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ABSTRACT 

The nonlinear soil amplification models developed by Walling et al. (2008) are revisited for two 
main reasons: (a) the simulation database on which the models were developed has been updated 
and extended, with additional magnitudes and soil profiles, and (b) two alternatives for the input 
shaking parameter are explored – the Peak Ground Acceleration (PGA) and the spectral 
acceleration for each period, (Sa(T)). The benefits and limitations of each alternative are 
discussed. 

The model is based on site amplification factors, relative to a VS30=1170 m/sec site, 
computed for 53 base soil profiles using the RASCALS computer program. The base profiles 
include ten VS30 values (160 m/sec, 190 m/sec, 270 m/sec, 400 m/sec, 560 m/sec, 760 m/sec, 900 
m/sec, 1170 m/sec, 2830 m/sec, and 3150 m/sec), up to eight soil depths (25 ft, 50 ft, 120 ft, 250 
ft, 500 ft, 1000 ft, 2000 ft, 3000 ft), and four nonlinear soil models (EPRI and Peninsular range 
models for cohesionless soils and Imperial Valley and Bay Mud models for cohesive soils). For 
each soil profile, the site response is computed for 11 levels of input rock motion: PGA1170= 
0.01g, 0.05g, 0.1g, 0.2g, 0.3g, 0.4g, 0.5g, 0.75g, 1.0, 1.25g, 1.5g, produced by three point-source 
magnitudes: M = 5.0, 6.0, 7.0. 

For each base soil profile, the shear-wave velocities, layer thickness and the nonlinear 
soil properties (strain dependence of the G/Gmax and hysteretic damping) are randomized. 
Correlation of the velocities and layer thickness variations are considered. For each base profile, 
source magnitude and input ground motion level, the median amplification and the standard 
deviation of the amplification are computed from 30 realizations of the soil profiles and material 
properties. These results are intended for use by the NGA developers to constrain the nonlinear 
scaling of the site response for the ground motion models. 
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1 Introduction 

The objective of the NGA project is to develop ground motion models for shallow crustal 
earthquakes in California that cover all relevant sources in California (excluding subduction 
earthquakes). In the past, the authors of the empirical ground motion models often set limits on 
their applicability based on the data set used to derive the models. However, these limits are 
typically ignored in the application of the models in PSHA because a PSHA needs to have the 
ground motion estimates for all relevant scenarios and for the site-specific site conditions.  

Rather than having the hazard analyst blindly extrapolate the ground motion models, the 
NGA project required the developers of the models to extrapolate their models. To help the 
model developers in this extrapolation, analytical models were used to develop constraints on the 
ground motion scaling.  

This report is divided into two main parts; Chapters 2 and 3 describe the results of a large 
suite of 1-D site response calculations that can be used by the NGA developers to constrain the 
nonlinear site amplification and to constrain the soil depth scaling for shallow soil sites. The 
objective of these chapters is to document the site amplification factors that were made available 
to the NGA developers. Chapter 4 presents and describes an update to the work conducted by 
Walling et al. (2008). The motivation for updating the horizontal nonlinear site amplification 
model is driven by two main reasons: (1) the simulation dataset was extended to include a wider 
range of possible conditions, and (2) the functional form is modified to include two variations – 
one with PGA and one with Sa(T) as the input shaking parameter. 
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2 Analytical Site Response Model and Input 
Parameters 

2.1 ANALYTICAL MODEL 

The site response calculations are conducted using the computer program RASCALS (Silva and 
Lee, 1987). The RASCALS program combines the stochastic point-source analytical model 
commonly used in seismology to define the source and path scaling of earthquakes with the 
equivalent-linear approach response commonly used in geotechnical engineering to estimate the 
non-linear behavior of soils. This method is summarized below. 

2.1.1 Point-Source Model 

The point-source model used in RASCALS is based on the omega-squared model with a constant 
stress-drop (e.g., Boore, 1983). Random vibration theory (RVT) is used to relate root-mean-
square (RMS) values computed from the power spectrum to peak values of acceleration and 
oscillator response in the time domain (Silva and Lee, 1987).  

The acceleration spectral density for outcrop rock, a(f), is given by: 

a( f )C
f 2

1 ( f / fc )2
Mo
R

P( f ) A( f )exp
fR

0Q( f )










 (2.1) 

where f is frequency in Hz and 

 
 C = constant 
 Mo = seismic moment 
 R = equivalent point-source distance 
 0 = shear-wave velocity at the source 
 0 = density at the source 
 Q(f) = frequency dependent quality factor (anelastic attenuation) 
 A(f) = crustal amplification 
 P(f) = high-frequency truncation filter 
 fc = corner frequency (Hz) 
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C is a constant which contains source region properties (density and shear-wave velocity) and 
accounts for the free-surface effect, the source radiation pattern, and the partition of the energy 
into two horizontal components: 

C
1.1
200

3
 (2.2) 

Source scaling is provided by specifying two parameters: the seismic moment (Mo) and the 
stress-drop (). The seismic moment is related to magnitude through the definition of moment 
magnitude, M: 

logM01.5M16.05 (2.3) 

The stress-drop relates the corner frequency to the moment: 

fc 0


8.44 M0










 (2.4) 

The amplification accounts for the increase in wave amplitude due to the impedance contrast 
from the source to the rock outcrop. The amplification depends on the shear-wave velocity and 
density structure from the surface to the source depth. 

The P(f) filter accounts for the observation that the high-frequency content decays faster 
than predicted by the omega-squared model. The Anderson and Hough (1984) model for the high 
frequency filter is adopted: 

P( f )exp(kf ) (2.5) 

The kappa can be related to the Q in the shallow crust: 

k 
H

RQ S  (2.6) 

where the over-bar indicates an average over a depth H. 

2.1.2 Site Effects Model 

To model soil and soft-rock response, an RVT-based equivalent-linear approach is used. The 
outcrop rock power spectral density from the point-source model described in Section 2.1.1 is 
propagated through a one-dimensional soil column. RVT is used to predict the peak time domain 
values of shear-strain based on the shear-strain power spectrum. In this sense, the procedure is 
analogous to the program SHAKE (Schnabel et al., 1972) except that in SHAKE, the peak shear-
strains are measured in the time domain. The RVT approach does not use a time history, thereby 
eliminating the need to conduct multiple analyses using a suite of input time histories consistent 
with the outcrop rock power spectrum.  
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In addition to the shear-wave velocity profile, the site effects model requires models for 
the strain dependence of the normalized shear modulus (G/Gmax) and the hysteretic damping. The 
sets of G/Gmax and hysteretic damping models used in this study are described in Section 2.2. 

2.1.3 Input Rock Motion 

Three point-source earthquakes, with magnitudes 5.0, 6.0 and 7.0 and a constant stress drop of 
50 bars, were used to define the reference rock outcrop motion. The distance for the point-source 
model was adjusted so that the PGA for the rock outcrop (VS30=1170 m/sec profile described in 
Section 2.3) matched the desired PGA. For each combination of Magnitude and PGARock, the 
point-source distance was kept fixed, and the velocity profile was replaced with the profile for 
the desired case. The kappa value for the input rock motion, however, was not kept fixed, as 
described below. 

The kappa for recorded surface ground motion on generic soil and generic rock sites in 
California are similar with a kappa of about 0.04 sec. If the input rock motion kappa was held 
fixed at 0.04 sec, then for soil sites, the additional damping in the soil profile will lead to a larger 
kappa for the surface soil ground motions. Since the observed data does not show a larger kappa 
on California soil sites than on California rock sites, the kappa for the input rock motion (e.g., 
the kappa used in the point-source model) was reduced so that the total kappa for a 1000 ft 
profile would remain at 0.04 sec, consistent with observations. An illustration of this is shown in 
Figure 2.1. 

For hard-rock sites, the kappa for surface recordings is lower than for soil sites, so this 
approach of maintaining the total kappa of 0.04 sec breaks down for hard-rock sites. Two sets of 
hard-rock site response calculations were computed: one with a kappa of 0.04 sec and one with a 
reduced kappa of 0.006 sec. The lower kappa value is consistent with the kappa for hard-rock 
sites in the eastern U.S. 

 

 
 

Figure 2.1 Example of kappa for the point source model used for input rock 
motion. 



6 

2.2 G/GMAX AND HYSTERETIC DAMPING MODELS 

Four sets of G/Gmax and hysteretic damping models are used: two for cohesionless soils (EPRI 
and Peninsular Range) and two for cohesive soils (Imperial Valley and Bay Mud). These four 
models are described below. 

2.2.1 Cohesionless Soil Models 

The EPRI model was developed following the 1989 Loma Prieta earthquake using strong-motion 
data from three earthquakes: the 1979 Coyote Lake earthquake, the 1984 Morgan Hill 
earthquake, and the 1989 Loma Prieta earthquake. This model was validated by Silva et al. 
(1997) using strong motion recordings from 48 San Francisco Bay area cohesionless soil sites. 
The G/Gmax and the hysteretic damping curves for the EPRI (1993) model are shown in Figure 
2.2. The EPRI G/Gmax and damping curves were developed for generic applications to 
cohesionless soils in the general range of gravelly sands to low plasticity silts or sandy clays. 

Following the 1994 Northridge earthquake, the EPRI soil model was tested against the 
strong motion data from about 80 sites in the Los Angeles region that recorded the Northridge 
earthquake. This test showed that the EPRI model had greater nonlinearity than was observed in 
the Northridge data. As a result, a revised set of G/Gmax and hysteretic damping curves was 
developed for cohesionless soils in the Peninsular Range based on the Northridge data. The 
G/Gmax and the hysteretic damping curves for the Peninsular Range (PR) model are shown in 
Figure 2.3. 

 

 
Figure 2.2 Modulus and damping curves for the EPRI soil model. 
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Figure 2.3 Modulus and damping curves for the PR soil model. 

2.2.2 Cohesive Soil Models 

For the Young Bay Muds and Old Bay Clay, the Vucetic and Dobry (1991) cohesive soil curves 
for a PI of 30% are used. The 30% value represents an average value for these cohesive soils. 
The G/Gmax and the hysteretic damping curves for the Young Bay Muds and Old Bay Clay 
(BM) are shown in Figure 2.4. 

To cover the potential range in nonlinearity for cohesive soils, a second model based on 
the Imperial Valley data is used. Based on laboratory dynamic testing (Turner and Stokoe, 1982) 
and recordings from the 1979 Imperial Valley earthquake (Silva et al., 1997), these soils appear 
to behave much more linearly than the soft soils along the margins of the San Francisco Bay area 
and Mendocino, California (Silva et al., 1997). Although the Imperial Valley soils contain clays, 
typical PI values are less than 30% and the Vucetic and Dobry G/Gmax and hysteretic damping 
curves appear to have too much nonlinearity to be consistent with the large peak acceleration 
values (about 0.5g) recorded during the 1979 Imperial Valley earthquake. As a result, a suite of 
G/Gmax and hysteretic damping curves was developed for these soils based on the results of the 
Turner and Stoke (1982) laboratory dynamic testing and modeling of the ground motions (Silva 
et al., 1997). The G/Gmax and the hysteretic damping curves for the Imperial Valley (IV) are 
shown in Figure 2.5. The IV curves remain nearly linear at high strain. Since neither laboratory 
testing nor the recorded ground motions resulted in strains exceeding about 0.1%, the curves are 
unconstrained at larger strain values. For high strain levels, the curves were linearly extrapolated. 
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Figure 2.4 Modulus and damping curves for the IV soil model. 

 

 
Figure 2.5 Modulus and damping curves for the BM soil model. 
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2.3 SHEAR-WAVE VELOCITY PROFILES 

The simulations were conducted for a range of soil profiles parameterized by the VS30 and the 
depth to VS=1000 m/sec. The soil profiles are summarized in Table 2.1 and are plotted in Figure 
2.6. The four models of the nonlinear material properties described in Section 2.2 were used for 
the soil profiles as indicated in Table 2.1. In all, 53 combinations of VS30, soil depth, and 
nonlinear properties were evaluated. The 53 cases are listed in Table 2.2. 

For each case listed in Table 2.2, the site response was conducted for three magnitudes: 
M5.0, M6.0, M7.0 and 11 different PGA values of the outcrop rock motion: 0.001g, 0.05g, 0.1g, 
0.2g, 0.3g, 0.4g, 0.5g, 0.75g, 1.0g, 1.25g, 1.5g. For each run, the amplification with respect to 
VS30=1170 m/sec was computed. 

As noted in Section 2.1.3, the kappa for the input rock motion was adjusted to maintain a 
constant total kappa of 0.04 sec for deep soil profiles. The kappa values used for the input rock 
motion in each case are listed in Table 2.2. For hard-rock sites, two values of the total kappa 
were used: 0.04 sec and 0.006 sec. The lower total kappa reflects the observed reduction in total 
kappa for hard-rock sites. 

Table 2.1 Summary of site response cases. 

VS30 
(m/sec) 

Soil Depth (ft) 
Nonlinear Material 

Properties 
Input Rock 
Kappa (sec) 

160 
25, 50, 120, 250, 500, 1000, 

2000, 3000, 30-1000 
BM 0.030 

190 
25, 50, 120, 250, 500, 1000, 

2000, 3000, 30-1000 
IV 0.032 

190 30-1000 PR 0.032 

270 
25, 50, 120, 250, 500, 1000, 

2000, 3000, 30-1000 
PR 0.035 

270 30-1000 EPRI 0.034 

400 
25, 50,120, 250, 500, 1000, 30-

1000 
PR 0.037 

400 30-1000 EPRI 0.036 

560 25, 50,120, 250, 500, 30-1000 PR 0.037 

560 30-1000 EPRI 0.036 

760 25, 50, 260 PR 0.038 

760 260 EPRI 0.038 

900 25, 260 PR 0.038 

1170 0 Linear 0.040 

3150 0 Linear 0.040 

2830 0 Linear 0.006 
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Table 2.2 List of site response cases. 

Case 
Depth to VS=1.0 

km/sec (ft) 
VS30 

(m/sec) 
Soil Model 

Input Rock 
Kappa(sec) 

1 25 160 BM 0.030 
2 50 160 BM 0.030 
3 120 160 BM 0.030 
4 250 160 BM 0.030 
5 500 160 BM 0.030 
6 1000 160 BM 0.030 
7 2000 160 BM 0.030 
8 3000 160 BM 0.030 
9 30-1000 160 BM 0.030 
10 25 190 IV 0.032 
11 50 190 IV 0.032 
12 120 190 IV 0.032 
13 250 190 IV 0.032 
14 500 190 IV 0.032 
15 1000 190 IV 0.032 
16 2000 190 IV 0.032 
17 3000 190 IV 0.032 
18 30-1000 190 IV 0.032 
19 30-1000 190 PR 0.032 
20 25 270 PR 0.035 
21 50 270 PR 0.035 
22 120 270 PR 0.035 
23 250 270 PR 0.035 
24 500 270 PR 0.035 
25 1000 270 PR 0.035 
26 2000 270 PR 0.035 
27 3000 270 PR 0.035 
28 30-1000 270 PR 0.035 
29 30-1000 270 EPRI 0.034 
30 25 400 PR 0.037 
31 50 400 PR 0.037 
32 120 400 PR 0.037 
33 250 400 PR 0.037 
34 500 400 PR 0.037 
35 1000 400 PR 0.037 
36 30-1000 400 PR 0.037 
37 30-1000 400 EPRI 0.036 
38 25 560 PR 0.037 
39 50 560 PR 0.037 
40 120 560 PR 0.037 
41 250 560 PR 0.037 
42 500 560 PR 0.037 
43 30-1000 560 PR 0.037 
44 30-1000 560 EPRI 0.036 
45 25 760 PR 0.038 
46 50 760 PR 0.038 
47 260 760 PR 0.038 
48 260 760 EPRI 0.038 
49 25 900 PR 0.038 
50 260 900 PR 0.038 
51 20 1170 Linear 0.04 
52 0 2830 Linear 0.006 
53 0 3150 Linear 0.04 
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Figure 2.6 Shear-wave velocity profiles for the eight VS30 cases. 
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2.4 SOIL PROFILE RANDOMIZATION 

Both the shear-wave velocities and the layer thicknesses are varied using correlation models 
based on an analysis of 557 measured shear-wave velocity profiles (Silva et al, 1997). The 
algorithm starts with a given base-case profile and generates a suite of random profiles about the 
base-case profile accounting for the correlations. The details of the procedure are given in Silva 
et al. (1997). The correlation models are summarized below. 

2.4.1 Velocity Profile Randomization 

The development of the randomization of the shear-wave velocity profile is described in 
Appendix C of Silva et al. (1996). The model is summarized here. For each base profile, the 
depth to the VS=1.0 km/sec layer is randomized within plus and minus 50% of the depth for the 
base profile. Within the soil profile, the layer thicknesses are assumed to follow a Poisson 
process with a depth-dependent rate. The depth-dependent rate is modeled by 

 

 (h)1.98 h 10.86 0.89

 (2.7) 

where is the rate of layer boundaries (m-1) and h denotes the layer depth in m. 

The layer velocities are developed by defining the normalized quantity, Zi, given by 

Zi 
ln(Vi) ln Vmedian (hi) 

 ln V  (2.8) 

The lognormal distribution of the velocities and the correlation among layers is modeled by a 
first-order auto-regressive model: 

Z11
Zi  (h, t) Zi 1 1 (h, t)2 i for i 1 (2.9) 

where  is the serial auto-correlation coefficient of Z, and i are independent normal variates 
with zero mean and unit variance. 

(h,t) 1 d (h) t (t)d (h) (2.10) 

where d is the depth-dependent correlation and t is the thickness-dependent correlation and are 
given by 

d (h)
200

h  h0
200  h0










b

for h  200

200 for h  200











 (2.11) 
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and 

t (t)0 exp
t









 (2.12) 

The model coefficients, lnV, 200, h0, b, 0, and  are listed in Table 2.3. 

Table 2.3 Coefficients for velocity profile randomization model. 

Parameter 
VS30 (m/sec) Range 

> 750 m/sec 360 to 750 180 to 360 <180 

lnV  0.36 0.27 0.31 0.37 

0 0.95 0.97 0.99 0.00 

 3.4 3.8 3.9 5.0 

200  0.42 1.00 0.98 0.50 

h0 0.0 0.0 0.0 0.0 

b 0.063 0.293 0.344 0.744 

 

2.4.2 Nonlinear Soil Property Randomization 

The modulus reduction and damping curves were independently randomized about the base case 
values. A truncated log normal distribution was assumed with a standard deviation of 0.35 
natural log units at a cyclic shear strain of 3x10-2%. The distribution was truncated at plus and 
minus 2 standard deviations to avoid cases that are not considered physically possible. The 
random curves are generated by sampling the log normal distribution, computing the scale factor 
on the modulus or damping at 3x10-2% shear strain, and then applying this factor at all strains. 
The random variations are reduced at the ends of the strain range to preserve the general shape of 
the base case curves (Silva, 1992).  
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3 Summary of Resulting Amplification Factors 

3.1 INTRODUCTION 

This section presents summary plots of the amplification factors for a subset of the 53 cases. 
Results of the scaling with VS30 and PGA1170 using the cases with randomized soil depths (cases 
17, 18, 27, 28, 35, 36, 42, 43) are shown in Section 3.2. Results of the scaling with soil depth for 
the linear range (e.g., cases with the rock input motion of 0.001g) are shown in Section 3.3. The 
complete set of results for all cases is attached as an electronic appendix. 

3.2 MAGNITUDE SCALING 

The period dependence of the amplification for a soil profile with Vs30 = 270 m/sec at the linear 
range (PGARock=0.01g) is shown in Figure 3.1. The amplification for the PR and EPRI models is 
shown in the top and bottom panels, respectively. In each panel, the amplification from three 
point-source magnitudes is presented. There is very little difference in the amplification for this 
low shaking level at periods smaller than 2sec. The increase in amplification for the M5.0 input 
at periods greater than 2sec is believed to be a numerical artifact of the simulation procedure and 
therefore results in that range (M=5, T>2sec) are not used for regression of the parametric model.  

At higher shaking levels, such as PGARock=1.0g (see Figure 3.2), the difference in 
amplification for the M5.0 simulations is more significant, with a clear resonant peak at T=1 sec. 
It should be noted here again, that for a M5.0 point source to reach PGARock of 1.0g, the source-
to-site distance must be much shorter than for the larger point-source magnitudes, leading to 
such differences. 

Figures 3.3 and 3.4 show a similar comparison for a profile with Vs30=400 m/sec with 
PGARock = 0.01g and PGARock=1.0g, respectively. The trends are similar to those shown for the 
softer profile but less significant. For example, for the EPRI model with PGARock=1.0g, the 
increase in the peak amplification between M5.0 and M6.0 is about 30% for the Vs30=270 m/sec 
profile but only about 6% for the Vs30=400 m/sec profile. 

The Magnitude scaling of the amplification for a PR profile with Vs30=270 m/sec is 
shown again in the top panel of Figure 3.5, this time as a function of Rock PGA. The increased 
Magnitude dependence as input shaking increases is clearly seen. The Magnitude scaling on the 
PGV amplification, however, shown for the same profile in the bottom panel of Figure 3.5, 
presents different trends. For PGV amplification, the nonlinearity with respect to Rock PGA has 
opposite trends between the M5.0 simulations and M6.0-M7.0 simulations. This is related with 
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different frequency contents for different point-source magnitude simulations, resulting with 
PGV for those simulations being associated with a different frequency range. Since nonlinearity 
is mostly expected to occur from larger magnitude simulations, the regression for the nonlinear 
model at PGV will be based on M6.0 and M7.0 simulation results only.  

For purposes of brevity, all plots in the following sections will present simulation results 
for a M6.0 point-source only; trends for the M5.0 and M7.0 are similar other than the differences 
that were mentioned above. 

 

 
Figure 3.1  Magnitude dependence for a PR, VS30=270 m/sec profile (top) and 

an EPRI, VS30=270 m/sec profile (bottom) with PGARock=0.01g. 
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Figure 3.2. Magnitude dependence for a PR, VS30=270 m/sec profile (top) and an 

EPRI, VS30=270 m/sec profile (bottom) with PGARock=1.0g. 
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Figure 3.3 Magnitude dependence for a PR, VS30=400 m/sec profile (top) and an 
EPRI, VS30=270 m/sec profile (bottom) with PGARock=0.01g. 
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Figure 3.4 Magnitude dependence for a PR, VS30=400 m/sec profile (top) and an 

EPRI, VS30=270 m/sec profile (bottom) with PGARock=1.0g. 

3.3 SCALING FOR THE RANDOMIZED SOIL DEPTHS 

The period dependence of the amplification in the linear range (PGA1170=0.01g) for the twelve 
VS30 profiles are shown in Figures 3.5 and 3.6. Overall, there is an increase in the amplification 
as the VS30 is reduced.  

 The nonlinearity in the amplification for a range of VS30 profiles and soil models (BM, 
IV, PR and EPRI) is shown in Figures 3.7 to 3.12 for spectral periods of 0.01, 0.1, 0.2, 0.5, 1.0, 
and 2.0 sec. The strongest nonlinear effects are seen for T=0.1 sec (Figure 3.8). For spectral 
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periods of 1.0 sec or longer and soil profiles with VS30 of 400 or greater, the amplification is 
nearly linear. However, in the softer profiles there are two competing trends. For example, for 
T=2sec the amplification is decreasing with increase in PGARock for soil profiles with Vs30 of 
160-190 while it is increasing for profiles with Vs30 of 270-400 due to the effects of period 
elongation at these higher levels of shaking.  

The nonlinearity of the four soil models can also be compared in Figures 3.7 to 3.12. 
Note that each Vs30 value is plotted with the same color on the upper and lower panels. These 
figures show that on average, the EPRI model is more nonlinear than the PR model. Also, the 
BM model is much more nonlinear than the IV model. The nonlinearity for the IV model 
(VS30=190 m/sec) is similar to the nonlinearity for the EPRI model for VS30=270 m/sec.  

The standard deviation of the linear amplification PGARock=0.01g is shown in Figures 
3.13 and 3.14 for the PR soil profiles and the non-PR soil profiles (BM, IV, EPRI), respectively. 
For the smaller PGARock values, the standard deviations of the amplification generally increase 
with period and decrease with increasing VS30. For profiles with VS30=270 m/sec or higher, the 
standard deviations of the linear amplification are generally between 0.15 and 0.3 natural log 
units. The PGARock dependence of the standard deviations for all soil profiles are shown in 
Figures 3.15 to 3.17 for spectral periods of 0.01 sec, 0.2 sec and 1.0 sec, respectively. The 
increase in the standard deviation as a function of the PGARock is due to the variability of the 
nonlinear properties that were randomized (G/Gmax and damping). 
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Figure 3.5. Magnitude dependence of the amplification at T=1 sec (top) and at 

PGV (bottom) for a PR, VS30=270 m/sec profile. 
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Figure 3.6. Period dependence of the linear amplification for six Vs profiles 

with PR and depths averaged over 30-1000 ft. 
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Figure 3.7 Period dependence of the linear amplification for six Vs profiles 
with BM, IV, and EPRI, and soil depths averaged over 301000 ft. 
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Figure 3.8 PGARock dependence of the soil amplification for T=0.01 sec for all 

soil profiles with a randomized soil depth. 
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Figure 3.9 PGARock dependence of the soil amplification for T=0.1 sec for all 
soil profiles with a randomized soil depth. 
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Figure 3.10 PGARock dependence of the soil amplification for T=0.2 sec for all 
soil profiles with a randomized soil depth. 
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Figure 3.11 PGARock dependence of the soil amplification for T=0.5 sec for all 
soil profiles with a randomized soil depth. 
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Figure 3.12 PGARock dependence of the soil amplification for T=1.0 sec for all 
soil profiles with a randomized soil depth. 
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Figure 3.13. Nonlinear amplification for T=2 sec spectral acceleration for the 
EPRI and PR models using the soil depth averaged over 30-1000 ft. 
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Figure 3.14 Standard deviations of the linear amplification (PGARock=0.01g) for 
PR with randomized soil depth. 
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Figure 3.15 Standard deviations of the linear amplification (PGARock=0.01g) for 
BM, IV, and EPRI with randomized soil depth. 
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Figure 3.16 PGARock dependence of the standard deviations for T=0.01 sec for 
all soil profiles with a randomized soil depth. 
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Figure 3.17 PGARock dependence of the standard deviations for T=0.2 sec for all 
soil profiles with a randomized soil depth. 
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3.4 SOIL DEPTH SCALING 

The 1-D simulation results can also be used to estimate the effect of the soil depth on the 
amplification. Examples of the effect of the soil depth on the amplification are shown in Figures 
3.18 to 3.20, for soil profiles with VS30 ranging from 160 m/sec to 760 m/sec. Similar plots show 
the effect of depth on the standard deviation of the linear amplification in Figures 3.21 to 3.23. 
The soil depth is parameterized by the depth to the layer with VS=1.0 km/sec. These figures are 
for the linear site response (PGARock=0.01g); therefore, they are independent of the nonlinear 
properties.  

The soil depth scaling is shown in Figure 3.24 for soil profiles with VS30 values of 190 
m/sec, 270 m/sec, 400 m/sec, and 560 m/sec. The soil depth effects are strongest for the softer 
soil profiles (lower VS30 values). For the softer profiles, there is strong scaling for soil depths 
from 8 to 300 m, but the scaling becomes weak for soil depths greater than 300 m, mostly due to 
the limitations of modeling deep soil profiles with a 1D soil column.  
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Figure 3.18 PGARock dependence of the standard deviations for T=1.0 sec for all 
soil profiles with a randomized soil depth. 
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Figure 3.19 Linear amplification for a range of soil depths for the VS30=160 
m/sec profile (top) and the VS30=190 m/sec profile (bottom). 
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Figure 3.20 Linear amplification for a range of soil depths for the VS30=270 
m/sec profile (top) and the VS30=400 m/sec profile (bottom). 
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Figure 3.21 Linear amplification for a range of soil depths for the VS30=560 
m/sec profile (top) and the VS30=760 m/sec profile (bottom). 

  



39 

 

 

 
 

Figure 3.22 Standard deviations of the linear amplification (PGARock=0.01g) for a 
range of soil depths for the VS30=160 m/sec profile (top) and the 
VS30=190 m/sec profile (bottom). 
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Figure 3.23 Standard deviations of the linear amplification (PGARock=0.01g) for a 
range of soil depths for the VS30=270 m/sec profile (top) and the 
VS30=400 m/sec profile (bottom). 
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Figure 3.24 Standard deviations of the linear amplification (PGARock=0.01g) for a 
range of soil depths for the VS30=560 m/sec profile (top) and the 
VS30=760 m/sec profile (bottom). 
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Figure 3.25 Soil depth dependence of the linear amplification. 
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4 Parametric Model for Nonlinear Site 
Amplification 

4.1 INTRODUCTION 

A subset of the simulation cases described above was used for the development of parametric 
models for the nonlinear response of soil sites to strong ground motions. The proposed models 
are updates to the models developed by Walling et al. (2008) in that they are based on an 
extended simulation dataset and use the same functional form.  

The models developed by Walling et al. (2008) were revisited herein for two main 
reasons: (a) the simulation database on which the models were developed has been updated and 
extended, with additional magnitudes and soil profiles, and (b) two alternatives for the input 
shaking parameter are explored – the Peak Ground Acceleration (PGA) and the spectral 
acceleration for each period, (Sa(T)). 

4.2 MODEL DEVELOPMENT 

Four resulting models are presented below: for each of the soil models - Peninsular Range and 
EPRI - there is a one model based on PGA as input and one based on Sa(T) as input. All models 
are based on the randomized-depth soil profiles only. A summary of the simulation cases used 
for model development is presented in Table 4.1. 

Table 4.1 List of simulation scenarios that were selected for model 
development. 

Vs30 (m/sec) 
Depth to top of rock (Vs30=1 

km/sec) 
Material model used for nonlinear 

properties 

190 9-305 m PR 

270 9-305 m PR, EPRI 

400 9-305 m PR, EPRI 

560 9-305 m PR, EPRI 

760 79 m PR, EPRI 

900 79 m PR 
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4.2.1 Functional Form 

The functional form is identical to that used in Walling et al. (2008). It can be written as the sum 
of a linear term and a nonlinear term: 

lnሺ݉ܣሻ ൌ ݂ሺ ௦ܸଷሻ 	 ே݂	ሺܯܩோ, ௦ܸଷሻ		 (4.1) 

The linear term is a function of Vs30 only, whereas the nonlinear term is a function of Vs30 and 
a measure of the shaking intensity on rock. The ground motion intensity was defined in the 
Walling2008 model in term of PGARock. Here we present two alternatives – for each soil model 
(PR and EPRI), we present one model in term of PGARock and one in term of Sa(T)Rock. Finally, 
the resulting functional forms for the two alternative models are given in Equations (4.2) and 
(4.3) for the PGA-based and the Sa(T)-based models, respectively: 
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where: 

ௌܸଷ
∗ ൌ 	 ൜ ௦ܸଷ			݂ݎ	 ௦ܸଷ ൏ ଵܸ

ଵܸ				݂ݎ	 ௦ܸଷ  ଵܸ
  (4.4) 

and V1 corresponds to the Vs30 above which the soil amplification no longer scales linearly with 
respect to changes in Vs30 (Abrahamson and Silva, 2008). 

Further explanation on the evolution of the form for the nonlinear term is provided in 
Walling et al. (2008). 

4.2.2 Data Selection 

For the models presented below, only simulations with randomized depth (301000 ft) are used. 
The simulations with smaller depth bins are used to constrain the depth term within the GMPE 
(e.g., Abrahamson and Silva 2008) but that part is not discussed in this report. 

A Magnitude-Period constrain was placed on the dataset used for the model regression, 
due to an increased amplification at long periods for the smaller magnitudes (e.g., Figures 3.1 to 
3.4), which is believed to be a numerical artifact of the simulation procedure. The simulation 
results used for model regression include the Magnitude 7.0 simulations within the available 
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period range 0.01 < T < 10 sec, Magnitude 6.0 simulations at 0.01 < T < 5 sec and Magnitude 5.0 
simulations at 0.01 < T < 2 sec. The PGV model regression is performed on simulations from 
Magnitudes 6.0 and 7.0 only, as discussed in Section 3.2. 

4.2.3 Model Parameters 

Due to the nonlinearity of the functional form as shown in figure (4.2) and (4.3), the three 
parameters - b, n, and c - which appear in the nonlinear term are highly correlated and hence do 
not all need to be period-dependent. Hence, the parameters n and c were fixed along all periods 
and the parameter b was regressed as a period-dependent parameter. Fixing of n and c was done 
based on regressions of smaller subsets at short periods, where the nonlinearity is greatest. In the 
second step, the period-dependent reference shear-wave velocity, VLin was regressed and 
smoothed. VLin is intentionally kept identical for the two models of each soil group (i.e. the two 
PR models and the two EPRI models), since it represents a physical measure which should not 
depend on the input shaking. In the third step, the period-dependent nonlinear coefficient, b, was 
regressed and smoothed. 

Smoothing of the period-dependent parameters was done by fitting a 7th order polynomial 
to the regressed values with some constraints at the low and high ends of the period range, 
following Equation (4.5). 
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 (4.5) 

The smoothed parameter x in Equation (4.5) is either ln(VLin) or b and T is the spectral period. 
The four pairs of the smoothed parameters (Vlin and b for each of the four models presented in 
this report) are compared with the smoothed parameters from Walling et al. (2008) in Figure 4.1. 
Note that while the parameter b was constrained in Walling et al. (2008) to be negative (or ≤ 
0.15), it was allowed to be positive in the models below and was as high as 3.95 for the PR-Sa 
model. The positive b values allow an increase in amplification for increased levels of shaking, 
which can be related to period elongation, as will be shown below.  

The list of parameters needed for reconstructing the nonlinear terms (following equation 
5) are presented in Table 4.2. The smoothed values for Vlin and b are listed in Appendix A for the 
111 periods that are in the NGA FlatFile. The parameters which appear in the linear term - a and 
d - are left unsmoothed, since they are correlated with other terms in the GMPE and should be 
regressed for each individual GMPE in which these site amplification models are applied. 
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Figure 4.1 Period-dependence of the smoothed model parameters. VLin (top) 

and b (bottom). 
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Table 4.2 List of coefficients needed to reconstruct the smoothed model 
parameters. 

  PR EPRI  

    PGA Sa   PGA Sa 

n 1.5 1.5   1.5 1.5 

c 1.4 2.4 (*100 
for PGV)

  2.0 3.0 (*100 
for PGV) 

  VLIN b b VLIN b b 

PGV 332.00 -1.5140 -2.0200 728.00 0.5850 0.6025 

T0 0.010 0.020 0.012 0.014 0.010 0.02 

T1 0.015 0.020 0.018 0.018 0.022 0.018 

T2 0.550 9.000 5.500 0.460 1.820 7.000 

a0 6.5300 -1.2500 -1.6400 7.1360 -0.9039 -0.9241 

a1 -0.2000 0.2780 0.9474 -0.6500 1.1276 0.3081 

a2 0.2400 -1.3430 -2.0673 1.7860 -3.5267 0.2166 

a3 0.0940 2.4810 2.2630 -1.0370 4.4341 -0.5068 

a4 -0.0170 -1.8690 -1.0634 0.1237 -2.5880 0.1586 

a5 -0.0529 0.6040 0.2097 0.0421 0.7361 0.0006 

a6 0.0191 -0.0862 -0.0155 -0.0117 -0.0993 -0.0047 

a7 -0.0018 0.0045 0.0002 0.0008 0.0051 0.0004 

ß1 6.493 -1.250 -1.470 7.068 -0.833 -0.960 

ß2 5.805 0.360 3.950 6.590 0.600 2.100 
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4.3 SUMMARY OF RESULTS 

The dependence of the amplification level on shaking intensity [in terms of PGA or Sa(f)] as 
well as on the soil profile (in terms of Vs30) is presented in Figures 4.2 through 4.5 for the four 
different models, for periods 0.01, 0.2, 1, 2, 3, and 5 sec. The simulation results are represented 
by open symbols while the parametric model is shown by the solid line for each corresponding 
Vs30. All four models can be seen to capture the general response of the simulations, that is – 
increased amplification as Vs30 decreases, nonlinearity at short periods, and period elongation 
(increased amplification for increased input motion) at long periods. The biggest discrepancy can 
be seen at T=1 sec for all four models. At that period, there are several aspects of the soil 
response that cannot be captured by the current functional form. For example, the two softest 
profiles for the PR model (Vs30=190 and Vs30=270) have opposite trends with shaking intensity, 
the amplification for low shaking intensity does not scale linearly with Vs30, and some of the 
profiles change their nonlinearity from positive to negative with shaking input. These 
discrepancies are also consistent with Figures 3.2 and 3.5, which suggest that at T=1 sec there is 
both resonance at the soft profiles and the greatest magnitude dependence. The model’s 
agreement with simulation results at other periods seems to be much better for a range of Vs30 

and shaking intensity values. 

 

 
Figure 4.2 Model versus simulation results for the PR-PGA model for six 

representative periods. 
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Figure 4.3  Model versus imulation results for the PR-Sa model for six 

representative periods. 
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Figure 4.4 Model versus simulation results for the EPRI-PGA model for six 

representative periods. 
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Figure 4.5 Model versus imulation results for the EPRI-Sa model for six 

representative periods. 

The nonlinearity with respect to shaking intensity can be represented by the slope of the 
lines in Figures 4.2 through 4.5. This term is presented in Figure 4.6 for a profile with Vs30=270 
m/sec, showing the slopes between reference PGA of 0.1g to 1g. The trends are similar for all 
four models and are also quite consistent with nonlinearity computed from the Walling(2008) 
models. The nonlinearity for the EPRI models is generally greater than that of the PR models, 
with the nonlinearity peaking at about T=0.2s for all models (as seen in the top panel, slope from 
0.1g to 1g).  

A comparison between the resulting spectral values on soil vs. the input motion on rock is 
presented in Figure 4.7 for the PR-Sa model, for the same six periods as shown in Figures 4.2 
through 4.5. The expected spectral acceleration of the soil, given the input spectral acceleration 
on rock and the corresponding model amplification can be computed as: 

SaSoil(f) = SaRock(f)·Amp(f) (4.6) 

It can be seen that at low rock shaking levels, all soil profiles amplify the response (all lines are 
above the 1:1 line). As shaking levels increase, the softer profiles de-amplify the response at 
shorter periods (lines cross below the 1:1 line). At the longer periods (above ~1 sec) there is no 
de-amplification even for high levels of shaking. 



52 

 
 
 
 
 
 
 
 

 
Figure 4.6 Period-dependence of the combined nonlinear term, computed as 

the slope of amplification from 0.1g to 1g. 
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Figure 4.7 Sa on Soil vs. Sa on Rock, for the PR-Sa model. 
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The spectral shape of the rock and corresponding soil motions are presented in Figure 4.8 
for four increasing shaking intensities – ranging from PGA1100 of 0.05g to 1g. The rock motions 
are shown in solid lines and the corresponding soil motions are in dashed lines. It can be seen 
that as shaking increases, there is more nonlinearity, and hence the soil softens and the peak 
response is shifted towards longer periods. This can also explain the upward trend of the 
amplification curve at T>2 sec in Figures 4.3 through 4.6. 

  

 
Figure 4.8 Spectral acceleration (top) and Normalized spectral acceleration 

(bottom) vs. Period, for the PR-Sa model with Vs30=270 m/sec and 
under four different input shaking intensities. 
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Figure 4.9 Normalized spectral acceleration vs. Period for a Vs30=270 m/sec 

profile with PGA1100=0.1g (left) and PGA1100=0.5g (right). 

The four amplification models are compared in Figure 4.9 in terms of their resulting soil 
spectra for Vs30=270m/sec with PGA1100=0.1g (left) and PGA1100=0.5g (right). It can be seen that 
while all four models result in a largely similar soil spectra, there is a greater difference between 
the two nonlinear material models (i.e. PR vs. EPRI) rather than between the two forms of the 
input motion [i.e. PGA vs. Sa(T)]. 
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The predictive power of the functional form can be tested by comparing the sigma of the 
model for different profiles and different functional forms. Since each combination of input 
shaking value and soil profile was simulated 30 times with randomization of the soil profile and 
material properties, the parametric model is regressed on the mean amplification of each of those 
sets. The standard deviation of the fit could therefore either include or not include the standard 
deviation of each set. A comparison between the two options is presented in Figure 4.10, which 
shows the standard deviation of the fit for the PR-Sa model, for each of the different soil profiles. 
On the left, σ௦ is the standard deviation of the residuals between the simulation means and the 
parametric model. On the right, the total standard deviation includes the average standard 
deviation of the simulations for each of the profiles considered, computed as following:  

σ௦ି௧௧ ൌ ඥσ௦ప௨௧పതതതതതതതതതതതതതതଶ  σ௦ଶ (4.7) 

where σ௦ప௨௧పതതതതതതതതതതതതതത	is the mean of the standard deviations for each set of 30 realizations performed 
for each profile and each shaking intensity (see Figures 3.14 through 3.18) and σ௦ is the misfit 
between the mean of that set and the parametric model. In general, Figure 4.10 shows that σ௦  

increases as Vs30 decreases. The average	σ௦ , representing all soil profiles, is shown in black and 
can be seen to be mostly affected by the softer profiles with the larger σ௦ while the average 
σ௦ି௧௧ is pulled down (relatively) by the lower σ௦௨௧ of the stiffer profiles. 

The two different functional forms (PGA vs. Sa as shaking input parameter) are 
compared in Figure 4.11 for the Peninsular Range soil model, showing both σ௦ and σ௦ି௧௧ 
for each of the forms. If one functional form would have fit the simulation results better, we 
would expect that form to have a lower standard deviation. However, both σ௦ and σ௦ି௧௧are 
almost identical for the two forms, suggesting that there is no significant advantage for either of 
the functional forms. These findings are different than the conclusion of Bazzurro and Cornell 
(2004), who propagated 78 earthquake records through two soil profiles and explore seven 
functional forms for the amplification functions. A subset of their findings is also re-drawn in 
Figure 4.11, comparing the standard deviations of the residuals to two of their functional forms, 
using PGA and Sa(f) as single model parameters. Bazzurro and Cornell concluded that Sa(T) is 
the single most helpful parameter for the prediction of the amplification since it had the lowest 
σ௦. One of the main difference between our simulations and Bazzurro and Cornell’s is that they 
use real time histories and by that account for variability in the spectral shape, whereas the 
simulations in this study were performed with the RVT method, which has a unique spectral 
shape and hence a strong correlation between PGA and Sa(T). Uncertainties in soil properties are 
accounted for in both studies, and do not add to the total uncertainty very much, as long as the 
general profile (depth, Vs30) stays the same. 

We conclude that based on the analysis presented herein, there is no statistical preference 
for either of the forms (PGA or Sa as input-motion parameter), but we recommend using the 
Sa(T) model, for ease of use in forward applications of the GMPE model. 
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Figure 4.10 Standard deviation of PR-Sa model, for a range of Vs30 values. On 

the left res is the standard deviation of the residuals to the fit, while 
on the right it is the total standard deviation, including the standard 
deviation of each set of 30 realizations. 

 
 

 
Figure 4.11 Standard deviation of the PR models, averaged over all Vs30 

profiles. Comparison between the two PR models from the current 
study and a subset of two corresponding models redrawn from 
Bazzurro and Cornell (2004).  
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Appendix A: Table of Model Parameters 

Table A.1. Model Parameters corresponding to the 111 periods in the NGA FlatFile. 

PR PGA Model  PR Sa Model  EPRI PGA Model  EPRI Sa Model 

n  1.5  1.5  1.5  1.5 

c  1.4  2.4 (*100 for PGV)  2.0  3.0 (*100 for PGV) 

Period (sec)  VLIN  b  VLIN  b  VLIN  b  VLIN  b 

PGV  332.00  ‐1.514  332.00 ‐2.020 728.00  0.585 728.00  0.603

0.01  660.50  ‐1.250  660.50 ‐1.470 1173.80  ‐0.833 1173.80  ‐0.960

0.02  683.74  ‐1.250  683.74 ‐1.459 1195.76  ‐0.833 1195.76  ‐0.924

0.022  698.64  ‐1.234  698.64 ‐1.448 1232.97  ‐0.833 1232.97  ‐0.893

0.025  723.96  ‐1.232  723.96 ‐1.430 1304.69  ‐0.825 1304.69  ‐0.850

0.029  760.05  ‐1.236  760.05 ‐1.399 1409.62  ‐0.805 1409.62  ‐0.803

0.03  769.14  ‐1.237  769.14 ‐1.390 1435.59  ‐0.799 1435.59  ‐0.793

0.032  787.11  ‐1.237  787.11 ‐1.372 1486.02  ‐0.787 1486.02  ‐0.776

0.035  813.17  ‐1.233  813.17 ‐1.343 1556.26  ‐0.770 1556.26  ‐0.757

0.036  821.52  ‐1.231  821.52 ‐1.334 1577.95  ‐0.765 1577.95  ‐0.752

0.04  852.89  ‐1.220  852.89 ‐1.297 1655.02  ‐0.749 1655.02  ‐0.739

0.042  867.19  ‐1.214  867.19 ‐1.279 1687.55  ‐0.744 1687.55  ‐0.736

0.044  880.48  ‐1.208  880.48 ‐1.263 1716.06  ‐0.740 1716.06  ‐0.735

0.045  886.74  ‐1.205  886.74 ‐1.255 1728.85  ‐0.738 1728.85  ‐0.735

0.046  892.74  ‐1.201  892.74 ‐1.247 1740.67  ‐0.737 1740.67  ‐0.735

0.048  903.95  ‐1.196  903.95 ‐1.232 1761.51  ‐0.737 1761.51  ‐0.737

0.05  914.11  ‐1.190  914.11 ‐1.219 1778.77  ‐0.738 1778.77  ‐0.740

0.055  934.95  ‐1.180  934.95 ‐1.191 1807.65  ‐0.746 1807.65  ‐0.753

0.06  949.57  ‐1.175  949.57 ‐1.170 1818.90  ‐0.763 1818.90  ‐0.772

0.065  958.49  ‐1.176  958.49 ‐1.157 1815.95  ‐0.786 1815.95  ‐0.794

0.067  960.59  ‐1.178  960.59 ‐1.154 1811.51  ‐0.796 1811.51  ‐0.803

0.07  962.31  ‐1.183  962.31 ‐1.151 1801.90  ‐0.814 1801.90  ‐0.818

0.075  961.69  ‐1.196  961.69 ‐1.152 1779.42  ‐0.845 1779.42  ‐0.844

0.08  957.26  ‐1.214  957.26 ‐1.158 1750.74  ‐0.879 1750.74  ‐0.872

0.085  949.63  ‐1.237  949.63 ‐1.169 1717.67  ‐0.915 1717.67  ‐0.899

0.09  939.35  ‐1.264  939.35 ‐1.186 1681.64  ‐0.952 1681.64  ‐0.926

0.095  926.93  ‐1.294  926.93 ‐1.206 1643.80  ‐0.990 1643.80  ‐0.953

0.1  912.81  ‐1.328  912.81 ‐1.230 1605.04  ‐1.027 1605.04  ‐0.980
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0.11  880.95  ‐1.404  880.95 ‐1.287 1527.26  ‐1.101 1527.26  ‐1.031

0.12  846.25  ‐1.487  846.25 ‐1.353 1451.92  ‐1.171 1451.92  ‐1.078

0.13  810.51  ‐1.574  810.51 ‐1.426 1380.93  ‐1.236 1380.93  ‐1.121

0.133  799.78  ‐1.601  799.78 ‐1.450 1360.64  ‐1.255 1360.64  ‐1.134

0.14  774.94  ‐1.664  774.94 ‐1.505 1315.18  ‐1.296 1315.18  ‐1.161

0.15  740.37  ‐1.755  740.37 ‐1.587 1254.92  ‐1.349 1254.92  ‐1.196

0.16  707.30  ‐1.846  707.30 ‐1.671 1200.08  ‐1.397 1200.08  ‐1.228

0.17  676.04  ‐1.935  676.04 ‐1.756 1150.38  ‐1.439 1150.38  ‐1.256

0.18  646.74  ‐2.022  646.74 ‐1.842 1105.46  ‐1.475 1105.46  ‐1.280

0.19  619.44  ‐2.107  619.44 ‐1.927 1064.92  ‐1.505 1064.92  ‐1.301

0.2  594.13  ‐2.188  594.13 ‐2.012 1028.37  ‐1.530 1028.37  ‐1.319

0.22  549.18  ‐2.342  549.18 ‐2.177 965.74  ‐1.567 965.74  ‐1.347

0.24  511.11  ‐2.481  511.11 ‐2.335 914.87  ‐1.586 914.87  ‐1.366

0.25  494.37  ‐2.545  494.37 ‐2.411 893.14  ‐1.590 893.14  ‐1.372

0.26  479.03  ‐2.606  479.03 ‐2.485 873.56  ‐1.591 873.56  ‐1.376

0.28  452.08  ‐2.717  452.08 ‐2.626 840.03  ‐1.584 840.03  ‐1.379

0.29  440.28  ‐2.768  440.28 ‐2.693 825.73  ‐1.576 825.73  ‐1.378

0.3  429.47  ‐2.815  429.47 ‐2.757 812.88  ‐1.566 812.88  ‐1.376

0.32  410.55  ‐2.900  410.55 ‐2.879 791.00  ‐1.540 791.00  ‐1.367

0.34  394.74  ‐2.973  394.74 ‐2.992 773.51  ‐1.507 773.51  ‐1.354

0.35  387.85  ‐3.005  387.85 ‐3.045 766.18  ‐1.488 766.18  ‐1.346

0.36  381.57  ‐3.034  381.57 ‐3.096 759.70  ‐1.468 759.70  ‐1.338

0.38  370.63  ‐3.086  370.63 ‐3.191 749.01  ‐1.424 749.01  ‐1.318

0.4  361.60  ‐3.128  361.60 ‐3.278 740.98  ‐1.376 740.98  ‐1.295

0.42  354.20  ‐3.162  354.20 ‐3.356 735.24  ‐1.326 735.24  ‐1.270

0.44  348.19  ‐3.187  348.19 ‐3.427 731.48  ‐1.273 731.48  ‐1.243

0.45  345.64  ‐3.197  345.64 ‐3.460 730.26  ‐1.246 730.26  ‐1.229

0.46  343.37  ‐3.205  343.37 ‐3.491 727.78  ‐1.218 727.78  ‐1.214

0.48  339.57  ‐3.217  339.57 ‐3.548 727.78  ‐1.162 727.78  ‐1.184

0.5  336.64  ‐3.222  336.64 ‐3.599 727.78  ‐1.106 727.78  ‐1.153

0.55  331.96  ‐3.212  331.96 ‐3.698 727.78  ‐0.963 727.78  ‐1.070

0.6  331.96  ‐3.174  331.96 ‐3.765 727.78  ‐0.822 727.78  ‐0.983

0.65  331.96  ‐3.114  331.96 ‐3.802 727.78  ‐0.685 727.78  ‐0.895

0.667  331.96  ‐3.089  331.96 ‐3.808 727.78  ‐0.640 727.78  ‐0.864

0.7  331.96  ‐3.037  331.96 ‐3.814 727.78  ‐0.554 727.78  ‐0.805

0.75  331.96  ‐2.946  331.96 ‐3.804 727.78  ‐0.431 727.78  ‐0.716

0.8  331.96  ‐2.845  331.96 ‐3.775 727.78  ‐0.316 727.78  ‐0.627

0.85  331.96  ‐2.737  331.96 ‐3.729 727.78  ‐0.209 727.78  ‐0.540

0.9  331.96  ‐2.622  331.96 ‐3.670 727.78  ‐0.111 727.78  ‐0.454

0.95  331.96  ‐2.504  331.96 ‐3.598 727.78  ‐0.021 727.78  ‐0.370

1  331.96  ‐2.383  331.96 ‐3.515 727.78  0.061 727.78  ‐0.288

1.1  331.96  ‐2.137  331.96 ‐3.323 727.78  0.202 727.78  ‐0.131

1.2  331.96  ‐1.892  331.96 ‐3.104 727.78  0.316 727.78  0.018

1.3  331.96  ‐1.653  331.96 ‐2.865 727.78  0.405 727.78  0.157

1.4  331.96  ‐1.421  331.96 ‐2.611 727.78  0.473 727.78  0.287
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1.5  331.96  ‐1.199  331.96 ‐2.348 727.78  0.524 727.78  0.409

1.6  331.96  ‐0.989  331.96 ‐2.079 727.78  0.559 727.78  0.523

1.7  331.96  ‐0.791  331.96 ‐1.807 727.78  0.583 727.78  0.629

1.8  331.96  ‐0.605  331.96 ‐1.534 727.78  0.597 727.78  0.728

1.9  331.96  ‐0.431  331.96 ‐1.262 727.78  0.600 727.78  0.821

2  331.96  ‐0.269  331.96 ‐0.992 727.78  0.600 727.78  0.907

2.2  331.96  0.020  331.96 ‐0.466 727.78  0.600 727.78  1.062

2.4  331.96  0.264  331.96 0.038 727.78  0.600 727.78  1.198

2.5  331.96  0.371  331.96 0.281 727.78  0.600 727.78  1.259

2.6  331.96  0.468  331.96 0.516 727.78  0.600 727.78  1.315

2.8  331.96  0.636  331.96 0.963 727.78  0.600 727.78  1.418

3  331.96  0.772  331.96 1.379 727.78  0.600 727.78  1.507

3.2  331.96  0.879  331.96 1.763 727.78  0.600 727.78  1.585

3.4  331.96  0.961  331.96 2.114 727.78  0.600 727.78  1.653

3.5  331.96  0.993  331.96 2.277 727.78  0.600 727.78  1.684

3.6  331.96  1.020  331.96 2.432 727.78  0.600 727.78  1.712

3.8  331.96  1.060  331.96 2.718 727.78  0.600 727.78  1.764

4  331.96  1.084  331.96 2.972 727.78  0.600 727.78  1.809

4.2  331.96  1.093  331.96 3.195 727.78  0.600 727.78  1.848

4.4  331.96  1.089  331.96 3.388 727.78  0.600 727.78  1.883

4.6  331.96  1.076  331.96 3.551 727.78  0.600 727.78  1.913

4.8  331.96  1.053  331.96 3.685 727.78  0.600 727.78  1.939

5  331.96  1.024  331.96 3.792 727.78  0.600 727.78  1.963

5.5  331.96  0.927  331.96 3.950 727.78  0.600 727.78  2.010

6  331.96  0.813  331.96 3.950 727.78  0.600 727.78  2.046

6.5  331.96  0.694  331.96 3.950 727.78  0.600 727.78  2.075

7  331.96  0.584  331.96 3.950 727.78  0.600 727.78  2.100

7.5  331.96  0.490  331.96 3.950 727.78  0.600 727.78  2.100

8  331.96  0.418  331.96 3.950 727.78  0.600 727.78  2.100

8.5  331.96  0.376  331.96 3.950 727.78  0.600 727.78  2.100

9  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100

9.5  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100

10  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100

11  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100

12  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100

13  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100

14  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100

15  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100

20  331.96  0.360  331.96 3.950 727.78  0.600 727.78  2.100
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Appendix B: Table of Amplification 
Factors for Two Hard Rock 
Profiles 

 http://peer.berkeley.edu/publications/peer_reports
/reports_2013/reports_2013.html 
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Appendix C: Table of Amplification 
Factors for the Soil Profiles 
by Depth Bins 

 http://peer.berkeley.edu/publications/peer_reports
/reports_2013/reports_2013.html 
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Appendix D: Table of Amplification 
Factors for the Soil Profiles 
with Randomized Depth 

 http://peer.berkeley.edu/publications/peer_reports
/reports_2013/reports_2013.html 
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