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ABSTRACT 

The hanging-wall (HW) effect is defined as the increase in ground motions observed during a 
reverse earthquake event, when in close proximity and while on the hanging-wall side of a fault. 
As observed in the empirical data, the short period ground motions over the hanging-wall may be 
twice the amplitude of the ground motions recorded on the footwall at the same rupture distance. 
Because there are only a few earthquakes with near-fault recordings, there is insufficient 
empirical data to constrain the dependence of the HW effect. Using finite-fault simulations, 34 
reverse earthquake events were simulated. The scenarios varied the magnitude between M6 and 
M7.8, dips from 20 to 70 degrees, and distances to top of rupture of 0 and 5 km.  

A simplified parametric model for the median hanging-wall effect was developed using 
the distance parameters Rx and Ry, magnitude, fault dip, fault width, and depth to top of rupture. 
The HW effect reaches it maximum over the bottom edge of the rupture. The residuals for the 
model fall within the range -0.2 to 0.2 natural log units. The scaling constraints derived in this 
study are being used in part or in whole in many of the NGA-West2 GMPEs and lead to more 
consistent HW effects. 
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1 Introduction 

The hanging-wall (HW) effect is defined as the increase in ground motions observed for sites 
located in close proximity to the rupture plane and on the HW as compared to sites located on the 
footwall (FW). As observed in the empirical data, the short-period ground motions may be a 
factor of 23 larger over the HW, but are not well constrained by the sparse available empirical 
data. 

1.1 REVIEW OF PREVIOUS HANGING WALL MODELS: ABRAHAMSON AND 
SOMERVILLE (1996) 

Following the 1994 Northridge, California, earthquake, Abrahamson and Somerville [1996] 
found that recordings on the HW side of the fault typically exhibited greater than average ground 
motions when compared to recordings at the same distance on the FW side. Using this 
information, they derived an empirical model for the HW effect that results in a 50% increase in 
peak horizontal accelerations over the HW, which attenuated with distance. From these findings, 
they postulated that ground motions for other reverse events would also lead to similar 
systematic increases. 

1.2 REVIEW OF PREVIOUS HANGING-WALL MODELS: NGA (2008) 

In 2008, as part of the Next Generation Attenuation (NGA) project, coordinated by the Pacific 
Earthquake Engineering Research Center (PEER), five ground motion prediction equations 
(GMPEs) were developed to model ground motion for shallow crustal earthquakes in the western 
United States. Three of these models incorporated a term for the HW effect: Abrahamson and 
Silva [2008]; Campbell and Bozorgnia [2008]; and Chiou and Youngs [2008]. The Boore and 
Atkinson [2008] model does not specifically include a HW term, but the effect of the HW is 
implicitly captured by the use of the RJB distance metric as the primary distance scaling 
parameter. The Idriss model [2008], which uses a simple functional form, does not include a HW 
term, nor does it attempt to capture differences in the ground motion on the HW and FW sides of 
the rupture. 

The HW effect mentioned in the three aforementioned models are dependent on different 
predictive parameters. Each of these HW models was developed utilizing the distance metric Rx, 
dip of the fault, and depth to top of rupture. However, the Abrahamson and Silva [2008] model is 
also dependent on the distance metrics Rx, fault width, and magnitude. The Campbell and 
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Bozorgnia [2008] model also relies on the distance metrics RRUP and magnitude. The Chiou and 
Youngs, [2008] model represented the HW effect by using a combination of the distance metrics 
RJB and RRUP. 

To properly constrain the HW effect, multiple recordings are needed from sites located 
on both the HW and FW sides of the rupture and at short distances. In NGA dataset [PEER 
2005], only two earthquakes meet these criteria: the 1994 Northridge California, earthquake and 
1999 Chi-Chi, Taiwan, earthquake. Based on this limited availability, the modelers made 
assumptions on the scaling of the HW effect for magnitude, distance, dip, and rupture depth. 
This lead to large differences between the different GMPEs, driven by different assumptions on 
the HW scaling that did not have a strong empirical constraint (e.g., scaling with magnitude, dip, 
and depth). 

Figures 1.1 through 1.3 are the results for the five 2008 NGA models. Figure 1.1 
illustrates differences in magnitude scaling, while Figure 1.2 illustrates comparisons for dip of 
the fault and Figure 1.3 for depth scaling. From Figure 1.1, it is apparent that magnitude scaling 
was not been well constrained. The Chiou and Youngs [2008] model, shown as the green line, 
has the largest HW factors, particularly at M6 and 6.5, culminating in the weakest magnitude 
scaling. At lower magnitudes, the effect of the HW tapers more quickly than the larger 
magnitudes, leading to the convergence of the GMPEs at different Rx distances. For instance at 
M6 and 6.5, the GMPEs reconverge near Rx = 25 km and 30 km, respectively. However, the M 7 
and 7.5 GMPEs reconverge near an Rx distance of 40 km and greater. Figure 1.2 illustrates the 
lack of constraint on the effect of the dip of the fault. Because there is more empirical data 
available for steeply dipping faults, (e.g., 60º and 70º), the GMPEs are better constrained for 
steeply dipping ruptures than for shallow dipping ruptures, leading to large discrepancies in the 
GMPE results for shallow dips. More empirical data with HW effects are available for the 
shallow rupture depths than for deep rupture depths. As seen in Figure 1.3, as the depth to top of 
rupture increases, so does the differences in the both the FW and HW ground motions for the 
GMPEs. 

As previously stated, one of the first events used to constrain the HW effect was the 1994 
Northridge event. This M6.69 with a dip of 40º and a depth to top of rupture of 5 km was first 
used to constrain the magnitude scaling. Figure 1.4b for the Northridge event shows general 
agreement between the GMPEs both over the rupture plane and at greater distances; the 
exception in the Idriss model [2008] as it does not include a HW model. This agreement between 
the GMPEs is also consistent for the M6 scenario, but the GMPE results begin to diverge rapidly 
with greater magnitudes. 

The 1999 Chi-Chi, Taiwan, event provided additional data on which to draw assumptions 
for the HW effect, especially for larger magnitude, shallow dipping events. Although Figure 1.5d 
for the Chi-Chi event shows a wide range between the GMPEs over the rupture plane, the 
Abrahamson and Silva [2008], Boore and Atkinson [2008], and Chiou and Youngs [2008] 
converge at an Rx distance of 30 km and beyond. Coincidently, there is empirical data at this 
distance from the fault that the developers used to constrain the effect. The Campbell and 
Bozorgnia [2008] model has much weaker HW factors for this event. 
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(a) (b) 

(c) (d) 

 

Figure 1.1 Comparison of the hanging-wall results for five 2008 NGA models; shown 
here are surface ruptures with a dip of 45º with varied magnitudes: (a) M6, 
(b) M6.5, (c) M7, and (d) M7.5. 
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(a) (b) 

(c) (d) 

 

Figure 1.2 Comparison of the hanging-wall results for the five 2008 NGA models ; 
shown here are M7 surface ruptures with varied dips: (a) 30º, (b) 45º, (c) 
60º, and (d) 70º. 
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(a) (b) 

(c) (d) 

 

Figure 1.3 Comparison of the hanging-wall results for five 2008 NGA models ; shown 
here are M7 events with a dip of 45º with varied depths: (a) 0 km, (b) 2.5 
km, (c) 5 km, and (d) 10 km. 
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(a) (b) 

(c) (d) 

 

Figure 1.4 The hanging-wall results for five 2008 NGA models using the 1994 
Northridge earthquake as a comparison; shown here are buried ruptures 
with a dip of 40º, with varied magnitudes: (a) M6, (b) M6.69, (c) M7, and (d) 
M7.5. 
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(a) (b) 

(c) (d) 

 

Figure 1.5 The hanging-wall results for five 2008 NGA models using the 1999 Chi-Chi 
event as a comparison; shown here are surface ruptures with a dip of 33º, 
with varied magnitudes: (a) M6, (b) M6.5, (c) M7, and (d) M7.62. 

1.3 EMPIRICAL DATA IN NGA-WEST 2 DATABASE 

As mentioned in the previous section, the PEER 2008 NGA database had only a few events with 
recordings on both the FW and HW sides of the rupture at short distances. With the completion 
of the NGA-West2 database, several additional events could be considered to constrain the HW 
effect. Table 1.1 shows the earthquakes with at least one recording on the HW and FW within a 
rupture distance of 15 km. 

Of the events listed above, the Imperial Valley-06, Northridge-01, Chi-Chi Taiwan, 
L’Aquila Italy, and Wenchuan, China, have at least three recordings over the HW and stations at 
close distances on the FW. Figure 1.6 shows the total residuals comparing the recorded spectral 
accelerations against the 2008 Abrahamson and Silva model. . The total residuals for the 
Abrahamson and Silva [2008] and Chiou and Youngs [2008] models, with no HW effect term, 
are shown in Appendix A for all events in Table 1.1 with various periods. 
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Table 1.1 Listing of earthquakes in the 2008 NGA and 2013 NGA-West2 databases 
with at least five recordings within 80 km, and at least one recording on 
both the footwall and hanging-wall with RJB distances of 15 km or less 
located along the rupture. 

Database Event Year Mag Dip 
No. of 

records 

No. of 
records 
RJB=0 

No. of 
records < 
15 km on 
footwall 

No. of 
records < 
15 km on 
hanging 

wall 

NGA (2008) Imperial Valley-06 1979 6.53 80 19 3 8 8 

NGA (2008) Irpinia, Italy-01 1980 6.9 60 5 0 1 1 

NGA (2008) Whittier Narrows-01 1987 5.99 30 13 1 5 6 

NGA (2008) Loma Prieta, CA 1989 6.93 70 14 1 3 6 

NGA (2008) Northridge-01 1994 6.69 40 26 10 3 12 

NGA (2008) Kobe, Japan 1995 6.9 85 14 1 8 1 

NGA (2008) Chi-Chi, Taiwan 1999 7.62 33 53 7 24 7 

NGA (2008) Chi-Chi, Taiwan-06 1999 6.3 30 34 1 2 1 

NGA-W2 Niigata, Japan 2004 6.63 47 23 0 2 2 

NGA-W2 L’Aquila, Italy 2009 6.3 48 7 4 2 4 

NGA-W2 Wenchuan, China 2008 7.9 50 34 3 1 5 

NGA-W2 Iwate 2008 6.9 40 37 1 2 3 

NGA-W2 El Mayor-Cucapah 2010 7.2 63 9 0 1 1 

NGA-W2 Darfield, New 
Zealand 

2010 7 82.2 17 1 3 4 

NGA-W2 Christchurch, New 
Zealand 

2011 6.2 67 6 1 4 2 
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(a) (b) 

(c) (d) 

(e) 

Figure 1.6 Intra-event residuals (in natural log units) for selected events with at least 
five recordings within 80 km, and at least one recording on the footwall 
with RJB distances of 15 km or less, and three or more recordings directly 
over the rupture plane: (a) Imperial Valley, (b) Northridge, (c) Chi-Chi, (d) 
L’Aquila, and e) Wenchuan. 
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Using the subset of fifteen events in Table 1.1, correlations between magnitude, dip of 
the fault, and depth to top of rupture were investigated. As seen in Figure 1.7 below, there does 
not appear to be a trend with the magnitude of the event and the dip of the fault. In Figure 1.8, 
there does appear to be a correlation between the events with deep tops of ruptures and the 
magnitude: as the magnitude increases, the depth to top of rupture tends to decrease. The dip of 
the fault and the depth to top of rupture also appear to be correlated. The deeper events appear to 
occur with shallower dipping faults, as seen in Figure 1.9. 

 

 

Figure 1.7  Comparison of magnitude and dip of the fault of events in Table 1.1. 

 

 

Figure 1.8  Comparison of magnitude and depth to top of rupture of the fault of 
events in Table 1.1 
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Figure 1.9  Comparison of dip of the fault and depth to top of rupture of the fault of 
events in Table 1.1. 
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2 Simulations Conducted 

The sparse empirical data severely limits the ability to constraint the scaling of the HW effect 
based on distance, magnitude, dip, and rupture depth. For this reason, constraints on the HW 
scaling were developed using finite-fault simulations (FSS). 

2.1 2004 RESULTS (PEA, UNR, URS) 

As part of Working Group 4 for the 2008 PEER NGA project, rock ground motions were 
simulated for a suite of reverse slip events; see Table 2.1. In all, twelve scenarios were 
considered with magnitudes ranging from M6.5 to M7.8, dips ranging from 3060, and with 
surface and buried ruptures. For these reverse-slip simulations, the crustal thickness was assumed 
to be 20 km, and the velocity structure had a minimum of Vs30 = 1800 m/sec. 

Pacific Engineering and Analysis (PEA), the University of Reno (UNR), and URS 
Corporation undertook the simulations with varying results. A minimum of 20 realizations of slip 
distribution/ hypocenter combinations were needed. In almost all cases, the PEA model had 
higher resulting spectral accelerations, and the UNR model had lower spectral acceleration 
results. The results, mean, and standard deviation, of the simulations are presented in Figures 2.1 
through 2.3. 

From Figure 2.1, the effects of magnitude scaling for the hanging-wall effect are shown 
for a surface rupture with a constant dip for 45º. The three models are similar for the larger 
magnitudes and diverge as the magnitude decreases. 
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Table 2.1 Earthquake scenarios for PEA, UNR, and URS (2004) simulation runs. 

Event 
Name 

Magnitude 
Area 
(km2) 

Width 
(km) 

Length 
(km) 

Dip 
Top of 

Rupture 
(km) 

RA 6.5 324 18 18 30 5 

RB 6.5 324 18 18 45 0 

RC 6.5 324 18 18 45 5 

RD 6.5 324 18 18 45 10 

RE 6.5 324 18 18 60 5 

RF 7.0 1024 32 32 30 0 

RG 7.0 1008 28 36 45 0 

RH 7.0 1008 21 48 45 5 

RI 7.0 989 23 43 60 0 

RJ 7.5 3160 40 79 30 0 

RK 7.5 3164 28 113 45 0 

RL 7.8 6320 40 158 30 0 
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(a) (b) 

(c) 

Figure 2.1 Comparison of the hanging-wall effects for the 2004 simulations; shown 
here are surface ruptures with a dip of 45º with varied magnitudes: (a) 
M6.5, (b) M7, and (c) M7.5. 
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(a) (b) 

(c) 

Figure 2.2 Comparison of 2004 models; shown here are M7 surface ruptures with 
varied dips: (a) 30º, (b) 45º, and (c) 60º. 

 

In Figure 2.2, the effect of dip of the fault is compared. For these simulations, the results 
are fairly consistent between the three modelers, with larger HW effects for the shallower dips. 
Although the results for PEA shows a stronger HW effect than the other two models, the shape 
of the effect of dip on the HW is similar. Note that the effect of the HW extends further from the 
top of the rupture for shallower dips than for steeply dipping faults. 

As shown in Figure 2.3, the three simulation results do not show similar HW effects for 
different rupture depths; however, the three sets of simulations show the same trend: that as the 
depth to the top of rupture increases, the effect of the HW tapers more slowly with distance. 
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(a) (b) 

(c) 

Figure 2.3 Comparison of 2004 models; shown here are M6.5 with a dip of 45º with 
varied depths: (a) 0 km, (b) 5 km, and (c) 10 km. 

 

2.2 GRAVES AND PITARKA MODEL RESULTS 

An additional set of FFS for HW effects were developed using the 2010 Graves and Pitarka 
[Graves and Pitarka, 2010] modules on the Southern California Earthquake Center (SCEC) 
broadband platform (BBP). Table 2.2 shows the 34 reverse earthquake events that were 
simulated. The scenarios varied the magnitude between M6 and M7.8, dips from 2070, 
distances to top of rupture of 0 and 5 km. The Graves and Pitarka (GP) model, developed for 
simulation of the Loma Prieta earthquake, uses a one-dimensional velocity model having a Vs30 
of 865 m/sec. 
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Table 2.2 Earthquake scenarios for GP model Set A and Set B simulation runs. 

Magnitude Area (km2) Width (km) Length (km) Dip Top of Rupture (km) 

6 100 10 10 20 0 

6 100 10 10 30 0 

6 100 10 10 45 0 

6 100 10 10 60 0 

6 100 10 10 70 0 

6.5 324 18 18 20 0 

6.5 324 18 18 30 0 

6.5 324 18 18 45 0 

6.5 324 18 18 60 0 

6.5 324 18 18 70 0 

7 1000 25 40 20 0 

7 1000 25 40 30 0 

7 * 1012 23 44 45 0 

7 1000 25 40 45 0 

7 * 1000 20 50 60 0 

7 1000 25 40 60 0 

7 1000 25 40 70 0 

7.5 3200 32 100 20 0 

7.5 3200 32 100 30 0 

7.5* 3150 25 126 45 0 

7.5 3200 32 100 45 0 

7.5* 3000 20 150 60 0 

7.5 3200 32 100 60 0 

7.5 3200 32 100 70 0 

7.8* 4500 25 180 45 0 

7.8* 4500 20 200 60 0 

6 100 10 10 20 5 

6 100 10 10 30 5 

6 100 10 10 45 5 

6 100 10 10 60 5 

6.5 324 18 18 20 5 

6.5 324 18 18 30 5 

6.5 324 18 18 45 5 

6.5 324 18 18 60 5 

(* Denotes GP Set B) 
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Originally, 28 scenarios were run; these are shown in Table 2.2, without an asterisk. For 
these original scenarios (GP Set A), the width and length were held constant for each magnitude. 
This assumption leads to some ruptures that may not be realistic: for scenarios with larger 
magnitudes and larger dip angles, the rupture extended below the traditional limit of the 
seismogenic depth. For this reason, four additional large magnitude scenarios were run that 
limited the width to be within the traditional seismogenic width and extended the length of the 
larger magnitudes, keeping the rupture area unchanged for the steeper dip angles. This ensured 
that at steeper dip angles, the bottom of the fault would not extend too deeply or past a 
reasonable seismogenic zone. Two additional M7.8 scenarios were also included in these latest 
runs. The GP Set B scenarios are marked in Table 2.2 with an asterisk. The GP Set A and Set B 
simulation results are compared to the HW effects from the 2004 simulations in Figures 2.4 
through 2.6. 

 
 
 

(a) (b) 

(c) 

Figure 2.4 Comparison of 2004 and 2012 models; shown here are surface ruptures 
with a dip of 45º with varied magnitudes: (a) M6.5, (b) M7, and (c) M7.5. 
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From Figure 2.4, the GP Set A and Set B simulation results closely resemble each other 
and are within the same range of spectral acceleration as the 2004 PEA and 2004 URS models, 
despite the fact that the Vs30 for the 2004 models is 1800 m/sec and the 2012 models’ Vs30 is 865 
m/sec. In Figure 2.5, the GP Set A and Set B models are similar to those of the 2004 models and 
most closely resemble those of the PEA (2004) simulation results. Note that as the dip of the 
fault becomes steeper the FW and HW become more symmetric. 

Figure 2.6 demonstrates the effect of the depth to the top of fault between the various 
simulations. Because the GP models did not simulate a depth to top of rupture below 5 km, it is 
not shown in Figure 2.6c. Here the GP Set A model closely follows the results of the 2004 PEA 
model on FW and the 2004 URS model. Also note in Figure 2.6b, the HW effects for the buried 
rupture from the GP Set A model are less than those of the GP Set A model in Figure 2.6a. 

 
 
 

(a) (b) 

(c) 

Figure 2.5 Comparison of 2004 and 2012 models; shown here are M7 surface 
ruptures with varied dips: (a) 30º, (b) 45º, and (c) 60º. 
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(a) (b) 

(c) 

Figure 2.6 Comparison of 2004 and 2012 models; shown here are M6.5 with a dip of 
45º with varied depths: (a) 0 km, (b) 5 km, and (c) 10 km. 
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3 The New Hanging-Wall Model 

3.1 MODEL DEVELOPMENT 

The new HW model was developed to be amendable to a GMPE, meaning that the model could 
be an additional term added to the base form of a GMPE. As stated in Section 1, there is a lack of 
available empirical data for which to constrain the HW scaling. Simulations add a level of 
understanding to the HW effect, but models used in 2004 were divergent in their results. The 
most recent sets of simulations have updated the 2004 models and now provide a more 
representative suite of possible ground motions. For this reason, the simulation results from GP 
Set A and Set B were used in the HW model development. 

3.1.1 Footwall Functional Form 

To develop the HW model, the first step is to build the functional form equation based on a 
regression of the simulation results for the FW side of the fault. Using this methodology, the 
equation for the functional form of the results from the GP model simulations was developed and 
is shown in Equation (3.1). 

            2
1 2 3 4 5 6 7ln 6 ln 6 6a RUP RUPS b b b R b b b b R                   M M M

  

 (3.1) 

where M is magnitude, RRUP is distance measurement [(km)], and b1b7 are coefficients of the 
functional form. 

Additional event scaling terms were added to the functional form after significant 
dependence of the residuals on the dip of the fault and the depth to the top of the rupture were 
found. Additional terms for the dip of the fault and the depth to top of rupture (ZTOR) were added 
to the functional form, for the FW regression GMPE, as shown in Equation (3.2). 

          
     

2
1 2 3 4 5 6

7

ln 6 ln 6 6

, ,

a RUP

RUP dip ZTORFW TOR

S b b b R b b b

b R f f Z 

                 
   

M M M

M
 (3.2) 
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The dip and depth to top-of-rupture terms for the FW regression are given in Equations (3.3) and 
(3.4). 

     21 2 390 90dipf d d d          (3.3) 

     1 2 3, , 90 6ZTORFW TOR ft ft ftf Z z z z             M M  (3.4) 

where  is the dip of the fault, ZTOR is the depth to the top of the rupture (km), d1d3 are the 
coefficients of the dip equations, and zft1-zft3 are the coefficients of the depth to the top-of-rupture 
equations. Using Equation (3.2), the regression for the FW simulation results for M6M7.5 is 
shown in Figure 3.1. This form provides for an unbiased model on the FW side of the fault. The 
coefficients for Equations (3.2), (3.3), and (3.4) are available in Appendix B. 

 

 

 

Figure 3.1  Regression of the median spectral acceleration (in natural log units) on 
the footwall for four magnitudes. 

  

Rx (km) 
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3.1.2 Hanging-Wall Terms 

The next step to building the HW model is to compare the effect of the HW to the FW GMPE 
[Equation (3.2)]. The FW GMPE is shown as the dashed black line in Figure 3.2a. The mean 
spectral acceleration for each Rx was then computed, as shown by the red squares in Figure 3.2a. 
The residuals, which represent the overall HW effect, are shown in Figure 3.2b. 
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(a) 

 
(b) 

Figure 3.2  (a) Application of the footwall GMPE (black dashed line) to the hanging-
wall side of the fault. Red squares are representative of the mean 
acceleration (in g’s) for each Rx distance, and (b) residuals of mean 
acceleration to the footwall GMPE. 
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Using the residuals of the unbiased model form of the median ground motion on the FW 
side of the fault [Equation (3.2)], the full HW model takes the form of Equation (3.5). This form 
of the HW effect model was developed so that it could be easily incorporated into the forms of 
the GMPEs being used in the NGA-West2 project. 

            

     

2
1 2 3 4 5 6 7

TOR

ln 6 ln 6 6

, , , , , , , ,

a RUP RUP

dip ZTORFW TOR hw x y

S b b b R b b b b R

f f Z f W Z R R L  

                   

  

M M M

M M

 (3.5) 

The HW term is composed of an amplitude term (a1) and five scaling terms: dip, magnitude, 
distance perpendicular to the rupture, ZTOR, and distance off the end of the rupture. The model of 
the HW effect, fhw, is given by: 

           1 1 2 3 4 5, , , , , , , , ,hw TOR x y x TOR x yf W Z R R L a T T T R W T Z T R R L  M M M  (3.6) 

The amplitude term, a1, is scaled for a M6.5 event, with a dip of 45º, and a surface rupture with a 
maximum effect at a distance equal to the surface projection of the bottom edge of the fault. The 
form of Equation (3.6) is flexible in that it allows the individual developers of the GMPEs to 
adopt the scaling from the simulations that they consider to be reliable, while still using the 
empirical data to constrain the amplitude, a1, or other specific tapers in the model. 

3.1.2.1 T1 –Dip Scaling 

The dip scaling term was designed to be centered for a fault with a 45º dip and takes the form as 
shown below. 

   1 90 45 for 90T        (3.7) 

This model is applicable for dips of 30or more, but, as will be shown later, the simulated data 
are not consistent with this model for dips less than 30. It is currently not clear as to the cause 
for the change in scaling for dips less than 30 from the simulated data. 

3.1.2.2 T2 – Magnitude Scaling 

The magnitude scaling term was designed to be centered for a M6.5 event with and takes the 
form as shown below. 

   2 21 6.5T a  M M  (3.8) 

The smallest magnitude considered in the 34 scenarios is M6.0. The scaling from Equation (3.8) 
does not go to zero at M6; therefore, the extrapolation of the magnitude scaling below M6 is not 
constrained and must be set by the GMPE developers. 
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3.1.2.3 T3 – Distance Scaling 

The distance scaling term is dependent on the distance away from the fault. If the station location 
has a negative Rx value, it is assumed to be on the FW and is therefore zero. When the location is 
on the HW side of the fault, three distance metrics are used to describe the distance dependence. 
Directly over the HW, the distance function increases parabolically with increasing distance 
from the fault [f1 term, Equation (3.11)]. Using the f1 equation, the HW effect reaches it 
maximum value over the bottom edge of the rupture. As the distance increases further from the 
fault, the f2 term [Equation (3.12)] is utilized until Rx is greater than the R2 term [Equation 
(3.10)]. Using the f2 term, the HW effect decreases parabolically with distance from the surface 
projection of the bottom edge of the fault. At greater distances than R2, the HW effect decreases 
exponentially using the f3 term [Equation (3.13)]. The shape of the distance taper is shown in the 
Figure 3.3. 
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   1 , cosR W W    (3.9) 

   2 62 350R   M M  (3.10) 

     21 1 2 1 3 1x x xf R h h R R h R R    (3.11) 

          2
2 4 5 1 2 1 6 1 2 1x x xf R h h R R R R h R R R R              (3.12) 

     2

3 4 5 6, xR R
xf R h h h e

       M  (3.13) 

where  0.2 1.65   M , W is the width of the fault (km), and h1h6 are the coefficients of the 

distance taper. 
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Figure 3.3  The distance taper, T3, shown graphically 

 

3.1.2.4 T4 – Depth Scaling 

Only two depths were modeled in the GP Set A and Set B simulation series: 0 km depth and 5 
km depth. Because the amplitude of the HW effect for ZTOR = 5 km is 30% smaller than the HW 
effect for surface rupture, there is a dependence on ZTOR. However, with only two points, the 
form of the ZTOR scaling is not constrained: it is not known if the scaling is linear between 0 and 
5 km, nor is it known how the ZTOR scaling extrapolates to ZTOR values greater than 5 km. 

3.1.2.5 T5 – Rupture Edge Distance Scaling 

The second distance scaling is a taper that is applied to sites located off the end of the rupture at 
source to site angles of 4590º and from 90135º. This taper allows for a gradual decrease in the 
HW effect at sites that are not within the length of the rupture (source-to-site angle of 90º). This 
taper is parameterized by an additional distance metric, Ry. If Ry is greater than half the rupture 
length (L/2), then the site is located off the end of the rupture. Therefore, the T5 term is set to 
unity for sites located along the rupture with Ry ≤ L/2. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

A
m
p
lit
u
d
e

Rx (km)

Mag 6.5, 30 deg

Width = 18 km 

Rx = R1 Rx = R2

f1 function 

f2 function 

f3 function 

Rx = 0 



30 

        
 

 
 

5

1 for 2

, , 0.577 5 2 0.577 5 for 2 0.577 5 2

0 for 0.577 5 2

x

x y x y x y

y x

abs R L

T R R L R abs R L R L abs R R Lx

abs R R L



           

   




   



 (3.14) 

where L is the length of the fault, (km), and abs(Ry) is the distance dimension measured along the 
strike of the fault (km) [Ancheta et al. 2013]. 

Applying the functional form, site effects terms, and HW term as shown in Equation 
(3.5), the model is calculated for all distances along the FW and HW. An example of the final 
form is shown in Figure 3.6a and 3.6b. See Appendix B for the coefficients to the functional 
form, event terms and HW terms. See Appendix C for the result of the HW model applied to all 
GP model scenarios for periods 0.1, 0.2, 0.5, and 1.0 sec. 

 

 

 

Figure 3.4  Example of the side taper for a M6.5 event. The side taper applies to 
stations located in the blue shaded areas. 
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Figure 3.5  Figure contour of a plot of the T5 term. Example given is a M7 surface 
rupture, a length of 44 km, a width of 23 km, and with a dip of 45. 
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(a) 

 
(b) 

Figure 3.6  (a) Application of the hanging-wall model (blue solid line to all stations 
along the fault; and (b) residuals from the footwall and hanging-wall 
model. 
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3.1.3 Residuals for Hanging-Wall Model 

The mean residuals by scenario are shown as a function of Rx in Figure 3.7 and Figure 3.8. In 
each case, the residuals are averaged over all sites with the same Rx values. The residuals for 
sites on the HW side of the rupture typically fall within the range -0.2 to 0.2 natural log units. 
The exception to this is small magnitude events with shallow dipping faults; for instance, the M6 
and M6.5 with shallow dips of 20° and 30° and M7 with a shallow dip of 20°. It is still being 
investigated if the 2010 Graves and Pitarka one-dimensional velocity model within the top 7 km 
may be a cause of this or if this phenomenon may be a new issue to resolve. Near the surface 
trace of the top of the rupture (-1 km < Rx < 1 km), the model tends to overpredict the ground 
motions for M7.0M7.5; however, this over-prediction at the top of the rupture is not seen for M 
66.5 or for M7.8. For the M7.8 scenarios, the model overpredicts the HW effect at Rx distances 
greater than 10 km. Finally, the buried rupture residuals are well constrained, except as noted for 
the M6.5 with a shallow dip of 20. 
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(a) (b) 

(c) (d) 

(e) 

Figure 3.7  Residuals (in natural log units) for surface ruptures. (a) M6, (b) M6.5, (c) 
M7, (d) M7.5, and (e) M7.8. 
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(a) (b) 

 

Figure 3.8  Residuals (in natural log units) for buried ruptures (ZTOR =5 km): (a) M6, 
and (b) M6.5. 

 

3.2 COMPARISON OF MODEL TO 2004 SIMULATION RESULTS 

The HW model is then compared to the results of the 2004 simulations. Because the HW model 
was developed from the GP models, the result of GP Set A and Set B simulations are not shown 
separately. 

As shown in Figure 3.9, the HW model closely resembles the PEA and URS models for a 
M7 event with a dip of 45º. Note that as shown in Figure 1.2b, the 2008 NGA models also 
closely resemble each other for this event because of the availability of empirical data. 

Like the 2004 URS model, the effect from the HW model increases in amplitude over the 
fault and decreases beyond a distance equals to the surface trace of the bottom of the fault, as 
shown in Figure 3.10. Interestingly, as the magnitude increases, the HW model more closely 
resembles the results from 2004 PEA. 

The HW model for a buried rupture fits below the 2004 PEA model and above the 2004 
UNR model, as shown in Figure 3.11. The HW model closely follows the 2004 URS model but 
only beyond the fault plane. At closer distances, the HW model’s shape is more similar to that of 
the PEA and UNR models. 
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(a) (b) 

(c) 

Figure 3.9  Comparison of the median acceleration (in g’s) for 2004 models and 
hanging-wall model; shown here are surface ruptures with a dip of 45º 
with varied magnitudes: (a) M6.5, (b) M7, and (c) M7.5. 
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(a) (b) 

(c) 

 

Figure 3.10  Comparison of the median acceleration (in g’s) for 2004 models and 
hanging-wall model; shown here are M7 surface ruptures with varied 
dips: (a) 30º, (b) 45º, and (c) 60º. 
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(a) (b) 

 

Figure 3.11  Comparison of the median acceleration (in g’s) for 2004 models and 
hanging-wall model; shown here is a M6.5 event with a dip of 45º with 
varied depths: (a) 0 km, and (b) 5 km. 

3.3 COMPARISON BETWEEN MODEL AND NGA (2008) 

As stated in Section 1, more empirical data was available when developing the 2008 NGA 
models. In the Appendix D figures, the HW model is compared to the spectral shapes of the five 
2008 NGA models with respect to magnitude scaling (Appendix D-1 through Appendix D-4), 
dip of the fault (Appendix D-5 through Appendix D-7), and depth to the top of rupture 
(Appendix D-8). 

The HW model closely resembles the 2008 NGA models for the small magnitude events, 
as seen in Appendix D-1. As the magnitude increases, however, the remaining the 2008 NGA 
relationships attenuate much quicker with distance from the fault. As seen in Appendix D-4, at 
an Rx distance of 30 km, the spectral acceleration is approximately 0.5 natural log units great 
than the 5 GMPEs. Whether this is an artifact of the lack of empirical data at this distance or an 
issue with attenuation of the GP model is yet to be resolved. 

Just as there is a discrepancy between the five 2008 NGA models at shallow dip angles, 
so is there a discrepancy between the HW model and the other 5 GMPEs, as shown in Appendix 
D-5. The 2008 Abrahamson and Silva, 2008 Chiou and Youngs and 2008 Campbell and 
Bozorgnia models all represent the HW as having the greatest effect near the top of the fault, 
then decreasing over the fault, with an exponential decrease beyond the fault. As stated in 
Section 3.1.2.3, using the GP model results to develop the HW distance taper, the HW effect 
increases over the fault, which is in opposition to the previously three mentioned 2008 NGA 
models. Again, the HW model does not attenuate with distance as quickly as the 2008 NGA 
models. 

For buried ruptures, the spectral shape of the HW effect is different from the 2008 NGA 
models as seen in Appendix D-8. Except for the 2008 Idriss model, the HW effect is less than the 
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other four GMPEs at close distances (e.g., less than 15 km), yet greater than all GMPEs at 
greater distances. 

3.4 COMPARISON BETWEEN MODEL AND EMPIRICAL DATA FROM NGA-
WEST2 DATABASE 

Using the 15 events listed in Section 1.3, the intra-event residuals for the 2008 Abrahamson and 
Silva and the 2008 Chiou and Youngs models, utilizing the HW term, were compared to the HW 
term. Figure 3.12 shows selected comparisons; all events from Table 1.1 can be viewed in 
Appendix E. As seen in Figure 3.12, the HW term correlates well for the Imperial Valley, 
Northridge, and Wenchuan events; however, for the Chi-Chi and L’Aquila events the HW term 
is lower than the observed recording. 
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(a) (b) 

(c) (d) 

(e)

Figure 3.12  Intra-event Residuals (in natural log units) for selected events with at 
least five recordings within 80 km, and at least one recording on the 
footwall with RJB distances of 15 km or less, and three or more recordings 
directly over the rupture plane: (a) Imperial Valley, (b) Northridge, (c) Chi-
Chi, (d) L’Aquila, and (e) Wenchuan. 
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3.5 COMPARISON BETWEEN MODEL AND NGA-W2 MODELS 

The NGA-West2 project was undertaken by PEER to expand the previous work described in 
Section 1.2 of this report. This work culminated in the NGA-West2 GMPEs derived from the 
expanded NGA-West2 database described in Section 1.3. 

The Abrahamson, Silva, and Kamai (ASK13) [2013] and the Campbell and Bozorgnia 
(CB13) [2013] GMPEs used parts of the simulation-based HW model to constrain the HW 
scaling in their GMPEs for sites located over the surface projection of the rupture plane. The 
Chiou and Youngs (CY13) [2013] GMPE does not use the HW model described within this 
paper, but instead relies on a HW term that better fits with their base functional form. The Boore, 
Stewart, Seyhan and Atkinson (BSSA13) [2013] GMPE does not specifically include a HW 
term, but the effect of the HW is implicitly captured by the use of the RJB distance term. The 
Idriss (I2013) [2013] GMPE does not include a HW term, nor does it attempt to capture 
differences between the ground motion on the FW and HW. 

Figures 3.13 through 3.15 compares the HW scaling from the five models to the HW 
scaling from the simulations. In each figure, the ground motion is normalized to the FW motion 
at an Rx distance of 12 km to remove differences in the GMPEs on the FW from the HW 
predictions. Figure 3.13 compares the GMPEs for a range of magnitudes for a fixed dip of 45. 
Figure 3.14 compares the HW scaling for different dip angles for M7 earthquakes; Figure 3.15 
compares the HW scaling for different ZTOR values. These comparisons show that for sites 
located over the rupture plane, the GMPEs with HW effects tend to have larger HW factors than 
the HW model from the simulations;however, the HW scaling simulations are similar to the RJB-
based BSSA model. At large distances (Rx > 20 km), the simulations show a much weaker 
attenuation than all of the GMPEs. 
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(a) (b) 

(c) (d) 

 

Figure 3.13 Comparison of the hanging-wall results for five 2013 NGA-West2 models; 
shown here are surface ruptures with a dip of 45º with varied magnitudes: 
(a) M6, (b) M6.5, (c) M7, and (d) M7.5. 
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(a) (b) 

(c) 

Figure 3.14 Comparison of the median acceleration (in g’s) for the 2013 models and 
hanging-wall model. Models have been normalized at an Rx = -12 km; 
shown here are M7 surface ruptures with varied dips: (a) 30°, (b) 45°, and 
(c) 60°. 
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(a) (b) 

 

Figure 3.15  Comparison of the median acceleration (in g’s) for the 2013 models and 
hanging-wall model. Models have been normalized at an Rx = -12 km; 
shown here are M6.5 events with a dip of 45º with varied depths: (a) 0 km, 
and (b) 5 km. 
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4 Vertical Hanging-Wall Results 

Rather than deriving a new model for the scaling of the HW for the vertical component, we 
provide comparisons of the scaling between the horizontal and vertical components from the 
simulated ground motions. This allows the GMPE developers to evaluate the need for a change 
in the scaling of the HW effects between the horizontal and vertical. This approach to the vertical 
HW effect is also better suited for models that use the V/H ratio approach for the vertical 
component. 

We show examples of the comparison of the HW effects for the horizontal and vertical 
components for three cases. Figure 4.1 shows the HW scaling for a dip of 45 for M6, 6.5, 7.0, 
7.5, and 7.8. For this case, the HW effects for the vertical component are similar to the HW 
effects on the horizontal component. Figure 4.2 shows the HW scaling for M7 earthquakes for 
dips ranging from 2070. For this case, the HW effects for the vertical and horizontal 
component are similar for dips of 45 and 60, but there are differences over the rupture for 
shallow dips (2030) and steep dips (70). Finally, Figure 4.3 shows the HW scaling for M6.5 
earthquakes with a dip of 45 for depth to top of ruptures of 0 and 5 km. For this case, the HW 
effects for the vertical and horizontal component are similar. The full set of comparisons for all 
of the cases are shown in Appendix F. 
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(a) (b) 

(c) (d) 

(e) 

Figure 4.1  Comparison of the residuals (in natural log units) for the vertical footwall 
GMPE compared to the horizontal hanging-wall term; shown here are 
surface ruptures with a dip of 45º with varied magnitudes: (a) M6.0, (b) 
M6.5, (c) M7, (d) M7.5, and (e) M7.8. 
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(a) (b) 

(c) (d) 

(e) 

Figure 4.2  Comparison of the residuals (in natural log units) for the vertical footwall 
GMPE compared to the horizontal hanging-wall term; shown here are M7 
surface ruptures with varied dips: (a) 20º, (b) 30º (c) 45º, (d) 60º, and (e) 
70. 
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(a) (b) 

Figure 4.3  Comparison of the residuals (in natural log units) for the vertical footwall 
GMPE compared to the horizontal hanging-wall term; shown here are 
M6.5 events with a dip of 45º with varied depths: (a) 0 km and (b) 5 km 
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