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ABSTRACT

As part of the Next Generation Attenuation Relationships for Central and Eastern North America
(NGA-East) Project, we have gathered data to define an appropriate reference-rock site condition
for CENA. The reference-rock site condition is defined by the S- and P-wave velocities, as well
as the local crustal damping (ko). This report deals solely with the definition of the reference P-
and S-wave velocities. The significance of the reference-rock definition is that it represents the
site condition for which ground motions will be predicted using semi-empirical ground motion
prediction equations (GMPEs). Moreover, it represents the site condition to which site
amplification factors are referenced (i.e., site amplification is unity for reference rock). There are
significant differences in the reference-rock site conditions between active tectonic regions, such
as Western North America (WNA), and mid-plate regions, such as Central and Eastern North
America (CENA).

Using velocity measurements reported in the license applications at nuclear power plants
as well as published data, we developed criteria to assess the presence of the reference-rock site
condition that is based on the seismic velocities and their gradient with respect to depth. We
apply the criteria to the available profiles, which are included with this report, from which we
recommend that seismic velocities for reference rock in CENA be defined as follows:

o Virer=3000 m/sec or 9800ft/sec (2700 to 3300 m/sec or 8900 to 10,800 ft/sec)

e Vyrer =5500 m/sec or 18,000 ft/sec. (5000 to 6100 m/sec or 16,400 to 20,000
ft/sec)

The range given for seismic velocities is based on a £5% change in amplification using quarter
wavelength theory.

We do not find evidence for regional dependence of the reference velocities, which are
derived principally from three general geographic regions: (1) the Atlantic Coast; (2) continental
interior; and (3) Appalachian Mountains. Our data do not provide reference velocities for the
Gulf Coast region. In this region the depth to the CENA reference-rock condition is expected to
be much greater than other CENA regions due to several kilometers of overlying sediments. We
do not provide a reference-rock condition for the Gulf Coast. Our recommendation is to adopt a
consistent reference-rock condition for the entire CENA region, as given above, and then
estimate transfer functions to a softer reference condition (such as 760 m/sec) for application of
the NGA-East GMPEs.
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1 Introduction

Site amplification represents the differences in ground motions for a particular site condition
relative to a reference condition, hereby referred to as the reference-rock site condition. The
reference-rock site condition is defined by the S- and P-wave velocities, as well as the local
crustal damping (KO). There are significant differences in the reference-rock site condition

between active tectonic regions, e.g., Western North America (WNA), and mid-plate regions,
e.g., Central and Eastern North America (CENA) [Boore and Joyner 1997].

As part of the Next Generation Attenuation Relationships for Central and Eastern North
America (NGA-East) Project, we have gathered data to define an appropriate reference-rock site
condition for CENA. Using velocity measurements reported in the license applications at 16
nuclear power plants as well as published data, we have developed criteria to assess the presence
of the reference-rock site condition. The criteria were then used to select reference-rock
velocities (Vs .or and V), ,or ) from the profiles that are representative of the reference-rock site

condition.

These reference-rock site parameters will be used for the derivation of the NGA-East
ground motion prediction equations (GMPEs). In separate work, site amplification factors will
also be derived in which the amplification is relative to the reference-rock condition (i.e., site
amplification for the reference condition is unity).






2 Prior Recommendation on Reference Rock

The Electric Power Research Institute (EPRI) [1993] report established the state-of-practice for
defining ground motions in the CENA region for nuclear facilities. The report identified 16
crustal structure regions within CENA developed using P-wave inversions, and S-wave velocities
were estimated using an assumed Poisson’s ratio of 0.25. The S-wave velocities in the EPRI
[1993] report are not based on direct measurements. The characteristics of the surface layer in
the crustal structure regions are presented in Table 1. As shown in Figure 1, the estimated V of

the surface layer ranges from 2.31 to 2.83 km/sec with a value of 2.83 km/sec for 12 of 16
profiles. The results of ground motion simulations showed small differences among 15 of the 16
crustal models (with the exception of the Gulf Coast Plain). Accordingly, the 15 models
producing similar motions were combined using a representative surface layer Vg .- =2.83

km/sec ([EPRI) 1993]. This combined region was referred to as the Midcontinental region. Toro
et al. [1997] developed GMPEs for these two regions (Midcontinental and Gulf Coast).

Table 1 Surface layer characteristics from the sixteen crustal structure regions
proposed by EPRI [1993].

Region V, (km/sec) Vs (km/sec) Thickness (km)
Offshore New England 4.9 2.83 1.0
Northern Appalachians 4.9 2.83 1.0
Atlantic Coastal Plain 4.9 2.83 1.0
Southern Appalachians 4.9 2.83 1.0

Lake Superior Basin 4.9 2.83 5.0
Midcontinent 4.9 2.83 1.0
Northern Great Plains 49 2.83 1.0
Southern Great Plains 49 2.83 2.0
Wilison Basin 4.9 2.83 1.0
Western Tennessee 4.9 2.83 1.5
Central Tennessee 49 2.83 1.0
Ozarks 4.9 2.83 1.0

New Madrid Rift 4.7 2.72 4.0
Central Plains 4.5 2.60 3.0
Northern Grenville-Superior 5.0 2.34 1.0
Gulf Coast Plain 4.0 2.31 7.0
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Figure 1 Summary of velocity models for the 16 regions in the EPRI [1993] study.

The U.S. Nuclear Regulatory Commission (NRC) provides the following guidance on the
selection of ¥ ,.rin NUREG-1.208 [NRC 2007]:

The hazard curves from the PSHA are defined for general surficial rock
conditions that are consistent with the definition of rock for the
attenuation relationships used in the PSHA. For example, existing
attenuation relationships for the CEUS typically define generic rock
conditions as materials with a shear wave velocity (V) of 2.8 km/sec
(9,200 ft/sec).

The recommendation of 2.8 km/sec (9200 ft/sec) in NUREG-1.208 was adopted by the NRC to
maintain compatibility with contemporaneous GMPEs used in the nuclear industry (e.g., Toro et
al. [1997]), which are based on the estimated V ,or values from EPRI [1993]. Table 2 shows

reference site condition ranging from 2.00 to 2.83 km/sec for a number of GMPEs applicable to
the CENA region (see Toro et al. [1997]; Campbell [2003]; Atkinson and Boore [2006]; and
Pezeshk et al. [2011]). Those models are based on simulations; hence the reference velocities



reflect conditions at the top of assumed crustal profiles used during the simulation process. It is
important to recognize the divergence in reference site conditions in GMPEs does not reflect
varying interpretations of available profiles derived from data. In fact, since the seminal EPRI
[1993] work, no systematic data compilation has been undertaken to support a defensible
definition of reference rock. The work described in this report is meant to fill this need, using
prescribed protocols applied to high quality data in a transparent, reviewable manner.

Table 2 Reference S-wave velocities used by CENA GMPEs.
Reference Vs, (km/sec)
Atkinson and Boore [2006] >2.00
Campbell [2003] 2.80
Toro, Abrahamson, and Schneider [1997]1 2.83
Pezeshk, Zandieh, and Tavakoli [2011] >2.00

'Midcontinental region.






3 Evaluation of Reference $- and P-Wave
Velocities

3.1 DATA COLLECTION

We have collected S- and P-wave velocity profiles that penetrate intact hard rock from published
reports and Nuclear Power Plant (NPP) license applications for sites in the CENA. The following
sites/references were considered:

Bell Bend NPP [UniStar Nuclear Services LLC 2010)
Bellefonte NPP [Tennessee Valley Authority 2009]
Beresnev and Atkinson [Beresnev and Atkinson 1997]
Callaway NPP [Union Electric Company 2009)

Calvert Cliffs NPP [Calvert Cliffs 3 Nuclear Project LLC. UniStar Nuclear
Operating Services LLC 2011]

Clinton NPP [Exelon Generation Company 2006]
Comanche Peak [Luminant Generation Company LLC 2009]
Dames and Moore [1974]*

Daniels et al. [1983]

Dorman and Smalley [1994]

Fermi NPP [Detroit Edison Company 2010]

Grand Gulf NPP [Entergy Operations Florida Inc. 2011]
Kafka and Skehan [1990)

Levy County NPP [Progress Energy Florida Inc. 2011]
Luetgert et al. [1994]

Moos and Zoback [1983]

Motazedian et al. [2011]*



Nine Mile NPP [Nine Mile Point Nuclear Project LLC and UniStar Nuclear
Operating Services LLC 2011]

North Anna NPP [Dominion Virginia Power 2009]

PSEG NPP [PSEG Power 2011]

River Bend Station NPP [Entergy Operations Inc 2008]

Shearon Harris NPP [Progress Energy Carolinas 2011]

South Texas NPP [STP Nuclear Operating Company 2011]
Turkey Point NPP [Florida Power and Light Company 2010]

V. C. Summer NPP [South Carolina Electric & Gas 2011]
Victoria County NPP [Exelon Nuclear Texas Holdings LLC 2008]
Vogtle NPP [Southern Nuclear Operating Company 2008]
William States Lee III NPP [Duke Energy 2010]

This data was screened for quality and then analyzed, as described in the next section, to
develop criteria to identify the reference-rock site condition in the CENA. Data from both
Midcontinental and Gulf Coast regions are included in this compilation. Two datasets marked by
an asterisk are excluded:

1.

The Dames and Moore [1974] dataset provides geology, V, and V), profiles at

61 nuclear power plants across the CENA region. The major concern with
inclusion of this dataset was the poor quality of the measurements and the
inability to clearly identify the assumptions that were made in the development of
the profiles.

The Motazedian et al. [2011] dataset is from a micro-zonation study for a portion
of Ottawa, Canada. The data consists of refraction profiles at 531 sites with 508
measurements of the bedrock V; ranging from 940 to 6124 m/sec. Motazedian et
al. [2011] screened the data by removing outliers using the Grubbs’ [1969] and
Chavenet’s [Worthing and Geffner 1943] rejection criteria. The resulting data
ranged from 940 to 4895 m/sec with mean of 2700 m/sec and a standard deviation
of 680 m/sec and COV = 0.25. Crow [personal communication, 2011] has
suggested that high velocity values resulted from uneven stratigraphic surfaces at
the sites. With or without outlier removal, we consider the range of the reported
velocities to be unrealistic. Moreover, there is significant uncertainty regarding
whether the penetration depth of the refraction surveys is sufficiently large that
the underlying intact rock is sampled. Accordingly, we did not utilize this dataset.



3.2 EVALUATION OF PROFILES

3.2.1 Reference Rock Definition

We have found that velocity profiles from the CENA region comprising a sufficiently large
sampling depth to penetrate intact bedrock show some common characteristics. For example, as
illustrated in Figures 2 to 5 from Bell Bend NPP, S- and P-wave velocities increase with depth as
the materials transition from soils into weathered rock and eventually intact rock. A striking
feature of profiles from a significant majority of the available sites is the lack of increase with
depth of shear wave velocity within firm materials encountered near the bases of profiles. We
have found that defining the reference-rock site condition on the basis of written descriptions of
relatively intact rock from boring logs is not sufficient, because highly variable conditions in the
rock V; profile can be present even for materials logged as intact rock. This is thought to result in
part from the wide range of rock types sampled in our dataset. Instead, visual inspection of the
profiles revealed key features that are commonly encountered were used to define reference rock
as follows:

1. We require Vg > 2000 m/sec and V},, > 3500 m/sec for a layer potentially defined
as reference rock.

2. Reference-rock layers must be sampled over a sufficiently large depth range so
that velocity gradients and potential weathered zones can be identified. For the
case of velocity profiles based on depth-controlled geophysical measurements
(i.e., test types where the geophysical receivers are located at depth; for example,
suspension logging, cross hole, and down hole), logs must penetrate at least 10 m
into a layer being considered as a reference-rock material. For velocity profiles
derived using geophysical methods without depth-control (e.g., reflection or
refraction surveys, surface wave methods), no such penetration criteria are used.
Profiles developed from surface wave methods are only considered if the layers
judged to have the reference velocity are not the first layer in the profile below
shallower materials having relatively slow velocities and relatively steep velocity
gradients.

3. The velocity gradient with respect to depth (dV/dz) is negligible to small within
the reference rock. Typically, this condition is achieved over depth intervals at
least 5—10 m in thickness and associated gradients are generally less than 25
(m/sec)/m. More information on this topic is provided in Section 0.

4. Reference-rock units should be from materials of Paleozoic and older (>251 Myr)
age, although this criteria is not enforced in cases where age is unknown.

For each site satisfying the above criteria, a mean profile velocity, (I7S ref) was evaluated
b pr

within the reference-rock layer, see Figures 2-5.
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3.2.2 Selected Vs erand Vp e Values

The total number of profiles examined in this work was 283, of which 128 satisfied the
reference-rock velocity conditions described in Section 3.2.1. Those 128 profiles were digitized
and the mean reference-rock velocity was computed over the interpreted depth range. This
process yielded 68 S-wave velocities at 27 different locations and 60 P-wave velocities at 22
different locations; see Table 3.

Figure 6 shows the locations of the sites with reference velocities. Chulick and Mooney
[2002], later updated by Mooney [personal communication, 2012], define crustal properties
within four general regions of the CENA: (1) the continental interior; (2) Gulf Coast; (3)
Appalachian Mountains; and (4) Atlantic Coast. These regional designations are indicated for
each site in Table 3. All but one of the sites with reference-rock velocities are located within the
continental interior (13 sites), Atlantic Coast region (17 sites), or Appalachian Mountains (2
sites). We have relatively limited coverage along the Gulf Coast region. The velocity profiles
from three Gulf-Coast nuclear plants (Levy County, South Texas, and Victoria County) were not
sufficiently deep to sample the reference-rock condition despite measurements at depths of 1400
to 4000 m.

Of the 68 S-wave measurements, 58 are from direct measurements of the in situ S-wave
velocity. The remaining 10 values estimated ¥ using measured ¥, and an assumed Poisson’s

ratio, as listed in Table 3. Figures 7 and 8 present box plots of the reference velocity at the
various sites showing the range of data. The selected S- and P-wave reference velocities show
essentially no trend with depth, as shown in Figure 9, which is consistent with the criteria
described in Section 3.2.1.
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Table 3 Reference S- and P- wave velocities for all profiles.
. ‘ v " v pr As_sumed
Site Lat. (N)  Lon.(E)  Region (m’;éré{: ) (m';égé | (mjggfc ) (m'/’;gg | Po'l?s;(i)on’s Method Reference
Bell Bend NPP 41.086 -76.165 App. 5186 2747 downhole FSAR Figure 2.5-151
Bell Bend NPP 41.086 -76.165 5102 151 3150 52 ps logging FSAR Figure 2.5-151
Bell Bend NPP 41.086 -76.165 5080 3191 downhole FSAR Figure 2.5-152
Bell Bend NPP 41.086 -76.165 6203 456 3543 228 ps logging FSAR Figure 2.5-152
Bell Bend NPP 41.086 -76.165 4007 2340 downhole FSAR Figure 2.5-153
Bell Bend NPP 41.086 -76.165 4750 318 2762 142 ps logging FSAR Figure 2.5-153
Bell Bend NPP 41.086 -76.165 5552 2527 downhole FSAR Figure 2.5-154
Bell Bend NPP 41.086 -76.165 5186 415 3110 76 ps logging FSAR Figure 2.5-154
Bellefonte NPP 34.713 -85.925 App. 5910 356 2939 185 ps logging FSAR Figure 2.5-331
Bellefonte NPP 34.713 -85.925 5686 2905 downhole FSAR Figure 2.5-333
Bellefonte NPP 34.713 -85.925 5806 337 2900 194 ps logging FSAR Figure 2.5-333
Bellefonte NPP 34.713 -85.925 5964 385 2973 209 ps logging FSAR Figure 2.5-334
Bellefonte NPP 34.713 -85.925 5861 282 3036 223 ps logging FSAR Figure 2.5-335
Bellefonte NPP 34.713 -85.925 5870 2830 downhole FSAR Figure 2.5-336
Bellefonte NPP 34.713 -85.925 5711 213 3109 86 ps logging FSAR Figure 2.5-336
Bellefonte NPP 34.713 -85.925 5958 252 3129 129 ps logging FSAR Figure 2.5-337
Chalkn River, Ontario 45.990 -77.450 Int. 3210 refraction Beresnev and Atkinson (1997)
Grand Remous, Ontario 46.610 -75.860 Int. 2850 refraction Beresnev and Atkinson (1997)
Ottawa, Ontario 45.390 -75.720 Int. 2700 refraction Beresnev and Atkinson (1997)
Tyneside, Ontario 43.090 -79.870 Int. 3380 refraction Beresnev and Atkinson (1997)
Williamsburg, Ontario 45.000 -75.250 Int. 3110 refraction Beresnev and Atkinson (1997)
Wesleyville, Ontario 43.920 -78.400 Int. 3030 refraction Beresnev and Atkinson (1997)
Callaway NPP 38.763 -91.782 Int. 4350 2544 downhole FSAR Figure 2.5.4-19
Callaway NPP 38.763 -91.782 4551 372 2482 181 ps logging FSAR Figure 2.5.4-19
Calvert Cliffs 38.432 -76.442 Atl 4118 2377 422 0.25 p logging FSAR Figure 2.5-142
Calvert Cliffs 38.432 -76.442 6203 3581 612 0.25 p logging FSAR Figure 2.5-143
Calvert Cliffs 38.432 -76.442 4223 2438 0.25 p logging FSAR Figure 2.5-144
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pr pr Assumed

Site Lat.(N)  Lon.(E)  Region (n':‘;éré{: ) (;‘;ggé | (:ngc ) (:;/’;gg | Po}i?sast(i)on’s Method Reference

Clinton NPP 40172  -88.835 Int 4387 2533 0.25 p logging ESP, Figure 4.2-8
Comanche Peak NPP 32302 -97.793 Int 6212 3324 0.3 p logging FSAR Table 2.5.2-227
Daniels et al, UPH3 42.438 -89.871 Int 6090 389 p logging Daniels el al. (1983)
Hayes 35.865 -89.849 Int 6100 3408 0.28 p logging Dorman and Smalley (1994)
Fermi NPP 41962  -83.260 Int 5174 467 2838 195 ps logging FSAR Figure 2.5.4-220
Fermi NPP 41.962  -83.260 4930 downhole FSAR Figure 2.5.4-221
Fermi NPP 41962  -83.260 5536 429 2934 199 ps logging FSAR Figure 2.5.4-221
Bronson-Avalon 42,026  -71.868 At 3024 Vgrlggl‘iy Kafka and Skehan (1990)
Hartford 42.055  -72.648 At 2712 Vgejggi‘iy Kafka and Skehan (1990)
Waterbury 41485  -73.158 At 3304 Vgrlggl‘fy Kafka and Skehan (1990)

Luetgert, Benz, and

Luetgert et al (94), SP1 33411 -81.707 Atl 6100 reflection Moo (190

. Luetgert, Benz, and
Luetgert et al (94), SP2 33267  -81.441 Atl 6100 reflection Moo G190

. Luetgert, Benz, and
Luetgert et al (94), SP3 33128  -81.162 At 6200 reflection Moo (190

. Luetgert, Benz, and
Luetgert et al (94), SP4 33.007  -80.919 Atl 5730 reflection Moo (190

. Luetgert, Benz, and
Luetgert et al (94), SP5 32883  -80.581 At 5730 reflection Moo G190k
Monticello Reservoir 34320  -81.334 Atl 6056 295 3361 180 ps logging Moos a”‘;igﬁr‘?;zk (1983),
Monticello Reservoir 34320  -81.334 6000 397 3333 276 ps logging Moos a”‘ééﬁ:’:gk (1983),
Monticello Reservoir 34320  -81.334 5500 190 3200 135 ps logging Moos a”ﬁéﬁf_’:‘;" (1983),
Nine Mile NPP 43521 -76.407 Int 6231 3444 ps logging FSAR Table 2.5-58
North Anna NPP 38.059 -77.795 Atl 5258 398 2900 365 ps logging ESP Geophysics Figure 5
North Anna NPP 38.059 -77.795 5635 316 3167 256 ps logging ESP Geophysics Figure 8
PSEG NPP 30463  -75536 Atl 3353 0.3 p logging ESP, Figure 2.5.4.7-15
PSEG NPP 39463  -75.536 5800 refraction ESP, Figure 2.5.4.7-14
PSEG NPP 30463  -75536 6670 refraction ESP, Figure 2.5.4.7-14
River Bend NPP 30756  -91.334  GC 3658 2134 299 0.25 p logging FSAR Figure 2.5.4-245
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pr

pr

Assumed

Site Lat.(N)  Lon.(E)  Region Vires Vpiref Vsres Vsref Poisson’s Method Reference
(m/sec)  (m/sec) (m/sec)  (m/sec) Ratio

Shearon Harris NPP 35.633 -78.955 Atl 4548 309 2350 150 0.3 p logging Figure 2.5.2-262
V.C. Summer NPP 34285  -81.321 At 5428 89 3121 79 pslogging AR F'QUE;‘; _22'&4'224/ 225,
V.C. Summer NPP 34285  -81.321 5345 225 3023 191 ps logging FSAR FlguBrg_22.364-224/ 225,
V.C. Summer NPP 34285  -81.321 5281 180 3174 161 pslogging AR FlguBrleD_22.3.74-224/ 225,
V.C. Summer NPP 34285  -81.321 5871 267 3124 200 pslogging AR F'guég_zz'ff'zz“’ 225,
V.C. Summer NPP 34285  -81.321 5475 290 3249 185 pslogging AR F'gusrg_%gf'zz‘” 225,
V.C. Summer NPP 34.285  -81.321 5397 182 3134 133 ps logging FSAR FlguBrg_Zégé4-224/ 225,
V.C. Summer NPP 34285  -81.321 5581 136 3447 76 pslogging AR F|gu&g%g%4-224/ 225,
V.C. Summer NPP 34.285  -81.321 5939 227 3220 168 ps logging FSAR F'9“Brl‘§_2éff'224’ 225,
Turkey Point NPP 25.424  -80.333 Atl 2903 100 0.3 p logging FSAR Figure 2.5.4-211
Vogtle NPP 33.141 -81.763 Atl 2671 344 ps logging FSAR Figure 2.5.4-8
Vogtle NPP 33.141  -81.763 2919 240 ps logging FSAR Figure 2.5.4-8
Vogtle NPP 33.141 -81.763 2600 223 ps logging FSAR Figure 2.5.4-8
William States Lee Il NPP 35.037  -81.512 Atl 3397 287 downhole FSAR Figure 2.5.4-219
William States Lee Il NPP 35.037 -81.512 6749 280 3302 ps logging FSAR Figure 2.5.4-219
William States Lee Il NPP 35.037  -81.512 5746 504 3035 331 ps logging FSAR Figure 2.5.4-220
William States Lee Il NPP 35.037  -81.512 5888 531 2858 283 ps logging FSAR Figure 2.5.4-221
William States Lee Il NPP 35.037  -81.512 2762 downhole FSAR Figure 2.5.4-222
William States Lee Il NPP 35037  -81.512 5292 333 2953 230 ps logging FSAR Figure 2.5.4-222
William States Lee Il NPP~ 35.037  -81.512 5627 413 2918 337 ps logging FSAR Figure 2.5.4-223
William States Lee Il NPP 35037  -81.512 5607 342 2794 229 ps logging FSAR Figure 2.5.4-224
William States Lee Il NPP~ 35.037  -81.512 5528 445 2819 338 ps logging FSAR Figure 2.5.4-225
William States Lee Il NPP 35.037 -81.512 2794 downhole FSAR Figure 2.5.4-226
William States Lee Il NPP~ 35.037  -81.512 6096 401 3080 290 ps logging FSAR Figure 2.5.4-226
William States Lee IIlNPP 35037  -81.512 5497 335 2794 287 ps logging FSAR Figure 2.5.4-232
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3.2.3 Statistical Evaluation of the Data

The data collected in this study provides information on the aleatory uncertainty at three different
scales: profile, site, and region. At each of these scales, the data are used to quantify the expected
value and uncertainty, as well as to test statistical distributions.

At the profile level, the reference-rock depth range is identified and used to select

individual within-profile measurements of reference-rock velocities (Vs,ref and Vp,ref)-

Measurements by different methods (e.g., donwhole and ps logging methods) were treated as
separate profiles. For profiles with more than five measurements of V... and V), ¢

histograms of the reference-rock velocities are included in Appendix B. The Shapiro-Wilk test
[Shapiro and Wilk 1965] was used to test if the distribution of within-profile measurements
follows a normal or log-normal distribution. If the p-value from the test is lower than a chosen
confidence level, typically 0.05 to 0.10, then the null hypothesis that the data is from the
assumed distribution can be rejected. Using a confidence level of 0.10, the test was found to
reject the normal and log-normal distributions for the majority of the V ,.r and V), .,r profiles

shown in Figure 10. To better understand the distribution of within-profile measurements, the
Vs rer data are combined together after removing the within-profile mean value. This

transformation is applied to original dataset under the assumption of a normal distribution with
constant uncertainty, as well as to the natural log of the data under the assumption of a log-
normal distribution. Figure 11 shows the test of the normal distribution, and indicates that the
data is more strongly clustered at the center than expected from the theoretical distribution with
the sample standard deviation. There are also differences at tails of the histogram (quantiles <-3
and >+3). The data has more than the expected observations at the tails with several observations
that differ by more than + 1000 m/sec from the mean. Similar trends are observed for the log-
normal distribution; see Figure 12. The Shapiro-Wilk test was used to test for normality rejected
both the normal and log-normal distributions due to wider than expected tails. As shown in
Figures 13 and 14, a similar evaluation of the V), .., data found that both of the assumed

distributions provided better fits to the data.
Subsequent analysis of velocity statistics requires the selection of a distribution so that
the proper form of the standard deviation is used (e.g., COV for normal, oy, for log-normal).

Neither distribution is clearly preferred based on the Shapiro-Wilk tests, as described above.
Previous researchers have generally applied log-normal distributions to characterize soil velocity
data (e.g., Roblee et al. [1996]; Andrus et al. [2006]). Nonetheless, we elected to proceed with
the normal distribution principally because it is more representative of the within-site and within-
region distributions considered subsequently.
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Figure 10 Histograms of the p-value from Shapiro-Wilk tests on distributions of
within-profile measurements of the reference velocity. Typical thresholds
for rejection of the assumed distribution are < 0.05 or < 0.10.
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Figure 14 Comparison of the within-profile Vp’,,ef data to a log-normal distribution.

Each of the profiles has a median reference velocity, (VS ref) and ( f ref) , and an
b p b

pr pr
i and oy

s,ref pref

within-profile standard deviation, o . These standard deviation terms, provided in

Table 3, range from 52 to 612 m/sec. As shown in Figure 15, there is a slight trend in within-
profile standard deviation with mean profile velocity; , thus, dispersion is represented with a
coefficient of variation (COV) instead of standard deviation. The within-profile coefficients of

variation range from 0.02 to 0.18 for COVp " and 0.02 and 0.09 for COVp ", see Figure 16.

.
The average COV of S- and P-wave Values (0.067) is used as the estlmate of within-profile
coefficient of variation (COV pfie).

The mean S-wave velocities at each of the profiles, provided in Table 3 and shown in
Figure 7, range from 2134 m/sec at River Bend NPP located in Louisiana to 3581 m/sec at
Calvert Cliffs NPP located in Maryland. For sites with multiple profiles (multiple measurements
in one or more boreholes in close proximity), the mean can be taken across the datasets for the

site as a whole, (Vs,ref )site and ( b, ref )Sle, and a between-profile standard deviation of

reference velocity can be computed, of,’tef and O';itef
wave velocity measurements at sites with more than seven profiles are shown in Figures 17 and
18, respectively. This between-profile variability is evaluated from four sites with 8 to 12
profiles (i.e., Bell Bend NPP, Bellefonte NPP, V.C. Summer NPP, and William States Lee NPP);
see Table 4. Using the Shapiro-Wilk test and a confidence level of 0.10, 7 of the 8 profiles were
not rejected against normal and log-normal distributions, with the William States Lee II1 NPP S-
wave data being rejected for both distributions. The normal distributed is used based on better

performance and judgment. The between-profile coefficients of variation range from 0.033 to

. Distributions of the reference S- and P-
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0.127 for COV;ite and 0.017 to 0.114 for COV;ite . Given the similar range in coefficients of

wref p.ref

variations and the relationship between S- and P-wave velocities, a single coefficient variation of
0.063 is recommended for both COV;ite and COV;ite , which is quite similar to COV pofite Of

f f
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Figure 15 Influence of mean profile velocity on profile standard deviation.
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Figure 16 Influence of mean profile velocity on profile coefficient of variation.
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Table 4 Standard deviation and coefficient of variation (COV) of reference-rock
values from sites with more than 7 values.

Standard

Site Count deviation. cov
P-wave velocity
Bell Bend NPP 8 586 0.114
Bellefonte NPP 8 98 0.017
V.C. Summer NPP 8 227 0.041
William States Lee Il NPP 9 406 0.070
Mean 329 0.061
S-wave velocity
Bell Bend NPP 8 370 0.127
Bellefonte NPP 8 99 0.033
V.C. Summer NPP 8 118 0.037
William States Lee Il NPP 12 200 0.068
Mean 197 0.066

Histograms of (Vs,ref

)site and (Vp ref
The histograms of the S- and P-wave velocities skew towards higher velocities. Using the
reference S-wave velocity data, the Shapiro-Wilk test was used to test for normality. Using an

alpha factor of 0.10, the computed p-value of 0.30 does not reject assumed normal distribution

) L, ArC shown in Figures 19 and 20, respectively.
Site

for (I7S ref) " but the p-value of 0.006 does reject the assumed normal distribution for
’ site

(I7p ref) " Considering site-to-site variability of median reference velocities, a regional
i site

weighted mean is computed with weights taken as proportional to the reciprocal of the standard
error, defined by the COV/” and COV/” values divided by the square root of the number of

s.ref p.ref

profiles, which provide a maximum likelihood estimate of the mean [denoted (Vs,ref and

)reg

(I7p ref) ]. For the four well-sampled sites, the standard deviations in Table 4 are used for
> reg

weighting. For more sparsely sampled sites (having one to three profile medians), the standard
deviation is computed from mean COV of 0.063. Weighted standard deviations are similarly

computed [denoted as COV,,® and COV;® , which represent regional site-to-site variability of

s.ref p.ref
the median velocity. Results for both weighted mean and standard deviation are given in Table 5.
Combining site-to-site and between-profile standard deviations yields a total standard deviation

of COV;® and COV;® = 0.144 and 0.128, respectively. The mean values and their 95%

s, ref p.ref
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confidence intervals are (I7S,ref)

(Vp,ref)reg
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If mean values and confidence intervals are computed on the basis of the regions
proposed by Chulick and Mooney [2002] and Mooney [personal communication, 2012], we find
negligible changes, as indicated by the following satistics in which each site within the
respective regions is weighted equally and confidence intervals reflect site-to-site variability:

o Interior: (VS,ref )reg = 3030 + 770 m/sec; (Vp,ref )reg = 5530+ 210 m/sec
o Atlantic: (7, s )reg = 2970 + 330 misec; (7, s )reg = 5680 + 190 m/sec
e Appalachian: (VS,ref )reg = 2950 m/sec; (Vp,ref )reg = 5490 m/sec

This indicates that the reference velocities have no statistically significant regional dependence
among the continental interior, Appalachian Mountain, and Atlantic Coast regions.

Slowness, which is defined as the reciprocal of velocity, was considered as an alternate
method for calculating the mean reference velocity. The regional weighted mean reference S-
wave slowness was found to be 0.3450 ms/m with a standard deviation of 4.278e-5 ms/m. The

mean S-wave slowness corresponds to a (I7S ref) of approximately 2900 m/sec. The statistics
b pr

computed using velocities, not slowness, are recommended because of the insignificant
difference between these two numbers and the simplicity of directly computing the statistics

from velocity.

Table 5 Statistics computed for the reference-rock velocities weighted by the
reciprocal of the standard deviation. The within-site standard deviation is
estimated using a coefficient of variation of 0.063.

Standard Deviation (COV)
Velocity type Mean
Within Site Between Site Total
P-wave 5517 348 (0.063) 612 (0.111) 704 (0.128)
S-wave 2951 186 (0.063) 381 (0.129) 424 (0.144)

3.3 DISCUSSION OF PROFILE CHARACTERISTICS

3.3.1 Poisson’s Ratios

For each profile in reference rock, we use (Vs,ref )pr and (Vp,ref )pr to compute the mean

profile Poisson’s ratio, (

s,ref

30

Vv, ) , as follows [Mavko et al. 2003]:
pr



(Vp,ref )j?’” _Z(V_vs,ref )i’”

2(Vp,ref )j?” _2(I75,ref )ir

(s )pr - 3.1)

The computed Poisson’s ratios range from 0.24 to 0.33 with a mean of 0.28, see Figure 21. The
computed values fall within the range expected for intact rock presented by Gercek [2007]. The
mean value of 0.28 is similar to the assumed value of 0.25 used by EPRI [1993].

3.3.2 Weathering Zone

At the Bellefonte, North Anna, V.C. Summer, and William States Lee III sites, information
regarding the transition from weathered rock to intact rock could be inferred from the
characteristics of velocity profiles (i.e., steep transition from low velocities to the reference-rock
velocity) and borehole geology. At the other sites, no weathering zone could be identified. The
range in depths and S-wave velocities associated with the identified weathered zones is shown in
Figure 22. The top of the weathered zone occurs at depths ranging from 4.5 to 35 m, with
thicknesses varying from 3 to 83 m. The velocity at the top of the weathered zone varies from
1500 to 2450 m/sec and at the base of the weathered zone varies from 2590 to 3540 m/sec. The
ratio of the S-wave velocity of the intact rock to the weathered rock, referred to as S-wave
velocity ratio, ranges from 1.3 to 2, see Figure 23. The geometric mean of the thickness is 15 m,
and the S-wave velocity ratio is 1.53.
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Figure 21

as well as reported assumed values. The mean (ﬂ) and standard

deviation (0') was computed to be 0.28 and 0.025, respectively.
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3.3.3 Velocity Gradient within the Reference Rock

The velocity gradient is defined as the change in velocity with respect to depth (dV/dz). It can be
computed over a depth range and used as a parameter to assist in identifying reference-rock
conditions within a profile. Within the reference rock, the velocity gradient is computed for all
profiles with at least 4 measurements spanning at least 5 m by fitting a linear model through the
data. There are 82 profiles with a sufficient amount of data to compute the velocity gradient. The
reference velocity gradient ranges from dV/dz = -64 to 46 (m/sec)/m with a mean of 2 (m/sec)/m
and standard deviation of 13 (m/sec)/m. The associated 95% confidence interval is -24 to 28
(m/sec)/m. The velocity gradient within the weathered zone can be computed as well. In this
calculation, the gradient is computed by the change in velocity before and after the identified
zone without fitting a linear trend to the data. The computed velocity gradient within the
weathered zone ranges from 12 to 360 (m/sec)/m with a mean of 125 (m/sec)/s. A comparison of
the reference and weathered zone velocity gradients is shown in Figure 24. The magnitude of the
velocity gradient within the weathered and reference zones do overlap for some sites. For a
specific profile, the difference between the velocity gradient in the weathered rock and reference
rock is always greater than zero, as shown in Figure 25, indicating a decrease in the velocity
gradient as the profile transitions from the weathered zone into the reference velocity zone.
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Figure 24 Velocity gradients of the within the reference rock and weathered zones.
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3.4 ESTIMATION OF EPISTEMIC UNCERTAINTY

Epistemic uncertainty in the reference-rock velocities arises from two principal sources: (1)
insufficient data—namely, if we had a larger database, the statistics on regional median and
standard deviations would surely change; and (2) the judgment involved with the selection of
reference-rock intervals within profiles when the protocols from Section 3.2.1 are applied. We do
not attempt to quantify the first source, which is always present in any data-driven study. In this
section, we attempt to quantify the second source associated with user judgment.

Our process for estimating the judgment-driven epistemic uncertainty was to provide 46
P- and/or S-wave velocity profiles that penetrate reference rock to three experts. They were
asked to select profile mean reference-rock velocities based on their visual assessment of the
profile and by reading the velocities manually off the plot (i.e., they did not perform statistical
calculations using digitized versions of the profiles). We recognize that this process
overestimates epistemic uncertainty due to the potential for plot reading errors, but this is
actually somewhere desirable given the omission of the first source of epistemic uncertainty
from our process.

For each of the profiles, the differences between the experts selected profile mean

reference velocities and (V. ) and (17 ),,r were computed, as given in Table 6 and Figure

sef ) pr poref
26. These differences represent epistemic uncertainty in the evaluation of the reference-rock
velocity associated with variable expert judgment regarding the depth interval associated with
the reference-rock condition and errors associated with visual reading of mean velocities from
printed figures. The mean and standard deviation of these differences is presented in Table 6.
The mean of the mean profile velocities provided by the three experts were essentially unbiased
relative to the values from Table 3. The standard deviation of the mean estimates was 100 m/sec,
which is significantly less than the between-profile aleatory variability represented by o

site

InVsref and

site

O — 186 and 348 m/sec, respectively.
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Figure 26 Difference between reference velocity selected by an expert and the mean
reference velocity. (AK: Albert Kottke, MM: Michael Musgrove, and KK:
Khatereh Khodaverdi).
Table 6 Mean and standard deviation of the difference between the velocity
selected by three experts and the mean of the selected velocities.
Vs,ref Vp,ref
Expert
Mean Standard Deviation Mean Standard Deviation
Albert Kottke (AK) -12.3 90.9 4.5 97.18
Michael Musgrove (MM) -20.0 98.8 -65.3 128.6
Khatereh Khodaverdi (KK) 29.2 80.9 53.6 105.4
Average -1.1 90.2 -2.4 110.4
3.5 COMPARISON WITH LABORATORY MEASUREMENTS

Brant et al. [2012] conducted in situ and laboratory measurements on metamorphic and igneous
rock cores from the New York area. These tests are of interest because the cores are composed of
competent, relatively unweathered bedrock that is generally compatible with the descriptions of
reference rock on boring logs. The laboratory measurements were conducted using the resonant
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frequency method with impulse excitation [ASTM International 2009]. No confinement was
applied to the samples. The 118 S-wave velocities from the laboratory measurements of rock
cores ranged from 1520 to 4570 m/sec with a mean of 3050 m/sec; see Figure 27. For each
laboratory test, an associated in situ velocity measurement is available from geophysical
crosshole, downhole, or suspension logging methods. As shown in Figure 28, Brant et al. [2012]
compared the lab and in sifu velocity measurements and found the laboratory measurements
provide an upper bound on the S-wave velocity of the in situ rock mass. This is due to the
presence of joints and shears in the rock mass that are not present in the cores due both to their
small size and to the need to test intact (as opposed to fractured) specimens. While we do not
advocate the direct use laboratory measurements for the evaluation of reference-rock velocities,

we are nonetheless encouraged that the mean regional S-wave velocity of (17 )mg = 2950 m/sec

s.ref

is very close to the rock core mean of 3050 m/sec.
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Laboratory measured intact shear-wave velocity by rock type [Brant et al. 2012].
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4 Recommendations

As described in Section 3.2.3, the mean regional reference velocities for CENA, with their 95%

confidence intervals, were found from the data assembled in this study to be (IZM )wg = 2951 +

)mg = 5517 + 1380 m/sec (i.e., 4137 to 6897

831 m/sec (i.e., 2120 to 3782 m/sec) and (7

poref
m/sec). We prefer to provide these mean values to no more than two significant digits; for
application, therefore, we recommend:

Vs, rer = 3000 m/sec or 9800ft/sec, and V), ,or = 5500 m/sec or 18,000 ft/sec

Note that formal statistical nomenclature for these recommendations is dropped, because they are
interpreted (and slightly modified) from the formal statistics.

The data gathered in this study reveal substantial site-to-site variability of mean reference
velocities. This is of substantial practical importance for site-specific ground motion studies,
where geotechnical and geophysical logging to depths corresponding to the reference conditions
may be required by regulatory agencies. Given the aforementioned site-to-site variability, we do
not advocate strict adherence to reaching the V ,.r and V), ,.r values given above. Our

principal recommendation is that the depth of exploration be sufficiently large that the reference
condition, as described in Section 3.2.1, is demonstrated by the data.

With that said, we recognize that many applications require articulation of a specific
reference velocity (or range). We propose that the definition of such a velocity range is more
rationally defined from its impact on site amplification than by the width of confidence intervals.
For this reason, the velocity range is based on its impact on site amplification. The amplification
in a vertically-propagating horizontally-polarized S-wave between two layers is related to the
mass density (p) and velocity (V) in the layers by [Joyner et al. 1981]:

A PI_ZI 4.1)
P22

If the layers have the same mass densities, then the amplification across those two layers is equal
to the square root of the velocity ratio (i.e., [V} /V, ). We select an admittedly subjective limit on

amplification change of 5%, which implies that for a given soil layer velocity the range in
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reference-rock velocity is 0.907 to 1.108 of the central value. This corresponds to a computed
range of 2700 to 3300 m/sec for Vg ,,r and 5000 to 6100 m/sec for V), ,.r. The range is

somewhat smaller than the 95% confidence interval given above. The EPRI [1993]
recommendation for Vg .- falls within this range, which means that prior seismic hazard

analyses for nuclear power plants utilizing this value are not incompatible with our
recommendations. However, the P-wave reference velocity from EPRI [1993] of Vp’ ref = 4900

m/sec falls outside the recommended range in this report.

Based on the above reasoning, the recommended range of V. is 2700 to 3300 m/sec
(8900 to 10,800 ft/sec) and of Vo ref i1s 5000 to 6100 m/sec (16,400 to 20,000 ft/sec).

We do not find evidence for regional dependence of the reference velocities, which are
derived principally from three general geographic regions: (1) the Atlantic Coast; (2) continental
interior; and (3) Appalachian Mountains. Our data is does not provide reference velocities for the
Gulf Coast region. In this region the depth to the CENA reference-rock condition is expected to
be much greater than other CENA regions due to several kilometers of overlying sediments. We
do not provide a reference-rock condition for the Gulf Coast. Our recommendation is to adopt a
consistent reference-rock condition for the entire CENA region, as given above, and then
estimate transfer functions to a softer reference condition (such as 760 m/sec) for application of
the NGA-East GMPEs.
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5 Limitations of the Study

This study represents the most complete survey of hard-rock velocity in the CENA region;
however, it is not without limitations. The collected dataset does not uniformly sample the spatial
distribution of the study region (Figure 6) due to limitations in the available data. However, the
data does include a range of different geologic conditions; therefore, the lack of spatial coverage
may not be significant. Future efforts can be focused on acquiring additional data to ensure
greater spatial coverage. As noted previously, the data is especially sparse in the Gulf Coast
region.
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Appendix A: Velocity Profiles
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Figure A-11  Wave velocity at Chalk River, Ontario [Beresnev and Atkinson 1997].
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Figure A-13  Wave velocity at Ottawa, Ontario [Beresnev and Atkinson 1997].
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Figure A-14  Wave velocity at Tyneside, Ontario [Beresnev and Atkinson 1997].
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Figure A-15  Wave velocity at Williamsburg, Ontario [Beresnev and Atkinson 1997].
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Figure A-16  Wave velocity at Wesleyville, Ontario [Beresnev and Atkinson 1997].
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Figure A-17  Wave velocities at Callaway NPP (FSAR Figure 2.5.4-19).
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Figure A-18  Wave velocities at Calvert NPP (FSAR Figure 2.5-142).
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Figure A-19  Wave velocities at Calvert NPP (FSAR Figure 2.5-143).
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Figure A-20 Wave velocities at Calvert NPP (FSAR Figure 2.5-144).
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Figure A-21  Wave velocities at Clinton NPP (ESP Figure 4.2-8).
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Figure A-22  Wave velocities at Comanche Peak NPP (FSAR Table 2.5.2-227).
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Figure A-23  Wave velocity at UPH3 [Daniels el al. 1983].
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Figure A-24  Wave velocities at Fermi NPP (FSA Figure 2.5.4-220).
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Figure A-25 Wave velocities at Fermi NPP (FSA Figure 2.5.4-221).
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Figure A-26  Wave velocities at Hayes [Dorman and Smalley 1994].
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Wave velocity at Bronson-Avalon [Kafka and Skehan 1990].
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Figure A-28  Wave velocity at Hartford [Kafka and Skehan 1990].
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Wave velocity at Waterbury [Kafka and Skehan 1990].
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Figure A-30 Wave velocity at SP1 [Luetgert et al. 1994].
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Figure A-31  Wave velocity at SP2 [Luetgert et al. 1994].
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Figure A-32  Wave velocity at SP3 [Luetgert et al. 1994].
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Figure A-33  Wave velocity at SP4 [Luetgert et al. 1994].
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Figure A-34  Wave velocity at SP5 [Luetgert et al. 1994].
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Figure A-35 Wave velocities at Monticello Reservoir [Moos and Zoback 1983, Figure 4].
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Wave velocities at Monticello Reservoir [Moos and Zoback 1983, Figure 5].
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Figure A-37  Wave velocities at Monticello Reservoir [Moos and Zoback 1983, Figure 7].
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Figure A-38  Wave velocity at Nine Mile NPP (FSAR Table 2.5-58).
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Figure A-39  Wave velocities at North Anna NPP (ESP Geophysics Figure 5).
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Figure A-40 Wave velocities at North Anna NPP (ESP Geophysics Figure 8).
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Figure A-41  Wave velocities at PSEG NPP (ESP, Figure 2.5.4.7-14, Line 1).

87



e \/p, Refraction
Ref. Vp, Refraction

50

100

150

Depth (m)
[\
S
=)

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000
Wave Velocity (m/s)

Figure A-42  Wave velocities at PSEG NPP (ESP, Figure 2.5.4.7-14, Line 2).
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Figure A-43  Wave velocities at PSEG NPP (ESP, Figure 2.5.4.7-15).
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Figure A-44  Wave velocities at River Bend NPP (FSAR Figure 2.5.4-245).
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Figure A-45 Wave velocities at Shearon Harris NPP (Figure 2.5.2-262).
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Wave velocity at Turkey Point NPP (FSAR Figure 2.5.4-211).
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Figure A-47  Wave velocities at V.C. Summer NPP (FSAR Figure 2.5.4-224/225, BP-201).
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Figure A-48  Wave velocities at V.C. Summer NPP (FSAR Figure 2.5.4-224/225, BP-206).
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Figure A-49  Wave velocities at V.C. Summer NPP (FSAR Figure 2.5.4-224/225, BP-207).
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Figure A-50 Wave velocities at V.C. Summer NPP (FSAR Figure 2.5.4-224/225, BP-211).
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Figure A-51  Wave velocities at V.C. Summer NPP (FSAR Figure 2.5.4-224/225, BP-301).
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Figure A-52  Wave velocities at V.C. Summer NPP (FSAR Figure 2.5.4-224/225, BP-306).
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Figure A-53  Wave velocities at V.C. Summer NPP (FSAR Figure 2.5.4-224/225, BP-307).
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Figure A-54  Wave velocities at V.C. Summer NPP (FSAR Figure 2.5.4-224/225, BP-311).
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Figure A-55 Wave velocity at Vogtle NPP (DRB-9) (FSAR Figure 2.5.4-8).
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Figure A-56  Wave velocity at Vogtle NPP (DRB-10) (FSAR Figure 2.5.4-8).
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Figure A-57  Wave velocity at Vogtle NPP (DRB-11) (FSAR Figure 2.5.4-8).
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Figure A-58  Wave velocities at William States Lee lll NPP (FSAR Figure 2.5.4-219).
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Figure A-59  Wave velocities at William States Lee lll NPP (FSAR Figure 2.5.4-220).
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Figure A-60 Wave velocities at William States Lee lll NPP (FSAR Figure 2.5.4-221).
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Figure A-61  Wave velocities at William States Lee lll NPP (FSAR Figure 2.5.4-222).
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Figure A-62  Wave velocities at William States Lee Ill NPP (FSAR Figure 2.5.4-223).
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Figure A-63  Wave velocities at William States Lee lll NPP (FSAR Figure 2.5.4-224).
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Figure A-64  Wave velocities at William States Lee Ill NPP (FSAR Figure 2.5.4-225).
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Figure A-65 Wave velocities at William States Lee Ill NPP (FSAR Figure 2.5.4-226).
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Figure A-66  Wave velocities at William States Lee lll NPP (FSAR Figure 2.5.4-232).
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Appendix B: Within-Profile Histograms
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Figure B-1 Distribution of within-profile reference velocities at Bell Bend NPP (FSAR
Figure 2.5-151, PS logging).
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Figure B-2 Distribution of within-profile reference velocities at Bell Bend NPP (FSAR
Figure 2.5-151, PS logging).
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Figure B-3 Distribution of within-profile reference velocities at Bell Bend NPP (FSAR
Figure 2.5-152, PS logging).
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Figure B-4 Distribution of within-profile reference velocities at Bell Bend NPP (FSAR
Figure 2.5-152, PS logging).
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Figure B-5 Distribution of within-profile reference velocities at Bell Bend NPP (FSAR
Figure 2.5-153, PS logging).
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Figure B-6 Distribution of within-profile reference velocities at Bell Bend NPP (FSAR
Figure 2.5-153, PS logging).
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Figure B-7 Distribution of within-profile reference velocities at Bell Bend NPP (FSAR
Figure 2.5-154, PS logging).
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Figure B-8 Distribution of within-profile reference velocities at Bell Bend NPP (FSAR
Figure 2.5-153, PS logging).
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Figure B-9 Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-331, PS logging).
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Figure B-10  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-331, PS logging).
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Figure B-11 Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-333, PS logging).
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Figure B-12  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-333, PS logging).
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Figure B-13  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-334, PS logging).
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Figure B-14  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-334, PS logging).
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Figure B-15 Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-335, PS logging).
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Figure B-16  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-335, PS logging).
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Figure B-17  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-336, PS logging).
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Figure B-18  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-336, PS logging).
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Figure B-19  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-337, PS logging).
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Figure B-20  Distribution of within-profile reference velocities at Bellefonte NPP (FSAR
Figure 2.5-337, PS logging).
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Figure B-21  Distribution of within-profile reference velocities at Callaway NPP (FSAR
Figure 2.5-4.19, PS logging).
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Figure B-22  Distribution of within-profile reference velocities at Callaway NPP (FSAR
Figure 2.5-4.19, PS logging).
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Figure B-23

Figure B-24
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Distribution of within-profile reference velocities at Calvert Cliffs NPP
(FSAR Figure 2.5-142, P logging).
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Distribution of within-profile reference velocities at Calvert Cliffs NPP
(FSAR Figure 2.5-143, P logging).
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Figure B-25

Figure B-26
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Distribution of within-profile reference velocities from Daniels et al.
(1983).
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Distribution of within-profile reference velocities at Fermi NPP (FSAR

Figure 2.5.4-220, PS logging).
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Figure B-27  Distribution of within-profile reference velocities at Fermi NPP (FSAR
Figure 2.5.4-220, PS logging).
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Figure B-28  Distribution of within-profile reference velocities at Fermi NPP (FSAR
Figure 2.5.4-221, PS logging).

128



4.0 ' ' ' Site: Fermi NPP
- Reference: FSAR Figure 2.5.4-221
3.5 Method: ps logging

T
o [} o o o
T T T T T

0'2600 4800 5000 5200 5400 5600 5800 6000 6200 6400
P-Wave Velocity (m/s)

Figure B-29  Distribution of within-profile reference velocities at Fermi NPP (FSAR
Figure 2.5.4-221, PS logging).
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Figure B-30  Distribution of within-profile reference velocities at Monticello Reservoir
[Moos and Zoback 1983, Figure 4].
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Figure B-31  Distribution of within-profile reference velocities at Monticello Reservoir
[Moos and Zoback 1983, Figure 4].

Site: Monticello Reservoir
Reference: Moos and Zoback (1983), Figure 5
Method: ps logging

51

9000 2200 2400 2600 2800 3000 3200 3400 3600
S-Wave Velocity (m/s)

Figure B-32  Distribution of within-profile reference velocities at Monticello Reservoir
[Moos and Zoback 1983, Figure 5].
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Figure B-33  +Distribution of within-profile reference velocities at Monticello Reservoir
[Moos and Zoback 1983, Figure 5].
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Figure B-34  Distribution of within-profile reference velocities at Monticello Reservoir
[Moos and Zoback 1983, Figure 7].

131



18 T

Site: Monticello Reservoir

: Reference: Moos and Zoback (1983), Figure 7
16 | / _ .
Method: ps logging

14
12
10

2600 4800 5000 5200 5400 5600 5300
P-Wave Velocity (m/s)

Figure B-35 Distribution of within-profile reference velocities at Monticello Reservoir
[Moos and Zoback 1983, Figure 71].
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Figure B-36  Distribution of within-profile reference velocities at North Anna NPP (ESP
Geophysics, Figure 5, PS logging).
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Figure B-37  Distribution of within-profile reference velocities at North Anna NPP (ESP
Geophysics, Figure 5, PS logging).
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Figure B-38  Distribution of within-profile reference velocities at North Anna NPP (ESP
Geophysics, Figure 8, PS logging).
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Figure B-39  Distribution of within-profile reference velocities at North Anna NPP (ESP
Geophysics, Figure 8, PS logging).
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Figure B-40  Distribution of within-profile reference velocities at River Bend NPP
(FSAR Figure 2.5.4-245, P logging).
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Figure B-41  Distribution of within-profile reference velocities at Shearon Harris NPP
(FSAR Figure 2.5.2-262, P logging).
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Figure B-42  Distribution of within-profile reference velocities at Shearon Harris NPP

(FSAR Figure 2.5.2-262, P logging).
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Figure B-43  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-201, PS logging).
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Figure B-44  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-201, PS logging).
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Figure B-45 Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-206, PS logging).
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Figure B-46  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-206, PS logging).
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Figure B-47  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-207, PS logging).
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Figure B-48  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-207, PS logging).
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Figure B-49  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-211, PS logging).
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Figure B-50 Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-211, PS logging).
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Figure B-51 Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-301, PS logging).
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Figure B-52  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-301, PS logging).
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Figure B-53  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-306, PS logging).
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Figure B-54  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-306, PS logging).
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Figure B-55 Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-307, PS logging).
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Figure B-56  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-307, PS logging).
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Figure B-57  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-311, PS logging).

14 ' T Site: V.C. Summer NPP
Reference: FSAR Figure 2.5.4-224/225, BP-311
12 Method: ps logging

—
)
I

8400 5600 2800 6000 6200 6400 6600 6300
P-Wave Velocity (m/s)

Figure B-58  Distribution of within-profile reference velocities at V.C. Summer NPP
(FSAR Figure 2.5.4-224/225, BP-311, PS logging).
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Distribution of within-profile reference velocities at Turkey Point NPP

(FSAR Figure 2.5.4-211, P logging).
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Distribution of within-profile reference velocities at Vogtle NPP (FSAR

Figure 2.5.4-8, PS logging).
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Figure B-61 Distribution of within-profile reference velocities at Vogtle NPP (FSAR
Figure 2.5.4-8, PS logging).
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Figure B-62  Distribution of within-profile reference velocities at Vogtle NPP (FSAR
Figure 2.5.4-8, PS logging).
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Figure B-63  Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-219, downhole).
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Figure B-64  Distribution of within-profile reference velocities at William States Lee lll
NPP (FSAR Figure 2.5.4-219, PS logging).
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Figure B-66
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Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-220, PS logging).
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Distribution of within-profile reference velocities at William States Lee Il

NPP (FSAR Figure 2.5.4-220, PS logging).
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Method: ps logging

=
ot
T

10

<
T

9000 2200 2400 2600 2800 3000 3200 3400 3600
S-Wave Velocity (m/s)

Figure B-67  Distribution of within-profile reference velocities at B William States Lee
Ill NPP (FSAR Figure 2.5.4-221, PS logging).
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Figure B-68  Distribution of within-profile reference velocities at William States Lee lll
NPP (FSAR Figure 2.5.4-221, PS logging).
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Figure B-69 Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-222, PS logging).

30 T ' Site: William States Lee IIT NPP
Reference: FSAR Figure 2.5.4-222
Method: ps logging

25 F

20 | .

15 F 1

10 .

5k ]

9000 4500 5000 0500 6000 6500

P-Wave Velocity (m/s)

Figure B-70  Distribution of within-profile reference velocities at William States Lee lll
NPP (FSAR Figure 2.5.4-222, PS logging).
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Figure B-71  Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-223, PS logging).
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Figure B-72  Distribution of within-profile reference velocities at William States Lee lll
NPP (FSAR Figure 2.5.4-223, PS logging).
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Figure B-73  Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-224, PS logging).
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Figure B-74  Distribution of within-profile reference velocities at William States Lee lll
NPP (FSAR Figure 2.5.4-224, PS logging).
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Figure B-75 Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-225, PS logging).
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Figure B-76  Distribution of within-profile reference velocities at William States Lee lll
NPP (FSAR Figure 2.5.4-225, PS logging).
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Figure B-77  Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-226, PS logging).
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Figure B-78  Distribution of within-profile reference velocities at William States Lee lll
NPP (FSAR Figure 2.5.4-226, PS logging).
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Figure B-79

Figure B-80
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Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-232, PS logging).
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Distribution of within-profile reference velocities at William States Lee Il
NPP (FSAR Figure 2.5.4-232, PS logging).
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