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ABSTRACT

The nonlinear soil amplification models developed by Walling et al. (2008) are revisited for two
main reasons: (a) the simulation database on which the models were developed has been updated
and extended, with additional magnitudes and soil profiles, and (b) two alternatives for the input
shaking parameter are explored — the Peak Ground Acceleration (PGA) and the spectral
acceleration for each period, (Sa(T)). The benefits and limitations of each alternative are
discussed.

The model is based on site amplification factors, relative to a Vg3p=1170 m/sec site,
computed for 53 base soil profiles using the RASCALS computer program. The base profiles
include ten Vg3 values (160 m/sec, 190 m/sec, 270 m/sec, 400 m/sec, 560 m/sec, 760 m/sec, 900
m/sec, 1170 m/sec, 2830 m/sec, and 3150 m/sec), up to eight soil depths (25 ft, 50 ft, 120 ft, 250
ft, 500 ft, 1000 ft, 2000 ft, 3000 ft), and four nonlinear soil models (EPRI and Peninsular range
models for cohesionless soils and Imperial Valley and Bay Mud models for cohesive soils). For
each soil profile, the site response is computed for 11 levels of input rock motion: PGA ;7=
0.01g, 0.05g, 0.1g, 0.2g, 0.3g, 0.4g, 0.5g, 0.75g, 1.0, 1.25g, 1.5g, produced by three point-source
magnitudes: M = 5.0, 6.0, 7.0.

For each base soil profile, the shear-wave velocities, layer thickness and the nonlinear
soil properties (strain dependence of the G/Gp.x and hysteretic damping) are randomized.
Correlation of the velocities and layer thickness variations are considered. For each base profile,
source magnitude and input ground motion level, the median amplification and the standard
deviation of the amplification are computed from 30 realizations of the soil profiles and material
properties. These results are intended for use by the NGA developers to constrain the nonlinear
scaling of the site response for the ground motion models.
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1 Introduction

The objective of the NGA project is to develop ground motion models for shallow crustal
earthquakes in California that cover all relevant sources in California (excluding subduction
earthquakes). In the past, the authors of the empirical ground motion models often set limits on
their applicability based on the data set used to derive the models. However, these limits are
typically ignored in the application of the models in PSHA because a PSHA needs to have the
ground motion estimates for all relevant scenarios and for the site-specific site conditions.

Rather than having the hazard analyst blindly extrapolate the ground motion models, the
NGA project required the developers of the models to extrapolate their models. To help the
model developers in this extrapolation, analytical models were used to develop constraints on the
ground motion scaling.

This report is divided into two main parts; Chapters 2 and 3 describe the results of a large
suite of 1-D site response calculations that can be used by the NGA developers to constrain the
nonlinear site amplification and to constrain the soil depth scaling for shallow soil sites. The
objective of these chapters is to document the site amplification factors that were made available
to the NGA developers. Chapter 4 presents and describes an update to the work conducted by
Walling et al. (2008). The motivation for updating the horizontal nonlinear site amplification
model is driven by two main reasons: (1) the simulation dataset was extended to include a wider
range of possible conditions, and (2) the functional form is modified to include two variations —
one with PGA and one with Sa(T) as the input shaking parameter.






2 Analytical Site Response Model and Input
Parameters

21 ANALYTICAL MODEL

The site response calculations are conducted using the computer program RASCALS (Silva and
Lee, 1987). The RASCALS program combines the stochastic point-source analytical model
commonly used in seismology to define the source and path scaling of earthquakes with the
equivalent-linear approach response commonly used in geotechnical engineering to estimate the
non-linear behavior of soils. This method is summarized below.

2.1.1 Point-Source Model

The point-source model used in RASCALS is based on the omega-squared model with a constant
stress-drop (e.g., Boore, 1983). Random vibration theory (RVT) is used to relate root-mean-
square (RMS) values computed from the power spectrum to peak values of acceleration and
oscillator response in the time domain (Silva and Lee, 1987).

The acceleration spectral density for outcrop rock, a(f), is given by:

2
a(f)-c—L— Mo P(f)A(f)exp[ il J

where f is frequency in Hz and

C constant

M, = seismic moment

R = equivalent point-source distance

Bo =  shear-wave velocity at the source

po =  density at the source

Q(f) =  frequency dependent quality factor (anelastic attenuation)

A(f) =  crustal amplification

P(f) =  high-frequency truncation filter

f. = corner frequency (Hz)



C is a constant which contains source region properties (density and shear-wave velocity) and
accounts for the free-surface effect, the source radiation pattern, and the partition of the energy
into two horizontal components:

117z

C ==

\2p08 2.2)
Source scaling is provided by specifying two parameters: the seismic moment (M,) and the
stress-drop (Ac). The seismic moment is related to magnitude through the definition of moment
magnitude, M:

IOgM0=1.5M+16.05 (23)

The stress-drop relates the corner frequency to the moment:

Je=Po [L]

The amplification accounts for the increase in wave amplitude due to the impedance contrast
from the source to the rock outcrop. The amplification depends on the shear-wave velocity and
density structure from the surface to the source depth.

The P(f) filter accounts for the observation that the high-frequency content decays faster
than predicted by the omega-squared model. The Anderson and Hough (1984) model for the high
frequency filter is adopted:

P(f)=exp(—7f) (2.5)
The kappa can be related to the Q in the shallow crust:
_H
BrOs (2.6)

where the over-bar indicates an average over a depth H.

2.1.2 Site Effects Model

To model soil and soft-rock response, an RVT-based equivalent-linear approach is used. The
outcrop rock power spectral density from the point-source model described in Section 2.1.1 is
propagated through a one-dimensional soil column. RVT is used to predict the peak time domain
values of shear-strain based on the shear-strain power spectrum. In this sense, the procedure is
analogous to the program SHAKE (Schnabel et al., 1972) except that in SHAKE, the peak shear-
strains are measured in the time domain. The RVT approach does not use a time history, thereby
eliminating the need to conduct multiple analyses using a suite of input time histories consistent
with the outcrop rock power spectrum.



In addition to the shear-wave velocity profile, the site effects model requires models for
the strain dependence of the normalized shear modulus (G/Gy,x) and the hysteretic damping. The
sets of G/Gmax and hysteretic damping models used in this study are described in Section 2.2.

2.1.3 Input Rock Motion

Three point-source earthquakes, with magnitudes 5.0, 6.0 and 7.0 and a constant stress drop of
50 bars, were used to define the reference rock outcrop motion. The distance for the point-source
model was adjusted so that the PGA for the rock outcrop (Vs3p=1170 m/sec profile described in
Section 2.3) matched the desired PGA. For each combination of Magnitude and PGAgock, the
point-source distance was kept fixed, and the velocity profile was replaced with the profile for
the desired case. The kappa value for the input rock motion, however, was not kept fixed, as
described below.

The kappa for recorded surface ground motion on generic soil and generic rock sites in
California are similar with a kappa of about 0.04 sec. If the input rock motion kappa was held
fixed at 0.04 sec, then for soil sites, the additional damping in the soil profile will lead to a larger
kappa for the surface soil ground motions. Since the observed data does not show a larger kappa
on California soil sites than on California rock sites, the kappa for the input rock motion (e.g.,
the kappa used in the point-source model) was reduced so that the total kappa for a 1000 ft
profile would remain at 0.04 sec, consistent with observations. An illustration of this is shown in
Figure 2.1.

For hard-rock sites, the kappa for surface recordings is lower than for soil sites, so this
approach of maintaining the total kappa of 0.04 sec breaks down for hard-rock sites. Two sets of
hard-rock site response calculations were computed: one with a kappa of 0.04 sec and one with a
reduced kappa of 0.006 sec. The lower kappa value is consistent with the kappa for hard-rock
sites in the eastern U.S.

Surface Rock Deep Soil Shallow Soil
kappa=0.040 s kappa=0.040 s kappa=0.037 s
A A A
weathered rock

<}— VS=1000 m/s

i j P

Point source model Input into Soil
kappa=0.040 s Point source model, kappa = 0.034 s
Figure 2.1 Example of kappa for the point source model used for input rock
motion.



2.2 G/GMAX AND HYSTERETIC DAMPING MODELS

Four sets of G/G.x and hysteretic damping models are used: two for cohesionless soils (EPRI
and Peninsular Range) and two for cohesive soils (Imperial Valley and Bay Mud). These four
models are described below.

2.2.1 Cohesionless Soil Models

The EPRI model was developed following the 1989 Loma Prieta earthquake using strong-motion
data from three earthquakes: the 1979 Coyote Lake earthquake, the 1984 Morgan Hill
earthquake, and the 1989 Loma Prieta earthquake. This model was validated by Silva et al.
(1997) using strong motion recordings from 48 San Francisco Bay area cohesionless soil sites.
The G/Gpax and the hysteretic damping curves for the EPRI (1993) model are shown in Figure
2.2. The EPRI G/Gu.x and damping curves were developed for generic applications to
cohesionless soils in the general range of gravelly sands to low plasticity silts or sandy clays.

Following the 1994 Northridge earthquake, the EPRI soil model was tested against the
strong motion data from about 80 sites in the Los Angeles region that recorded the Northridge
earthquake. This test showed that the EPRI model had greater nonlinearity than was observed in
the Northridge data. As a result, a revised set of G/Gn.x and hysteretic damping curves was
developed for cohesionless soils in the Peninsular Range based on the Northridge data. The
G/Guax and the hysteretic damping curves for the Peninsular Range (PR) model are shown in
Figure 2.3.
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Figure 2.2 Modulus and damping curves for the EPRI soil model.
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Figure 2.3 Modulus and damping curves for the PR soil model.

2.2.2 Cohesive Soil Models

For the Young Bay Muds and Old Bay Clay, the Vucetic and Dobry (1991) cohesive soil curves
for a PI of 30% are used. The 30% value represents an average value for these cohesive soils.
The G/Gmax and the hysteretic damping curves for the Young Bay Muds and Old Bay Clay
(BM) are shown in Figure 2.4.

To cover the potential range in nonlinearity for cohesive soils, a second model based on
the Imperial Valley data is used. Based on laboratory dynamic testing (Turner and Stokoe, 1982)
and recordings from the 1979 Imperial Valley earthquake (Silva et al., 1997), these soils appear
to behave much more linearly than the soft soils along the margins of the San Francisco Bay area
and Mendocino, California (Silva et al., 1997). Although the Imperial Valley soils contain clays,
typical PI values are less than 30% and the Vucetic and Dobry G/Guax and hysteretic damping
curves appear to have too much nonlinearity to be consistent with the large peak acceleration
values (about 0.5g) recorded during the 1979 Imperial Valley earthquake. As a result, a suite of
G/Gmax and hysteretic damping curves was developed for these soils based on the results of the
Turner and Stoke (1982) laboratory dynamic testing and modeling of the ground motions (Silva
et al., 1997). The G/Gmax and the hysteretic damping curves for the Imperial Valley (IV) are
shown in Figure 2.5. The IV curves remain nearly linear at high strain. Since neither laboratory
testing nor the recorded ground motions resulted in strains exceeding about 0.1%, the curves are
unconstrained at larger strain values. For high strain levels, the curves were linearly extrapolated.
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Figure 2.4 Modulus and damping curves for the IV soil model.
1 — 25

0.9

0.87 /720

| \

0.7 o
| [— PI=30 \ / 5
0.6 15 3
1 \ =
0.5 \ ‘3
B
0.4 10 o
/" \ o
0.3 / N e

0.2_ // \\ 5
0.15 // \\ :

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 05 1
Log (Shear Strain - %)

Figure 2.5 Modulus and damping curves for the BM soil model.

% - oney buidweq



2.3 SHEAR-WAVE VELOCITY PROFILES

The simulations were conducted for a range of soil profiles parameterized by the Vs3p and the
depth to Vs=1000 m/sec. The soil profiles are summarized in Table 2.1 and are plotted in Figure
2.6. The four models of the nonlinear material properties described in Section 2.2 were used for
the soil profiles as indicated in Table 2.1. In all, 53 combinations of Vg3, soil depth, and
nonlinear properties were evaluated. The 53 cases are listed in Table 2.2.

For each case listed in Table 2.2, the site response was conducted for three magnitudes:
MS5.0, M6.0, M7.0 and 11 different PGA values of the outcrop rock motion: 0.001g, 0.05g, 0.1g,
0.2g, 0.3g, 0.4g, 0.5g, 0.75g, 1.0g, 1.25g, 1.5g. For each run, the amplification with respect to
Vs30=1170 m/sec was computed.

As noted in Section 2.1.3, the kappa for the input rock motion was adjusted to maintain a
constant total kappa of 0.04 sec for deep soil profiles. The kappa values used for the input rock
motion in each case are listed in Table 2.2. For hard-rock sites, two values of the total kappa
were used: 0.04 sec and 0.006 sec. The lower total kappa reflects the observed reduction in total
kappa for hard-rock sites.

Table 2.1 Summary of site response cases.
Vs3o . Nonlinear Material Input Rock
(m/sec) Soil Depth (ft) Properties Kappa (sec)
25, 50, 120, 250, 500, 1000,
160 2000, 3000, 30-1000 BM 0.030
25, 50, 120, 250, 500, 1000,
190 2000, 3000, 30-1000 v 0.032
190 30-1000 PR 0.032
25, 50, 120, 250, 500, 1000,
270 2000, 3000, 30-1000 PR 0.035
270 30-1000 EPRI 0.034
400 25, 50,120, 250, 500, 1000, 30- PR 0.037
1000
400 30-1000 EPRI 0.036
560 25, 50,120, 250, 500, 30-1000 PR 0.037
560 30-1000 EPRI 0.036
760 25, 50, 260 PR 0.038
760 260 EPRI 0.038
900 25,260 PR 0.038
1170 0 Linear 0.040
3150 0 Linear 0.040
2830 0 Linear 0.006




Table 2.2 List of site response cases.
Depth to Vs=1.0 Vs3o . Input Rock
Case km/sec (ft) (m/sec) Soil Model Kappa(sec)
1 25 160 BM 0.030
2 50 160 BM 0.030
3 120 160 BM 0.030
4 250 160 BM 0.030
5 500 160 BM 0.030
6 1000 160 BM 0.030
7 2000 160 BM 0.030
8 3000 160 BM 0.030
9 30-1000 160 BM 0.030
10 25 190 v 0.032
11 50 190 v 0.032
12 120 190 v 0.032
13 250 190 v 0.032
14 500 190 v 0.032
15 1000 190 v 0.032
16 2000 190 v 0.032
17 3000 190 v 0.032
18 30-1000 190 v 0.032
19 30-1000 190 PR 0.032
20 25 270 PR 0.035
21 50 270 PR 0.035
22 120 270 PR 0.035
23 250 270 PR 0.035
24 500 270 PR 0.035
25 1000 270 PR 0.035
26 2000 270 PR 0.035
27 3000 270 PR 0.035
28 30-1000 270 PR 0.035
29 30-1000 270 EPRI 0.034
30 25 400 PR 0.037
31 50 400 PR 0.037
32 120 400 PR 0.037
33 250 400 PR 0.037
34 500 400 PR 0.037
35 1000 400 PR 0.037
36 30-1000 400 PR 0.037
37 30-1000 400 EPRI 0.036
38 25 560 PR 0.037
39 50 560 PR 0.037
40 120 560 PR 0.037
41 250 560 PR 0.037
42 500 560 PR 0.037
43 30-1000 560 PR 0.037
44 30-1000 560 EPRI 0.036
45 25 760 PR 0.038
46 50 760 PR 0.038
47 260 760 PR 0.038
48 260 760 EPRI 0.038
49 25 900 PR 0.038
50 260 900 PR 0.038
51 20 1170 Linear 0.04
52 0 2830 Linear 0.006
53 0 3150 Linear 0.04
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2.4 SOIL PROFILE RANDOMIZATION

Both the shear-wave velocities and the layer thicknesses are varied using correlation models
based on an analysis of 557 measured shear-wave velocity profiles (Silva et al, 1997). The
algorithm starts with a given base-case profile and generates a suite of random profiles about the
base-case profile accounting for the correlations. The details of the procedure are given in Silva
et al. (1997). The correlation models are summarized below.

2.4.1 Velocity Profile Randomization

The development of the randomization of the shear-wave velocity profile is described in
Appendix C of Silva et al. (1996). The model is summarized here. For each base profile, the
depth to the Vg=1.0 km/sec layer is randomized within plus and minus 50% of the depth for the
base profile. Within the soil profile, the layer thicknesses are assumed to follow a Poisson
process with a depth-dependent rate. The depth-dependent rate is modeled by

A(h)=1.98[h +10.86] " @.7)
where A is the rate of layer boundaries (m™) and h denotes the layer depth in m.
The layer velocities are developed by defining the normalized quantity, Z;, given by
In(V,)—In(V,,egian (h;
Zj _ n( l) n( median ( z))
Oy (2.8)

The lognormal distribution of the velocities and the correlation among layers is modeled by a
first-order auto-regressive model:

Zl =&

Zi=p(h,0)Z; =1+\1- p(h,t)> & fori>1 (2.9)

where p is the serial auto-correlation coefficient of Z, and ¢; are independent normal variates
with zero mean and unit variance.

p(h,0)=(1=py(h))p(O)+pa(h) (2.10)

where pg is the depth-dependent correlation and p; is the thickness-dependent correlation and are
given by

h+h b
pZOO[WJ forh <200
Pa(h)= o

£200 forh>200 (2.11)
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and

pi(D=po eXp(_th

(2.12)
The model coefficients, Gy, p20o, ho, b, po, and A are listed in Table 2.3.
Table 2.3 Coefficients for velocity profile randomization model.
VS30 (m/sec) Range
Parameter

> 750 m/sec 360 to 750 180 to 360 <180

Glnv 0.36 0.27 0.31 0.37

Po 0.95 0.97 0.99 0.00

A 3.4 38 39 5.0

0200 0.42 1.00 0.98 0.50

hg 0.0 0.0 0.0 0.0
b 0.063 0.293 0.344 0.744

2.4.2 Nonlinear Soil Property Randomization

The modulus reduction and damping curves were independently randomized about the base case
values. A truncated log normal distribution was assumed with a standard deviation of 0.35
natural log units at a cyclic shear strain of 3x10?%. The distribution was truncated at plus and
minus 2 standard deviations to avoid cases that are not considered physically possible. The
random curves are generated by sampling the log normal distribution, computing the scale factor
on the modulus or damping at 3x102% shear strain, and then applying this factor at all strains.
The random variations are reduced at the ends of the strain range to preserve the general shape of
the base case curves (Silva, 1992).
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3 Summary of Resulting Amplification Factors

3.1  INTRODUCTION

This section presents summary plots of the amplification factors for a subset of the 53 cases.
Results of the scaling with V3o and PGA ;70 using the cases with randomized soil depths (cases
17, 18, 27, 28, 35, 36, 42, 43) are shown in Section 3.2. Results of the scaling with soil depth for
the linear range (e.g., cases with the rock input motion of 0.001g) are shown in Section 3.3. The
complete set of results for all cases is attached as an electronic appendix.

3.2 MAGNITUDE SCALING

The period dependence of the amplification for a soil profile with Vg3o = 270 m/sec at the linear
range (PGARqek=0.01g) is shown in Figure 3.1. The amplification for the PR and EPRI models is
shown in the top and bottom panels, respectively. In each panel, the amplification from three
point-source magnitudes is presented. There is very little difference in the amplification for this
low shaking level at periods smaller than 2sec. The increase in amplification for the M5.0 input
at periods greater than 2sec is believed to be a numerical artifact of the simulation procedure and
therefore results in that range (M=5, T>2sec) are not used for regression of the parametric model.

At higher shaking levels, such as PGAg.k=1.0g (see Figure 3.2), the difference in
amplification for the M5.0 simulations is more significant, with a clear resonant peak at T=1 sec.
It should be noted here again, that for a M5.0 point source to reach PGAg.k of 1.0g, the source-
to-site distance must be much shorter than for the larger point-source magnitudes, leading to
such differences.

Figures 3.3 and 3.4 show a similar comparison for a profile with V3,=400 m/sec with
PGARock = 0.01g and PGARg.k=1.0g, respectively. The trends are similar to those shown for the
softer profile but less significant. For example, for the EPRI model with PGAgex=1.0g, the
increase in the peak amplification between M5.0 and M6.0 is about 30% for the V30=270 m/sec
profile but only about 6% for the V3p=400 m/sec profile.

The Magnitude scaling of the amplification for a PR profile with V3p=270 m/sec is
shown again in the top panel of Figure 3.5, this time as a function of Rock PGA. The increased
Magnitude dependence as input shaking increases is clearly seen. The Magnitude scaling on the
PGV amplification, however, shown for the same profile in the bottom panel of Figure 3.5,
presents different trends. For PGV amplification, the nonlinearity with respect to Rock PGA has
opposite trends between the M5.0 simulations and M6.0-M7.0 simulations. This is related with
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different frequency contents for different point-source magnitude simulations, resulting with
PGV for those simulations being associated with a different frequency range. Since nonlinearity
is mostly expected to occur from larger magnitude simulations, the regression for the nonlinear
model at PGV will be based on M6.0 and M7.0 simulation results only.

For purposes of brevity, all plots in the following sections will present simulation results
for a M6.0 point-source only; trends for the M5.0 and M7.0 are similar other than the differences
that were mentioned above.
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3.3 SCALING FOR THE RANDOMIZED SOIL DEPTHS

The period dependence of the amplification in the linear range (PGA,;70=0.01g) for the twelve
V30 profiles are shown in Figures 3.5 and 3.6. Overall, there is an increase in the amplification
as the Vg30 1s reduced.

The nonlinearity in the amplification for a range of Vsso profiles and soil models (BM,
IV, PR and EPRI) is shown in Figures 3.7 to 3.12 for spectral periods of 0.01, 0.1, 0.2, 0.5, 1.0,
and 2.0 sec. The strongest nonlinear effects are seen for T=0.1 sec (Figure 3.8). For spectral
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periods of 1.0 sec or longer and soil profiles with Vg3 of 400 or greater, the amplification is
nearly linear. However, in the softer profiles there are two competing trends. For example, for
T=2sec the amplification is decreasing with increase in PGAg,ck for soil profiles with Vg of
160-190 while it is increasing for profiles with Vo of 270-400 due to the effects of period
elongation at these higher levels of shaking.

The nonlinearity of the four soil models can also be compared in Figures 3.7 to 3.12.
Note that each Vg3 value is plotted with the same color on the upper and lower panels. These
figures show that on average, the EPRI model is more nonlinear than the PR model. Also, the
BM model is much more nonlinear than the IV model. The nonlinearity for the IV model
(Vs30=190 m/sec) is similar to the nonlinearity for the EPRI model for Vs30=270 m/sec.

The standard deviation of the linear amplification PGARe=0.01g is shown in Figures
3.13 and 3.14 for the PR soil profiles and the non-PR soil profiles (BM, IV, EPRI), respectively.
For the smaller PGAg,ck values, the standard deviations of the amplification generally increase
with period and decrease with increasing Vsso. For profiles with Vg30=270 m/sec or higher, the
standard deviations of the linear amplification are generally between 0.15 and 0.3 natural log
units. The PGARgok dependence of the standard deviations for all soil profiles are shown in
Figures 3.15 to 3.17 for spectral periods of 0.01 sec, 0.2 sec and 1.0 sec, respectively. The
increase in the standard deviation as a function of the PGAgock is due to the variability of the
nonlinear properties that were randomized (G/Gpax and damping).
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3.4 SOIL DEPTH SCALING

The 1-D simulation results can also be used to estimate the effect of the soil depth on the
amplification. Examples of the effect of the soil depth on the amplification are shown in Figures
3.18 to 3.20, for soil profiles with Vg3p ranging from 160 m/sec to 760 m/sec. Similar plots show
the effect of depth on the standard deviation of the linear amplification in Figures 3.21 to 3.23.
The soil depth is parameterized by the depth to the layer with Vg=1.0 km/sec. These figures are
for the linear site response (PGAgro=0.01g); therefore, they are independent of the nonlinear
properties.

The soil depth scaling is shown in Figure 3.24 for soil profiles with Vg3¢ values of 190
m/sec, 270 m/sec, 400 m/sec, and 560 m/sec. The soil depth effects are strongest for the softer
soil profiles (lower Vg3 values). For the softer profiles, there is strong scaling for soil depths
from 8 to 300 m, but the scaling becomes weak for soil depths greater than 300 m, mostly due to
the limitations of modeling deep soil profiles with a 1D soil column.
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4 Parametric Model for Nonlinear Site
Amplification

41 INTRODUCTION

A subset of the simulation cases described above was used for the development of parametric
models for the nonlinear response of soil sites to strong ground motions. The proposed models
are updates to the models developed by Walling et al. (2008) in that they are based on an
extended simulation dataset and use the same functional form.

The models developed by Walling et al. (2008) were revisited herein for two main
reasons: (a) the simulation database on which the models were developed has been updated and
extended, with additional magnitudes and soil profiles, and (b) two alternatives for the input
shaking parameter are explored — the Peak Ground Acceleration (PGA) and the spectral
acceleration for each period, (Sa(7)).

42 MODEL DEVELOPMENT

Four resulting models are presented below: for each of the soil models - Peninsular Range and
EPRI - there is a one model based on PGA as input and one based on Sa(7) as input. All models
are based on the randomized-depth soil profiles only. A summary of the simulation cases used
for model development is presented in Table 4.1.

Table 4.1 List of simulation scenarios that were selected for model
development.
V.o (misec) Depth to tzs‘ /c;i; ::c;ck (Vs30=1 Material mogcracl) ::ft?e;or nonlinear
190 9-305 m PR
270 9-305m PR, EPRI
400 9-305m PR, EPRI
560 9-305m PR, EPRI
760 79 m PR, EPRI
900 79 m PR

43



4.2.1 Functional Form

The functional form is identical to that used in Walling et al. (2008). It can be written as the sum
of a linear term and a nonlinear term:

In(Amp) = fL(Vs3O) + fuL (GMgock, Vsso) 4.1)

The linear term is a function of Vs30 only, whereas the nonlinear term is a function of Vs30 and
a measure of the shaking intensity on rock. The ground motion intensity was defined in the
Walling2008 model in term of PGARg,ck. Here we present two alternatives — for each soil model
(PR and EPRI), we present one model in term of PGAgoe and one in term of Sa(T)reck. Finally,
the resulting functional forms for the two alternative models are given in Equations (4.2) and
(4.3) for the PGA-based and the Sa(T)-based models, respectively:

( aln (V53°) b In(PGAgycr + )

Lin

In(Amp) = { + b In (PGARock +c (L) ) +d for Vi, < Vi 4.2)

Viin

| (a+ bn)ln( 530) +d for Veso = Viin

( aln (V53°) b In(Sagyer (T) + ¢)

Lin

In(Amp) = { + b In (SaRock(T) + o (B) ) +d for Vi, < Vi, 4.3)

\ (a + bn)ln( 530) +d for Veso = Viin

where:

. _ (Vsso forVse <V
Vsa0 = { Vi forVge =V, (4.4)
and V, corresponds to the Vs3g above which the soil amplification no longer scales linearly with
respect to changes in Vs (Abrahamson and Silva, 2008).

Further explanation on the evolution of the form for the nonlinear term is provided in
Walling et al. (2008).

4.2.2 Data Selection

For the models presented below, only simulations with randomized depth (30—-1000 ft) are used.
The simulations with smaller depth bins are used to constrain the depth term within the GMPE
(e.g., Abrahamson and Silva 2008) but that part is not discussed in this report.

A Magnitude-Period constrain was placed on the dataset used for the model regression,
due to an increased amplification at long periods for the smaller magnitudes (e.g., Figures 3.1 to
3.4), which is believed to be a numerical artifact of the simulation procedure. The simulation
results used for model regression include the Magnitude 7.0 simulations within the available
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period range 0.01 <T < 10 sec, Magnitude 6.0 simulations at 0.01 <T <5 sec and Magnitude 5.0
simulations at 0.01 < T < 2 sec. The PGV model regression is performed on simulations from
Magnitudes 6.0 and 7.0 only, as discussed in Section 3.2.

4.2.3 Model Parameters

Due to the nonlinearity of the functional form as shown in figure (4.2) and (4.3), the three
parameters - b, n, and ¢ - which appear in the nonlinear term are highly correlated and hence do
not all need to be period-dependent. Hence, the parameters n and ¢ were fixed along all periods
and the parameter b was regressed as a period-dependent parameter. Fixing of n and ¢ was done
based on regressions of smaller subsets at short periods, where the nonlinearity is greatest. In the
second step, the period-dependent reference shear-wave velocity, Vi, was regressed and
smoothed. Vi, is intentionally kept identical for the two models of each soil group (i.e. the two
PR models and the two EPRI models), since it represents a physical measure which should not
depend on the input shaking. In the third step, the period-dependent nonlinear coefficient, b, was
regressed and smoothed.

Smoothing of the period-dependent parameters was done by fitting a 7" order polynomial
to the regressed values with some constraints at the low and high ends of the period range,
following Equation (4.5).

B2 r=T,
i
X =g+ X o [ln (Tlo)] T, <T<T, (4.5)
B r=T

The smoothed parameter x in Equation (4.5) is either /n(V;;,) or b and T is the spectral period.
The four pairs of the smoothed parameters (V};, and b for each of the four models presented in
this report) are compared with the smoothed parameters from Walling et al. (2008) in Figure 4.1.
Note that while the parameter b was constrained in Walling et al. (2008) to be negative (or <
0.15), it was allowed to be positive in the models below and was as high as 3.95 for the PR-Sa
model. The positive b values allow an increase in amplification for increased levels of shaking,
which can be related to period elongation, as will be shown below.

The list of parameters needed for reconstructing the nonlinear terms (following equation
5) are presented in Table 4.2. The smoothed values for Vj;, and b are listed in Appendix A for the
111 periods that are in the NGA FlatFile. The parameters which appear in the linear term - a and
d - are left unsmoothed, since they are correlated with other terms in the GMPE and should be
regressed for each individual GMPE in which these site amplification models are applied.
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Table 4.2 List of coefficients needed to reconstruct the smoothed model

parameters.
PR EPRI
PGA Sa PGA Sa
n 1.5 1.5 1.5 1.5
: 14| frpav) 20| fwrv)
Viiv b b Viiv b b
PGV | 332.00 -1.5140 -2.0200 728.00 0.5850 0.6025
Ty 0.010 0.020 0.012 0.014 0.010 0.02
T, 0.015 0.020 0.018 0.018 0.022 0.018
T, 0.550 9.000 5.500 0.460 1.820 7.000
ag 6.5300 -1.2500 -1.6400 7.1360 -0.9039 -0.9241
a; -0.2000 0.2780 0.9474 -0.6500 1.1276 0.3081
a 0.2400 -1.3430 -2.0673 1.7860 -3.5267 0.2166
a;s 0.0940 2.4810 2.2630 -1.0370 4.4341 -0.5068
ay -0.0170 | -1.8690 -1.0634 0.1237 -2.5880 0.1586
as -0.0529 0.6040 0.2097 0.0421 0.7361 0.0006
as 0.0191 -0.0862 -0.0155 -0.0117 -0.0993 -0.0047
az -0.0018 0.0045 0.0002 0.0008 0.0051 0.0004
B 6.493 -1.250 -1.470 7.068 -0.833 -0.960
S 5.805 0.360 3.950 6.590 0.600 2.100
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4.3 SUMMARY OF RESULTS

The dependence of the amplification level on shaking intensity [in terms of PGA or Sa(f)] as
well as on the soil profile (in terms of Vssg) is presented in Figures 4.2 through 4.5 for the four
different models, for periods 0.01, 0.2, 1, 2, 3, and 5 sec. The simulation results are represented
by open symbols while the parametric model is shown by the solid line for each corresponding
V0. All four models can be seen to capture the general response of the simulations, that is —
increased amplification as Vg3 decreases, nonlinearity at short periods, and period elongation
(increased amplification for increased input motion) at long periods. The biggest discrepancy can
be seen at T=1 sec for all four models. At that period, there are several aspects of the soil
response that cannot be captured by the current functional form. For example, the two softest
profiles for the PR model (V30=190 and V30=270) have opposite trends with shaking intensity,
the amplification for low shaking intensity does not scale linearly with Vg3, and some of the
profiles change their nonlinearity from positive to negative with shaking input. These
discrepancies are also consistent with Figures 3.2 and 3.5, which suggest that at T=1 sec there is
both resonance at the soft profiles and the greatest magnitude dependence. The model’s
agreement with simulation results at other periods seems to be much better for a range of Vg3
and shaking intensity values.
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Figure 4.2 Model versus simulation results for the PR-PGA model for six
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The nonlinearity with respect to shaking intensity can be represented by the slope of the
lines in Figures 4.2 through 4.5. This term is presented in Figure 4.6 for a profile with V3,=270
m/sec, showing the slopes between reference PGA of 0.1g to 1g. The trends are similar for all
four models and are also quite consistent with nonlinearity computed from the Walling(2008)
models. The nonlinearity for the EPRI models is generally greater than that of the PR models,
with the nonlinearity peaking at about T=0.2s for all models (as seen in the top panel, slope from
0.1gto 1g).

A comparison between the resulting spectral values on soil vs. the input motion on rock is
presented in Figure 4.7 for the PR-Sa model, for the same six periods as shown in Figures 4.2
through 4.5. The expected spectral acceleration of the soil, given the input spectral acceleration
on rock and the corresponding model amplification can be computed as:

Sas(,ﬂ(f) = SaRock(f) : Amp(f) (46)

It can be seen that at low rock shaking levels, all soil profiles amplify the response (all lines are
above the 1:1 line). As shaking levels increase, the softer profiles de-amplify the response at
shorter periods (lines cross below the 1:1 line). At the longer periods (above ~1 sec) there is no
de-amplification even for high levels of shaking.
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The spectral shape of the rock and corresponding soil motions are presented in Figure 4.8
for four increasing shaking intensities — ranging from PGA ;¢ of 0.05g to 1g. The rock motions
are shown in solid lines and the corresponding soil motions are in dashed lines. It can be seen
that as shaking increases, there is more nonlinearity, and hence the soil softens and the peak
response is shifted towards longer periods. This can also explain the upward trend of the
amplification curve at T>2 sec in Figures 4.3 through 4.6.
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Figure 4.8 Spectral acceleration (top) and Normalized spectral acceleration

(bottom) vs. Period, for the PR-Sa model with Vs30=270 m/sec and
under four different input shaking intensities.
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The four amplification models are compared in Figure 4.9 in terms of their resulting soil
spectra for Vs3p=270m/sec with PGA109=0.1g (left) and PGA00=0.5g (right). It can be seen that
while all four models result in a largely similar soil spectra, there is a greater difference between
the two nonlinear material models (i.e. PR vs. EPRI) rather than between the two forms of the
input motion [i.e. PGA vs. Sa(T)].



The predictive power of the functional form can be tested by comparing the sigma of the
model for different profiles and different functional forms. Since each combination of input
shaking value and soil profile was simulated 30 times with randomization of the soil profile and
material properties, the parametric model is regressed on the mean amplification of each of those
sets. The standard deviation of the fit could therefore either include or not include the standard
deviation of each set. A comparison between the two options is presented in Figure 4.10, which
shows the standard deviation of the fit for the PR-Sa model, for each of the different soil profiles.
On the left, 0, is the standard deviation of the residuals between the simulation means and the
parametric model. On the right, the total standard deviation includes the average standard
deviation of the simulations for each of the profiles considered, computed as following:

— |2 2
Ores—total = \/Gsmlulatlon + Ores (4-7)

where Oy, muiation 15 the mean of the standard deviations for each set of 30 realizations performed
for each profile and each shaking intensity (see Figures 3.14 through 3.18) and o,.. is the misfit
between the mean of that set and the parametric model. In general, Figure 4.10 shows that 0.,
increases as V3o decreases. The average o,..¢, representing all soil profiles, is shown in black and
can be seen to be mostly affected by the softer profiles with the larger o, while the average
Ores—totar 1S pulled down (relatively) by the lower Ogjpmuiation Of the stiffer profiles.

The two different functional forms (PGA vs. Sa as shaking input parameter) are
compared in Figure 4.11 for the Peninsular Range soil model, showing both 0,5 and G,es_totar
for each of the forms. If one functional form would have fit the simulation results better, we
would expect that form to have a lower standard deviation. However, both 0,..5 and 0;¢5_¢otaiare
almost identical for the two forms, suggesting that there is no significant advantage for either of
the functional forms. These findings are different than the conclusion of Bazzurro and Cornell
(2004), who propagated 78 earthquake records through two soil profiles and explore seven
functional forms for the amplification functions. A subset of their findings is also re-drawn in
Figure 4.11, comparing the standard deviations of the residuals to two of their functional forms,
using PGA and Sa(f) as single model parameters. Bazzurro and Cornell concluded that Sa(T) is
the single most helpful parameter for the prediction of the amplification since it had the lowest
Ores- One of the main difference between our simulations and Bazzurro and Cornell’s is that they
use real time histories and by that account for variability in the spectral shape, whereas the
simulations in this study were performed with the RVT method, which has a unique spectral
shape and hence a strong correlation between PGA and Sa(T). Uncertainties in soil properties are
accounted for in both studies, and do not add to the total uncertainty very much, as long as the
general profile (depth, Vs30) stays the same.

We conclude that based on the analysis presented herein, there is no statistical preference
for either of the forms (PGA or Sa as input-motion parameter), but we recommend using the
Sa(T) model, for ease of use in forward applications of the GMPE model.
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Appendix A: Table of Model Parameters

Table A.1. Model Parameters corresponding to the 111 periods in the NGA FlatFile.

PR PGA Model PR Sa Model EPRI PGA Model EPRI Sa Model
n 1.5 1.5 1.5 1.5
c 1.4 2.4 (*100 for PGV) 2.0 3.0 (*100 for PGV)
Period (sec) VLIN b VLIN b VLIN b VLIN b
PGV 332.00 -1.514 332.00 -2.020 728.00 0.585 728.00 0.603
0.01 660.50 -1.250 660.50 -1.470 1173.80 -0.833 1173.80 -0.960
0.02 683.74 -1.250 683.74 -1.459 1195.76 -0.833 1195.76 -0.924
0.022 698.64 -1.234 698.64 -1.448 1232.97 -0.833 1232.97 -0.893
0.025 723.96 -1.232 72396 -1.430 1304.69 -0.825 1304.69 -0.850
0.029 760.05 -1.236 760.05 -1.399 1409.62 -0.805 1409.62 -0.803
0.03 769.14 -1.237 769.14 -1.390 1435.59 -0.799 1435.59 -0.793
0.032 787.11 -1.237 787.11 -1.372 1486.02 -0.787 1486.02 -0.776
0.035 813.17 -1.233 813.17 -1.343 1556.26 -0.770 1556.26 -0.757
0.036 821.52 -1.231 821.52 -1.334 1577.95 -0.765 1577.95 -0.752
0.04 852.89 -1.220 852.89 -1.297 1655.02 -0.749 1655.02 -0.739
0.042 867.19 -1.214 867.19 -1.279 1687.55 -0.744 1687.55 -0.736
0.044 880.48 -1.208 880.48 -1.263 1716.06 -0.740 1716.06 -0.735
0.045 886.74 -1.205 886.74 -1.255 1728.85 -0.738 1728.85 -0.735
0.046 892.74 -1.201 892.74 -1.247 1740.67 -0.737 1740.67 -0.735
0.048 903.95 -1.196 903.95 -1.232 1761.51 -0.737 1761.51 -0.737
0.05 914.11 -1.190 914.11 -1.219 1778.77 -0.738 1778.77 -0.740
0.055 934.95 -1.180 93495 -1.191 1807.65 -0.746 1807.65 -0.753
0.06 949.57 -1.175 949.57 -1.170 1818.90 -0.763 1818.90 -0.772
0.065 958.49 -1.176 958.49 -1.157 1815.95 -0.786 1815.95 -0.794
0.067 960.59 -1.178 960.59 -1.154 1811.51 -0.796 1811.51 -0.803
0.07 962.31 -1.183 962.31 -1.151 1801.90 -0.814 1801.90 -0.818
0.075 961.69 -1.196 961.69 -1.152 1779.42 -0.845 1779.42 -0.844
0.08 957.26 -1.214 957.26 -1.158 1750.74 -0.879 1750.74 -0.872
0.085 949.63 -1.237 949.63 -1.169 1717.67 -0.915 1717.67 -0.899
0.09 939.35 -1.264 939.35 -1.186 1681.64 -0.952 1681.64 -0.926
0.095 926.93 -1.294 926.93 -1.206 1643.80 -0.990 1643.80 -0.953
0.1 912.81 -1.328 912.81 -1.230 1605.04 -1.027 1605.04 -0.980
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Appendix B: Table of Amplification
Factors for Two Hard Rock
Profiles

http://peer.berkeley.edu/publications/peer reports

Ireports 2013/reports 2013.html

65



66



Appendix C: Table of Amplification
Factors for the Soil Profiles
by Depth Bins

http://peer.berkeley.edu/publications/peer reports

Ireports 2013/reports 2013.html
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Appendix D: Table of Amplification
Factors for the Soil Profiles
with Randomized Depth

http://peer.berkeley.edu/publications/peer reports

Ireports 2013/reports 2013.html
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