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ABSTRACT 

The three-dimensional (3D) beam-truss model (BTM) for reinforced concrete (RC) walls, which 
was developed by the first two authors in a previously published paper, is modified to better 
represent flexure-shear interaction and more accurately compute diagonal shear failures under 
static cyclic or dynamic loading. The modifications pertain to the element formulations and the 
determination of the inclination angle of the diagonal elements. Moreover the BTM is extended 
to allow the simulation of RC slabs. The modified BTM is validated using the experimental test 
data of eight RC walls subjected to static cyclic loading, including two non-planar RC walls 
under multi-axial cyclic loading, a slab specimen, and a 5-story non-planar RC coupled wall-slab 
specimen under triaxial dynamic base excitation. Six of the walls considered experienced 
diagonal shear failure after reaching their flexural strength, while the other two walls had a 
flexural dominated response. The numerically computed lateral force-lateral displacement and 
strain contours are compared to the experimental recorded response and damage state for each of 
the walls. The effects of different model parameters on the computed results are examined by 
means of parameteric analyses. 

 

  



 

 iv

  



 

 v

ACKNOWLEDGMENTS 

The authors would like to thank Mohammadreza Moharrami for his help with Open2GiD – the 
ability to plot strain contours and deflected shapes of Opensees models has been invaluable. 

Publication of this report was funded by the Pacific Earthquake Engineering Research 
Center (PEER). Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the authors, and do not necessarily reflect those of PEER. 

 

  



 

 vi



 

 vii

CONTENTS 

ABSTRACT .................................................................................................................................. iii 

ACKNOWLEDGMENTS .............................................................................................................v 

TABLE OF CONTENTS ........................................................................................................... vii 

LIST OF TABLES ....................................................................................................................... ix 

LIST OF FIGURES ..................................................................................................................... xi 

1  INTRODUCTION..............................................................................................................1 

1.1  Literature Review ..................................................................................................3 

2  BEAM-TRUSS MODELING APPROACH ....................................................................5 

2.1  Overview .................................................................................................................5 

2.2  Material Models .....................................................................................................7 

2.3  Biaxial Concrete Compressive Stress Reduction Factor and the 
Calculation of Normal Tensile Strain ..................................................................8 

2.4  Determination of Inclination Angle for Diagonal Elements ..............................9 

2.4.1  Walls Uniform over their Height ...............................................................10 

2.4.2  Coupled Walls ............................................................................................11 

2.5  Modeling of Tension for Concrete in the Horizontal Direction .......................12 

2.6  Nonlinear Analysis Program ...............................................................................13 

3  VALIDATION FOR STATIC LOADING ....................................................................15 

3.1  Specimen Overview and BTM Results ...............................................................15 

3.2  Effect of In-Plane Flexural Resistance of Vertical Lines .................................25 

3.3  Effect of Concrete Tension in Horizontal Elements .........................................26 

3.4  Effect of Inclination Angle of Diagonal Elements .............................................27 

3.5  Modeling of Large Boundary Elements .............................................................29 

4  BEAM-TRUSS MODEL FOR SLABS ..........................................................................33 

5  VALIDATION FOR A 5-STORY COUPLED WALL SUBJECTED TO 
TRI-AXIAL BASE EXCITATIONS ..............................................................................37 

5.1  Specimen Overview ..............................................................................................37 

5.2  Determination of Beam-Truss Model for Specimen SLO ................................40 



 

 viii

5.3  BTM Results .........................................................................................................42 

5.4  Effect of Coupling ................................................................................................46 

5.5  Effect of Concrete Tensile Strength with Horizontal Elements .......................48 

5.6  Effect of Mesh Refinement ..................................................................................49 

5.7  Effect of Bar Fracture .........................................................................................52 

6  CONCLUSIONS ..............................................................................................................57 

REFERENCES .............................................................................................................................59 

APPENDIX A  COMPUTED STRAIN CONTOURS AND DEFLECTED 
SHAPES FOR CASE STUDIES WITH STATIC LOADING ..................61 

 

 



 

 ix

LIST OF TABLES 

Table 1.1   Nonlinear finite element studies that computed shear or out-of-plane 
failure for RC wall specimens. .................................................................................4 

Table 3.1  Characteristics of eight experimentally tested specimens and beam-truss 
model parameters. ..................................................................................................20 

Table 5.1   Experimentally recorded and numerically computed periods of 
translational modes for 5-story specimen SLO. .....................................................44 

 
  



 

 x

 
 



 

 xi

LIST OF FIGURES 

Figure 1.1   Photographs of diagonal tension and compression failures taken after 
major earthquake events: (a) M6.8 1995 Kobe, Japan earthquake (from 
Maffei and Yuen [2007]); (b-c) M6.3 2009 L’Aquilla, Italy earthquake 
(from Dazio [2009b]);and (d) M8.8 2010 Chile earthquake (courtesy of J. 
Restrepo). .................................................................................................................2 

 
Figure 2.1   Schematic description of the beam-truss model approach for a T-shaped 

section wall. .............................................................................................................6 

Figure 2.2   Uniaxial stress-strain laws for the (a) concrete and (b) steel material 
models. .....................................................................................................................8 

Figure 2.3   (a) Concrete compressive strength reduction factor, as proposed in 
Vecchio and Collins [1986], compared to the trilinear relation used in this 
report for an element length of 600 mm; and (b) schematic of normal 
strain calculation for one of the diagonal trusses of the 4-node rectangular 
element. ....................................................................................................................9 

Figure 2.4   Schematics including coupling forces for a coupled wall. ....................................12 

 
Figure 3.1   Experimentally measured and numerical computed force-drift ratio 

response for specimens (a) Unit 1.0, (b) Unit 2.0; (c) WSH6; (d) B6; (e) 
F1; and (f) TW2. ....................................................................................................21 

Figure 3.2   Numerically computed strain contour and deformed shape for specimens 
(a) Unit 1, (b) F1, and (c) TUB (E-W segment) at the point of first 
diagonal crushing compared to the damage state of the experimental 
specimen at the end of each test. ............................................................................22 

Figure 3.3   Experimentally measured and numerical computed force-drift ratio 
response for specimen NTW1 in the N-S, E-W, and skew cycles. ........................23 

Figure 3.4   Experimentally measured and numerical computed force-drift ratio 
response for specimen TUB. ..................................................................................24 

Figure 3.5   Experimentally measured and numerically computed lateral force-
displacement response for specimens (a) Unit 1.0, (b) Unit 2.0, and (c) 
WSH6 with in-plane flexural rigidity in all vertical lines of the BTM. .................25 

Figure 3.6   Experimentally measured and numerically computed lateral force-
displacement response for specimens (a) Unit 1.0, (b) Unit 2.0, and (c) 
WSH6 with truss model (zero in-plane flexural resistance in all vertical 
elements). ...............................................................................................................26 

Figure 3.7   Numerically computed lateral force-displacement response for specimens 
(a) Unit 1.0, (b) F1, and (c) TW2 with BTM-HT that includes the 
horizontal concrete tension resistance and aggregate interlock model as 
defined in Moharrami et al. [2014] compared to experimentally measured 
results. ....................................................................................................................27 



 

 xii

Figure 3.8   Photos of specimen Unit 2.0 (from Mestyanek [1986]) with annotations to 
show angle of compression struts. .........................................................................28 

Figure 3.9   Experimentally measured and numerically computed lateral force-
displacement response for specimen Unit 2.0 with diagonal angle equal to 
(a) 64.4º, (b) 56º, and (c) 44.4º. .............................................................................29 

Figure 3.10   Numerically computed strain contour and deformed shape (magnification 
factor = 5) at -1.92% drift for specimen Unit 2.0 with diagonal angle equal 
to (a) 64.4º, (b) 56º, and (c) 44.4º. .........................................................................29 

Figure 3.11   Elevation and cross-section views of two methods for modeling specimen 
B6: (a) average properties and (b) rigid offsets. ....................................................31 

Figure 3.12   Experimentally measured and numerically computed lateral force-
displacement response for specimen B6 modeled with (a) without 
considering the width of the boundary elements; (b) with average 
properties for the width of the boundary elements; and (c) with rigid 
offsets of the boundary elements. ..........................................................................31 

Figure 3.13   Numerically computed strain contour and deformed shape (magnification 
factor = 5) at the second cycle of 1.7% drift for specimen B6 modeled 
with (a) BTM-web, (b) BTM-avg, and (c) BTM-off, compared to (d) the 
experimental failure mode at the end of the test. ...................................................32 

 
Figure 4.1   (a) Three-dimensional view and dimensions of the column-slab specimen 

2C [Robertson 1990] and (b) the corresponding BTM for the specimen. .............34 

Figure 4.2   Experimentally measured and numerically computed lateral force-
displacement response for column-slab specimen 2C with (a) perfect bond 
and (b) strain penetration modeled at the column-slab interface. ..........................35 

Figure 4.3  Hysteretic behavior of bond slip material including pinching. ..............................35 

 
Figure 5.1  Description of 5-story coupled wall specimen SLO and beam-truss model. .........38 

Figure 5.2   Recorded acceleration time history of the shaking table in the three 
directions during ground motion T6. .....................................................................39 

Figure 5.3   Damage pattern of the bottom floor (a) web and (b) coupling beam 
(viewed from the negative x direction) and (c) flange in the negative y 
direction after ground motion T6 (from Coelho et al. [2006]). .............................40 

Figure 5.4   (a) Coupling beam forces on the walls and resulting reaction at the base 
for roof drift in the negative y direction; (b) strut-and-tie model for 
coupled wall of specimen SLO showing the predicted load path for lateral 
load in the y-direction; and (c) resulting beam-truss model for the coupled 
wall accounting for geometric constraints. ............................................................42 

Figure 5.5   Statically imposed displacement history (normalized to peak 
displacement) used to simulate damage from ground motions T1 to T5. ..............43 

Figure 5.6   Experimentally measured and numerically computed base shear force and 
roof drift response histories for ground motion T6. ...............................................44 



 

 xiii

Figure 5.7   Experimentally measured and numerically computed base shear versus 
roof drift response hysteretic shapes during ground motion T6. ...........................45 

Figure 5.8   Numerically computed strain contour at t = 3.3 sec (a) global view and (b) 
zoom at the web of the bottom story (magnification factor = 10). ........................45 

Figure 5.9   Response history of (a) shear force and (b) axial force resisted by the 
coupling beams and slabs at the interface with Wall A. ........................................47 

Figure 5.10   (a) Response history of normalized base shear force and (b) normalized 
base shear force versus roof drift ratio for the two T-section walls, as 
defined in Figure 5.1(a). .........................................................................................47 

Figure 5.11   (a) Response history of axial load variation and (b) axial load variation 
versus roof drift ratio for the two T-section walls, as defined in Figure 
5.1(a). .....................................................................................................................47 

Figure 5.12   Experimentally measured and numerically computed base shear force and 
roof drift response histories of BTM-HT during ground motion T6. ....................49 

Figure 5.13   BTM with mesh refinement in the bottom story (BTM-fineMesh); the 
additional elements of BTM-fineMesh are shown in orange over the 
original BTM mesh (shown in black). ...................................................................50 

Figure 5.14   Experimentally measured and numerically computed response time 
histories during ground motion T6 using BTM-fineMesh (BTM with mesh 
refinement in the bottom story)..............................................................................51 

Figure 5.15   Numerically computed strain contour at t = 3.3 sec (a) global view and (b) 
zoom at the web of the bottom story for BTM-fineMesh (BTM with mesh 
refinement in the bottom story)..............................................................................52 

Figure 5.16   Uniaxial stress-strain behavior for the steel material model including the 
effect of rupture. .....................................................................................................53 

Figure 5.17   Experimentally measured and numerically computed response time 
histories for ground motion T6 using BTM-fineFrac (BTM with mesh 
refinement and bar fracture). ..................................................................................54 

Figure 5.18   (a) Global view and (b) zoom at the web of the bottom story of the 
computed strain contour immediately before diagonal crushing and bar 
fracture at t = 3.29 sec, and (c) zoom at the web of the bottom story after 
diagonal crushing and bar fracture at t = 3.31 sec (magnification factor = 
10). .........................................................................................................................55 

 
Figure A1.1  Strain contour and displaced shape (magnification factor = 10) for 

specimen Unit 1.0 at selected drift ratios. Triangular elements at the top of 
the wall model the loading beam. ..........................................................................63 

Figure A1.2  Strain contour and displaced shape (magnification factor = 5) for specimen 
Unit 2.0 at selected drift ratios. Triangular elements at the top of the wall 
model the loading beam. ........................................................................................64 

Figure A1.3  Strain contour and displaced shape (magnification factor = 5) for specimen 
WSH6 at selected drift ratios. ................................................................................64 



 

 xiv

Figure A1.4  Strain contour and displaced shape (magnification factor = 5) for specimen 
B6 at selected drift ratios. Triangular elements at the top of the wall model 
the loading beam. ...................................................................................................65 

Figure A1.5  Strain contour and displaced shape (magnification factor = 5) for specimen 
F1 at selected drift ratios. .......................................................................................66 

Figure A1.6  Strain contour and displaced shape (magnification factor = 5) for specimen 
TW2 at selected drift ratios. ...................................................................................67 

Figure A1.7  Strain contour and displaced shape (magnification factor = 5) for specimen 
NTW1 at selected drift ratios. Note: strain contours (a) through (e) are 
shown in the order which the specimen reaches each drift. ...................................68 

Figure A1.8  Strain contour and displaced shape (magnification factor = 5) for specimen 
TUB at selected drift ratios. ...................................................................................69 

 

 
 



1 

 

1 Introduction 

Reinforced concrete (RC) structural walls are a common type of earthquake load-resisting 
systems. The computation of the nonlinear response, lateral load and displacement capacity, and 
failure mechanism of such structures is of primary importance for both practicing engineers and 
researchers. The computation of nonlinear response of RC walls is particularly challenging due 
to the effect of flexure-shear interaction (FSI) associated with multi-axial stress states that affect 
the behavior of concrete in compression. The challenge may increase in walls with non-planar 
cross sections, coupled with beams or slabs, or under multi-axial loading due to three-
dimensional (3D) effects such as the non-uniform response and warping of wall segments 
perpendicular to the direction of loading (flanges). Experimental tests of RC wall specimens, 
(e.g., Oesterle et al. [1976], have shown that the lateral load capacity and onset of strength 
degradation depend on the load history; thus, cyclic or dynamic loading is needed to fully 
investigate the behavior of RC walls under earthquake excitation. 

Reinforced concrete walls designed according to modern seismic code provisions develop 
their flexural strength before they fail. Computation of the force-displacement behavior of RC 
walls including the response at and after initiation of failure is essential for seismic design and 
assessment. Common failure modes for RC walls include: 

1. buckling and fracture of longitudinal steel bars; 

2. loss of confinement due to rupture or loss of anchorage of confinement 
reinforcement and crushing of boundary elements in compression; 

3. crushing of the web concrete in the diagonal direction including 
propagation of failure in vertical, horizontal, or diagonal direction after the 
initial diagonal strut fails (termed diagonal compression failure); 

4. accumulation of significant horizontal strains over a narrow diagonal band 
that spans at least 50% of the length of the wall segment (termed diagonal 
tension failure); 

5. formation of a horizontal sliding plane (termed shear sliding); and 

6. out-of-plane global buckling of the wall section. 

Diagonal failure modes (failure modes 3 and 4) are strongly related to FSI and may result in 
sudden losses of lateral load capacity; Figure 1.1 shows photographs of buildings with RC walls 
that experienced diagonal failures during earthquakes. 



 

 2

 

Figure 1.1  Photographs of diagonal tension and compression failures taken after 
major earthquake events: (a) M6.8 1995 Kobe, Japan earthquake (from 
Maffei and Yuen [2007]); (b-c) M6.3 2009 L’Aquilla, Italy earthquake (from 
Dazio [2009b]);and (d) M8.8 2010 Chile earthquake (courtesy of J. 
Restrepo). 

This report uses the beam-truss modeling approach developed in Lu and Panagiotou 
[2014] for RC walls to explicitly account for the effects of FSI under cyclic or dynamic loading. 
Compared to the beam-truss model (BTM) used in Lu and Panagiotou, this report proposes 
changes to the elements used in the BTM, the angle of inclination of the diagonal elements, and 
the concrete material behavior in the horizontal direction in order to better represent the diagonal 
compressive field of concrete and capture diagonal tension failure. This report focuses on 
modeling the effect of FSI and the diagonal compression and tension failure modes (failure 
modes 3 and 4 listed above) for RC walls. Bar buckling (failure mode 1), shear sliding (failure 
mode 5), and out of plane buckling of walls (failure mode 6) are not modeled here. Moreover 
hoop fracture and loss of confinement (failure mode 2) is modeled in a simplified manner based 
on the uniaxial material model of Mander et al. [1988]. 

The objective of this report is: (a) to refine and improve the beam-truss modeling 
approach of Lu and Panagiotou [2014] to better represent the diagonal compressive field and 
capture the diagonal tension failure mode; (b) provide a comprehensive study of the beam-truss 
modeling technique; and (c) extend the beam-truss modeling technique to model slabs and 
structural systems including walls and slabs. The model is validated using four planar and four 
non-planar RC walls subjected to cyclic static (uniaxial or multiaxial) loading, as well as a static 
cyclically loaded two bay slab-column specimen and a 5-story coupled T-walls-beam-slab 
specimen with triaxial base excitation. Shear-critical (defined herein as members that fail in 
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shear before they develop their flexural strength) RC walls are not considered here. All walls 
considered in this report develop their nominal flexural strength before failure. The global lateral 
force-lateral displacement and failure mode as well as strain contours and deformed shapes, as 
computed by the beam-truss model (BTM), are compared with the experimentally recorded 
response and damage state for each of the specimen. In addition, the effects of model parameters 
are discussed. 

1.1 LITERATURE REVIEW 

Lu and Panagiotou [2014] provide a literature review on nonlinear modeling approaches for non-
planar RC walls and describe the main modeling approaches for RC walls: 

1. fiber-section beam-column element models 

2. wide column models, known also as equivalent frame models 

3. two-dimensional (2D) truss models 

4. three-dimensional (3D) truss models 

5. beam-truss models ; and 

6. finite element (FE) models with plane stress or solid elements. 

Studies have used modeling approaches (1) and (2) to model FSI explicitly by incorporating 2D 
material models, e.g., Jiang and Kurama [2010] and Kolozvari [2013]. However, these authors 
are not aware of any such model capturing diagonal failures of RC walls under cyclic or dynamic 
loading. Approaches (3) to (6)—inherently—model FSI explicitly. This section focus on models 
that have captured diagonal failures of RC walls under cyclic (static or dynamic) loading. 

Panagiotou et al. [2012] used 2D truss models to compute the instance and location of 
first diagonal crushing for two planar squat walls (height-to-length ratio = 0.9 and 1.3) and a 
perforated wall, all of which were subject to static cyclic loading. For the squat walls, significant 
loss of lateral strength was computed. The authors are not aware of any 3D truss model for RC 
walls that have modeled the diagonal failure of walls. Lu and Panagiotou [2014] developed the 
beam-truss modeling method and validated it with three cyclically loaded slender (height-to-
length ratio grater or equal to 2) non-planar RC walls. Of the three case studies, two experienced 
diagonal compression failure, one of which experienced a significant loss of lateral strength. 
None of the aforementioned studies modeled diagonal tension failure in RC walls; however, the 
2D truss model has been used to model diagonal tension failure of shear-critical RC columns 
[Moharrami et al. 2014]. 

Nonlinear FE models using plane stress elements or shell elements that use smeared 
crack and/or plasticity models have analyzed the cyclic behavior of experimentally tested RC 
walls that did not experience diagonal failure. A full literature review on this topic will not be 
presented. Ile et al. [2002] and Kotronis et al. [2009] used smeared fixed-crack plane stress 
models to analyze the shaking table tests of 5-story RC wall with slabs under dynamic loading. 
Ile et al. [2002] studied three 5-story wall specimens that consist of two parallel RC planar walls 
without openings linked together by slabs at every floor; of the three specimens, the first failed at 
the bar cut-offs and the latter two had a flexural-dominated behavior. The study used 2D 
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dynamic analysis and was in good agreement with the experimentally measured response 
including the failure mode. Kotronis et al. [2009] studied a 5-story coupled T-section wall 
specimen (identical in shape to that studied in Chapter 5) with flexure-dominated behavior. The 
study used 3D dynamic analysis and underestimated the displacement response in both 
horizontal directions. 

Table 1.1 lists studies that used FE models to study the response of experimentally tested 
RC walls subjected to cyclic loading that experienced a shear failure (diagonal, horizontal 
sliding, or vertical sliding). All of the listed studies utilized smeared crack models (rotating or 
fixed crack) and plane stress or shell elements. The authors are not aware of any studies that have 
used solid elements and/or discrete crack methods to compute diagonal failures of RC walls 
subjected to cyclic loading. Of the studies listed in Table 1.1, only Palermo and Vecchio [2007] 
was able to capture diagonal tension failure with some success by using 2D analysis and plane 
stress elements. Out of the three wall specimens (height-to-width ratio of 2) they studied where 
diagonal tension or combined diagonal tension/compression failure was experimentally recorded, 
only one case computed the failure mode accurately. For the other two cases, the model 
computed crushing of the boundary zone. Sittipunt and Wood [1993] studied three slender 
perforated planar walls that experienced diagonal tension failure in the experimental test using 
plane stress elements and 2D analysis; they noted that, due to the smeared crack model used, 
diagonal tension failure could not be captured. 

Table 1.1  Nonlinear finite element studies that computed shear or out-of-plane failure 
for RC wall specimens. 

Reference Analysis type RC wall specimens 
Computed failure 

modes1 

Sittipunt and Wood 
[1993] 

2D and 3D cyclic analysis 
with plane stress elements 

Slender planar walls 

Slender perforated planar walls 

Squat L-shaped section walls 

Diagonal compression 

Ile and Reynouard 
[2000)] 

2D and 3D dynamic analysis 
with plane stress elements 

Squat U-shaped section wall Diagonal compression 

Palermo and 
Vecchio [2002] 

2D cyclic analysis with plane 
stress elements 

Squat I-shaped section walls 
Sliding shear 

Vertical slip planes 

Palermo and 
Vecchio [2007] 

2D cyclic analysis with plane 
stress elements 

Slender and squat planar walls 

Slender I-shaped wall 

Slender perforated planar wall 

Diagonal compression 

Diagonal tension2 

Sliding shear 
1 Crushing of confined boundary and bar buckling and fracture failures modes are not included. 
2 Only captured in one out of the three studied specimens considered that experienced diagonal tension failure in the experimental test. 
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2 Beam-Truss Modeling Approach 

2.1 OVERVIEW 

This section describes the beam-truss modeling approach using the T-section RC wall, shown in 
Figure 2.1. Compared to the beam-truss modeling approach proposed in Lu and Panagiotou 
[2014], five changes have been made: (1) the angle of the diagonals is calculated based on the 
shear demand and the transverse reinforcement ratio; (2) nonlinear fiber-section Euler-Bernoulli 
beam elements are used in both the vertical and horizontal directions; (3) all vertical beams 
except those at the ends of each wall segment (including where the wall segment intersections 
another segment) and all horizontal beam elements are pinned (zero flexural rigidity) in the 
direction parallel to the length of the wall segment (in-plane direction); (4) the computation of 
the strain normal to the diagonal truss elements is improved for large angles of the diagonals; and 
(5) the tension strength of concrete in the horizontal direction is ignored. Changes 1, 4, and 5 are 
discussed in Sections 2.3, 2.4, and 2.5, respectively. The modeling approach is termed the default 
BTM when compared to an enhanced model in later sections where the effects of different model 
parameters are investigated. 

Consider the T-section wall shown in Figure 2.1(a); the wall segment parallel to the x-
axis is termed the web and the wall segment parallel to the y-axis is termed the flange. Figure 
2.1(b) shows the BTM for this wall, which consists of vertical, horizontal, and diagonal 
elements. There are nine vertical lines: five represent the web and five represent the flange; line 
BF is common to both the web and the flange segments and is termed an intersection line. The 
points where the vertical and horizontal lines intersect comprise the nodes of the model. Each 
node has six degrees-of-freedom (DOFs); all DOFs are fixed at the base of the specimen. Figure 
2.1(d) shows the placement of nodes for sub-segment S of the wall. 

The types of elements used in the model are: (1) nonlinear fiber-section Euler-Bernoulli 
beam elements (called beams); (2) nonlinear fiber-section Euler-Bernoulli beam elements that 
are pinned in-plane (called pinned beams); and (3) nonlinear truss elements in the diagonals of 
the panels formed by the horizontal and vertical elements (see Section 2.3). Beams are used only 
for the vertical lines at the ends of a wall segment or at intersection line, as shown with thick 
lines in Figure 2.1(b); the remaining vertical lines and all horizontal elements are pinned beams, 
as shown with thin lines in Figure 2.1(b). Note that the pinned beams have flexural rigidity in the 
out-of-plane direction [Detail 1 of Figure 2.1(b)]. All elements used in this report use linear 
geometry and do not account for large displacements. 
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Figure 2.1  Schematic description of the beam-truss model approach for a T-shaped section wall. 
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The vertical and horizontal elements model the concrete and steel included in the section 
areas each element represents. Consider sub-segment S of the wall with reinforcing details 
shown in Figure 2.1(c). Figure 2.1(d) and (e) show a schematic of the section properties (area of 
concrete, area and layout of steel) of each of the vertical and horizontal elements, respectively. In 
these elements, a fiber section with 24 fibers in a 6 × 4 grid is used to represent the concrete and 
a single fiber to represent each steel bar. The diagonal truss elements model the diagonal 
compression field of concrete. The area of the diagonal element is the effective width multiplied 
by the average thickness of the wall in the panel considered; see Figure 2.1(f). The effective 
width of the concrete modeled by each diagonal is ܾ௘௙௙ ൌ ܽ	sin	ሺߠௗሻ, as shown in Figure 2.1(g) 
for sub-segment S, where ܽ is the length of the panel and θd is the inclination angle of the 
diagonal with respect to the horizontal elements. θd is referred to as the diagonal angle in this 
report. The material constitutive models are discussed in Section 2.2 and the determination of θd 
is discussed in Section 2.3. 

2.2 MATERIAL MODELS 

The uniaxial material model for concrete [ConcretewBeta in Opensees 
(http://opensees.berkeley.edu/wiki/index.php/ConcretewBeta_Material)] used in the BTMs is 
developed in Lu and Panagiotou [2014]; the stress-strain relationship is shown in Figure 2.2(a). 
The concrete material models the strength and stiffness degradation due to inelastic strains as 
well as the effect of tension stiffening of reinforced concrete. The material model, when used in 
the diagonal direction, accounts for the effect of normal tension on the behavior in compression. 
For the BTM discussed herein, the concrete material model uses the values of compressive 
strength of unconfined concrete, ௖݂

ᇱ, given by cylinder tests; the initial stiffness is ܧ௖ ൌ 5000ඥ ௖݂
ᇱ 

(MPa) and ௖݂
ᇱ occurs at a strain of ߝ௖ ൌ 0.2%. The model accounts for the increased compressive 

strength and ductility due to concrete confinement using the parameters fcc (peak confined 
strength), εcc (strain at fcc), and εcs (strain which softening initiates); the values of these 
parameters are calculated per Mander et al. [1988]. The degrading branch of concrete in 
compression is regularized to provide mesh objectivity; the process is described in Lu and 
Panagiotou [2014] and a limit of ߝ௨ ൑ ሺߝ௢ െ 0.2%ሻ is used to prevent an excessively steep slope 
for the degrading branch. The reference length used for regularization of vertical and horizontal 
elements is 600 mm. 

When used in the vertical direction, the concrete behaves uniaxially and includes the 
effects of tension stiffening. In the horizontal direction, the concrete is also uniaxial, but the 
tensile strength of the concrete is ignored; the reason for this choice is discussed in Section 2.5, 
and the effects of it are illustrated in Section 3.3. In the diagonal direction, the tensile strength of 
the concrete is ignored and the concrete material model takes into account the effect of normal 
tensile strain on the compressive strength based on Vecchio and Collins [1986] with 
modifications to account for size effects as described in Section 2.3. In this case, the diagonal 
compressive stresses are multiplied by the concrete compressive stress reduction factor β, which 
reduces the compressive stress based on the normal tensile strain. This relationship between β 
and the normal tensile stress is discussed in Section 2.3. 

The steel material model used in this report, called parallel GMP, has a multi-linear 
monotonic envelope that approximates the post-yield nonlinear hardening, as shown in Figure 
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2.2(b), while capping the ultimate stress. The material is implemented using three Giuffre-
Menegotto-Pinto (GMP) materials (Steel02 in Opensees) joined in parallel. Each of the parallel 
GMP models used in the BTMs of this report are calibrated to the points: (1) yield stress ௬݂, (2) 
݂ ൌ 0.5ሺ ௬݂ ൅ ௨݂ሻ and (3) ௨݂, where ௨݂ is the ultimate stress. In the case where point (2) is not 
available based on steel coupon tests, the post-yield tangent modulus is assumed to be equal to 
0.03Es between points (1) and (2). The parallel GMP model does not model the effects of bar 
buckling. The effect of bar fracture is not considered in the case studies with static loading 
presented in the report; it is discussed in Section 5.7 for the coupled wall specimen under 
dynamic loading. 

 

 Figure 2.2  Uniaxial stress-strain laws for the (a) concrete and (b) steel material 
models. 

2.3 BIAXIAL CONCRETE COMPRESSIVE STRESS REDUCTION FACTOR AND 
THE CALCULATION OF NORMAL TENSILE STRAIN 

The concrete material model used in the diagonal truss elements accounts for the effect of the 
biaxial strain field on the concrete compressive behavior in accordance with the Modified 
Compression Field Theory [Vecchio and Collins 1986]. The equations describing this effect have 
been modified to account for size effects, as described in Panagiotou et al. [2012]. For the 
concrete material model used in this report, the biaxial effect is modeled by multiplying the 
diagonal compressive stresses at each time step by the concrete compressive stress reduction 
factor β, which is calculated based on the normal tensile strain εn computed at every computation 
step. The β-εn relationship is regularized to provide mesh objectivity; a reference length of 849 
mm is used, which corresponds to the diagonal length of the panels over which strain was 
measured in the experimental tests of Vecchio and Collins [1986]. The relationship between β 
and εn used for the diagonal trusses is triaxial, passing through the points (β, εn): (1, 0), (0.4, 
0.01), and (0.1, 0.04); the points are chosen to be similar to that proposed by Vecchio and Collins 
[1986] and the comparison is shown in Figure 2.3(a). 

Compared to the diagonal truss elements of Lu and Panagiotou [2014], where the normal 
tensile strain εn was computed using a zero-stiffness gage element, the diagonal trusses used 
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herein are implemented as a four-node rectangular element that consists of two diagonal truss 
elements. The value of εn is taken as the strain normal to the direction of the truss element 
computed at the center of the element using the standard linear strain-displacement interpolation 
functions for a four-node bilinear quadrilateral element [Hughes 2000]. This is shown in Figure 
2.3(b) for one of the diagonal truss elements that comprise the rectangular element. This method 
allows the normal strain to be computed more accurately when θd is significantly different than 
45º; for θd = 45º, the calculated εn is the same as that calculated with the method described in Lu 
and Panagiotou [2014]. 

 

Figure 2.3  (a) Concrete compressive strength reduction factor, as proposed in 
Vecchio and Collins [1986], compared to the trilinear relation used in this 
report for an element length of 600 mm; and (b) schematic of normal strain 
calculation for one of the diagonal trusses of the 4-node rectangular 
element. 

2.4 DETERMINATION OF INCLINATION ANGLE FOR DIAGONAL ELEMENTS 

Panagiotou et al. [2012] and Lu and Panagiotou [2014] considered RC wall specimens and 
suggested an inclination angle, θd, of 45º for the diagonal elements. The case studies considered 
in Panagiotou et al. [2012] included two squat walls, with a continuous diagonal strut spanning 
from the top corner to the opposite bottom corner and a slender perforated wall. Lu and 
Panagiotou [2014] used vertical beams that had flexural rigidity in the in-plane direction, which 
contributed to the lateral strength reducing the dependency on diagonal angle. 

Because the BTM uses a fixed angle for the diagonal truss elements, the determination θd 
may affect the computed strength, ductility, and failure mode. Moharrami et al. [2014] 
considered slender shear-dominated RC columns and determined the diagonal angle θd based on 
the stress state at first cracking assuming uniform compressive and shear stress. This way of 
determining θd may not be appropriate for members RC walls that have adequate amount of 
transverse reinforcement to develop their flexural strength. For RC beams and piers that have 
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adequate shear reinforcement to develop their flexural strength, θd depends on the amount of 
transverse reinforcement [Hines and Seible 2004]. Additionally, the angle suggested by 
Moharrami et al. [2014] may lead to an unrealistic flow of forces for specimens where geometry 
governs the diagonal angle, such as walls that are squat or non-uniform over the height. Section 
3.4 investigates the effect of the diagonal angle on the computed response and shows that a BTM 
with an angle smaller than suggested in this section may underestimate of lateral strength or 
compute a premature diagonal tension failure. Lu and Panagiotou [2014] has shown that a BTM 
with larger diagonal angle may compute the onset of diagonal crushing failure at a smaller drift 
ratio. 

Nine RC wall specimens are studied in this report, all of which have a transverse 
reinforcement ratio ߩ௧ ≥ 0.16%; all specimens considered in this report develop their flexural 
strength before failure. Four of the specimens are squat (height-to-width ratio ≤ 2) or non-
uniform over the height. The diagonal angle used for the BTM herein corresponds to the 
inclination of the compressive struts formed in the wall at the maximum resisted lateral load, as 
computed using a strut-and-tie model. For RC walls uniform over their height, the equation 
relating diagonal angle to transverse steel ratio and applied lateral load is discussed in Section 
2.4.1. For RC wall specimens that have irregular shape or steel placement, the strut-and-tie 
model should be used to determine the load path, inclination of compression struts, and 
subsequent diagonal angles in the wall piers. In the case where there are multiple angles, the 
angle corresponding to the most amount of shear (such as at the bottom corner of the specimen 
where the majority of the shear is expected to be resisted) should be used. Section 2.4.2 discusses 
the determination of diagonal angle for coupled walls. 

2.4.1 Walls Uniform over their Height 

For RC walls that are uniform over their height, diagonal angle is determined such that: 

ௗߠ  ൌ tanିଵ ൬
௏೘ೌೣ

௙೤,೟ఘ೟	௧ೢ	ௗ
൰ ൑ 65° (2.1) 

where ௠ܸ௔௫ is the maximum resisted lateral force, ݐ௪ is the thickness of the wall, and ݀ is the 
distance between the outer vertical lines in the direction of loading. For walls with asymmetric 
lateral load resistance, the diagonal angle corresponding to absolute maximum resisted lateral 
force is used. The upper bound for the diagonal angle θd agrees with ACI 318 [2011] restrictions 
on strut-and-tie procedures. In addition, it is suggested that θd be greater than or equal to 45º for 
walls uniform over height that have an aspect ratio larger than 1, except for the case of walls 
subjected to large tension forces (which is beyond the scope of this report). The maximum 
resisted lateral force is not known prior to the analysis, and it is suggested to use the shear 
corresponding to 1.2ܯ௡ as a first guess for ௠ܸ௔௫; ܯ௡ is the nominal moment, defined as the 
moment at the first instance where either the extreme steel fiber reaches 1% strain or the concrete 
reaches -0.3% strain. After running the BTM with the determined angle, the user can check the 
relation in Equation (2.1) and adjust the diagonal angle to the computed ௠ܸ௔௫ if necessary. In 
most cases, zero or one iteration is sufficient to satisfy Equation (2.1) to an acceptable degree (all 
specimens in this report satisfy this equation within ߠௗ േ 2°). 
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For specimens where ܪ ൑ ݀	tan	ሺߠௗሻ, where θd is defined by Equation (2.1) and H is the 
height of the specimen, it is suggested to use an angle such that a continuous diagonal strut spans 
from the top corner to the opposite bottom corner (e.g., the BTM mesh of specimen Unit 1.0 in 
Chapter 3). However, this suggestion is only validated based on statically loaded individual walls 
with a stiff loading beam at the top. 

2.4.2 Coupled Walls 

This section will discuss the determination of load path and diagonal angle for the case of 
coupled walls as that shown in Figure 2.4(a). The effect of the coupling beam on each wall is 
quantified. For the cases where the coupling mechanism is “weak,” the diagonal angle of each 
wall is determined individually. Figure 2.4(b) shows the forces from the coupling beam on the 
walls. The term “compression wall” refers to the wall that experiences compression forces due to 
coupling, and “tension wall” refers to the wall that experiences tension forces due to coupling. 
For coupling beam without diagonal reinforcement, the nominal moments in each direction MA 
and MB, and associated shear Vcpl can be readily determined. For coupling beams with diagonal 
reinforcement, Figure 2.4(c) shows the forces at the ends including the effect of horizontal 
reinforcement. The diagonal steel reinforcement is assumed to be at yield stress, while the 
horizontal reinforcement varies from zero to yield stress over the length of the coupling beam. 
Taking moments around the compression zone on each face, the moment capacity of the 
coupling beam on each face is given by: 

஺ܯ  ൌ ൫ ௗܶܿߙݏ݋ ൅ ௛ܶ,௕൯ݖ௕ ൌ ൫ܣ௦ௗ ௬݂,ௗ cos ߙ ൅ ௦௛,௕ܣ ௬݂,௛൯ݖ௕ (2.2) 

஻ܯ  ൌ ൫ ௗܶܿߙݏ݋ ൅ ௛ܶ,௧൯ݖ௕ ൌ ൫ܣ௦ௗ ௬݂,ௗ cos ߙ ൅ ௦௛,௧ܣ ௬݂,௛൯ݖ௕ (2.3) 

where ܣ௦ௗ is the area of steel in the diagonal direction, ௬݂,ௗ is the yield stress of the diagonal 
steel, ܣ௦௛,௧ and ܣ௦௛,௕ is the area of horizontal steel in the top and bottom of the coupling beam, 
respectively, ௬݂,௛ is the yield stress of the horizontal steel, and ݖ௕ is the moment arm for the 
tension forces in each face. Note that ܣ௦௛,௧ or ܣ௦௛,௕ includes the area of steel in the effective 
flange width if a slab attached to the top or bottom of the coupling beam, respectively. The shear 
strength corresponding to this stress state of the beam is: 

 ௖ܸ௣ ൌ
ሺெಲାெಳሻ

௅೎೛
ൌ ௦ௗܣ2ൣ ௬݂,ௗ cos ߙ ൅ ൫ܣ௦௛,௧ ൅ ௦௛,௕൯ܣ ௬݂,௛൧

௭್

௅೎೛
 (2.4) 

where Lcp is the length of the coupling beam. Note that Equations (2.2 –2.4) assume that the 
coupling beam is not under any axial load; however, the coupling beam can have net axial 
compression, which will result in larger shear strength (see Section 5.4). The contribution of 
concrete in shear at the compression zone Vc,cb and Vc,ct can be defined to obtain equilibrium on 
the faces of the coupling beam. The total shear resisted at the compression zone at bottom corner 
of the coupling beam is ௖ܸ,௕ ൌ ௖ܸ௣ െ ௗܶ sin  Figure 2.4(c) and Equation (2.4) are based on a .ߙ
similar diagram from Paulay and Priestley [1992]. Figure 2.4(d) shows the base shear that results 
for ௖ܸ,௖௣ of the bottommost coupling beam transferred directly to the compression zone of the 
wall, ௕ܸ,௖௣ ൌ ௖ܸ,௖௣cot	ߛ. The following describes two characteristic cases of behavior for the 
coupled walls: 
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1. If ௕ܸ,௖௣ is greater than or equal to the base shear required to develop the nominal 
moment of the single wall, the coupling effect is strong: the coupled walls should 
be treated as a single, uniformly perforated wall, and the load path should be 
modeled as such. The strut running from the bottommost coupling beam to the 
base corner should be used to determine the diagonal angle. 

2. If ௕ܸ,௖௣ is smaller than that required for case (1), the coupled walls should be 
treated as individual walls uniform over their height when determining the 
diagonal angle [i.e., using Equation (2.1)]. The effect of the coupling forces MAB, 
MCD, and Vcp should be taken into account when calculating Mn for the first guess 
of diagonal angle. The diagonal angle corresponding to the absolute maximum 
resisted lateral force should be used. 

For coupled and perforated walls, appropriate engineering judgment should be used to 
determine the dominant load path; it is suggested to test the diagonal angles corresponding to 
both of the cases above. In this report, only the first case will be used for a BTM – specimen 
SLO in Section 5.2. 

 

Figure 2.4  Schematics including coupling forces for a coupled wall. 

2.5 MODELING OF TENSION FOR CONCRETE IN THE HORIZONTAL 
DIRECTION 

For the default BTM used in this report, the tensile strength of concrete in the horizontal 
direction is ignored (i.e., ft = 0). This section discusses the reason for this choice, and the effects 
of it are presented in Section 3.3 for three specimens. In previous research, Panagiotou et al. 
[2012] and Lu and Panagiotou [2014] modeled tension stiffening in the horizontal direction the 
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same way as for the vertical direction, and Moharrami et al. [2014] combined the effects of 
aggregate interlock and tension resistance in the concrete material used in the horizontals. 

The modeling of horizontal tension affects the computed response for the following three 
cases: (1) the wall experiences diagonal tension failure without any diagonal crushing; (2) 
softening in compression of a diagonal truss element occurs before diagonal tension failure; and 
(3) distributed shear cracking occurs before reaching nominal flexural strength. 

The first case occurs for shear-critical specimens that are too slender for a continuous 
diagonal strut to span from the top corner to the opposite bottom corner; the modelling of 
aggregate interlock is important for computing the peak lateral strength and instance of failure. 
None of the specimens considered in this report fall into this case. However, the case is 
exemplified by the shear critical columns studied by Moharrami et al. [2014]. 

The second case occurs for squat walls that are shear-critical or have low transverse 
reinforcement. This case is exemplified by specimen Unit 1.0 discussed in Chapter 3 and the 5-
story coupled wall specimen discussed in Chapter 5. For this case, modeling the effects of tensile 
concrete strength and aggregate interlock in the horizontal direction reduces the horizontal 
strains computed, resulting in a larger computing lateral displacement at the onset of 
compression softening of the diagonals compared to the default BTM. Modeling of horizontal 
tension does not affect the peak lateral strength or the development of diagonal tension failure 
after the onset of softening in compression. 

The third case is observed most prominently in the T-shaped section walls considered 
herein: specimens TW2 and NTW1 (discussed in Chapter 3) which have moderate transverse 
reinforcement and a larger flexural strength for the direction with the flange in tension. In these 
cases, modeling the effects of tensile concrete strength and aggregate interlock causes the BTM 
to compute larger stiffness up to the nominal flexural strength compared to the experimentally 
measured response. This is because the behavior of concrete in the horizontal directions is not 
coupled with these in the vertical and diagonal directions; therefore, the horizontals may remain 
uncracked while the diagonal elements compute widespread distributed cracking. 

Because the specimens in this report fall into behavior types 2 and 3, ignoring the tension 
strength of concrete in the horizontal direction results in more accurate computed response and 
failure mode of the specimen. 

2.6 NONLINEAR ANALYSIS PROGRAM 

The nonlinear analysis program OpenSees [McKenna et al. 2000] was used for all the analysis 
described in this report. The material models for concrete and steel are available in OpenSees as 
ConcretewBeta and Steel02 in combination with the Parallel material. For the beam elements, 
the existing OpenSees nonlinear force-based beam-column elements were used with linear 
geometric transformation. Gauss-Lobatto quadrature with two points was used for the beam 
elements. The four-node element used for the diagonals to account for the biaxial effect on 
concrete strength was programmed in OpenSees by the authors. A computer with a 3.47-GHz 
Intel Core i7 CPU was used to compute the response. 
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3 Validation for Static Loading 

3.1 SPECIMEN OVERVIEW AND BTM RESULTS 

In this section, eight case studies (four planar and four non-planar walls) of RC walls subject to 
static cyclic loading are presented. Two of the non-planar walls were multi-axially loaded. All 
RC walls specimens considered in this section are uniform over the height with no openings and 
were subjected to a concentrated force at their top in a single bending (cantilever) configuration. 
Table 3.1 lists the specimen name, cross-section shape, axial load ratio (ܰ/ ௖݂

ᇱܣ௚ where N is the 
axial force and ܣ௚ is the gross cross-section area), longitudinal reinforcing steel ratio ߩ௟, 
transverse reinforcing steel ratio ߩ௧, shear span-to-depth ratio (defined as ܮܸ/ܯ௪, where ܯ is 
the bending moment at the base, ܸ is the base shear force, and ܮ௪ is the length of the wall in the 
direction of loading), and failure mode for each of the specimens. All of the specimens except 
the first have a shear span-to-depth ratio of 2.0 or greater, and all of the specimens developed 
their nominal flexural strength prior to failure. The reader is referred to the paper or report 
referenced in Table 3.1 for further information about each specimen. 

Each case study is referred to by the specimen name described in Table 3.1. For 
specimens subject to uniaxial loading, the segment of the wall in the direction of loading is 
termed the “web”; segments perpendicular to the web are termed “flanges.” For specimens 
loaded multi-axially, the segments of the walls are termed based on their orientation with respect 
to North-South and East-West directions as defined in Table 3.1 (i.e., the N-S segment is parallel 
to the N-S direction). For each case study, a beam-truss model (BTM) is constructed and 
subjected to the same loading as the experimental specimen; the number of vertical lines and 
diagonal angle for each model is listed in Table 3.1. For all BTMs, the single-iteration procedure 
for determining diagonal angle described in Section 2.4 was followed; the diagonal angle is 
constant throughout a specimen BTM. The material properties used are these reported in the 
references describing the experimental results. Appendix A shows the strain contour and 
displaced shape for each specimen at selected drift ratios. 

Unit 1.0: Specimen Unit 1.0 [Mestyanek 1986] is a squat planar wall with confined 
boundary columns at the ends subject to static reverse cyclic loading. The average longitudinal 
steel ratio is 0.8%, and 83% of the total amount of longitudinal steel is in the boundary columns. 
For the unconfined part of the wall, ߩ௟ = 0.16% and ߩ௧ = 0.16%. No external axial load was 
applied to the wall. Figure 3.1(a) shows the experimental shear force-drift ratio response for the 
specimen, which experienced a 24% loss of lateral strength at the peak drift of the second cycle 
with 0.8% peak drift ratio. Specimen Unit 1.0 failed with the kinking of the boundary element 
and crushing at the base along with the formation of a major diagonal crack extending from end 
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to end of the specimen in the diagonal direction; high strains were observed in the horizontal web 
reinforcement near the main diagonal, resulting in fracture of two horizontal bars and kinking of 
vertical web bars along the main diagonal. Figure 3.2(a) shows the damage pattern at the end of 
the experimental test. 

The BTM of specimen Unit 1.0 has six vertical lines, of which the two outer lines 
represent the confined boundary elements. The effect of using beams to model the boundary 
elements is discussed in Section 3.5. The diagonal angle was determined based on the geometry 
of the wall: because of the large amount of reinforcement in the loading beam and foundation of 
the specimen, the diagonal angle was determined to allow the formation of a major diagonal strut 
from end to end of the specimen in each loading direction. The computed shear force-drift ratio 
response is shown in Figure 3.1(a) and is in good agreement with the experimental response. The 
BTM computed a 46% loss of lateral strength at 0.67% drift ratio of the first cycle with 0.8% 
peak drift ratio. The kinking of the boundary reinforcement was not captured. Figure 3.2(a) 
shows the deformed shape and strain contour at this point; the computed failure mode is a 
localized diagonal crushing in the web followed by strain accumulation in the horizontal 
elements adjacent to the main diagonal. The effect of modeling the concrete tension resistance in 
the horizontal direction for this specimen is discussed in Section 2.5. 

Unit 2.0: The only difference between specimens Unit 1.0 and Unit 2.0 [Mestyanek 
1986] is the aspect ratio of the wall: specimen Unit 2.0 has a shear span-to-depth ratio of 2.0, 
making it a more slender wall in comparison. Figure 3.1(b) shows the experimental shear force-
drift ratio response for the specimen, which experienced a 15% drop of lateral strength near the 
end of the first cycle with 1.3% peak drift ratio. In the final cycle, which has a peak drift ratio of 
2%, the specimen has 69% of the peak lateral strength. The experimental failure mode was a 
mixture of crushing of the diagonals, kinking of boundary elements, and high horizontal strains 
along diagonal cracks. Section 3.4 discusses the failure mechanism of Unit 2.0 in more detail. 

The BTM of Unit 2.0 has six vertical lines; the outer two lines are modeled as beams that 
represent the confined boundary elements. Because of the low transverse reinforcement ratio in 
the web, the diagonal angle for the BTM is determined by the geometry. Section 3.4 discusses 
the effects of the choice of diagonal angle on this specimen and its failure mechanism. The 
computed shear force-drift ratio response is shown in Figure 3.1(b) and is in good agreement 
with the experimental response, but computes only a diagonal crushing failure mode at 1.9% 
drift. The peak horizontal strain at this point is 0.35%. The inability of the BTM to compute the 
diagonal tension failure mode of the specimen is probably because the fixed diagonal angle does 
not correspond to the angle of the diagonal crack (about 50º as discussed in Section 3.4) 
associated with failure of this specimen. 

WSH6: Specimen WSH6 [Dazio et al. 2009a] is a rectangular wall with confined 
boundary elements at the two ends. In the unconfined part of the web section, the wall has ߩ௟ = 
0.52% and ߩ௧ = 0.25%. The specimen has an axial load ratio of 10.8%. Figure 3.1(c) shows the 
experimental shear force-drift ratio response for the specimen, which failed due to buckling of 
longitudinal bars in the boundary element, crushing of the compression zone, and fracture of a 
number of confining hoop at 1.9% drift of the last cycle. The BTM has eight vertical lines; the 
outer two lines are modeled with beams that represent the confined boundary elements. Figure 
3.1(c) shows the computed shear force-drift ratio response. The BTM underestimates the strength 
for the cycle with 0.6% peak drift ratio by a maximum of 7.6% due to localization in the vertical 
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members during cracking, but has good agreement with the experimental response for all other 
cycles until the failure of the specimen, which was not modeled. 

B6: Specimen B6 [Oesterle et al. 1979] is a planar wall with large heavily reinforced 
boundary elements: each boundary elements is 16% of the total length of the wall with 3.7% 
longitudinal steel ratio. In the unconfined part of the wall, ߩ௟ = 0.3% and ratio ߩ௧ = 0.62%. The 
specimen has an axial load ratio of 13.4%. Figure 3.1(d) shows the experimental shear force-drift 
ratio response of the specimen. Oesterle et al. [1979] reported signs of spalling and flaking in the 
diagonal direction as early as the last cycle with 1.1% peak drift ratio. The specimen failed at 
1.4% drift ratio during the second cycle with 1.7% peak drift ratio due to concrete diagonal 
crushing of the diagonal concrete compressive struts near the base, which propagated upwards 
along the height of the wall. The damage state of the specimen is shown and discussed in Section 
3.5. Although the web of the specimen was heavy damaged, the boundary elements were in good 
condition. 

The BTM has six vertical lines; the outer lines use beams to represent the confined 
boundary elements. Because the boundary elements of the specimen are large, the horizontal and 
diagonal elements adjacent to the boundary element account for the thickness of the boundary 
element where it overlaps with the mesh; this method of accounting for the large boundary 
element is described in detail and discussed in Section 3.5. The computed shear force-drift ratio 
response is shown in Figure 3.1(d) and is in good agreement with the experimental response. 
Failure is computed during the first cycle with max drift of 1.7% and consists of crushing of the 
concrete in the diagonal direction and a vertical propagation of the crushing (shown in Section 
3.5), and is in excellent agreement with the experimental response. Additionally, the boundary 
element sustained very little damage. 

F1: Specimen F1 [Oesterle et al. 1976] is a I-section wall with shear span-to-depth ratio 
of 2.4 and heavily reinforced flanges (ߩ௟ = 3.4% in the flanges). In the unconfined part of the 
wall, ߩ௟ = 0.3% and ߩ௧ = 0.71%. The axial load is only from self-weight of the wall and the 
loading beam. The experimental shear force-drift ratio response is shown in Figure 3.1(e); the 
specimen experienced significant loss of the lateral strength at -1.9% drift during the first cycle 
with 2.2% peak drift ratio due to diagonal crushing of the web. Figure 3.2(c) shows the damage 
pattern at the end of the experimental test. 

The BTM has a total of eleven vertical lines, seven of which form the web. The diagonal 
angle for the web (the wall segment in the direction of loading) and the flanges (the wall 
segments parallel to the direction of loading) are determined separately based on the single-
iteration procedure described in Section 2.4. Figure 3.1(e) shows the computed shear force-drift 
ratio response, which is in excellent agreement with the experimental response until the failure of 
the specimen. The BTM computes failure at 1.9% drift during the first cycle with max drift ratio 
of 2.2%, but earlier than that observed in the test specimen. The computed failure mode, shown 
in Figure 3.2(b), is crushing of concrete in the diagonal direction that propagates horizontally; it 
is in good agreement with the experimentally observed failure mode. 

TW2: Specimen TW2 [Thomsen and Wallace 1995] is a T-section wall with a shear 
span-to-depth ratio equal to 3 and confined boundary elements at the ends of the web and flange, 
as well as in the intersection. In the web, ߩ௟ = 0.45% and ߩ௧ = 0.45%; in the unconfined part of 
the flange, ߩ௟ = 0.33% and ߩ௧ = 0.33%. The specimen has an axial load ratio of 7.4%. Figure 
3.1(f) shows the experimental shear force-drift ratio response as reported in Thomsen and 
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Wallace [1995] after being corrected for rotation and uplift of the foundation during testing. The 
positive load direction corresponds to flange in compression, and the negative load direction 
corresponds to flange in tension. For the negative direction, specimen TW2 reaches the nominal 
moment at 1% drift and experiences a loss of lateral load capacity during the last cycle at -1.7% 
drift due to out-of-plane instability of the tip of the web that buckled over several hoop spaces; 
although extensive spalling was observed at the tip of the web, there was no loss of confinement 
during the out-of-plane instability failure. 

The BTM has a total of thirteen vertical lines, seven of which forms the wall segment in 
the direction of load application. Due to the large size of the confined boundary element at the 
end of the web, the boundary element is represented by two vertical lines: the horizontal and 
diagonal elements between these lines represent the transverse reinforced and confined concrete 
of the boundary element in the respective directions. Of the two lines that encompass the 
confined boundary element at the end of the web, only the vertical line at the end of the web uses 
beams with in-plane flexural rigidity. The boundary elements at the end of the flanges are 
represented by one vertical line. The computed shear force-drift ratio response is shown in 
Figure 3.1(e). For the positive direction of loading, the BTM computes a 10% overestimation of 
lateral force up to 1% drift ratio, but the computed peak lateral force is in very good agreement 
with the experimentally measured response. In the negative direction of loading, the BTM 
overestimates the lateral force by 8% up to 1.25% drift ratio, and overestimates the peak lateral 
force by 6%; the 2% decrease of the computed lateral strength for the cycle with max drift ratio 
of 1.7% in the negative direction is due to spalling and minor crushing of the vertical element at 
the web tip. For the BTM results presented in this section, the out-of-plane instability of the end 
of the web are not modeled. 

NTW1: Specimen NWT1 [Brueggen 2009] is a T-section wall with a shear span-to-depth 
ratio of 3.2 in the N-S direction and 4 in the E-W direction. The wall has confined boundary 
elements at the ends of both segments. The average ߩ௟ over the section is 1.6%. In both the N-S 
(called the web) and E-W (called the flange) segments, ߩ௟ of the unconfined regions is 0.3%; ߩ௧ 
= 0.61% and 0.26% in the web and flange, respectively. The specimen is loaded multi-axially 
with cycles in the N-S, E-W, and skew (including diagonal and hour-glass shaped cycles) 
directions, and has an axial load ratio of 3.3%. Figure 3.3 shows the experimental shear force-
drift ratio response for the specimen for the three directions of loading. During the first cycle in 
the N-S direction at -2% drift ratio, buckling of longitudinal reinforcement, opening of confining 
hoops legs, and crushing of the concrete core was observed at the confined boundary element at 
the tip of the web. Following the web failure, testing in the N-S direction was stopped and the 
specimen was loaded in the E-W direction up to 4% drift; buckling and fracture of longitudinal 
reinforcement and crushing of the boundary areas at the flange tips in the first cycle at 4% drift 
caused a loss of lateral load capacity. The final cycle was in the N-S direction up to 2% drift and 
resulted in the fracture of two bars at the end of the web, resulting in a 20% loss of lateral load 
capacity. 

The BTM of specimen NTW1 has 13 vertical lines in total, 7 of which forms the web (the 
wall segment in the N-S direction) and 7 forms the flange (wall segment in the E-W direction). 
Figure 3.3 shows the computed shear force-drift ratio response of the BTM in comparison to the 
experimentally measured response. For the N-S cycles, the computed response shows very good 
agreement with the experimental response up to the point of failure, with 6% overestimation of 
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the peak lateral strength in the negative (flange in tension) direction. However, the effect of bar 
buckling and loss of confining hoops at the web tip was not modeled; thus the failure mode and 
associated loss of strength was not captured. For the E-W cycles, the difference between the 
monotonic and cyclic response is due to the accumulated strain in the flange from the N-S and 
SKEW cycles; the BTM computes a 10% underestimation of the response for the cycles at 3% 
drift. In the SKEW cycles, the computed response ranges from excellent agreeement to decent 
agreement (with a maximum of 13% underestimation of the strength) prior to the last cycle; the 
last SKEW cycle in the N-S direction shows overestimation of the response because the BTM 
did not capture the failure mode due to bar buckling. 

TUB: Specimen TUB [Beyer et al. 2008] is a U-section wall with a shear span-to-depth 
ratio of 2.8 and 2.6 in the N-S and E-W direction, respectively, with confined boundary elements 
at the ends of all wall segments. For this specimen, the segment of the wall parallel to the E-W 
direction is called the web, while the two segments parallel to the E-W direction are called the 
flanges. ߩ௟ and ߩ௧ in the unconfined portions of the wall are 0.38% and 0.45%, respectively. The 
specimen has an axial load ratio of 4.0% and is loaded in four alternating cycles: loading in the 
N-S direction (N-S), loading in the E-W direction (E-W), loading in the diagonal direction 
(DIAG), and a cycle which loads the wall in an hourglass shape (SWEEP). Figure 3.4 shows the 
experimental response of the specimen for the four types of cycles. Specimen TUB failed due to 
crushing of the diagonal in compression in the unconfined part of the web using the last SWEEP 
cycle; the damage state of the web is shown in Figure 3.2(c). The failure is attributed to spalling 
of the concrete in the web, which reduced the wall section in that area [Beyer et al. 2008]. The 
diagonal crushing failure resulted in a 36% reduction of the lateral load capacity in the E-W 
direction. 

The BTM has thirteen vertical lines in total: five of which form the web (the wall 
segment in the E-W direction) and five form each of the two flanges (wall segments in the N-S 
direction). The boundary elements at each corner are modeled with a single vertical line which 
has flexural rigidity in both horizontal directions. Figure 3.4 shows the computed shear force-
drift ratio response of the BTM in comparison to the experimentally measured response. For the 
N-S, E-W, and SWEEP cycles, the computed response shows excellent agreement with the 
experimental response. In N-S and E-W cycles, the computed maximum lateral strength has less 
than 3% difference from the experimentally recorded strength, while in the SWEEP cycles, the 
computed maximum lateral strength has less than 13% difference from the experimentally 
recorded strength. The computed response underestimates the response for the DIAG cycles, 
especially in the negative E-W direction, which corresponds to loading in the south-west 
direction toward the tip of the web. The BTM computes failure due to crushing of diagonal 
concrete in the web of the wall at 2% drift of the last E-W cycle, resulting in a 9% drop of lateral 
load capacity in the E-W direction; this E-W cycle precedes the SWEEP cycle in which the 
experimental failure was observed, but the location and mode of failure is in good agreement 
with the experimental results. The strain contour at the point of web crushing is shown in Figure 
3.2(c) in comparison to the experimental failure mode. 
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Table 3.1 Characteristics of eight experimentally tested specimens and beam-truss model parameters. 

Specimen 
Cross-section 

shape (confined 
areas shaded) 

Axial load 
ratio 

ࢉࢌ
ᇱ  

(MPa) 
 ࢒࣋

(average) 

Steel ratio for 
unconfined 

area1 

Shear 
span-to-

depth 
ratio1 

Beam-truss model 
parameters 

Predicted 
failure mode 

(reported 
failure mode)2 ࢚࣋ ࢒࣋ 

Total # of 
vert. lines 

Diagonal 
angle1 

Unit 1.0 
[Mestyanek 1986]  0.3% 27.0 0.8% 0.16% 0.16% 1.0 6 44.4º DC, DT 

(DT) 
Unit 2.0 

[Mestyanek 1986]  0.3% 26.5 1.6% 0.16% 0.16% 2.0 6 64.4º DC 
(DC, DT) 

WSH6 
[Dazio et al. 2009a]  10.8% 45.6 0.8% 0.52% 0.25% 2.0 8 58º None 

(BBF, VC) 
B6 

[Oesterle et al. 1979]  13.4% 24.0 2.3% 0.30% 0.62% 2.4 6 54.4º DC 
(DC) 

F1 
[Oesterle et al. 1976] 

 

0.3% 38.4 2.1% 0.30% 0.71% 2.4 11 49º 
DC 

(DC) 

TW2 
[Thomsen and Wallace 

1995] 

 

7.4% 41.4 1.2% 0.45% 0.45% 3.0 13 59º 
None 
(CSB) 

NTW1 
[Brueggen 

2009] 

N-S 

3.3% 49.3 1.7% 

0.30% 0.61% 3.2 

13 

47º 
None 

(BBF, VC) 
E-W 0.30% 0.26% 4.0 54.4º 

TUB 
[Beyer et al. 

2008] 

N-S 

 

4.0% 54.7 1.0% 

0.38% 0.45% 2.8 

13 

49.5º 

DC 
(DC) 

E-W 0.38% 0.45% 2.6 59º 

1 Given for the direction of applied load only. 
2 BBF = Bar buckling and fracture, CSB = Buckling of the confined section, VC = vertical concrete crushing, DC = diagonal concrete crushing, DT = diagonal tension failure.
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Figure 3.1  Experimentally measured and numerical computed force-drift ratio response for specimens (a) Unit 1.0, (b) Unit 2.0; 
(c) WSH6; (d) B6; (e) F1; and (f) TW2. 
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Figure 3.2  Numerically computed strain contour and deformed shape for specimens (a) Unit 1, (b) F1, and (c) TUB (E-W 
segment) at the point of first diagonal crushing compared to the damage state of the experimental specimen at the 
end of each test. 
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Figure 3.3  Experimentally measured and numerical computed force-drift ratio response for specimen NTW1 in the N-S, E-W, and 
skew cycles. 
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Figure 3.4  Experimentally measured and numerical computed force-drift ratio response for specimen TUB. 
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3.2 EFFECT OF IN-PLANE FLEXURAL RESISTANCE OF VERTICAL LINES 

For the default BTM, all vertical beams (except those at the ends of each wall segment or those 
at the intersection of two wall segments segment) and all horizontal beams are pinned in-plane. 
This differs from the 2D truss model used in Panagiotou et al. [2012], which has zero in-plane 
flexural resistance in all vertical elements, and the beam-truss model described in Lu and 
Panagiotou [2008] in which all vertical lines were beams (termed BTM-beam). 

Figure 3.5 shows the computed lateral force-drift ratio response for specimens Unit 1.0, 
Unit 2.0, and WSH6 using BTM-beam; for all walls, BTM-beam computed a peak lateral 
strength within 1% of that computed by the default BTM. For Unit 1.0, the failure is computed at 
30% larger drift ratio than for the default BTM. The failure mode is that of diagonal crushing, 
but the maximum computed horizontal tension strain is 1% (compared to more than 3% 
computed by the BTM), and the localization of horizontal strain along the main diagonal is not 
as prominent. For Unit 2.0, the maximum compressive strain in the diagonals is 0.16% and 
diagonal crushing is not computed. Because of the in-plane flexural rigidity of the vertical 
beams, the BTM-beam cannot compute diagonal tension failure accurately. 

Figure 3.6 shows the lateral force-drift ratio for specimens Unit 1.0, Unit 2.0, and WSH6 
modeled using the truss model. The truss model computed diagonal crushing in specimen Unit 
1.0 at -0.66% drift ratio (compared to 0.67% in the default BTM) after reaching -0.73% drift 
ratio. Compared to the default BTM, the truss model computed diagonal crushing at a 37% 
smaller lateral displacement for Unit 2.0. Also, the truss model computed a peak lateral strength 
5%, 14%, and 4% less than that computed by the default BTM. The beam elements at the ends of 
the wall section allow the BTM to account for the flexural strength of the confined boundary 
element, which is important for computing accurately the strength and drift ratio at onset of 
failure. 

 

Figure 3.5  Experimentally measured and numerically computed lateral force-
displacement response for specimens (a) Unit 1.0, (b) Unit 2.0, and (c) 
WSH6 with in-plane flexural rigidity in all vertical lines of the BTM. 
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Figure 3.6  Experimentally measured and numerically computed lateral force-
displacement response for specimens (a) Unit 1.0, (b) Unit 2.0, and (c) 
WSH6 with truss model (zero in-plane flexural resistance in all vertical 
elements). 

3.3 EFFECT OF CONCRETE TENSION IN HORIZONTAL ELEMENTS 

This section discusses the effects of modeling the horizontal concrete tension resistance and 
aggregate interlock (per Moharrami et al. [2014]) for three of the walls. BTMs including these 
effects of horizontal concrete in tension and aggregate interlock per Moharrami et al. [2014] are 
termed BTM-HT. 

Figure 3.7 shows the response of BTM-HT for Unit 1.0, F1, and TW2. For specimen Unit 
1.0, BTM-HT results in a 50% increase of drift ratio at which failure occurs and a 2% increase of 
maximum lateral load capacity compared to the default BTM; the overestimation of secant 
stiffness at 0.25% drift is 11% and 21% for BTM and BTM-HT, respectively. However, for 
specimen F1, which also had a diagonal compression failure, BTM-HT results in less than 2% 
change for the maximum lateral load capacity and drift ratio, at which failure occurs compared to 
the default BTM; this is because the diagonal crushing failure of specimen Unit 1.0 is caused by 
the large horizontal strains, while the failure in specimen F1 is due to the shear deformation at 
the bottom corner. The BTM-HT of specimen F1 computed a 21% larger secant stiffness at 
0.25% drift ratio compared to the default BTM. 

For specimen TW2, BTM-HT results in no change of maximum lateral strength but 
computes a 15%, 12%, and 9% overestimation of strength for drift ratios of 0.5%, 0.8%, and 
1.3%, respectively; the default BTM does a better job in this region with a 7%, 6%, and 7% 
overestimation, respectively. For both of the T-shaped section walls TW2 and NWT1 (which is 
not shown), BTM-HT results in overestimation of strength and stiffness for drift ratios between 
0.3% and 1%, which corresponds to cracking and the point in which the nominal flexural 
strength is reached, respectively. In this region, the stiffness of the wall is affected by shear 
cracking and thus is susceptible to the issue discussed in Section 2.5. 

The effect of modeling concrete tension strength and aggregate interlock in the horizontal 
elements depends on the behavior and the failure mode of the specimen. For example, the failure 
mode of Unit 1.0 is affected by the horizontal strains: modeling of the horizontal concrete 
tension strength and aggregate interlock reduces the horizontal strains, thus reducing the strains 
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normal to the compressive diagonals. This delays the onset of softening of the diagonals at the 
bottom corner, thereby computing the onset of failure at a larger lateral displacement compared 
to the default BTM. In comparison, the diagonal crushing failure for specimen F1 is 
compression-controlled, indicating insignificant change in the maximum lateral strength or the 
computed point of failure. In specimens where distributed shear cracking was observed 
(specimens F1 and TW2), BTM-HT computed larger stiffness and strength up to the nominal 
flexural strength. 

 

Figure 3.7  Numerically computed lateral force-displacement response for specimens 
(a) Unit 1.0, (b) F1, and (c) TW2 with BTM-HT that includes the horizontal 
concrete tension resistance and aggregate interlock model as defined in 
Moharrami et al. [2014] compared to experimentally measured results. 

3.4 EFFECT OF INCLINATION ANGLE OF DIAGONAL ELEMENTS 

This section uses specimen Unit 2.0 to highlight the importance of diagonal angle determination 
(as described in Section 2.4) on the computed response of a BTM. Figure 3.8 shows the 
experimental crack patterns of specimen Unit 2.0 [Mestyanek 1986] at 0.26% drift ratio and 
1.34% drift ratio, corresponding to an applied lateral force of 120 and 241 kN (47% and 94% of 
the calculated nominal flexural strength of the specimen). As marked in the figure, when the 
specimen is at 0.26% drift, the diagonal cracks form at a 47º angle. At 1.34% drift, the diagonal 
cracks had fanned out, so that the steepest crack runs from the top corner to the opposing bottom 
corner of the specimen at a 64º angle, thus allowing the specimen to resist the entire lateral load 
through arch action. 

The angle determination used for the default BTM (described in Section 2.4) ensures that 
the angle of the diagonals is such that the engaged horizontal steel can resist the shear force 
demand. To illustrate the importance of the diagonal angle, three BTMs for Unit 2.0 are 
considered: (1) Unit 2.0 BTM with a diagonal angle of 64.4º, which is the angle computed based 
on Section 2.4 and used in Section 3.1, (2) Unit 2.0 BTM with a diagonal angle of 56º, and (3) 
Unit 2.0 BTM with a diagonal angle of 44.4º, which is close to the angle that would be suggested 
by Moharrami et al. [2014] for this specimen. The computed force-drift ratio responses for the 
three BTMs are shown in Figure 3.9. The BTM with a diagonal angle of 64.4º resists the lateral 
force by arch action similar to what is shown for the experimental specimen at 1.34% drift in 
Figure 3.8(b); the BTM computes the maximum lateral force in excellent agreement with the 
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experimental response. The computed failure mode is crushing of the compression strut at the 
base, shown in the strain contour at maximum drift in Figure 3.10(a). The BTMs with 56º and 
44.4º compute a maximum lateral force resistance that is dependent on the amount of horizontal 
reinforcement a diagonal engages. In these two models, the horizontal strains exceed 1% and the 
lateral force is bounded by the ultimate stress of the horizontal steel; the BTMs with 56º and 
44.4º underestimate the maximum lateral force by 12% and 32%, respectively. The strain 
contours at maximum drift ratio are shown in Figure 3.10(b) and (c) for the BTMs with 56º and 
44.4º, respectively, and both have large horizontal strains, while the BTM with 56º also 
computes crushing of a concrete diagonal in the last cycle. Note that modeling aggregate 
interlock only affects the early part of the response (less than 0.6% drift ratio) of the BTMs with 
56º and 44.4º, with no change in the failure mode as shown in Figure 3.10(b) and (c). 

As shown in the experimental damage patterns from specimen Unit 2.0 in Figure 3.8(c), 
the specimen failure was a mixture of crushing of the diagonals, kinking of boundary elements, 
and high horizontal strains along diagonal cracks. The failure involved diagonal cracks ranging 
from 45º to 64º that were formed during the loading. Because the BTM has a fixed angle 
determined by the diagonal compression strut, it is not possible to capture the cracks formed at 
lower angles; thus it is not possible to represent their effects and contributions on the diagonal 
tension part of the failure mode. 

 

 

Figure 3.8  Photos of specimen Unit 2.0 (from Mestyanek [1986]) with annotations to 
show angle of compression struts. 
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Figure 3.9  Experimentally measured and numerically computed lateral force-
displacement response for specimen Unit 2.0 with diagonal angle equal to 
(a) 64.4º, (b) 56º, and (c) 44.4º. 

 

 

Figure 3.10  Numerically computed strain contour and deformed shape (magnification 
factor = 5) at -1.92% drift for specimen Unit 2.0 with diagonal angle equal to 
(a) 64.4º, (b) 56º, and (c) 44.4º. 
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shown in Table 3.1; and (b) rigid offsets accounting for the length of the boundary element 
(termed BTM-offset). In both methods, the boundary element is modeled as a single vertical line. 
A third method, which models the boundary element using more than one vertical line, should be 
used to model long boundary elements (such as in specimen TW2 at the tip of the web); this 
method is not discussed in this section but is used in specimens TW2 and NTW1. 

Figure 3.12(a) shows the response of specimen B6 modeled without accounting for the 
width of the boundary elements in the diagonal and horizontal elements: all of the diagonal and 
horizontal elements have the thickness and material properties of the web (termed BTM-web). 
Figure 3.12(b) and (c) shows the response of specimen B6 modeled with BTM-avg and BTM-
offset, respectively. All three models compute nearly identical response up to 1% drift and are in 
good agreement with the experimental response up to that point. 

BTM-web computes the softening and crushing of the concrete diagonal at the base of the 
wall at 1% drift ratio with less than 6% loss of lateral load capacity during that cycle. The 
diagonal crushing propagates upward vertically during the cycle with 1.7% max drift ratio, 
resulting in further degradation of the lateral strength of the model. BTM-avg computes the 
crushing of the diagonal during the first cycle with 1.7% max drift ratio but immediately reverses 
without significant strength degradation in the positive direction. At -1.4% drift ratio, BTM-avg 
fails due to diagonal crushing, which propagates vertically up the wall adjacent to the boundary 
elements, resulting in a loss of more than 50% of lateral load capacity. BTM-avg computes the 
crushing of the diagonal at 1.6% drift ratio along with vertical propagation of the diagonal 
crushing, resulting in more than in a loss of more than 50% of lateral load capacity during the 
first cycle at 1.7% max drift ratio. Figure 3.13 shows the strain contour of the three BTMs at the 
second cycle of 1.7% maximum drift ratio compared to the damage state of the experimental 
specimen at the same point; all three models agree well with the experimentally observed failure 
mode. BTM-avg and BTM-off predict the point of failure in good agreement with the 
experimental results. 
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Figure 3.11  Elevation and cross-section views of two methods for modeling specimen 
B6: (a) average properties and (b) rigid offsets. 

 

 

Figure 3.12  Experimentally measured and numerically computed lateral force-
displacement response for specimen B6 modeled with (a) without 
considering the width of the boundary elements; (b) with average 
properties for the width of the boundary elements; and (c) with rigid offsets 
of the boundary elements. 
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Figure 3.13  Numerically computed strain contour and deformed shape (magnification 
factor = 5) at the second cycle of 1.7% drift for specimen B6 modeled with 
(a) BTM-web, (b) BTM-avg, and (c) BTM-off, compared to (d) the 
experimental failure mode at the end of the test. 
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4 Beam-Truss Model for Slabs 

In this section, the beam-truss model for slabs is presented. The response computed using the 
BTM is compared with the experimentally measured response of a column-slab specimen, shown 
in Figure 4.1. The BTM for slabs consists of beam elements without in-plane flexural rigidity 
(pinned in plane) running in the two principal horizontal directions of the slab, with diagonal 
truss elements in each of the panels formed by the beams. The beams in the longitudinal 
directions model the concrete and steel included in the section areas each element represents, 
while the diagonal trusses model the diagonal compresion field of concrete. Tension stiffening is 
modeled in both principal horizontal directions. The effect of aggregate interlock is not modeled 
for RC slabs The lateral load resistance in and out of the plane is identical to that for a wall 
segment of a RC wall. Confined edge beams in the slab, such as that shown in Figure 4.1(a), are 
modeled similarily to the boundary elements of the RC walls considered in the previous chapters. 
For the slab BTM, the torsional rigidity of each beam is modeled as bilinear-perfectly-plastic, 
with the gross elastic torsional stiffness up to the torsional cracking strength as calculated based 
on the space truss model for torsion [Park and Paulay 1975]. Modeling torsional softening in the 
confined edge beam through calibrating strength degradation in the torsion-twist relation for the 
beam elements is beyond the scope of this section. 

Specimen 2C [Robertson 1990] is a two bay slab-column specimen consisting of a 6 m × 
2 m slab, 0.11-m-thick, supported on three columns along the long direction of the specimen; see 
Figure 4.1(a). The 0.25-m-square columns are 1.5 m tall, and the slabs are connected mid-height 
of each column; the columns are pinned at the base and top and connected to a loading assembly 
that applies the same displacement to the top of all three columns. The columns were designed to 
remain nominally elastic during the entire test. The longitudinal steel ratio at the top and the 
bottom of the slab was 1% in both directions. Extra reinforcement was used in the x-direction for 
the strip of the slab surrounding the columns, as well as in the y-direction for the strip of the slab 
surrounding the center column. At the ends of the slab in the y-direction, confined edge beams 
are used to enhance torsional resistance; see Figure 4.1(a). A gravity load of 80 kN is applied 
uniformly by suspending weights from the slab, and the specimen is loaded cyclically in the x-
direction. Figure 4.2 shows the experimental applied lateral load and drift (defined as the 
displacement at the top of the column divided by the height of the column). The experimental 
test included a cycle at 5% drift ratio, which was not included in Figure 4.2 because this cycle 
was dominated by a torsional failure of the confined edge beams, which was not modeled. 

Figure 4.1(b) shows the BTM constructed for specimen 2C; a 0.25-m×0.25-m square 
mesh is used for the model. Each column is modeled using an elastic beam element using 50% of 
the column gross section flexural rigidity. The width of the column is modeled using rigid offsets 
connected to the slab BTM. 
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Figure 4.2(a) shows the numerically computed lateral force-drift ratio response for the 
slab BTM in which no bond slip/strain penetration is modeled. The computed strength is in 
excellent agreement with the experiemental results, but the computed hysteretic behavior shows 
more energy dissipation and less pinching than the experimental results. Figure 4.2(b) shows the 
computed results when the effect of strain penetration is modeled at the interfaces between the 
columns and slab BTM. The strain penetration is modeled using a zerolength element with the 
same section properties as the adjacent beam, except the steel in the section is replaced with a 
bond slip material. The bond slip material has a stress-deformation envelope equivalent to that of 
the steel material with a length of 13 cm (based on a strain profile linearly decreasing to zero 
strain over the width of the column); the hysteretic behavior of bond slip material includes 
pinching (pinching parameters 0.4 and 0.2 in the Hysteretic material of Opensees, as shown in 
Figure 4.3). In comparison to the BTM with perfect bond, the maximum lateral load resistance 
computed by the BTM with strain penetration for the column interfaces differs less than 2%; 
however, the BTM with strain penetration computes more pinching in the hysteretic response 
and better agrees with the experimental results in terms of hysteretic energy dissipation. 

 

Figure 4.1  (a) Three-dimensional view and dimensions of the column-slab specimen 
2C [Robertson 1990] and (b) the corresponding BTM for the specimen. 
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Figure 4.2  Experimentally measured and numerically computed lateral force-
displacement response for column-slab specimen 2C with (a) perfect bond 
and (b) strain penetration modeled at the column-slab interface. 

 

 

 

Figure 4.3 Hysteretic behavior of bond slip material including pinching. 
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5 Validation for a 5-Story Coupled Wall 
subjected to Tri-Axial Base Excitations 

5.1 SPECIMEN OVERVIEW 

This section presents a case study of specimen SLO, a 5-story reinforced concrete wall building 
slice, tested at LNEC, Lisbon, Portugal, within the Project ECOLEADER-LIS [Kante 2005; 
Coelho et al. 2006]. Figure 5.1(a) shows the elevation view of the specimen: the specimen 
consists of two coupled T-shaped walls, joined by a coupling beam to form an H-shaped section 
at each of the five floors. The height of each floor is 0.9 m. The two wall segments parallel to the 
x-direction (termed the flanges) are 1.6 m long and 0.06 m thick; the coupled wall segment 
parallel to the y-direction (termed the web) is 1.44 m long and 0.06 m wide, with an opening 0.27 
m tall and 0.67 m wide in the center of the wall segment. Each floor has a 1.6 × 1.56 m slab that 
is 0.08 m thick. Figure 5.1(c) and (d) show the details of the coupling beams and the wall 
section, respectively. The average longitudinal reinforcement ratio for the coupled walls is 
0.42%; away from the ends of the wall segments, the walls have a longitudinal and reinforcing 
ratio of 0.24% in all wall segments. The slab has a confined edge beam on each of the free edges; 
the reader is referred to Kante [2005] for reinforcing details for the slab. The walls had a 
concrete compressive strength of 38.8 MPa on average (measured with standard prescribed 
cube). The 3mm diameter reinforcing steel used in the wall was a steel wire with low ductility 
(yield strength fy = 786 MPa, ultimate strength fu = 826 MPa, and failure strain εu = 1.5%), while 
the 6 mm reinforcing steel had fy = 483 MPa, fu = 631 MPa, and εu = 8.8%. The weight of the 
specimen is 58.1 kN per floor, of which 48 kN is applied through metallic masses placed on the 
slabs of each floor, shown in Figure 5.1(c). The slab on each side of the wall carried a mass 
block with dimensions of 0.84 m × 0.84 m, with a total thickness of 0.6m (0.3m above and below 
the slab). The specimen has an axial load ratio of 3.1%. 

The specimen was subjected to six triaxial ground motions (T1 through T6) of increasing 
intensity. After ground motion T4, Kante [2005] reports only minor cracking in the flange and no 
damage in the web; up to that point, the wall has attained a maximum drift ratio of 0.24% and 
0.08% in the x- and y-directions, respectively. Ground motion T5 had peak ground acceleration 
(PGA) equal to 0.42g and 0.73g and resulted in a maximum roof drift ratio of 0.32% and 0.29% 
in the x- and y-directions, respectively. During ground motion T5, shear cracks opened up in the 
web near the opening, and further cracking in the flanges was observed. Ground motion 6 had 
PGA of 0.52g and 1.02g, and resulted in a maximum roof drift ratio of 0.60% and 0.77% in the 
x- and y-directions, respectively; the base shear and roof drift ratio response time history for this 
motion is shown in Figure 5.2. In ground motion T6, the web sustained a diagonal shear failure, 
which resulted in the web punching through part of the flange at the corner of the web and 
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fracture of at least two horizontal reinforcing bars in the web; see Figure 5.3. Also, one of the 
edges of the flange crushed in the vertical direction. No damage was observed in the coupling 
beams, shown in Figure 5.3(b). 

 

 

Figure 5.1 Description of 5-story coupled wall specimen SLO and beam-truss model. 
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Figure 5.2  Recorded acceleration time history of the shaking table in the three 
directions during ground motion T6. 
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Figure 5.3  Damage pattern of the bottom floor (a) web and (b) coupling beam (viewed 
from the negative x direction) and (c) flange in the negative y direction after 
ground motion T6 (from Coelho et al. [2006]). 

5.2 DETERMINATION OF BEAM-TRUSS MODEL FOR SPECIMEN SLO 

The BTM of the coupled wall specimen SLO consists of eleven vertical lines in each of the 
flanges and five vertical lines in each of the two parts of the web, shown in Figure 5.1(b) and (c), 
resulting in a total of thirty vertical lines at the base. Each vertical line in the flanges, including 
the line at the intersection of the flange and web, represents a cross-sectional area of 17.8 cm × 6 
cm and the corresponding steel area. The two vertical lines of the web imediately adjacent to the 
coupling beam represents a cross-sectional area of 9 cm × 6 cm and the corresponding steel as 
described in Details 4 and 5, while the remaining cross-sectional area is represented equally 
among the six vertical lines representing the web (the intersection line is excluded). The coupling 
beam is modelled with a pair of crossing diagonals representing the diagonal reinforcement in 
the beam and diagonal concrete compressive struts with an area of 16.7 cm × 6 cm, calculated 
based on Figure 2.1(g) for the representative panel. A model with a finer mesh in the bottom 
story is discussed in the following sections; the mesh size is found to have minimal impact on the 
global response and the peak strains of the coupling beam. The vertical reinforcement of the 
coupling beam is modeled in the two vertical elements at the end of the coupling beam as well as 
the one in the middle. The slab at each level is modeled using the beam-truss model for slabs 
described in Chapter 4. Confined edge beams along the free edge of the slab are modeled with 
two lines parallel to the y-direction, shown in blue in Figure 5.1(b). Because the metalic masses 
placed on the slab are stiff and cover a large portion of the slab, the portion of the slab covered 
by the masses are modeled as linear elastic with the appropriate stiffness and mass; see Figure 
5.1(b). The elements in the intesection between the wall and the slab, shown in green color in 
Figure 5.1(b), have flexural rigidity in both directions; note that, because the element sections are 
not large, removing the flexural rigidity does not effect the global results. 

A concrete compressive strength of 38.8 MPa was measured with standard prescribed 
cube tests, so the compressive strength for a standard cylinder ௖݂

ᇱ is assumed to be 34.8 MPa. The 
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reinforcing steel is modeled as per Section 2.2; the effect of rupture for the low ductility 3-mm-
diameter reinforcing steel wire is only modeled and discussed in Section 5.7. 

To determine the angle of the diagonals, the nominal moment Mn is calculated for one T-
section wall for bending about the x- and y-axis (assuming half of the gravity load is resisted by 
each wall): Mn,fl = 400 kN-m for bending around the y-axis, and Mn,w+ = 251 and Mn,w- = 75 kN-
m for bending around the x-axis with the flange in tension and flange in compression, 
respectively. The shear force associated with Mn due to first mode of response for all directions 
of bending is used; the first mode effective height heff,1 = 3.6 m (80% of the total height). For 
bending around the y-axis, the specimen is considered uniform over the height, and a diagonal 
angle of 37º for the flanges is computed based on 1.2Mn,fl; a diagonal angle of 45º is the 
minimum suggested and, in the specimen presented, a diagonal angle of 50.8º is used in the 
flange to achieve a nearly square mesh for the slab. The response of a model with a diagonal 
angle of 45º in the flange was found to result in very similar response to that from a model with a 
diagonal angle of 50.8º. Note that, for loading in the y-direction where the coupled wall is 
engaged, the coupling beam transfers a compressive force to the wall with the flange in 
compression and tensile force to the wall with flange in tension; see Figure 5.4(a). 

The shear force transferred by one diagonally reinforced coupling beam is estimated 
[using Equation (2.4)] to be Vcpl = 52 kN without accounting for the slab. While the effective 
flange cannot be determined accurately, an effective flange width of 1.34 m (8 times the 
thickness of the slab on each side of the beam) is used as an upper bound estimate, resulting in 
Vcpl = 219 kN. For the case without slab contribution, this results in base shear due to the 
bottommost coupling beam of Vb,cpl = 38 kN and 146 kN, respectively. Vb,cpl ≥ (Mn,w-)∙(heff,1) for 
the wall compression wall regardless of slab contribution; therefore, the wall assumed to be 
strongly coupled. Due to the level of coupling here, the compression wall is expected to resist the 
majority of the total shear force despite that its flange is in compression. This is confirmed in 
Section 5.4: the tension wall resists a peak shear force of 76 kN, which results in a minimum 
diagonal angle of 47.5º [from Equation (2.1)]. For the case of strong coupling, the struts are 
controlled by location of the compression region of the bottommost coupling beam. Figure 5.4(b) 
and (c) show the strut-and-tie diagram and BTM for the web accounting for that load path. The 
diagonal angle is 49.5º, which allows for a direct strut between the compression zone of the 
coupling beam to the compression zone of the wall. 
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Figure 5.4  (a) Coupling beam forces on the walls and resulting reaction at the base for 
roof drift in the negative y direction; (b) strut-and-tie model for coupled 
wall of specimen SLO showing the predicted load path for lateral load in 
the y-direction; and (c) resulting beam-truss model for the coupled wall 
accounting for geometric constraints. 

5.3 BTM RESULTS 

The experimental specimen was tested using a sequence of six triaxial ground motions with 
increasing intensity of which only the first five ground motions resulted in nominally elastic 
behavior of the specimen (0.32% and 0.29% peak drift ratio in the x- and y-directions, 
respectively). For the analysis presented here, the effects of the first five ground motions T1T5 
were approximately considered by subjecting the BTM to a static cyclic displacement history, 
shown in Figure 5.5, with peak drift equal to that observed during ground motion T5 in the 
experimental specimen: 0.29% roof drift ratio parallel to the web and 0.32% roof drift ratio 
parallel to the flange. For these cycles, each direction is loaded independently, and load is 
applied in an inverse triangle distribution to each of the floors’ slabs, while the roof drift ratio is 
maintained using displacement-controlled analysis. Following these static cycles, the model was 
subjected to the triaxial base excitation T6, shown in Figure 5.2. 

Table 5.1 lists the experimentally measured and computed structural periods for 5-story 
specimen in each of the two principal directions. The BTM computed the initial structural 
periods to be much stiffer than observed experimentally; however, the computed values are in 
good agreement with that computed using the multiple-vertical-line-element macro model in 
Coelho et al. [2006]. Coelho et al. [2006] attribute the discrepancy to initial cracking in the 
specimen due to being hit by the crane during construction. After the static loading cycles, the 
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BTM computed the structural period to be 26% greater in the flange direction and 66% greater in 
the web direction. The period of the BTM after ground motion T6 is computed after the structure 
reaches static equilibrium; the large period in the web direction reflects the damaged state of the 
BTM. 

Figure 5.6 shows the experimentally recorded and numerically computed base shear force 
and roof drift ratio response histories for ground motion T6; Figure 5.7 shows the corresponding 
hysteretic loops in the x- and y-directions. The numerically computed base shear force agrees 
well with that recorded experimentally. Although the BTM overestimates peak roof displacement 
in the flange direction, the agreement for the web direction is excellent. The overestimation of 
displacement in the flange direction is especially pronounced from t = 3-4 sec and after 6 sec. 
This may have been due to a flexible or underdamped torsional mode or the underestimation of 
lateral strength under skew loading (shown for specimens NTW1 and TUB in Chapter 3). 

Softening of a concrete diagonals in compression first occurs in the bottom corner of the 
web at t = 3.26 sec and is quickly followed by crushing of the same diagonal and localization of 
horizontal tension strains along a diagonal band (diagonal tension failure) in Wall B; Figure 5.7 
shows a drop of base shear force when the softening and crushing of the diagonal occur. The 
strain contour at t = 3.3 sec, which is the point of peak drift ratio during the cycle where diagonal 
crushing is computed, is shown in Figure 5.8 along with the diagonal tension failure. The 
computed failure mode agrees well with the experimentally observed failure shown in Figure 
5.3(a). While the BTM does not model punching failure of walls explicitly, the displaced shape 
shows significant bulging near the crushed diagonal, reflecting the experimentally observed 
punching failure in the flange shown in Figure 5.3(c). The BTM computes a nominally elastic 
response of the coupling beams, which is in good agreement with the experimentally observed 
lack of damage in the coupling beams. 

 

 

Figure 5.5  Statically imposed displacement history (normalized to peak displacement) 
used to simulate damage from ground motions T1 to T5. 
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Table 5.1  Experimentally recorded and numerically computed periods of 
translational modes for 5-story specimen SLO. 

 
Wall 

segment 

Experimentally 
recorded period (s) 

BTM 
period (s) 

BTM-HT 
period (s) 

BTM-fineMesh 
period (s) 

1st mode 
2nd 

mode 
1st mode 

2nd 
mode 

1st mode 
2nd 

mode 
1st mode 

2nd 
mode 

Before 
S1 

Flange 0.167 - 0.101 0.024 0.093 0.023 0.099 0.022 

Web 0.141 0.032 0.095 0.022 0.080 0.020 0.096 0.024 

Before 
T6 

Flange 0.244 - 0.306 0.068 0.316 0.072 0.296 0.068 

Web 0.213 0.045 0.350 0.059 0.333 0.052 0.348 0.058 

After 
T6 

Flange 0.262 - 0.480 0.123 0.473 0.120 0.473 0.121 

Web 0.44 0.095 0.578 0.098 0.547 0.082 0.590 0.095 

 

 

 

Figure 5.6  Experimentally measured and numerically computed base shear force and 
roof drift response histories for ground motion T6. 
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Figure 5.7  Experimentally measured and numerically computed base shear versus 
roof drift response hysteretic shapes during ground motion T6. 

 

 

Figure 5.8  Numerically computed strain contour at t = 3.3 sec (a) global view and (b) 
zoom at the web of the bottom story (magnification factor = 10). 
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5.4 EFFECT OF COUPLING 

This section discusses the influence of coupling on the specimen for loading in the direction 
parallel to the web. To quantify the coupling forces between the walls, the axial and shear forces 
recorded along the height of the wall at the interface of the coupling beam with Wall A are 
discussed. The shear and axial forces resisted by the coupling beam and slab is termed coupling 
shear and axial force, respectively. Figure 5.9(a) shows the coupling shear force at the first story 
and over the building height, respectively. The slab contributes up to 18% of the peak coupling 
shear force at first story and 30% of the peak coupling shear force over the entire height. The 
peak coupling shear force of the first story is on average 36% of the sum of the coupling shears 
over the entire height by Equation (2.4) for an effective flange width of 0.88 m. Figure 5.9(b) 
shows that the peak net coupling axial forces at the first story and over the building height are 
0.35 and 0.73 times the total building weight W, respectively. The axial force is due to the 
compression strut running from the bottommost coupling beam to the base of the compression 
wall [see Figure 5.4(b)], providing a nearly unobstructed compression strut through both walls. 
The horizontal elements of the bottommost coupling beam were in tensile strain over the entire 
analysis, while shear deformations in the coupling beam caused compression of the diagonal 
concrete struts. The effect of large net axial compression force on the coupling beam and slab is 
not accounted for in Equation (2.4). It is additionally noted that, for the case where the mass 
block is not modeled with stiff elements, the coupling beam forces and axial load variation is 
nearly identical to that observed in the default BTM used. 

Figure 5.10 shows the base shear force resisted by the two T-section walls separately, 
where Wall A and Wall B are the T-shaped section walls in the negative and positive y-direction, 
respectively, as shown in Figure 5.1(a). Wall A resists 88% of the peak shear force in the 
negative y-direction, and Wall B resists 80% of the peak shear force in the positive y-direction. 
The shear force-drift ratio hysteresis shown in Figure 5.10(b) has an asymmetric shape in which 
Walls A and B resists significant shear only for negative and positive drift ratios, respectively. 
Note that the direction in which each wall resists the most shear is the direction where the flange 
is in compression and when the axial compression they resist increases due to coupling. The 
reason for the imbalance of shear force distribution between the walls is due to the axial load 
variation in the walls, as shown in Figure 5.11; the axial load variation is defined as the 
difference between the instantaneous axial load and the axial load resisted at the undeformed 
state (W/2 for each wall and W for the entire structure). While the maximum axial load variation 
for the specimen as a whole is 0.67W, each wall had an axial load variation up to 1.65W. Prior to 
diagonal softening at t = 3.26 sec, Wall A experienced a tension force of 1.0W, while Wall B 
experienced a compression force of 2.1W. 
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Figure 5.9  Response history of (a) shear force and (b) axial force resisted by the 
coupling beams and slabs at the interface with Wall A. 

 

Figure 5.10  (a) Response history of normalized base shear force and (b) normalized 
base shear force versus roof drift ratio for the two T-section walls, as 
defined in Figure 5.1(a). 

 

Figure 5.11  (a) Response history of axial load variation and (b) axial load variation 
versus roof drift ratio for the two T-section walls, as defined in Figure 
5.1(a). 
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5.5 EFFECT OF CONCRETE TENSILE STRENGTH WITH HORIZONTAL 
ELEMENTS 

As discussed in Section 2.5, modeling of the tension resistance of concrete in the horizontal 
direction and aggregate interlock affect the computed displacement level at onset of diagonal 
tension failure. A BTM with cracking and aggregate interlock (BTM-HT) as defined in Section 
3.3 is used and compared to the response of the default BTM. 

Table 5.1 lists the experimentally recorded and numerically computed structural periods 
for the default BTM and BTM-HT. As expected, the initial stiffness for the BTM-HT is greater 
than that of the default BTM. After the static load cycles, BTM-HT results in a larger period in 
the direction parallel to the flange and a smaller period in the direction parallel to the web. Figure 
5.12 shows the base shear force and roof drift response histories. BTM-HT overestimated the 
peak roof displacement by 28% and 4% in the flange and web direction, respectively. However, 
the peak roof drift of the cycle at t = 4 sec is underestimated by 26%, possibly because failure 
was not computed in the cycle before. The maximum shear force is overestimated by 37% in the 
direction parallel to the web but shows good agreement parallel to the flange. BTM-HT 
computes the first softening of concrete diagonals at t = 3.29 sec. BTM-HT does not, however, 
compute diagonal crushing: the maximum compressive strain in the diagonals is 0.23% while the 
maximum tension strain in the horizontals is 0.5%. 

For ground motion T6, the BTM-HT shows less agreement with the experimental results 
compared to the default BTM because aggregate interlock delays the development of large 
horizontal strains in BTM-HT, as discussed in Section 2.5. However, BTM-HT results in more 
accurate results for small displacements: when subjected to ground motion T5 (not shown in this 
report), the BTM-HT underestimates the peak roof drift parallel to the web by 26% while the 
regular BTM overestimates the peak roof drift parallel to the web by more than 200%. In the 
direction parallel to the flange, the two models BTM and BTM-HT exhibited very little 
difference because the flanges behave in a flexural manner that makes the effect of aggregate 
interlock less important, which is consistent with Section 3.3. The discrepancy is because the 
effects of aggregate interlock and concrete in the horizontal direction are important for small 
levels of lateral deformations before concrete tension softens significantly. At the larger roof 
drifts induced by ground motion T6, the presence of distributed shear cracking and the formation 
of a dominant crack result in the reduction of aggregate interlock forces and contribution of 
concrete in the horizontal direction. 
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Figure 5.12  Experimentally measured and numerically computed base shear force and 
roof drift response histories of BTM-HT during ground motion T6. 

5.6 EFFECT OF MESH REFINEMENT 

In this section, the mesh size of the bottom story of the BTM is refined so that the element size is 
reduced to half its original value. The resultant model is termed BTM-fineMesh. Figure 5.13 
shows the refined mesh for the bottom story: the original mesh layout is shown in black while 
the additional elements are shown in orange, and additional nodes are added at the element 
intersections. The BTM-fineMesh has twenty-one vertical lines in each of the flanges and nine 
vertical lines in each of the two parts of the web with a total of fifty-eight vertical lines at the 
base. The elements at the intersection between the flange and the web represent a cross-sectional 
area of of 6 cm × 6 cm and the corresponding steel as described in Detail 1 of Figure 5.1. The 
vertical lines at the ends of the flanges represent a cross-sectional area of 13 cm × 6 cm and the 
corresponding steel as described in Details 2 and 3 of Figure 5.1; other vertical lines in the 
flanges represent a cross-sectional area of 7.11 cm × 6 cm and the corresponding steel area. In 
the web, the two vertical lines imediately adjacent to the coupling beam represents a cross-
sectional area of 6 cm × 6 cm and the corresponding steel as described in Details 4 and 5 of 
Figure 5.1, while the remaining cross-sectional area is represented equally among the vertical 
lines representing the web. The mesh of the coupling beam is also refined, with four pairs of 
crossing diagonal elements; diagonals have a concrete area of 8.4 cm × 6 cm and diagonal steel 
reinforcement is represented in the elements along the main (corner-to-corner) diagonals. 
Material properties for the BTM-fineMesh are the same as that in the BTM except for the 
changes due to mesh objectivity as described in Sections 2.2 and 2.3. 
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Figure 5.14 shows the base shear and roof drift ratio time history experimentally recorded 
and numerically computed using BTM-fineMesh during ground motion T6. The maximum roof 
drift ratio calculated by the BTM-fineMesh has less than a 1% difference than that calculated 
with the BTM for both principal horizontal directions. However, BTM-fineMesh computes first 
diagonal softening at t = 1.7 sec, which is much earlier than BTM. However, both BTM and 
BTM-fineMesh compute first diagonal crushing and the horizontal elements exceeding 1.5% 
strain in tension at t = 3.3 sec, as shown in Figure 5.15 for BTM-fineMesh. The diagonal 
crushing of concrete occurs in the wall adjacent to the coupling beam, below the bottom corner 
of the coupling beam where compression is trasnfered to the wall; this computed failure is 
consistent with the damage shown in Figure 5.3(b) in the wall near the coupling beam. As in the 
BTM, BTM-fineMesh computes a nominally elastic response of the coupling beams, which is in 
good agreement with the observed lack of damage in the coupling beams. 

The similar responses and failure modes of the BTM and BTM-fineMesh demonstrates 
the mesh objectivity of the model a consistent diagonal angle. The BTM-fineMesh is able to 
compute more localized strains and failures, as shown in Figure 5.15, and will be used in the next 
section to model fracture of the horizontal steel.  

 

 

Figure 5.13  BTM with mesh refinement in the bottom story (BTM-fineMesh); the 
additional elements of BTM-fineMesh are shown in orange over the original 
BTM mesh (shown in black). 
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Figure 5.14  Experimentally measured and numerically computed response time 
histories during ground motion T6 using BTM-fineMesh (BTM with mesh 
refinement in the bottom story). 
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Figure 5.15  Numerically computed strain contour at t = 3.3 sec (a) global view and (b) 
zoom at the web of the bottom story for BTM-fineMesh (BTM with mesh 
refinement in the bottom story). 

5.7 EFFECT OF BAR FRACTURE 

In previous sections, the BTM and BTM-fineMesh computed a diagonal tension failure in Wall 
B of the specimen during ground motion T6. However, despite the large strains calculated 
(greater than 1.5%, the reported failure strain for the 3-mm-diameter steel used for the horizontal 
reinforcement), the steel material used in those models do not include the effects of fracture and 
do not account for the loss of strength in the horizontal elements due to fracture. In this section, 
the parallel GMP steel material model is altered by the authors to model fracture of the 3-mm-
diameter steel reinforcement in the horizontal direction. The model is termed BTM-fineFrac. 

The effect of fracture is accounted for in the steel material model as follows: after 
reaching the ultimate strain εu in tension, the strength of the steel material degrades with tangent 
modulus equal (in absolute values) to the initial stiffness (see Figure 5.16) and reaches zero 
stress at the strain of εr. The degrading modulus is defined to be the same as the initial stiffness 
to prevent numerical problems. As indicated in Figure 5.16, exceedance of the ultimate strain εu 
results in isotropic softening, i.e., a degradation of both the tensile and compressive strength of 
the reinforcement. 

Figure 5.17 shows the computed base shear force and roof drift ratio response histories 
computed using BTM-fineFrac and the GMP material model with fracture. Up to t = 3.3 sec–the 
instance of horizontal bar fracture–the computed response is identical to that of BTM-fineMesh. 
Figure 5.18 shows the strain contour and deformed shapes of BTM-fineFrac at t = 3.27 sec and 
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3.31 sec before and after fracture occurs. At t = 3.27 sec, the part of Wall B near the coupling 
beam shows both the tension strains forming in the horizontals and the near-crushing state of the 
diagonal element below the coupling beam; see Figure 5.18(b). At t = 3.31 sec, the diagonal 
element below the coupling beam has crushed, and the diagonal tension failure forms, see Figure 
5.18(c). Note that the horizontal elements in which the diagonal tension failure forms is not the 
same elements that had greater than 0.8% tensile strain at t = 3.27 sec; this is because the 
diagonal crushing and subsequent loss of strength in the diagonal element forces the model to 
use an alternate load path, causing the diagonal tension failure shown in Figure 5.18(c). 

By t = 3.31 sec, all of the horizontal bars along the main diagonal have fractured, and 
Wall B has lost more than 55% of lateral load capacity. In comparison to BTM-fineMesh, which 
did not model the fracture, BTM-fineFrac computes 50% less base shear in Wall B and 68% 
more base shear in Wall A during the cycles after t = 3.31 sec. The peak horizontal strain 
calculated for BTM-fineFrac is 8.4%, compared to the 1.9% computed by BTM-fineMesh. While 
both of the models did not compute the diagonal failure in Wall A as shown in the experimental 
response in Figure 5.3, BTM-fineFrac computes up to 0.9% horizontal strain in Wall A when the 
roof drift is in the positive y-direction (the direction that causes tension forces in Wall A). 

 

 

Figure 5.16  Uniaxial stress-strain behavior for the steel material model including the 
effect of rupture. 
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Figure 5.17  Experimentally measured and numerically computed response time 
histories for ground motion T6 using BTM-fineFrac (BTM with mesh 
refinement and bar fracture). 
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Figure 5.18  (a) Global view and (b) zoom at the web of the bottom story of the 
computed strain contour immediately before diagonal crushing and bar 
fracture at t = 3.29 sec, and (c) zoom at the web of the bottom story after 
diagonal crushing and bar fracture at t = 3.31 sec (magnification factor = 
10). 
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6 Conclusions 

In this report, the beam-truss model (BTM), first developed in Lu and Panagiotou [2014], is 
improved to better compute the behavior of planar and non-planar reinforced concrete (RC) 
walls, including the effect of flexure-shear interaction and diagonal shear failures. The main 
changes include: (1) for vertical lines that are not at the ends of a wall segment, the elements are 
pinned in the plane of the wall segment, (2) the diagonal angle, which is determined based on the 
shear demand and geometry of the model, and (3) concrete tension in the horizontal elements is 
ignored. The BTM methodology is extended to model slabs and coupling beams. 

Six static cyclic uniaxially loaded planar and non-planar wall specimens, two static cyclic 
multiaxially loaded non-planar wall specimens, one static cyclically loaded two bay slab-column 
specimen, and one 5-story coupled wall and slab system subject to triaxial ground motions were 
studied and used to validate the proposed beam-truss modelling approach. The main conclusions 
drawn are: 

1. The beam-truss modeling approach gives good results for planar walls with 
boundary elements. Three of the planar walls studied failed with diagonal 
crushing of concrete; one of these walls that failed with diagonal crushing was 
followed by localization of horizontal tension strains over a diagonal band 
spanning the length of the wall (termed diagonal tension failure). Both types of 
computed diagonal failures (compression and tension) were in good agreement 
with the experimental results in terms of failure type and drift ratio of failure. For 
planar walls with boundary elements longer than 10% of the wall length, 
boundary elements should be modeled with more than one vertical line. 

2. Non-planar walls with I-, U-, and T-shaped sections are considered in this report. 
The I- and U-section walls failed due to diagonal crushing of concrete, which are 
in excellent agreement with the experimental results. The T-section walls had 
flexural-based failures that were not modeled in the BTM. Two non-planar 
specimens had multiaxial loading and the computed response in the two main 
directions were in excellent agreement with the experimentally measured 
response, while the level of agreement in the diagonal and skew directions was 
decent. In the diagonal and skew directions, the BTM tends to underestimate the 
strength of the specimen. 

3. The dynamically loaded 5-story coupled wall specimen was in good overall 
agreement with the experimental response, showing that the BTM can be used for 
dynamic loading. The BTM computed diagonal tension failure in one of the two 
walls and fracture of the horizontal bars (which were non-ductile) were modeled 
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in the BTM. The computed failure mode is in good agreement with the 
experimentally measured response. 

The case studies investigated the effect of certain modeling choices of the BTM. The 
main conclusions regarding these modeling choices are: 

1. Elements with in-plane flexural rigidity can be used to effectively model the 
flexural behavior of the boundary elements of walls. This can reduce the number 
of vertical lines needed in a BTM. For specimens that experience localization of 
horizontal strains in a diagonal band (diagonal tension failure), elements with in-
plane flexural rigidity should not be used for the vertical lines that are not at the 
ends of the wall segment because the flexural rigidity influences the computed 
failure mode. 

2. Modeling of tensile strength of the concrete in the horizontal elements only has an 
important effect for walls that are shear critical (not studied herein), walls with 
low transverse steel ratio, or walls that exhibit distributed shear cracking. For 
walls that develop their nominal flexural strength, ignoring the tension strength of 
concrete in the horizontal direction leads to good agreement with both the failure 
point and the peak strength of the experimentally tested walls; however, doing so 
makes the model more flexible in the elastic range compared to the experimental 
specimen. 

3. The diagonal angle of the BTM can significantly affect the computed response. 
The diagonal angle should be determined based on the shear force demand, the 
amount of shear reinforcement, and the geometry of the wall. A smaller angle 
may result in underestimation of lateral strength and a premature or spurious 
diagonal tension failure, while a larger angle may cause earlier crushing of the 
concrete in the diagonal direction. 

In conclusion, this report improves upon the beam-truss model and serves as a 
comprehensive validation of the model for planar and non-planar RC walls with different failure 
modes. The model captures the effects of flexure-shear interaction and shear failures with good 
accuracy. In addition, an experimentally tested coupled wall-beam-slab system subjected to 
triaxial ground motions was studied to validate the BTM for coupled walls and for use under 
dynamic base excitation. 
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Appendix A Computed Strain Contours and 
Deflected Shapes for Case Studies 
with Static Loading 
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Figure A1.1 Strain contour and displaced shape (magnification factor = 10) for 
specimen Unit 1.0 at selected drift ratios. Triangular elements at the top of 
the wall model the loading beam. 
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Figure A1.2 Strain contour and displaced shape (magnification factor = 5) for specimen 
Unit 2.0 at selected drift ratios. Triangular elements at the top of the wall 
model the loading beam. 

 

Figure A1.3 Strain contour and displaced shape (magnification factor = 5) for specimen 
WSH6 at selected drift ratios. 
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Figure A1.4 Strain contour and displaced shape (magnification factor = 5) for specimen 
B6 at selected drift ratios. Triangular elements at the top of the wall model 
the loading beam. 
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Figure A1.5 Strain contour and displaced shape (magnification factor = 5) for specimen 
F1 at selected drift ratios. 

 

 



 

 67

 

 

 

  

Figure A1.6 Strain contour and displaced shape (magnification factor = 5) for specimen 
TW2 at selected drift ratios. 
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Figure A1.7 Strain contour and displaced shape (magnification factor = 5) for specimen 
NTW1 at selected drift ratios. Note: strain contours (a) through (e) are 
shown in the order which the specimen reaches each drift. 
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Figure A1.8 Strain contour and displaced shape (magnification factor = 5) for specimen 
TUB at selected drift ratios. 
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