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ABSTRACT 

A model for estimating average horizontal values of pseudo-absolute spectral accelerations 
generated by crustal earthquakes is developed as part of this study. The NGA-West2 Project 
significantly expanded the data base of motions recorded during earthquakes and offered the 
opportunity to re-examine and update the NGA relationships published by the NGA developers 
in 2008. The new data set comprised 21,539 recordings obtained during earthquakes with 
magnitudes ranging from 3 to 7.9, recorded at distance ranging from 0.2 km to well over 300 km, 
and for recording stations with Vs30 ranging from 100 to 2000 m/sec. These data spanned the 
large magnitude range (M = 4.5 to 7.9) and the small magnitude range. 

This study concentrated on the use of the large magnitude free field data set recorded at 
distances less than 175 km; this data set consists of 7120 recordings recorded at sites with Vs30 
ranging from 100 to 2000 m/sec. These were further segregated into three Vs30 bins. One bin was 
for data recorded at sites with Vs30 = 100 to 211 m/sec, which constitute "soft soil sites." The 
second bin comprised the data recorded at sites with 211 m/sec < Vs30 < 450 m/sec, which exhibit 
moderate to strong nonlinear characteristics, especially for sites with Vs30 less than about 300 
m/sec (~1000 fps). 

The third bin was for data recorded at sites with Vs30 = 450 to 2000 m/sec. These sites 
may be reasonably designated as "quasi-linear sites" because they appear to show very weak 
nonlinearity, especially for sites with Vs30 exceeding about 600 m/sec (~2000 fps). The model 
presented in this report covers only sites with this range of Vs30. 

The use of this model should be limited to M ≥ 5, to distances less than about 150 km, 
and to Vs30 ≥ 450 m/sec. For sites with Vs30 > 1200 m/sec, the PSA values calculated using Vs30 = 
1200 m/sec are used. 
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1 Data Selection 

1.1 INTRODUCTION 

The development of a model for estimating average horizontal values of pseudo-absolute spectral 
accelerations generated by crustal earthquakes using the most recently compiled earthquake 
ground motions data is presented in this report. The data compilation and other supporting 
activities are part of the NGA-West2 research project being completed under the auspices of 
PEER. 

1.2 GENERAL 

As part of the NGA-West2 Project, a flatfile was created containing the information pertaining to 
21,539 recordings obtained during earthquakes with magnitudes ranging from 3 to 7.9. The 
spectral ordinates provided in this flatfile comprised the RotD50 spectral values (five-percent 
damping) obtained by rotating the two recorded horizontal components as described in Boore 
(2010). Of these recordings, 10,943 were gathered from earthquakes with magnitudes ranging 
from 4.5 to 7.9, which are considered the "large magnitude" data set. Removing entries that had 
no listed magnitude (M), mechanism, closest distance to the source (Rrup), Joyner-Boore distance 
(Rjb), depth to top of rupture, Vs30, peak ground acceleration (PGA), peak ground velocity (PGV), 
peak ground displacement (PGD), and spectral values for T = 0.01 to 20 sec, resulted in reducing 
the number of entries to 10,819. Of these, 6642 recordings are at free-field sites (Geomatrix 
designation: A, A-B, B, F, I, I-F, K, L, and M), and 4097 recordings are at sites where no 
Geomatrix designation was included. The latter recordings were considered to have been at free-
field sites.  That is, the total number of "free-field" recordings contained the "large magnitude" 
data set is 10,739. 

Examination of the recordings for a number of earthquakes show a significant change in 
the slope of PGA (and spectral values) versus Rrup for Rrup exceeding 150 to 175 km. 
Accordingly, only recordings obtained at Rrup ≤ 175 km were selected for this study. In addition, 
all earthquakes having less than three recordings were not included. The recordings from a 
number of earthquakes, such as the Taiwan's Smart Array, also were not included.  

Consequently, the remaining recordings totaled 7,120 and covered the following ranges: 

 M = 4.5 to 7.9 

 Rrup = 0.2 to 175 km 

 Vs30 = 100 to 2000 m/sec 
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These 7120 recordings were generated by 160 earthquakes, which can be summarized as 
follows: eighty-three earthquakes in California; six earthquakes in Taiwan – the Chi-Chi main 
shock and five aftershocks; and seventy-one earthquakes in: other parts of the U.S. (Alaska, 
Idaho, and Nevada), in Canada, China, Greece, Iran, Italy, Japan, Mexico, New Zealand and 
Turkey. 

1.3 EXAMINATION OF DATA 

Examination of the recorded data led to binning the data into three Vs30 ranges. One bin was for 
data recorded at sites with Vs30 ≤ 211 m/sec (Vs30 = 100 to 211 m/sec), which constitute "soft soil 
sites." The choice of Vs30 = 211 m/sec was made to include sites (e.g., El Centro array #7) that 
are known to have "soft soil sites" characteristics. Another bin was for data recorded at sites with 
Vs30 ≥ 450 m/sec (Vs30 = 450 to 2000 m/sec). The choice of Vs30 = 450 is based on the 
considerations discussed later in this section; these sites may be reasonably designated as "quasi-
linear sites" because they appear to show very weak nonlinearity, especially for sites with Vs30 
exceeding about 600 m/sec (~2000 fps). The remaining data were recorded at sites with 211 
m/sec < Vs30 < 450 m/sec, which exhibit moderate to strong nonlinear characteristics, especially 
for sites with Vs30 less than about 300 m/sec (~1000 fps). 

The number of recordings at "soft soil sites," Vs30 ≤ 211 m/sec, is 432, of which 51 were 
recorded during the Chi-Chi, Taiwan, mainshock, and 176 were recorded during the five Chi-Chi 
aftershocks. The number of recordings at "nonlinear soil sites," 211 m/sec < Vs30 < 450 m/sec, is 
4158, of which 153 were recorded during the Chi-Chi, Taiwan, mainshock, and 558 were 
recorded during the five Chi-Chi aftershocks. The number of recordings at "quasi-linear sites," 
Vs30 ≥ 450 m/sec, is 2545, of which 192 were recorded during the Chi-Chi, Taiwan, mainshock, 
and 674 were recorded during the five Chi-Chi aftershocks. 

The magnitude-distance, magnitude-Vs30, magnitude-PGA, magnitude-PGV, and 
magnitude-peak PGD distributions of the 7120 recordings are presented in Figures 1.1, 1.2, 1.3, 
1.4, and 1.5, respectively. Note that the spectral values for T = 0.01 sec are used in this study to 
represent PGA in lieu of the peak value of the rotated accelerogram. 

The information gleamed from Figures 1.1 through 1.5 may be summarized as follows: 

 Figure 1.1 (magnitude-distance distribution) shows that the number of 
recordings, at distances less than about 10 km, has significantly increased 
since the first NGA project. However, the recordings within each of the 
Vs30 bins, is still not sufficiently robust. It is, therefore, difficult to 
"mathematically" constrain the values at small distances, particularly for 
large magnitude earthquakes. Reliance must also be placed on some 
physical attributes, analytical results, and on judgment. 

 Figure 1.2 (magnitude-Vs30 distribution) shows that only a few recordings 
(65) were at sites with Vs30 ≥ 1000 m/sec. That is, over 95% of the 
recordings within the "quasi-linear sites" bin are on stiff or firm soils, and 
soft or weathered rock. 

 Figures 1.3, 1.4, and 1.5 (magnitude-PGA, magnitude-PGV, magnitude-
PGD distributions, respectively) show that except for a handful of 
recordings, the values of PGA are less than about 0.8 g, the values of PGV 
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are less than about 100 cm/sec, and the values of PGD are less than about 
80 cm. 

 Figures 1.3, 1.4, and 1.5 also show that PGA is far less dependent on 
magnitude than PGV, and that PGD is somewhat more dependent on 
magnitude than PGV. 
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Figure 1.1 Magnitude-distance distribution of NGA-West2 free-field records for 
distances ≤ 175 km and M ≥ 4.5 grouped in three Vs30 bins (Vs30 ≥ 450 
m/sec; 211 m/sec < Vs30 < 450 m/sec; and Vs30 ≤ 211 m/sec). 

 

 

 

 

 

 

 



4 

 
 
 
 
 

Vs30 (m/s)

100 1000

M
o

m
e

n
t 

m
ag

n
it

u
d

e

4

5

6

7

8 Vs30 => 450 m/s (2545)

211 m/s < Vs30 < 450 m/s (4158)

Vs30 <= 211 m/s (432)

 

Figure 1.2 Magnitude-Vs30 distribution of NGA-West2 free field records for distances 
≤ 175 km and M ≥ 4.5 grouped in three Vs30 bins (Vs30 ≥ 450 m/sec; 211 
m/sec < Vs30 < 450 m/sec; and Vs30 ≤ 211 m/sec). 
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Figure 1.3 Magnitude-PGA distribution of NGA-West2 free field records for distances 
≤ 175 km and M ≥ 4.5 grouped in three Vs30 bins (Vs30 ≥ 450 m/sec; 211 
m/sec < Vs30 < 450 m/sec; and Vs30 ≤ 211 m/sec). 
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Figure 1.4 Magnitude-PGV distribution of NGA-West2 free field records for distances 
≤ 175 km and M ≥ 4.5 grouped in three Vs30 bins (Vs30 ≥ 450 m/sec; 211 
m/sec < Vs30 < 450 m/sec; and Vs30 ≤ 211 m/sec). 
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Figure 1.5 Magnitude-PGD distribution of NGA-West2 free field records for distances 
≤ 175 km and M ≥ 4.5 grouped in three Vs30 bins (Vs30 ≥ 450 m/sec; 211 
m/sec < Vs30 < 450 m/sec; and Vs30 ≤ 211 m/sec). 

1.4 EXAMINATION OF NONLINEARITY 

The sites at which the recordings examined in the previous section comprise a wide range of 
subsurface conditions. To assess the extent of nonlinearity exhibited at the recording sites, a 
proxy for "shear strain" induced by the shaking will be used. Seismologist have long suggested 
that the ratio of the particle velocity at the ground surface (PGV) divided by the average shear 
wave velocity of the underlying subsurface profile is a reasonable indication of the maximum 
shear strain, max, induced during shaking. That is: 

 max s30PGV / V 
 (1.1) 

The use of Vs30 in this study is dictated by the fact that only that information is available for all 
the sites. 

To estimate a "shear stress-shear strain" relationship, PGA can be used as a proxy for 
shear stress. Accordingly, the values of PGA versus max for each of the site bins described above 
can be readily calculated using the information provided in the flatfile for each site. These values 
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are presented in Figure 1.6, which shows that progressively smaller strains are induced as the 
"stiffness" of the sites increases and also shows that progressively larger strains are induced as 
the level of shaking is increased.  

The information available for the sites within "quasi-linear sites" bin (Vs30 = 450 to 2000 
m/sec) are examined in more detail in Figure 1.7. The cumulative distribution of max for the 
recordings obtained during the Chi-Chi, Taiwan, mainshock, those obtained during the Chi-Chi, 
Taiwan, five aftershocks included in the flatfile, and those for all the other events within this bin 
are presented in Figure 1.7. The information in Figure 1.7 indicates that the behavior of the sites 
in Taiwan during the main shock is significantly different from that during the five aftershocks 
and from that of all the other recordings for sites with Vs30 = 450 to 2000 m/sec. Because of this, 
it was felt that the recordings from the Chi-Chi, Taiwan, mainshock should not be included in the 
Vs30 = 450 to 2000 m/sec bin. However, including the five Chi-Chi aftershocks is appropriate. 
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Figure 1.6 Distribution of maximum strain (PGV/Vs30) of NGA-West2 free-field 
recording stations at distances ≤ 175 km and M ≥ 4.5 grouped in three Vs30 
bins (Vs30 ≥ 450 m/sec; 211 m/sec < Vs30 < 450 m/sec; and Vs30 ≤ 211 
m/sec). 
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Figure 1.7 Distribution of maximum strain (PGV/Vs30) of NGA-West2 free field 
recording stations at distances ≤ 175 km with Vs30 ≥ 450 m/sec during the 
Chi-Chi main shock, Chi-Chi aftershocks, and all other earthquakes, M ≥ 
4.5. 

Totally different trends were observed for the recordings included in the other two bins in 
that including or not including the recordings from the Chi-Chi mainshock had little effect on the 
cumulative distribution of max. Therefore, the recordings from the Chi-Chi mainshock will be 
included in the "NL soil sites" and the "soft soil sites" bins, when the data in those bins are 
studied in more detail. 

The cumulative distribution of max for the recordings within the "quasi-linear sites" bin, 
(excluding the recordings obtained during the Chi-Chi main shock), those obtained within the 
"NL soil sites" bin, and those within the "soft soil sites" bin are presented in Figure 1.8. The 
information in this figure and the modulus reduction curves shown in Figure 1.9 lead to the 
following observations: 

 The modulus reduction curves shown in Figure 1.9 cover a wide range of 
geotechnical materials, from moderately dense sands at relatively shallow 
depths to competent rock. It is believed that for the "quasi-linear sites" 
(Vs30 = 450 to 2000), probably the most applicable curves are: 
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 a curve very close to that identified as the peninsular range in Figure 1.9 
for sites with Vs30 ranging from about 450 m/sec to 600 m/sec 

 the weathered rock curve for sites with Vs30 ranging from about 600 m/sec 
to 1000 m/sec; and 

 a curve about halfway between the weathered rock and the competent 
rock, up to a maximum shear strain of about 0.1% for sites with Vs30 = 
1000 to 2000 m/sec. The remaining "soil" modulus reduction curves in 
Figure 1.9 are applicable to the sites with Vs30 < 450 m/sec, including the 
soft soil sites. 

 The modulus reduction curves in Figure 1.9 show that for soils (the lower 
5 curves in Figure 1.9), the maximum modulus can decrease by about 8 to 
16% (average of about 12%) if the strain levels induced by shaking are as 
high as about 0.01%. In this regard, it should be noted that the shear 
strains used in Figure 1.9 represent laboratory-applied shear strains of 
uniform amplitude over a number of cycles. The shear strains induced by 
the earthquake ground motions are not uniform in amplitude. The use of 
an "equivalent uniform strain" to represent the strain level induced during 
shaking was introduced as part of the equivalent linear site response 
methodology (Idriss and Seed, 1967; Seed and Idriss, 1969). The 
equivalent uniform strain is typically 0.4 to about 0.75 of the maximum 
shear strain, depending on the duration of shaking, which is a function of 
magnitude, among others. The following equation has been used for this 
purpose (Idriss and Sun, 1992): 

 unif

max

M 1

10







 (1.2) 

 On that basis then, and using a ratio of unif to max of say two-thirds, the 
0.01% uniform strain would correspond to 0.015%. At this level of strain, 
the soil is behaving mostly in the linear range with very thin hysteretic 
loops as shaking goes on. Accordingly, a modulus reduction of less than 
about 12% would constitute essentially a linear or quasi-linear behavior. 

 A modulus reduction of 12% corresponds to about a uniform shear strain 
of about 0.01%, for soil sites with Vs30 < 450 m/sec as noted above, 
corresponds to about 0.016% for sites with Vs30 = 450 to 600 m/sec, and 
corresponds to about 0.05 to 0.1% for sites with Vs30 greater than 600 
m/sec. 

 Using these uniform shear strain values as the demarcation between 
essentially linear and non-linear site response and taking into account the 
conversion from uniform to maximum strain, the cumulative plots in 
Figure 1.8 indicate that: 

 no more than about 4% of the sites in the "quasi-linear site" bin extended 
into the mildly nonlinear range; 



11 

 at least 30% of the sites in the "NL soil sites" bin extended into the 
moderately to high nonlinear range 

 close to 70% of the sites in the "soft soil sites" bin extended well into the 
nonlinear range. 

The recordings at the sites in the "quasi-linear sites" bin are further examined by binning 
the recording in eight Vs30 bins (Vs30 = 450 to 800 m/sec in 50 m/sec increments and one bin for 
Vs30 = 800 to 2000 m/sec) and by using Equation (1.2) to obtain the proxy equivalent uniform 
shear strain for each recording. The corresponding values of PGA versus equivalent uniform 
shear strain for the eight bins are presented in Figure 1.10. Using the values above for 
demarcation of linear-nonlinear behavior and the information in Figure 1.10 produces the results 
listed in Table 1.1. 

The data in the other two Vs30 will be examined in more detail in separate reports. Such 
an examination will incorporate the results of prior studies, such as those completed by Choi and 
Stewart (2005), Walling et al. (2008), and Kamai et al. (2012). 
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Figure 1.8 Distribution of maximum strain (PGV/Vs30) of NGA-West2 free-field 
recording stations at distances ≤ 175 km for the "quasi linear sites" (Vs30 = 
450 to 2000 m/sec), the "NL soil sites" (Vs30 = 211 to 450 m/sec), and the 
"soft soil sites" (Vs30 = 100 to 211 m/sec). 
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Figure 1.9 Variations of G/Gmax with uniform shear strain for various geotechnical 
materials. 
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Figure 1.10 Distribution of equivalent uniform strain of NGA-West2 free-field 
recording stations with Vs30 ≥ 450 m/sec at distances ≤ 175 km and M ≥ 4.5 
for all earthquakes except Chi-Chi mainshock, binned in 50 m/sec 
increments in Vs30 from Vs30 = 450 to 800 m/sec and for Vs30 ≥ 800 m/sec. 
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Table 1.1 Number of recordings, binned in 50 m/sec increments in Vs30 from Vs30 = 450 to 800 
m/sec and for Vs30 ≥ 800 m/sec, and number of recordings at sites, within each Vs30 

bin, where response can be considered nonlinear (NL). 

Range of Vs30 within the bin 
Number of recordings within 

bin 
NL sites ** Percent NL 

450 to 500 m/sec 575 30 5.2 

500 to 550 m/sec 506 20 4.0 

550 to 600 m/sec 365 16 4.4 

600 to 650 m/sec 292 0 0 

650 to 700 m/sec 232 1 0.4 

700 to 750 m/sec 98 0 0 

750 to 800 m/sec 101 0 0 

800 to 2000 m/sec 184 0 0 

All recordings * 
450 to 2000 m/sec 

 

2353 

 

67 

 

2.9 

 

* NGA-West2 free field recording stations with Vs30 ≥ 450 m/sec at distances ≤ 175 km and M ≥ 
4.5 for all earthquakes except Chi-Chi mainshock 

** Number of recordings at sites where response can be considered nonlinear (NL) 
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2 EMPIRICAL MODEL FOR ESTIMATING 
AVERAGE HORIZONTAL VALUES OF 
PSEUDO-ABSOLUTE SPECTRAL 
ACCELERATIONS (PSA) GENERATED BY 
CRUSTAL EARTHQUAKES 

2.1 GENERAL 

Based on the considerations summarized in Sections 2.2 and 2.3, an empirical model for 
estimating the average horizontal values of PSA (5% spectral damping) is developed using only 
the recordings described above as being part of the "quasi-linear sites" Vs30 bin (Vs30 = 450 to 
2000 m/sec). These recordings, totaling 2353, were obtained during 152 earthquakes, 73 of 
which occurred in California, one in Nevada, 5 in Japan, the Wenchuan main shock and its 53 
aftershocks in Chica, 2 in New Zealand and 17 in other countries (Canada, Mexico, Taiwan, 
Italy, Turkey, and Iran). These earthquakes are listed in Appendix A; the earthquake 
identification number (EQID) identified in the flatfile, the earthquake name, magnitude, 
mechanism and number of recording are also listed in Appendix A. 

The general form of the model adopted in this study is as follow: 

       2

1 2 3 1 2 rup s30 rupLn( PSA) M 8.5 M M Ln R 10 Ln V R F                
 (2.1) 

The variables included in Equation (2.1) are defined as follows: PSA in g's is the 5% 
damped pseudo-absolute spectral acceleration; M is moment magnitude; Rrup in km is the closest 
distance to the rupture surface; Vs30 in m/sec is the average shear wave velocity over the top 30 m 
below the ground surface; and F refers to source mechanism, with F = 0 referring to strike slip 
and F =1 referring to reverse mechanisms. Note that the reverse mechanism data base used in 
this study includes all data from events with mechanism equal to 2, 3, and 4, and all strike slip 
mechanism data base includes all data from events with mechanism 0 and 1. The sparsity of data 
for mechanism 1 (normal faulting) precluded separating its data from the strike slip data base. 
The parameters 1, 2, 1, 2 ….  were determined from the regression results. 

2.2 PARAMETERS 

The parameters derived are listed in Table 2.1 for M ≤ 6.75 and in Table 2.2 for M ≥ 6.75. Note 
that for Vs30 > 1200 m/sec, the PSA values calculated using Vs30 = 1200 m/sec are used. 
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Table 2.1 Derived parameters for sites with Vs30 ≥ 450 m/sec and M ≤ 6.75. 

 

Period (sec) 1 2 3 1 2    

0.01 7.0887 0.2058 0.0589 2.9935 -0.2287 -0.854 -0.0027 0.08

0.02 7.1157 0.2058 0.0589 2.9935 -0.2287 -0.854 -0.0027 0.08

0.03 7.2087 0.2058 0.0589 2.9935 -0.2287 -0.854 -0.0027 0.08

0.04 7.3287 0.2058 0.0589 2.9935 -0.2287 -0.854 -0.0027 0.08

0.05 6.2638 0.0625 0.0417 2.8664 -0.2418 -0.631 -0.0061 0.08

0.075 5.9051 0.1128 0.0527 2.9406 -0.2513 -0.591 -0.0056 0.08

0.1 7.5791 0.0848 0.0442 3.0190 -0.2516 -0.757 -0.0042 0.08

0.15 8.0190 0.1713 0.0329 2.7871 -0.2236 -0.911 -0.0046 0.08

0.2 9.2812 0.1041 0.0188 2.8611 -0.2229 -0.998 -0.0030 0.08

0.25 9.5804 0.0875 0.0095 2.8289 -0.2200 -1.042 -0.0028 0.08

0.3 9.8912 0.0003 -0.0039 2.8423 -0.2284 -1.030 -0.0029 0.08

0.4 9.5342 0.0027 -0.0133 2.8300 -0.2318 -1.019 -0.0028 0.08

0.5 9.2142 0.0399 -0.0224 2.8560 -0.2337 -1.023 -0.0021 0.08

0.75 8.3517 0.0689 -0.0267 2.7544 -0.2392 -1.056 -0.0029 0.08

1 7.0453 0.1600 -0.0198 2.7339 -0.2398 -1.009 -0.0032 0.06

1.5 5.1307 0.2429 -0.0367 2.6800 -0.2417 -0.898 -0.0033 0.04

2 3.3610 0.3966 -0.0291 2.6837 -0.2450 -0.851 -0.0032 0.02

3 0.1784 0.7560 -0.0214 2.6907 -0.2389 -0.761 -0.0031 0.02

4 -2.4301 0.9283 -0.0240 2.5782 -0.2514 -0.675 -0.0051 0

5 -4.3570 1.1209 -0.0202 2.5468 -0.2541 -0.629 -0.0059 0

7.5 -7.8275 1.4016 -0.0219 2.4478 -0.2593 -0.531 -0.0057 0

10 -9.2857 1.5574 -0.0035 2.3922 -0.2586 -0.586 -0.0061 0

 
Note that for Vs30 > 1200 m/s, the PSA values calculated using Vs30 = 1200 m/sec are used. 
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Table 2.2 Derived parameters for sites with Vs30 ≥ 450 m/sec and M ≥ 6.75 

Period (sec) 1 2 3 1 2    

0.01 9.0138 -0.0794 0.0589 2.9935 -0.2287 -0.854 -0.0027 0.08

0.02 9.0408 -0.0794 0.0589 2.9935 -0.2287 -0.854 -0.0027 0.08

0.03 9.1338 -0.0794 0.0589 2.9935 -0.2287 -0.854 -0.0027 0.08

0.04 9.2538 -0.0794 0.0589 2.9935 -0.2287 -0.854 -0.0027 0.08

0.05 7.9837 -0.1923 0.0417 2.7995 -0.2319 -0.631 -0.0061 0.08

0.075 7.7560 -0.1614 0.0527 2.8143 -0.2326 -0.591 -0.0056 0.08

0.1 9.4252 -0.1887 0.0442 2.8131 -0.2211 -0.757 -0.0042 0.08

0.15 9.6242 -0.0665 0.0329 2.4091 -0.1676 -0.911 -0.0046 0.08

0.2 11.1300 -0.1698 0.0188 2.4938 -0.1685 -0.998 -0.0030 0.08

0.25 11.3629 -0.1766 0.0095 2.3773 -0.1531 -1.042 -0.0028 0.08

0.3 11.7818 -0.2798 -0.0039 2.3772 -0.1595 -1.030 -0.0029 0.08

0.4 11.6097 -0.3048 -0.0133 2.3413 -0.1594 -1.019 -0.0028 0.08

0.5 11.4484 -0.2911 -0.0224 2.3477 -0.1584 -1.023 -0.0021 0.08

0.75 10.9065 -0.3097 -0.0267 2.2042 -0.1577 -1.056 -0.0029 0.08

1 9.8565 -0.2565 -0.0198 2.1493 -0.1532 -1.009 -0.0032 0.06

1.5 8.3363 -0.2320 -0.0367 2.0408 -0.1470 -0.898 -0.0033 0.04

2 6.8656 -0.1226 -0.0291 2.0013 -0.1439 -0.851 -0.0032 0.02

3 4.1178 0.1724 -0.0214 1.9408 -0.1278 -0.761 -0.0031 0.02

4 1.8102 0.3001 -0.0240 1.7763 -0.1326 -0.675 -0.0051 0

5 0.0977 0.4609 -0.0202 1.7030 -0.1291 -0.629 -0.0059 0

7.5 -3.0563 0.6948 -0.0219 1.5212 -0.1220 -0.531 -0.0057 0

10 -4.4387 0.8393 -0.0035 1.4195 -0.1145 -0.586 -0.0061 0

 
Note that for Vs30 > 1200 m/sec, the PSA values calculated using Vs30 = 1200 m/sec are used. 

2.3 RESIDUALS 

The residuals for PGA (i.e., T = 0.01 sec) are plotted in Figure 2.1 in terms of residuals versus 
magnitude, residuals versus distance, and residuals versus Vs30. The corresponding residuals for T 
= 0.2 sec and for T = 1 sec are presented in Figures 2.2 and 2.3, respectively. The results in these 
figures indicate that the fitted parameters provide an excellent representation of the data in the 
magnitude range of 5.2 to 7.9 for PGA, 5.2 to 7.3 for T = 0.2 sec, and 5.2 to 7.5 for T = 1 sec. 
The results also indicate that excellent representation is obtained for PGA, T = 0.2 sec and T = 1 
sec essentially in the entire distance and Vs30 ranges. 
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2.4 STANDARD ERROR TERMS 

The standard error (SE) terms were obtained as part of the regression analyses and were fitted to 
the following expression for ease of use: 

 SE 1.18 0.035Ln T 0.06M  
 (2.2) 

Equation (2.2) shows a small dependence of the SE term on magnitude, which is obtained by 
minimizing the standardized residuals. The minimum value of SE is assumed equal to that for M 
= 7.5. Also, the values of SE at T < 0.05 sec is kept equal to that at T = 0.05 sec and that at T > 3 
sec, SE is kept equal to that at T = 3 sec. 
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Figure 2.1 Residuals versus magnitude, rupture distance and Vs30 using the derived 
equation for estimating PGA at sites with 450 m/sec ≤ Vs30 ≤ 1200 m/sec. 
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Figure 2.2 Residuals versus magnitude, rupture distance and Vs30 using the derived 
equation for estimating PSA for T = 0.2 sec at sites with 450 m/sec ≤ Vs30 ≤ 
1200 m/sec. 

 
 



21 

Magnitude

4 5 6 7 8

R
es

id
u

al

-3.0

-1.5

0.0

1.5

3.0
Overall trend

All events, except Chi-Chi main

Average over discrete range

Rrup (km)

0 50 100 150 200

R
es

id
u

al

-3.0

-1.5

0.0

1.5

3.0

Vs30 (m/s)

400 600 800 1000 1200 1400

R
es

id
u

al

-3.0

-1.5

0.0

1.5

3.0

T = 1 sec

T = 1 sec

T = 1 sec

 
 

Figure 2.3 Residuals versus magnitude, rupture distance and Vs30 using the derived 
equation for estimating PSA for T = 1 sec at sites with 450 m/sec ≤ Vs30 ≤ 
1200 m/sec. 
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2.5 COMPARISONS WITH 2008 NGA ATTENUATION RELATIONSHIPS 

The median values of PGA as a function of Rrup for M = 7, Vs30 = 450 m/sec and Vs30 = 900 
m/sec, calculated using the parameters in Table 2.2, are presented in Figure 2.4 considering a 
strike slip event (mechanism 0). Also shown in Figure 2.4 are the median values of PGA as a 
function of Rrup for M = 7 using the parameters developed for the author's 2008 model (Idriss 
2008). The parameters for the 2008 model were derived for the then-available data for sites with 
Vs30 = 450 to 900 m/sec to be independent of Vs30. The 2013 model includes Vs30 as an 
independent variable [see Equation (2.1)]. The results shown in Figure 2.4 highlight the effects 
of Vs30 on PGA. For a site with Vs30 = 450 m/sec, there is an overall increase in PGA averaging 
about 50% over a distance of about 100 km using the 2013 model in comparison to the 2008 
model. On the other hand, a site with Vs30 = 900 m/sec there is an overall decrease of about 10% 
using the 2013 model in comparison to the 2008 model. Comparable observations are obtained 
for changes in PSA for almost all periods considered. 
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Figure 2.4 PGA versus Rrup for M = 7 occurring on a strike slip source calculated 
using the parameters derived for the 2008 model (Vs30 = 450 to 900 m/sec) 
and the parameters derived for the 2013 model for Vs30 = 450 m/sec and 
for Vs30 = 900 m/sec. 
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3 CONCLUDING REMARKS 

A model for estimating the average horizontal values of pseudo-absolute spectral accelerations 
(PSA) generated by crustal earthquakes has been developed for sites having Vs30 values ranging 
from 450 m/sec to 2000 m/sec. The fitted parameters, listed in Tables 2.1 and 2.2, provide a 
reasonable to excellent representation of the data in the magnitude range of about 5 to 8 and 
excellent representation essentially in the entire distance and Vs30 ranges. 

The use of this model should be limited to M ≥ 5, to distances less than about 150 km, 
and to Vs30 ≥ 450 m/sec.  For sites with Vs30 > 1200 m/sec, the PSA values calculated using Vs30 = 
1200 m/sec are used. 
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APPENDIX A: DATA USED IN DERIVING 
ATTENUATION EQUATIONS 
PARAMETERS 

EQID Earthquake Name Year Magnitude Mechanism 
Number of 
recording 

1001 40204628 2007 5.45 0 64 
1002 14383980 2008 5.39 3 55 
1003 14151344 2005 5.20 0 36 
1004 14346868 2008 5.10 0 5 
1006 14095628 2004 5.03 0 28 
1007 14155260 2005 4.88 3 43 
1008 21465580 2005 4.77 0 3 
1009 14462064 2009 4.73 0 5 
1010 9086596 1999 4.93 0 5 
1011 10410337 2009 4.70 0 21 
1012 14186612 2005 4.69 3 27 
1013 51182810 2007 4.60 0 6 
1014 14138080 2005 4.59 4 31 
1017 10347253 2008 4.63 0 12 
1019 14312160 2007 4.66 2 35 
1023 21530368 2006 4.50 0 61 
1027 9064093 1998 4.78 0 19 
1028 10275733 2007 4.73 0 53 
1029 9154141 2000 4.51 1 9 
1034 9069997 1998 4.50 0 21 
1182 14517500 2009 5.00 0 12 
1185 14519764 2009 4.50 0 8 
1186 14519780 2009 5.19 0 13 
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1199 21401069 2004 5.00 0 3 
1200 21401170 2004 4.88 0 4 
1226 21351360 2004 4.51 2 4 
0025 Parkfield 1966 6.19 0 1 
0029 Lytle Creek 1970 5.33 3 5 
0030 San Fernando 1971 6.61 2 12 
0035 Northern Calif-07 1975 5.20 0 3 
0036 Oroville-01 1975 5.89 1 1 
0039 Oroville-03 1975 4.70 1 4 
0040 Friuli, Italy-01 1976 6.50 2 2 
0042 Fruili, Italy-03 1976 5.50 2 2 
0043 Friuli, Italy-02 1976 5.91 2 1 
0046 Tabas, Iran 1978 7.35 2 2 
0048 Coyote Lake 1979 5.74 0 2 
0049 Norcia, Italy 1979 5.90 1 2 
0050 Imperial Valley-06 1979 6.53 0 1 
0053 Livermore-01 1980 5.80 0 2 
0054 Livermore-02 1980 5.42 0 2 
0055 Anza (Horse Canyon)-01 1980 5.19 0 2 
0061 Mammoth Lakes-06 1980 5.94 0 1 
0063 Mammoth Lakes-08 1980 4.80 0 2 
0064 Victoria, Mexico 1980 6.33 0 1 
0065 Mammoth Lakes-09 1980 4.85 0 3 
0076 Coalinga-01 1983 6.36 2 8 
0077 Coalinga-02 1983 5.09 2 12 
0078 Coalinga-03 1983 5.38 2 9 
0080 Coalinga-05 1983 5.77 2 6 
0081 Coalinga-06 1983 4.89 2 1 
0082 Coalinga-07 1983 5.21 2 1 
0090 Morgan Hill 1984 6.19 0 5 
0097 Nahanni, Canada 1985 6.76 2 3 
0101 N. Palm Springs 1986 6.06 3 7 
0102 Chalfant Valley-01 1986 5.77 0 7 
0113 Whittier Narrows-01 1987 5.99 3 14 
0114 Whittier Narrows-02 1987 5.27 3 7 
0118 Loma Prieta 1989 6.93 3 27 
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0125 Landers 1992 7.28 0 5 
0126 Big Bear-01 1992 6.46 0 10 
0127 Northridge-01 1994 6.69 2 39 
0129 Kobe, Japan 1995 6.90 0 6 
0136 Kocaeli, Turkey 1999 7.51 0 7 
0138 Duzce, Turkey 1999 7.14 0 10 
0144 Manjil, Iran 1990 7.37 0 1 
0145 Sierra Madre 1991 5.61 2 2 
0147 Northridge-02 1994 6.05 2 5 
0148 Northridge-03 1994 5.20 2 2 
0149 Northridge-04 1994 5.93 3 3 
0150 Northridge-05 1994 5.13 3 3 
0151 Northridge-06 1994 5.28 2 18 
0152 Little Skull Mtn,NV 1992 5.65 1 3 
0157 San Juan Bautista 1998 5.17 0 2 
0158 Hector Mine 1999 7.13 0 13 
0160 Yountville 2000 5.00 0 3 
0161 Big Bear-02 2001 4.53 0 4 
0162 Mohawk Val, Portola 2001 5.17 0 3 
0163 Anza-02 2001 4.92 4 48 
0165 CA/Baja Border Area 2002 5.31 0 2 
0166 Gilroy 2002 4.90 0 10 
0170 Big Bear City 2003 4.92 0 19 
0171 Chi-Chi, Taiwan-02 1999 5.90 2 147 
0172 Chi-Chi, Taiwan-03 1999 6.20 2 130 
0173 Chi-Chi, Taiwan-04 1999 6.20 0 114 
0174 Chi-Chi, Taiwan-05 1999 6.20 2 150 
0175 Chi-Chi, Taiwan-06 1999 6.30 2 133 
0176 Tottori, Japan 2000 6.61 0 79 
0177 San Simeon, CA 2003 6.52 2 4 
0178 Bam, Iran 2003 6.60 0 5 
0179 Parkfield-02, CA 2004 6.00 0 23 
0180 Niigata, Japan 2004 6.63 2 105 
0202 Basso Tirreno, Italy 1978 6.00 0 2 
0277 Wenchuan, China 2008 7.90 3 24 
0278 Chuetsu-oki 2007 6.80 2 133 
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0279 Iwate 2008 6.90 2 90 
0280 El Mayor-Cucapah 2010 7.20 0 45 
0281 Darfield, New Zealand 2010 7.00 0 22 
0282 Wenchuan, China-01 2008 6.00 0 7 
0283 Wenchuan, China-02 2008 6.10 0 7 
0284 Wenchuan, China-03 2008 6.30 2 4 
0285 Wenchuan, China-04 2008 5.50 2 6 
0286 Wenchuan, China-05 2008 5.60 3 5 
0287 Wenchuan, China-06 2008 5.50 0 7 
0288 Wenchuan, China-07 2008 5.50 2 3 
0289 Wenchuan, China-08 2008 5.20 2 4 
0290 Wenchuan, China-09 2008 5.50 0 5 
0291 Wenchuan, China-10 2008 5.70 0 3 
0292 Wenchuan, China-11 2008 5.40 2 3 
0293 Wenchuan, China-12 2008 5.30 4 2 
0294 Wenchuan, China-13 2008 5.70 0 4 
0295 Wenchuan, China-14 2008 5.70 0 3 
0296 Wenchuan, China-15 2008 5.70 2 3 
0297 Wenchuan, China-16 2008 5.90 2 4 
0298 Wenchuan, China-17 2008 5.10 0 3 
0299 Wenchuan, China-18 2008 5.50 2 3 
0300 Wenchuan, China-19 2008 5.00 3 3 
0301 Wenchuan, China-20 2008 5.30 3 7 
0302 Wenchuan, China-21 2008 4.70 4 3 
0303 Wenchuan, China-22 2008 5.20 0 3 
0304 Wenchuan, China-23 2008 5.80 2 3 
0305 Wenchuan, China-24 2008 5.80 2 4 
0306 Wenchuan, China-25 2008 5.10 2 2 
0307 Wenchuan, China-26 2008 4.80 2 3 
0308 Wenchuan, China-27 2008 4.50 3 2 
0309 Wenchuan, China-28 2008 4.80 2 3 
0310 Wenchuan, China-29 2008 5.50 2 4 
0311 Wenchuan, China-30 2008 5.20 2 4 
0312 Wenchuan, China-31 2008 5.00 2 1 
0313 Wenchuan, China-32 2008 4.90 0 1 
0314 Wenchuan, China-33 2008 5.00 0 3 
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0315 Wenchuan, China-34 2008 4.80 0 3 
0316 Wenchuan, China-35 2008 4.60 2 1 
0317 Wenchuan, China-36 2008 5.00 0 2 
0318 Wenchuan, China-37 2008 4.70 2 2 
0319 Wenchuan, China-38 2008 5.20 2 3 
0320 Wenchuan, China-39 2008 5.10 2 2 
0321 Wenchuan, China-40 2008 4.80 0 3 
0323 Wenchuan, China-42 2008 4.60 2 1 
0324 Wenchuan, China-43 2008 5.10 0 3 
0325 Wenchuan, China-44 2008 4.70 0 2 
0326 Wenchuan, China-45 2008 5.10 2 3 
0328 Wenchuan, China-47 2008 4.70 4 2 
0329 Wenchuan, China-48 2008 4.90 0 2 
0333 Wenchuan, China-52 2008 4.80 2 1 
0334 Wenchuan, China-53 2008 4.70 0 3 
0335 Wenchuan, China-54 2008 4.70 0 1 
0337 Wenchuan, China-56 2008 4.80 0 3 
0338 Wenchuan, China-57 2008 4.80 2 1 
0341 Wenchuan, China-60 2008 5.20 0 4 
0342 Wenchuan, China-61 2008 4.70 2 3 
0346 Christchurch, New Zealand 2011 6.20 3 21 
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