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ABSTRACT 

Fiber-reinforced elastomeric bearings were originally proposed as an alternative to conventional 
steel-reinforced elastomeric bearings for seismic isolation applications. The flexible fiber 
reinforcement is a light-weight and potentially cost-saving alternative to steel reinforcement, 
which is assumed rigid in the design process. The variety of fiber materials available also serves 
as an additional parameter for designers to tailor the vertical stiffness of the bearing. In this 
report, a further cost reduction is visualized by manufacturing the bearing in a large sheet that 
can be cut to the required size such that the ideal shape for the bearing will be rectangular. An 
analytical solution for the vertical compression modulus of a rectangular elastomeric pad 
including the effects of the elastomer bulk compressibility and extensibility of the fiber 
reinforcement is given here in the form of a rapidly convergent single series. This solution is 
computationally efficient and allows for a rapid calculation of the stiffness for both design and 
analysis purposes. 
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1 Introduction 

An analysis is given for the mechanical characteristics of rectangular multilayer elastomeric 
isolation bearings when the reinforcing elements, which are normally steel plates, are replaced 
by a fiber reinforcement. The fiber reinforcement, in contrast to the steel reinforcement (which is 
assumed to be rigid both in extension and flexure), is assumed to be flexible in extension, but 
completely without flexural rigidity. The influence of fiber extensibility on the vertical stiffness 
of the fiber-reinforced isolator is studied, and it is shown that it should be possible to produce a 
fiber-reinforced isolator that matches the behavior of a steel-reinforced isolator. The fiber-
reinforced isolator will be significantly lighter and could be significantly less expensive to 
manufacture since the bearings can be mass produced by a much less labor intensive 
manufacturing process in contrast to current steel-reinforced bearings, which are custom made. 
The analysis for strip [Kelly and Takhirov 2002], circular [Kelly and Calabrese 2013], annular 
[Pinarbasi and Okay 2011] and rectangular bearings using a double Fourier series solution 
[Angeli et al. 2013] has been given in a series of earlier reports. 

Seismic isolation technology in the U.S. is applied almost exclusively to large, expensive 
buildings housing sensitive internal equipment, e.g.,, computer centers, chip fabrication factories, 
emergency operation centers, and hospitals. The isolators used in these applications are large, 
expensive, and heavy. An individual isolator can weight one ton and often more. To extend this 
valuable earthquake-resistant strategy to housing and commercial buildings, it is necessary to 
reduce the cost and weight of the isolators. The primary weight in an isolator is due to the 
reinforcing steel plates that are used to provide the vertical stiffness of the rubbersteel 
composite element. A typical rubber isolator has two large endplates (around 1 in. thick) and 20 
thin reinforcing plates (1/8 in. thick). The high cost of producing the isolator results from the 
labor involved in preparing the steel plates and the assembly of the rubber sheets and steel plates 
for vulcanization bonding in a mold. The steel plates are cut, sandblasted, acid cleaned, and then 
coated with a bonding compound. Next, the compounded rubber sheets with the interleaved steel 
plates are put into a mold and heated under pressure for several hours to complete the 
manufacturing process. 

The purpose of the research program, of which this study is a part, is to suggest that both 
the weight and the cost of isolators can be reduced by eliminating the steel reinforcing plates and 
replacing them with fiber reinforcement. The weight reduction is possible as fiber materials are 
available with an elastic stiffness that is of the same order as steel. Thus the reinforcement 
needed to provide the vertical stiffness may be obtained by using a similar volume of very much 
lighter material. The cost savings may be possible if the use of fiber allows a simpler, less labor-
intensive manufacturing process. It is also possible that the current approach of vulcanization 
under pressure in a mold with steam heating can be replaced by microwave heating in an 
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autoclave. Another benefit of using fiber reinforcement is that it would then be possible to build 
isolators in long rectangular strips, whereby individual isolators could be cut to the required size. 
All isolators are currently manufactured as either circular or square in the mistaken belief that if 
the isolation system for a building is to be isotropic, it needs to be made of symmetrically shaped 
isolators. Rectangular isolators in the form of long strips would have distinct advantages over 
square or circular isolators when applied to buildings where the lateral resistance is provided by 
walls. When isolation is applied to buildings with structural walls, additional wall beams are 
needed to carry the wall from isolator to isolator. A strip isolator would have a distinct advantage 
for retrofitting masonry structures and for isolating residential housing constructed from concrete 
or masonry blocks. To date, an analytical solution for a rectangular pad with a single Fourier 
series solution has not been available. This report presents a single series solution for the vertical 
stiffness of a rectangular pad that includes elastomer compressibility as well as reinforcement 
extensibility, with the square pad as a special case. 
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2 Vertical Stiffness 

2.1 ELASTOMERIC PAD 

Consider a layer of elastomer in an arbitrarily shaped pad of thickness, t , and a rectangular 
Cartesian coordinate system  , ,x y z  in the middle surface of the pad, as illustrated in Figure 

2.1. The displacements of the elastomer along the coordinate directions are: 

 (2.1) 

where u0 and v0 are related to the lateral bulging of the elastomer, and u1 and v1 are related to the 
extension of the fiber reinforcement. These displacements represent the kinematic assumption 
that the lateral bulging of the elastomeric layers follows a parabolic curve and that the horizontal 
planes remain plane and horizontal [Kelly 1993]. 

 
(a) (b) 

Figure 2.1 Constrained elastomeric pad (a) coordinate system and (b) lateral bulging. 
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It is assumed that the elastomeric compound is linear elastic and is not incompressible, 
but is affected by bulk compressibility which leads to the equation of compressibility constraint: 

 (2.2) 

where K  is the bulk modulus and from Equation (2.1): 

 

 (2.3) 

 

are the strains in which the commas imply a partial differentiation with respect to the indicated 
coordinate. 

Substitution of Equation (2.3) into Equation (2.2) yields: 

 (2.4) 

which, when integrated through the thickness from / 2t  to / 2t , gives:  

 (2.5) 

where  / 2 / 2w t    and  / 2 / 2w t   , and Δ is the vertical deflection; see Figure 2.1. 

Equivalently: 

 (2.6) 

where, /c t   , is the vertical compression strain in the pad. Note that compression is taken as 

positive.  

Assuming that the stress state is dominated by the internal pressure, p , such that 
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the equations of equilibrium for the stresses: 

 (2.7) 
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reduce to 

 (2.8) 

Assuming that the material is linear elastic, shear stresses xz  and yz  are related to shear 

strains  , ,xz z xu w    and  v, ,yz z yw    by: 

 (2.9) 

with G being the shear modulus of the material. Thus, from Equation (2.3): 

 (2.10) 

The equilibrium conditions from Equation (2.8) now become: 

 (2.11) 

2.2 STRESS IN THE FIBER REINFORCEMENT 

The fiber reinforcement is visualized as two thin sheets of straight fibers in the x- and y-
directions with a total thickness ft . This is the most commonly used type of fiber reinforcement, 

and the composite sheet is unable to sustain any internal shear forces. The normal forces in the 
sheet per unit length are xxF  and yyF , which are related to the surface shear stresses at the top 

and bottom of the elastomeric layers adjacent to the sheet, shown in Figure 2.2 for the x-
direction. 

 

 

Figure 2.2 Forces acting on the extensible reinforcement. 
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Equilibrium in the reinforcement requires that: 

 (2.12) 

From Equation (2.10): 

 (2.13) 

and 

 (2.14) 

Equation (2.12) can be expressed as: 

 (2.15) 

The relationship between the internal forces in the sheet and the displacements are: 

 (2.16) 
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There are five equations for the five unknowns: ou , ov , 1u , 1v , and p . 

Consider the specific example of the rectangular bearing with sides a  and 2b  over the 
range 0 x a   and b y b    as shown in Figure 2.3. The boundary conditions at the edges of 
the bearing are zero pressure in the elastomeric layer and zero force in the fiber reinforcement. 

The terms in ou  and ov  in Equation (2.17) can be eliminated by substituting in Equation 

(2.11). Expressing in favor of the pressure: 

 (2.18) 
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Substituting Equation (2.11) and Equation (2.19) into the compressibility constraint, 
Equation (2.6), yields: 

 (2.20) 

 

 

Figure 2.3 Rectangular pad coordinate system. 
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which can be rearranged as: 

 (2.21) 

with the boundary conditions p = 0 on 0x   and x a , and y b . 

It is convenient to define a set of dimensionless variables: 
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leading to: 

 (2.29) 

The total load, P, is defined by: 
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Figure 2.4 Effect of the a/b ratio on Ec for a rectangular pad including elastomer bulk compressibility 
and reinforcement extensibility. 
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 (2.38) 

With the displacement terms related to the extension of the reinforcement known, the 
force per unit length in the fiber reinforcement from Equation (2.16) and Equation (2.37) is: 

 (2.39) 

Note that the expressions for Fxx and Fyy are identical which implies that at any point the force in 
the reinforcement per unit length is equal in both perpendicular directions. 
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The maximum shear strain due to compression occurs at the interface of the fiber reinforcement 
and elastomeric layer at the free edge of the pad. 
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3 Special Case: Square Pad 

For the special case of a square pad with a = 2b and / 4S a t , Equation (2.32) reduces to: 

 (3.1) 

with the dimensionless parameters: 

 (3.2) 

 

If the elastomer is assumed to be incompressible and the fiber reinforcement is assumed 

inextensible (i.e., K   and fE  ) the dimensionless parameters are 2 0   and 2 0,   

and Equation (3.1) reduces to: 

 (3.3) 

which is identical to the solution for a square pad with an incompressible elastomer and rigid 
reinforcement presented in Kelly and Konstantinidis [2011]. 

Similarly, for a square pad with inextensible reinforcement and a compressible elastomer 

(i.e., 2 0  ) Equation (2.32) becomes: 

 (3.4) 

which is identical to the solution presented in Kelly and Konstantinidis [2011]. 

Figure 3.1 shows the compression modulus of a square pad over 20 50   and 
20 50  . For the special case of an incompressible elastomer and inextensible reinforcement, 
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26.748cE GS . The compression modulus decreases with increasing elastomer bulk 

compressibility or increasing extensibility of the reinforcement. Note that Equation (3.1) is 
equally sensitive to changes in α or β. Consequently, Figure 3.1 is symmetric about the plane 
  , and in the two-dimensional representation, α or β are interchangeable. Note that as either 

α or β increases that the sensitivity to the other parameter decreases. For example, with 2 0  ,  
22.060 6.748cE GS  , which corresponds to a maximum decrease of 69% over the range of 

2 considered if extensibility of the reinforcement is included. Similarly, with 2 50  , 
21.250 2.060cE GS  , which corresponds to a maximum decrease of 39% over the same 

range of 2 . 

The maximum shear strain due to compression for a square pad, max , from Equation 

(2.40) is: 

 (3.5) 

Figure 3.2 shows the maximum shear strain due to compression normalized by εc over a range of 
5 50S  . Note that the lower bound of S is determined by the pressure solution, which is 
considered appropriate for shape factors of 5 and greater [Kelly 1993]. In all cases considered the 
ratio quickly approaches a horizontal asymptote. The ratio increases with an increase in the K/G 
ratio, as well as an increase in f fE t tG . 

 

 

Figure 3.1 Compression modulus of a square pad. 
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Figure 3.2 Maximum shear strain due to compression normalized by the compression strain as a 
function of the shape factor. 
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4 Conclusions 

Many large urban centers are extremely vulnerable to the damaging effects of large earthquakes. 
For example, large cities such as Istanbul and Tehran have many thousands of buildings that 
were built prior to the enforcement of stringent building codes. Buildings in the range of two to 
six stories have been constructed using only vertical load designs with no provision for 
horizontal resistance. In many cases these buildings are used as residences, offices, and shops. 
This magnitude of buildings cannot realistically be demolished and replaced, and retrofitting 
them by conventional methods would be highly disruptive to the occupants. 

Modern methods of structural control would be much too expensive for these buildings, 
but it is possible that a system of inexpensive seismic isolation could be adapted to improve the 
seismic resistance of poor housing and other buildings such as schools and hospitals. In at least 
one retrofit project in Armenia, a large multi-family housing block was retrofitted using rubber 
isolators with no need for the families to leave while the construction was completed. 

Development of low-cost seismic isolators that can be mass-produced by a relatively 
simplified manufacturing process would stimulate worldwide application of the seismic isolation 
technology. The development of this technology is appropriate for the retrofit of existing 
structures with deficiencies and for new construction in lesser developed and developed 
countries. The recent development of fiber-reinforced elastomeric bearings has the potential of 
producing bearings that are equally vertically stiff, but cheaper and easier to manufacture than 
steel-reinforced bearings. A large variety of fiber materials is available, ranging from glass to 
carbon, and this gives the bearing designer more options. When the idea is to provide a low-cost 
system with a performance that is close to that of a steel-reinforced bearing, then the use of a 
high-stiffness fiber-like carbon or Kevlar is required. If a lower vertical stiffness can be tolerated, 
then a cheaper fiber such as glass can be used. 

Fiber-reinforced bearings do not require steel end plates or the elastomeric cover 
necessary to protect the steel from rusting. Consequently, the bearings will be much lighter than 
steel-reinforced bearings and can be manufactured as large slabs, and the bearings cut from the 
slab to the required shape. This report assumed that the optimal shape of the bearing cut from a 
slab will be rectangular. A single–series solution for the vertical stiffness of a rectangular bearing 
was presented herein; this solution is computationally efficient and allows a rapid calculation of 
the stiffness for both design and analysis purposes. 
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