
aleatory (e.g. McGuire [2004]), but the total amount of uncertainty is important. It is therefore 
important to recognize the extent to which some components of apparent aleatory variability may 
be epistemic, and avoid double counting of uncertainty in practical applications. 

In Figure 4.43, we plot values of  within VS30 bins (four equally-spaced bins per log 
cycle of VS30). We observe  to decrease with VS30 at short periods over the approximate range of 
150 to 300 m/sec (there are also large changes in  for the fastest VS30 bin relative to those 
before, which is affected by relatively small data size and is not considered meaningful). Similar 
features have been observed previously [Choi and Stewart 2005], with the lower  values for soft 
sites being attributed to nonlinear site response, which amplifies weak motions and de-amplifies 
strong motions, thus reducing standard deviation relative to motions on the underlying reference 
site conditions. 
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Figure 4.42 Effects of distance on within-event standard deviation terms for M ≥ 
5.5 earthquakes. The discrete symbols indicated computed values 
of  in non-overlapping distance bins for RJB > 80 km. The 
horizontal solid lines are values of 2 shown previously (e.g., from 
Figures 4.40 and 4.41). The dotted lines are the proposed distance-
dependent model from Equation (4.12). 

 

Figure 4.43 Within-event standard deviation terms against VS30 using complete 
GMPE and using CL1 data for RJB < 300 km and all M. 
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In Figure 4.44, we evaluate the VS30-dependent shift of  within M  and RJB bins for 
subsets of data with VS30 > 300 m/sec and VS30 < 225 m/sec. For comparison, the  values from 
the M - and RJB-dependent model [Equations (4.12) and (4.13)] are also shown. We observe that 
in the close-distance data sets (RJB ≤ R1), the  terms for VS30 > 300 m/sec match those from the 
models, so no adjustment is needed for this condition (some offsets are observed for larger 
distances, which are not considered for our standard deviation models). On the other hand, for 
VS30 < 225 m/sec,  terms are reduced relative to the model by amounts generally ranging from 
0.05 to 0.1. We capture this effect as follows: 
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The term V in Equation (4.14) represents the  term correction, and is shown in the 
lower-left panel of Figure 4.44. Limiting velocities V1 and V2 are taken as 225 and 300 m/sec, 
respectively. The term ( M , RJB) in Equation (4.14) represents the model from Equation (4.13); 
as such, the relation in Equation. (4.14), when combined with Equations (4.12) and (4.13), 
represents the recommended relationship for  in our GMPEs. 

 

 

Figure 4.44 Effects of VS30 on within-event standard deviation terms. We define 
correction factor V from data with VS30 ≤ 225 m/sec and RJB ≤ 80 
km. 
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4.5 COMPARISON TO BA08′ MODEL 

Figure 4.45 compares median predictions of BA08′ (as modified in Atkinson and Boore [2011]) 
to the proposed model. The biggest differences between the predictions from the new GMPEs 
and those of BA08’ are for small magnitudes at distances less than 10 to 20 km, where the 
motions predicted from the new equations are substantially smaller than those from BA08′. In 
addition, the predicted motions from the new equations are substantially larger than those from 
BA08′ at the longest period (T=10 sec), for which there were few data available to BA08′ (and 
the available data were dominated by one earthquake—the 1999 Chi-Chi earthquake, as shown 
in Figure 16 of BA08). The two situations noted (small magnitudes and long periods) correspond 
to the magnitudes and distances for which there is the most increase of data used in our new 
work, compared to that available to BA08′, as discussed previously in Section 2.4. 
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Figure 4.45 Comparison of median trends of proposed GMPE as compared to 
BA08′, as a function of distance. The BA08′ values have been 
adjusted to RotD50 using the ratios RotD50/GMRotI50 in Boore 
[2010] (maximum adjustment of 1.06 for T=10 sec). 
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Figure 4.46 Comparison of median PSA of proposed GMPE as compared to 
BA08′ for M 6.5 and RJB=10 km event and M 8.0 and RJB=50 km 
event. The BA08′ values have been adjusted to RotD50 using the 
ratios RotD50/GMRotI50 in Boore [2010] (maximum adjustment of 
1.06 for T=10 sec). 

Figure 4.46 compares spectra for conditions that are often significant for seismic hazard 
in the western U.S.—a close-distance M 6.5 event and a larger-distance M 8.0 event. For the M
6.5 event the spectra are slightly increased from BA08′ across nearly the full range of periods. 
For the M 8.0 event, the spectra are not much changed for T < 0.5 sec, are reduced by up to 
2030% for periods between 1 and 3 sec, and are increased beyond approximate 45 sec. These 
trends have been examined carefully and are driven by a number of events with M  > Mh  that 

have been added to the database since 2008. 

Figure 4.47 compares standard deviation terms in the present study to those obtained in 
BA08′. The total standard deviations () from the present study for M  ≥ 5.5, RJB ≤ 80 km, and 
VS30 > 300 m/sec are generally comparable to those in BA08′, being somewhat higher near T = 
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0.1 sec and lower for T > 5 sec. The figure also shows the substantial increase in  for M  ≤ 4.5 
events in the present study, and the relatively dominant effect of within-event variability () as 
compared to between-event variability (). 

 

Figure 4.47 Comparison of standard deviation terms in proposed GMPE as 
compared to BA08′. 
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5 Guidelines for Usage 

5.1 LIMITS ON PREDICTOR VARIABLES  

We recommend the following limits for the predictor variables used in our GMPE: 

 Strike-slip and reverse-slip earthquakes, M  = 3 to 8.5 

 Normal-slip earthquakes, M  = 3 to 7 

 Distance, RJB = 0 to 300 km 

 Time-averaged shear wave velocities of VS30 = 150 to 1500 m/sec 

 Basin depth, z1 = 0 to 3.0 km 

 CL1 and CL2 event types (mainshocks and aftershocks) 

These limits are subjective estimates based on the distributions of the recordings used to develop 
the equations. 

5.2 MODEL LIMITATIONS 

The GMPEs presented in this report are intended for application in tectonically active crustal 
regions. The equations are not recommended for other tectonic regimes such as subduction zones 
or stable continental regions. The data controlling the equations are derived principally from 
California, Taiwan, Japan, China, the Mediterranean region (Italy, Greece, Turkey), and Alaska. 
We have demonstrated some regional variations in ground motions, so application of the GMPE 
to other areas considered to be active crustal regions carries an additional degree of epistemic 
uncertainty.  

The site effects incorporated into the GMPE provide an average representation of the site 
effects conditional on specified values of VS30 and z1. Specific sites may exhibit significant 
differences from these average site effects. This is particularly likely when the geologic structure 
of the site is significantly different than the ‘average’ of the NGA-West 2 site database. As 
shown in other work (e.g., Baturay and Stewart [2003]; Bazzurro and Cornell [2004]), the 
benefits of site-specific analysis are usually greatest when the site exhibits a significant 
impedance contrast or highly nonlinear soil response. 
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6 Summary 

We have presented a set of ground-motion prediction equations that we believe are the simplest 
formulation demanded by the NGA-West 2 database used for the regressions. Future versions of 
the equations might include additional terms if these can be unambiguously supported by data. 
Data continue to be recorded (our dataset necessarily had to be limited to earthquakes occurring 
before 2012), and these new data could potentially support the inclusion of more predictor 
variables. Nevertheless, we think that our equations will be useful, in spite of the simplified 
analysis: many predictor variables not included in our equations may be unavailable for use in 
general seismic hazard analysis applications. 

There are a few areas where refinements to the equations are likely over time. One such 
area of inquiry concerns regional variability of site effects. As noted in this report, the regional 
variability in the site amplification model found by our analysis was not as large as expected, 
based particularly on the known tendency of Japanese sites to have peak responses at high 
frequencies. We intend to further investigate the implications of our current findings in relation 
to other studies [Ghofrani et al. 2013; Stewart et al. 2013]. We also intend to evaluate our 
equations further with respect to directivity and hanging wall effects. 

In conclusion, the new relations developed here are a significant improvement over 
BA08′, and provide a demonstrably reliable description of recorded ground-motion amplitudes 
for shallow crustal earthquakes in active tectonic regions over a wide range of magnitudes, 
distances, and site conditions. 
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APPENDIX: COEFFICIENT TABLES 

 

BSSA13  Magnitude Scaling  Distance Scaling 
Period(sec)  e0  e1  e2  e3  e4  e5  e6  Mh  c1  c2  c3  Mref  Rref 

(km)
h 

(km)

‐1  5.037  5.078  4.849  5.033  1.073  ‐0.1536  0.2252  6.2  ‐1.243  0.1489  ‐0.00344 4.5  1  5.3 

0  0.4473  0.4856  0.2459  0.4539  1.431  0.05053 ‐0.1662  5.5  ‐1.134  0.1917  ‐0.00809 4.5  1  4.5 

0.01  0.4534  0.4916  0.2519  0.4599  1.421  0.04932 ‐0.1659  5.5  ‐1.134  0.1916  ‐0.00809 4.5  1  4.5 

0.02  0.48598  0.52359  0.29707 0.48875 1.4331  0.053388 ‐0.16561 5.5  ‐1.1394  0.18962 ‐0.00807 4.5  1  4.5 

0.022  0.49866  0.53647  0.31347 0.49973 1.4336  0.054888 ‐0.1652  5.5  ‐1.1405  0.18924 ‐0.0081  4.5  1  4.5 

0.025  0.52283  0.5613  0.34426 0.51999 1.4328  0.057529 ‐0.16499 5.5  ‐1.1419  0.18875 ‐0.00815 4.5  1  4.5 

0.029  0.55949  0.59923  0.39146 0.54995 1.4279  0.060732 ‐0.16632 5.5  ‐1.1423  0.18844 ‐0.00829 4.5  1  4.5 

0.03  0.56916  0.6092  0.40391 0.55783 1.4261  0.061444 ‐0.1669  5.5  ‐1.1421  0.18842 ‐0.00834 4.5  1  4.49

0.032  0.58802  0.62875  0.42788 0.5733  1.4227  0.062806 ‐0.16813 5.5  ‐1.1412  0.1884  ‐0.00845 4.5  1  4.45

0.035  0.61636  0.65818  0.46252 0.59704 1.4174  0.064559 ‐0.17015 5.5  ‐1.1388  0.18839 ‐0.00864 4.5  1  4.4 

0.036  0.62554  0.66772  0.47338 0.60496 1.4158  0.065028 ‐0.17083 5.5  ‐1.1378  0.18837 ‐0.00872 4.5  1  4.38

0.04  0.66281  0.70604  0.51532 0.63828 1.409  0.066183 ‐0.17357 5.5  ‐1.1324  0.18816 ‐0.00903 4.5  1  4.32

0.042  0.68087  0.72443  0.53445 0.65505 1.4059  0.066438 ‐0.17485 5.5  ‐1.1292  0.18797 ‐0.0092  4.5  1  4.29

0.044  0.69882  0.74277  0.55282 0.67225 1.4033  0.066663 ‐0.17619 5.5  ‐1.1259  0.18775 ‐0.00936 4.5  1  4.27
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0.045  0.70822  0.75232  0.56222 0.68139 1.4021  0.066774 ‐0.17693 5.5  ‐1.1242  0.18764 ‐0.00944 4.5  1  4.25

0.046  0.71779  0.76202  0.57166 0.69076 1.4009  0.066891 ‐0.17769 5.5  ‐1.1224  0.18752 ‐0.00952 4.5  1  4.24

0.048  0.73574  0.78015  0.58888 0.70854 1.3991  0.067127 ‐0.1792  5.5  ‐1.1192  0.1873  ‐0.00968 4.5  1  4.22

0.05  0.75436  0.79905  0.60652 0.72726 1.3974  0.067357 ‐0.18082 5.5  ‐1.1159  0.18709 ‐0.00982 4.5  1  4.2 

0.055  0.7996  0.8445  0.6477  0.7737  1.3947  0.067797 ‐0.1848  5.5  ‐1.1082  0.18655 ‐0.01012 4.5  1  4.15

0.06  0.84394  0.88884  0.68562 0.82067 1.3954  0.068591 ‐0.18858 5.5  ‐1.1009  0.18582 ‐0.01033 4.5  1  4.11

0.065  0.88655  0.93116  0.71941 0.86724 1.4004  0.070127 ‐0.19176 5.5  ‐1.0942  0.18485 ‐0.01048 4.5  1  4.08

0.067  0.9027  0.94711  0.73171 0.88526 1.4032  0.070895 ‐0.19291 5.5  ‐1.0918  0.18442 ‐0.01052 4.5  1  4.07

0.07  0.92652  0.97057  0.7494  0.91227 1.4082  0.072075 ‐0.19451 5.5  ‐1.0884  0.18369 ‐0.01056 4.5  1  4.06

0.075  0.96447  1.0077  0.77678 0.9563  1.4174  0.073549 ‐0.19665 5.5  ‐1.0831  0.18225 ‐0.01058 4.5  1  4.04

0.08  1.0003  1.0426  0.80161 0.99818 1.4261  0.073735 ‐0.19816 5.5  ‐1.0785  0.18052 ‐0.01056 4.5  1  4.02

0.085  1.034  1.0755  0.82423 1.0379  1.4322  0.07194 ‐0.19902 5.51  ‐1.0745  0.17856 ‐0.01051 4.5  1  4.03

0.09  1.0666  1.1076  0.84591 1.0762  1.435  0.068097 ‐0.19929 5.52  ‐1.0709  0.17643 ‐0.01042 4.5  1  4.07

0.095  1.0981  1.1385  0.86703 1.1127  1.4339  0.062327 ‐0.199  5.53  ‐1.0678  0.1742  ‐0.01032 4.5  1  4.1 

0.1  1.1268  1.1669  0.8871  1.1454  1.4293  0.055231 ‐0.19838 5.54  ‐1.0652  0.17203 ‐0.0102  4.5  1  4.13

0.11  1.1785  1.2179  0.92702 1.203  1.411  0.037389 ‐0.19601 5.57  ‐1.0607  0.1677  ‐0.00996 4.5  1  4.19

0.12  1.223  1.2621  0.96616 1.2502  1.3831  0.016373 ‐0.19265 5.62  ‐1.0572  0.16352 ‐0.00972 4.5  1  4.24

0.13  1.2596  1.2986  1.0031  1.2869  1.3497  ‐0.00516 ‐0.18898 5.66  ‐1.0549  0.15982 ‐0.00948 4.5  1  4.29

0.133  1.2692  1.3082  1.0135  1.2961  1.3395  ‐0.01135 ‐0.18792 5.67  ‐1.0545  0.15882 ‐0.0094  4.5  1  4.3 

0.14  1.2883  1.327  1.036  1.3137  1.3162  ‐0.02471 ‐0.18566 5.7  ‐1.0537  0.15672 ‐0.00923 4.5  1  4.34

0.15  1.3095  1.3481  1.0648  1.3324  1.2844  ‐0.04207 ‐0.18234 5.74  ‐1.0532  0.15401 ‐0.00898 4.5  1  4.39

0.16  1.3235  1.3615  1.0876  1.3437  1.2541  ‐0.05759 ‐0.17853 5.78  ‐1.0533  0.15158 ‐0.00873 4.5  1  4.44

0.17  1.3306  1.3679  1.104  1.3487  1.2244  ‐0.07186 ‐0.17421 5.82  ‐1.0541  0.14948 ‐0.00847 4.5  1  4.49

0.18  1.3327  1.3689  1.1149  1.3492  1.1941  ‐0.08564 ‐0.16939 5.85  ‐1.0556  0.14768 ‐0.00822 4.5  1  4.53

0.19  1.3307  1.3656  1.1208  1.3463  1.1635  ‐0.09888 ‐0.16404 5.89  ‐1.0579  0.14616 ‐0.00797 4.5  1  4.57

0.2  1.3255  1.359  1.122  1.3414  1.1349  ‐0.11096 ‐0.15852 5.92  ‐1.0607  0.14489 ‐0.00772 4.5  1  4.61

0.22  1.3091  1.3394  1.1133  1.3281  1.0823  ‐0.133  ‐0.14704 5.97  ‐1.067  0.14263 ‐0.00722 4.5  1  4.68

0.24  1.2881  1.315  1.0945  1.3132  1.0366  ‐0.15299 ‐0.13445 6.03  ‐1.0737  0.14035 ‐0.00675 4.5  1  4.75

0.25  1.2766  1.3017  1.0828  1.3052  1.0166  ‐0.16213 ‐0.12784 6.05  ‐1.0773  0.13925 ‐0.00652 4.5  1  4.78
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0.26  1.2651  1.2886  1.071  1.2972  0.99932 ‐0.17041 ‐0.12115 6.07  ‐1.0808  0.13818 ‐0.00629 4.5  1  4.82

0.28  1.2429  1.2635  1.0476  1.2815  0.97282 ‐0.18463 ‐0.10714 6.11  ‐1.0879  0.13604 ‐0.00587 4.5  1  4.88

0.29  1.2324  1.2517  1.0363  1.2736  0.96348 ‐0.19057 ‐0.10011 6.12  ‐1.0913  0.13499 ‐0.00567 4.5  1  4.9 

0.3  1.2217  1.2401  1.0246  1.2653  0.95676 ‐0.1959  ‐0.09286 6.14  ‐1.0948  0.13388 ‐0.00548 4.5  1  4.93

0.32  1.2007  1.2177  1.0011  1.2479  0.95004 ‐0.20454 ‐0.07892 6.16  ‐1.1013  0.13179 ‐0.00512 4.5  1  4.98

0.34  1.179  1.1955  0.97677 1.2286  0.94956 ‐0.21134 ‐0.06513 6.18  ‐1.1074  0.12984 ‐0.00481 4.5  1  5.03

0.35  1.1674  1.1836  0.9638  1.2177  0.95077 ‐0.21446 ‐0.05792 6.18  ‐1.1105  0.1289  ‐0.00466 4.5  1  5.06

0.36  1.1558  1.172  0.9512  1.2066  0.95278 ‐0.21716 ‐0.05104 6.19  ‐1.1133  0.12806 ‐0.00453 4.5  1  5.08

0.38  1.1305  1.1468  0.9244  1.1816  0.95899 ‐0.22214 ‐0.03676 6.19  ‐1.119  0.12647 ‐0.00428 4.5  1  5.12

0.4  1.1046  1.1214  0.89765 1.1552  0.96766 ‐0.22608 ‐0.02319 6.2  ‐1.1243  0.12512 ‐0.00405 4.5  1  5.16

0.42  1.0782  1.0955  0.87067 1.1276  0.97862 ‐0.22924 ‐0.01042 6.2  ‐1.1291  0.12389 ‐0.00385 4.5  1  5.2 

0.44  1.0515  1.0697  0.84355 1.0995  0.99144 ‐0.23166 0.001168 6.2  ‐1.1337  0.12278 ‐0.00367 4.5  1  5.24

0.45  1.0376  1.0562  0.82941 1.0847  0.99876 ‐0.23263 0.006589 6.2  ‐1.1359  0.12227 ‐0.00359 4.5  1  5.25

0.46  1.0234  1.0426  0.81509 1.0696  1.0064  ‐0.2335  0.011871 6.2  ‐1.1381  0.12177 ‐0.00351 4.5  1  5.27

0.48  0.99719  1.0172  0.7886  1.0415  1.0215  ‐0.23464 0.020767 6.2  ‐1.142  0.12093 ‐0.00336 4.5  1  5.3 

0.5  0.96991  0.99106  0.7615  1.012  1.0384  ‐0.23522 0.029119 6.2  ‐1.1459  0.12015 ‐0.00322 4.5  1  5.34

0.55  0.9048  0.9283  0.6984  0.9417  1.0833  ‐0.23449 0.046932 6.2  ‐1.1543  0.11847 ‐0.0029  4.5  1  5.41

0.6  0.84165  0.86715  0.63875 0.87351 1.1336  ‐0.23128 0.062667 6.2  ‐1.1615  0.11671 ‐0.00261 4.5  1  5.48

0.65  0.78181  0.80876  0.58231 0.80948 1.1861  ‐0.22666 0.077997 6.2  ‐1.1676  0.11465 ‐0.00236 4.5  1  5.53

0.667  0.76262  0.78994  0.56422 0.78916 1.2035  ‐0.22497 0.083058 6.2  ‐1.1694  0.11394 ‐0.00228 4.5  1  5.54

0.7  0.72513  0.75302  0.52878 0.74985 1.2375  ‐0.22143 0.093185 6.2  ‐1.1728  0.11253 ‐0.00213 4.5  1  5.56

0.75  0.66903  0.69737  0.47523 0.69173 1.2871  ‐0.21591 0.10829 6.2  ‐1.1777  0.11054 ‐0.00193 4.5  1  5.6 

0.8  0.61346  0.64196  0.42173 0.63519 1.3341  ‐0.21047 0.12256 6.2  ‐1.1819  0.10873 ‐0.00175 4.5  1  5.63

0.85  0.55853  0.58698  0.36813 0.57969 1.378  ‐0.20528 0.13608 6.2  ‐1.1854  0.10709 ‐0.0016  4.5  1  5.66

0.9  0.50296  0.53136  0.31376 0.52361 1.4208  ‐0.20011 0.14983 6.2  ‐1.1884  0.10548 ‐0.00146 4.5  1  5.69

0.95  0.44701  0.47541  0.25919 0.46706 1.4623  ‐0.1949  0.16432 6.2  ‐1.1909  0.10389 ‐0.00133 4.5  1  5.72

1  0.3932  0.4218  0.207  0.4124  1.5004  ‐0.18983 0.17895 6.2  ‐1.193  0.10248 ‐0.00121 4.5  1  5.74

1.1  0.28484  0.31374  0.10182 0.30209 1.569  ‐0.18001 0.21042 6.2  ‐1.1966  0.10016 ‐0.00099 4.5  1  5.82

1.2  0.1734  0.20259  ‐0.0062  0.18866 1.6282  ‐0.1709  0.2441  6.2  ‐1.1996  0.098482 ‐0.0008  4.5  1  5.92
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1.3  0.06152  0.09106  ‐0.11345 0.07433 1.6794  ‐0.16233 0.27799 6.2  ‐1.2018  0.097375 ‐0.00064 4.5  1  6.01

1.4  ‐0.04575  ‐0.0157  ‐0.2155  ‐0.03607 1.7239  ‐0.15413 0.30956 6.2  ‐1.2039  0.096743 ‐0.00049 4.5  1  6.1 

1.5  ‐0.14954  ‐0.11866  ‐0.3138  ‐0.1437  1.7622  ‐0.1467  0.33896 6.2  ‐1.2063  0.096445 ‐0.00037 4.5  1  6.18

1.6  ‐0.2486  ‐0.21672  ‐0.40682 ‐0.24708 1.7955  ‐0.13997 0.36616 6.2  ‐1.2086  0.096338 ‐0.00026 4.5  1  6.26

1.7  ‐0.34145  ‐0.3084  ‐0.49295 ‐0.34465 1.8259  ‐0.13361 0.39065 6.2  ‐1.2106  0.096254 ‐0.00017 4.5  1  6.33

1.8  ‐0.42975  ‐0.39558  ‐0.57388 ‐0.43818 1.8564  ‐0.12686 0.41244 6.2  ‐1.2123  0.096207 ‐9.9E‐05 4.5  1  6.4 

1.9  ‐0.51276  ‐0.47731  ‐0.64899 ‐0.52682 1.8868  ‐0.11959 0.43151 6.2  ‐1.2141  0.096255 ‐4.2E‐05 4.5  1  6.48

2  ‐0.58669  ‐0.55003  ‐0.71466 ‐0.60658 1.9152  ‐0.11237 0.44788 6.2  ‐1.2159  0.096361 0  4.5  1  6.54

2.2  ‐0.72143  ‐0.6822  ‐0.83003 ‐0.75402 1.9681  ‐0.09802 0.48024 6.2  ‐1.219  0.096497 0  4.5  1  6.66

2.4  ‐0.8481  ‐0.8069  ‐0.9326  ‐0.8941  2.017  ‐0.08377 0.51873 6.2  ‐1.2202  0.096198 0  4.5  1  6.73

2.5  ‐0.90966  ‐0.86765  ‐0.98228 ‐0.96187 2.0406  ‐0.07631 0.53883 6.2  ‐1.2201  0.096106 0  4.5  1  6.77

2.6  ‐0.96863  ‐0.92577  ‐1.0313  ‐1.0266  2.0628  ‐0.06893 0.5581  6.2  ‐1.2198  0.096136 0  4.5  1  6.81

2.8  ‐1.0817  ‐1.0367  ‐1.1301  ‐1.1495  2.1014  ‐0.05523 0.59394 6.2  ‐1.2189  0.096667 0  4.5  1  6.87

3  ‐1.1898  ‐1.142  ‐1.23  ‐1.2664  2.1323  ‐0.04332 0.62694 6.2  ‐1.2179  0.097638 0  4.5  1  6.93

3.2  ‐1.2914  ‐1.2406  ‐1.3255  ‐1.376  2.1545  ‐0.03444 0.65811 6.2  ‐1.2169  0.098649 ‐2.3E‐05 4.5  1  6.99

3.4  ‐1.386  ‐1.3322  ‐1.415  ‐1.4786  2.1704  ‐0.02789 0.68755 6.2  ‐1.216  0.099553 ‐0.00004 4.5  1  7.08

3.5  ‐1.4332  ‐1.3778  ‐1.4599  ‐1.5297  2.1775  ‐0.025  0.70216 6.2  ‐1.2156  0.099989 ‐4.5E‐05 4.5  1  7.12

3.6  ‐1.4762  ‐1.4193  ‐1.5014  ‐1.5764  2.1834  ‐0.02258 0.71523 6.2  ‐1.2156  0.10043 ‐4.9E‐05 4.5  1  7.16

3.8  ‐1.5617  ‐1.5014  ‐1.5865  ‐1.6685  2.1938  ‐0.01836 0.74028 6.2  ‐1.2158  0.10142 ‐5.3E‐05 4.5  1  7.24

4  ‐1.6388  ‐1.5748  ‐1.6673  ‐1.7516  2.204  ‐0.01464 0.76303 6.2  ‐1.2162  0.10218 ‐5.2E‐05 4.5  1  7.32

4.2  ‐1.7116  ‐1.6439  ‐1.7451  ‐1.829  2.2123  ‐0.01225 0.78552 6.2  ‐1.2165  0.10269 ‐4.7E‐05 4.5  1  7.39

4.4  ‐1.7798  ‐1.7089  ‐1.8192  ‐1.9011  2.2181  ‐0.01146 0.80792 6.2  ‐1.2169  0.10304 ‐3.9E‐05 4.5  1  7.46

4.6  ‐1.8469  ‐1.7731  ‐1.8923  ‐1.9712  2.223  ‐0.01176 0.83126 6.2  ‐1.2175  0.10324 ‐2.7E‐05 4.5  1  7.52

4.8  ‐1.9063  ‐1.8303  ‐1.9573  ‐2.0326  2.2268  ‐0.01288 0.8524  6.2  ‐1.2182  0.10337 ‐1.4E‐05 4.5  1  7.64

5  ‐1.966  ‐1.8882  ‐2.0245  ‐2.0928  2.2299  ‐0.01486 0.87314 6.2  ‐1.2189  0.10353 0  4.5  1  7.78

5.5  ‐2.1051  ‐2.0232  ‐2.1908  ‐2.2288  2.2389  ‐0.0195  0.91466 6.2  ‐1.2204  0.1046  0  4.5  1  8.07

6  ‐2.2421  ‐2.1563  ‐2.3659  ‐2.3579  2.2377  ‐0.02638 0.9487  6.2  ‐1.2232  0.1075  0  4.5  1  8.48

6.5  ‐2.3686  ‐2.2785  ‐2.5322  ‐2.477  2.215  ‐0.03951 0.97643 6.2  ‐1.2299  0.11231 0  4.5  1  8.9 

7  ‐2.4827  ‐2.3881  ‐2.6818  ‐2.5854  2.172  ‐0.05914 0.99757 6.2  ‐1.2408  0.11853 0  4.5  1  9.2 
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7.5  ‐2.5865  ‐2.4874  ‐2.8176  ‐2.6854  2.1187  ‐0.08161 1.0121  6.2  ‐1.2543  0.12507 0  4.5  1  9.48

8  ‐2.6861  ‐2.5829  ‐2.9438  ‐2.7823  2.0613  ‐0.10382 1.0232  6.2  ‐1.2688  0.13146 0  4.5  1  9.57

8.5  ‐2.782  ‐2.6752  ‐3.0597  ‐2.8776  2.0084  ‐0.12114 1.0335  6.2  ‐1.2839  0.13742 0  4.5  1  9.62

9  ‐2.8792  ‐2.7687  ‐3.1713  ‐2.9759  1.9605  ‐0.13407 1.0453  6.2  ‐1.2989  0.14294 0  4.5  1  9.66

9.5  ‐2.9769  ‐2.8634  ‐3.2785  ‐3.076  1.9189  ‐0.14364 1.0567  6.2  ‐1.313  0.14781 0  4.5  1  9.66

10  ‐3.0702  ‐2.9537  ‐3.3776  ‐3.1726  1.8837  ‐0.15096 1.0651  6.2  ‐1.3253  0.15183 0  4.5  1  9.66

 
 

BSSA13  Anelastic attenuation  Linear site term  Nonlinear site term  Basin depth 
Period(sec

) 
c3 

(globalCATW) 
c3 

(ChinaTurkey) 
c3 

(ItalyJapan)

c  Vc (m/s) Vref (m/s) f1  f3  f4  f5  f6 (1/km) f7 

‐1  0.00000  0.00435  ‐0.00033  ‐0.8050  950.00  760  0  0.1  ‐0.1000  ‐0.00844 ‐9.9  ‐9.9 

0  0.00000  0.00286  ‐0.00255  ‐0.5150  925.00  760  0  0.1  ‐0.1500  ‐0.00701 ‐9.9  ‐9.9 

0.01  0.00000  0.00282  ‐0.00244  ‐0.5257  930.00  760  0  0.1  ‐0.1483  ‐0.00701 ‐9.9  ‐9.9 

0.02  0.00000  0.00278  ‐0.00234  ‐0.5362  967.50  760  0  0.1  ‐0.1471  ‐0.00728 ‐9.9  ‐9.9 

0.022  0.00000  0.00276  ‐0.00229  ‐0.5403  964.23  760  0  0.1  ‐0.1477  ‐0.00732 ‐9.9  ‐9.9 

0.025  0.00000  0.00275  ‐0.00225  ‐0.5410  961.65  760  0  0.1  ‐0.1496  ‐0.00736 ‐9.9  ‐9.9 

0.029  0.00000  0.00276  ‐0.00221  ‐0.5391  959.61  760  0  0.1  ‐0.1525  ‐0.00737 ‐9.9  ‐9.9 

0.03  0.00000  0.00276  ‐0.00217  ‐0.5399  959.71  760  0  0.1  ‐0.1549  ‐0.00735 ‐9.9  ‐9.9 

0.032  0.00000  0.00277  ‐0.00212  ‐0.5394  956.83  760  0  0.1  ‐0.1574  ‐0.00731 ‐9.9  ‐9.9 

0.035  0.00000  0.00278  ‐0.00210  ‐0.5358  955.39  760  0  0.1  ‐0.1607  ‐0.00721 ‐9.9  ‐9.9 

0.036  0.00000  0.00280  ‐0.00207  ‐0.5315  954.35  760  0  0.1  ‐0.1641  ‐0.00717 ‐9.9  ‐9.9 

0.04  0.00000  0.00282  ‐0.00205  ‐0.5264  953.91  760  0  0.1  ‐0.1678  ‐0.00698 ‐9.9  ‐9.9 

0.042  0.00000  0.00285  ‐0.00203  ‐0.5209  954.10  760  0  0.1  ‐0.1715  ‐0.00687 ‐9.9  ‐9.9 

0.044  0.00000  0.00287  ‐0.00202  ‐0.5142  955.15  760  0  0.1  ‐0.1760  ‐0.00677 ‐9.9  ‐9.9 

0.045  0.00000  0.00290  ‐0.00200  ‐0.5067  957.18  760  0  0.1  ‐0.1810  ‐0.00672 ‐9.9  ‐9.9 

0.046  0.00000  0.00292  ‐0.00199  ‐0.4991  960.17  760  0  0.1  ‐0.1862  ‐0.00667 ‐9.9  ‐9.9 

0.048  0.00000  0.00294  ‐0.00199  ‐0.4916  963.44  760  0  0.1  ‐0.1915  ‐0.00656 ‐9.9  ‐9.9 
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0.05  0.00000  0.00296  ‐0.00199  ‐0.4850  967.06  760  0  0.1  ‐0.1963  ‐0.00647 ‐9.9  ‐9.9 

0.055  0.00000  0.00296  ‐0.00200  ‐0.4788  970.75  760  0  0.1  ‐0.2014  ‐0.00625 ‐9.9  ‐9.9 

0.06  0.00000  0.00297  ‐0.00202  ‐0.4735  973.97  760  0  0.1  ‐0.2066  ‐0.00607 ‐9.9  ‐9.9 

0.065  0.00000  0.00297  ‐0.00204  ‐0.4687  976.38  760  0  0.1  ‐0.2120  ‐0.00593 ‐9.9  ‐9.9 

0.067  0.00000  0.00297  ‐0.00208  ‐0.4646  977.78  760  0  0.1  ‐0.2176  ‐0.00588 ‐9.9  ‐9.9 

0.07  0.00000  0.00296  ‐0.00211  ‐0.4616  978.02  760  0  0.1  ‐0.2232  ‐0.00582 ‐9.9  ‐9.9 

0.075  0.00000  0.00296  ‐0.00216  ‐0.4598  977.23  760  0  0.1  ‐0.2287  ‐0.00573 ‐9.9  ‐9.9 

0.08  0.00000  0.00294  ‐0.00221  ‐0.4601  974.98  760  0  0.1  ‐0.2337  ‐0.00567 ‐9.9  ‐9.9 

0.085  0.00000  0.00293  ‐0.00227  ‐0.4620  972.16  760  0  0.1  ‐0.2382  ‐0.00563 ‐9.9  ‐9.9 

0.09  0.00000  0.00291  ‐0.00233  ‐0.4652  969.48  760  0  0.1  ‐0.2421  ‐0.00561 ‐9.9  ‐9.9 

0.095  0.00000  0.00290  ‐0.00238  ‐0.4688  966.90  760  0  0.1  ‐0.2458  ‐0.00560 ‐9.9  ‐9.9 

0.1  0.00000  0.00288  ‐0.00244  ‐0.4732  964.90  760  0  0.1  ‐0.2492  ‐0.00560 ‐9.9  ‐9.9 

0.11  0.00000  0.00286  ‐0.00249  ‐0.4787  963.89  760  0  0.1  ‐0.2519  ‐0.00562 ‐9.9  ‐9.9 

0.12  0.00000  0.00285  ‐0.00254  ‐0.4853  964.03  760  0  0.1  ‐0.2540  ‐0.00567 ‐9.9  ‐9.9 

0.13  0.00000  0.00283  ‐0.00258  ‐0.4931  965.34  760  0  0.1  ‐0.2556  ‐0.00572 ‐9.9  ‐9.9 

0.133  0.00000  0.00282  ‐0.00263  ‐0.5022  967.71  760  0  0.1  ‐0.2566  ‐0.00574 ‐9.9  ‐9.9 

0.14  0.00000  0.00280  ‐0.00267  ‐0.5126  970.89  760  0  0.1  ‐0.2571  ‐0.00578 ‐9.9  ‐9.9 

0.15  0.00000  0.00279  ‐0.00271  ‐0.5244  974.53  760  0  0.1  ‐0.2571  ‐0.00585 ‐9.9  ‐9.9 

0.16  0.00000  0.00276  ‐0.00275  ‐0.5392  977.78  760  0  0.1  ‐0.2562  ‐0.00591 ‐9.9  ‐9.9 

0.17  0.00000  0.00273  ‐0.00280  ‐0.5569  979.37  760  0  0.1  ‐0.2544  ‐0.00597 ‐9.9  ‐9.9 

0.18  0.00000  0.00270  ‐0.00285  ‐0.5758  979.38  760  0  0.1  ‐0.2522  ‐0.00602 ‐9.9  ‐9.9 

0.19  0.00000  0.00266  ‐0.00291  ‐0.5962  978.42  760  0  0.1  ‐0.2497  ‐0.00608 ‐9.9  ‐9.9 

0.2  0.00000  0.00261  ‐0.00297  ‐0.6192  975.61  760  0  0.1  ‐0.2466  ‐0.00614 ‐9.9  ‐9.9 

0.22  0.00000  0.00256  ‐0.00303  ‐0.6426  971.31  760  0  0.1  ‐0.2432  ‐0.00626 ‐9.9  ‐9.9 

0.24  0.00000  0.00251  ‐0.00308  ‐0.6658  965.97  760  0  0.1  ‐0.2396  ‐0.00638 ‐9.9  ‐9.9 

0.25  0.00000  0.00244  ‐0.00314  ‐0.6897  960.05  760  0  0.1  ‐0.2357  ‐0.00644 ‐9.9  ‐9.9 

0.26  0.00000  0.00238  ‐0.00319  ‐0.7133  954.24  760  0  0.1  ‐0.2315  ‐0.00650 ‐9.9  ‐9.9 

0.28  0.00000  0.00231  ‐0.00324  ‐0.7356  948.77  760  0  0.1  ‐0.2274  ‐0.00660 ‐9.9  ‐9.9 

0.29  0.00000  0.00225  ‐0.00327  ‐0.7567  943.90  760  0  0.1  ‐0.2232  ‐0.00665 ‐9.9  ‐9.9 
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0.3  0.00000  0.00220  ‐0.00330  ‐0.7749  940.75  760  0  0.1  ‐0.2191  ‐0.00670 ‐9.9  ‐9.9 

0.32  0.00000  0.00215  ‐0.00330  ‐0.7902  939.61  760  0  0.1  ‐0.2152  ‐0.00680 ‐9.9  ‐9.9 

0.34  0.00000  0.00212  ‐0.00330  ‐0.8048  939.66  760  0  0.1  ‐0.2112  ‐0.00689 ‐9.9  ‐9.9 

0.35  0.00000  0.00210  ‐0.00329  ‐0.8186  940.74  760  0  0.1  ‐0.2070  ‐0.00693 ‐9.9  ‐9.9 

0.36  0.00000  0.00210  ‐0.00327  ‐0.8298  943.02  760  0  0.1  ‐0.2033  ‐0.00697 ‐9.9  ‐9.9 

0.38  0.00000  0.00210  ‐0.00324  ‐0.8401  945.83  760  0  0.1  ‐0.1996  ‐0.00705 ‐9.9  ‐9.9 

0.4  0.00000  0.00211  ‐0.00321  ‐0.8501  949.18  760  0  0.1  ‐0.1958  ‐0.00713 ‐9.9  ‐9.9 

0.42  0.00000  0.00213  ‐0.00318  ‐0.8590  952.96  760  0  0.1  ‐0.1922  ‐0.00719 ‐9.9  ‐9.9 

0.44  0.00000  0.00216  ‐0.00313  ‐0.8685  957.31  760  0  0.1  ‐0.1884  ‐0.00726 ‐9.9  ‐9.9 

0.45  0.00000  0.00220  ‐0.00308  ‐0.8790  962.25  760  0  0.1  ‐0.1840  ‐0.00729 ‐9.9  ‐9.9 

0.46  0.00000  0.00225  ‐0.00302  ‐0.8903  967.61  760  0  0.1  ‐0.1793  ‐0.00732 ‐9.9  ‐9.9 

0.48  0.00000  0.00230  ‐0.00296  ‐0.9011  972.54  760  0  0.1  ‐0.1749  ‐0.00738 ‐9.9  ‐9.9 

0.5  0.00000  0.00235  ‐0.00291  ‐0.9118  977.09  760  0  0.1  ‐0.1704  ‐0.00744 ‐9.9  ‐9.9 

0.55  0.00000  0.00240  ‐0.00285  ‐0.9227  981.13  760  0  0.1  ‐0.1658  ‐0.00758 ‐9.9  ‐9.9 

0.6  0.00000  0.00245  ‐0.00279  ‐0.9338  984.26  760  0  0.1  ‐0.1610  ‐0.00773 ‐9.9  ‐9.9 

0.65  0.00000  0.00251  ‐0.00273  ‐0.9453  986.32  760  0  0.1  ‐0.1558  ‐0.00787 0.006  0.004 

0.667  0.00000  0.00257  ‐0.00266  ‐0.9573  987.12  760  0  0.1  ‐0.1503  ‐0.00792 0.026  0.017 

0.7  0.00000  0.00263  ‐0.00260  ‐0.9692  986.52  760  0  0.1  ‐0.1446  ‐0.00800 0.055  0.036 

0.75  0.00000  0.00269  ‐0.00253  ‐0.9811  984.70  760  0  0.1  ‐0.1387  ‐0.00812 0.092  0.059 

0.8  0.00000  0.00275  ‐0.00246  ‐0.9924  981.17  760  0  0.1  ‐0.1325  ‐0.00822 0.140  0.088 

0.85  0.00000  0.00280  ‐0.00238  ‐1.0033  976.97  760  0  0.1  ‐0.1262  ‐0.00830 0.195  0.120 

0.9  0.00000  0.00284  ‐0.00229  ‐1.0139  972.90  760  0  0.1  ‐0.1197  ‐0.00836 0.252  0.152 

0.95  0.00000  0.00288  ‐0.00220  ‐1.0250  969.79  760  0  0.1  ‐0.1126  ‐0.00841 0.309  0.181 

1  0.00000  0.00292  ‐0.00209  ‐1.0361  967.51  760  0  0.1  ‐0.1052  ‐0.00844 0.367  0.208 

1.1  0.00000  0.00295  ‐0.00198  ‐1.0467  965.94  760  0  0.1  ‐0.0977  ‐0.00847 0.425  0.233 

1.2  0.00000  0.00298  ‐0.00186  ‐1.0565  965.20  760  0  0.1  ‐0.0902  ‐0.00842 0.481  0.256 

1.3  0.00000  0.00301  ‐0.00175  ‐1.0655  965.38  760  0  0.1  ‐0.0827  ‐0.00829 0.536  0.276 

1.4  0.00000  0.00303  ‐0.00163  ‐1.0736  966.44  760  0  0.1  ‐0.0753  ‐0.00806 0.588  0.294 

1.5  0.00000  0.00304  ‐0.00152  ‐1.0808  968.24  760  0  0.1  ‐0.0679  ‐0.00771 0.638  0.309 
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1.6  0.00000  0.00304  ‐0.00141  ‐1.0867  969.94  760  0  0.1  ‐0.0604  ‐0.00723 0.689  0.324 

1.7  0.00000  0.00303  ‐0.00132  ‐1.0904  971.24  760  0  0.1  ‐0.0534  ‐0.00666 0.736  0.337 

1.8  0.00000  0.00300  ‐0.00125  ‐1.0923  971.65  760  0  0.1  ‐0.0470  ‐0.00603 0.780  0.350 

1.9  0.00000  0.00297  ‐0.00120  ‐1.0925  970.45  760  0  0.1  ‐0.0414  ‐0.00540 0.824  0.364 

2  0.00000  0.00292  ‐0.00117  ‐1.0908  966.44  760  0  0.1  ‐0.0361  ‐0.00479 0.871  0.382 

2.2  0.00000  0.00287  ‐0.00116  ‐1.0872  959.61  760  0  0.1  ‐0.0314  ‐0.00378 0.920  0.404 

2.4  0.00000  0.00281  ‐0.00115  ‐1.0819  950.34  760  0  0.1  ‐0.0271  ‐0.00302 0.969  0.427 

2.5  0.00000  0.00276  ‐0.00116  ‐1.0753  939.03  760  0  0.1  ‐0.0231  ‐0.00272 1.017  0.451 

2.6  0.00000  0.00271  ‐0.00117  ‐1.0682  926.85  760  0  0.1  ‐0.0196  ‐0.00246 1.060  0.474 

2.8  0.00000  0.00266  ‐0.00118  ‐1.0605  914.07  760  0  0.1  ‐0.0165  ‐0.00208 1.099  0.495 

3  0.00000  0.00262  ‐0.00119  ‐1.0521  900.07  760  0  0.1  ‐0.0136  ‐0.00183 1.135  0.516 

3.2  0.00000  0.00259  ‐0.00119  ‐1.0435  885.63  760  0  0.1  ‐0.0112  ‐0.00167 1.164  0.534 

3.4  0.00000  0.00258  ‐0.00119  ‐1.0350  871.15  760  0  0.1  ‐0.0093  ‐0.00158 1.188  0.551 

3.5  0.00000  0.00257  ‐0.00117  ‐1.0265  856.21  760  0  0.1  ‐0.0075  ‐0.00155 1.211  0.570 

3.6  0.00000  0.00257  ‐0.00115  ‐1.0180  840.97  760  0  0.1  ‐0.0058  ‐0.00154 1.234  0.589 

3.8  0.00000  0.00259  ‐0.00112  ‐1.0101  826.47  760  0  0.1  ‐0.0044  ‐0.00152 1.253  0.609 

4  0.00000  0.00261  ‐0.00108  ‐1.0028  812.92  760  0  0.1  ‐0.0032  ‐0.00152 1.271  0.629 

4.2  0.00000  0.00262  ‐0.00102  ‐0.9949  799.72  760  0  0.1  ‐0.0023  ‐0.00152 1.287  0.652 

4.4  0.00000  0.00262  ‐0.00095  ‐0.9859  787.55  760  0  0.1  ‐0.0016  ‐0.00150 1.300  0.674 

4.6  0.00000  0.00262  ‐0.00084  ‐0.9748  776.05  760  0  0.1  ‐0.0010  ‐0.00148 1.312  0.697 

4.8  0.00000  0.00262  ‐0.00072  ‐0.9613  765.55  760  0  0.1  ‐0.0006  ‐0.00146 1.323  0.719 

5  0.00000  0.00260  ‐0.00057  ‐0.9456  756.97  760  0  0.1  ‐0.0003  ‐0.00144 1.329  0.738 

5.5  0.00000  0.00259  ‐0.00041  ‐0.9273  735.74  760  0  0.1  ‐0.0001  ‐0.00140 1.345  0.778 

6  0.00000  0.00258  ‐0.00023  ‐0.9063  728.14  760  0  0.1  0.0000  ‐0.00138 1.350  0.803 

6.5  0.00000  0.00259  ‐0.00004  ‐0.8822  726.30  760  0  0.1  0.0000  ‐0.00137 1.349  0.815 

7  0.00000  0.00260  0.00017  ‐0.8551  728.24  760  0  0.1  0.0000  ‐0.00137 1.342  0.816 

7.5  0.00000  0.00260  0.00038  ‐0.8249  731.96  760  0  0.1  ‐0.0001  ‐0.00137 1.329  0.809 

8  0.00000  0.00263  0.00072  ‐0.7990  735.81  760  0  0.1  0.0001  ‐0.00137 1.308  0.795 

8.5  0.00000  0.00267  0.00094  ‐0.7620  739.50  760  0  0.1  0.0001  ‐0.00137 1.282  0.777 
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9  0.00000  0.00276  0.00113  ‐0.7230  743.07  760  0  0.1  0.0001  ‐0.00137 1.252  0.754 

9.5  0.00000  0.00289  0.00131  ‐0.6840  746.55  760  0  0.1  0.0001  ‐0.00136 1.218  0.729 

10  0.00000  0.00303  0.00149  ‐0.6440  750.00  760  0  0.1  0.0000  ‐0.00136 1.183  0.703 

 
 

BSSA13  Aleatory Uncertainty 
Period 
(sec) 

R1 (km)  R2 (km)  R V V1 (m/s) V2 (m/s)  1  2  1  2 

‐1  105.00  272.00  0.082  0.068  225  300  0.644  0.552  0.401  0.346 

0  110.00  270.00  0.100  0.084  225  300  0.695  0.495  0.398  0.348 

0.01  111.67  270.00  0.096  0.079  225  300  0.698  0.499  0.402  0.345 

0.02  113.10  270.00  0.092  0.079  225  300  0.702  0.502  0.409  0.346 

0.022  113.37  270.00  0.088  0.080  225  300  0.707  0.505  0.418  0.349 

0.025  113.07  270.00  0.086  0.081  225  300  0.711  0.508  0.427  0.354 

0.029  112.36  270.00  0.084  0.081  225  300  0.716  0.510  0.436  0.359 

0.03  112.13  270.00  0.081  0.082  225  300  0.721  0.514  0.445  0.364 

0.032  111.65  270.00  0.078  0.082  225  300  0.726  0.516  0.454  0.369 

0.035  110.64  270.00  0.077  0.083  225  300  0.730  0.518  0.462  0.374 

0.036  109.53  270.00  0.075  0.083  225  300  0.734  0.520  0.470  0.379 

0.04  108.28  270.00  0.073  0.084  225  300  0.738  0.521  0.478  0.384 

0.042  106.99  270.00  0.072  0.083  225  300  0.742  0.523  0.484  0.390 

0.044  105.41  270.00  0.070  0.083  225  300  0.745  0.525  0.490  0.397 

0.045  103.61  270.00  0.069  0.082  225  300  0.748  0.527  0.496  0.405 

0.046  101.70  270.00  0.067  0.081  225  300  0.750  0.529  0.499  0.412 

0.048  99.76  270.00  0.065  0.079  225  300  0.752  0.530  0.502  0.419 

0.05  97.93  270.00  0.063  0.077  225  300  0.753  0.532  0.503  0.426 

0.055  96.03  270.00  0.062  0.075  225  300  0.753  0.534  0.502  0.434 

0.06  94.10  270.01  0.061  0.073  225  300  0.753  0.536  0.499  0.441 
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0.065  92.08  270.02  0.061  0.070  225  300  0.752  0.538  0.495  0.448 

0.067  90.01  270.02  0.061  0.067  225  300  0.750  0.540  0.489  0.455 

0.07  87.97  270.03  0.062  0.064  225  300  0.748  0.541  0.483  0.461 

0.075  85.99  270.04  0.064  0.062  225  300  0.745  0.542  0.474  0.466 

0.08  84.23  270.05  0.067  0.060  225  300  0.741  0.543  0.464  0.468 

0.085  82.74  270.06  0.072  0.058  225  300  0.737  0.543  0.452  0.468 

0.09  81.54  270.07  0.076  0.057  225  300  0.734  0.542  0.440  0.466 

0.095  80.46  270.08  0.082  0.057  225  300  0.731  0.542  0.428  0.464 

0.1  79.59  270.09  0.087  0.057  225  300  0.728  0.541  0.415  0.458 

0.11  79.05  270.11  0.093  0.059  225  300  0.726  0.540  0.403  0.451 

0.12  78.85  270.13  0.099  0.061  225  300  0.724  0.539  0.392  0.441 

0.13  78.99  270.15  0.104  0.063  225  300  0.723  0.538  0.381  0.430 

0.133  79.47  270.15  0.110  0.066  225  300  0.722  0.538  0.371  0.417 

0.14  80.26  270.16  0.115  0.069  225  300  0.721  0.537  0.362  0.403 

0.15  81.33  270.16  0.120  0.072  225  300  0.720  0.537  0.354  0.388 

0.16  82.86  270.16  0.125  0.076  225  300  0.720  0.536  0.349  0.372 

0.17  84.72  270.14  0.128  0.079  225  300  0.718  0.536  0.346  0.357 

0.18  86.67  270.11  0.131  0.081  225  300  0.717  0.536  0.344  0.341 

0.19  88.73  270.06  0.134  0.084  225  300  0.714  0.537  0.343  0.324 

0.2  90.91  270.00  0.136  0.086  225  300  0.711  0.539  0.344  0.309 

0.22  93.04  269.83  0.138  0.087  225  300  0.708  0.541  0.345  0.294 

0.24  95.08  269.59  0.140  0.088  225  300  0.703  0.544  0.347  0.280 

0.25  97.04  269.45  0.141  0.089  225  300  0.698  0.547  0.350  0.266 

0.26  98.87  269.30  0.141  0.090  225  300  0.693  0.550  0.353  0.255 

0.28  100.53  268.96  0.140  0.091  225  300  0.687  0.554  0.357  0.244 

0.29  102.01  268.78  0.139  0.092  225  300  0.681  0.557  0.360  0.236 

0.3  103.15  268.59  0.138  0.093  225  300  0.675  0.561  0.363  0.229 

0.32  104.00  268.20  0.135  0.094  225  300  0.670  0.566  0.366  0.223 

0.34  104.70  267.79  0.133  0.094  225  300  0.664  0.570  0.369  0.218 
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0.35  105.26  267.58  0.130  0.095  225  300  0.658  0.573  0.372  0.215 

0.36  105.61  267.37  0.128  0.095  225  300  0.653  0.576  0.375  0.212 

0.38  105.87  266.95  0.125  0.095  225  300  0.648  0.578  0.378  0.210 

0.4  106.02  266.54  0.122  0.095  225  300  0.643  0.580  0.381  0.210 

0.42  106.03  266.16  0.120  0.094  225  300  0.638  0.583  0.384  0.210 

0.44  105.92  265.80  0.117  0.093  225  300  0.634  0.585  0.388  0.211 

0.45  105.79  265.64  0.115  0.092  225  300  0.629  0.589  0.393  0.213 

0.46  105.69  265.48  0.113  0.091  225  300  0.624  0.592  0.398  0.216 

0.48  105.59  265.21  0.111  0.089  225  300  0.619  0.595  0.404  0.219 

0.5  105.54  265.00  0.109  0.088  225  300  0.615  0.599  0.410  0.224 

0.55  105.61  264.74  0.108  0.086  225  300  0.610  0.603  0.417  0.229 

0.6  105.83  264.83  0.106  0.085  225  300  0.605  0.607  0.424  0.235 

0.65  106.20  265.20  0.105  0.083  225  300  0.599  0.611  0.431  0.243 

0.667  106.75  265.38  0.103  0.082  225  300  0.593  0.615  0.440  0.250 

0.7  107.48  265.78  0.102  0.081  225  300  0.587  0.619  0.448  0.258 

0.75  108.39  266.51  0.100  0.080  225  300  0.581  0.622  0.457  0.266 

0.8  109.62  267.32  0.099  0.079  225  300  0.576  0.624  0.466  0.274 

0.85  111.08  268.14  0.099  0.079  225  300  0.570  0.625  0.475  0.281 

0.9  112.71  268.90  0.098  0.078  225  300  0.564  0.626  0.483  0.288 

0.95  114.50  269.55  0.098  0.078  225  300  0.558  0.626  0.491  0.294 

1  116.39  270.00  0.098  0.078  225  300  0.553  0.625  0.498  0.298 

1.1  118.30  270.18  0.099  0.078  225  300  0.548  0.624  0.505  0.302 

1.2  120.19  269.42  0.100  0.077  225  300  0.543  0.623  0.511  0.306 

1.3  122.01  267.82  0.101  0.077  225  300  0.539  0.622  0.516  0.309 

1.4  123.75  265.45  0.102  0.077  225  300  0.535  0.620  0.521  0.312 

1.5  125.38  262.41  0.104  0.076  225  300  0.532  0.619  0.525  0.315 

1.6  126.90  258.78  0.105  0.075  225  300  0.529  0.618  0.528  0.318 

1.7  128.14  254.66  0.106  0.074  225  300  0.527  0.618  0.530  0.321 

1.8  129.11  250.11  0.106  0.072  225  300  0.526  0.618  0.531  0.323 



104 

1.9  129.86  245.25  0.106  0.071  225  300  0.526  0.618  0.532  0.326 

2  130.37  240.14  0.105  0.069  225  300  0.526  0.618  0.532  0.329 

2.2  130.67  229.55  0.103  0.066  225  300  0.527  0.619  0.533  0.332 

2.4  130.81  219.05  0.100  0.064  225  300  0.528  0.619  0.533  0.335 

2.5  130.81  214.04  0.097  0.061  225  300  0.530  0.619  0.534  0.337 

2.6  130.72  209.32  0.094  0.058  225  300  0.531  0.620  0.535  0.340 

2.8  130.57  201.08  0.091  0.056  225  300  0.532  0.619  0.536  0.342 

3  130.36  195.00  0.088  0.053  225  300  0.534  0.619  0.537  0.344 

3.2  130.13  191.61  0.084  0.050  225  300  0.535  0.618  0.538  0.345 

3.4  129.90  190.73  0.081  0.047  225  300  0.535  0.618  0.540  0.346 

3.5  129.71  191.11  0.078  0.045  225  300  0.536  0.617  0.541  0.347 

3.6  129.56  191.98  0.075  0.042  225  300  0.536  0.616  0.542  0.348 

3.8  129.49  195.01  0.072  0.039  225  300  0.536  0.616  0.543  0.349 

4  129.49  199.45  0.070  0.036  225  300  0.536  0.616  0.543  0.349 

4.2  129.57  204.93  0.068  0.034  225  300  0.535  0.616  0.542  0.349 

4.4  129.71  211.09  0.066  0.033  225  300  0.534  0.617  0.540  0.347 

4.6  129.87  217.56  0.064  0.032  225  300  0.533  0.619  0.538  0.345 

4.8  130.05  223.99  0.063  0.032  225  300  0.531  0.621  0.535  0.341 

5  130.22  230.00  0.061  0.032  225  300  0.528  0.622  0.532  0.335 

5.5  130.39  241.86  0.060  0.031  225  300  0.526  0.624  0.528  0.329 

6  130.53  249.34  0.059  0.031  225  300  0.524  0.625  0.524  0.321 

6.5  130.63  252.94  0.059  0.032  225  300  0.520  0.634  0.517  0.312 

7  130.70  253.12  0.059  0.033  225  300  0.515  0.636  0.514  0.302 

7.5  130.72  250.39  0.058  0.034  225  300  0.512  0.634  0.511  0.270 

8  130.87  245.23  0.059  0.033  225  300  0.510  0.630  0.507  0.278 

8.5  130.71  238.13  0.059  0.031  225  300  0.509  0.622  0.503  0.265 

9  130.50  229.56  0.060  0.028  225  300  0.509  0.613  0.498  0.252 

9.5  130.26  220.02  0.060  0.025  225  300  0.509  0.604  0.492  0.239 

10  130.00  210.00  0.060  0.025  225  300  0.510  0.604  0.487  0.239 
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