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ABSTRACT 

The NGA-West2 research program, coordinated by the Pacific Earthquake Engineering Research 
Center (PEER), is a major effort to produce refined models for predicting ground-motion 
response spectra. This study presents new models for ground-motion directionality developed as 
part of that project. Using a database of recorded strong ground motions, empirical models have 
been developed for a variety of quantities related to direction-dependent spectra. Predictions are 
available for the maximum spectral acceleration observed in any orientation of two-component 
horizontal ground-motion shaking ሺܵܽோ௢௧஽ଵ଴଴ሻ. This model is formulated as a multiplier factor to 
be coupled with the NGA-West2 models that predict the median spectral accelerations over all 
orientations ሺܵܽோ௢௧஽ହ଴ሻ. Models are also proposed for the distribution of orientations of the 
ܵܽோ௢௧஽ଵ଴଴ value relative to the fault and the relationship between ܵܽோ௢௧஽ଵ଴଴ orientation at 
different periods. Discussion is provided as to how these results can be applied to practical 
seismic hazard analysis and compute realistic target spectra conditioned on different parameters. 
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1 

1 INTRODUCTION 

Structures designed to resist seismic loads are generally designed considering ground motion in 
the horizontal plane. However, the acceleration response spectrum, which is the intensity-
measure (IM) used for design, is defined as the maximum response of a damped single-degree-
of-freedom (SDOF) system at different periods when excited by a single component of the 
ground motion (5% damping is assumed throughout, also Sa in this report refers to pseudo 
spectral acceleration or PSA). So, even though two dimensional ground motions are considered 
for design, the IM is defined to represent single component of the ground motion. Various 
methods have been proposed to compute an intensity-measure representative of the two-
dimensional horizontal ground motion. These methods include using the geometric mean of the 
acceleration response spectra computed using two orthogonal components of ground motion, 
using the median or maximum value of response spectra over all orientations at each period, etc. 
[Boore et al. 2006; Boore 2010]. 

The NGA-West2 research program, coordinated by Pacific Earthquake Engineering 
Research Center (PEER), produces refined models for predicting the median ground-motion 
response spectra of a ground motion when rotated over all horizontal orientations (Bozorgnia et 
al. 2012); this is referred to as the ܵܽோ௢௧஽ହ଴ spectrum [Boore 2010]. It is known that ground-
motion intensity is not uniform in all orientations. In some cases ground motions can be 
polarized and intensity in one orientation can be significantly stronger than in other orientations 
(e.g., Campbell and Bozorgnia [2007, 2008]; and Huang et al. [2008]). This phenomenon is often 
referred as "directionality" of ground motion. Due to ground motion directionality, some 
engineers believe that the maximum spectral acceleration over all orientations ሺܵܽோ௢௧஽ଵ଴଴ሻ is a 
more meaningful IM than ܵܽோ௢௧஽ହ଴ for structural design (e.g., NEHRP [2009]). Thus, different 
definitions of ground-motion intensities will be used to build ground-motion models ሺܵܽோ௢௧஽ହ଴ሻ 
and for structural design ሺܵܽோ௢௧஽ଵ଴଴ሻ. The need to use a consistent IM throughout the design 
process (e.g., Baker and Cornell [2006]; and Beyer and Bommer [2006]) requires models to 
convert between the two definitions of IM. Additionally, there is interest in whether the 
ܵܽோ௢௧஽ଵ଴଴ is observed in random orientations or has preferential alignment in, for example, near-
fault ground motions. This also has potentially important implications for structural design. 

Several researchers have modeled the ratio of different IMs, which can be used as a 
multiplicative factor to convert between them (e.g., Beyer and Bommer [2006]; Watson-
Lamprey and Boore [2007]; Campbell and Bozorgnia [2007, 2008]; and Huang et al. [2008, 
2010]). Most of these studies used subsets of the NGA database [Chiou et al. 2008] and focused 
on the ratios involving the older ܵܽீெோ௢௧ூହ଴ definition of response spectrum. This study used 
over 3000 ground motions from the expanded NGA-West2 database to build empirical models 
for the ratio of ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴ and the probability distribution of orientations in which the 
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ܵܽோ௢௧஽ଵ଴଴ is observed. The model predicting the ratio of ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴ can be used as a 
multiplicative factor that when used with the NGA-West2 ground-motion models can predict the 
ܵܽோ௢௧஽ଵ଴଴ at a site. The proposed models are compared with older models and differences are 
discussed. 

As defined, the ܵܽோ௢௧஽ଵ଴଴ values at different periods may occur in differing orientations. 
So it is highly unlikely that any single orientation will have Sa as large as the ܵܽோ௢௧஽ଵ଴଴ at all 
periods. Since nonlinear response of a multi-degree-of-freedom (MDOF) system is related to Sa 
at a range of periods, using ܵܽோ௢௧஽ଵ଴଴ as the spectrum of a single ground-motion component may 
lead to conservative estimates of structural demand (e.g., Stewart et al. [2011]). To address this, 
the relationship between the orientations of ܵܽோ௢௧஽ଵ଴଴ at different periods is studied in detail, and 
this information is used to compute more realistic target spectra for single ground-motion 
components. Example computation and discussion of several alternate target spectra is included. 
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2 Ground-Motion Intensity and Directionality 

As discussed above, spectral acceleration (Sa) measures the response of a SDOF oscillator in a 
single orientation and cannot completely represent the intensity in two dimensions if the ground 
motion is polarized. Several IMs have been proposed in the past to better account for two 
dimensional intensity of ground motions, while not sacrificing the ease of use of a scalar IM. 
Early efforts to account for the two-dimensional intensity of ground motion used the geometric 
mean of response spectra computed using two orthogonal components of the ground motion 
(sometimes referred as ܵܽீெ). Generally the two orientations in which the ground motion was 
recorded ("as-recorded orientations"), or the fault-normal and parallel orientations, are used for 
computing ܵܽீெ. Using the as-recorded orientations of the ground motion makes the ground-
motion intensity dependent on the orientation of the recording instrument, which is often 
arbitrary (though the practical effect on Sa is often not major). The fault-normal and parallel 
orientations are important for near-fault sites, as near-fault effects are generally observed in these 
orientations (directivity in fault-normal, fling in fault-parallel for strike-slip earthquakes), but 
these orientations have no special significance for sites located far from the fault. 

To remove the dependence of IM on arbitrarily selected orientations, Boore et al. (2006) 
introduced ܵܽீெோ௢௧஽௡௡ and ܵܽீெோ௢௧ூ௡௡ IMs, which are orientation independent definitions of 
ground-motion intensity. ܵܽீெோ௢௧஽௡௡ is defined as the nnth percentile of the geometric means of 
the response spectra from all orthogonal components of the ground motion at a specified period. 
The ܵܽீெோ௢௧஽௡௡ spectrum uses the geometric means from different orientations at different 
periods and does not represent any particular observation of two components of the ground 
motion. ܵܽீெோ௢௧ூ௡௡ addresses this problem by defining the intensity measure as the geometric 
mean of response spectra at the specific orientation with a spectrum closest to the ܵܽீெோ௢௧஽௡௡ 
spectrum across a range of periods. This definition uses the geometric mean spectrum of two 
specific ground-motion components that were observed at the site. The 2008 version of NGA 
ground-motion models were developed to predict the ܵܽீெோ௢௧ூହ଴ at a site [Abrahamson et al. 
2008]. 

Although the ܵܽீெோ௢௧ூ௡௡ spectrum captures information from multiple orientations and is 
orientation and period independent, it is difficult to compute. Boore [2010] proposed a new set of 
IM called ܵܽோ௢௧஽௡௡ and ܵܽோ௢௧ூ௡௡. ܵܽோ௢௧஽௡௡ is defined as the nnth percentile of the spectral 
acceleration at each period over all orientations. Like ܵܽீெோ௢௧஽௡௡, the nnth percentile spectral 
acceleration at each period may occur in different orientations. ܵܽோ௢௧ூ௡௡ addresses this by 
defining the intensity to be the spectral acceleration in the orientation most representative of the 
ܵܽோ௢௧஽௡௡ spectrum. Since maximum intensity at each period may occur in different orientations 
and ܵܽோ௢௧ூ௡௡ spectrum uses a single orientation of the ground motion, the ܵܽோ௢௧ூହ଴ spectrum can 
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be greater than the ܵܽோ௢௧ூଵ଴଴ spectrum at some periods [Boore 2010]. This is considered a 
shortcoming of the ܵܽோ௢௧ூ௡௡ definition. Due to its simple and orientation-independent definition 
the ܵܽோ௢௧஽௡௡ IM has become popular. The new ground-motion models being developed as part 
of the NGA-West2 project will predict ܵܽோ௢௧஽ହ଴ values, but the NEHRP [2009] provisions use 
ܵܽோ௢௧஽ଵ଴଴ intensity for seismic design. 

In general, constructing a single response spectrum to represent two-dimensional ground-
motion intensity involves reducing information in two dimensions to one, which results in loss of 
some information. Different definitions of ground-motion intensity capture different pieces of 
this information and thus may be appropriate for different tasks. If the ground motion is 
unpolarized, then it will have equal intensity in all orientations (i.e., no directionality). In an 
almost no-polarization case, illustrated in Figure 2.1a, all definitions of ground-motion intensity 
will give similar result. Hence, the ratio of ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴ will be close to 1. However, if 
the ground motion is strongly polarized, as illustrated in Figure 2.1b, the various definitions of 
Sa will differ significantly in value. In this case, different definitions of IM will give different 
results, and the ratio of ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴ can be shown to equal √2 ൌ 1.414 . A ground-
motion record generally lies between these two extreme cases, and the ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴ 
ratio lies between 1 and 1.414, as shown in Figure 2.2. So the intensity of ground motion 
computed using ܵܽோ௢௧஽ହ଴ or ܵܽோ௢௧஽ଵ଴଴ can differ for various ground motions, with the 
difference ranging from 0 to 41% of the ܵܽோ௢௧஽ହ଴ intensity. 

The polarization of ground motion, also referred as directionality of ground motion, 
causes this discrepancy among different definitions of response spectra. Thus, in this study the 
models used to convert between different spectral acceleration definitions are referred to as 
directionality models. 

 

Figure 2.1 Displacement response trace (T = 1 sec) and spectral acceleration in all 
orientations: (a) when ground motion is almost unpolarized (HWA031 
recording from Chi-Chi-04, 1999 earthquake); and (b) when the ground 
motion is almost completely polarized (Gilroy Array#6 recording from 
Morgan Hill,1984 earthquake). 
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Figure 2.2  Histogram of observed ratios of ࡰ࢚࢕ࡾࢇࡿ૚૙૙ and ࡰ࢚࢕ࡾࢇࡿ૞૙ in the NGA-West2 
database for (a) T = 0.2 sec, (b) T = 1 sec, (c) T = 3 sec, and (d) T = 5 sec. 
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3 Ratio of SaRotD100 to SaRotD50 

As discussed earlier, the NEHRP (2009) provisions use ܵܽோ௢௧஽ଵ଴଴ as the IM for design while the 
NGA-West2 ground-motion models are being developed to predict ܵܽோ௢௧஽ହ଴ intensity. Thus, 
models to convert between the two definitions are needed to allow the use of consistent 
definition of IM throughout the design process. 

We computed the ratio of ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴ for each ground motion in the subset of 
NGA-West2 database being used to develop the Abrahamson-Silva ground-motion model. The 
geometric mean of these ratios can be used as a multiplicative factor to convert ܵܽோ௢௧஽ହ଴ 
intensity to ܵܽோ௢௧஽ଵ଴଴ and its logarithm as an additive factor to convert ݈݊ܵܽோ௢௧஽ହ଴ to 
lnܵܽோ௢௧஽ଵ଴଴	. As ground-motion intensities are assumed to be log-normally distributed (e.g., 
Abrahamson [1998]; and Jayaram and Baker [2008]) and the ground-motion models predict the 
natural log of intensity, the geometric mean of the ratios is a more natural estimator than the 
arithmetic mean, as shown in Equations (3.1) to (3.3). 

 100
100 50

50

·RotD
RotD RotD

RotD

Sa
Sa Sa

Sa
  (3.1) 

 100
100 50

50

RotD
RotD RotD

RotD

Sa
lnSa ln lnSa

Sa

 
  

 
 (3.2) 

 100
100 50

50

[ ] [ ]RotD
RotD RotD

RotD

Sa
E lnSa E ln E lnSa

Sa

  
   

  
 (3.3) 

where [·]E  represents the expected value or mean value. Mixed effects regression (e.g., Searle 
[1971]; Brillinger and Preisler [1985]; and Abrahamson and Youngs [1992)] is used to estimate 
the ݈݊ሺܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ሻ while accounting for any earthquake-specific effects in the ratio of 
ܵܽோ௢௧஽ଵ଴଴ and ܵܽோ௢௧஽ହ଴. The empirically computed geometric mean of ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ 
from mixed-effects regression at different periods is shown in Figure 3.1.Table 3.1 shows the 
estimated  100 50( / )RotD RotDE ln Sa Sa  along with the between-event standard deviation ሺ߬ሻ and 

within-event standard deviation ሺ߶ሻ (standard-deviation notation following Al Atik et al. 
[2010]). The low values of ߬ shows that the event terms for ݈݊ሺܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ሻ are close to 
zero or the event terms for ݈݊ܵܽோ௢௧஽ଵ଴଴ and ݈݊ܵܽோ௢௧஽ହ଴ are almost same as each other, and thus 
cancel out. This was expected, as the amplification/deamplification due to common source 
effects should be shared by both ܵܽோ௢௧஽ହ଴ and ܵܽோ௢௧஽ଵ଴଴. Results computed using different 
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subsets of the NGA-West2 database used to develop other ground-motion models were found to 
be consistent with each other. 

 

 

 

Figure 3.1 Geometric mean of the observed ratio of ࡰ࢚࢕ࡾࢇࡿ૚૙૙ to ࡰ࢚࢕ࡾࢇࡿ૞૙ estimated by 
mixed effects regression using NGA-West2 database. 
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Table 3.1 Fitted values of ࢔࢒ሺࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ሻ with the within-event standard 
deviation ሺࣘሻ, between-event standard deviation ሺ࣎ሻ and total standard 
deviation ሺ࣌ሻ, estimated by mixed effects regression. Note that the 
estimates are for mean of ࢔࢒ሺࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ሻ and geometric mean of 
 ૞૙ and the reported standard deviations are forࡰ࢚࢕ࡾࢇࡿ/૚૙૙ࡰ࢚࢕ࡾࢇࡿ
 .૞૙ሻ estimatesࡰ࢚࢕ࡾࢇࡿ/૚૙૙ࡰ࢚࢕ࡾࢇࡿሺ࢔࢒

 

T(s) ࢔࢒	ሺ
૚૙૙ࡰ࢚࢕ࡾࢇࡿ
૞૙ࡰ࢚࢕ࡾࢇࡿ

ሻ 
૚૙૙ࡰ࢚࢕ࡾࢇࡿ
૞૙ࡰ࢚࢕ࡾࢇࡿ

 ࢒ࢇ࢚࢕࢚࣌ ࣎ ࣘ 

0.01 

0.02 

0.03 

0.05 

0.075 

0.1 

0.15 

0.2 

0.25 

0.3 

0.4 

0.5 

0.75 

1 

1.5 

2 

3 

4 

5 

7.5 

10 

0.176 

0.175 

0.172 

0.171 

0.172 

0.172 

0.182 

0.187 

0.196 

0.198 

0.206 

0.206 

0.213 

0.216 

0.217 

0.218 

0.221 

0.231 

0.235 

0.251 

0.258 

1.19 

1.19 

1.19 

1.19 

1.19 

1.19 

1.20 

1.21 

1.22 

1.22 

1.23 

1.23 

1.24 

1.24 

1.24 

1.24 

1.25 

1.26 

1.26 

1.28 

1.29 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.09 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.07 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.02 

0.03 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.09 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

0.08 

 

3.1 COMPARISON WITH OTHER MODELS 

Several researchers have computed estimates for the ratio of ܵܽோ௢௧஽ଵ଴଴ to ܵܽீெோ௢௧ூହ଴ in past 
(e.g., Beyer and Bommer [2006]; Watson-Lamprey and Boore [2007]; Campbell and Bozorgnia 
[2007, 2008]; and Huang et al. [2008, 2010]). To compare the older ratios of ܵܽோ௢௧஽ଵ଴଴ to 
ܵܽீெோ௢௧ூହ଴ with the ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴ ratios computed in this study, we use the factors 
proposed by Boore [2010] to convert the proposed ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ ratios to ܵܽோ௢௧஽ଵ଴଴/
ܵܽீெோ௢௧ூହ଴ ratios. Figure 3.1 compares our converted ܵܽோ௢௧஽ଵ଴଴ to ܵܽீெோ௢௧ூହ଴ ratios with 
previous results. Most of these models agree with each other in both the magnitude of the ratios 
and their trend with period. The one exception is the ratios proposed in NEHRP [2009] 
provisions. 

The NEHRP [2009] ܵܽோ௢௧஽ଵ଴଴/ܵܽீெோ௢௧ூହ଴ ratios are based on the ratio of observed 
ܵܽோ௢௧஽ଵ଴଴ values in recorded ground motions to the prediction of ܵܽீெோ௢௧ூହ଴ by a ground-
motion model. Modeling the ratio of an observed value to a predicted value—rather than the 
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ratio of an observed value to an observed value—has some flaws. The NGA models were 
carefully fitted to provide an unbiased estimate of ground-motion intensity from future 
earthquakes [Abrahamson et al. 2008]. However, the dataset used to fit the ground-motion 
models is not an unbiased sample of earthquakes (e.g., there are many more ground motions 
from the 1999 M=7.6 Chi-Chi, Taiwan earthquake in the NGA database compared to other 
earthquakes). Statistical techniques such as mixed-effects regression have been used to overcome 
these biases in the dataset while fitting the NGA ground-motion models. The ratios 
recommended by NEHRP [2009] provisions effectively readjust the NGA ground-motion 
models, which undoes careful calculations that go into building a ground-motion model. For 
example, a particular earthquake can produce higher average ground-motion intensities than the 
unbiased ground-motion model estimate due to random chance (any effect not accounted for by 
the ground-motion model can be modeled as random chance). The ratios of observed ܵܽோ௢௧஽ଵ଴଴ 
to the predicted ܵܽோ௢௧஽ହ଴ for such an earthquake will be higher than the ratio of observed 
ܵܽோ௢௧஽ଵ଴଴ to observed ܵܽோ௢௧஽ହ଴, as the first ratio will also include the random earthquake effect, 
which is carefully removed by the mixed effects regression used to fit ground-motion models. 
Modeling ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ as the ratio of observed ܵܽோ௢௧஽ଵ଴଴ to observed ܵܽோ௢௧஽ହ଴, and 
using the prediction from a ground-motion model as an estimate for 50[ ]RotDE lnSa  in Equation 

(3.3)  allows us to leverage the results from careful fitting of ground-motion models and gives us 
a better estimate of ܵܽோ௢௧஽ଵ଴଴ from a future earthquake. 

Huang et al. [2008, 2010] reported that ground motion from Chi-Chi, Taiwan, earthquake 
had a significant effect on the geometric mean of the ratio of observed ܵܽோ௢௧஽ଵ଴଴ to ܵܽீெோ௢௧ூହ଴ 
values predicted by ground-motion models, so they reported different sets of results for datasets 
with and without the Chi-Chi records. As shown in Figure 3.2, we found that presence or 
absence of Chi-Chi records did not change significantly the geometric mean of observed 
ܵܽோ௢௧஽ଵ଴଴ to observed ܵܽோ௢௧஽ହ଴. This indicates that the observed to observed ratio are more 
stable across different earthquake events compared to the observed to predicted ratio. 
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Figure 3.1 Comparison of various models for geometric mean  ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ 
ratios. 

 

Figure 3.2 Comparison of the geometric means of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ estimated using 
datasets with and without the 1999 M=7.6 Chi-Chi ground motions. 
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3.2 DEPENDENCE OF ࡰ࢚࢕ࡾࢇࡿ૚૙૙ ⁄૞૙ࡰ࢚࢕ࡾࢇࡿ  ON OTHER PARAMETERS 

Figure 2.2 and Figure 3.1 showed that the geometric mean value of ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ depends 
on spectral acceleration period. We also investigated its dependence on other seismological 
parameters like earthquake magnitude, closest distance between source and the site and some 
directivity parameters. We studied the dependence of this ratio on other seismological 
parameters and fitted several regression models using variable selection techniques like forward 
selection, backward elimination, etc. After examining the practical and statistical significance of 
different models, we decided to develop a model for ݈݊ሺܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ሻ that was a linear 
function of Rrup (closest distance between rupture and site). Other parameters such as magnitude, 
directivity predictor terms, etc., had no appreciable predictive power. Figures showing the weak 
dependence of ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ on several seismological parameters are included in 
Appendix A. The linear model, shown in Equation (3.4) contains a coefficient a0 that varies with 
period and a coefficient a1 that is constant for all periods, and is estimated to be 41.614 10   . 
Coefficient a0 is the same as the ݈݊ሺܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ሻ values presented in Table 3.1 

Note that this relationship was fitted using data with closest distance less than 200 km 
and over 90% of the data had closest distance less than 100 km. So, we do not recommend use of 
these models for distances larger than 200 km. 

 100
0 1

50

·( 60)RotD
rup

RotD

Sa
E ln a a R

Sa

  
    

  
 (3.4) 

The difference between the results from using a distance-dependent model or using a non-
distance-dependent model is small, as can be seen in Figure 3.3. Thus, we report both the 
geometric mean of the ratio of ܵܽோ௢௧஽ଵ଴଴ and ܵܽோ௢௧஽ହ଴ and the coefficient a0 from Equation 
(3.4) at different periods in Table 3.1. Either of the two models can be used depending on the 
level of precision required. This view is echoed in the similar earlier study by Watson-Lamprey 
and Boore [2007], who noted slight distance, magnitude and radiation pattern dependence, but 
stated that "for most engineering applications the conversion factors independent of those 
variables can be used." The results are reported at discrete set of periods and coefficients at other 
periods can be estimated by interpolating these results. 
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Figure 3.3 Prediction of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ by the distance dependent model in 
Equation (3.4) for R = 5km, compared with the non-distance-dependent 
estimates of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ given in  

  



 14

 

  



 15

 

4 Orientation of ࡰ࢚࢕ࡾࢇࡿ૚૙૙ 

Structural systems generally have different resistance to seismic loads in different orientations. 
For these systems, the orientation in which the maximum spectral acceleration occurs is also 
important. We define the orientation of ܵܽோ௢௧஽ଵ଴଴ as the minimum angle between the strike of 
the fault and the orientation of ܵܽோ௢௧஽ଵ଴଴. This orientation, referred as ߙ hereafter, ranges from 0 
to 90 where ߙ	 ൌ 	0 represents the strike-parallel orientation and ߙ	 ൌ 	90 represent the strike-
normal orientation. 

To study these orientations, we computed ߙ for each ground motion in our database at 21 
periods, and then binned the data according to different seismological parameters and examined 
the distribution of ߙ in each bin. Figure 4.1 shows the distribution of ߙ in different M and Rrup 
bins. ߙ is closer to the strike-normal orientation (ߙ	 ൌ 	90) more often than to the strike-parallel 
orientation (ߙ	 ൌ 	0) when the site is located within 5 km of the fault. On the other hand, when 
Rrup is greater than 5 km, ߙ is almost uniformly distributed. The magnitude bins do not seem to 
have any significant influence on the distribution of ߙ. To examine the effect of period on 
ܵܽோ௢௧஽ଵ଴଴ orientation ሺߙሻ, we binned all the data within 5 km of the fault by period. Histograms 
of ߙ in different period bins are shown in Figure 4.2. The distribution of ߙ is nearly uniform for 
periods less than 1 sec, while orientations close to strike-normal are more frequent than strike-
parallel for periods larger than 1 sec. 

After examining histograms of ߙ binned by several parameters (two other examples are 
shown in Appendix B), we decided to model the distribution of ߙ as uniform for sites when Rrup 
is greater than 5 km or when the spectral-acceleration period under consideration is less than 1 
sec. For other cases (Rrup < 5 km and 1T   sec) the data was pooled and the distribution was 
modeled empirically by counting the number of ߙ observed in 10 bins. This empirically 
computed distribution is presented in Table 4.1. 
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Figure 4.1  Probability density of ࢻ (ࡰ࢚࢕ࡾࢇࡿ૚૙૙ orientations) in different M, Rrup bins.  

 

 

Figure 4.2  Probability density of ࢻ for sites with Rrup < 5 km, binned by period (sec).  
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Table 4.1 Probability density of ࢻ for Rrup < 5 km and T ≥ 1 sec. 

Orientations (degrees) Probability 

0-10 

10-20 

20-30 

30-40 

40-50 

50-60 

60-70 

70-80 

80-90 

0.031 

0.055 

0.070 

0.067 

0.080 

0.100 

0.106 

0.233 

0.258 

 

4.1 RELATIONSHIP BETWEEN ࡰ࢚࢕ࡾࢇࡿ૚૙૙ ORIENTATIONS AT DIFFERENT 
PERIODS 

Figure 4.3 shows the polarization of displacement response and orientation of ܵܽோ௢௧஽ଵ଴଴ 
intensity from an example ground motion at two different periods (say T* and T'). The ܵܽோ௢௧஽ଵ଴଴ 
intensity at different periods may occur in different orientations and the difference in orientation 
∗ߙ|) െ  in Figure 4.3) can be used to study the relationship between the ܵܽோ௢௧஽ଵ଴଴ orientations |′ߙ
at different periods. This knowledge can be used to construct more realistic single orientation 
target spectra, as shown below. 

The difference in the orientation of ܵܽோ௢௧஽ଵ଴଴ at two periods has a lot of uncertainty and 
can take any value between 0 (i.e., the orientation at both period are the same) to 90 (i.e., the 
ܵܽோ௢௧஽ଵ଴଴ occurs in orthogonal orientations at the two periods). Figure 4.4 shows the histogram 
of the difference in ܵܽோ௢௧஽ଵ଴଴ orientation ሺ|ߙ∗ െ  ሻ at two different periods. The probability|′ߙ
distribution of |ߙ∗ െ ∗ߙ| depends on the periods under consideration |′ߙ െ  is more likely to |′ߙ
be close to 0 when the periods are closer to each other. Thus, the average difference between the 
orientations increases with increasing difference between the periods. 

After examining histograms at several sets of periods, the truncated exponential 
distribution was selected to model the distribution of |ߙ∗ െ  The truncated exponential .|′ߙ
distribution is described below  

 90
; 90

( ) 1
0 otherwise

xe
x

f x e





 




 



 (4.1) 

The distribution depends on the parameter ߣ, which is estimated here using the maximum 
likelihood method. The estimated parameters are presented in Table 4.2. When T* = T',  → ∞ , 
and thus the probability density becomes a Dirac-delta function centered at 0. Figure 4.4 shows 
the comparison of the fitted distribution with empirical histograms for two periods. 
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Figure 4.3 Displacement response trace to the El Centro Differential Array recording 
from the 1979 Imperial Valley earthquake. The period of the SDOF oscillator 
is (a) T* = 1.5 sec and (b) T' = 3 sec. The orientations of ࡰ࢚࢕ࡾࢇࡿ૚૙૙ along with 
the difference between these orientations at the two periods ሺ|ࢻ∗ െ  ሻ is|	′ࢻ
also shown. 

 
 
 

 

Figure 4.4 Distribution of |ࢻ∗ െ  as predicted by the truncated exponential model is |	′ࢻ
compared with the normalized histogram for a) T* = 2 sec and T' = 0.1 sec 
and b) T* = 2 sec and T' = 1 sec. 
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Table 4.2 Estimated values of the parameter ࣅ for the truncated exponential model. 
The table is symmetric, or coefficient at row i and column j and coefficient 
at row j and column i are same; therefore, only half of the coefficients are 
shown. 

  

0.01 

 

0.02 

 

0.03 

 

0.05 

 

0.07 

T* 

0.10 

 

0.15 

 

0.20 

 

0.25 

 

0.30 

 

0.40 

 0.01 ∞           

 0.02 0.579 ∞          

 0.03 0.186 0.188 ∞         

 0.05 0.070 0.071 0.072 ∞        

 0.07 0.042 0.042 0.042 0.041 ∞       

 0.10 0.031 0.031 0.030 0.028 0.031 ∞      

 0.15 0.022 0.022 0.022 0.020 0.019 0.020 ∞     

 0.20 0.021 0.021 0.021 0.019 0.017 0.015 0.019 ∞    

 0.25 0.020 0.019 0.019 0.17 0.016 0.014 0.013 0.021 ∞   

 0.30 0.020 0.020 0.019 0.017 0.016 0.014 0.013 0.016 0.026 ∞  

T' 0.40 0.020 0.020 0.020 0.016 0.015 0.011 0.010 0.013 0.015 0.019 ∞ 

 0.50 0.018 0.018 0.018 0.015 0.013 0.011 0.009 0.011 0.010 0.013 0.024 

 0.75 0.014 0.014 0.013 0.012 0.010 0.009 0.006 0.007 0.007 0.007 0.011 

 1.00 0.013 0.013 0.012 0.010 0.009 0.007 0.005 0.005 0.005 0.007 0.010 

 1.50 0.010 0.010 0.009 0.007 0.007 0.005 0.003 0.003 0.004 0.005 0.008 

 2.00 0.007 0.007 0.007 0.006 0.005 0.003 0.002 0.003 0.004 0.003 0.005 

 3.00 0.004 0.004 0.004 0.004 0.003 0.003 0.000 0.001 0.003 0.004 0.004 

 4.00 0.005 0.005 0.006 0.005 0.004 0.003 0.001 0.002 0.003 0.004 0.006 

 5.00 0.007 0.007 0.007 0.005 0.004 0.003 0.002 0.003 0.003 0.005 0.007 

 7.50 0.007 0.007 0.007 0.006 0.004 0.003 0.002 0.002 0.003 0.004 0.005 

 10.00 0.007 0.007 0.007 0.005 0.005 0.003 0.002 0.002 0.003 0.005 0.005 
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0.50 

 

0.70 

 

1.00 

 

1.50 

 

2.00 

T* 

3.00 

 

4.00 

 

5.00 

 

7.50 

 

10.0 

 0.01           

 0.02           

 0.03           

 0.05           

 0.07           

 0.10           

 0.15           

 0.20           

 0.25           

 0.30           

T' 0.40           

 0.50 ∞          

 0.75 0.016 ∞         

 1.00 0.013 0.022 ∞        

 1.50 0.008 0.013 0.020 ∞       

 2.00 0.007 0.011 0.015 0.024 ∞      

 3.00 0.004 0.006 0.010 0.012 0.019 ∞     

 4.00 0.005 0.008 0.010 0.011 0.016 0.029 ∞    

 5.00 0.005 0.009 0.010 0.012 0.015 0.024 0.040 ∞   

 7.50 0.005 0.009 0.011 0.013 0.016 0.019 0.025 0.034 ∞  

 10.00 0.005 0.009 0.010 0.013 0.014 0.017 0.021 0.027 0.057 ∞ 
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5 Sa at Arbitrary Orientations 

A model to predict Sa in an arbitrary orientation is needed to compute single orientation 
conditional spectra. Here we study the Sa in an orientation ߶ away from the ܵܽோ௢௧஽ଵ଴଴ 
orientation. This Sa is referred hereafter as ܵܽథ. An empirical model for the ratio of ܵܽథ/
ܵܽோ௢௧஽ହ଴ is developed, which can be used as a multiplicative factor with a ground-motion model 
prediction of ܵܽோ௢௧஽ହ଴ to get a prediction for ܵܽథ. The spectral acceleration in each orientation 
was computed for all the ground-motion recordings used in this study. This dataset was used to 
empirically compute the geometric mean of the ܵܽథ/ܵܽோ௢௧஽ହ଴. As the event terms from mixed 
effects regression for ݈݊ሺܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ሻ were found to be close to 0, we ignored the inter-
event terms and pooled the data across different earthquakes, and estimated the ܵܽథ/ܵܽோ௢௧஽ହ଴ 
using geometric means of the pooled data. The ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ values estimated using 
mixed effects regression (Table 3.1) and empirical geometric means (values corresponding to 
߶	 ൌ 	0 in Table 5.1) vary slightly but are practically identical. 

Figure 5.1 shows the modeled ratio for three different periods. As expected the ratio is 
highest at ߶	 ൌ 	0, where it is same as ܵܽோ௢௧஽ଵ଴଴, and decreases with increase of ߶. Table 5.1 
presents the geometric mean of ܵܽథ/ܵܽோ௢௧஽ହ଴ at ߶ values from 0 to 90at 5 intervals for 21 
periods. Predictions at other periods and ߶ values can be found by interpolating these results. 
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Figure 5.1 The geometric mean of ࡰ࢚࢕ࡾࢇࡿ/ࣘࢇࡿ૞૙ as a function of ࣘ for different 
periods. 
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Table 5.1 Geometric mean of ࡰ࢚࢕ࡾࢇࡿ/ࣘࢇࡿ૞૙ at various values of ࣘ and T. 
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 0.01 1.192 1.188 1.175 1.154 1.127 1.096 1.061 1.026 0.993 0.963 

 0.02 1.191 1.187 1.174 1.154 1.127 1.095 1.061 1.026 0.993 0.964 

 0.03 1.188 1.184 1.171 1.151 1.124 1.093 1.059 1.025 0.992 0.963 

 0.05 1.187 1.183 1.170 1.150 1.123 1.091 1.058 1.024 0.992 0.964 

 0.07 1.187 1.183 1.170 1.150 1.123 1.091 1.058 1.024 0.992 0.965 

 0.10 1.186 1.181 1.168 1.148 1.122 1.091 1.058 1.024 0.993 0.965 

 0.15 1.196 1.192 1.179 1.159 1.133 1.101 1.067 1.032 0.998 0.967 

 0.20 1.204 1.199 1.187 1.166 1.140 1.109 1.074 1.038 1.003 0.968 

 0.25 1.213 1.209 1.196 1.176 1.149 1.117 1.082 1.044 1.006 0.969 

 0.30 1.217 1.213 1.200 1.180 1.153 1.120 1.084 1.046 1.008 0.970 

T' 0.40 1.227 1.222 1.209 1.189 1.162 1.129 1.093 1.053 1.013 0.972 

 0.50 1.228 1.223 1.210 1.190 1.163 1.130 1.094 1.054 1.013 0.972 

 0.75 1.236 1.232 1.219 1.198 1.171 1.138 1.100 1.059 1.017 0.974 

 1.00 1.239 1.234 1.222 1.201 1.173 1.140 1.102 1.061 1.017 0.973 

 1.50 1.236 1.231 1.219 1.198 1.171 1.138 1.100 1.059 1.016 0.973 

 2.00 1.240 1.235 1.222 1.201 1.174 1.140 1.102 1.061 1.018 0.974 

 3.00 1.247 1.243 1.229 1.209 1.180 1.146 1.108 1.066 1.021 0.975 

 4.00 1.257 1.253 1.240 1.219 1.190 1.156 1.116 1.073 1.026 0.977 

 5.00 1.264 1.259 1.246 1.225 1.196 1.161 1.121 1.077 1.029 0.979 

 7.50 1.284 1.280 1.266 1.245 1.215 1.180 1.138 1.091 1.039 0.985 

 10.00 1.290 1.286 1.272 1.250 1.221 1.184 1.141 1.093 1.041 0.985 
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ࣘሺ࢙ࢋࢋ࢘ࢍࢋࢊሻ 
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90 

 0.01 0.939 0.919 0.903 0.891 0.882 0.874 0.869 0.865 0.864 

 0.02 0.939 0.920 0.904 0.892 0.882 0.875 0.869 0.866 0.865 

 0.03 0.940 0.921 0.906 0.893 0.884 0.877 0.872 0.868 0.867 

 0.05 0.941 0.923 0.908 0.896 0.887 0.880 0.874 0.871 0.870 

 0.07 0.942 0.923 0.908 0.896 0.887 0.879 0.874 0.871 0.870 

 0.10 0.941 0.922 0.906 0.893 0.882 0.874 0.868 0.865 0.864 

 0.15 0.939 0.915 0.895 0.880 0.867 0.858 0.851 0.847 0.845 

 0.20 0.938 0.910 0.887 0.869 0.854 0.843 0.835 0.830 0.829 

 0.25 0.935 0.905 0.879 0.858 0.841 0.828 0.819 0.813 0.812 

 0.30 0.935 0.902 0.874 0.850 0.830 0.814 0.803 0.796 0.794 

T' 0.40 0.934 0.899 0.868 0.841 0.819 0.802 0.789 0.781 0.779 

 0.50 0.933 0.896 0.863 0.835 0.811 0.792 0.780 0.773 0.770 

 0.75 0.933 0.893 0.857 0.825 0.798 0.776 0.761 0.752 0.749 

 1.00 0.931 0.891 0.854 0.822 0.795 0.773 0.757 0.748 0.745 

 1.50 0.932 0.892 0.855 0.823 0.795 0.773 0.757 0.748 0.744 

 2.00 0.930 0.889 0.851 0.817 0.789 0.766 0.750 0.740 0.737 

 3.00 0.929 0.885 0.845 0.809 0.778 0.753 0.734 0.723 0.719 

 4.00 0.929 0.881 0.837 0.796 0.761 0.730 0.708 0.693 0.688 

 5.00 0.928 0.877 0.828 0.781 0.740 0.704 0.677 0..658 0.652 

 7.50 0.928 0.869 0.810 0.753 0.699 0.650 0.608 0.577 0.565 

 10.00 0.927 0.867 0.806 0.746 0.688 0.635 0.589 0.555 0.542 
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6 Example Target Spectra 

As discussed above, the ܵܽோ௢௧஽ଵ଴଴ spectrum is an envelope over spectra from all orientations at 
each period. Figure 4.3 shows that the ܵܽோ௢௧஽ଵ଴଴ value may be observed in very different 
orientations, even at two periods which are close to each other. So, it is very unlikely to observe 
ܵܽோ௢௧஽ଵ଴଴ at multiple periods in a single orientation. Thus, using ܵܽோ௢௧஽ଵ଴଴ as a target design 
spectrum may result in conservative estimates of engineering demand parameters (EDPs), which 
depends on multiple periods (e.g., peak floor acceleration, interstory drift ratio, etc.). Conditional 
mean spectra approach (e.g., Baker [2011]) can be used to compute more realistic single 
orientation target spectra for design. 

The conditional mean spectrum is the expected value of the ground-motion intensity 
conditioned upon some information. Here we study the computation of two such target spectra 
conditioned on a specific orientation and on a ܵܽோ௢௧஽ଵ଴଴ observation in a specific period. 

6.1 SPECTRA CONDITIONED ON ORIENTATION 

Structures generally have different load resistance in different orientations. If some orientation is 
more important than other orientations, then the expected value of Sa in that particular 
orientation can be used as an appropriate target spectrum. Since this response spectrum is 
conditioned on a single orientation it does not suffer from the problem of having Sa from 
different orientations at different periods, as in case of the ܵܽோ௢௧஽ଵ଴଴ spectra. 

The target spectrum conditioned on an orientation, ߠ away from strike-parallel 
orientation can be computed using the equation below 
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 (6.1) 

where ࢻ represents the orientation in which the ࡰ࢚࢕ࡾࢇࡿ૚૙૙ is observed at the period for which 
computation is being done and ࢇࡿ෢ࡰ࢚࢕ࡾ૞૙ represents the ࡰ࢚࢕ࡾࢇࡿ૞૙ prediction from a ground- 
motion model.  
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Table 5.1 gives the values of ܵܽఏିఈ/ܵܽோ௢௧஽ହ଴ at different periods and ߶ ൌ ߠ െ  ߙ
orientations. While Table 4.1 describes the probability distribution of ߙ [i.e. ܲሺߙሻ]. 

Spectra conditioned in the strike-normal and strike-parallel orientations are compared 
with corresponding ܵܽோ௢௧஽ହ଴ and ܵܽோ௢௧஽ଵ଴଴ in Figure 6.1. These computations were done for an 
earthquake of magnitude 7, at a site with a VS30 of 760m/sec, and located 2.5 km away from the 
rupture. The Boore and Atkinson [2008] model prediction was used to estimate ܵܽோ௢௧஽ହ଴ [i.e., 
ܵ෢ܽோ௢௧஽ହ଴ in Equation (6.1)]. It should be noted that Boore and Atkinson [2008] model gives 
prediction for ܵܽீெோ௢௧ூହ଴ intensity, and conversion factors from Boore [2010] were used to 
convert the ܵܽீெோ௢௧ூହ଴ intensities to ܵܽோ௢௧஽ହ଴. 

 

 

Figure 6.1  Comparison of the median predicted ࡰ࢚࢕ࡾࢇࡿ૚૙૙ and ࡰ࢚࢕ࡾࢇࡿ૞૙	spectra with 
spectra conditioned in strike-normal and strike-parallel orientations. All 
results are for an earthquake with magnitude 7, at distance of 2.5 km, and 
with a VS30= 760 m/sec. 

6.2 SPECTRA CONDITIONED ON THE ORIENTATION OF ࡰ࢚࢕ࡾࢇࡿ૚૙૙ AT A GIVEN 
PERIOD 

Since, the orientation of ܵܽோ௢௧஽ଵ଴଴ is random, the spectrum conditioned on a single orientation 
can never be as large as ܵܽோ௢௧஽ଵ଴଴ at any period. Structural response is often primarily driven by 
the ground-motion intensity at a single period. Thus, if a single period is more important than 
others, a more appropriate target spectrum could be the one conditioned on the orientation in 
which ܵܽோ௢௧஽ଵ଴଴ is observed at the important period (say T*). If the spectrum is conditioned on 
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ܵܽோ௢௧஽ଵ଴଴ orientation at the period T* (i.e., orientation = ߙ∗), the expected value of the Sa at a 
different period, say T', can be computed using Equation (6.2): 
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 (6.2) 

where 
ᇲࢻష∗ࢻࢇࡿ

૞૙ࡰ࢚࢕ࡾࢇࡿ
 is given by Table 5.1 for different values of ߶	 ൌ 	 ∗ߙ| 	െ  .and periods (T') |′ߙ

ܵ෢ܽோ௢௧஽ହ଴ is the prediction from a ground-motion model and ܲሺ|ߙ′	 െ  ሻ is modeled by the|∗ߙ
truncated exponential distribution with the parameter ߣ for the pair of periods T' and T* given in 
Table 4.2. 

Spectra conditioned on the ܵܽோ௢௧஽ଵ଴଴ orientations at T* = 0.2 sec and T* = 1 sec are 
compared with the ܵܽோ௢௧஽ହ଴ and ܵܽோ௢௧஽ଵ଴଴ in Figure 6.2. These computations were done for an 
earthquake of magnitude 7, at a site with a VS30 of 760m/sec, and located 2.5 km away from the 
rupture. Again the Boore and Atkinson [2008] model prediction was used to estimate ܵܽோ௢௧஽ହ଴. 

 

 

Figure 6.2  Comparison of the ࡰ࢚࢕ࡾࢇࡿ૚૙૙ and ࡰ࢚࢕ࡾࢇࡿ૞૙ spectra with spectra conditioned 
on ࡰ࢚࢕ࡾࢇࡿ૚૙૙ orientation at T* = 0.2 sec and T* = 1 sec. All results are for an 
earthquake with magnitude 7, at distance of 2.5 km, and a VS30 = 760 m/sec. 
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7 Conclusions 

In this study, we examined different methods of representing the intensity of ground motion in 
the horizontal plane using a response spectrum that is a one-dimensional representation of 
ground-motion intensity. We focused on two orientation-independent representations of the 
response spectrum: ܵܽோ௢௧஽ହ଴ and ܵܽோ௢௧஽ଵ଴଴. The new ground-motion models being developed as 
part of the NGA-West2 project will predict the ܵܽோ௢௧஽ହ଴ spectrum at a site due to a future 
earthquake, while the NEHRP [2009] provisions recommend using ܵܽோ௢௧஽ଵ଴଴ for seismic design. 
We have proposed a model to predict the ratio of ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴, which can be used as a 
multiplicative factor with the ܵܽோ௢௧஽ହ଴ predictions from the new NGA-West2 ground-motion 
models to predict the ܵܽோ௢௧஽ଵ଴଴ ground-motion intensity. The proposed model was compared 
and was found to be consistent with similar models built in the past, though the proposed model 
advances that earlier work by using a larger data set, utilizing the recently adopted ܵܽோ௢௧஽ହ଴ 
definition instead of ܵܽீெோ௢௧ூହ଴ and using mixed effects regression to account for inter-event 
terms. The differences between the proposed model and corresponding NEHRP [2009] ratios 
were also explained. One important observation from this work is that the current NEHRP ratio 
of 1.1 at small periods is incorrect and should be approximately 1.2; this result is confirmed by 
other studies, as was illustrated in Figure 3.2. 

Along with modeling the ratio of ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴, we also modeled the probability 
distribution of orientations in which the ܵܽோ௢௧஽ଵ଴଴ intensity is observed relative to the strike of 
the fault. The orientations of ܵܽோ௢௧஽ଵ଴଴ were observed to be uniformly distributed when the 
closest distance between the fault and the site was greater than 5 km, or if the period under 
consideration was less than 1 sec. Only for the cases when the site was within 5 km of the fault 
and at periods greater than 1 sec, the orientation of ܵܽோ௢௧஽ଵ଴଴ was more likely to be closer to the 
strike-normal than strike-parallel direction. The relationship between the orientations of 
ܵܽோ௢௧஽ଵ଴଴ at different periods was also studied, and the difference between the orientation was 
modeled using a truncated exponential distribution. Together these models can help solve a 
practical problem of converting between two important IMs while helping deepen the 
understanding of the directionality of ground motions by studying the distribution of orientations 
in which ܵܽோ௢௧஽ଵ଴଴ occurs and dependence of the ܵܽோ௢௧஽ଵ଴଴ to ܵܽோ௢௧஽ହ଴ ratio on different 
seismological parameters. Spectra conditioned on an orientation and on the orientation in which 
ܵܽோ௢௧஽ଵ଴଴ is observed at a particular period were discussed. Example computations of these 
spectra using the models developed in the study were also presented. 

It is anticipated that these results will help bridge the gap between the work of seismic hazard 
analysts, who typically use ܵܽீெ or ܵܽோ௢௧஽ହ଴ values, and design engineers, some of whom 
prefer to work with ܵܽோ௢௧஽ଵ଴଴ response spectra. 
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8 Recommendations for Future Research 

This report summarizes a comprehensive study of ground-motion directionality in accordance 
with the original goals of the NGA-West2 project. The study nonetheless raised some questions 
which were not resolved, and would benefit from future research as summarized below.  

8.1 PHYSICS OF DIRECTIONALITY AND CONNECTIONS TO DIRECTIVITY 

Though this report focuses on the statistical study of ground-motion directionality, the results 
raise important questions about the physical process behind ground-motion directionality. Most 
importantly, the results show that the connection between directivity and directionality may be 
weaker than intuitively expected. Directivity (in the context of S-waves) can cause preferential 
polarization of ground motion in the fault normal orientation, but directivity effects are not 
equally strong at all periods, fault distances, and orientations with respect to the fault. While the 
directionality effects studied here are remarkably uniform over variations in those conditions, as 
can be seen in Figures A.1 to A.8, directivity causes polarization in approximately fault-normal 
orientations; however, this study showed that there is no preferential orientation of ܵܽோ௢௧஽ଵ଴଴ 
beyond 5 km of the fault. Even within  km of the fault, the fault-normal polarization is weaker 
than that expected from directivity. Additionally, the ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ ratios and the 
ܵܽோ௢௧஽ଵ଴଴ orientations do not show any significant trend with directivity parameters (e.g., IDP 
and ξ), as shown in Appendix A. In summary, occurrence of high ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ ratios 
does not appear to be related to occurrence of directivity; therefore, the directionality models 
proposed here do not account for the impact of directivity on ground motions. Many of these 
observations were first noted by Watson-Lamprey and Boore [2007], and they suggest that 
further research is needed to describe the physical processes, if any, behind ground-motion 
directionality. 

8.2 INPUT GROUND MOTIONS FOR NONLINEAR DYNAMIC ANALYSIS 

Target response spectra are used widely in earthquake engineering, both as targets for ground-
motion selection and scaling, or for other related assessment procedures. Engineering codes and 
technical groups have recently debated at length the relative merits of using SaRotD50 or SaRotD100 
to define a target spectrum. Two related conditional target spectra were suggested in this study, 
but their impact on results from engineering analyses was not considered. Further study is 
required to evaluate the impact of using different target spectra considered herein. Some results 
from the study raise interesting questions about the orientation in which selected ground-motions 
should be input to a dynamic analysis model. Damage is driven by a variety of response 
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parameters, (e.g., story drift ratios, floor accelerations) and different parameters are generally 
sensitive to spectral acceleration at different periods. Results from this study show that the 
orientation of maximum ܵܽ frequently differs with period. It is not clear which orientation of the 
input ground-motion causes maximum damage when damage is sensitive to a range of periods, 
and there is ongoing debate regarding how to use SaRotD100 to select and scale motions in a 
manner that reflects properties of real ground motions. Further research on these topics would be 
useful for developing recommendations that utilize our current knowledge of directionality. 
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Appendix A: Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ 
on Seismological Parameters 

This appendix contains figures showing the dependence of ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ ratio on several 
seismological parameters. Each figure shows the scatter plot of ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ ratios 
computed using a subset of NGA-West2 database being used to develop the Abrahamson-Silva 
ground-motion model. Median ܵܽோ௢௧஽ଵ଴଴/ܵܽோ௢௧஽ହ଴ ratios from Table 3.1, and a non-parametric 
moving average model computed using LOESS smoothing (e.g., Hastie et al. [2001]) are also 
shown. 

 

Figure A.1 Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ on closest distance between site and the 
rupture surface (R ). Figures are shown for spectral acceleration periods of 
(a) 0.01 sec, (b) 0.1 sec, (c) 1 sec, and (d) 5 sec. The median ࡰ࢚࢕ࡾࢇࡿ૚૙૙/
 ૞૙ ratios are taken from Table 3.1, and the nonparametric estimate isࡰ࢚࢕ࡾࢇࡿ
computed using LOESS smoothing (e.g., Hastie et al., 2001). 
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Figure A.2 Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ on earthquake magnitude (M ). Figures 
are shown for spectral acceleration periods of (a) 0.01 sec, (b) 0.1 sec, (c) 1 
sec, and (d) 5 sec. The median ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ ratios are taken from 
Table 3.1, and the nonparametric estimate is computed using LOESS 
smoothing (e.g., Hastie et al. [2001]). 
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Figure A.3 Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ on s , the length of rupture between the 
epicenter and the point on fault closest to the site [Somerville et al 1997], 
for strike-slip faults. Figures are shown for spectral acceleration periods of 
(a) 0.01 sec, (b) 0.1 sec, (c) 1 sec, and (d) 5 sec. The median ࡰ࢚࢕ࡾࢇࡿ૚૙૙/
 ૞૙ ratios are taken from Table 3.1 and the nonparametric estimate isࡰ࢚࢕ࡾࢇࡿ
computed using LOESS smoothing (e.g., Hastie et al. [2001]). 
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Figure A.4 Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ on d, the length of rupture between the 
hypocenter and the point on fault closest to the site [Somerville et al. 1997], 
for non-strike-slip faults. Figures are shown for spectral acceleration 
periods of (a) 0.01 sec, (b) 0.1 sec, (c) 1 sec, and (d) 5 sec. The median 
 ૞૙ ratios are taken from Table 3.1, and the nonparametricࡰ࢚࢕ࡾࢇࡿ/૚૙૙ࡰ࢚࢕ࡾࢇࡿ
estimate is computed using LOESS smoothing (e.g., Hastie et al. [2001]). 
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Figure A.5 Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ on ࣂ, the angle between the line joining 
the epicenter with the site and the strike of the fault [Somerville et al., 
1997], for strike-slip fault. Figures are shown for spectral acceleration 
periods of (a) 0.01 sec, (b) 0.1 sec, (c) 1 sec, and (d) 5 sec. The median 
 ૞૙ ratios are taken from Table 3.1, and the nonparametricࡰ࢚࢕ࡾࢇࡿ/૚૙૙ࡰ࢚࢕ࡾࢇࡿ
estimate is computed using LOESS smoothing (e.g., Hastie et al. [2001]). 
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Figure A.6 Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ on ܛܗ܋ሺࣂሻ for strike-slip faults. Figures 
are shown for spectral acceleration periods of (a) 0.01 sec, (b) 0.1 sec, (c) 1 
sec, and (d) 5 sec. The median ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ ratios are taken from 
Table 3.1, and the nonparametric estimate is computed using LOESS 
smoothing (e.g., Hastie et al., 2001). 
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Figure A.7 Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ on Spudich and Chiou's directivity 
parameter,	۷۲۾ [Spudich et al. 2012]. Figures are shown for spectral 
acceleration periods of (a) 0.01 sec, (b) 0.1 sec, (c) 1 sec, and (d) 5 sec. The 
median ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ ratios are taken from Table 3.1, and the 
nonparametric estimate is computed using LOESS smoothing (e.g., Hastie 
et al. [2001]). 
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Figure A.8 Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙/ࡰ࢚࢕ࡾࢇࡿ૞૙ on Rowshandel's directivity parameter,	ࣈ 
[Spudich et al. 2012]. Figures are shown for spectral acceleration periods 
of (a) 0.01 sec, (b) 0.1 sec, (c) 1 sec, and (d) 5 sec. The median ࡰ࢚࢕ࡾࢇࡿ૚૙૙/
 ૞૙ ratios are taken from Table 3.1, and the nonparametric estimate isࡰ࢚࢕ࡾࢇࡿ
computed using LOESS smoothing (e.g., Hastie et al. [2001]). 
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Appendix B: Dependence of ࡰ࢚࢕ࡾࢇࡿ૚૙૙ 
Orientation on Directivity 
Parameters 

This appendix contains figures showing histograms of the orientations with respect to the strike 
of the fault (ߙ) in which ܵܽோ௢௧஽ଵ଴଴ was observed. The histograms are binned into different 
distance and directivity parameter bins. 
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Figure B.1 Probability density of ࢻ (ࡰ࢚࢕ࡾࢇࡿ૚૙૙ orientations) in different R, and Spudich 
and Chiou's directivity parameter (IDP ) bins. The distance between site 
and fault rupture (R ) is the primary factor affecting ࢻ, among the two 
factors considered here. 
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Figure B.2 Probability density of ࢻ (ࡰ࢚࢕ࡾࢇࡿ૚૙૙ orientations) in different R, and 
Rowshandel's directivity parameter (ࣈ) bins. The distance between site and 
fault rupture (R ) is the primary factor affecting ࢻ, among the two factors 
considered here. 
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