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Abstract

This report investigates the issue of selecting and scaling ground motions as input excita-
tions for response history analyses of buildings in performance-based earthquake engineering.
Many ground motion selection and modification (GMSM) procedures have been developed
to select ground motions for a wide variety of objectives. This report focuses on the selection
and scaling of single, horizontal components of ground motion for estimating seismic demand
hazard curves (SDHCs) of multistory frames at a given site.

Chapter 2 develops a framework for evaluating GMSM procedures in their ability to
provide accurate estimates of SDHCs. The notion of a benchmark SDHC is introduced,
enabling biases caused by GMSM procedures to be isolated from other sources of bias. More
importantly, the ability to quantify bias facilitates the identification of intensity measures
(IMs) that are sufficient; an IM, which may be scalar or vector-valued, is defined to be
sufficient for a response quantity, or engineering demand parameter (EDP), when the EDP
is sensitive to only this IM and no other features of the ground motion 1. However, the
application of the framework in this chapter is limited by the availability of recorded ground
motions and prediction models for EDP of structures.

The framework developed in Chapter 2 is applied to synthetic ground motions in Chap-
ter 3, where biases in estimates of SDHCs caused by GMSM procedures can be estimated for
any structural system and any EDP. However, the use of synthetic ground motions gives rise
to the issue of developing benchmark-consistent ground-motion prediction models. Based
on the results from Chapters 2-3, it is hypothesised that the potential bias in any SDHC
estimate is caused directly by two important properties of the particular selection of ground
motions: (i) hazard consistency and (ii) IM sufficiency.

A novel ground-motion selection procedure, rooted in the theory of Importance Sampling,
is developed in Chapter 4 that allows: (i) hazard consistency of the selected motions to be
directly enforced for a user-specified collection of IMs, and (ii) SDHCs of a structure to
be estimated from a single ensemble of ground motions, with the option of avoiding record
scaling altogether. This procedure, together with two other contemporary GMSM procedures
– (i) “exact” Conditional Spectrum and (ii) Generalized Conditional Intensity Measure – are
evaluated in Chapters 5-6 for several structural systems and EDPs at a specified site. In
these chapters, the amount of effort involved in implementing these procedures for estimating
SDHCs is summarized in a step-by-step form, and the magnitude of biases caused by these
procedures are documented.

1Strictly speaking, only IMs that are insufficient may be identified.
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Chapter 1

Introduction

Nonlinear response history analyses (RHAs) play a major role in performance-based earth-
quake engineering (PBEE) of buildings. By performing RHAs of a computer model of the
building subjected to an input ground motion 1, seismic demands can be computed to de-
termine seismic demand hazard curves (SDHCs). In PBEE of buildings, the computed
seismic demands are used as inputs to fragility functions for predicting (both structural and
non-structural) damage [Porter et al., 2007]; e.g., SDHCs can be integrated with fragility
functions to provide annual rates of damage exceedance. By predicting damage as a function
of the seismic demand instead of the ground-motion intensity (e.g., peak ground acceleration,
etc.), the resulting estimate of damage is more informative because the variability in the es-
timate is reduced. Similarly, losses due to earthquakes (e.g., repair costs, business downtime,
casualties, etc.) may be better predicted (through consequence functions) with knowledge
about the damage in buildings (see e.g., Section 3.9 in [Applied Technology Council, 2012]).
Thus, nonlinear RHAs of building models are an important step in the estimation of losses
due to earthquakes.

However, one of the key challenges in this approach is the selection and scaling of ground
motions to serve as input excitations for nonlinear RHAs. Researchers have proposed many
different ways to select ground motions. Some have proposed to select on the basis of
matching seismological parameters for a given earthquake scenario [Chapman, 1995, Stewart
et al., 2001, American Society of Civil Engineers, 2010] whereas others have suggested to
select on the basis of spectral shape [Malhotra, 2003, Kottke and Rathje, 2008, Baker and
Cornell, 2006b]. In fact, many different intensity measures (IMs) have been investigated
and/or developed for selection purposes [Akkar and Özen, 2005, Riddell, 2007, Luco and
Cornell, 2007, Yang et al., 2009, Kalkan and Chopra, 2011]. With such a wide variety of
parameters to choose from, how does one identify those that are most desirable?

Regardless of the selection approach, ground motions are often scaled by factors of varying
degrees before RHAs are performed. Although scaling offers the advantage of reducing the
variability in the resulting demands [Shome et al., 1998], such modification of data raises

1In this report, the phrase “ground motion” refers to ground acceleration as a function of time, or ground
motion time series.
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many questions. For example, some researchers have argued that there is no need to limit
the scale factors [Bommer and Acevedo, 2004, Watson-Lamprey and Abrahamson, 2006] and
that scaling does not cause bias in the demands [Iervolino and Cornell, 2005]. On the other
hand, some have found that scaling may induce bias, depending on how ground motions
were selected [Luco and Bazzurro, 2007, Baker, 2007a]. Moreover, other researchers have
suggested that the value of the results from scaling is questionable, providing limited if any
information [Grigoriu, 2010].

The objectives of this report are as follows:

1. To develop a rigorous approach for evaluating SDHCs of a structure from any ground-
motion selection and modification (GMSM) procedure.

2. To understand the underlying reasons why bias in the demands is observed in some
cases but not in others, leading to conflicting conclusions in the literature.

3. To develop a rigorous procedure for selecting ground motions with the option of avoid-
ing record scaling altogether.

4. To comprehensively evaluate contemporary GMSM procedures in their ability to pro-
vide accurate estimates of the SDHCs of a structure at a given site.

In Chapter 2, various objectives for performing RHAs are organized, leading to the
objective of estimating SDHCs as the appropriate choice for rigorously evaluating GMSM
procedures. The notion of a benchmark is introduced, and its importance in the context
of evaluating GMSM procedures is discussed. It is found that the potential bias in any
SDHC estimate is directly caused by hazard inconsistencies in the specific selection of ground
motions with respect to IMs that are influential to the response. As long as ground motions
are selected to be hazard-consistent with respect to a vector-valued IM that is sufficient,
then the resulting SDHC estimates are unbiased, irrespective of the level of record scaling.

The framework developed in Chapter 2 is applied to synthetic ground motions in Chap-
ter 3 in order to evaluate GMSM procedures for any structure and any response quantity of
interest. Equipped with a rigorous benchmark, the relationship between SDHC bias, haz-
ard consistency, and IM sufficiency is confirmed. Most importantly, the benchmark SDHC
enables researchers to distinguish IMs (e.g., spectral shape, etc.) that are insufficient from
those that are approximately sufficient for the response quantity of interest. Additionally,
the issue of benchmark consistency arises for the first time as a consequence of evaluating
GMSM procedures with synthetic ground motions; this issue is thoroughly addressed in this
chapter.

In Chapter 4, an Importance Sampling-based ground-motion selection procedure is de-
veloped to take advantage of unscaled yet intense ground motions for estimating SDHCs.
This procedure permits hazard consistency of the selected motions to be directly enforced
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for a wide range of IMs and exceedance rates, through different choices of the Importance
Function. Furthermore, the procedure enables SDHCs of a structure to be estimated from a
single ensemble of ground motions. The chapter concludes with recommendations for inputs
to this procedure: (i) vector of IMs for ground motion selection IM, (ii) number of ground
motions to be selected for RHAs n, (iii) maximum acceptable scale factor SFmax, and (iv)
target fraction of scaled ground motions γ.

Using the concept of a benchmark, as developed in Chapters 2-3, two state-of-the-art
GMSM procedures – (i) “exact” Conditional Spectrum, and (ii) Generalized Conditional
Intensity Measure (GCIM) – are comprehensively evaluated in Chapter 5. First, the imple-
mentation of each procedure for estimating SDHCs is summarized in a step-by-step form;
these implementations can be quite involved, requiring several ensembles of ground mo-
tions to be iteratively selected until they are consistent with the target over a wide range
of IMs. Second, the procedures are evaluated in their ability to accurately estimate SD-
HCs for several structural systems and response quantities at a given site. Typically, these
state-of-the-art procedures provide excellent estimates of the SDHC; however, it is found
that spectral shape can be insufficient for estimating the annual rate of collapse and for
estimating floor accelerations. Furthermore, even a large vector of IMs that includes spec-
tral accelerations, peak ground measures, spectrum intensities, and cumulative effects can
be insufficient for estimating floor accelerations. Finally, the limitations of the bias-checking
procedure in GCIM are identified, where it is shown that misleading conclusions may be
obtained from the bias-checking procedure.

The Importance Sampling-based procedure from Chapter 4 is evaluated in Chapter 6.
For the cases considered, the SDHCs from the Importance Sampling procedure are demon-
strated to be unbiased for all systems and all response quantities when ground motions are
not scaled. When the procedure is implemented with scaled ground motions, the resulting
SDHCs are biased for a few of the cases considered. The epistemic uncertainty in the SDHC
estimates from the Importance Sampling procedure is controlled primarily by the Importance
Function and secondarily by the number of ground motions. Given a judiciously chosen Im-
portance Function, the procedure greatly simplifies the problem of selecting ground motions
for estimating SDHCs; the selection of the Importance Function is discussed in this chap-
ter. Finally, the Importance Sampling procedure’s ability to accurately estimate SDHCs for
several structural systems from a single ensemble of ground motions is discussed.
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Chapter 2

A framework for the evaluation of
ground motion selection and
modification procedures

2.1 Preview

This chapter develops a framework to evaluate ground motion selection and modification
(GMSM) procedures. The context is probabilistic seismic demand analysis (PSDA), where
response history analyses (RHAs) of a given structure, using ground motions determined by
a GMSM procedure, are performed in order to estimate the seismic demand hazard curve
(SDHC) for the structure at a given site. Currently, a GMSM procedure is evaluated in
this context by comparing several resulting estimates of the SDHC, each derived from a
different definition of the conditioning intensity measure (IM). Using a simple case study,
we demonstrate that conclusions from such an approach are not always definitive; therefore,
an alternative approach is desirable. In the alternative proposed herein, all estimates of the
SDHC from GMSM procedures are compared against a benchmark SDHC under a common
set of ground-motion information. This benchmark SDHC is determined by incorporating
a prediction model for the seismic demand into the probabilistic seismic hazard analysis
(PSHA) calculations. To develop an understanding of why one GMSM procedure may pro-
vide more accurate estimates of the SDHC than another procedure, we identify the role of
“IM sufficiency” in the relationship between (1) bias in the SDHC estimate and (2) “hazard
consistency” of the corresponding ground motions obtained from a GMSM procedure. Fi-
nally, we provide examples of how misleading conclusions may potentially be obtained from
erroneous implementations of the proposed framework.

2.2 Introduction

Ground-motion selection and modification (GMSM) procedures determine the necessary in-
put ground motions for response history analyses (RHAs) of structures. Response history
analyses of a structure are often performed in order to estimate the seismic demands, for
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one or more engineering demand parameters 1 (EDPs), resulting from a given ensemble of
ground motions. The modification of ground motions can be classified into two approaches:
(1) amplitude scaling and (2) spectrum matching in the time or frequency domains. The
framework developed herein applies primarily to the former and secondarily to the latter.

Many different GMSM procedures are available in the literature. Some select and scale
on the basis of scalar intensity measures (IMs). For instance, the spectral acceleration 2

at the fundamental period of the structure, A(T1), is a popular choice as an IM for record
scaling (e.g., [Watson-Lamprey and Abrahamson, 2006, Shome et al., 1998]). Alternative
choices for such scalar IMs include the peak deformation of inelastic single-degree-of-freedom
(SDF) systems (e.g., [Tothong and Luco, 2007, Luco and Cornell, 2007, Kalkan and Chopra,
2011]). Several procedures select and scale ground motions on the basis of vector-valued
IMs. For example, selecting records whose response spectra most closely matches a target
spectrum is a common approach (e.g., [Kottke and Rathje, 2008, Baker, 2011]). A review
of various GMSM procedures is provided in Appendix A of [PEER GMSM Working Group,
2009] and in [Katsanos et al., 2010].

There has been much interest in evaluating GMSM procedures. For example, the Pacific
Earthquake Engineering Research (PEER) GMSM working group [PEER GMSM Working
Group, 2009], Heo et al. [Heo et al., 2010], and Hancock et al. [Hancock et al., 2008] all
compared estimates of the median demand of a structure, from RHAs for ground motions
determined by GMSM methods, against a ‘benchmark’ that is defined differently in each of
these studies. In the first study, the benchmark is derived from a regression model of the EDP
as a function of IMs and the regression is applied to both scaled and unscaled ground motions;
this benchmark is referred to as the Point-Of-Comparison [Watson-Lamprey, 2007, PEER
GMSM Working Group, 2009]. In the study by Heo et al., the benchmark is also derived
from a regression model of the EDP as a function of IMs; however, the regression is applied
to only unscaled ground motions. Hancock et al. derive the benchmark from a regression
model of the EDP as a function of seismological parameters (i.e., earthquake magnitude,
distance, etc.), and the regression is applied to only unscaled ground motions.

In order to meaningfully evaluate GMSM procedures, the objective of the associated
RHAs of the structure must be clearly stated. For example, researchers have been interested
in probability distributions of the demand for a given:

1. earthquake scenario;

2. ground-motion scenario;

3. intensity level; and

4. time frame.

1‘Engineering demand parameter’ is a synonym for ‘response quantity’.
2In this document, “spectral acceleration” refers to the pseudo-acceleration [Chopra, 2011] for 5% damp-

ing corresponding to the arbitrary horizontal component of ground motion [Baker and Cornell, 2006c].
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The PEER GMSM working group considered the estimation of the median and the com-
plete distribution of 1 and 2 as four separate objectives of GMSM methods [PEER GMSM
Working Group, 2009]. They define an earthquake scenario as an earthquake with a specific
magnitude, M , distance, R, and rupture information (e.g., style of faulting, dip angle, shear
wave velocity of the site, etc.) and a ground motion scenario as an earthquake scenario with
a specified value of A(T1). Herein we use rupture scenario as a synonym for earthquake
scenario.

The estimation of distributions 1 and 3 above are referred to as a scenario-based assess-
ment and an intensity-based assessment, respectively [Applied Technology Council, 2012,
NEHRP Consultants Joint Venture, 2011]. In an intensity-based assessment, the IM may be
defined as a scalar or a vector; for example, it may be defined as the spectral acceleration
at one vibration period or at several periods (i.e., a response spectrum). The estimation of
distribution 4 is known as a time-based assessment, where the specified time frame depends
on the needs of decision makers (e.g., one year, 50 years, etc.) [Applied Technology Council,
2012], and the probabilities are converted from annual rates of exceedance based on an as-
sumption of earthquake occurrence in time 3 [McGuire, 2004]. The process of determining
these exceedance rates, or seismic demand hazard curves (SDHCs), is known as a risk-based
assessment [NEHRP Consultants Joint Venture, 2011], or a probabilistic seismic demand
analysis (PSDA) [Shome, 1999].

This study develops a framework for evaluating GMSM procedures in the context of
PSDA. This choice is motivated by the fact that for a given structure at a given site, distri-
butions 1-3 above are not “unique”; for example, different versions of distribution 3 exist for
different definitions of the IM and for different intensity levels under consideration [Bradley,
2013a]. In contrast, the SDHC from PSDA is unique for a given structure at a given site
[Bradley, 2012c].

In the proposed framework, all estimates of the SDHC from GMSM procedures are com-
pared against a benchmark SDHC under a common set of ground motion information. The
benchmark SDHC is determined by incorporating an EDP prediction model that is devel-
oped from unmodified ground motions into the probabilistic seismic hazard analysis (PSHA)
calculations. Currently, a GMSM procedure is evaluated in the context of PSDA by compar-
ing several resulting estimates of the SDHC, each derived from a different definition of the
conditioning IM. To illustrate an important but subtle limitation of this approach, PSDA
is critically examined next and a simple structural model at a realistic site is chosen as the
case study.

2.3 Probabilistic Seismic Demand Analysis

The objective of performing RHAs in PSDA is to develop a SDHC for a given structure
at a given site. Denoted by the symbol λEDP (z), a SDHC is a plot of the annual rate of
exceedance, λ, against the seismic demand; it is similar to a traditional hazard curve in PSHA

3In this study, all conversions are made with the Poisson assumption.
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except that the IM on the horizontal axis has been replaced by the EDP. Once developed,
SDHCs are used to: (1) determine the annual rate of seismic demand exceeding a particular
structural capacity, or (2) determine the seismic demand associated with a specified annual
rate of exceedance.

The SDHC is governed by (see e.g., [Shome et al., 1998, Baker and Cornell, 2005, Bradley,
2012c]):

λEDP (z) =

∫
Pr(EDP > z | IM = x) · |dλIM(x)| (2.1)

where Pr(EDP > z | IM = x) is the probability of EDP exceeding demand level z given
intensity level x, and λIM(x) is the intensity measure hazard curve (IMHC). In Equation 2.1,
the IM is often defined as the spectral acceleration at a conditioning period of vibration, T ∗,
while the EDP is commonly defined as the maximum story drift ratio over all stories of a
multistory building [Lin et al., 2013b]. However, the IM may be defined in many different
ways. For example, it may be defined as peak ground acceleration (PGA), peak ground
velocity (PGV), or significant duration [Bradley, 2012c]. Alternatively, it may be defined as
a vector of IMs (e.g., {A(T1),M}, or {A(T1), ε(T1)}, where ε(T1) is the number of standard
deviations between the observed and the predicted value of A(T1)); if it is defined as a vector,
then Equation 2.1 needs to be modified appropriately [Baker and Cornell, 2005]. Note that
Equation 2.1 has been extended to consider a vector of EDPs (e.g., drift ratios for individual
stories, etc.) [Bradley, 2012c] and to account for the possibility of structural collapses (see
e.g., [Shome, 1999, Baker and Cornell, 2005, Lin et al., 2013b]); however, these extensions
are beyond the scope of this study.

The SDHC is typically computed from the following equation:

λ̂EDP (z) =

NIM∑
i=1

P̂r(EDP > z | IM = xi) · |∆λ̃IM(xi)| (2.2)

where NIM is the number of intensity levels considered, and xi is the ith intensity level;
∆λ̃IM(xi) is the discrete form of |dλIM(x)|, which is obtained from PSHA, while P̂r(EDP >
z | IM = xi) is the discrete form of Pr(EDP > z | IM = x), which is computed from RHAs
of the structure. The ‘hat’ symbols in Equation 2.2 serve to emphasize that the quantities
computed are estimates (of the corresponding exact quantities in Equation 2.1) that depend
primarily on the particular choice of ground motions selected for RHAs of the structure.
This implies that different GMSM procedures lead to different estimates of the SDHC. The
meaning of the tilde symbol in λ̃IM(xi) will become evident in Section 2.4.

The steps to compute a SDHC in PSDA, when IM ≡ A(T ∗) are schematically illustrated
in Figure 2.1. The IMHC for A(T ∗) is shown in Figure 2.1a. The number of intensity levels,
NIM , is chosen to satisfactorily approximate the integral and |dλIM(x)| in Equation 2.1. For
illustration only, Figure 2.1a shows three intensity levels and the discrete form of |dλIM(x)|
at intensity level xo.
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Figure 2.1: The elements of PSDA when IM ≡ A(T ∗): (a) discretization of the IMHC,
λIM(x); (b) ground motions selected and scaled such that IM = xo; (c) estimation of
Pr(EDP > z | IM = x) from RHAs of the structure; and (d) resulting SDHC, λEDP (z).

For each ith intensity level, an intensity-based assessment of seismic demand is conducted
to determine P̂r(EDP > z | IM = xi). First, an ensemble of scaled ground motions is
selected as excitations for RHAs of the system. Recorded ground motions are often scaled
because the record-to-record variability of interest is conditioned so that the IM is exactly
equal to xi. Consequently, all candidate ground motions are first scaled, so that IM = xi,
before a subset of them are selected as excitations for RHAs of the structure. For example, the
response spectra of one such ensemble, with each ground motion scaled to satisfy A(T ∗) = xo,
are shown in Figure 2.1b.

Next, RHAs of the structure are performed for the selected ensemble, and the computed
values of EDPs are processed by statistical inference methods. The list of EDPs correspond-
ing to the ensemble in Figure 2.1b is depicted as circles above A(T ∗) = xo in Figure 2.1c. A
lognormal distribution is used to model Pr(EDP > z | IM = xi), and the two parameters
of this distribution are estimated by the mean, µ̂lnEDP , and standard deviation, σ̂lnEDP , of
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the list of logarithmic EDPs [Baker, 2007b, Wasserman, 2004]:

P̂r(EDP > z | IM = xi) = 1− Φ

(
ln z − µ̂lnEDP

σ̂lnEDP

)
(2.3)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution.
For illustration, the probability of EDP exceeding zo given intensity xo is shown as the
shaded area in Figure 2.1c. Although a lognormal distribution is commonly employed, an
alternative is to apply nonparametric inference to the results from RHAs [Vamvatsikos and
Cornell, 2004, Baker, 2007b]:

P̂r(EDP > z | IM = xi) =
1

n

n∑
l=1

I(zl > z) (2.4)

where n is the number of records selected for intensity level xi, zl is the value of EDP for
the lth record, and I(·) denotes the indicator function (i.e., I(zl > z) = 1 only if zl > z;
otherwise, it is equal to zero); we will revisit Equation 2.4 in Section 2.7.

To illustrate how a GMSM procedure is utilized to estimate a SDHC in PSDA, first
consider how to estimate the annual rate of the EDP exceeding some demand level, say zo.
Substituting P̂r(EDP > zo | IM = xi), computed from either Eqs 2.3 or 2.4, in Equation 2.2

leads to λ̂EDP (zo), which is identified by the circle in Figure 2.1d. Repeating such calculations
for all demand levels leads to the SDHC shown in Figure 2.1d.

How can we evaluate a GMSM procedure in its ability to provide ‘unbiased’ estimates
of the SDHC? We define a SDHC estimate to be unbiased or accurate if it is practically
equal to the SDHC from Equation 2.1 (i.e., λ̂EDP (z) ≈ λEDP (z)); otherwise, it is biased

or inaccurate (i.e., λ̂EDP (z) 6= λEDP (z)). Two approaches have been proposed to assess
whether the resulting SDHC estimates from a given GMSM procedure are biased or not:

1. Compare the SDHC estimate from Equation 2.2, which is based on a scalar IM, against
another estimate from a version of Equation 2.2 where the IM is vector-valued. If the
two estimates are appreciably different, then they are biased; if they are practically
equal to each other, then they are unbiased [Baker and Cornell, 2006b].

2. Compare the SDHC estimate from Equation 2.2, based on one definition of the scalar
IM, against another estimate from Equation 2.2, based on a different definition of
the scalar IM. If the two estimates are practically equal to each other, then they are
unbiased [Bradley, 2012c, Lin et al., 2013b].

As will be demonstrated later, the two approaches above are not always adequate for
definitively evaluating a GMSM procedure in its ability to provide unbiased estimates of the
SDHC. Since Equation 2.1 is valid for any definition of the IM, λEDP (z) determined from
Equation 2.1 for one definition must be identical to λEDP (z) determined from Equation 2.1

10



for another definition. Therefore, if SDHC estimates from a GMSM procedure are unbiased,
then λ̂EDP (z) computed from Equation 2.2 for one definition of the IM must be practically
equal to another estimate from Equation 2.2 for a different definition of the IM. However, the
converse of this statement is not true: the fact that the two SDHC estimates (corresponding
to two different IMs) are practically equal to each other does not necessarily imply that SDHC
estimates from the GMSM procedure are unbiased. This subtle but important limitation is
illustrated next with a simple case study.

2.4 Case Study

Site, Structural Model, and Engineering Demand Parameter

The University of California, Berkeley is selected as the example site. Its latitude and
longitude coordinates are 37.876 ◦N and 122.251 ◦W, respectively. The shear wave velocity,
Vs30, is specified as 600 m/sec, and the basin depths, Z1.0 and Z2.5, are specified as 0.1 and
1 km respectively. OpenSHA [Field et al., 2005] is used to perform PSHA; the “USGS/CGS
2002 Adj. Cal. ERF” model is chosen for the earthquake rupture forecast, 5 km is specified
for the rupture offset, and background seismicity is excluded.

The selected system is a 5% damped bilinear SDF model with 5% post-yield hardening.
Its natural period of small-amplitude vibration, T1, is 1 sec and its yield displacement,
uy, is 0.2g × (T1/2π)2. The EDP of interest is its peak deformation, um. We estimate the
SDHC for this particular response quantity using RHAs of the system due to ground motions
determined by a GMSM procedure as follows.

Intensity Measure Hazard Curve

The IMHC shown schematically in Figure 2.1a is obtained from PSHA for a given site. It is
governed by the standard equation (see e.g., [McGuire, 2004]):

λIM(x) =
Nsrc∑
i=1

νi ·
{∫ ∫

Pr(IM > x |M = m,R = r)fR|M(r | m)fM(m) dr dm

}
i

(2.5)

where Nsrc is the number of earthquake sources, νi is the activity rate for the ith earthquake
source, Pr(IM > x | M = m,R = r) is the probability of IM exceeding level x for a given
earthquake scenario, fR|M(r | m) is the probability density function (PDF) of distance for a
given magnitude, and fM(m) is the PDF of magnitude. The activity rate, magnitude PDF,
and distance PDF for each of the Nsrc earthquake sources are supplied by an earthquake
rupture forecast, whereas the probability distribution of IM for a given earthquake scenario
is obtained from a ground-motion-prediction model (GMPM) 4.

4GMPMs are also known as “ground-motion-prediction equations” (GMPEs) and were formerly referred
to as “attenuation relationships”. In the context of GMPMs, the phrase “ground motion” refers to an IM
whereas in the rest of this study, the phrase refers to ground acceleration as a function of time; the two
different uses of “ground motion” should be clear from the context.
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In practice, λIM(x) in Equation 2.5 is computed from the following equation:

λ̃IM(x) =
Nsrc∑
i=1

νi ·

{∑
m

∑
r

P̃r(IM > x |M = m,R = r) Pr(M = m,R = r)

}
i

(2.6)

Comparing Equation 2.5 against Equation 2.6, we see that the integrals have been replaced
with summations, the PDFs have been replaced with a joint probability mass function,
and two expressions have been annotated with tilde symbols. Similar to Equation 2.2, the
tilde symbols in Equation 2.6 serve to emphasize the fact that the quantities computed are
estimates (of the corresponding exact quantities in Equation 2.5) that depend primarily
on the particular set of ground motions selected in developing the GMPM. Consequently,
different GMPMs lead to different estimates of the IMHC, λ̃IM(x).

Four estimates of an IMHC at the selected site – for two definitions of the conditioning IM
– are presented in Figure 2.2. They correspond to four GMPMs: (1) Campbell & Bozorgnia
2008 (CB08) [Campbell and Bozorgnia, 2008], (2) Boore & Atkinson 2008 (BA08) [Boore and
Atkinson, 2008], (3) Abrahamson & Silva 2008 (AS08) [Abrahamson and Silva, 2008], and
(4) Chiou & Youngs 2008 (CY08) [Chiou and Youngs, 2008]; the differences among the four
IMHC estimates are apparent. Which IMHC should one choose to proceed? This question
is answered in Section 2.6 but for now, the CB08 model is chosen, and the resulting IMHC
is discretized to compute ∆λ̃IM(xi) in Equation 2.2. For each conditioning IM, the IMHC is
discretized with NIM = 11 intensity levels corresponding to 11 hazard levels: 99%, 80%, 50%,
20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%, and 0.1% probability of exceedance in 50 years, which
are identical to those in [Bradley, 2012c]. For each intensity level, P̂r(EDP > z | A(T ∗) = xi)
is obtained from an intensity-based assessment (Figure 2.1c).
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Figure 2.2: Four estimates of the IMHC for the conditioning IM in Equation 2.2: (a) IM ≡
A(1sec); and (b) IM ≡ A(0.75sec).
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Intensity-Based Assessment

As shown in Figure 2.1, a single intensity-based assessment involves (1) ground-motion se-
lection (Figure 2.1b), (2) RHAs of the structural system due to the selected ensemble (Fig-
ure 2.1c), and (3) statistical inference (Figure 2.1c), at a specified intensity level. In this

case study, each intensity-based assessment computes P̂r(EDP > z | A(T ∗) = xi) from
Equation 2.3, using the results from RHAs of the structure for n = 44 ground motions.
To illustrate the limitation of the two approaches for evaluating GMSM procedures (men-
tioned at the end of Section 2.3), we select two GMSM procedures: (1) Incremental Dynamic
Analysis (IDA) [Vamvatsikos and Cornell, 2002], and (2) a special case of the Generalized
Conditional Intensity Measure approach (GCIM) [Bradley, 2010a, Bradley, 2012a, Bradley,
2012c]. In IDA, a single ‘seed’ ensemble of ground motions is scaled to multiple intensity
levels; here, the Far-Field record set from FEMA P695 [Applied Technology Council, 2009],
which contains n = 44 records from the PEER Next-Generation Attenuation database [Power
et al., 2008], is selected as the seed ensemble. Since some readers may not be familiar with
GCIM, which is a generalization of the Conditional Spectrum approach (CS) [Jayaram et al.,
2011], we will first briefly review CS and then identify the generalizations that led to GCIM.

Figure 2.3 schematically illustrates the steps involved in CS-based ground-motion selec-
tion at some particular intensity level, say xo from Figure 2.1. First, the seismic hazard at
A(T ∗) ≈ xo is deaggregated [McGuire, 1995] to obtain the percent contribution to the hazard
from an earthquake with magnitude M at distance R; it is summarized by a mean M and a
mean R (Figure 2.3a). The US Geological Survey online hazard tool provides deaggregation
for A(T ∗) > xo [Bazzurro and Cornell, 1999], thus requiring an additional step to convert
the results to obtain deaggregation for A(T ∗) ≈ xo [Baker and Cornell, 2005].

Next, the probability distribution of response spectrum, for a given earthquake scenario
with mean M at mean R, is determined (Figure 2.3b). For a given vibration period, T ,
the probability distribution is modeled with a lognormal distribution and its two parameters
are obtained from a selected GMPM. The mean values of M and R from deaggregation
(Figure 2.3a) are used as inputs to this GMPM; other inputs (e.g., style of faulting, dip,
etc.) are inferred [Baker, 2011]. For example, a GMPM provides the median and one-sigma
response spectra, which are shown in Figure 2.3b as solid and chain lines, respectively. In
practice, the distribution of response spectrum is determined for a specific range of vibration
periods, which are denoted as TIM in Figure 2.3b; typically, T ∗ is equal to T1, and TIM

consists of 50 logarithmically spaced periods between 0.2T1 to 2T1 [Baker, 2011].

For a given rupture scenario, the collection of spectral acceleration values at vibration
periods TIM is viewed as a random vector. Due to lognormality, the logarithm of the
response spectrum follows a multivariate normal distribution [Jayaram and Baker, 2008]. In
order to specify the covariance matrix for this distribution, the correlations between spectral
ordinates at different vibration periods are needed and are available in the literature [Baker
and Cornell, 2006a, Baker and Jayaram, 2008]. An example of this multivariate normal
distribution is schematically shown in Figure 2.3b. When A(T ∗) is conditioned to be equal
to xo, the logarithm of the response spectrum still follows a multivariate normal distribution
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Figure 2.3: Schematic illustration of the Conditional Spectra approach [Jayaram et al.,
2011] to ground motion selection at some particular intensity level, say xo, of IM ≡ A(T ∗):
(a) deaggregation to determine mean M and mean R; (b) definition of TIM and marginal
distributions of A(T ) from a single GMPM for a given earthquake scenario with mean M
at mean R; (c) Conditional Spectrum; and (d) ground motion selection based on comparing
recorded against simulated response spectra.

but with different parameters [Jayaram et al., 2011]; this is illustrated in Figure 2.3c.

Suppose n records are desired to estimate Pr(EDP > z | A(T ∗) = xo). To select
these records, all candidate motions are first scaled so that A(T ∗) = xo. Then, n response
spectra are randomly generated (Figure 2.3d) from the multivariate normal distribution in
Figure 2.3c. For each simulated spectrum, a record whose scaled response spectrum most
closely matches the simulated one is selected (Figure 2.3d). Such matching is quantified
by the sum-of-squared-errors metric in CS [Jayaram et al., 2011]. Because ground motions
are matched to randomly generated response spectra, the ensemble obtained from a single
implementation of CS is not unique.

GCIM generalizes CS in four main aspects. First, GCIM considers IMs in addition to
spectral accelerations for record selection. Consistent with the notation employed in [Bradley,
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2010a], the complete vector of IMs for selection is denoted as IM, the conditioning scalar IM
used for record scaling is denoted as IMj, and all IMs that are not used for record scaling
but are used for selection are denoted as IMi; that is, IM = {IMj, IMi}. Thus, PGA,
PGV, or significant duration are all valid options for specifying IMj or any element of IMi.
Second, GCIM offers the option of weighting IMs. Third, a more sophisticated version of
the target spectrum than that shown in Figure 2.3c is derived in GCIM. Instead of the mean
M -R, the conditional distribution in Figure 2.3c is computed for each and every scenario
in Figure 2.3a, and the percent contributions are used to combine all such distributions
[Bradley, 2010a]; this feature avoids the need to inflate standard deviations in CS [Lin et al.,
2013b]. Fourth, the variability of IMi, for a given value of IMj, is incorporated into the
sum-of-squared-errors metric for the selection of records.

In the special case of GCIM chosen herein, denoted by GCIM-SA, IM comprises spec-
tral accelerations with all periods equally weighted (i.e., IM ≡ {A(T ∗), A(TIMi

)}). As a
result, GCIM-SA differs from CS only in (1) the construction of the target spectrum and
(2) the metric utilized for record selection. For each intensity level, the GCIM-SA target
spectrum and the n corresponding simulated response spectra (Figure 2.3d) are obtained
from Bradley’s GCIM application in OpenSHA [Bradley, 2012a]; the model by Baker & Ja-
yaram 2008 (BJ08) [Baker and Jayaram, 2008] is used to determine the correlations between
spectral ordinates at different vibration periods. For each of the n simulated spectra, the
record whose response spectrum most closely matches the simulated one, which is quantified
by the generalized metric in GCIM (Eq 10 in [Bradley, 2012a]), is selected from the PEER
Next-Generation Attenuation database (Figure 2.3d) 5. As in CS, the selected ensemble
obtained from a single implementation of GCIM-SA is not unique.

As an example of the GCIM-SA target spectrum, the one for IMj ≡ A(1s) at 2% prob-
ability of exceedance in 50 years, computed with the CB08 model, is shown in Figure 2.4
as dark solid lines. As illustrated in the figure, it is computed at 11 vibration periods:
TIM = {0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1, 2, 3, 5, 10}. Unlike the target spectrum from CS, the
one from GCIM-SA does not follow a multivariate normal distribution. Hence, the median
(Figure 2.4a) and the interquartile range (Figure 2.4b) are employed to summarize the prob-
ability distribution of response spectrum; the median A(T ) corresponds to a probability of
0.50, whereas the interquartile range of A(T ) refers to the difference between the values of
A(T ) at two probabilities: (1) 0.75 and (2) 0.25.

Figure 2.4 also depicts the GCIM-SA target spectrum computed from three other GMPMs:
(1) BA08, (2) AS08, and (3) CY08. Although each of the four targets corresponds to the
same probability of exceedance, the conditioning value of A(1s) is different, as seen in Fig-
ure 2.4a and in Figure 2.2a. Furthermore, the differences among the four interquartile
ranges are apparent, which is especially noticeable at short vibration periods in Figure 2.4b.
Since the CB08 model was already chosen for determining |∆λ̃IM(xi)| in Equation 2.2 (Fig-
ure 2.2a) and conducting deaggregation (Figure 2.3a), it is also chosen for the construction

5Instead of selecting scaled ground motions, note that ground motions from the PEER database may be
spectrum matched to each of these simulated spectra [Seifried, 2013].

15



10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

Vibration Period T [s]

M
ed

ia
n
 A

(T
) 

[g
]

(a)

 

 

CB08

BA08

AS08

CY08

T
IM

10
−1

10
0

10
1

0

0.5

1

1.5

2

Vibration Period T [s]

In
te

rq
u
ar

ti
le

 R
an

g
e 

o
f 

A
(T

) 
[g

]

T* ≡ 1s

(b)

Figure 2.4: Target conditional response spectra from GCIM-SA for IMj ≡ A(1s) at 2%
probability of exceedance in 50 years: (a) median A(T ); and (b) interquartile range of A(T ).

of the target spectrum in this case study; hence, GCIM-SA also differs from the “exact CS”,
where the target spectra is determined from multiple GMPMs [Lin et al., 2013a, Carlton
and Abrahamson, 2014].

Seismic Demand Hazard Curve

Figure 2.5 presents estimates of the SDHC from IDA and from GCIM-SA for three different
definitions of the conditioning IM. For each scalar IM and each GMSM procedure, the
SDHC estimate was computed from Equation 2.2 (Figure 2.1); in total, NIMj

× 2 = 22
deaggegrations were conducted and NIMj

× n × 2 × 2 = 1936 RHAs were performed. For
the vector-valued IM, the SDHC estimates are obtained by the approach outlined in [Baker
and Cornell, 2005]. Note that the results correspond to highly inelastic behavior and are
meaningful only at exceedance rates above around 2×10−5 because the lowest probability of
exceedance considered in the discretization is 0.1% in 50 years. To facilitate interpretation
of these curves, the guidelines corresponding to the design basis earthquake (DBE) and
maximum considered earthquake (MCE) levels are also provided 6.

According to approach 2 at the end of Section 2.3, Figure 2.5 suggests that the IDA
estimates are more accurate 7 than the GCIM-SA estimates. For both GMSM procedures,
the SDHC estimate from A(1s) is noticeably different than that from A(0.75s) at exceedance
rates below the MCE level. However, the difference between these two SDHC estimates,
which corresponds to two different definitions of T ∗, is smaller for IDA than for GCIM-SA.

6The DBE level corresponds to a rate of 2 × 10−3 and a return period of 475 years; the MCE level
corresponds to a rate of 4× 10−4 and a return period of 2475 years.

7Recall that the concepts of ‘accuracy’ and ‘bias’ were defined at the end of Section 2.3.
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Figure 2.5: Estimates of the SDHC from PSDA, for three different conditioning IMs: (a)
IDA; and (b) GCIM-SA.

Based on this observation alone, the IDA estimates appear to be more accurate than those
from GCIM-SA.

Approach 1 at the end of Section 2.3 leads to a different conclusion. For each GMSM
procedure, the SDHC estimate from A(1s) is practically equal to that from {A(1s),M}.
Based on this observation alone, both GMSM procedures seem to produce unbiased estimates
of the SDHC. However, the IDA estimate for A(1s) is significantly different than the GCIM-
SA estimate for A(1s), contradicting the claim that both SDHC estimates are unbiased.

Since the ground motions from GCIM-SA are scaled much more severely than those from
IDA in Figure 2.5, it is not immediately obvious as to which of the two GMSM procedures
provides more accurate estimates of the SDHC. For example, consider the scale factors that
were employed to compute the SDHCs in Figure 2.5 corresponding to IMj ≡ A(1s). These
scale factors are shown in Figure 2.6; observe that at each intensity level, the median scale
factor from GCIM-SA is larger than that from IDA. If one started with the preconceived
notion that small scale factors are desirable, then one would conclude that IDA is the more
preferable procedure. As will be demonstrated later in Section 2.7 however, the results from
GCIM-SA are more accurate than those from IDA, despite the fact that larger scale factors
were employed.

The preceding discussion considered only two definitions of the conditioning IM when
implementing each of the two approaches at the end of Section 2.3. This was done solely
to emphasize a subtle point: the practical equality between two SDHCs from different con-
ditioning IMs does not necessarily indicate that an unbiased SDHC has been obtained. In
practical implementation of these two approaches, many more definitions of the conditioning
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Figure 2.6: Scale factors employed in PSDA when IMj ≡ A(1s); in each panel, n = 44 scale
factors are shown for each of the NIMj

= 11 intensity levels: (a) IDA and (b) GCIM-SA.

IM than those shown in Figure 2.5 are considered before conclusions are drawn. For example,
several significantly different scalar IMs were considered when implementing approach 2 in
[Bradley, 2012c] and in [Lin et al., 2013b]. It is important to note however, that as more
definitions of IMj are considered, more RHAs are necessary in the evaluation because for
one definition of IMj and one GMSM procedure, a total of NIMj

× n RHAs are required
to compute the SDHC. To supplement the two approaches at the end of Section 2.3 when
evaluating GMSM procedures and to quantify bias in any estimate of the SDHC, we propose
an alternative approach that involves the notion of a benchmark SDHC.

2.5 The Benchmark Seismic Demand Hazard Curve

Instead of choosing definitions for the conditioning IM in order to evaluate the accuracy of
SDHC estimates from GMSM procedures (Figure 2.5), we propose to compare such estimates
against a benchmark SDHC that is developed from unmodified ground motions. The bench-
mark SDHC is determined by accounting for all plausible rupture scenarios near the site, as
is done in PSHA. Comparing the SDHCs in Figure 2.5 against the IMHCs in Figure 2.2, we
see that EDP in PSDA plays the same role as IM in PSHA. Thus, if we replace the IM in
Equation 2.6 by the EDP, then the benchmark SDHC may be computed from the following
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equation:

λ̃EDP (z) =
Nsrc∑
i=1

νi ·

{∑
m

∑
r

P̃r(EDP > z |M = m,R = r) Pr(M = m,R = r)

}
i

(2.7)

where P̃r(EDP > z | M = m,R = r) is determined from unmodified ground motions by a
process similar to the development of a GMPM in PSHA.

The elements of computing a benchmark SDHC for a given structure at a given site
are schematically illustrated in Figure 2.7. The specification of an activity rate, a PDF
for magnitude (Figure 2.7b), and a PDF for distance (Figure 2.7c) for each of the Nsrc

earthquake sources (Figure 2.7a) is identical to that in the PSHA for the site. For the case
study described earlier, the benchmark SDHC is computed with the same earthquake rupture
forecast introduced in Section 2.4.

Like PSHA, a prediction model is needed to estimate the probability of EDP exceeding
level z for a given rupture scenario (Figure 2.7d). For example, Heo et al. developed such
a prediction model for the maximum inter-story drift of a 4- and 12-story building by (1)
performing 200 nonlinear RHAs of each building, (2) exploring many different models to
predict each EDP as a function of IMs, and (3) choosing the optimal model on the basis of
regression diagnostics; to predict an EDP for a given rupture scenario, the optimal model is
combined with a GMPM [Heo et al., 2010]. As another example, Hancock et al. developed
a prediction model for several EDPs of an 8-story building by (1) performing 1656 nonlinear
RHAs of the building, (2) exploring many different functional forms to predict each EDP
directly as a function of the rupture scenario, and (3) again choosing the final model on
the basis of regression diagnostics [Hancock et al., 2008]. Such an onerous undertaking
is generally difficult to justify since the resulting prediction model is limited only to the
structure considered. However, we note that a prediction model is readily available for two
special cases: (1) EDP is the normalized base shear, A(T )/g of 5% damped linear elastic
SDF systems [Baker and Cornell, 2006c], and (2) EDP is the peak deformation, um, of 5%
damped bilinear SDF systems with 5% post-yield hardening [Tothong and Cornell, 2006].

The distribution of um for a given rupture scenario is obtained herein from the Tothong
& Cornell 2006 (TC06) model [Tothong and Cornell, 2006]. However, the TC06 model
requires the peak deformation of the corresponding linear system, uo, as an input. Because
uo is not known a priori for a given rupture scenario [Tothong and Cornell, 2006], the
TC06 model must be combined with a GMPM to determine the desired distribution of um.
Consequently, different GMPMs lead to different benchmark SDHCs, which is schematically
shown in Figure 2.7e. Which benchmark SDHC should one choose? This question is answered
in the next section.

19



Site

Fault 1

Fault 2

Point source

(a)

mommin mmax

(b)

M
ag

n
it

u
d
e 

P
D

F

Magnitude M

(c)

ro

D
is

ta
n
ce

 P
D

F
g
iv

en
 M

=
m

o

Distance R

M = mo

Pr(EDP > zo | M = mo,R = ro)

(d)

zo

ro

Distance R (log scale)

E
n
g
in

ee
ri

n
g
 D

em
an

d
P

ar
am

et
er

 E
D

P
 (

lo
g
 s

ca
le

)

zo

(e)

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
 λ

(l
o
g
 s

ca
le

)

Engineering Demand
Parameter EDP (log scale)

Figure 2.7: The elements of computing a benchmark SDHC: (a) specification of Nsrc earth-
quake sources and corresponding activity rates, νi; for the ith source, a (b) PDF for mag-
nitude, fM(m); (c) PDF for distance given magnitude, fR|M(r | mo); and (d) probability
distribution of demand for a given earthquake scenario, Pr(EDP > z | M = mo, R = ro),
are shown; and (e) benchmark SDHCs from various prediction models.

2.6 Proposed Framework to Evaluate GMSM

Procedures in PSDA

The proposed framework is schematically presented in Figure 2.8. We propose to com-
pare estimates of the SDHC from GMSM procedures, λ̂EDP (z) from Equation 2.2, against

a benchmark SDHC, λ̃EDP (z) from Equation 2.7, under a single set of ground motion in-
formation for the site. This single set includes an earthquake rupture forecast, a database
of many plausible records, and prediction models derived from these records (i.e., a single
GMPM for one IM, a single GMPM for another IM, a single model for the correlation among
two IMs, etc.). It is important that the same ground motion information be chosen when

computing λ̃IM(x) and λ̃EDP (z) because the purpose of the comparison between λ̂EDP (z)

from Equation 2.2 and λ̃EDP (z) from Equation 2.7 is to isolate the effects of a particular
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GMSM procedure on the resulting SDHC estimate, which is emphasized by the hat symbols
in Equation 2.2.

A single set of ground
motion information:

1. An earthquake rupture forecast

2. A database of many plausible
    ground motions

3. A prediction model for:
 a.
 b. Correlation between IMs
 c.

Pr(IM > x | M = m,R = r)

Pr(EDP > z | M =m,R = r)

Benchmark SDHC
(Eq 2.7),                   λ̃EDP (z)

SDHC from first GMSM
procedure (Eq 2.2),                  λ̂EDP (z)

SDHC from last GMSM
procedure (Eq 2.2),                  λ̂EDP (z)

VS

VS

VS

Figure 2.8: Schematic illustration of the proposed framework for evaluating GMSM proce-
dures in their ability to accurately estimate the SDHC.

As shown in Figure 2.8, the proposed framework does not compare λ̂EDP (z) against the
SDHC from Equation 2.1, λEDP (z), because the latter cannot be calculated for realistic
problems, which is why the PEER GMSM working group refers to their benchmark as a
“Point-Of-Comparison”, or a “High-End-Prediction” [PEER GMSM Working Group, 2009].
However, we note that this inability to calculate λEDP (z) is an example of epistemic un-
certainty ; it arises from the fact that our data and knowledge are always incomplete. For
example, Pr(IM > x |M = m,R = r) in Equation 2.5 is not known with absolute certainty
since it is estimated with a limited collection of ground motions and an assumed functional
form. Consequently, several GMPMs have been developed to estimate this term, leading to
multiple IMHCs in Figure 2.2 and multiple target spectra in Figure 2.4. Another example
of epistemic uncertainty is portrayed in Figure 2.7e, where different EDP prediction models
lead to different SDHCs. With these variety of models, it might seem difficult to claim a
single model as the benchmark.

We overcome this apparent difficulty by recognizing that the purpose of comparing
λ̂EDP (z) against a benchmark is to establish the causal relationship between a particular
GMSM procedure and the potential bias in its resulting estimate of the SDHC. Therefore,
we propose that any EDP prediction model may be chosen, as long as all variables other
than the GMSM procedure are controlled as much as possible. For example, any GMPM
may be chosen to obtain the final EDP prediction model (see e.g., [Tothong and Cornell,
2006, Heo et al., 2010]) when computing the benchmark SDHC (Equation 2.7), as long as

λ̃IM(x) in Equation 2.2 is given by the IMHC resulting from the same GMPM. As another
example, if a particular functional form was chosen to develop the prediction model for an
EDP, then the same functional form should be employed to predict the IM as a function of
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a rupture scenario (e.g., [Hancock et al., 2008]). Unlike the Point-Of-Comparison in [PEER
GMSM Working Group, 2009], we recommend that the EDP prediction model be developed
from unmodified ground motions because otherwise, it is impossible to establish the causal
relationship between the modification of ground motions and the potential bias in its result-
ing SDHC; however, this recommendation will result in a small number of inelastic responses
for some structures (see end of Section 2.8).

2.7 Bias, Hazard Consistency, and IM Sufficiency

The results from implementing the proposed framework (Figure 2.8), using the CB08 model,
are presented in Figure 2.9. The benchmark SDHC is obtained from Equation 2.7 with
P̃r(EDP > z | M = m,R = r) given by the TC06-CB08 model and the PSDA-based
estimates of the SDHC are repeated from Figure 2.5. Comparing the PSDA-based estimates
against the benchmark, we see that both GMSM procedures, IDA and GCIM-SA, lead to
essentially unbiased results at exceedance rates above the DBE level and biased results at
rates below the MCE level. Furthermore, the curves from GCIM-SA are more accurate
than those from IDA, and those corresponding to T ∗ ≡ 1 sec are more accurate than those
corresponding to T ∗ ≡ 0.75 sec. The latter observation suggests that the choice of the
conditioning period is important in PSDA, which confirms the conclusion by Lin et al. [Lin
et al., 2013b]. We also observe that the bias increases with decreasing exceedance rates; using
the GCIM-SA curve corresponding to T ∗ ≡ 1 sec as an example, the estimated demand differs
from the benchmark by 1% at the DBE level, and by 12% at the MCE level. Without a
benchmark, it would be impossible to make such statements with regard to the accuracy of
any SDHC estimate from a GMSM procedure.
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Figure 2.9: Comparison of various estimates of the SDHC from PSDA against the benchmark
SDHC: (a) IDA and (b) GCIM-SA.
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The IDA and GCIM-SA estimates of the SDHC, corresponding to A(1s) in Figure 2.9,
are compared directly against each other and against the benchmark SDHC in Figure 2.10a.
This direct comparison confirms that the results from both procedures are unbiased above
the DBE level; at rates below this level, the GCIM-SA estimate is more accurate than that
from IDA. Such a comparison between the two GMSM procedures does not require that the
CB08 model be chosen as the GMPM for spectral acceleration at various vibration periods.
As previously mentioned in Section 2.6, any single GMPM may be chosen as long as it is
utilized in all estimates of the SDHC. The comparison in Figure 2.10a is repeated for three
other GMPMs in Figure 2.10b-d, implying that a total of NIMj

× n × 2 × 4 = 3872 RHAs
were performed. As expected from earlier discussion, the benchmark SDHC changes for each
GMPM and the SDHC estimate from each GMSM procedure also changes with GMPMs.
However, the SDHC estimate from GCIM-SA remains consistently more accurate than that
from IDA below the DBE level. Figure 2.10 also shows that the GCIM-SA estimate is
essentially unbiased for AS08 and CY08 but is somewhat biased for the other two GMPMs.
The discrepancy between the benchmark SDHC and the GCIM-SA estimate varies for each
GMPM because the GCIM-SA estimate – for each of the four separate implementations – is
not unique (Section 2.4). For example, when another estimate of the SDHC from GCIM-SA
is computed using the AS08 model, a different selection of ground motions (Figure 2.3d) and
hence a different SDHC estimate would be obtained; this new SDHC would not be equal to
the benchmark SDHC determined by the AS08 model, unlike the GCIM-SA curve shown in
Figure 2.10c.

Why are the estimates from GCIM-SA more accurate than those from IDA even though
larger scale factors were employed in GCIM-SA (Figure 2.6)? This question is answered by
introducing the concept of “hazard consistency”. Originally defined by Lin et al. [Lin et al.,
2013b], an ensemble 8 of ground motions is hazard consistent for some IM, if the estimated

IMHC from the ensemble, λ̂IM(y), is practically equal to the IMHC determined by PSHA,

λ̃IM(x) from Equation 2.6. Once NIMj
×n records have been selected to determine a SDHC,

estimating an IMHC from such an ensemble is just a matter of (1) replacing EDP with
IM in Eqs 2.2 and 2.4, and (2) applying these equations to the selected ground motions.
Specifically, the estimated IMHC from the ensemble is computed from:

λ̂IM(y) =

NIMj∑
k=1

P̂r(IM > y | IMj = xk) · |∆λ̃IMj
(xk)| (2.8)

where IMj was previously defined near the end of Section 2.4 and P̂r(IM > y | IMj = xk)
is determined from:

P̂r(IM > y | IMj = xk) =
1

n

n∑
l=1

I(yl > y) (2.9)

where yl is the value of IM for record l that has been scaled to intensity xk.

8In the context of hazard consistency, the word ‘ensemble’ refers to all NIMj
×n ground motions utilized

for a single estimate of the SDHC.
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Figure 2.10: Comparison of SDHC estimates from IDA and from GCIM-SA, when IMj ≡
A(1s), against the benchmark SDHC, for four different GMPMs: (a) CB08; (b) BA08; (c)
AS08; and (d) CY08.

For the choice of GMPM ≡ CB08 and IMj ≡ A(1s), Figure 2.11 examines the hazard
consistency of the ground motions selected from IDA and GCIM-SA for IM defined as
spectral acceleration at various vibration periods. The PSHA curves are obtained from
Equation 2.6 with P̃r(IM > x |M = m,R = r) given by the CB08 model. For each GMSM
procedure, the estimated IMHCs are obtained by applying Eqs 2.8 and 2.9 to the 484 motions
that were used to construct the corresponding SDHC estimate in Figure 2.10a.

In Figure 2.10a, the SDHC estimate from GCIM-SA is more accurate than that from IDA
because the ground motions selected from GCIM-SA are hazard consistent for more IMs than
those selected from IDA. Figure 2.11 demonstrates that the ground motions from GCIM-
SA are hazard consistent for spectral acceleration at nearly all the vibration periods shown
(except for 0.1 sec and 10 sec). This is so because records were selected for a given value
of A(T ∗) to deliberately match the distribution of A(T ) at these periods (see Figure 2.4
and Figure 2.3d in Section 2.4). In contrast, one does not have control over the hazard
consistency of the ground motions from IDA for such IMs. Although (1) the ground motions
from GCIM-SA are hazard consistent for A(T ) between T1 to 3T1 (Figure 2.11c-e), and (2)
the GCIM-SA estimate is more accurate than that from IDA (Figure 2.10a), it is nevertheless
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Figure 2.11: Hazard consistency of the ground motions selected from IMj ≡ A(1s) for
spectral acceleration at: (a) 0.1s; (b) 0.5s; (c) 1s; (d) 2s; (e) 3s; and (f) 10s.

biased at rates below the MCE level.

This bias below the MCE level is due to the fact that the vector-valued IM, defined as
A(T ) at T1, 2T1, and 3T1, is not a ‘sufficient’ IM for EDP ≡ um. An IM, which may be
scalar or vector-valued, is defined to be sufficient for an EDP when, given a fixed value of this
IM, the record-to-record variability of the EDP does not depend on any other aspects of the
record [Shome et al., 1998, Luco and Cornell, 2007]. If a vector-valued IM (e.g., A(T ) at T
between T1 and 3T1) is indeed sufficient for um, then the fact that ground motions are hazard
consistent for this IM must imply that the corresponding SDHC estimate is unbiased; as a
corollary, if the ground motions are hazard consistent for a vector-valued IM, then the fact
that the corresponding estimate of the SDHC is biased must imply that the vector-valued
IM is insufficient for the EDP of interest. To motivate this assertion, we next consider two
definitions of a scalar IM.

First, let us define IM as EDP [Luco and Cornell, 2007]. This implies that IM is
sufficient for EDP because once a fixed value of EDP is given, the variability of EDP does
not depend on any other aspects of the ground motion. If ground motions were selected to
be hazard consistent for this particular definition of the IM, then by definition of hazard
consistency, λ̂IM(y) from Equation 2.8 will be practically equal to λ̃IM(x) from Equation 2.6.
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This is equivalent to stating that the SDHC estimate is unbiased, since IM ≡ EDP .

Second, let us define IM as IMj. Since ground motions are scaled to IMj in PSDA
(Figure 2.1b), they are always hazard consistent for this particular definition of the IM. For
example, Figure 2.11c shows that the selected motions from both GMSM procedures are
hazard consistent for IMj ≡ A(1s); in fact, the estimated IMHCs from both procedures

are identical because the term P̂r(IM > y | IMj = xk) in Equation 2.8 becomes a step
function when IM ≡ IMj. The fact that the ground motions from both procedures are
hazard consistent for A(1s) implies that the corresponding SDHC estimates are unbiased
at exceedance rates above the DBE level (Figure 2.10a), because (1) A(1s) is a sufficient
IM for the peak deformation of the corresponding linear system, uo, and (2) EDP ≡ um
is approximately equal to uo at rates above the DBE level. On the other hand, the SDHC
estimates are biased at rates below the MCE level, even though the selected motions from
both procedures are hazard consistent for A(1s), because A(1s) alone is not a sufficient IM
for EDP ≡ um.

Since A(1s) is not a sufficient IM for um, then um must depend on other aspects of the
ground motion. Figure 2.12 examines the hazard consistency of the same records from Fig-
ure 2.11, for six miscellaneous IMs. Specifically, these IMs include PGA, PGV, acceleration
spectrum intensity (ASI), cumulative absolute velocity (CAV), and two measures of signifi-
cant duration: (1) D5−75, and (2) D5−95. The CB08 model was used to develop the PSHA
curves for PGA and PGV, the Bradley 2010 model [Bradley, 2010b] for ASI, the Campbell
& Bozorgnia 2010 model [Campbell and Bozorgnia, 2010] for CAV, and the Bommer et al.
2009 model [Bommer et al., 2009] for duration. As in Figure 2.11, the estimated IMHCs
were obtained from Eqs 2.8 and 2.9.

Figure 2.12a-c and Figure 2.12e-f demonstrate that the ground motions from GCIM-SA
are hazard consistent for PGA, PGV, ASI, D5−75, and D5−95. Since the corresponding SDHC
estimate is biased at exceedance rates below the MCE level (Figure 2.10a), we conclude that
the vector-valued IM, defined as a collection of PGA, PGV, ASI, D5−75, and D5−95, must
not be sufficient for um. In other words, the bias in the SDHC estimate is influenced by the
hazard consistency of the ground motions for other IMs. However, such a vector-valued IM
appears to be less insufficient than A(1s) alone, since the GCIM-SA estimate of the SDHC
is more accurate than that from IDA (Figure 2.10a). In summary, we conclude that severely
scaled ground motions (Figure 2.6) may still lead to an accurate estimate of the SDHC as
long as they are hazard consistent for an IM that is sufficient.

In general, an IM – scalar or vector-valued – will almost never be truly sufficient for an
EDP that is related to the inelastic response of realistic models of structures. As a result,
even if ground motions are deliberately forced to be hazard consistent for a vector-valued
IM (as in procedures like CS or GCIM), the modification of ground motions in PSDA (e.g.,
Figure 2.1b) will likely lead to some degree of bias in the subsequent SDHC estimates.
Without a benchmark to compare against, such bias cannot be quantified. Fortunately, the
framework and benchmark proposed in this study enable a direct determination of the bias.
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Figure 2.12: Hazard consistency of the ground motions selected from IMj ≡ A(1s) for several
miscellaneous IMs: (a) PGA; (b) PGV; (c) ASI; (d) CAV; (e) D5−75; and (f) D5−95.

2.8 Avoiding a Potential Pitfall

If we want to establish the causal relationship between a particular GMSM procedure and the
potential bias in its resulting estimate of the SDHC, then we must specify the same GMPM
in both the benchmark SDHC and the estimate from the GMSM procedure, as illustrated
in Figure 2.8. This was done for the results shown in Figure 2.10 since for each of the four
cases, the same GMPM was chosen for both the benchmark SDHC and the GMSM-based
estimates. By controlling the GMPM in this manner, the discrepancies between a PSDA-
based estimate of the SDHC and the benchmark SDHC are due primarily to the GMSM
procedure.

If we do not specify a common GMPM for both the benchmark and the GMSM-based
estimate, then the resulting observations are misleading. For example, consider Figure 2.13a,
where the GCIM-SA curve in Figure 2.11c is compared against two different PSHA-based
IMHCs: (1) that from Figure 2.11c, and (2) that from a weighted average of the four IMHCs
in Figure 2.2a. The weighted IMHC might be considered as a ‘best estimate’ of the target
IMHC for comparison (see e.g., the US Geological Survey online hazard tool); however, it
is erroneous to use this curve for examining hazard consistency of the ground motions from
the GCIM-SA procedure that employs the CB08 model (Figure 2.4). Another example is
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illustrated in Figure 2.13b, where the GCIM-SA curve in Figure 2.10a is compared against
two benchmark SDHCs: (1) that in Figure 2.10a, and (2) that from a weighted average of
the four benchmark SDHCs in Figure 2.10. It is erroneous to use the weighted benchmark
SDHC for evaluating the accuracy of the SDHC that is determined from the CB08 model. If
one insists on specifying the weighted SDHC as the benchmark, then (1) the same weights

should be employed in determining λ̃IM(xi) in Equation 2.2, and (2) ground motions should
be selected via the “exact CS” [Lin et al., 2013a] for a fair comparison.
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Figure 2.13: Two examples for illustrating the importance of specifying a common GMPM
when implementing the proposed framework: (a) ‘hazard consistency’ of the ground motions
from GCIM-SA when IM ≡ A(1s); and (b) GCIM-SA estimate of the SDHC versus ‘the
benchmark’.

There are two limitations of the proposed framework in this study (Figure 2.8). First, the
framework can only be applied when an EDP prediction model is readily available for the
structure (e.g., bilinear SDF systems in [Tothong and Cornell, 2006], the 4-story building in
[Heo et al., 2010], the 8-story building in [Hancock et al., 2008], etc.). In general, it is a major
computational task to develop an EDP prediction model for a realistic structure because the
number of necessary RHAs is typically large (e.g., 200 RHAs of a 12-story building were
performed in [Heo et al., 2010]) and the selection of an optimal functional form requires an
iterative approach. Second, the range of applicability of the proposed framework is limited by
the availability of recorded ground motions. As shown in Figure 2.8, the prediction model for
EDP is to be developed from a database of unmodified ground motions because the purpose
of the comparison between the resulting benchmark SDHC and an estimate from a GMSM
procedure is to reveal potential biases from the modification of ground motions. However,
such a recommendation will result in a small number of inelastic responses when the number
of intense (relative to the strength of the structure) ground motions in the database is small.
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2.9 Conclusions

This investigation of developing a framework for the evaluation of GMSM procedures has
led to the following conclusions:

1. Meaningful evaluation of GMSM procedures requires clearly stating the objective of the
RHAs of the structure. In this study, four objectives are identified, and the evaluation
of GMSM procedures is investigated when the objective of the RHAs is to estimate a
SDHC for a given structure at a given site.

2. Using a simple case study, we highlight an important but subtle limitation of the
existing approaches for evaluating GMSM procedures in PSDA: the practical equality
between two SDHCs from different conditioning IMs does not necessarily indicate that
an unbiased SDHC has been obtained. Consequently, an alternative approach for
evaluating GMSM procedures in PSDA is desirable.

3. To quantify bias in any estimate of the SDHC, we introduce the notion of a benchmark
SDHC, which is determined by incorporating an EDP prediction model that is devel-
oped from unmodified ground motions into the PSHA calculations. Consequently, this
study is limited by the availability of EDP prediction models and the availability of
recorded ground motions.

4. With the variety of benchmarks in past studies, it might seem difficult to claim a
single choice as the benchmark. We overcome this apparent difficulty by recognizing
that (1) different choices correspond to different instances of epistemic uncertainty,
(2) the purpose of a benchmark is to isolate the effects of GMSM procedures on the
resulting SDHC estimates, and (3) the same ground-motion information should be
utilized in obtaining the benchmark SDHC and all estimates of the SDHC from GMSM
procedures.

5. To develop an understanding of why one GMSM procedure may provide more accurate
estimates of the SDHC than another, we identify the role of IM sufficiency in the rela-
tionship between (1) bias in the SDHC and (2) hazard consistency of the corresponding
selected ground motions. If the IM, scalar or vector-valued, used for record selection
is sufficient, then ensuring hazard consistency of the selected ground motions for this
IM implies that the corresponding estimate of the SDHC is unbiased, even when the
ground motions are scaled by large scale factors; as a corollary, if the ground motions
are hazard consistent for a vector-valued IM, then the fact that the corresponding es-
timate of the SDHC is observed to be biased implies that the IM is not sufficient for
the EDP of interest. Therefore, accurate estimates of the SDHC may be obtained from
severely scaled ground motions, as long as the selected motions are hazard consistent
for an IM that is sufficient.

6. We do not know, a priori, which IM is sufficient for an arbitrary EDP associated with
the inelastic response of a realistic structure; in fact, rarely will an IM that is sufficient
exist. Consequently, the modification of ground motions in PSDA will likely cause
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some amount of bias in the SDHC estimate, despite the fact that ground motions may
be hazard consistent for some vector-valued IM. Without a benchmark to compare
against, such bias cannot be quantified.

7. When implementing the proposed framework for the evaluation of GMSM procedures,
one may draw misleading conclusions if the benchmark SDHC and a PSDA-based
estimate are not derived from a common set of ground-motion information.
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Chapter 3

Evaluation of GMSM Procedures
using Synthetic Ground Motions

3.1 Preview

This study presents a novel approach for evaluating ground motion selection and modification
(GMSM) procedures in the context of probabilistic seismic demand analysis (PSDA). In
essence, synthetic ground motions are employed to derive the benchmark seismic demand
hazard curve (SDHC), for any structure and response quantity of interest, and to establish
the causal relationship between a GMSM procedure and the bias in its resulting estimate of
the SDHC. An example is presented to illustrate how GMSM procedures may be evaluated
using synthetic motions. To demonstrate the robustness of the proposed approach, two
significantly different stochastic models for simulating ground motions are considered. By
quantifying the bias in any estimate of the SDHC, the proposed approach enables the analyst
to rank GMSM procedures in their ability to accurately estimate the SDHC, examine the
sufficiency of intensity measures (IMs) employed in ground motion selection, and assess the
significance of the conditioning IM in PSDA.

3.2 Introduction

Ground motions 1 required to conduct nonlinear response history analysis (RHA) of struc-
tures may either be recorded or synthetic; recorded ground motions are obtained from strong-
motion instruments whereas synthetic ground motions are simulated from models [Douglas
and Aochi, 2008]. Such models may be purely physics-based, purely stochastic, or a combi-
nation of the two. Recorded ground motions are usually modified because intense records,
typically of interest in earthquake engineering, are scarce.

Many ground-motion selection and modification (GMSM) procedures have been devel-

1In this report, “ground motion” refers to ground acceleration as a function of time (i.e., an accelerogram).
Although the same term also refers occasionally to an intensity measure (as in “ground-motion-prediction
models”), its meaning should be clear from the context.
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oped. For example, several records may be selected on the basis of magnitude and distance
[Shome et al., 1998, Stewart et al., 2001], or spectral shape [Baker and Cornell, 2006b, Baker,
2011]. Selected records are sometimes amplitude scaled [Shome et al., 1998, Baker and Cor-
nell, 2005] and other times adjusted with wavelets such that the response spectrum of the
modified record is compatible with a target spectrum (see e.g., [Hancock et al., 2008]). A
review of many GMSM procedures may be found in Appendix A of [PEER GMSM Working
Group, 2009] and in [Katsanos et al., 2010]. How should one choose among the variety of
GMSM procedures available? This question will be answered in this chapter.

Among the variety of contexts where RHAs are conducted [Kwong et al., 2014], we choose
probabilistic seismic demand analysis (PSDA) [Shome et al., 1998], which is also known as
a risk-based assessment [NEHRP Consultants Joint Venture, 2011]. For a given structure at
a given site, a PSDA couples probabilistic seismic hazard analysis (PSHA) of the site with
RHA of the structure in order to determine the seismic demand hazard curve (SDHC) of an
engineering demand parameter (EDP). The exact SDHC, λEDP (z), is governed by

λEDP (z) =

∫
Pr(EDP > z | IM∗ = x) · |dλIM∗(x)| (3.1)

where IM∗ denotes the conditioning intensity measure (IM), λIM∗(x) denotes its correspond-
ing exact hazard curve, and Pr(EDP > z | IM∗ = x) denotes the exact complementary
cumulative distribution function (CCDF) of EDP when the intensity level is equal to x 2.
In practical application, λEDP (z) is estimated from

λ̂EDP (z) =

NIM∗∑
i=1

P̂r(EDP > z | IM∗ = xi) · |∆λ̃IM∗(xi)| (3.2)

where λ̃IM∗(xi) denotes the intensity measure hazard curve (IMHC) that is computed from
a particular ground-motion-prediction model (GMPM) in PSHA, NIM∗ denotes the number

of intensity levels chosen to approximate the integral in Equation 3.1, and P̂r(EDP >
z | IM∗ = xi) denotes the CCDF of EDP that is determined by performing RHAs of
the structure for an ensemble of ground motions from a GMSM procedure. To include the
possibility of structural collapse, P̂r(EDP > z | IM∗ = xi) in Equation 3.2 may be expanded
to obtain

P̂r(EDP > z | IM∗ = xi) = P̂r(EDP > z | NC, IM∗ = xi) [1− p̂C(xi)] + p̂C(xi) (3.3)

where NC denotes the event corresponding to “No Collapse”, and p̂C(·) refers to the fragility
function that is determined from multiple ensembles of ground motions that have been
scaled to different intensity levels [Baker, 2015]. At each intensity level xi, an ensemble of
ground motions is obtained from a GMSM procedure (e.g., Incremental Dynamic Analysis
(IDA) [Vamvatsikos and Cornell, 2004], Conditional Spectrum [Jayaram et al., 2011], etc.).
A SDHC estimate from Equation 3.2, corresponding to a particular GMSM procedure, is
defined to be unbiased when it is essentially equal to λEDP (z); it is defined to be biased when
it differs significantly from λEDP (z).

2In this study, an asterisk is included to the symbol IM when denoting a conditioning intensity measure.
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It is currently difficult to definitively evaluate the accuracy of any estimate of the SDHC
because the exact SDHC, λEDP (z), is unknown. To circumvent this limitation, the accuracy
of a SDHC estimate is often judged by comparing it against several other estimates of the
SDHC, each determined from the same GMSM procedure but selecting different definitions
of the conditioning IM in Equation 3.2 [Bradley, 2012c, Lin et al., 2013b]. With enough def-
initions of the conditioning IM, close agreement between the corresponding SDHCs suggests
that the associated GMSM procedure provides unbiased estimates of the SDHC. However,
the SDHCs from different definitions of the conditioning IM are almost always different from
each other and without a “benchmark” for comparison, it is difficult to judge the accuracy
of any SDHC estimate. Alternatively, the potential bias may be approximated using the
Generalized Conditional Intensity Measure approach [Bradley, 2010a]; however, the quality
of such approximations is also difficult to ascertain for lack of a benchmark. To supplement
the conclusions from the previous approaches, SDHC estimates were compared against a
benchmark SDHC that was computed from a prediction model for the EDP [Kwong et al.,
2014]. With this approach, the bias of any SDHC estimate may be quantified; however, it is
limited by the availability of prediction models for the EDP and structure of interest, and
such prediction models are in turn limited by the availability of recorded ground motions.

This chapter establishes the causal relationship between a GMSM procedure and the
bias in its resulting SDHC estimate by using a large database of synthetic ground motions
to determine the “benchmark” SDHC and to control as many variables as possible. By
comparing Equation 3.2 against Equation 3.1, three major sources of bias may be identified:
(1) approximation of the integral in Equation 3.1 with a summation in Equation 3.2, (2)

approximation of λIM∗(x) with λ̃IM∗(x), and (3) approximation of Pr(EDP > z | IM∗ = x)

with P̂r(EDP > z | IM∗ = x), which is obtained from RHAs of the structure for an ensemble
of ground motions determined by a GMSM procedure. The first source can be essentially
eliminated if NIM∗ is adequately large. The second source can be essentially eliminated with
the aid of synthetic ground motions (Section 3.6). With these two contributions eliminated,
potential biases from a particular GMSM procedure can be identified (third source). This
approach with synthetic ground motions is developed in the next section.

3.3 Proposed Approach to Evaluate GMSM

Procedures

The proposed approach is schematically illustrated in Figure 3.1 3. The SDHC estimate from
each GMSM procedure, λ̂EDP (z), is compared against the benchmark SDHC, λEDP (z), under
a controlled setting; the benchmark SDHC is computed from a large database of synthetic
ground motions and each GMSM-based SDHC is computed from a subset of this database.
It is important to derive all SDHCs from a common set of ground motion information (i.e.,
earthquake rupture forecast, GMPMs, etc.) because the purpose of each comparison in
Figure 3.1 is to isolate the effect of the GMSM procedure on its resulting SDHC estimate.

3Unlike the approach in [Kwong et al., 2014], the approach herein employs synthetic ground motions and
as a result, the corresponding benchmark SDHC and prediction models are significantly different.
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A single set of ground
motion information:

1. An earthquake rupture forecast

2. A database of many plausible
    synthetic ground motions

3. A prediction model for:
 a.
 b. Correlation between IMs

Pr(IM > x | M = m,R = r)

Benchmark SDHC
(Eqs 3.11, 3.9, 3.12),                       λEDP(z)

SDHC from first GMSM
procedure (Eq 3.2),                 λ̂EDP (z)

SDHC from last GMSM
procedure (Eq 3.2),                 λ̂EDP (z)

VS

VS

VS

Figure 3.1: Schematic illustration of the framework for evaluating GMSM procedures using
synthetic ground motions.

To develop this common set of ground-motion information for a given site, an earth-
quake rupture forecast and a database of ground motions are needed. Each of the Nsrc

earthquake sources is characterized by an activity rate, ν, and a probability density function
(PDF) for earthquake magnitude and distance, fM,R(m, r). Next, a model for simulating
synthetic ground motions is chosen for the given site; although only two stochastic mod-
els are illustrated herein – Rezaeian-Der Kiureghian [Rezaeian and Der Kiureghian, 2010]
and Yamamoto-Baker [Yamamoto, 2011] – other well-vetted models (e.g., physics-based, hy-
brid, etc.) may be considered. A large number of intense synthetic ground motions is then
simulated from the chosen model, for the specified earthquake rupture forecast (Section 3.4).

This large database of intense ground motions enables computation of the exact hazard
curves, λIM∗(x) and λEDP (z) in Equation 3.1, which are unique for a given ground motion
simulation model (Section 3.5); however, the number of synthetic ground motions in such
databases is nevertheless finite. Furthermore, different ground motion simulation models lead
to different λIM∗(x) and λEDP (z). For this reason, the hazard curves that correspond to a
particular database of synthetic ground motions are referred to as the benchmark (as opposed
to “exact”) hazard curves. Note that such a benchmark could not have been determined
from recorded ground motions for lack of an adequate number of intense records.

Several contemporary GMSM procedures (e.g., [Baker and Cornell, 2006b], [Jayaram
et al., 2011], [Bradley, 2010a], etc.) require GMPMs to select ground motions. Therefore,
new GMPMs from the previously simulated database of ground motions was developed,
as shown in the left part of Figure 3.1. These GMPMs may then be used to construct
IMHCs, λ̃IM(x), or perform deaggregation [McGuire, 2004]. Since our objective is to isolate
the effect of a GMSM procedure on the resulting SDHC estimate, it is mandatory that the
GMPM-based IMHC, λ̃IM∗(x) in Equation 3.2, be essentially equal to the benchmark IMHC,
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λIM∗(x) in Equation 3.1. For this reason, the GMPMs developed in this study are referred
to as benchmark-consistent GMPMs (Section 3.6).

For each GMSM procedure of interest, a corresponding SDHC estimate is determined
from the ground-motion information depicted in the left part of Figure 3.1 (Section 3.7).
Specifically, all GMSM procedures select and modify a subset of the previously simulated
database of ground motions. If prediction models are needed as input to the GMSM proce-
dure, then the benchmark-consistent prediction models that are developed in Section 3.6 are
employed. For each GMSM procedure, the corresponding estimate of the SDHC is obtained
from Equation 3.2 and compared against the benchmark SDHC, λEDP (z). Since (1) λEDP (z)

may now be determined from synthetic ground motions (Section 3.5), and (2) λ̃IM∗(x) is es-

sentially equal to λIM∗(x) (Section 3.6), a comparison of λ̂EDP (z) against λEDP (z) indicates
the bias caused by the corresponding GMSM procedure (Section 3.7). To illustrate this
approach for evaluating GMSM procedures, an example is presented below; the details of
this example are described next.

3.4 Case Study

Site, Stochastic Models, and Databases of Synthetic Ground
Motions

The simple site illustrated in Figure 3.2a is selected for this study 4. The site is situated on
soil with a shear-wave velocity, Vs30, of 400 m/s and a basin depth, Z2.5, of 1 km. A single
strike-slip fault with an activity rate of ν = 0.02 earthquakes per year is located 10 km
away from the site. All earthquakes are assumed to occur at a fixed distance, R = 10 km;
in contrast, the magnitude of each earthquake, M , is random and follows the PDF that is
given by the Youngs & Coppersmith model [Youngs and Coppersmith, 1985] (Figure 3.2b).
This completes the specification of an earthquake rupture forecast in Figure 3.1.

There are several advantages to selecting a simple site. For the selected site, the general
equation governing any IMHC in PSHA (see e.g., [McGuire, 2004]) is greatly simplified:

λIM(x) =
Nsrc∑
i=1

νi ·
{∫ ∫

Pr(IM > x |M = m,R = r)fR|M(r | m)fM(m) dr dm

}
i

= ν ·
{∫

Pr(IM > x |M = m)fM(m) dm

}
(3.4)

where Pr(IM > x |M = m) refers to the CCDF of the IM for a given earthquake magnitude.
This simplification facilitates the computation of benchmark hazard curves (Section 3.5) and
the development of benchmark-consistent GMPMs (Section 3.6). Furthermore, such a simple
site is sufficient to illustrate the approach described in Section 3.3.

4Except for the activity rate, this site is identical to that considered in Section 5.4 of Yamamoto’s Ph.D.
dissertation [Yamamoto, 2011].
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Figure 3.2: Source characterization for case study site: (a) specification of earthquake source;
and (b) PDF of magnitude for the strike-slip fault.

Two stochastic models, referred to as Rezaeian [Rezaeian and Der Kiureghian, 2008,
Rezaeian and Der Kiureghian, 2010] and Yamamoto [Yamamoto, 2011, Yamamoto and
Baker, 2013], are employed to simulate synthetic ground motions. Two models are chosen
in order to test the robustness of the proposed approach for evaluating GMSM procedures.
Given magnitude, distance, style-of-faulting, and Vs30 as inputs, Rezaeian’s model simulates
a ground motion by time-modulating a filtered white-noise stochastic process. The resulting
ground motion is fully nonstationary because the parameters of both (1) the time-modulating
function and (2) the filter vary with time. In contrast, Yamamoto’s model simulates a fully
nonstationary ground motion via the Wavelet Packet Transform. Example waveforms from
Rezaeian’s model can be seen in Figs 7-8 of [Rezaeian and Der Kiureghian, 2010]; example
waveforms from Yamamoto’s model can be seen in Figs 4-5 of [Yamamoto and Baker, 2013].

For each stochastic model, a database of 104 synthetic ground motions is randomly sim-
ulated. The Youngs & Coppersmith PDF of magnitude in Figure 3.2b, fM(m), indicates
that a wide range of magnitudes is possible for the given site. Therefore, a natural approach
to simulate a database that adequately covers the range of possible magnitudes is to first
generate 104 random values of magnitude from fM(m), and then simulate a ground motion
for each of the 104 magnitudes. However, the number of intense ground motions in such a
database would be small, as suggested by fM(m) in Figure 3.2b. To overcome this limitation,
Yamamoto and Baker proposed to employ the concept of Importance Sampling [Yamamoto,
2011], a standard procedure in statistics (see e.g., Section 24.3 of [Wasserman, 2004]). Using
the uniform distribution in Figure 3.2b as the Importance Function, gM(m), 104 values of
magnitude are randomly generated and the corresponding value of Importance Sampling
weights, w(m) = fM(m) ÷ gM(m), are saved. Corresponding to each of the 104 values of
magnitude, a synthetic ground motion is randomly simulated from the two stochastic models.
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Structural Models and Engineering Demand Parameters

To highlight the generality of the proposed approach, two nonlinear SDF systems and two
EDPs are considered. Although SDF systems are chosen to facilitate reproducibility of the
results in this study, any structural model and EDP may be chosen (see end of Section 3.8).
The first SDF structure is a 5%-damped bilinear system with a linear vibration period, T1,
of 1 sec, a yield displacement of 0.2g×(T1/2π)2, and a post-yield hardening ratio of 5%. The
second SDF structure is a 3.4%-damped degrading system with a linear vibration period,
T1, of 1.1 sec, a yield displacement of 0.18g × (T1/2π)2, and a post-yield softening ratio of
2%; it is the first-mode inelastic SDF system of the 4-story building considered in [Bobadilla
and Chopra, 2007]. For each SDF structure, the SDHCs corresponding to two EDPs are of
interest: (1) peak deformation, um, and (2) peak total acceleration, üto.

The force-deformation relationships for the two selected SDF structures are presented
in Figure 3.3. The relationship for the degrading system is represented by the Modified
Ibarra-Medina-Krawinkler (IMK) model [Ibarra et al., 2005] with peak-oriented hysteretic
response; the specific parameters for this model may be found in Tables 4.2 and 4.3 of
[Bobadilla and Chopra, 2007]. The post-yield hardening portrayed in Figure 3.3a indicates
that collapse is impossible for the bilinear system. In contrast, collapse is possible for the
degrading system because the Modified IMK model captures both stiffness and strength
deterioration (Figure 3.3b). Strictly speaking, collapse occurs when the deformation of
the system increases without bounds. Practically however, collapse is defined herein as the
event where the peak deformation exceeds 29 inches (see e.g., Section 3.2.2 of [PEER GMSM
Working Group, 2009]), which corresponds to the ultimate rotation capacity that is specified
in the Modified IMK model.
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Figure 3.3: Force-deformation relationships from cyclic pushover analysis: (a) bilinear; (b)
Modified IMK model with peak-oriented response.
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GMSM Procedures

To emphasize the flexibility of the proposed approach, two significantly different GMSM
procedures are considered in this study: (1) IDA [Vamvatsikos and Cornell, 2004], and (2)
a special case of the Generalized Conditional Intensity Measure approach (GCIM) [Bradley,
2010a, Bradley, 2012a, Bradley, 2012c], where only spectral accelerations, A(T ), are con-
sidered as IMs for ground motion selection; this special case is denoted by GCIM-SA. The
IDA represents a simple and well known technique for estimating SDHCs in PSDA (see e.g.,
[Applied Technology Council, 2009]), whereas GCIM-SA is a more sophisticated GMSM pro-
cedure. The latter permits examination of the premise that spectral shape is a sufficient IM
[Luco and Cornell, 2007] for EDPs of nonlinear SDF systems.

3.5 Benchmark Hazard Curves

For a specified ground motion simulation model, a unique set of hazard curves, λIM(x) and
λEDP (z) in Equation 3.1, exist. These hazard curves may be approximated from a database
of synthetic ground motions; the theory for such calculations is presented next.

Intensity Measure Hazard Curve

The exact hazard curve for any IM at the site described in Section 3.4 is governed by
Equation 3.4. In this equation, fM(m) is given by the PDF shown in Figure 3.2b and
Pr(IM > x |M = m) is given by the stochastic model for randomly simulating ground mo-
tions. If magnitudes were randomly generated from fM(m) and used as input to the selected
stochastic model, then λIM(x) may be computed from the usual Monte Carlo estimator (see
e.g., Section 4.5 of [Ross, 2013]):

λ
(MC)
IM (x) =

ν

N

N∑
i=1

I(xi > x) (3.5)

where the superscript MC refers to “Monte Carlo”, N is the total number of synthetic ground
motions in a database, xi is the value of IM for the ith ground motion, and I(·) denotes the
indicator function, which is equal to unity when the event inside the parenthesis occurs and
zero otherwise. When N is very large, λ

(MC)
IM (x) is essentially equal to λIM(x).

As mentioned earlier in Section 3.4, each database of synthetic ground motions was
obtained using magnitudes that are randomly generated from the uniform distribution in
Figure 3.2b, gM(m), instead of fM(m). Replacing fM(m) in Equation 3.4 with fM(m) ×
gM(m)÷ gM(m) leads to

λIM(x) = ν ·
{∫ [

Pr(IM > x |M = m)
fM(m)

gM(m)

]
gM(m) dm

}
(3.6)
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Defining the ratio of fM(m) over gM(m) as the Importance Sampling weight, w(m), the
benchmark IMHC may therefore be computed from

λIM(x) ' ν

N

N∑
i=1

[I(xi > x) · w(mi)] (3.7)

where mi is randomly generated from gM(m) instead of fM(m), and xi now refers to the value
of IM for the corresponding ith ground motion. For example, application of Equation 3.7 to
the database of N = 104 synthetic ground motions from Rezaeian’s model leads to the results
shown by thick solid curves in Figure 3.4. As demonstrated in this figure, Equation 3.7 may
be used to compute benchmark IMHCs for a wide variety of IMs.
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Figure 3.4: Benchmark IMHCs determined from 104 ground motions simulated by Rezaeian’s
stochastic model, for several IMs: (a) A(0.2s); (b) A(1s); (c) A(5s); (d) peak ground velocity
(PGV); (e) spectrum intensity (SI); (f) 5-95% significant duration, D5−95.

There is epistemic uncertainty in the benchmark IMHCs because they are developed
from a finite number of ground motions. For example, the value of the benchmark hazard
curve in Figure 3.4b is zero at intensity levels greater than 4.77g because the largest value
of A(1s) observed in the database is 4.77g. For another database of 104 ground motions
simulated by Rezaeian’s model, the largest observed value of A(1s) will be different and
hence the corresponding value of the benchmark IMHC will be different. To assess the
quality of results achieved by using N = 104, a 90% confidence interval was determined for

39



each IMHC by the bootstrap procedure [Efron and Tibshirani, 1993] with 100 bootstrap
samples. With these confidence intervals, we see in Figure 3.4 that at high exceedance
rates (i.e., rates above 10−3 or return periods less than 1000 years), the approximation
expressed in Equation 3.7 is nearly perfect. As the exceedance rate decreases, the quality
of the approximation deteriorates, which should be recognized when interpreting subsequent
results.

Seismic Demand Hazard Curve when Collapse is Impossible

For structural models where collapse is impossible, the steps to develop a benchmark SDHC
for any EDP are nearly identical to that just presented for the benchmark IMHC. By re-
placing IM in Equation 3.4 with EDP , the equation that governs the exact SDHC at this
site becomes

λEDP (z) = ν ·
{∫

Pr(EDP > z |M = m)fM(m) dm

}
(3.8)

By replacing fM(m) in Equation 3.8 with fM(m)×gM(m)÷gM(m) and applying the concept
of Importance Sampling as before, the benchmark SDHC for structures where collapse is
impossible may be computed from

λEDP (z | NC) ' ν

N ′

N ′∑
i=1

[I(zi > z) · w(mi)] (3.9)

where NC stands for “No Collapse”, N ′ is the total number of ground motions where collapse
did not occur, and zi is the value of the EDP corresponding to the ith ground motion. Observe
that the benchmark SDHC can be computed from Equation 3.9, without a prediction model
for the EDP [Kwong et al., 2014]. However, depending on the exceedance rates of interest,
a large number of RHAs may be necessary to implement the calculations in Equation 3.9.

With ground motions simulated by Rezaian’s stochastic model, the benchmark SDHCs
for the bilinear system are presented in the top row of Figure 3.5. For each EDP, the
thick solid curve is computed by Equation 3.9 from the N ′ = N = 104 values of the EDP
corresponding to the database of synthetic motions. As in Section 3.5, the 90% confidence
intervals for these benchmark SDHCs are again obtained from the bootstrap procedure with
100 bootstrap samples.

To facilitate interpretation of these curves, exceedance rates of 2 × 10−3 (return period
of 500 years) and 4 × 10−4 (return period of 2500 years), that correspond roughly to the
design basis earthquake (DBE) and maximum considered earthquake (MCE) levels specified
in [American Society of Civil Engineers, 2010], are noted in Figure 3.5. At exceedance
rates above the MCE level, the 90% confidence intervals indicate that the approximation
in Equation 3.9 is nearly perfect. Although the quality of this approximation deteriorates
for decreasing exceedance rates, the thick solid curves are still referred to as “benchmark”
for the purpose of revealing potential biases in SDHC estimates from a GMSM procedure.
In passing, note that the system responds nonlinearly at exceedance rates below around
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Figure 3.5: Benchmark SDHCs determined from 104 ground motions simulated by Rezaeian’s
stochastic model: (a-b) um and üto of bilinear system, respectively; (c-d) um and üto of
degrading system, respectively.

6 × 10−3, as indicated by the yield displacement identified in Figure 3.5a and the sudden
change in slope in Figure 3.5b.

Seismic Demand Hazard Curve when Collapse Is Possible

Using the total probability theorem and assuming that the probability of EDP exceeding z is
equal to unity when the structure collapses [Baker and Cornell, 2005] 5, the term Pr(EDP >
z |M = m) in Equation 3.8 is expanded:

Pr(EDP > z |M = m) = Pr(EDP > z,NC |M = m) + Pr(C |M = m) (3.10)

where NC and C denote events corresponding to “No Collapse” and “Collapse”, respectively.
Substituting Equation 3.10 into Equation 3.8 and rearranging terms leads to

λEDP (z) = λEDP (z | NC)

[
1− λC

ν

]
+ λC (3.11)

5If a different assumption is desired (e.g., assuming Pr(PFA > z | C,M = m) = Pr(PGA > z | C,M =
m) instead of Pr(PFA > z | C,M = m) = 1, where PFA and PGA denote, respectively, peak floor
acceleration of a multistory building and peak ground acceleration [Lin et al., 2013b]), then Equations 3.10-
3.11 should be modified appropriately.
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where λEDP (z | NC) is the benchmark SDHC given that collapse is impossible, and λC is
the annual rate of collapse.

Computation of the benchmark SDHC for any structural model, with the possibility of
collapse, can be organized in five steps. First, RHA of the structure is performed for all N
ground motions in the database. Second, the N results from RHA are subdivided into EDP
values for the N ′ non-collapsed cases and N − N ′ collapsed cases. Third, λEDP (z | NC)
is determined by applying Equation 3.9 to only the N ′ values of EDP. Fourth, all N RHA
results are employed to compute the annual rate of collapse, λC , from

λC '
ν

N

N∑
i=1

[I(Ci) · w(mi)] (3.12)

where I(Ci) is equal to 1 if collapse is observed for the ith ground motion and equal to
zero otherwise. Fifth, λEDP (z | NC) and λC from the latter two steps are substituted
in Equation 3.11 to obtain the final benchmark SDHC, λEDP (z). With ground motions
simulated by Rezaeian’s stochastic model, the benchmark SDHCs of the degrading system
are presented in the bottom row of Figure 3.5. As the value of the EDP increases, the
benchmark SDHC approaches the annual rate of collapse (Figure 3.5c-d), and the quality of
the approximations in Equations 3.9 and 3.12 decreases, as indicated by wider confidence
intervals.

3.6 Benchmark-Consistent Prediction Models

Prediction models, which provide the probability distribution of an IM for a given rupture
scenario, are needed to select ground motions in contemporary GMSM procedures (e.g.,
[Jayaram et al., 2011, Bradley, 2010a]). In order to isolate the effect of a GMSM procedure
on its resulting SDHC estimate, prediction models must be consistent with the particular
database of synthetic ground motions (Figure 3.1); otherwise, an additional source of bias

would be introduced. For example, if the GMPM-based IMHC in Equation 3.2, λ̃IM∗(x),
is significantly different than the benchmark IMHC in Equation 3.1, λIM∗(x), then any

difference between λ̂EDP (z) in Equation 3.2 and λEDP (z) in Equation 3.1 cannot be solely
attributed to the GMSM procedure under consideration. This section describes how such
benchmark-consistent prediction models are developed.

Ground-Motion-Prediction Model

Figure 3.6 illustrates how the median value of IM ≡ A(1s) is estimated for a given magni-
tude. For each database of 104 ground motions (Section 3.4), the logarithmic values of A(1s)
are plotted against magnitude. Ordinary least squares (OLS) regression is then performed
to determine the predicted median as a polynomial function of magnitude, which is shown
in solid black. The degree of the polynomial function is chosen such that its corresponding
regression results do not differ appreciably from those corresponding to the next higher de-
gree. Based on this criterion, the functional forms for Rezaeian’s and Yamamoto’s stochastic
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models were determined as:

ln IM = b0 + b1M + ε ln IM = c0 + c1M + c2M
2 + ε (3.13)

respectively, where for a given value of magnitude, ε is a zero mean normally distributed
random variable with standard deviation σ; the b’s and c’s are coefficients to be estimated
from regression analysis.

5 6 7 8 8.5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Magnitude, M

IM
 ≡

 A
(1

s)
 [

g
]

(a)

 

 

Predicted median

± 2σ
constant

 band

± 2σ
optimal

 band

5 6 7 8 8.5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Magnitude, M

(b)

Individual synthetic
ground motions

Figure 3.6: Example of GMPM development using synthetic ground motions: (a) Rezaeian’s
stochastic model; (b) Yamamoto’s stochastic model.

Synthetic ground motions for the simple site (Figure 3.2) makes the development of
GMPMs herein more manageable than that performed in practice with recorded ground
motions. For example, there is no need to apply the random effects model or the two-stage
regression technique, since each synthetic ground motion corresponds to an earthquake with
a unique magnitude. Therefore, the terms associated with seismological parameters other
than magnitude (e.g., distance, style-of-faulting, etc.) that appear in practical GMPMs
[Abrahamson et al., 2008] are not relevant for this particular site (see Section 3.4). Con-
sequently, the development of GMPMs reduces to estimating the CCDF of IM for a given
magnitude, Pr(IM > x |M = m) in Equation 3.4, assumed to be lognormal.

Figure 3.6 permits three additional observations about the development of GMPMs from
synthetic ground motions. First, the estimate of the median IM at large magnitudes is
robust because the magnitudes in the ground motion database were randomly generated from
the uniform PDF instead of the Youngs & Coppersmith PDF (Figure 3.2b). Second, the
relationship between IM and M is unaffected by Importance Sampling since it is specified by
the ground motion simulation model. Third, the standard deviation of the IM, σ, depends on
magnitude for Yamamoto’s model because the ±2σconstant band in Figure 3.6b covers fewer
ground motions at large M than at small M ; in contrast, σ is essentially independent of
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magnitude in Rezaeian’s model because the ±2σconstant band in Figure 3.6a covers a similar
amount of data at all M . For generality, σ is modeled as a function of magnitude in both
stochastic models.

A natural way to model σ as a function of magnitude is to divide the magnitude domain
into discrete bins and determine a value of σ at each bin. We chose the 12 bins shown in
Figure 3.6. For each magnitude interval, the value of σ may be obtained by applying OLS
to the binned ground motions; such values are denoted by σbinned. At magnitudes beyond
the domain of fM(m) in Figure 3.2b, σ is given by that from the closest magnitude bin.

Once a GMPM is finalized, P̃r(IM > x |M = m) is known and the corresponding IMHC
may be computed from a discrete form of Equation 3.4:

λ̃IM(x) = ν ·

{∑
m

P̃r(IM > x |M = m) Pr(M = m)

}
(3.14)

For example, suppose P̃r(IM > x |M = m) is a lognormal CCDF with the median obtained
from the solid black curve in Figure 3.6b and the standard deviation obtained from σbinned.
Applying Equation 3.14 to this model leads to the dashed curve in Figure 3.7a.
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Figure 3.7: Example of enforcing benchmark-consistency on GMPMs developed from ground
motions simulated by Yamamoto’s stochastic model; comparison of: (a) IMHCs; (b) CCDFs
at small probabilities.

The GMPMs based on σbinned may not be benchmark-consistent. For example, the model
for A(1s) mentioned in the preceding paragraph is not benchmark-consistent because its
corresponding IMHC differs from the associated benchmark IMHC at intensity levels greater
than 1g (Figure 3.7a). By comparing Equation 3.14 against Equation 3.4, we see that

the discrepancy between λ̃IM(x) and λIM(x) is due primarily to the discrepancy between
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P̃r(IM > x | M = m) and Pr(IM > x | M = m) at small exceedance probabilities
(Figure 3.7b). For other IMs and other ground motion simulation models, this issue will
introduce an additional source of bias to the GMSM-based estimate of the SDHC.

Since we wish to isolate the effects of a GMSM procedure on its resulting SDHC estimate,
λ̃IM∗(x) in Equation 3.2 must agree as closely as possible with λIM∗(x) in Equation 3.1. To
achieve this goal, σ is determined for each magnitude bin such that its resulting lognormal
CCDF agrees most closely with the empirical CCDF at the ‘tails’; this standard deviation
is denoted as σoptimal. An example of the tail region is presented as the shaded area in
Figure 3.7b. The right boundary of this region corresponds to the largest value of the
observed IM within the magnitude bin whereas the left boundary corresponds to the intensity
level at which the IMHC from σbinned begins to differ from the benchmark IMHC (Figure 3.7a)
6; if the latter is larger than the former (or if there is only one ground motion within this tail
region), then the tail region is undefined and σoptimal is specified as σbinned. To quantify the

discrepancy between P̃r(IM > x | M = m) and Pr(IM > x | M = m) at small exceedance
probabilities, we introduce the following metric:

∆ =
∑
x∈Ω

[
G̃(x, σ)−G(x)

G(x)

]2

(3.15)

where Ω denotes the tail region, G(x) is a shorthand notation for the empirical CCDF, and

G̃(x, σ) is a shorthand notation for the lognormal CCDF corresponding to a trial value of
σ. The value of σ that minimizes ∆ is the desired σoptimal. Determined using σoptimal, the
IMHC for A(1s) agrees closely with the benchmark IMHC, confirming that the corresponding
GMPM is benchmark-consistent (Figure 3.7a). Such benchmark-consistent GMPMs were
developed for 21 periods of vibration that are logarithmically spaced between 0.05s and 10s;
for other vibration periods, linear interpolation on the logarithmic scale was employed. This
process of determining σoptimal may also be employed when developing benchmark-consistent
GMPMs for other IMs.

Correlation between Intensity Measures

Correlations between IMs are needed to specify the joint distribution of a vector IM (see
e.g., [Bradley, 2010a, Jayaram et al., 2011]). Derived subsequently are new correlations that
are consistent with the database of synthetic ground motions.

For a given stochastic model, the correlation between two IMs is determined from the
correlation between the residuals of each IM, defined as the differences between the observed
and predicted values of each synthetic ground motion; e.g., the residuals for A(1s), under
Rezaeian’s model, are the vertical deviations between each circle and the black solid curve
in Figure 3.6a. For both stochastic models, the correlations between spectral accelerations

6In this study, the left boundaries of the tail regions for all IMs were determined from visual comparison
of the IMHCs. Alternatively, the left boundary of the tail region for an IM may be determined from its
benchmark IMHC as the intensity level that corresponds to a single user-defined exceedance rate (e.g.,
4× 10−4).
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at vibration periods from 0.05 sec to 10 sec are presented in Figure 3.8. The significant
differences between the correlations from the two stochastic models indicate the need for
benchmark-consistent correlations.
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Figure 3.8: Correlations between spectral accelerations at periods from 0.05 to 10 sec ob-
served in 104 ground motions simulated by: (a) Rezaeian’s stochastic model; and (b) Ya-
mamoto’s stochastic model.

For both stochastic models, the correlation between two IMs appears to be magnitude-
dependent. To examine this magnitude dependence, we used the approach outlined in Ap-
pendix B of [Baker, 2006]. For each IM, the associated 104 residuals are partitioned into the
12 magnitude bins shown in Figure 3.6. A correlation is then computed for each magnitude
bin and compared against the correlation from all bins. From such comparisons, we observed
magnitude dependence for many pairs of IMs. For generality, the correlation between two
IMs is modeled herein as a function of magnitude by providing a correlation value for each
of the 12 magnitude bins.

3.7 Illustrative Evaluation of GMSM Procedures

With a large database of synthetic ground motions obtained for the given site (Section 3.4),
benchmark SDHCs determined for the given structures (Section 3.5), and benchmark-consistent
prediction models developed (Section 3.6), we are now ready to illustrate the evaluation of
GMSM procedures in their ability to accurately estimate the SDHC (Figure 3.1). For each of
the two GMSM procedures mentioned in Section 3.4, an estimate of the SDHC is computed
from Equation 3.2. The conditioning IM is defined as spectral acceleration at 1 sec and
NIM∗ = 12 intensity levels are chosen, which correspond to: 50%, 20%, 10%, 5%, 2%, 1%,
0.5%, 0.2%, 0.1%, 0.05%, 0.02%, and 0.01% probability of exceedance in 50 years. At each
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intensity level, a subset of n = 44 synthetic ground motions are selected by the GMSM pro-
cedure, as excitations for RHAs of the structure, and the lognormal distribution is employed
to determine P̂r(EDP > z | IM∗ = xi); in total, NIM∗ × n = 528 RHAs are performed to
compute a single estimate of the SDHC.

In this study, the seed ensemble for IDA is selected in a manner that is inspired by the
approach taken to develop the Far-Field record set in [Applied Technology Council, 2009]. As
described in Appendix A.7 of [Applied Technology Council, 2009], the Far-Field record set for
use in IDA was determined by preferentially selecting intense ground motions that were likely
to induce structural collapse. To mimic this practical approach, we first filtered the database
of 104 synthetic ground motions according to the following criteria: (1) 6.5 < M < 7.5, (2)
PGA greater than 0.2g, and (3) PGV greater than 15 cm/sec. Among the remaining ground
motions, the 44 motions with the largest values of PGV are chosen as the seed ensemble.
Unlike Appendix A.7 of [Applied Technology Council, 2009], an upper limit for magnitude
is provided in the first selection criterion because records from earthquakes with M > 7.5
are rare whereas over 2000 synthetic ground motions satisfied the three criteria above.

The selection of ground motions in GCIM-SA is significantly more sophisticated than that
in IDA. In this case, 44 ground motions are re-selected at each of the 12 intensity levels. For
a particular intensity level, deaggregation is performed and the target GCIM-SA spectrum
is constructed using the prediction models developed in Section 3.6. For example, the target
spectrum for the MCE level is presented in Figure 3.9a, which is defined at 11 vibration
periods: TIM = {0.05, 0.1, 0.2, 0.3, 0.5, 0.75, 1, 2, 3, 5, 10}. From such a target spectrum, n
response spectra may be simulated by methods presented in [Bradley, 2010a, Bradley, 2012a];
for example, two simulated spectra are illustrated by markers in Figure 3.9b. For each of
the n simulated spectra, the synthetic ground motion whose response spectrum agrees most
closely with the simulated one is selected (see solid and dashed curves in Figure 3.9b).

RHAs of each system, subjected to the same selection of ground motions from a GMSM
procedure, are performed to compute the corresponding SDHCs. For example, the results
from RHAs of the degrading system due to ground motions selected by both GMSM pro-
cedures are presented in Figure 3.10. At each intensity level, the 44 results are classified
either as non-collapsed or collapsed. The non-collapsed results, which are shown in the
top row of Figure 3.10, are used in conjunction with the lognormal distribution to esti-
mate P̂r(EDP > z | NC, IM∗ = xi) in Equation 3.3. On the other hand, the fragility
function, p̂C(xi) in Equation 3.3, is determined from all 44 results, using the maximum like-
lihood fitting procedure described by Baker in [Baker, 2015]. For each GMSM procedure,

P̂r(EDP > z | NC, IM∗ = xi) and p̂C(xi) are combined via Equation 3.3 and the resulting
estimate of the SDHC is computed from Equation 3.2.

The GMSM-based SDHCs for the two EDPs – peak deformation, um, and peak total
acceleration, üto – are presented in Figure 3.11. For a particular EDP, the SDHCs from both
GMSM procedures are essentially identical at exceedance rates above the DBE level but
become increasingly different below the MCE level. Since NIM∗ and λ̃IM∗(xi) in Equation 3.2
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Figure 3.9: Illustration of ground motion selection via GCIM-SA for A(1s) at the MCE level
using Rezaeian’s stochastic model: (a) target spectrum; and (b) simulated spectra from the
target spectrum versus selected spectra from the database of synthetic ground motions.

are identical in both GMSM procedures, the two resulting SDHCs differ because the ground
motions selected in the two cases are not the same. Thus the natural question is: which of
the two SDHCs is more accurate and by how much?

To answer this question, we compare both GMSM-based SDHCs against the benchmark
SDHCs from Figure 3.5; these comparisons reveal two important observations. First, the
bias in an estimate of the SDHC depends on the exceedance rate. Using the two EDPs of the
degrading system as an example (Figure 3.11c-d), the SDHCs from both GMSM procedures
are unbiased at exceedance rates above the DBE level; at exceedance rates below the MCE
level however, the SDHC from GCIM-SA remains unbiased whereas that from IDA overes-
timates the demand. Second, the accuracy of a SDHC from a GMSM procedure depends
on the structure considered. For example, the SDHCs from GCIM-SA are unbiased for the
degrading system (Figure 3.11c-d) but they underestimate the demand for the bilinear sys-
tem at exceedance rates below 10−4 (Figure 3.11a-b). These observations may be explained
using the concepts of “hazard consistency” and “IM sufficiency” [Kwong et al., 2014], which
are introduced next.

We define an ensemble of ground motions to be hazard consistent for some IM if its
resulting estimate of the IMHC, denoted by λ̂IM(x), is essentially equal to the benchmark
IMHC, λIM(x) (Equation 3.7). The former hazard curve is estimated from

λ̂IM(y) =

NIM∗∑
i=1

P̂r(IM > y | IM∗ = xi) · |∆λ̃IM∗(xi)| (3.16)
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Figure 3.10: RHA results of the degrading system subjected to ground motions selected
from Rezaeian’s database for PSDA: (a-b) non-collapse data from IDA and GCIM-SA, re-
spectively; (c-d) collapse data from IDA and GCIM-SA, respectively.

where P̂r(IM > y | IM∗ = xi) is the empirical CCDF of IM corresponding to all ground
motions scaled to intensity xi; for example, applying Equation 3.16 to the ground motions
from IDA leads to the IMHC estimates shown as dashed curves in Figure 3.12. In previous
research, hazard consistency was defined relative to the IMHC computed from a GMPM
in PSHA, λ̃IM(x) in Equation 3.14, because the benchmark IMHC, λIM(x), could not be
obtained from recorded ground motions [Lin et al., 2013b, Kwong et al., 2014]. Since the
latter may now be determined from synthetic motions, (1) hazard consistency is defined
herein relative to the benchmark IMHC, and (2) the issue of benchmark-consistency arises
for the first time (Section 3.6).

Conceptually, hazard consistency is a property of the selected ground motions: it indi-
cates whether or not the ‘intensity’ of a particular ensemble is representative of that assumed
in PSHA (i.e., assumed via GMPMs, stochastic models of ground motions, etc.). For ex-
ample, suppose the intensity is measured by IM∗ ≡ A(1s). The ground motions from both
GMSM procedures are hazard consistent for this IM because each GMSM-based estimate
of the hazard curve agrees closely to the benchmark (Figure 3.12c). This is to be expected
since for each GMSM procedure, all ground motions were deliberately scaled such that the
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Figure 3.11: Comparison of GMSM-based SDHCs against the benchmark SDHC using Reza-
eian’s stochastic model: (a-b) um and üto of bilinear system, respectively; (c-d) um and üto of
degrading system, respectively.

estimated hazard curve for IM∗, λ̂IM∗(x), is essentially identical to that computed from

a GMPM, λ̃IM∗(x) (see Equation 3.16), and the latter is in turn practically equal to the
associated benchmark, λIM∗(x) (see Section 3.6). However, such scaling distorts other as-
pects of the ground motion, potentially leading to hazard inconsistencies with respect to
other IMs. For instance, Figure 3.12e demonstrates that the ground motions from IDA are
hazard inconsistent with respect to IM ≡ A(3s) whereas those from GCIM-SA are indeed
hazard consistent for this IM. It is to be expected that ground motions from GCIM-SA are
hazard consistent for spectral accelerations at many vibration periods, because they have
been selected to deliberately match the target spectra (see Figure 3.9). However, they are
potentially hazard inconsistent with respect to IMs that are not included in the selection
process (e.g., cumulative absolute velocity, significant duration, etc.).

An IM, which may be scalar or vector-valued, is defined to be sufficient with respect to an
EDP when, given a fixed value of this IM, the EDP does not depend on any other aspects of
the ground motion [Shome et al., 1998, Luco and Cornell, 2007]. Put differently, a sufficient
IM completely controls the response of the system. For example, the peak response of a
linear-elastic MDF structure is essentially controlled by spectral acceleration at its modal
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Figure 3.12: Hazard consistency of ground motions selected by both GMSM procedures in
PSDA, for spectral accelerations at six periods of vibration: (a) 0.1 sec; (b) 0.5 sec; (c) 1
sec; (d) 2 sec; (e) 3 sec; and (f) 10s.

periods of vibration; therefore, this vector IM is expected to be sufficient with respect to
such EDPs.

The concepts of sufficiency and hazard consistency may be used to explain why the bias
in an estimate of the SDHC depends on the exceedance rate. For instance, consider the
SDHCs for the degrading system in Figure 3.11c-d. At exceedance rates above the DBE
level, the system responds linearly and hence A(1s) is sufficient. Because ground motions
from both GMSM procedures are hazard consistent for this IM (Figure 3.12c), the resulting
SDHCs are unbiased at this range of linear elastic behavior. At exceedance rates below the
MCE level however, the system deforms in the inelastic range and we know from structural
dynamics that A(1s) alone no longer controls the peak deformation. Consequently, the
hazard consistency of the selected ground motions, with respect to IMs other than A(1s),
determines the accuracy of the resulting SDHCs. Because the ground motions from IDA are
hazard inconsistent with respect to spectral accelerations at vibration periods longer than 2
sec (Figure 3.12e-f), the resulting SDHCs overestimate the demand.

The accuracy of a SDHC from a GMSM procedure depends on the structure and EDP
of interest because an IM that is insufficient for one structure or EDP may turn out to

51



be sufficient for another. For example, consider the ground motions from GCIM-SA that
were deliberately selected to be hazard consistent with respect to the vector IM, comprising
spectral accelerations at vibration periods from 0.05 to 10 sec. This vector IM, or spectral
shape, is insufficient for the two EDPs of the bilinear system at exceedance rates below
10−4. This conclusion may be deduced as follows: if the vector IM is indeed sufficient
for the EDP at exceedance rates below 10−4, then the fact that the ground motions are
hazard consistent with respect to this IM (Figure 3.12) should have resulted in an unbiased
estimate of the SDHC at such exceedance rates [Kwong et al., 2014]; since this is not the
case however (Figure 3.11a-b), the IM must not be sufficient. At such extreme levels of
nonlinearity, the EDPs of the bilinear system are controlled by aspects of the ground motion
other than spectral shape; in particular, the duration of the ground motion seems to affect the
system’s peak response because the system is able to experience many cycles of vibration,
as its strength is unlimited. In contrast, the degrading system would have collapsed for
exceedance rates below 10−4. As a result, spectral shape appears to be sufficient for the
degrading system at all exceedance rates of interest whereas it is only sufficient for the
bilinear system at exceedance rates above 10−4.

In general, estimates of the SDHC will be unbiased as long as the corresponding ground
motions are hazard consistent with respect to an IM that is sufficient [Kwong et al., 2014].
However, sufficient IMs may not exist for EDPs of a complex, realistic structure as its
response is sensitive to many details of the ground motion. Therefore, any modification of
ground motions may result in biased SDHCs for such systems. The approach proposed in
Figure 3.1 makes it possible to quantify potential biases and assess the sufficiency of IMs
employed for ground motion selection.

To further test the proposed approach for evaluating GMSM procedures, it was reim-
plemented for the database of 104 ground motions from Yamamoto’s stochastic model. Us-
ing this new database, new benchmark hazard curves were computed (Section 3.5), new
benchmark-consistent prediction models were developed (Section 3.6), and new GMSM-
based estimates of the SDHC were obtained; in total, this effort required an additional 11056
more RHAs of each structure. The results from utilizing Yamamoto’s stochastic model are
summarized in Figure 3.13.

We expect similar observations regarding bias in the SDHCs resulting from Yamamoto’s
stochastic model because the proposed approach aims to isolate the effects of a GMSM pro-
cedure on its resulting estimates of the SDHC. This expectation is confirmed in Figure 3.13;
observe that although the benchmark SDHCs in this figure differ from those in Figure 3.11,
the GMSM-based SDHCs are also different between the two figures. The SDHCs from
GCIM-SA again underestimate the demand of the bilinear system at exceedance rates below
10−4; this confirms that the response of the bilinear system is controlled by aspects of the
ground motion other than spectral shape at such extreme levels of nonlinearity. For the
degrading system, the SDHCs from GCIM-SA are again unbiased and those from IDA again
overestimate the demand at exceedance rates below the MCE level. The fact that the SDHCs
from GCIM-SA are unbiased for the degrading system in both stochastic models strongly
suggests that spectral shape is indeed a sufficient IM for this system.
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Figure 3.13: Comparison of GMSM-based SDHCs against the benchmark SDHC using Ya-
mamoto’s stochastic model: (a-b) um and üto of bilinear system, respectively; (c-d) um and
üto of degrading system, respectively.

However, we observe a few minor differences between the results from the two stochastic
models. First, both structures yield at different rates of exceedance (e.g., the bilinear system
yields at 6×10−3 in Rezaeian’s model but yields at the DBE level in Yamamoto’s model); this
is expected since the benchmark SDHC differs in each stochastic model (Section 3.3). Second,
the SDHCs from IDA are unbiased for the bilinear system at exceedance rates between
2× 10−4 and 5× 10−5 in Rezaeian’s model (Figure 3.11a-b) but overestimate the demand at
this range of exceedance rates in Yamamoto’s model (Figure 3.13a-b). The latter difference
regarding IDA arises because ground motions from this procedure are hazard consistent
with respect to A(2s) in Rezaeian’s model (Figure 3.12d) but are hazard inconsistent with
respect to A(2s) in Yamamoto’s model (not shown). Aside from such differences, the overall
similarity between the relationships depicted in Figures 3.11 and 3.13 indicates that the
proposed approach for evaluating GMSM procedures is robust.

3.8 Comparison with Previous Research

In previous research, a GMSM-based estimate of the SDHC was considered unbiased if
different choices of the conditioning IM led to essentially the same estimate [Bradley, 2012c,
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Lin et al., 2013b]. This approach is illustrated in Figure 3.14 where estimates of the SDHC for
the peak deformation of the degrading system, computed from Equation 3.2 for four choices
of the conditioning period, T ∗, are presented. The fact that the four SDHCs are closer to
each other for GCIM-SA than for IDA suggests that SDHC estimates from GCIM-SA are
less biased – or more accurate – than those from IDA.
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Figure 3.14: Comparison of GMSM-based SDHCs from different definitions of the condi-
tioning IM for EDP ≡ um of the degrading system, using ground motions simulated by
Rezaeian’s stochastic model: (a) IDA; (b) GCIM-SA.

This existing approach has two limitations. First, it is not possible to quantify the bias
in any GMSM-based SDHC for lack of a benchmark. Second, several significantly different
definitions of the conditioning IM are typically needed to draw definitive conclusions from
the existing approach. For example, if only 1 s and 2 s were considered as definitions for T ∗,
then Figure 3.14 may erroneously suggest that the SDHCs from IDA are less biased than
those from GCIM-SA.

These two limitations are overcome by the approach presented in this work. First, the
bias in any SDHC estimate can be quantified by comparing the estimate against the bench-
mark SDHC in a controlled setting (Figure 3.1). For example, the benchmark SDHC in
Figure 3.14 verifies that the SDHCs from GCIM-SA are more accurate than those from IDA.
For each GMSM procedure, the SDHC corresponding to 1 sec is most accurate among the
four conditioning periods considered; this confirms the conclusion by Lin et al [Lin et al.,
2013b] that the choice of the conditioning period is important for accurate estimation of
SDHCs in PSDA. Moreover, the ability to quantify bias enables the analyst to assess the
sufficiency of IMs for an EDP of interest (Section 3.7). Second, the need to choose several
definitions of the conditioning IM is avoided in the proposed approach since the benchmark
SDHC is developed only once, regardless of the number of GMSM procedures considered

54



(see Sections 3.5 and 3.5). For a more comprehensive comparison of hazard curves in Fig-
ures 3.11-3.14, a bootstrap confidence interval may also be provided for each GMSM-based
hazard curve, which is useful when the total number of ground motions used for each hazard
curve is less than that in this study (NIM∗ × n = 528).

These two limitations were also overcome in [Kwong et al., 2014], where benchmark
SDHCs for the peak deformation of a bilinear SDF system were developed from prediction
models based on recorded ground motions. However, the benchmark SDHC in the current
study may be computed for any EDP of interest and the bias in a SDHC estimated from
a particular GMSM procedure may be isolated more completely with the aid of synthetic
ground motions. Note that the models for simulating ground motions should be appropriate
for the site considered.

Applying the proposed approach for other structures and other sites can be much more
complicated and computationally demanding. For example, computation of the benchmark
SDHC (Section 3.5) for complex, realistic structures would require enormous effort because
a large number of RHAs is necessary. For sites with multiple earthquake sources and earth-
quakes occurring at random locations, the methods for developing a database of ground
motions and benchmark-consistent prediction models will be slightly different than those
presented in this study. When developing the database of ground motions (Section 3.4), the
ground motion simulation models will require randomly generated rupture scenarios from all
earthquake sources as input for simulating ground motions. When developing benchmark-
consistent GMPMs (Section 3.6), the probability distribution of IMs will depend on seismo-
logical parameters (e.g., distance, style-of-faulting, etc.) in addition to magnitude, increasing
the complexity of the functional forms (Equation 3.13).

3.9 Conclusions

This investigation of employing synthetic ground motions to evaluate GMSM procedures has
led to the following conclusions:

1. A novel approach for evaluating GMSM procedures, in the context of PSDA, is pre-
sented. In essence, synthetic ground motions are employed to: (1) derive the bench-
mark SDHC, for the structure and response quantity of interest, and (2) establish the
causal relationship between a GMSM procedure and the bias in its resulting estimate
of the SDHC. To achieve the latter goal, new benchmark-consistent prediction models
are developed.

2. A case study is presented to illustrate the proposed approach. For two simple systems
at a simple site, two GMSM procedures – IDA and GCIM-SA – are evaluated, leading
to the following observations:

a) The bias in an estimate of the SDHC depends on the exceedance rate. At ex-
ceedance rates above (or greater than) the DBE level, SDHCs from both pro-
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cedures are unbiased for both systems and both EDPs; below the MCE level
however, SDHCs from GCIM-SA are generally more accurate than those from
IDA.

b) The accuracy of a SDHC from a GMSM procedure depends on the structure
and EDP of interest. At exceedance rates below the MCE level, SDHCs from
GCIM-SA are unbiased for the degrading system but not for the bilinear system.

c) Spectral shape appears to be sufficient for the degrading system at all exceedance
rates of interest; however, it is insufficient for the bilinear system at exceedance
rates below 10−4. Below this exceedance rate, the response of the bilinear system is
influenced by aspects of the ground motion other than spectral shape because the
system is able to experience many cycles of vibration, as its strength is unlimited;
in contrast, the degrading system would have already collapsed.

d) For the degrading system and for both GMSM procedures, the peak deforma-
tion hazard curve that corresponds to the system’s fundamental period is most
accurate among the four conditioning periods considered.

3. The proposed approach is demonstrated to be robust, as similar conclusions are ob-
tained from two significantly different stochastic models for simulating ground motions.

4. Unlike previous research, the current approach offers the ability to quantify bias in
SDHCs for any structure and EDP of interest, avoids the need to choose several dif-
ferent conditioning IMs, and isolates the bias in the SDHC estimate from a GMSM
procedure more completely with synthetic ground motions.

5. In general, estimates of the SDHC will be unbiased as long as the corresponding ground
motions are hazard consistent with respect to an IM that is sufficient. However, suf-
ficient IMs may not exist for EDPs of a complex, realistic structure. Therefore, any
modification of ground motions may result in biased SDHCs for such systems. The pro-
posed approach makes it possible to quantify potential biases and assess the sufficiency
of IMs employed for ground motion selection.
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Chapter 4

A Ground Motion Selection
Procedure for Enforcing Hazard
Consistency and Estimating Seismic
Demand Hazard Curves

4.1 Preview

This chapter develops a procedure to select unscaled ground motions for estimating seismic
demand hazard curves (SDHCs) in performance-based earthquake engineering (PBEE). Cur-
rently, SDHCs are estimated from a probabilistic seismic demand analysis (PSDA), where
several ensembles of ground motions are selected and scaled to a user-specified conditioning
intensity measure (IM). In contrast, the procedure developed herein provides a way to select
a single ensemble of unscaled ground motions for estimating the SDHC. In the context of
unscaled motions, the proposed procedure requires three inputs: (i) database of unscaled
ground motions, (ii) IM, the vector of IMs for selecting ground motions, and (iii) sample
size, n; in the context of scaled motions, two additional inputs are needed: (i) a maximum
acceptable scale factor, SFmax, and (ii) a target fraction of scaled ground motions, γ. Us-
ing a recently developed approach for evaluating ground motion selection and modification
procedures, the proposed procedure is evaluated for a variety of inputs and is demonstrated
to provide accurate estimates of the SDHC when ground motions are unscaled, or when
the vector of IMs chosen to select ground motions is sufficient for the response quantity of
interest.

4.2 Introduction

In performance-based earthquake engineering (PBEE), response history analyses (RHAs) of
structural models are typically performed for three different contexts: (i) intensity-based
assessment, (ii) scenario-based assessment, and (iii) risk-based assessment [Applied Technol-
ogy Council, 2012, NEHRP Consultants Joint Venture, 2011]. This chapter focuses on a
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risk-based assessment, or a probabilistic seismic demand analysis (PSDA), which is the most
comprehensive context among the three. The primary output of a PSDA is a plot of the
annual rate of exceedance, λ, as a function of the seismic demand, or engineering demand
parameter (EDP); such a plot is referred to as a seismic demand hazard curve (SDHC),
which is unique for a given structure at a given site [Bradley, 2012c]. In essence, a SDHC is
computed from a PSDA by selecting several ensembles 1 of ground motions and scaling each
ensemble to a user-specified conditioning intensity measure (IM); a detailed explanation of
this approach may be found elsewhere (e.g., Section 2 of [Kwong et al., 2014], among others).

The objective of performing RHAs in this study is to estimate the SDHCs of a given
structure at a particular site. Once constructed, the SDHC may be used to determine the
seismic demand for a given annual rate of exceedance, or conversely, the exceedance rate for
a given structural capacity. Furthermore, the SDHC may be integrated with fragility and
consequence functions to estimate damage and loss, respectively (Chapter 9 of [Bozorgnia
and Bertero, 2004]).

There are three limitations to the existing approach for computing SDHCs from a PSDA.
First, the choice of the conditioning IM may not be obvious for some structures and yet it
determines the influence from other IMs on the EDP [Lin et al., 2013b]. Second, ground
motions selected from a PSDA are almost always amplitude scaled to various levels of the
conditioning IM, potentially causing bias in the resulting demands. Third, several ensembles
of scaled ground motions are typically needed to determine the SDHC for a wide range of
exceedance rates.

The choice of the conditioning IM and the effects of amplitude scaling are relatively
unimportant when ground motions are carefully selected to be consistent with the hazard
[Bradley, 2012c, Lin et al., 2013b]. Specifically, the SDHCs are unbiased – irrespective of the
extent of record scaling – when the corresponding ground motions are hazard-consistent with
respect to IMs that are sufficient for the EDP in question [Kwong et al., 2014, Kwong et al.,
2015b]. An IM, which may be scalar or vector-valued, is defined to be sufficient with respect
to an EDP when the EDP is essentially controlled only by this IM and no other features
of the ground motion [Shome et al., 1998, Luco and Cornell, 2007]. Since sufficient IMs
may not exist for EDPs of a complex, realistic structure, a method that permits selection of
unscaled ground motions is desirable.

The procedure developed herein permits selection of a single ensemble of unscaled ground
motions, without the need to choose a conditioning IM. First, a vector of IMs is selected on
the basis of the structure and EDPs considered. Next, the theoretical probability distribution
of this vector, derived from probabilistic seismic hazard analysis (PSHA), is employed as
the target for ground motion selection. By selecting a single ensemble of unscaled ground
motions to be consistent with this target, hazard consistency at high exceedance rates (or
short return periods) is directly enforced. To enforce hazard consistency of ground motions
at low exceedance rates (or long return periods), the concept of Importance Sampling is

1In this study, an “ensemble” refers to a collection of single horizontal components of ground motion.
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utilized. Finally, a case study is chosen to illustrate the proposed procedure, evaluate its
ability in providing accurate estimates of the SDHC, and develop recommendations for user-
defined inputs to the procedure.

4.3 Theoretical Background

Target for Ground Motion Selection

The target is defined by IM, a vector of IMs, and its probability distribution from PSHA
of the particular site; although a scalar IM may also be considered, this chapter focuses
on a vector of IMs for generality. Examples of such IMs include peak ground acceleration
(PGA), spectral accelerations at various vibration periods, A(T ), and significant duration,
D5−75, which are explicit measures of the ground motion [Bradley, 2012a]. The number of
IMs in the vector, denoted by NIM , is referred to as its dimension. The IMs should be
specified based on structural dynamics and on the analyst’s experience with structures that
are similar to the one in question. For example, spectral acceleration at vibration periods
between the system’s fundamental period, T1, and twice the fundamental period, 2T1, might
control inter-story drift ratios [Haselton and Baker, 2006] whereas PGA might control floor
accelerations [Lin et al., 2013b].

The proposed procedure aims to select an ensemble of ground motions that is consistent
with respect to the hazard curves of the IMs specified in the preceding paragraph. An
ensemble of ground motions is said to be hazard-consistent with respect to an IM when its
resulting estimate of the intensity measure hazard curve (IMHC), λ̂IM(x), is practically the
same as 2 the target IMHC, λIM(x) (see Section 4.4). The latter IMHC is given by PSHA
of the site:

λIM(x) =

NRup∑
i=1

ν(rupi) · Pr(IM > x | rupi) (4.1)

where NRup refers to the total number of rupture scenarios considered in the PSHA 3, ν(rupi)
refers to the rate of the ith scenario, and Pr(IM > x | rupi) refers to the complementary
cumulative distribution function (CCDF) of the IM for a given rupture scenario. An estimate
of the IMHC from an ensemble of ground motions will be defined later in this section.

In addition to hazard curves, a PSHA also provides the ingredients to determine the
multivariate probability distribution of a vector of IMs. The marginal CCDF of each IM for
a given earthquake (with unknown magnitude and location) near the site, Pr(IM > x), may
be obtained by normalizing its corresponding hazard curve:

Pr(IM > x) =
λIM(x)

ν0

=

NRup∑
i=1

ν(rupi)

ν0

· Pr(IM > x | rupi) (4.2)

2Due to the presence of epistemic uncertainty, the comparison of hazard curves requires judgment.
3A rupture scenario is defined by the magnitude and location of rupture at the earthquake source.
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where ν0 =
NRup∑
i=1

ν(rupi) refers to the annual rate of earthquake occurrence; by definition of ν0,

the sum of all normalized activity rates in the first term of the summation in Equation 4.2
is unity. The marginal probability density function (PDF) of each IM, fIM(x), may be
derived from such CCDFs. For example, Figure 4.1a shows an example IMHC from PSHA;
its corresponding PDF is depicted in Figure 4.1b. Assuming the distribution of ln(IM)
for a given rupture scenario is multivariate normal [Bradley, 2010a], where marginal means
and standard deviations are given by ground-motion-prediction models (e.g., [Campbell and
Bozorgnia, 2008], [Bommer et al., 2009]), and correlations among the IMs are given by
correlation models (e.g., [Baker and Jayaram, 2008], [Bradley, 2012b]), Equation 4.2 indicates
that the target distribution of IM is a finite mixture of multivariate lognormals :

fIM(x) =

NRup∑
i=1

ν(rupi)

ν0

· fIM|Rup(x | rupi) (4.3)
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Figure 4.1: Output from PSHA: (a) example hazard curve; (b) target PDF, fIM(x), that
corresponds to the example hazard curve (an example of an Importance Function, gIM(x),
is also shown). The modes of the two PDFs are denoted by IM∗

f and IM∗
g .

Assuming the NRup rupture scenarios are mutually exclusive and collectively exhaustive,
Equations 4.2-4.3 may be derived from the total probability theorem [Benjamin and Cornell,
1970]. First, note that all events associated with Equation 4.2 are conditioned on the fact
that an earthquake, with unknown magnitude and location, has occurred near the site.
Second, the normalized activity rate, ν(rupi)÷ ν0, may be interpreted as the probability of
the ith rupture occurring near the site, given occurrence of an earthquake. The probabilities
expressed in Equation 4.2 are unconventional because they are not based on a specified
assumption of earthquake occurrence in time (e.g., Poisson assumption, etc.).
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The simple relationship between an IMHC and its CCDF, as stated by the equality in the
left part of Equation 4.2, permits the estimation of hazard curves using a single ensemble of
unscaled ground motions 4. Figure 4.2 illustrates one such ensemble of n ground motions,
where each data point corresponds to a unique, unscaled ground motion; the values of IM
and EDP from the ensemble are quantified on the horizontal and vertical axes, respectively.
Combining the empirical CCDF of each variable – IM or EDP – with the annual rate of
earthquake occurrence leads to the following estimates of the hazard curves:

λ̂
(MC)
IM (x) =

ν0

n

n∑
i=1

I(xi > x) λ̂
(MC)
EDP (z) =

ν0

n

n∑
i=1

I(zi > z) (4.4)

where the superscript MC denotes “Monte Carlo”, and I(·) refers to the indicator function,
which is equal to unity when the event inside the parenthesis occurs and zero otherwise.
The observed values of IM and EDP from the ith ground motion are denoted by xi and
zi, respectively. When an IMHC estimate from, say Equation 4.4a, is practically the same
as the theoretical one in Equation 4.1, the corresponding ground motions are said to be
hazard-consistent with respect to that particular IM; otherwise, the ground motions are
hazard-inconsistent. Similarly, an SDHC estimate from, say Equation 4.4b, is said to be
unbiased, or accurate, when it is essentially equal to the theoretical SDHC from PSHA,
denoted by λEDP (z).
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Figure 4.2: Schematic illustration of PDFs related to scattergrams of results from RHAs.

In order to enforce hazard consistency and obtain unbiased SDHCs, ground motions
should be selected such that their empirical joint distribution of IM and EDP is essen-
tially the same as the theoretical joint distribution, which is depicted in Figure 4.2 by its

4Equation 4.2 is also applicable to the EDPs of a given structure under the assumption of ergodicity in
time, which is implicitly assumed in many applications of PBEE [Der Kiureghian, 2005].
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corresponding marginal distributions and conditional distribution of EDP | IM . The agree-
ment between the two joint distributions can be achieved by randomly sampling IM-EDP
pairs directly from the theoretical joint distribution; that is, randomly sampling first from
the marginal distribution of IM and then from the conditional distribution of EDP | IM .
In practice, this two-step approach is equivalent to (i) randomly generating vectors of IMs
from Equation 4.3, and then (ii) selecting ground motions whose IMs agree well with those
generated from Equation 4.3. However, direct sampling from Equation 4.3 leads to ground
motions that are relatively weak, as suggested by the exceedance rate in Figure 4.1a corre-
sponding to the modal value of the target PDF in Figure 4.1b. Consequently, such motions
will be hazard-consistent at high exceedance rates (i.e., frequent events) and are useful for
computing linear response. In order to obtain ground motions that are hazard-consistent at
small exceedance rates (i.e., rare events) and are useful for computing nonlinear response,
the concept of Importance Sampling is introduced next.

Importance Sampling

Importance Sampling is a standard technique from statistics that is commonly used to es-
timate probabilities of rare events, among other applications (e.g., see [Ross, 2013]); in this
study, we employ Importance Sampling to estimate hazard curves at small exceedance rates.
First, the theoretical PDF given by Equation 4.3 is replaced by another PDF that samples
the tail region more frequently; this new PDF is called an Importance Function (IF) and
denoted by gIM(·). An example of an IF is illustrated in Figure 4.1b, where its mode cor-
responds to an exceedance rate that is smaller than that corresponding to the mode of the
theoretical PDF. Then, the IF is used to randomly generate vectors of IMs that are ulti-
mately used to estimate hazard curves. When computing hazard curves from such data, the
data are weighted in order to account for the bias introduced by replacing the target PDF
with the IF.

After vectors of IMs have been randomly generated from the IF, there are three deter-
ministic steps in computing hazard curves. First, the vectors are used to identify ground
motions whose corresponding vector-valued IMs agree most closely to those from the IF
(Section 4.4). Second, the selected ground motions are analyzed to determine any feature of
interest, including IMs excluded from IM and EDPs of any structural model (through RHA).
Third, the features from the selected motions are employed to compute hazard curves:

λ̂IM(x) =
ν0

n

n∑
i=1

[I(xi > x) · wi] λ̂EDP (z) =
ν0

n

n∑
i=1

[I(zi > z) · wi] (4.5)

where xi and zi refer, respectively, to the observed values of IM and EDP from the ith
ground motion. The Importance Sampling weight for the ith ground motion, wi, is defined
as the ratio between the values of the two PDFs:

wi = f(xi)÷ g(xi) (4.6)

where xi refers to the computed value of IM from the ith ground motion, f(·) refers to
the PDF given by Equation 4.3, g(·) refers to the IF, and the subscript “IM” has been
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dropped henceforth for brevity. Note that implementing Equation 4.6 involves the rates for
all rupture scenarios considered in the PSHA, along with the target probability distribution
of IM | Rup from ground-motion-prediction models (see Equation 4.3). When the ith ground
motion leads to collapse, the resulting value of the EDP can be modified before Equation 4.5b
is implemented; for example, the displacement may be set to infinity and the acceleration
may be set to PGA after collapse has been observed [Yamamoto, 2011, Lin et al., 2013b].

There is epistemic uncertainty in the estimates of hazard curves in Equation 4.5, imply-
ing that two estimates from independent executions of the proposed procedure will not be
perfectly identical. The expected values of the estimates in Equation 4.5 are (see derivations
in Sections A.1 and A.2)

E
[
λ̂IM(x)

]
= λIM(x) E

[
λ̂EDP (z)

]
= λEDP (z) (4.7)

where E [·] denotes expectation 5. These expectations imply that the estimates from the
proposed procedure with unscaled ground motions are, on average, hazard-consistent and
unbiased; however, this might not be the case when ground motions are scaled (see Sec-
tion 4.7). The epistemic uncertainty of the estimates in Equation 4.5 is quantified by their
variances (see derivations in Sections A.3 and A.4):

V
[
λ̂IM(x)

]
=

1

n

ν2
0

 ∫
s:s>x

f 2(s)

g(s)
ds

− λ2
IM(x)

 (4.8)

and

V
[
λ̂EDP (z)

]
=

1

n

{
ν2

0

[∫
s

Pr(EDP > z | IM = s) · f
2(s)

g(s)
ds

]
− λ2

EDP (z)

}
(4.9)

where V [·] denotes variance, Pr(EDP > z | IM = s) refers to the CCDF of EDP for a given
test value of IM, and the integrals in both variances are multidimensional. Equations 4.7-4.9
suggest theoretically that as the number of unscaled ground motions increases, the hazard
curve estimates become increasingly repeatable, converging to the theoretical values.

Equation 4.9 permits several observations regarding the epistemic uncertainty of the
SDHC estimate from the proposed procedure. First, the epistemic uncertainty is influenced
by two user-specified inputs: (i) sample size, n; and (ii) the IF, g(·), which appears only in
the integrand; the rest of the expression is fixed for a given structure at a given site. Second,
both Pr(EDP > z | IM = s) and λEDP (z) are unknown; therefore, one cannot analytically
determine the IF by minimizing the variance in Equation 4.9. Third, the variance increases
as the dimension of IM increases because the integrand is always nonnegative. Fourth, the
SDHC estimate can become meaningless when g(·) = 0. Fifth, Pr(EDP > z | IM = s) is
close to zero when s is small and close to unity when s is large, under two assumptions that

5In the case of IM, the expectation is with respect to g(x), and in the case of EDP , the expectation is
with respect to fEDP |IM(z | x) · g(x), where fEDP |IM(z | x) refers to the theoretical conditional distribution
of EDP | IM.
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are commonly satisfied in earthquake engineering: (i) large demand levels, z, are of interest,
and (ii) the EDP is positively correlated with IM.

The observations from the preceding paragraph provide insight for choosing an Impor-
tance Function. In theory, many different IFs may be chosen but the desirable ones are those
that minimize the first summand of the variance in Equation 4.9. In particular, the dimen-
sion of IM (Section 4.3) should not be too large and hence, IMs for ground motion selection
should be judiciously chosen. To avoid the possibility of infinite variance, the value of the
IF must not be zero within the domain of Equation 4.3. Furthermore, the ratio f 2(·)÷ g(·)
should be less than unity at the tails of the target distribution (see e.g., Figure 4.1b). The
theory in this section facilitates the preceding discussion of desirable IFs in a general, qual-
itative manner; specific recommendations, which are derived from practical considerations,
are provided in Section 4.4.

4.4 Ground Motion Selection Procedure

Overview

Figure 4.3 presents a block diagram of the proposed ground motion selection procedure.
First, the analyst specifies inputs to the procedure and then performs PSHA of the given
site to determine the target for ground motion selection (Equation 4.3). Based on the
inputs, an IF is constructed (Section 4.4) and is then employed to select an ensemble of
ground motions (Section 4.4). Next, the Importance Sampling weights, computed from the
selected ground motions, are used to confirm hazard consistency; if hazard consistency is
judged to be unsatisfactory, then new ground motions may be reselected from the proposed
procedure (Section 4.4). Finally, nonlinear RHAs of the structural model, subjected to the
selected ground motions, are performed and the results are combined with the Importance
Sampling weights to compute the SDHC.

There are five inputs to the proposed procedure: (i) a database of prospective ground
motions, (ii) IM, a vector of IMs, (iii) a maximum acceptable scale factor, SFmax, (iv) a
target fraction of scaled ground motions, γ, and (v) a sample size, n. The database of
prospective ground motions should contain unscaled motions that originate from tectonic
environments and soil conditions that are similar to those for the site under consideration
[Bommer and Acevedo, 2004]. This study applies the proposed procedure to synthetic ground
motions in order to preliminarily evaluate its ability to estimate SDHCs (Sections 4.5-4.8);
a more comprehensive explanation of the procedure’s application to recorded motions is in
preparation by the authors. The vector of IMs should be chosen based on our understanding
of the dynamics of the structure; to reflect higher-mode, inelastic, and duration-sensitive
response, we recommend using the vector IM = {A(Tk), A(T1), A(2T1), D5−75}, where T1 and
Tk refer, respectively, to the first and kth mode of the structure (Section 4.6). One possibility
for identifying the kth mode is through the concept of modal contribution factors [Chopra,
2011]. The parameters SFmax and γ should be chosen based on the sufficiency of IM: if
IM is deemed sufficient, then large scale factors may be employed; otherwise, the degree of
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Figure 4.3: Block diagram of proposed ground motion selection procedure.

scaling should be minimized (Section 4.7). Finally, the parameter n should be chosen based
on a tolerable level of epistemic uncertainty in the SDHC estimates (Section 4.8).

Database-Driven Importance Function

The purpose of the IF in Figure 4.3 is to select ground motions that are intense while
simultaneously consistent with the target defined by Equation 4.3. The proposed procedure
achieves this goal in two steps: (i) randomly generate a vector of IMs from the IF, and (ii)
select the ground motion whose corresponding vector of IMs agrees most closely to the one
from the IF. Since ground motions are selected from a user-specified database of prospective
motions, this database plays a major role in fulfilling the purpose of the IF. For example,
when the largest observed value of A(1s) in the database is, say 1g, there would be no
point in specifying an IF whose probability density is nonzero at intensities greater than
1g. Because the database of prospective motions may be effectively enlarged by allowing
ground motions to be scaled, we recommend an IF that is controlled by three inputs: (i) the
specified database of unscaled ground motions, (ii) SFmax, and (iii) γ.

If ground motions are restricted to be unscaled, the proposed IF is a multivariate log-
normal distribution whose parameters are determined from the database of unscaled ground
motions; this IF is denoted by gu(x). To determine the parameters of this multivariate dis-
tribution – µIF and ΣIF – we first consider the corresponding marginal distributions. The
marginal distribution of the jth IM within IM is lognormal; its two parameters – µj and
σj – are computed from the mean and standard deviation of the observed values of ln(IMj)
in the database. An example of this lognormal distribution is shown in Figure 4.4a, where
the fitted CCDF is compared to the empirical CCDF from the database of ground motions.
Repeating such calculations for all IMs gives the mean vector of gu(x):

µIF = [µ1 µ2 . . . µNIM
] (4.10)
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Next, the correlation between the jth and kth IM, denoted by ρj,k, is computed from the
correlation between the observed values of ln(IMj) and ln(IMk) in the database. Combining
such correlations with all σj provides the covariance matrix of gu(x):

ΣIF =


σ2

1 ρ1,2σ1σ2 . . . ρ1,NIM
σ1σNIM

ρ2,1σ2σ1 σ2
2 . . . ρ2,NIM

σ2σNIM

...
...

. . .
...

ρNIM ,1σNIM
σ1 ρNIM ,2σNIM

σ2 . . . σ2
NIM

 (4.11)
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Figure 4.4: Illustration of Importance Functions derived from a database of prospective
ground motions that are all: (a) unscaled, gu(x); or (b) scaled by SFmax, gs(x).

The approach described in the preceding paragraph may also be applied to determine an
IF when ground motions are all scaled by the same scale factor. When the given database
of ground motions is deemed to lack an adequate number of strong ground motions, judged
by comparing gu(·) against f(·) (Figure 4.1b), it is natural to consider scaling the motions
upwards. For example, suppose it is desired to scale all the motions in the database by
a factor of SFmax in order to create a new database of prospective motions. The IMs
computed from scaled ground motions may be different, depending on the type of IM (e.g.,
spectral acceleration increases linearly with scale factor whereas many common measures of
duration are unaffected by scaling) [Bradley, 2012a]. Applying the approach in the preceding
paragraph to the new database of scaled ground motions leads to the IF denoted by gs(x),
which is illustrated in Figure 4.4b. Observe that gs(x) differs from gu(x) only in its mean
vector; the covariance matrices (and σj) are the same in both cases.

In general, the recommended IF is a two-component mixture of multivariate lognormals:

g(x) = [1− γ] · gu(x) + γ · gs(x) (4.12)
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where 0 ≤ γ ≤ 1 may be interpreted as the fraction of scaled ground motions in the ensemble
of n selected motions. An example of this IF is shown by the solid curve in Figure 4.5a;
for comparison, the target PDF (Equation 4.3) and its two individual components – gu(x)
and gs(x) – are also shown. This two-component mixture distribution permits the selection
of ground motions that are scaled by factors between unity and SFmax, where the fraction
of scaled motions is roughly controlled by γ (Figure 4.5b). For instance, when γ = 0, the
general two-component IF reduces to gu(·) whereas when γ = 1, it reduces to gs(·). Note
that when SFmax = 1, the general two-component IF also reduces to gu(·), irrespective of γ.
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Figure 4.5: Illustration of the recommended two-component Importance Function, g(x) =
[1− γ] · gu(x) + γ · gs(x): (a) comparison of g(x), with γ = 0.5, against its two individual
components and the target PDF; (b) the effect of γ on g(x).

Selection and Scaling of Ground Motions from Randomly
Generated Intensity Measures

The IF is used to randomly generate n vectors of IMs, which are in turn used to select a
corresponding ensemble of n ground motions. Consequently, the ability to randomly generate
a vector of IMs is an important consideration in choosing the IF. When the IF is specified
as either gu(x) or gs(x), a vector of IMs can be readily generated from the multivariate
lognormal distribution. When the IF is the two-component IF given by Equation 4.12, a
vector of IMs can be obtained in two steps: (i) identify one of the two components by
randomly sampling from the Bernoulli distribution with probability γ, and (ii) randomly
generate a vector of IMs from the component identified.

After a collection of n vectors is randomly generated from the IF, denoted by IMIF ,
a corresponding ensemble of ground motions is selected. For each successive IMIF , the
database of prospective ground motions is searched for the optimal match while ensuring
that no motion is duplicated. The optimal ground motion is defined as the one whose
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computed vector of (potentially scaled) IMs, denoted by IMP , agrees most closely with the
current IMIF . The misfit between IMIF and IMP is quantified by ∆ 6:

∆ =

NIM∑
j=1

[
ln(IMIF,j)− ln(IMP,j)

σj

]2

(4.13)

where NIM refers to the dimension of IM (Section 4.3) and σj refers to the standard deviation
of ln(IMj) from the IF (Section 4.4). Thus, for a given IMIF , the selected ground motion
(and corresponding scale factor) is the one whose value of ∆ is the smallest among all
prospective motions. To avoid selection of duplicate motions, the selected motion is removed
from the database before proceeding to the next IMIF .

When scaled ground motions are of interest, the optimal scale factor for each prospective
ground motion must be determined before computing ∆. To determine the optimal scale
factor for a given IMIF , we first note the relationship between the scaled and unscaled values
of the jth IM:

IMP,j = IMU,j × SFαj (4.14)

where IMP,j and IMU,j refer, respectively, to the scaled and unscaled values of the jth IM,
SF refers to a scale factor, and αj denotes how the jth IM changes with record scaling
(e.g., αj = 1 for spectral acceleration, αj = 0 for significant duration, etc.). Substituting
Equation 4.14 into Equation 4.13 shows that, for a given IMIF , ∆ is a quadratic function
of the scale factor. By minimizing ∆ with respect to SF , the optimal scale factor may be
derived for each prospective ground motion (see derivation in Section A.5):

SFoptimal = exp


NIM∑
j=1

(
αj

σ2
j

)
ln
(
IMIF,j

IMU,j

)
NIM∑
j=1

(
αj

σj

)2

 (4.15)

where IMIF,j refers to the jth IM within the current IMIF under consideration. When
SFoptimal is greater than SFmax (or less than SF−1

max), its value is replaced by SFmax (or
SF−1

max), before ∆ is computed.

Estimating Hazard Curves

The ground motions selected from the proposed procedure should be examined for hazard
consistency with respect to IM before proceeding with RHAs. In other words, the 95%
confidence interval (CI) of an IMHC estimate (Equation 4.5a) should cover the target IMHC
(Equation 4.1). Such CIs may be readily computed by applying the bootstrap procedure
[Efron and Tibshirani, 1993] to the selected ground motions, generating a different IMHC
estimate from Equation 4.5a per bootstrap sample. The concept of hazard consistency is
illustrated in Figure 4.6. The ground motions in Figure 4.6a are hazard-consistent with

6Each IM in the vector may be weighted based on its importance relative to the other IMs; however, this
is omitted herein for the sake of simplicity.

68



respect to A(1s), at exceedance rates greater than 10−6, because the 95% bootstrap CI
covers the target IMHC in this range. In contrast, the bootstrap CIs in Figure 4.6b do not
cover the target IMHC at exceedance rates less than 10−5 and therefore, the corresponding
ground motions are hazard-inconsistent with respect to PGA in this range of exceedance
rates.
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Figure 4.6: The concept of hazard consistency. An example of ground motions that are: (a)
hazard-consistent with respect to A(1s) at exceedance rates greater than 10−6; (b) hazard-
inconsistent with respect to PGA at exceedance rates less than 10−5.

When hazard consistency is judged to be unsatisfactory at a particular range of ex-
ceedance rates, there are two options to explore for improving hazard consistency. First,
ground motions may be re-selected by randomly generating another collection of n vector-
valued IMs from the IF. If the re-selected motions remain hazard-inconsistent, then the next
option is to vary the sample size, n. By decreasing n, the CI of the IMHC estimate widens
and the likelihood of satisfying hazard consistency increases; however, the epistemic uncer-
tainty in the SDHC estimate also increases. By increasing n, the CI of the IMHC estimate
shrinks, converging to the target IMHC (Section 4.3); however, the maximum value of n
may be limited by the number of prospective motions in the database or by time constraints
associated with performing RHAs.

When the preceding two options are inadequate to satisfy hazard consistency, the next
option to consider is modifying the IF. First, we recommend changing SFmax and γ to
experiment with different IFs (Figure 4.5). With each IF, new ground motions may be
selected and checked for hazard consistency with respect to IM. When changing SFmax
and γ is inadequate, then the database of prospective ground motions can be enlarged (e.g.,
adding synthetic ground motions to a database of recorded motions).

There are four steps to estimate SDHCs from an ensemble of hazard-consistent ground
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motions. First, RHA of the structural model is performed for all n ground motions. Second,
the results from RHAs are partitioned into collapse and noncollapse cases. Third, the EDPs
corresponding to the collapsed cases are replaced by appropriate values (e.g., drifts may be
replaced by infinity and floor accelerations by PGA). Applying Equation 4.5b to the latter
values of EDP – where the Importance Sampling weights are identical to those for the IMHC
estimates (Equation 4.5a) – leads to the desired estimate of the SDHC.

4.5 An Illustrative Example

A 4-story reinforced concrete frame is chosen to demonstrate the applicability of the proposed
procedure to realistic buildings. This well-vetted frame has been studied by past researchers
in various contexts (e.g., [Yamamoto, 2011], [PEER GMSM Working Group, 2009], [Goulet
et al., 2007]) and consequently, details regarding its geometry and material properties may
be found in such references. In essence, the frame satisfies the strong column-weak beam
philosophy and is modeled in OpenSEES [Mazzoni et al., 2006], where the inelasticity is
captured by plastic hinges at the ends of beam-column elements; its four modal periods of
vibration are: T1 = 0.94 sec, T2 = 0.30 sec, T3 = 0.17 sec, T4 = 0.12 sec. The frame is
classified as collapsed when its displacement increases without bounds. We consider two
EDPs: (i) maximum inter-story drift ratio (MIDR), defined as the largest peak inter-story
drift ratio among the four stories, and (ii) maximum floor acceleration (MFA), defined as
the largest peak floor acceleration among the four stories and the ground.

The selected site and earthquake rupture forecast are identical to those shown in Fig 2
of [Kwong et al., 2015b]. A single strike-slip fault, with an activity rate of ν0 = ν = 0.02
earthquakes per year, is located 10 km away from the site. Each earthquake is assumed to
occur at a fixed distance of 10 km but with different magnitudes that are characterized by
the Youngs & Coppersmith PDF shown in Fig 2b of [Kwong et al., 2015b]; the database
of prospective ground motions is specified as 104 synthetic motions that are simulated from
the stochastic model by Yamamoto and Baker [Yamamoto and Baker, 2013, Yamamoto,
2011], with input magnitudes from the uniform distribution shown in Fig 2b of [Kwong
et al., 2015b]. This example is chosen because benchmark SDHCs may be readily computed
from synthetic ground motions to evaluate the proposed ground motion selection procedure
[Kwong et al., 2015b].

Assuming in this section that no IM is perfectly sufficient for the response of this complex,
realistic frame, the proposed selection procedure is applied to only unscaled ground motions;
that is, SFmax = 1 and γ = 0. Since the first and fourth mode periods of the 4-story
frame are T1 = 0.94 sec and T4 = 0.12 sec, respectively, the vector of IMs is specified as
IM = {A(0.1s), A(1s), A(2s), D5−75}; thus, NIM = 4. In order to minimize the effects of
epistemic uncertainty on the accuracy of the SDHC estimate (Section 4.3), n is specified as
1000.

For our example site, the target probability distribution of IM from PSHA (Equation 4.3)
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reduces to
fIM(x) =

∑
m

Pr(M = m) · fIM|M(x | m) (4.16)

where the summation is over the number of magnitude bins chosen to discretize the Youngs
& Coppersmith magnitude PDF, Pr(M = m) refers to the probability of an earthquake with
magnitude m occurring, and fIM|M(x | m) denotes the multivariate lognormal distribution of
IM | M whose parameters are given by the benchmark-consistent prediction models. Since
SFmax = 1 in this example, the general two-component IF in Equation 4.12 reduces to gu(x);
its parameters are derived from the 104 unscaled ground motions (Figure 4.4a). With the
IF constructed, a subset of n motions is selected from the specified database (Section 4.4).

Before proceeding with RHAs, the selected motions are checked for hazard consistency
with respect to IM. First, the Importance Sampling weights are determined by applying
Equation 4.6 to all IMs computed from the selected motions, where f(·) is given by Equa-
tion 4.16 and g(·) is given by gu(x) as mentioned in the preceding paragraph. Then, a hazard
curve is estimate for each IM, using Equation 4.5a, and compared against the corresponding
benchmark. In this example, ground motions were re-selected a few times in order to achieve
hazard consistency for a wide range of exceedance rates. This consistency is confirmed in
Figure 4.7, where each benchmark hazard curve falls within the 95% bootstrap CIs, for a
wide range of exceedance rates.

After hazard consistency is confirmed, SDHCs are estimated for both EDPs of the 4-story
frame. Since the selected motions are unscaled in this example, each motion corresponds
to a unique value of the EDP that was already computed when determining the benchmark
SDHC. As a result, selecting ground motions becomes equivalent to selecting a subset of
EDPs from the specified database. The SDHC estimates, obtained by applying Equation 4.5b
to the selected values of EDP, are shown by dashed black curves in Figure 4.8. In order to
convey the epistemic uncertainty of the SDHCs, 95% bootstrap CIs are also shown in this
figure, which were obtained by applying the bootstrap procedure to the selected motions.

Figure 4.8 demonstrates that the SDHC estimates from the proposed procedure, using a
large number of unscaled ground motions, are accurate because the benchmark SDHCs are
approximately covered by the 95% CIs. The agreement between the proposed estimate and
the associated benchmark is excellent for both EDPs, at a wide range of exceedance rates.
Such excellent agreement is likely due to the fact that the selected motions are hazard-
consistent with respect to many different features of the ground motion, even though only
four IMs were chosen to select ground motions. The selected motions in this example are
consistent with the hazard for a wide range of IMs because (i) the motions are unscaled, and
(ii) the chosen IM is strongly correlated with many other IMs. Alternatively, the excellent
agreement in the SDHCs may also be due to the fact that the chosen IM is sufficient; this
possibility is investigated in the next two sections of this chapter.
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Figure 4.7: Hazard consistency of 1000 unscaled ground motions selected from g(x) = gu(x);
Confidence intervals (CIs) from 100 bootstrap samples of the selected motions.

4.6 Minimum Number of Intensity Measures To Be

Considered

The results from the preceding section demonstrate that accurate SDHC estimates may
be obtained from the proposed procedure when a large number of unscaled motions are
selected using four IMs: (i) A(T1), (ii) A(2T1), (iii) A(Tk), and (iv) D5−75. At the same time,
Equation 4.9 suggests that as the dimension of IM decreases, the epistemic uncertainty in the
SDHC estimate also decreases because the integrand within the multidimensional integral
is nonnegative. Consequently, the natural question is: can accurate SDHC estimates be
obtained with fewer than four IMs?

To answer this question, four different choices of IM are considered: (i) “bestIM”, (ii)
“SAonly”, (iii) “T1plus2T1”, and (iv) “T1only”; these denote, respectively, (i) vector com-
prising A(0.1s), A(1s), A(2s), and D5−75, (ii) vector comprising A(0.1s), A(1s), and A(2s),
(iii) vector comprising A(1s) and A(2s), and (iv) A(1s) alone. To investigate the effects
of IM on the resulting SDHC estimate, other inputs to the procedure are fixed and SDHC
estimates from different choices of IM are compared against the benchmark. The SDHC
estimate for a given choice of IM is obtained by selecting a subset of n = 1000, unscaled mo-
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Figure 4.8: SDHC estimates from proposed procedure with n = 1000 unscaled ground
motions selected using IM = {A(0.1s), A(1s), A(2s), D5−75}: (a) MIDR; (b) MFA. CIs from
100 bootstrap samples.

tions from the database of synthetic motions described in Section 4.5. This estimate varies
with each execution of the procedure because each execution produces a different selection
of ground motions from the IF (Section 4.4); thus, it is desirable to consider the epistemic
uncertainty of the SDHC estimate when comparing results from different choices of IM.
Since ground motions are unscaled, no additional RHAs are required in each execution of
the procedure and therefore, the epistemic uncertainty for a given choice of IM may be
rigorously quantified through many executions of the procedure.

The MIDR hazard curves from different choices of IM are presented in Figure 4.9. For
each choice of IM, 100 SDHCs were obtained from 100 independent executions of the pro-
cedure; these SDHCs are summarized by the mean and 95% CI. This figure shows that the
epistemic uncertainty is similar across the four choices of IM, since the width of CIs are
similar. Comparing the CIs against the benchmark indicates that the SDHC from “bestIM”
is unbiased at all exceedance rates whereas those from the other three choices of IM are
unbiased only at exceedance rates greater than 10−4; this implies that D5−75, or duration,
should not be excluded when estimating MIDR hazard curves, especially near collapse. Note
that the differences between the results from “T1only” and “SAonly” are small because the
corresponding ground motions are unscaled and any inconsistencies in the hazard with re-
spect to IMs beyond IM are typically less pronounced for unscaled motions than for scaled
motions.

Figure 4.10 shows the MFA hazard curves from different choices of IM. Consistent
with the results for MIDR, the epistemic uncertainty is again similar across the four choices
of IM; this suggests that, as long as ground motions are unscaled, more than four IMs
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Figure 4.9: MIDR hazard curves from proposed procedure with four different choices for IM:
(a) “bestIM” ≡ {A(0.1s), A(1s), A(2s), D5−75}; (b) “SAonly” ≡ {A(0.1s), A(1s), A(2s)}; (c)
“T1plus2T1” ≡ {A(1s), A(2s)}; and (d) “T1only” ≡ A(1s). CIs from 100 independent
executions of the proposed procedure with 1000 unscaled motions per execution.

may be specified in the proposed procedure without significantly increasing the epistemic
uncertainty in the resulting SDHC estimates. Unlike the results for MIDR, the SDHCs from
both “bestIM” and “SAonly” are unbiased at a wide range of exceedance rates, implying
that duration may be excluded when estimating MFA hazard curves. On the other hand,
spectral accelerations at short vibration periods are important for the accurate prediction
of MFA, because slight biases at rates between 5 · 10−4 to 10−2 are observed for choices of
IM that exclude A(0.1s); this conclusion is consistent with the findings from Lin et al [Lin
et al., 2013b]. The results from Figures 4.9-4.10 suggest collectively that, as long as ground
motions are unscaled, the sufficiency of IM plays a lesser role in determining the accuracy
of the SDHC estimate than when ground motions are scaled.

4.7 Maximum Scaling of Ground Motions

In general, scaling distorts ground motions and causes inconsistencies with respect to the
hazard. However, such hazard inconsistencies may be deliberately avoided for some IMs
through sophisticated ground motion selection procedures [Lin et al., 2013b, Bradley, 2012c].
For example, by using the probability distribution of IM from PSHA (Equation 4.3) as
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Figure 4.10: MFA hazard curves from proposed procedure with four different choices for IM:
(a) “bestIM” ≡ {A(0.1s), A(1s), A(2s), D5−75}; (b) “SAonly” ≡ {A(0.1s), A(1s), A(2s)}; (c)
“T1plus2T1” ≡ {A(1s), A(2s)}; and (d) “T1only” ≡ A(1s). CIs from 100 independent
executions of the proposed procedure with 1000 unscaled motions per execution.

the target to select scaled ground motions, the resulting motions will be, not surprisingly,
consistent with the hazard for this particular vector of IMs. Nevertheless, inconsistencies with
respect to features of the ground motion beyond IM will become increasingly pronounced
as the level of record scaling increases.

Are hazard inconsistencies with respect to IMs excluded from IM practically significant?
The answer to this question depends strongly on the sufficiency of IM with respect to the
EDP at hand. If IM is insufficient (i.e., the EDP depends appreciably on other features of
the ground motion besides IM), then such inconsistencies are significant, leading to biased
SDHCs. On the other hand, if IM is sufficient (i.e., the EDP depends primarily on IM
only), then by definition, such inconsistencies are immaterial and do not cause bias.

Comparing the complexity of the ground motion time series against the simplicity of IMs,
it seems unlikely for an IM to be simultaneously sufficient with respect to several EDPs of
a realistic structural model [Bradley, 2012c]. As a result, ground motions selected for RHAs
should, ideally speaking, not be scaled, which can be achieved using the selection procedure
developed herein. When ground motions must be scaled, the vector of IMs for selecting
ground motions should be chosen judiciously. Based on the results presented in Sections 4.5
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and 4.6, the vector IM = {A(0.1s), A(1s), A(2s), D5−75}, denoted by “bestIM”, appears to
be sufficient for both EDPs of the 4-story frame; however, how sufficient is this vector and
what degree of scaling can be combined with it?

To answer these questions, n is again fixed as 1000, and four different combinations of
SFmax and γ, which represent increasing levels of scaling (see Figure 4.5), are considered: (i)
5 and 0.5; (ii) 5 and 0.9; (iii) 10 and 0.5; and (iv) 10 and 0.9. For each combination, an esti-
mate of the SDHC is determined and compared against the benchmark. Unlike Section 4.6,
each implementation of the procedure with a different combination of scaling requires addi-
tional RHAs because EDPs corresponding to scaled ground motions have not been computed
previously; in total, 4000 RHAs of the 4-story frame were performed to obtain the results
presented in this section. Since additional RHAs are needed for each implementation of the
procedure, the epistemic uncertainty in the SDHC estimate is approximately quantified by a
bootstrap CI. To make meaningful comparisons among the four cases of scaling, each of the
four ensemble of ground motions was carefully checked for hazard consistency with respect
to IM; this is demonstrated in Figure 4.11, where the CIs of each IMHC estimate have been
omitted for clarity. With hazard consistency satisfied for all four cases of scaling, the degree
of bias in the resulting SDHCs indicates the degree to which “bestIM” is insufficient for this
4-story frame.

The SDHCs from the four combinations of scaling are presented in Figures 4.12-4.13.
Taking into account the epistemic uncertainty depicted in Figure 4.12, the MIDR hazard
curve from SFmax = 5 and γ = 0.5 is least biased and that from SFmax = 10 and γ = 0.9 is
most biased, among the four combinations considered. With the exception of Figure 4.12d
at exceedance rates less than 4 · 10−5, the biases are generally conservative in the sense that
for a given level of exceedance rate, the demand is overestimated. For fixed γ, the bias in
the MIDR hazard curve increases with increasing SFmax. Similarly, for fixed SFmax, the bias
in the MIDR hazard curve increases with increasing γ. In contrast, the MFA hazard curves
from all four combinations are practically unbiased.

Since ground motions are hazard-consistent with respect to IM (Fig 4.11), the bias
observed in Figure 4.12b suggests that “bestIM” is insufficient for MIDR. Relative to MIDR,
“bestIM” appears to be less insufficient with respect to MFA, as suggested by the excellent
agreement among the four cases shown in Figure 4.13. This can be explained partially by
the fact that unlike drifts or displacements, accelerations are limited by the strength of the
system and thus, MFA is less sensitive to scaling than MIDR. Considering the epistemic
uncertainty and the extent of scaling, the biases shown in Figures 4.12-4.13 suggest that
“bestIM” is still a useful, practical vector for selecting ground motions with the proposed
procedure.

When IM is sufficient with respect to EDP , the conditional probability distribution of
EDP | IM is essentially independent of record scaling; that is, the conditional distribution
from scaled ground motions, f(EDP | IM, scaled), is nearly the same as that from unscaled
motions, f(EDP | IM, unscaled). In contrast, an insufficient IM implies that the two condi-
tional distributions are different, with the difference increasingly significant as the degree of
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Figure 4.11: Hazard consistency of ground motions, scaled to various degrees, with respect
to IMs employed for ground motion selection: (a) A(0.1s); (b) A(1s); (c) A(2s); and (d)
D5−75.

scaling increases; in this case, the expectation in Equation 4.7b no longer holds, which can be
seen in Figure 4.12. Given the relationship between scaling and bias, ground motions should
not be scaled (i.e., SFmax = 1 or γ = 0) but if scaling is necessary, then some bias in the
SDHC should be anticipated, depending on the sufficiency of the vector-valued IM chosen to
select ground motions. Based on the results shown in Figures 4.12-4.13, the optimal values
of SFmax and γ depend on the EDP of interest and on the specified IM; when IM consists
of A(T1), A(2T1), A(Tk), and D5−75, we recommend SFmax ≤ 5 and γ ≤ 0.5.

The lack of sufficiency in “bestIM” with respect to MIDR implies that hazard incon-
sistencies with respect to other features of the ground motion cause bias in MIDR hazard
curves. In Figure 4.14, the ground motions from the four combinations of scaling are ex-
amined for hazard consistency with respect to four IMs that are excluded from “bestIM”:
(i) peak ground acceleration (PGA), (ii) peak ground velocity (PGV), (iii) peak ground
displacement (PGD), and (iv) cumulative absolute velocity (CAV). These IMs are chosen
to represent the frequency content (at short, moderate, and long periods) and duration of
the ground motion. The differences between the four ensembles are most pronounced for
PGD; in fact, many other IMs were also examined and the differences are most pronounced
for spectral accelerations at periods longer than 2 sec. Therefore, the MIDR of the 4-story
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Figure 4.12: MIDR hazard curves from proposed procedure with four different combinations
of SFmax and γ: (a) 5 and 0.5; (b) 5 and 0.9; (c) 10 and 0.5; and (d) 10 and 0.9. CIs from
100 bootstrap samples with “bestIM” and n = 1000 per bootstrap sample.

frame appears to be sensitive to the long period content of the ground motion.

The motions from the four combinations of scaling are similar to each other in that they
are hazard-consistent with respect to PGA, PGV, and CAV (Figure 4.14). This is the case
because such IMs are strongly correlated with “bestIM”: PGA and PGV are correlated with
spectral accelerations at vibration periods between 0.1 and 2 sec while CAV is correlated
with D5−75. On the other hand, PGD is correlated with spectral accelerations at periods
longer than 2 sec, which were excluded from “bestIM”. At the same time, we know from
Figure 4.10 that the MFA is sensitive to spectral accelerations at short periods. Therefore,
the excellent agreement in Figure 4.13, despite extensive scaling, is likely due to the fact
that all four ensembles are hazard-consistent with respect to spectral accelerations at short
periods of vibration.

The degree of scaling also affects the epistemic uncertainty of the SDHC estimates because
different values of SFmax and γ lead to different IFs (Figure 4.5). For EDP ≡ MIDR, the
widths of the CIs from Figures 4.12a-c are similar to each other and differ with those from
Figure 4.12d. For EDP ≡MFA however, the widths of the CIs from all four cases shown in
Figure 4.13 are similar to each other. These observations imply that the effect of scaling on
the epistemic uncertainty varies with the type of EDP. From Equation 4.9, we see that the
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Figure 4.13: MFA hazard curves from proposed procedure with four different combinations
of SFmax and γ: (a) 5 and 0.5; (b) 5 and 0.9; (c) 10 and 0.5; and (d) 10 and 0.9. CIs from
100 bootstrap samples with “bestIM” and n = 1000 per bootstrap sample.

epistemic uncertainty is affected by two quantities that depend on the EDP and are unknown
a-priori : (i) Pr(EDP > z | IM = s) and (ii) λEDP (z). In order to approximately quantify
the epistemic uncertainty contained in any particular SDHC estimate from the proposed
procedure, we recommend supplying the estimate with a bootstrap CI (e.g., Figure 4.8). In
addition to varying the IF (through SFmax, γ, and the database of prospective motions), the
epistemic uncertainty may also be reduced by increasing the sample size, which is discussed
next.

4.8 Minimum Number of Selected Motions

How many ground motions should be specified for the proposed procedure (see Figure 4.3)?
In general, a large sample size is desirable because as the value of n increases, the epistemic
uncertainty in the SDHC decreases (Equation 4.9) and consequently, the estimate becomes
more repeatable. Furthermore, when scaling is not permitted and IM is sufficient, the
SDHC estimate converges to the theoretical value (Equation 4.7b) with increasing values of
n. However, the maximum value of n that can be specified is limited by the total number of
prospective ground motions in the specified database. Hence, small values of n are also of
interest and for a given site, EDP, and IF, the desirable value of n depends on the tolerable
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Figure 4.14: Hazard consistency of ground motions, scaled to various degrees, with respect
to four miscellaneous IMs: (a) PGA; (b) PGV ; (c) PGD; and (d) CAV .

level of epistemic uncertainty.

We investigate the effects of different sample sizes for SFmax = 1 and “bestIM” (Sec-
tion 4.6). Unscaled ground motions are considered in this section because when ground
motions are scaled significantly and IM is insufficient, the resulting SDHC estimate is bi-
ased, regardless of the sample size (see Section 4.7). Four different values of n are considered:
(i) 100, (ii) 250, (iii) 500, and (iv) 1000. For each value of n, the procedure was executed
100 times, yielding 100 independent estimates of the SDHC; these SDHCs, summarized by
the mean and 95% CI, are compared against the benchmark.

The MIDR hazard curves from different sample sizes are presented in Figure 4.15. As
indicated by the mean, the estimate from the proposed procedure is, on average, unbiased
regardless of the sample size, which is consistent with Equation 4.7b. For a given value
of n, the epistemic uncertainty in the SDHC estimate increases for decreasing exceedance
rates and is largest at collapse. As n decreases from 1000 to 100, the epistemic uncertainty
increases. In particular, the relatively wide CIs near collapse in Figure 4.15a indicate that
the SDHC estimate from a single execution with n = 100 is not very repeatable; that is,
another execution with n = 100 will likely produce a different estimate of the SDHC. The
repeatability of an SDHC estimate is measured by the standard deviation of the logarithm
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of the collapse rate, denoted by σC , since exceedance rates may be considered to be approx-
imately lognormally distributed [Bradley, 2009]; the values of σC for each choice of sample
size are displayed in Figure 4.15.
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Figure 4.15: MIDR hazard curves from proposed procedure with four different choices for
n: (a) 100; (b) 250; (c) 500; and (d) 1000. CIs from 100 independent executions of the
procedure with unscaled motions selected using “bestIM” per execution.

Assuming a σC value of 0.4 is tolerable, values of n between 250 to 500 are recommended
for the proposed procedure with SFmax = 1 and “bestIM”; this recommended range appears
to be also applicable to scaled ground motions, but more research is needed to confirm this
tentative conclusion. If smaller values of σC are desired, then n should be increased. To pro-
vide some context for such values of σC , note that the epistemic uncertainty in seismic hazard
and seismic response is on the order of 0.5-1.5 and 0.4, respectively [Bradley, 2012c, Bradley,
2009]. The recommended range of 250 ≤ n ≤ 500 is tantamount to performing 25 to 50
RHAs at 10 intensity levels in a PSDA, except that a non-parametric approach is employed in
the proposed procedure (Equation 4.5) whereas a parametric approach is typically employed
in PSDA. Consequently, the required sample size for the proposed procedure may be reduced
if the estimates from Equation 4.5 are fitted with a parametric probability distribution.
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4.9 Conclusions

A novel ground motion selection procedure is developed in this chapter. For a given struc-
ture at a given site, the procedure provides a single ensemble of ground motions and a
corresponding collection of Importance Sampling weights for estimating SDHCs. The pro-
cedure requires five inputs: (i) database of prospective ground motions, (ii) IM, a vector
of IMs for selecting ground motions, (iii) maximum acceptable scale factor, SFmax, (iv) a
target fraction of scaled ground motions, γ, and (v) sample size, n. This procedure provides
the following advantages:

1. The ability to estimate SDHCs from a single ensemble of ground motions;

2. The option to select ground motions that are scaled to varying degrees, including the
important case of selecting only unscaled ground motions; and

3. The means to achieve hazard consistency with respect to a specified vector of IMs.

Using a recently developed method for evaluating ground motion selection procedures, the
proposed procedure is evaluated in its ability to estimate SDHCs of a 4-story reinforced
concrete frame, leading to the following conclusions:

1. The proposed procedure provides accurate estimates of the SDHC when ground mo-
tions are unscaled, or when the vector of IMs chosen to select ground motions is
sufficient for the response quantity of interest.

2. If ground motions are restricted to be unscaled, then the sufficiency of the vector-valued
IM comprising A(0.1s), A(1s), A(2s), and D5−75, denoted by “bestIM”, plays a lesser
role in determining the accuracy of the SDHC estimate than when ground motions are
scaled. When ground motions are unscaled, “bestIM” is sufficient for both MIDR and
MFA of the 4-story frame; in fact, D5−75 may be excluded for estimating MFA hazard
curves.

3. If scaling of ground motions is permitted, the sufficiency of “bestIM” plays a major role
in determining the accuracy of the SDHC estimate. When ground motions are scaled
by factors as large as 10, “bestIM” remains sufficient for MFA but not for MIDR; the
latter EDP seems to be influenced also by spectral acceleration at vibration periods
longer than 2T1. The bias in MIDR hazard curves caused by amplitude scaling is
generally conservative.

4. The epistemic uncertainty of the SDHC estimate, which increases for decreasing ex-
ceedance rates, is influenced by both the IF and the sample size n. For a given IF, the
desired sample size depends on the level of epistemic uncertainty that can be tolerated.

5. Based on the exploratory analyses in this study, inputs for the proposed procedure are
recommended as:
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• IM = {A(Tk), A(T1), A(2T1), D5−75}, where T1 and Tk refer, respectively, to the
first and kth mode of the structure;

• SFmax ≤ 5 and γ ≤ 0.5 when IM = {A(Tk), A(T1), A(2T1), D5−75};
• 250 ≤ n ≤ 500 when IM = {A(Tk), A(T1), A(2T1), D5−75}, SFmax ≤ 5, and
γ ≤ 0.5.

The application of these recommendations, which are based on analyses of a 4-story
frame, should be tested for taller buildings.
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Chapter 5

Evaluation of the Exact Conditional
Spectrum and Generalized
Conditional Intensity Measure
Methods for Ground Motion Selection

5.1 Preview

Two existing, contemporary GMSM procedures – (i) CS-exact, and (ii) GCIM – are evaluated
in their ability to accurately estimate seismic demand hazard curves (SDHCs) of a given
structure at a specified site. The amount of effort involved in implementing these procedures
to compute a single SDHC is studied and a case study is chosen where rigorous benchmark
SDHCs can be determined for evaluation purposes. By comparing estimates from GMSM
procedures against the benchmark, we conclude that estimates from CS-exact are unbiased
in many of the cases considered. The estimates from GCIM are even more accurate, as they
are unbiased for most – but not all – of the cases where estimates from CS-exact are biased.
We find that it is possible to obtain biased SDHCs from GCIM, even after employing a very
diverse collection of intensity measures (IMs) to select ground motions and implementing its
bias-checking feature, because it is usually difficult to identify IMs that are truly ‘sufficient’
for the response of a complex, multi-degree-of-freedom system.

5.2 Introduction

Several ground motion selection and modification (GMSM) procedures have been proposed in
the past to select ground motions for conducting intensity-based assessments. The goal of an
intensity-based assessment is to estimate the probability distribution of a response quantity,
or engineering demand parameter (EDP), for a specified value of the intensity measure (IM)
[NEHRP Consultants Joint Venture, 2011, Applied Technology Council, 2012]. A common
example of this type of assessment is when the IM is defined as the spectral acceleration at
the fundamental period of the structure, A(T1), and the intensity level is determined from a
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specified return period (e.g., 475 years, 2475 years, etc.) or annual rate of exceedance (e.g.,
2.1× 10−3 events per year, 4.04× 10−4 events per year, etc.).

In the context of intensity-based assessments, Baker and Cornell [Baker and Cornell,
2006b] investigated four different approaches to select ground motions and concluded that
when matching parameters to select ground motions, spectral shape is a more important
parameter to match than causal parameters such as earthquake magnitude, M , and source-
to-site distance, R. Based on this finding, the Conditional Mean Spectrum (CMS) was pro-
posed as the target spectrum for selecting ground motions [Baker and Cornell, 2006b, Baker,
2011]. However, the CMS, by definition, does not provide the proper aleatory variability in
the response spectrum and as a result, extensions of the CMS have been developed by Ja-
yaram et al. [Jayaram et al., 2011] and Lin et al. [Lin et al., 2013a]; these new spectra
are known respectively as the Conditional Spectrum (CS), and the “exact” CS. Moreover,
the CMS (again by definition) does not account for IMs that are unrelated to spectral ac-
celerations and to overcome this limitation, the Generalized Conditional Intensity Measure
(GCIM) approach was developed by Bradley [Bradley, 2010a], which may be interpreted as
a generalization of the CMS.

The previously mentioned methods for selecting ground motions are sophisticated in the
sense that explicit measures of the ground motion (e.g., spectral acceleration, significant
duration, etc.) are carefully accounted for in the selection process through knowledge from
probabilistic seismic hazard analysis (PSHA) of the site. Despite this sophistication, the
accuracy of the results from such procedures is unclear because ground motions are almost
always amplitude scaled and record scaling remains a subject of debate [Der Kiureghian and
Fujimura, 2009]. For example, Grigoriu [Grigoriu, 2010] argues (on the basis of analyzing
stochastic processes) that scaled ground motions provide “limited if any information on the
seismic performance of structural systems”. On the other hand, Bradley [Bradley, 2012c]
argues that scaling will not cause bias in the EDP (due to a scalar IM), as long as either (i)
the EDP is not dependent on the IM, or (ii) the probability distribution of the IM from the
selected ground motions is consistent with the theoretical distribution.

In this chapter, we evaluate the accuracy of the results from sophisticated, contemporary
GMSM procedures. Specifically, we evaluate two procedures – (i) “exact” CS (henceforth
denoted as CS-exact for brevity) 1, and (ii) GCIM – in their ability to accurately estimate
seismic demand hazard curves (SDHCs) for a given structure at a specified site. This context
is chosen in order to draw definitive conclusions, since the SDHC of a given structure at a
given site is unique [Bradley, 2013a]. In order to evaluate these procedures, we employ
the notion of a ‘benchmark’ [Kwong et al., 2014] and apply the methodology described in
Section 2 of [Kwong et al., 2015b]. Before evaluating these two GMSM procedures, let us
first understand how they may be implemented for estimating SDHCs.

1More precisely, the special case that involves only a single ground-motion-prediction model is studied
herein.
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5.3 Step-By-Step Summaries of Ground Motion

Selection Procedures for Estimating Seismic

Demand Hazard Curves

Probabilistic Seismic Demand Analysis

Both CS-exact and GCIM employ probabilistic seismic demand analysis (PSDA) to estimate
SDHCs of a given structure at a given site. In essence, several intensity-based assessments
are conducted and the results from such assessments are combined with the hazard curve for
the scalar conditioning IM to produce the SDHC. This commonality among CS-exact and
GCIM, which is embodied by PSDA, is summarized for a single EDP as follows:

1. Specify the scalar conditioning IM, IM∗, for scaling ground motions 2.

2. Determine the hazard curve for IM∗ from PSHA of the site and select NIM∗ intensity
levels for conducting intensity-based assessments (see e.g., Fig 1a of [Kwong et al.,
2014]).

3. For each of the NIM∗ intensity levels of IM∗, scale and select n ground motions from
a master database.

4. Perform response history analyses (RHAs) of the structure due to all NIM∗×n ground
motions.

5. Estimate the SDHC using Eqs 2-3 of [Kwong et al., 2015b]; when the EDP is a measure
of total acceleration (i.e., the acceleration at a specific floor or over all floors), replace
the values of the EDP corresponding to collapse by peak ground acceleration (PGA)
and apply Eq 2 of [Kwong et al., 2015b] (see also Section 5 of [Lin et al., 2013b]).

As seen in the above summary, the primary difference between CS-exact and GCIM in the
context of estimating SDHCs is in the selection of ground motions (Step 3). The subsequent
summaries of CS-exact and GCIM refer extensively to publications on CS [Baker, 2011,
Jayaram et al., 2011, Lin et al., 2013a] and GCIM [Bradley, 2010a, Bradley, 2012a, Bradley,
2012c]; in the interest of brevity, they are not presented as stand-alone descriptions.

The “Exact” Conditional Spectrum Approach (CS-Exact)

In CS-exact, the scalar conditioning IM is typically specified as the spectral acceleration at
a conditioning period of vibration, T ∗; i.e., IM∗ ≡ A(T ∗). For the ith intensity level of
A(T ∗), denoted by xi, the CS-exact approach to selecting n ground motions is summarized
as follows:

2The scalar conditioning IM must change with amplitude scaling (e.g., significant duration cannot be
chosen).
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1. Perform deaggregation to determine the percent contribution of each rupture scenario
to A(T ∗) = xi (see e.g., Fig 3a of [Kwong et al., 2014]).

2. Scale all ground motions from the master database so that A(T ∗) = xi; optionally
reduce the size of this database of scaled, prospective ground motions with a user-
specified maximum scale factor, SFmax.

3. Specify a range of vibration periods over which the target spectrum is defined (e.g.,
0.2T1 to 2T1 [Baker, 2011], 0.05 to 10 sec [Jayaram et al., 2011], etc.); see shaded region
in Fig 3b of [Kwong et al., 2014].

4. Determine the “exact” CS, as described by Method 4 in [Lin et al., 2013a] (specialized
for a single ground-motion-prediction model).

5. Randomly simulate n response spectra from the target spectrum in Step 4, using the
approach discussed in Section 3.2 of [Bradley, 2012a] (specialized for the case where
all IMs are spectral accelerations).

6. Select n ground motions (from the database developed in Step 2) whose response spec-
tra most closely agree with those simulated from Step 5, using the approach discussed
in Section 3.3 of [Bradley, 2012a] (specialized for the case where all IMs are equally
weighted spectral accelerations).

7. Confirm that the selected ground motions are consistent with the target spectrum:
apply Kolmogorov-Smirnov (KS) tests on the selected motions for spectral acceleration
at each of the vibration periods specified in Step 3.

a) If the selected motions pass the KS tests for all vibration periods, then proceed to
the next intensity level of A(T ∗); otherwise, repeat Steps 5-6 to reselect another
set of n ground motions.

b) If the KS tests cannot be satisfied for all vibration periods after NIter attempts,
then reselect another set of n ground motions by applying the greedy optimization
procedure (as described on Pages 800-801 in [Jayaram et al., 2011]) to the latest
set with the target means and standard deviations at each period given by Eqs 14-
15 in [Lin et al., 2013a], specialized for a single ground-motion-prediction model.

The preceding summary of CS-exact differs from the CS approach described by Jayaram et
al. [Jayaram et al., 2011] in two ways: (i) the target spectrum (Step 4), and (ii) the selection
process (Steps 5-7). In [Jayaram et al., 2011], the target spectrum is a multivariate lognormal
distribution for the mean rupture scenario whereas in this study, the target spectrum is a
finite mixture of multivariate lognormal distributions (see e.g., page 143 of [Wasserman,
2004]), where the mixing weights are obtained from deaggregation (see Eq 8 in [Bradley,
2010a]). Because the target spectrum in the CS approach considers a single rupture scenario
whereas that in CS-exact considers all rupture scenarios, the dispersion 3 of A(T ) from

3The term dispersion refers to the standard deviation of the natural logarithm of A(T ).
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CS is typically less than that from CS-exact. This difference in dispersion is illustrated in
Figure 5.1a, where the dispersion from CS-exact is given by Eq 15 in [Lin et al., 2013a],
specialized for a single ground-motion-prediction model.
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Figure 5.1: (a) Dispersion of A(T ) from CS versus that from CS-exact for a given level of
A(T ∗); (b) example of applying a KS test to ground motions selected for the same level of
A(T ∗).

Ground motions are selected in [Jayaram et al., 2011] by matching the target mean vector
and covariance matrix with a greedy optimization technique whereas in this study, ground
motions are selected so that they pass the KS tests at all vibration periods. For example,
Figure 5.1b depicts the KS test for A(2T1), as applied to the ground motions selected to
match the target spectrum from CS-exact (Steps 5-6). The target cumulative distribution
function (CDF) of A(2T1) from CS-exact (solid black) is compared against the empirical CDF
of A(2T1) from the selected motions (dashed red); the selected motions are deemed to be
consistent with the target at this period when the empirical CDF falls within the KS bounds
at a specified significance level (chained black). The KS test is preferred over the greedy
optimization technique in this study (see Step 7b) because the mean vector and covariance
matrix from CS-exact are inadequate to completely characterize its target spectrum, as it is
not multivariate lognormal.

The choice of CS-exact is motivated by the desire to select ground motions that are
hazard-consistent with respect to spectral accelerations at T1, T2, T3, and 2T1 of the structure
while simultaneously avoiding the need to inflate standard deviations [Lin et al., 2013b],
where T1, T2, and T3 refer respectively to the first, second, and third modal period of the
structure. In this study, an ensemble of NIM∗×n ground motions, which may be obtained by
repeating the above summary for all NIM∗ intensity levels, is said to be hazard-consistent with
respect to an IM when its resulting estimate of the hazard curve (from Eq 16 in [Kwong et al.,
2015b]) is essentially equal to the target hazard curve. For example, the ground motions
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portrayed in Figure 5.2a are hazard-consistent with respect to A(2T1) at exceedance rates
greater than 4×10−6, because the 95% bootstrapped [Efron and Tibshirani, 1993] confidence
intervals (CI) of the hazard curve estimate essentially cover the benchmark hazard curve. If
the motions are judged to be hazard-inconsistent (e.g., see exceedance rates less than 4×10−6

in Figure 5.2a), then ground motions may be reselected for one or more intensity levels of
A(T ∗).
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Figure 5.2: Illustration of (a) hazard consistency; (b) SDHC bias.

An SDHC estimate from a GMSM procedure is said to be unbiased when it is practically
the same as the target SDHC. For example, an SDHC estimate is shown by the dashed
black curve in Figure 5.2b, whereas the target SDHC is shown by the solid green curve. By
applying the bootstrap procedure to the EDPs determined by RHAs of the structure, 95%
CIs can be developed to portray the epistemic uncertainty in the SDHC estimate. Because
the CIs in Figure 5.2b essentially cover the benchmark SDHC at exceedance rates greater
than 5× 10−5, the SDHC estimate is said to be unbiased in this range.

The Generalized Conditional Intensity Measure Approach
(GCIM)

For the ith intensity level of IM∗, denoted by xi, the GCIM approach to selecting n ground
motions is summarized as follows:

1. Perform deaggregation to determine the percent contribution of each rupture scenario
to IM∗ = xi (see e.g., Fig 3a of [Kwong et al., 2014]).

2. Scale all ground motions from the master database so that IM∗ = xi.

3. Specify a large number of IMs for selecting ground motions, collectively denoted by
IM, using a weight vector as discussed in Section 5.2 of [Bradley, 2012c].
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4. Compute the multivariate GCIM distribution of IM | IM∗, using the vector version
of Eqs 8-12 in [Bradley, 2010a].

5. Randomly simulate n vectors of IM from the multivariate GCIM distribution in Step 4,
using the approach discussed in Section 3.2 of [Bradley, 2012a].

6. Select n ground motions (from the database developed in Step 2) whose computed
values of IM most closely agree with those simulated from Step 5, using the approach
discussed in Section 3.3 of [Bradley, 2012a].

7. Confirm that the selected ground motions are consistent with the target from GCIM:
apply KS tests on the selected motions for each of the IMs specified in Step 3.

a) If the selected motions pass the KS tests for all IMs, then proceed to the next
intensity level of IM∗; otherwise, repeat Steps 5-6 to reselect another set of n
ground motions.

b) If the KS tests cannot be satisfied for all IMs after NIter attempts, then check
whether or not such IM inconsistencies will cause EDP biases.

i. Perform RHA of the structure due to the latest selection of ground motions.

ii. Specify an EDP (e.g., floor displacement, story drift ratio, etc.) for checking.

iii. For each inconsistent IM identified in Step 7b, check whether or not it is
important to the current EDP considered by applying the approach shown
schematically in Fig 7a of [Bradley, 2010a].

iv. For each IM that is both inconsistent and important to the current EDP
considered, estimate the potential bias in the EDP caused by that particular
IM, following the approach outlined on pages 1337-1340 of [Bradley, 2010a];
note the IM that caused the largest estimated EDP bias, along with its bias
estimate.

v. Repeat Steps 7(b)iii-7(b)iv for all other EDPs of interest.

vi. If all inconsistent IMs are unimportant to all EDPs, or all estimated EDP
biases are judged to be acceptable, then proceed to the next intensity level
of IM∗; otherwise, repeat Steps 3-6 to reselect another set of n ground mo-
tions, with a potentially different weight vector based on the information from
Step 7(b)v.

The GCIM approach summarized above differs from the CS-exact approach (Section 5.3)
in two major aspects: (i) any IM (in addition to spectral acceleration) can be incorporated
and weighted to select ground motions (Step 3), and (ii) any potential biases in EDPs due to
IM inconsistencies can be examined in a practical manner (Step 7b). Note that unlike Step 2
of the summary for CS-exact, scale factors are not limited in GCIM because GCIM aims
to capture many more IMs than in CS-exact when selecting ground motions. With these
differences, the GCIM approach is holistic but can be quite involved. For example, the bias-
checking procedure requires RHAs of the structure to be performed first (Step 7(b)i), before
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scattergrams of EDP versus IM can be developed (see e.g., Fig 7a of [Bradley, 2010a], Fig 3
of [Kwong et al., 2015a]). In addition, as the number of EDPs (Step 7(b)ii) and IMs (Step 3)
increases, the number of checks and ground motion reselections may become cumbersome
(Step 7b).

5.4 Methodology for Evaluation

Both CS-exact and GCIM scale ground motions but differ in the IMs chosen for selection.
If the IMs chosen are indeed ‘sufficient’ for all EDPs of interest and the selected ground
motions are also hazard-consistent with respect to such IMs, then scaling should not cause
any bias in the resulting SDHC estimates [Kwong et al., 2014]. An IM, which is considered
vector-valued for generality, is formally defined to be sufficient with respect to EDP , and
denoted as IMs, when it satisfies the following equation:

Pr(EDP > z | IMs, IM1, IM2, . . . , IM∞) ≈ Pr(EDP > z | IMs) (5.1)

where “IM1, IM2, . . . , IM∞” characterizes features of the ground motion time series other
than those in IMs such as duration, M , R, etc. (see Appendix A of [Luco and Cornell,
2007]); otherwise, it is insufficient with respect to this particular EDP. Put differently, a
sufficient IM allows the analyst to focus on a subset of the infinitely many different features
of the time series, thus simplifying the problem considerably.

In many situations, because the degree of sufficiency of an IM is unknown, potential EDP
biases may occur. One way to investigate whether or not such biases exist is to determine
the sensitivity of the SDHC estimate from the GMSM procedure to the choice of the scalar
conditioning IM [Lin et al., 2013b, Bradley, 2012c]. Although this approach is straightforward
and can expose potential biases (assuming enough choices of the scalar conditioning IM are
considered), the actual bias due to insufficiency of IM cannot be quantified for lack of a
benchmark [Kwong et al., 2015b, Kwong et al., 2014]. Another way to explicitly quantify
potential EDP biases is to implement the bias-checking procedure in GCIM [Bradley, 2010a].
Although this approach provides estimates of potential EDP biases in a practical fashion,
such biases are caused by a single scalar IM, which may be significantly different from that
caused by multiple IMs (see Section 5.7 of this chapter).

In order to quantify the potential bias in an EDP due to simultaneous inconsistencies
with respect to multiple IMs, we propose to compare SDHC estimates from GMSM proce-
dures against a benchmark. Such benchmark SDHCs can be determined from the approach
described in Section 2 and schematically illustrated in Fig 1 of [Kwong et al., 2015b]. In
essence, this approach involves three main steps. First, a universe of synthetic ground mo-
tions is generated such that they are consistent with the earthquake rupture forecast of the
site. Second, benchmark hazard curves are computed using Eqs 5, 9, and 12 of [Kwong et al.,
2015b]. Third, all GMSM procedures are applied to a subset of this universe of synthetic
ground motions when estimating SDHCs; this is important for isolating the biases caused by
a GMSM procedure on its resulting SDHC estimates. For nonlinear multi-degree-of-freedom
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systems, identifying IMs that are truly sufficient (i.e., Equation 5.1 with an equality) is diffi-
cult but with a benchmark, one can definitively identify IMs that are insufficient for a given
EDP. A case study is presented next to illustrate these ideas.

5.5 Case Study Considered

Structural Models and Response Quantities

Two reinforced concrete frames – 4-story and 20-story – are considered. These well-vetted
frames have been studied by past researchers in various contexts (e.g., [Yamamoto, 2011],
[PEER GMSM Working Group, 2009], [Goulet et al., 2007]) and consequently, details re-
garding geometry and material properties may be found in such references. In essence, both
frames satisfy the strong-column, weak-beam philosophy and are modeled in OpenSEES
[Mazzoni et al., 2006], where the inelasticity is captured by plastic hinges at the ends of
beam-column elements; each frame is classified as collapsed when its displacement increases
without bounds. The four modal periods of vibration for the 4-story frame are: T1 = 0.94
sec, T2 = 0.30 sec, T3 = 0.17 sec, T4 = 0.12 sec; for the 20-story frame, the four modal
periods are: T1 = 2.6 sec, T2 = 0.85 sec, T3 = 0.46 sec, T4 = 0.32 sec.

Many EDPs are considered for the multistory frames. For each frame, the EDPs consid-
ered are: (i) peak (over time) floor displacements (PFD), (ii) peak story drift ratios (PSDR),
(iii) peak floor accelerations (PFA), (iv) maximum of peak story drift ratios over all stories
(MSDR), and (v) maximum of peak floor accelerations over all floors (MFA). Thus, a total
of 14 EDPs are considered for the 4-story frame and a total of 62 EDPs are considered for
the 20-story frame.

Specific Implementation of GMSM Procedures

Both CS-exact and GCIM share the same inputs to PSDA. In this study, the conditioning
IM, IM∗, is defined as spectral acceleration at the fundamental period of the structure,
A(T1); i.e., T ∗ = T1. Six sources of error in computing SDHCs were identified by Bradley on
page 1430 of [Bradley, 2012c]; in order to minimize these errors, NIM∗ = 12 intensity levels
are chosen to discretize the hazard curve for A(T1), n = 25 ground motions are selected at
each intensity level, and the probability distribution of EDP for a given intensity level is
estimated with a non-parametric approach. The NIM∗ = 12 intensity levels correspond to:
50%, 20%, 10%, 5%, 2%, 1%, 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, and 0.01% probability of
exceedance in 50 years 4. Moreover, 95% CIs are provided for each GMSM-based estimate
of the SDHC using the bootstrap technique with 100 bootstrap samples.

In order to be as faithful as possible to the original intentions behind the CS-exact
method, the following parameters were chosen for implementation. First, the scale factors
for all ground motions were limited by SFmax = 4 (Step 2). Second, 25 vibration periods,
logarithmically spaced between 0.05 to 10 sec, were chosen to compute the target spectrum.

4The Poisson assumption is used here.
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Third, each KS test was conducted at the 10% significance level, and ground motions were
reselected up to NIter = 10 times per intensity level, before resorting to the greedy optimiza-
tion technique. (The greedy technique is treated as a last resort here because it matches
only the first two statistical moments and not the complete probability distribution of the
“exact” CS.)

In order to be as faithful as possible to the original intentions behind the GCIM method,
the following parameters were chosen for implementation. First, 24 IMs were considered for
selecting ground motions: peak ground acceleration (PGA), peak ground velocity (PGV),
peak ground displacement (PGD), acceleration spectrum intensity (ASI), spectrum intensity
(SI), displacement spectrum intensity (DSI), cumulative absolute velocity (CAV), 5-95%
significant duration (D5−95), 5-75% significant duration (D5−75), and spectral accelerations
at 15 vibration periods: 0.05, 0.1, 0.2, 0.25, 0.3, 0.5, 0.75, 0.95, 1, 2, 2.6, 3, 4, 5, and 10
sec. Second, following [Bradley, 2012c], weights for each IM were assigned by giving 85% to
amplitude-based IMs and 15% to the cumulative-based IMs (see Table I in [Bradley, 2012c]).
Third, all KS tests (and t-tests from Step 7(b)iii) were conducted at the 10% significance
level, and ground motions were reselected up to NIter = 10 times per intensity level, before
proceeding with RHAs and resorting to the bias-checking procedure.

Site, Ground Motions, and Ground-Motion-Prediction Models

The site chosen is identical to that depicted in Fig 2a and described in Section 3.1 of [Kwong
et al., 2015b]. In essence, the seismicity of the site is controlled by a single strike-slip
fault that is located 10 km away. Earthquakes occur randomly with magnitudes following
the Youngs & Coppersmith probability density function, at an activity rate of ν = 0.02
earthquakes per year.

Two stochastic models were utilized to generate two universes of 104 ground motions.
These ground motion simulation models are described in Section 3.1 of [Kwong et al., 2015b]
and are referred to as Rezaeian’s GM model [Rezaeian and Der Kiureghian, 2008] and Ya-
mamoto’s GM model [Yamamoto and Baker, 2013]. An example ground motion time series
with M ≈ 7 from Rezaeian’s GM model is presented in Figure 5.3a and an example ground
motion time series with M ≈ 7 from Yamamoto’s GM model is illustrated in Figure 5.3b.
With two GM models and two multistory frames, at least 4×104 RHAs of multistory frames
were performed for this study.

In order to apply CS-exact and GCIM to a database of synthetic ground motions, ground-
motion-prediction models that are “consistent with the benchmark” must be available. Such
benchmark-consistent GMPMs were developed for 120 IMs and for each GM model, following
the approach outlined in Section 5 of [Kwong et al., 2015b]. The selection of functional
forms, determination of optimal standard deviations, and consideration of correlations, are
documented in Appendix B. With these benchmark-consistent prediction models developed,
CS-exact is evaluated first, followed by GCIM.
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Figure 5.3: Example ground motion time series with M ≈ 7 from: (a) Rezaeian’s GM model;
and (b) Yamamoto’s GM model.

5.6 Evaluation of CS-Exact

The CS-exact procedure (Section 5.3) is implemented first for the 20-story frame, using
ground motions from Rezaeian’s GM model. The ground motions are carefully selected to
be hazard-consistent with respect to spectral accelerations at vibration periods between 0.05
to 10 sec (Section 5.5). The only intensity levels of IM∗ = A(T1) where NIter = 10 attempts
to reselect ground motions were inadequate to satisfy the KS tests at all vibration periods
are those corresponding to 0.02% and 0.01% probability of exceedance in 50 years. As a
result, the selection of ground motions for each of these two intensity levels is finalized by
applying the greedy optimization technique to the latest set (Step 7b) before proceeding
with RHAs.

Hazard consistency of the preceding selected ensemble of NIM∗ × n ground motions is
summarized in Figure 5.4. As expected, the selected motions are generally hazard-consistent
with respect to spectral accelerations at the first three modal periods and twice the funda-
mental period of the 20-story frame, because CS-exact aims to select motions that are con-
sistent with the target spectra at all intensity levels of A(T1), for a wide range of vibration
periods. However, the selected motions are hazard-inconsistent with respect to A(T2) and
A(2T1) at exceedance rates less than 10−5; as discussed in Section 2 of [Kwong et al., 2015a],
these inconsistencies arise from the fact that the selection of ground motions at a particular
intensity level (Section 5.3) does not account for the ‘tail’ of the probability distribution of
IM | A(T ∗). Because SDHC biases at low exceedance rates are controlled by hazard incon-
sistencies at low exceedance rates (e.g., consider the case where IM ≡ EDP in Figure 5.2a),
it is generally more important to enforce hazard consistencies at low exceedance rates than
to satisfy KS tests at individual levels of IM∗.
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Figure 5.4: Hazard consistency of ground motions, selected by CS-exact for the 20-story
frame, with respect to spectral accelerations at four vibration periods (Rezaeian’s GM
model).

Figure 5.5 presents the SDHC estimates of the 20-story frame, resulting from the ground
motions summarized in Figure 5.4, along with the benchmark SDHCs, which are determined
from 104 RHAs of this frame. A subset of four EDPs is chosen to summarize results for
the 62 EDPs considered (Section 5.5): (i) roof displacement, PFD20, (ii) first-story drift
ratio, PSDR1, (iii) roof acceleration, PFA20, and (iv) maximum floor acceleration over all
floors, MFA. These EDPs are chosen to illustrate responses at specific floors/stories that
are often of interest in loss assessments in performance-based earthquake engineering. For
PFD20, PSDR1, and PFA20, the SDHC estimate from CS-exact is unbiased at exceedance
rates greater than 10−5 (Figure 5.5a-c). The SDHC estimate from CS-exact is also gen-
erally unbiased for MFA, but slightly underestimates the benchmark at a few ranges of
exceedance rates (Figure 5.5d). The difference between the observations for PFA20 against
those for MFA highlights the importance of considering response quantities at individual
floors. Overall, the SDHCs from CS-exact are unbiased at exceedance rates greater than
10−5 for nearly all of the 62 EDPs considered for the 20-story frame, with MFA and PFA2

as the only exceptions.

The benchmark SDHCs shown in Figure 5.5 enable biases in the SDHC estimates to
be quantified and insufficient IMs to be identified. Note that without the benchmark, a
concept developed in [Kwong et al., 2014] and in [Kwong et al., 2015b], it would be difficult
to identify biases such as those shown in Figure 5.5d by varying conditioning periods as
in Fig 11 of [Lin et al., 2013b], where a nearly identical 20-story frame was studied. The
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Figure 5.5: Comparison of SDHC estimates for several EDPs of the 20-story frame from
CS-exact against benchmark (Rezaeian’s GM model).

biases shown in Figure 5.5d imply that A(T1) is insufficient relative to MFA because ground
motions are deliberately scaled in CS-exact to achieve hazard consistency with respect to
A(T1) (Figure 5.4c). Do the biases shown in Figure 5.5d also imply that A(T2) is insufficient
relative to MFA? Strictly speaking, the answer is no because the selected motions are
hazard-inconsistent with respect to A(T2) at exceedance rates less than 10−5 (Figure 5.4b)
and hence, the biases in MFA could have been caused by either such inconsistencies or
insufficiency. If ground motions were somehow selected to be hazard-consistent at such low
exceedance rates (e.g., using the procedure developed in Chapter 4), then more definitive
statements can be made with regard to insufficiency. This subtle point should be kept in
mind when interpreting all subsequent results.

The evaluation of CS-exact for the 20-story frame is repeated for Yamamoto’s GM model.
An additional 104 RHAs of the 20-story frame are performed to compute benchmark SDHCs
and an additional subset of NIM∗ × n = 300 ground motions is selected via CS-exact. As
in Rezaeian’s GM model (Figure 5.4), the motions from Yamamoto’s GM model are again
selected so that hazard consistency is generally achieved with respect to spectral accelera-
tions over a wide range of vibration periods. The SDHCs resulting from such motions are
presented in Figure 5.6. Similar to the results from Rezaeian’s GM model (Figure 5.5), the
SDHCs from CS-exact are unbiased for many of the EDPs considered for the 20-story frame.
However, unlike the MFA hazard curve from Rezaeian’s GM model (Figure 5.5d), that from
Yamamoto’s GM model is unbiased at all exceedance rates greater than 10−5 (Figure 5.6d).
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This observation implies that strictly speaking, SDHC biases are caused directly by the haz-
ard inconsistencies of the specific selection of ground motions and indirectly by the GMSM
procedure in question; the GMSM procedure is only a tool for achieving hazard consisten-
cies. From a pragmatic standpoint however, Figures 5.5 and 5.6 collectively suggest that the
vector of spectral accelerations at vibration periods between 0.05 to 10 sec (Section 5.5), or
spectral shape, is sufficient for the 20-story frame studied in this chapter, because the SDHC
biases are small for nearly all of the EDPs considered.
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Figure 5.6: Comparison of SDHC estimates for several EDPs of the 20-story frame from
CS-exact against benchmark (Yamamoto’s GM model).

The CS-exact procedure is also evaluated with the 4-story frame (Section 5.5). A total of
2× 104 RHAs of this frame were conducted to develop the benchmark SDHCs for both GM
models. In each of the two models, the ground motions were again carefully selected to be
hazard-consistent with respect to spectral accelerations at vibration periods between 0.05 to
10 sec. The SDHC estimates of the 4-story frame for Rezaeian’s GM model are presented in
Figure 5.7 whereas those for Yamamoto’s GM model are presented in Figure 5.8. A subset of
four EDPs is chosen to summarize results for the 14 EDPs considered: (i) roof displacement,
PFD4, (ii) first-story drift ratio, PSDR1, (iii) roof acceleration, PFA4, and (iv) maximum
floor acceleration over all floors, MFA.

In contrast to the SDHCs from CS-exact for the 20-story frame (Figures 5.5 and 5.6),
those for the 4-story frame are generally more biased. Specifically, (i) the roof acceleration
hazard curves from CS-exact underestimate the benchmark for both GM models (Figures 5.7c
and 5.8c), and (ii) in Yamamoto’s GM model, the annual rate of collapse is overestimated
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Figure 5.7: Comparison of SDHC estimates for several EDPs of the 4-story frame from
CS-exact against benchmark (Rezaeian’s GM model).

(Figures 5.8a-b). To some readers, the biases observed in the roof acceleration hazard curves
(Figures 5.7c and 5.8c) may appear surprising because the selected ground motions are
hazard-consistent with respect to spectral accelerations at all modal periods of the frame
and at the same time, one might expect roof acceleration to be sensitive to higher modes
(see e.g., Appendix A.1 of [Lin, 2012]). This finding suggests that roof acceleration depends
on a feature of the ground motion time series that has not been considered in the analysis
thus far, pointing out the importance of developing a rigorous benchmark when evaluating
results from GMSM procedures. Overall, the biases documented in Figures 5.7-5.8 indicate
that spectral shape is generally insufficient for the response of the 4-story frame, although
it may be considered to be sufficient for the 20-story frame.

The magnitude of biases in the SDHCs indicate the degree to which the vector of IMs
chosen for ground motion selection is sufficient. Recall that the ground motions selected via
CS-exact for both frames are generally hazard-consistent with respect to spectral acceler-
ations over a wide range of vibration periods (or loosely speaking, spectral shape). Since
less bias is observed for the 20-story frame (Figures 5.5-5.6) than for the 4-story frame (Fig-
ures 5.7-5.8), we conclude that spectral shape is less insufficient for the 20-story frame than
for the 4-story frame; i.e., this IM does a better job of satisfying Equation 5.1 for EDPs of
the 20-story frame than for those of the 4-story frame. Furthermore, based on the biases
noted in Figures 5.7 and 5.8, spectral shape is less insufficient for displacements and drift
ratios than for floor accelerations of the 4-story frame. The phrase ‘less insufficient’ is uti-
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Figure 5.8: Comparison of SDHC estimates for several EDPs of the 4-story frame from
CS-exact against benchmark (Yamamoto’s GM model).

lized because it is difficult to prove that an IM is truly sufficient; i.e., the good agreement
in SDHCs does not necessarily imply that the IM satisfies Equation 5.1 with an equality
because the selected motions may happen to be hazard-consistent with respect to other IMs
by chance.

In general, the bias in the SDHC from CS-exact depends on the particular EDP considered
because an IM that is insufficient for one case may appear to be sufficient for another.
For instance, the roof displacement hazard curve from CS-exact using Yamamoto’s GM
model (Figure 5.8a) overestimates the annual rate of collapse whereas that using Rezaeian’s
GM model (Figure 5.7a) is unbiased for nearly all exceedance rates. The overestimation
in Yamamoto’s GM model arises from the fact that spectral shape is insufficient for the
estimation of the collapse rate of the 4-story frame.

To illustrate this fact, let us consider Figure 5.9, where hazard consistency of the ground
motions selected via CS-exact for this frame, is examined with respect to two IMs that are not
employed in the selection of ground motions: (i) PGV, and (ii) D5−75. In both GM models,
the selected motions are generally hazard-consistent with respect to PGV even though this
IM is not utilized in the selection of ground motions (Figure 5.9a and c), because PGV is
highly correlated with the response spectrum at moderate vibration periods 5 and at the

5The correlation, ρ, between PGV and A(1s) in Yamamoto’s GM model is 0.85; in Rezaeian’s GM model,
it is 0.90.
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same time, hazard consistency for this range of periods is enforced in CS-exact. In contrast,
the selected motions are far more hazard-inconsistent with respect to D5−75 in Yamamoto’s
GM model (Figure 5.9b) than in Rezaeian’s GM model (Figure 5.9d), because the correlation
between PGV and D5−75 is much weaker in Yamamoto’s GM model (ρ = −0.06) than in
Rezaeian’s GM model (ρ = −0.34). Therefore, spectral shape appears to be sufficient in
Rezaeian’s GM model for estimating the collapse rate (Figure 5.7a) because in this model,
D5−75 happens to be somewhat correlated with the response spectrum at moderate periods of
vibration. In order to control IMs in addition to spectral accelerations, the GCIM approach
was developed, which is evaluated next.
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Figure 5.9: Hazard consistency of ground motions selected for the 4-story frame via CS-
exact from Yamamoto’s master database, with respect to: (a) PGV and (b) D5−75; hazard
consistency of ground motions selected for the 4-story frame via CS-exact from Rezaeian’s
master database, with respect to: (c) PGV and (d) D5−75.

5.7 Evaluation of GCIM

The GCIM procedure (Section 5.3) is implemented first for the 4-story frame and for Reza-
eian’s GM model. For a given intensity level of A(T1), ground motions are iteratively selected
so that they satisfy the KS tests for the 24 IMs mentioned in Section 5.5, which include mea-
sures of duration in addition to spectral accelerations. Figure 5.10a presents an example of
applying the KS test to the ground motions selected for the 0.02% probability of exceedance
in 50 years level. The KS test indicates whether or not the difference between the two CDFs
of A(0.1) – empirical (dashed black) and GCIM (solid green) – is statistically significant. At
the 10% significance level, both the KS bounds (chained green) and p-value in Figure 5.10a
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indicate that the selected motions are inconsistent with respect to A(0.1), because the em-
pirical CDF falls outside of the KS bounds and the p-value is less than the significance level.
Such an inconsistency prompted several more reselections of ground motions (via Steps 5-6
of Section 5.3), until the selected motions pass the KS tests for all 24 IMs.
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Figure 5.10: Examples of applying: (a) KS tests, and (b) t-tests to ground motions selected
for A(T1) at 0.02% probability of exceedance in 50 years (Rezaeian’s GM model).

When IM inconsistencies remain afterNIter = 10 reselections, the bias-checking procedure
in GCIM (Step 7b) is implemented, where the first step is to examine the potential signifi-
cance of such inconsistencies relative to an EDP of interest. This is done by (i) performing
n = 25 RHAs of the 4-story frame, (ii) creating a scattergram of the EDP versus each IM in
log-log space, (iii) determining the regression line, and (iv) applying the t-test to determine
whether or not the slope of the regression line is statistically significant (Step 7(b)iii). For
example, the potential significance of the inconsistency shown in Figure 5.10a, relative to
roof acceleration of the 4-story frame, is examined in Figure 5.10b; in this figure, only 8 out
of the n = 25 RHA results are shown (blue circles) because the rest of the ground motions
led to collapse. From this subset of the RHA results, the regression line is determined (solid
red) and its slope is tested for statistical significance via the t-test. Because the p-value
from the t-test (which is 1.6 × 10−2) is less than the significance level, the inconsistency
of the selected motions with respect to A(0.1) is deemed to be statistically significant for
PFA4 and hence the potential bias in PFA4 due to A(0.1) should be estimated next in order
to decide whether or not ground motions should be reselected with a potentially different
weighting of the 24 IMs. If the slope had turned out to be statistically insignificant, then the
inconsistency in Figure 5.10a would have been deemed unimportant and hence reselection
of ground motions would not be necessary.

In order to determine whether or not ground motion reselection is necessary for the
example intensity level considered in Figure 5.10, the potential biases in PFA4 caused by
each individual inconsistent IM are estimated (Step 7(b)iv). For the 0.02% probability of
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exceedance in 50 years level of A(T1), the selected motions are also inconsistent with respect
to A(0.5), in addition to A(0.1) (Figure 5.10a). Figure 5.11a presents the potential bias
in PFA4 due to A(0.1), whereas Figure 5.11b presents the potential bias in PFA4 due to
A(0.5). For each scalar IM, the estimated bias is indicated by the discrepancy between the
“uncorrected” (dashed black) and “corrected” (chained red) CDFs of roof acceleration for
the 0.02% probability of exceedance in 50 years level. The “uncorrected” CDF is obtained
by fitting a lognormal distribution to the values of EDP where collapse did not occur (solid
grey); on the other hand, the “corrected” CDF is obtained by applying Eq 17 in [Bradley,
2010a] to the non-collapse cases of the RHA results. Since the potential biases due to A(0.5)
are smaller than those due to A(0.1), the bias due to A(0.1) dictates whether or not ground
motion reselection is necessary for this intensity level (Step 7(b)iv).
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Figure 5.11: Estimates of bias in PFA4 from GCIM due to: (a) IM ≡ A(0.1), and (b)
IM ≡ A(0.5), for A(T ∗) at 0.02% probability of exceedance in 50 years (Rezaeian’s GM
model).

It is up to the analyst to decide whether or not such EDP biases estimated from GCIM
are acceptable. In this study, we adopt an approach that is inspired by the KS test illustrated
in Figure 5.10a. Specifically, the difference between the empirical CDF (solid grey) and the
“corrected” CDF (chained red) is quantified by the KS test. Since the “corrected” CDF
falls within the 10% KS bounds (Figure 5.11a), the bias in PFA4 due to A(0.1) is deemed
acceptable; hence, the current selection of ground motions and corresponding RHA results
are considered to be final.

By reselecting ground motions at each intensity level of A(T1) up to NIter = 10 times, the
selected motions for the 4-story frame with Rezaeian’s GM model passed almost all of the
KS tests. This is demonstrated in Figure 5.12a, where only three out of the NIM∗×24 = 288
KS tests led to inconsistencies (shown in magenta); these three IMs, denoted by numbers 2,
4, and 6, correspond respectively to spectral accelerations at vibration periods of 0.1, 0.25,
and 0.5 sec. Among these three cases, only those corresponding to 0.02% probability of
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exceedance in 50 years led to statistically significant slopes from regression analyses for roof
acceleration, as illustrated in Figure 5.12b. Therefore, 0.02% probability of exceedance in
50 years is the only intensity level in which ground motion reselection might be necessary;
i.e., the selected motions for all other intensity levels is finalized at this point. Based on the
estimated biases presented in Figure 5.11, ground motion reselection for this intensity level
does not seem necessary.
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Figure 5.12: (a) Summary of results from KS tests for all 24 IMs employed in GCIM, at
all intensity levels of A(T ∗) (magenta indicates inconsistency with respect to GCIM distri-
bution); (b) cases where IM is both inconsistent and important to PFA4, as measured by
t-tests (magenta indicates slope from linear regression is statistically significant, given IM is
inconsistent). Results for Rezaeian’s GM model.

The bias-checking procedure in GCIM offers several benefits for selecting ground mo-
tions. First, the p-values from KS tests permit ground motions to be selected in a somewhat
automated fashion (Figure 5.12a). Second, the p-values from t-tests allow users to identify in-
tensity levels of IM∗ that require potential reselection of ground motions (e.g., Figure 5.12b).
Third, decisions regarding the reselection of ground motions at a particular intensity level
are better informed with estimates of the “corrected” CDF of EDP (Figure 5.11).

However, the bias-checking procedure in GCIM has several limitations. First, RHAs of
the multistory frame must be performed before scattergrams can be constructed (e.g., Fig-
ure 5.10b). Second, the treatment of collapses in the bias-checking procedure is unclear.
One option is to exclude collapses, as shown in Figure 5.10b; however, this can lead to ques-
tionable results as the number of collapses approaches the total number of ground motions
selected for the particular intensity level, n (i.e., in the limit, no data would be available
to construct the scattergram). Another option is to include the collapses; however, this
may also lead to questionable results because one is utilizing the numerical values of EDP
corresponding to collapse. Third, the application of t-tests can become cumbersome as the
number of EDPs increases (e.g., 14 EDPs are considered for the 4-story frame and 62 EDPs
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are considered for the 20-story frame) and as the number of IM inconsistencies increases
(e.g., Figure 5.12a); therefore, it is advantageous to minimize the number of such inconsis-
tencies from KS tests. Fourth, the estimated EDP biases from GCIM are approximate, as
they depend on the particular scalar IM considered (see Figure 5.11).

Figure 5.13 presents the SDHCs of the 4-story frame resulting from the ground motions
summarized in Figure 5.12a. Figure 5.13 demonstrates that the SDHCs from GCIM are
unbiased for many of the EDPs, from linear-elastic behavior to collapse. Moreover, the epis-
temic uncertainty in the SDHC estimates is relatively small, implying excellent repeatability
of the estimates. However, the SDHCs from GCIM are biased for some of the floor accel-
erations; in particular, the roof acceleration hazard curve from GCIM underestimates the
benchmark at exceedance rates less than 2×10−3, as shown in Figure 5.13c. This bias in floor
accelerations indicates that there is no guarantee that the resulting SDHC estimates from
GCIM are unbiased, even after (i) enforcing hazard consistency of the selected motions with
respect to a very diverse collection of IMs (i.e., spectral accelerations, spectrum intensities,
significant duration, etc.), and (ii) implementing the bias-checking procedure.
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Figure 5.13: Comparison of SDHC estimates for several EDPs of the 4-story frame from
GCIM against benchmark (Rezaeian’s GM model).

The biases in roof acceleration were not detected by implementing the bias-checking
procedure in GCIM. Although the bias-checking procedure enables potential EDP biases to
be estimated in a practical fashion, the bias estimates of roof acceleration (Figure 5.11) are
significantly different from the actual bias. Specifically, the “corrected” CDF in Figure 5.11a
indicates that the roof acceleration hazard curve from the current selection of ground motions
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will overestimate the ‘true’ roof acceleration hazard curve by a slight amount, because it is
‘to the left’ of the “uncorrected” CDF. In contrast, the benchmark SDHC in Figure 5.13c
demonstrates that the current SDHC estimate from GCIM underestimates the benchmark
by a significant amount.

The preceding limitation of the bias-checking procedure does not arise from the fact that
bias estimates in Figure 5.11 were judged to be acceptable. Instead of assuming the EDP
biases are acceptable, ground motions at the 0.02% probability of exceedance in 50 years level
are reselected with a different weight vector (85% is now given to PGA, ASI, and spectral
accelerations at periods from 0.05 to 0.95 sec, while 15% is given to the rest of the original
24 IMs) so that the remaining IM inconsistencies (A(3s) and CAV) are demonstrated to be
unimportant for roof acceleration of the 4-story frame, via t-tests such as that illustrated
in Figure 5.10b. This new selection of ground motions is employed to revise the SDHCs
of the 4-story frame; these revised SDHCs are shown in Figure 5.14. As demonstrated in
Figure 5.14c, the underestimation in the GCIM estimate of the roof acceleration hazard curve
remains present, even when ground motions are reselected with a different weight vector for
the 0.02% probability of exceedance in 50 years level. Therefore, the discrepancy between
conclusions from the benchmark (Figure 5.13c) and from the bias-checking procedure in
GCIM (Figure 5.11) does not arise from the fact that bias estimates in Figure 5.11 were
judged to be acceptable. Note that the SDHCs are nearly identical in Figures 5.13 and 5.14
because: (i) ground motions are reselected for only one out of NIM∗ = 12 intensity levels;
(ii) the SDHCs for displacements and drift ratios at low exceedance rates are controlled by
the annual rate of collapse, which is insensitive to the RHA results from the revised selection
of ground motions; and (iii) the SDHCs for floor accelerations are sensitive to the revised
RHA results only at exceedance rates less than 10−6.

The GCIM procedure is also applied to the 4-story frame using Yamamoto’s GM model.
Ground motions are again iteratively selected at each intensity level of A(T1) until all IM
inconsistencies from KS tests are demonstrated to be statistically insignificant for all EDPs
considered (Figure 5.12). As in the case for Rezaeian’s GM model, difficulties are encoun-
tered at the two largest intensity levels of A(T1) and hence, the bias-checking procedure is
implemented for these levels. Specifically, n = 25 RHAs of the 4-story frame were conducted
and ground motions were reselected with a different weighting of the 24 IMs. This reselection
of ground motions was then considered as finalized because after another round of n = 25
RHAs of the frame was conducted with this reselection, the remaining IM inconsistencies
were demonstrated to be unimportant for all EDPs of the 4-story frame (Step 7(b)iii).

The SDHCs of the 4-story frame, resulting from the preceding ground motions from
Yamamoto’s GM model, are presented in Figure 5.15. As in the case of Rezaeian’s GM
model, the SDHCs from GCIM are again unbiased for the majority of the EDPs considered
(i.e., floor displacements, story drift ratios, etc.). Furthermore, the epistemic uncertainty
in the estimates from GCIM is again relatively small. Since GCIM accounts for cumulative
effects of the ground motion (e.g., CAV, D5−75, etc.) in addition to spectral accelerations
over a wide range of vibration periods, the good agreement near the annual rate of collapse
suggests that such cumulative effects are important for estimating the collapse rate of this
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Figure 5.14: Comparison of the benchmark against SDHC estimates for several EDPs of
the 4-story frame from GCIM, with ground motions reselected at the 0.02% probability of
exceedance in 50 years level via a new weight vector (Rezaeian’s GM model).

frame (compare e.g., Figure 5.15a against Figure 5.8a).

As in the case of Rezaeian’s GM model, the GCIM estimate of the roof acceleration hazard
curve again underestimates the benchmark (Figure 5.15c). The larger underestimation in
Figure 5.13c, relative to that in Figure 5.15c, arises from differences in correlation of IMs
between the two GM models (see Figure 5.9). As demonstrated by comparing Figure 5.15c
against Figure 5.8c, even the inclusion of cumulative effects of the ground motion does not
improve the estimate of the roof acceleration hazard curve. Because ground motions are
carefully selected in GCIM to be hazard-consistent with respect to a diverse collection of 24
IMs in both GM models (see Section 5.5), the biases in Figures 5.13c and 5.15c reveal that
this specific collection of IMs is insufficient with respect to roof acceleration of the 4-story
frame. In other words, this EDP depends on a feature of the ground motion time series that
has not been considered thus far in the analysis, pointing out the importance of developing
a rigorous benchmark when evaluating results from GMSM procedures.

The GCIM method was also implemented for the 20-story frame and for both GM models.
In both models, ground motions were again carefully selected to ensure hazard consistency
with respect to all 24 IMs. Similar to the 4-story frame, it is difficult to satisfy all KS
tests at the two largest intensity levels of A(T1). For these intensity levels, ground motions
were examined for potential biases in EDPs; fortunately, reselection of ground motions was
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Figure 5.15: Comparison of SDHC estimates for several EDPs of the 4-story frame from
GCIM against benchmark (Yamamoto’s GM model).

not necessary for these levels because all IM inconsistencies from the initial selection of
ground motions were demonstrated to be unimportant for the EDPs of the 20-story frame
(Step 7(b)iii). In the interest of brevity, the SDHC estimates of the 20-story frame from
GCIM are not presented in this chapter; instead, they are provided in Appendix C. Based
on those results, the agreement between the GCIM-based SDHCs of the 20-story frame
and the benchmark is excellent for all EDPs considered. This is expected because (i) a
comparable level of good agreement was observed from CS-exact for the same frame (see
Figures 5.5 and 5.6), and at the same time, (ii) GCIM captures even more aspects of the
ground motion than in CS-exact when selecting ground motions (Section 5.5); i.e., the vector
of 24 IMs employed in GCIM is less insufficient than the collection of spectral accelerations
employed in CS-exact (see Equation 5.1).

5.8 Comparative Summary of CS-Exact and GCIM

Table 5.1 compares the implementation of CS-exact and GCIM in this study for computing
SDHCs of a given structure at a specified site. The two procedures are similar in that (i)
a scalar conditioning IM is chosen to scale ground motions (attributes 1-2), (ii) a relatively
large number of IMs is employed to select ground motions (attribute 5), and (iii) KS tests are
employed at each intensity level of IM∗ to ensure hazard consistency of the selected motions
(attribute 8). In addition, the two procedures are similar in that NIM∗ = 12 intensity-based
assessments are conducted and hence determining a single estimate of the SDHC requires:
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(i) performing NIM∗ = 12 deaggregations, (ii) computing NIM∗ = 12 target multivariate
distributions, and (iii) selecting NIM∗ = 12 sets of ground motions (attributes 6-7).

Table 5.1: Summary of effort involved in using CS-exact and GCIM in this study to compute
SDHCs of a given structure at the specified site.

Attribute CS-exact GCIM

1. Conditioning IM A(T ∗) = A(T1) IM∗ = A(T1)
2. Can all ground motions

Usually not Usually not
be unscaled?

3. Limits on scaling
SFmax = 4 Not typically used

of ground motions

4. Type of IMs considered Spectral accelerations

Spectral accelerations,
peak ground measures,
spectrum intensities,

cumulative effects
5. Number of IMs used to

25 vibration periods 24 IMs
select ground motions

6. Total number of PSHA-based NIM∗ = 12 NIM∗ = 12
calculations for deaggregations deaggregations and

selecting ground motions and conditional spectra GCIM distributions of IM
7. Total number of NIM∗ = 12 sets of NIM∗ = 12 sets of

ground motions used n = 25 ground motions n = 25 ground motions
8. How hazard consistency KS tests and KS tests and

is enforced greedy optimization bias-checking procedure

Table 5.1 also highlights two major differences between GCIM and CS-exact. First, other
features of the ground motion time series in addition to spectral accelerations (e.g., cumula-
tive effects, etc.) are incorporated in the ground motion selection process of GCIM whereas
only spectral accelerations are incorporated in that of CS-exact (attribute 4). Because scale
factors in GCIM can be indirectly limited with a judicious choice of IM [Bradley, 2012a],
no scale factor threshold is specified for GCIM in this study; in contrast, scale factors in
CS-exact are directly limited by SFmax = 4 (attribute 3). Second, potential EDP biases due
to hazard inconsistencies are explicitly examined for all EDPs in GCIM whereas in CS-exact,
such potential EDP biases are implicitly assumed to be satisfactory after implementing the
greedy optimization technique (attribute 8).

Finalizing the selection of ground motions in GCIM (Step 7b in Section 5.3) can involve
much more effort than in CS-exact (Step 7b in Section 5.3), depending on the level of EDP
bias that is acceptable to the analyst when implementing the bias-checking procedure in
GCIM. If only very small EDP biases are acceptable at a particular intensity level of IM∗,
then finalizing the selection of ground motions in GCIM tends to necessitate more RHAs of
the structure than in CS-exact. For example, if the estimated EDP biases for the 4-story
frame in Figure 5.11 are deemed unacceptable, then an additional n RHAs of the frame must
be performed (Step 7(b)i in Section 5.3) before EDP biases can be re-estimated for all 14
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EDPs to finalize the selection of ground motions (Step 7(b)vi in Section 5.3). On the other
hand, if larger EDP biases are acceptable, then no additional RHAs are necessary before
proceeding to compute SDHCs in GCIM.

The two major differences between GCIM and CS-exact (attributes 4 and 8) may lead
to SDHC estimates that are more accurate than those from CS-exact. For example, by
accounting for the cumulative effects of the ground motion in the selection process and
employing the bias-checking procedure, the overestimation in the annual rate of collapse
for the 4-story frame from CS-exact (Figure 5.8) is eliminated in GCIM (Figure 5.15). As
elaborated in Section 5.7 however, the bias-checking procedure can become quite involved,
depending on the number of IMs and EDPs considered (Figure 5.12) and on the level of
accuracy desired by the analyst (Figure 5.11).

Including more IMs in the ground motion selection process (attribute 4) and explic-
itly checking for potential EDP biases (attribute 8) in GCIM may not necessarily lead to
improved estimates of the SDHC. For example, since the SDHCs from CS-exact for the 20-
story frame are generally unbiased (Figures 5.5 and 5.6), inclusion of additional IMs does
not lead to significantly improved SDHC estimates for the 20-story frame. Furthermore, it is
demonstrated in Section 5.7 that even after implementing the bias-checking procedure, for a
wide range of IMs and EDPs (see Figures 5.10-5.11), the SDHCs resulting from the finalized
selection of ground motions may still be biased (e.g., Figure 5.13c).

5.9 Conclusions

In this study, two existing, contemporary GMSM procedures – CS-exact and GCIM – were
evaluated for their ability to accurately estimate seismic demand hazard curves (SDHCs) of a
given structure at a specified site. A case study was chosen where rigorous benchmark SDHCs
were determined for evaluation purposes. The amount of effort involved in implementing
these procedures to compute a single SDHC is summarized in Table 5.1. In essence NIM∗

intensity-based assessments are conducted where for each assessment, ground motions are
scaled but selected to be consistent with respect to the target defined by PSHA for a user-
specified collection of IMs. The results from implementing these procedures are compared
against the benchmark, leading to the following conclusions:

1. In general, whether or not the estimate from a particular GMSM procedure is biased
depends on the particular problem (i.e., structure, EDP, and database of ground mo-
tions), because the underlying cause of SDHC bias involves two important aspects of
the particular selection of ground motions: (i) hazard consistency, and (ii) IM suf-
ficiency. A GMSM procedure is only a tool for achieving hazard consistency with
respect to a user-specified collection of IMs; whether or not the resulting SDHC is
biased depends on how sufficient the vector of IMs is, relative to the EDP of interest.

2. Good agreement between the benchmark SDHC and the estimate from CS-exact is
observed for all of the EDPs considered for the 20-story frame.
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3. Good agreement between the benchmark SDHC and the estimate from GCIM is ob-
served for all of the EDPs considered for the 20-story frame and for all floor displace-
ments and all story drift ratios of the 4-story frame.

4. The SDHC estimate from CS-exact underestimates some of the floor accelerations and
overestimates the annual rate of collapse of the 4-story frame.

5. The SDHC estimate from GCIM underestimates some of the floor accelerations, indi-
cating that it is possible to obtain significantly biased SDHCs from GCIM, even after (i)
enforcing hazard consistency for a diverse collection of IMs, and (ii) implementing the
bias-checking procedure to approximate potential EDP biases arising from improper
ground motion selection.

6. If hazard consistency is enforced with respect to a collection of IMs, the benchmark
SDHCs enable us to identify IMs that are insufficient; two examples:

a) The vector of spectral accelerations at 25 vibration periods from 0.05 to 10 sec,
employed herein for CS-exact, is insufficient for estimating the collapse rate of the
4-story frame; in this case, cumulative effects of the ground motion appear to be
important.

b) The vector of 24 IMs employed herein for GCIM, which captures amplitude, fre-
quency content, and duration of the ground motion, is insufficient for estimating
roof acceleration of the 4-story frame.

Finally, we note that the above conclusions are based on synthetic ground motions and
on a relatively simple site. For recorded ground motions and a realistic site with many
earthquake sources and uncertainty in source-to-site distance, the insufficiency of the IMs
considered herein may be even more pronounced than what has been documented herein.
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Chapter 6

Evaluation of the Importance
Sampling-Based Method for Ground
Motion Selection

6.1 Preview

An Importance Sampling (IS) based ground motion selection procedure was proposed for
estimating seismic demand hazard curves (SDHCs) of structures at a specified site. This
procedure enables us to estimate SDHCs from unscaled yet intense ground motions, through
various choices of the Importance Function (IF). More importantly, it enables us to directly
enforce hazard consistency of the selected motions with respect to a given set of intensity
measures (IMs), and to estimate SDHCs with a single ensemble of ground motions. In
this chapter, we evaluate the IS procedure in its ability to accurately estimate SDHCs of
structures at a specified site. For a case study where rigorous benchmark SDHCs can be
determined, we find that SDHCs from this procedure are typically unbiased, especially when
all ground motions are unscaled. The epistemic uncertainty of the SDHCs from the procedure
is controlled primarily by the IF, and secondarily by the number of ground motions to
be selected. Finally, we demonstrate that SDHCs of multiple structures can be estimated
accurately from a single ensemble of ground motions by applying the procedure with a non-
structure-specific vector of IMs.

6.2 Introduction

Seismic demand hazard curves (SDHCs) for a given structure at a given site, which are
important for assessing the structure’s risk (i.e., damage and loss) in performance-based
earthquake engineering, are typically estimated in practice via probabilistic seismic demand
analysis (PSDA) [Shome et al., 1998]. In this analysis, multiple intensity-based assessments
[NEHRP Consultants Joint Venture, 2011, Applied Technology Council, 2012] of the struc-
ture are conducted and the results are combined with the hazard curve of the chosen con-
ditioning scalar intensity measure (IM), which is determined by probabilistic seismic hazard
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analysis (PSHA) of the given site. More details about PSDA can be found in Section 2 of
[Kwong et al., 2014], among others.

Since recorded ground motions (GMs) 1 are often distorted by scaling in PSDA, it is
natural to question the value of the information derived from such scaled GMs (e.g., [Grigoriu,
2010, Corigliano et al., 2012]). As pointed out in Section 6 of [Kwong et al., 2014] however,
inaccuracies or biases of the SDHCs are not caused directly by GM record scaling but rather,
by hazard inconsistencies of the selected GMs with respect to IMs that influence the response
quantity, or engineering demand parameter (EDP); such IMs are said to be sufficient for the
EDP [Luco and Cornell, 2007]. In other words, the bias in an estimate of the SDHC is
directly related to two important aspects of the corresponding selection of GMs: (i) IM
sufficiency, and (ii) hazard consistency 2.

If GMs are selected such that they are hazard-consistent with respect to a sufficient IM,
which may be scalar or vector-valued, then the resulting SDHCs are unbiased, irrespective
of the degree of record scaling. For example, suppose the conditioning scalar IM is defined
as spectral acceleration at the fundamental vibration period of the structure, A(T1). By
scaling GMs to the hazard curve of A(T1) that is determined from PSHA, the motions are
deliberately ensured to be hazard-consistent with respect to this IM. If the EDP of interest
is sensitive to only A(T1) and to no other features of the GM (i.e., this IM is sufficient for the
EDP), then the resulting SDHC is unbiased, independent of the degree to which GMs were
scaled and regardless of whether or not all GMs were selected from the same earthquake
event (such is the case for all EDPs of a linear-elastic SDF system).

In many situations however, the response of a structure is sensitive to many more features
of the GM besides A(T1) alone and consequently, it is important to ensure that the selected
GMs are also hazard-consistent with respect to such features. This can be achieved with
the Generalized Conditional Intensity Measure (GCIM) approach [Bradley, 2010a], where
Kolmogorov-Smirnov tests are employed to identify GMs that are consistent with the GCIM
distributions for a wide range of user-specified IMs. However, such tests do not necessarily
ensure hazard consistency at low exceedance rates because such rates may be controlled by
the ‘tails’ of GCIM distributions (see Section 2 of [Kwong et al., 2015a]). Furthermore, the
typical use of GM scaling in PSDA suggests that hazard inconsistencies may still exist for
IMs that have not been considered by the analyst in the selection of GMs; such IMs can be
important for certain EDPs (see Sections 6.8 and 6.10 below). Since hazard inconsistencies
appear to be more pronounced when GMs are scaled (e.g., compare Fig 12 against Fig 9a in
[Kwong et al., 2015c]), one possible solution for minimizing such hazard inconsistencies is to
minimize the degree of record scaling.

Supposing that we are interested in avoiding record scaling altogether when estimating

1The phrase “ground motion” refers herein to ground acceleration as a function of time.
2In this study, a SDHC estimate is said to be unbiased or accurate when its 95% bootstrapped confidence

interval [Efron and Tibshirani, 1993] covers the benchmark SDHC; otherwise, it is biased or inaccurate.
Similarly, a set of GMs is said to be hazard-consistent with respect to IM when the 95% bootstrapped
confidence interval of the hazard curve estimate covers the benchmark; otherwise, it is hazard-inconsistent.
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SDHCs, how can we best utilize a database of unscaled GMs for this purpose? The GM
selection method based on Importance Sampling (IS), which is developed in [Kwong et al.,
2015c], answers this question. In this chapter, we evaluate this procedure in its ability to
accurately estimate SDHCs for a given structure at a specified site, using the concepts and
methodologies developed in publications [Kwong et al., 2014] and [Kwong et al., 2015b].
Before doing so, let us first take a closer look at this selection procedure.

6.3 Step-By-Step Summary of the IS Procedure

The IS-based method for selecting n number of GMs and estimating SDHCs is summarized
as follows (see Fig 3 in [Kwong et al., 2015c] for a block diagram):

1. Specify IM, a vector of NIM number of IMs, to be utilized for selecting GMs.

2. Determine the target probability distribution of IM from PSHA of the site, fIM(x):

fIM(x) =

NRup∑
i=1

ν(rupi)

ν0

· fIM|Rup(x | rupi) (6.1)

where NRup is the total number of rupture scenarios considered in the PSHA, ν(rupi)
is the rate of the ith scenario, ν0 is the annual rate of earthquake occurrence, and
fIM|Rup(x | rupi) is the multivariate density of IM given the ith rupture scenario
(usually assumed multivariate lognormal whose parameters are given by empirical pre-
diction models).

3. Choose an Importance Function (IF), gIM(x), for selecting GMs (see Section 6.4).

4. Randomly sample n vectors of IM from gIM(x); each vector is denoted by IMIF .

5. Select n GMs from a specified database whose computed values of IM, each denoted
by IMP , most closely agree with those simulated from Step 4, where closeness for each
(potentially scaled) GM is quantified by a misfit, ∆:

∆ =

NIM∑
j=1

[
ln(IMIF,j)− ln(IMP,j)

σj

]2

(6.2)

and σj refers to the standard deviation of ln(IMj) from the IF; if scaled GMs are
desired, then each value of IMP in the database is determined by Eqs 14-15 in [Kwong
et al., 2015c].

6. Compute the IS weights for all selected GMs, where the IS weight for the ith GM, wi,
is:

wi = f(xi)÷ g(xi) (6.3)

and xi refers to IMP for the ith GM.
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7. Check hazard consistency of the selected GMs with respect to any IM of interest. The
estimated hazard curves from the selected GMs are given by:

λ̂IM(x) =
ν0

n

n∑
i=1

[I(xi > x) · wi] λ̂EDP (z) =
ν0

n

n∑
i=1

[I(zi > z) · wi] (6.4)

where xi and zi refer, respectively, to the computed values of IM and EDP from the ith
(potentially scaled) GM. If deemed hazard-inconsistent, then reselect GMs (Steps 4-6),
following the guidance provided in Section 3.4 of [Kwong et al., 2015c].

8. Perform response history analyses (RHAs) of the structure due to the n selected GMs.

9. Estimate the SDHC by applying Equation 6.4b to the n computed values of EDP.

When implementing Step 1, the number of IMs in the vector IM should be relatively
small (i.e., four to six) because a large number of IMs leads to large epistemic uncertainty
in the resulting estimates of hazard curves (see Equation 6.5 below), which is undesirable.
In addition, a small number of IMs reduces the computational time involved in computing
IS weights (Step 6) because the evaluation of Equation 6.3 requires the evaluation of multi-
ple multivariate lognormal probability density functions (PDFs), as shown by Equation 6.1.
Furthermore, with a finite number of GMs in the database to select from (Step 5), it is
possible to obtain a selection of GMs that does not agree closely with the values of IM that
are randomly simulated from the IF. Consequently, it is very important to check hazard con-
sistency of the selected motions (Step 7) before proceeding with any RHAs of the structure;
if the selected motions are hazard-inconsistent, then GMs should be reselected. Finally, the
choice of IF (Step 3) is a critical step in the IS procedure, which is discussed more thoroughly
next.

6.4 Choice of Importance Function

In general, the selected IF should possess three desirable characteristics. First, one must be
able to easily randomly sample a vector of IMs from such an IF (see Step 4 of the summary
above). Second, the chosen IF should produce randomly sampled values of IM that facilitate
selection of GMs from a given database; e.g., when the largest observed value of A(1s) in
the database is 1g, there would be no point in specifying an IF whose mode is located at
intensities greater than 1g. Third, the chosen IF should minimize the epistemic uncertainty
of the resulting SDHC estimates; this epistemic uncertainty is quantified by Eq 9 of [Kwong
et al., 2015c], which is repeated here for convenience:

V
[
λ̂EDP (z)

]
=

1

n

{
ν2

0

[∫
s

Pr(EDP > z | IM = s) · f
2(s)

g(s)
ds

]
− λ2

EDP (z)

}
(6.5)

where V [·] denotes variance, Pr(EDP > z | IM = s) denotes the complementary cumulative
distribution function of EDP for a given test value of IM, λEDP (z) denotes the theoretical
SDHC, and the subscript “IM” in both f and g is dropped henceforth for brevity. We see
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from this equation that for a given site and number of GMs, the epistemic uncertainty of
the SDHC estimate varies with both the EDP and the level of demand, in addition to the
choice of the IF.

To facilitate random sampling of IM from the IF, its form is chosen as either a multi-
variate lognormal (MVLN) distribution or a mixture of such MVLNs. Using a vector of four
IMs as an example, Figure 6.1 illustrates two examples of the MVLN form, denoted by g1

(chained blue) and g2 (dashed red). Although their mean vector and covariance matrices
are different, it is relatively easy to generate a random value of IM in each case (see e.g.,
Section 6.2 of [Ross, 2013]). Figure 6.1 also illustrates an example of the mixture form,
denoted by g3. This IF is a mixture of the previous two MVLNs:

g3(x) = [1− η] · g1(x) + η · g2(x) (6.6)

where 0 ≤ η ≤ 1 refers to the mixing proportion. In this case, values of IM can be randomly
generated from g3 via two steps: (i) identify one of the two components by randomly sampling
from the Bernoulli distribution with probability η, and (ii) randomly generate a value of IM
from the component identified. Such mixture distributions are useful for minimizing the
epistemic uncertainty of the resulting estimates of hazard curves [Hesterberg, 2003].
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Figure 6.1: Marginal distribution for (a) A(T4), (b) A(T1), (c) A(2T1), (d) D5−75, derived
for three database-driven IFs with reference to target PDFs from PSHA, f (solid thin grey):
(i) g1 (chained blue), (ii) g2 (dashed red), (i) g3 (solid green).

To facilitate the selection of GMs among a given database of N motions, we propose
to derive the parameters of the IF from the database. Such IFs are called database-driven
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IFs, which were first introduced in Section 3.2 of [Kwong et al., 2015c]. In essence, after
IM is identified (see Step 1 of the above summary), the N observed values of IM in the
GM database may be used to estimate the mean vector and covariance matrix of a MVLN
distribution; an example of this approach is shown as g1 in Figure 6.1. However, not all
values of IM in the database may be of interest. For instance, one might be interested in
only unscaled GMs where A(T1) ≥ 1g and A(2T1) ≥ 0.5g. In this case, another possible
IF can be obtained by first filtering the database of N GMs according to the latter criteria
before determining the mean vector and covariance matrix of the IF; an example of this
approach is depicted as g2 in Figure 6.1. By mixing such IFs via Equation 6.6, more choices
of the IF become available.

Ideally, the single, “optimal” IF is the one that minimizes the epistemic uncertainty of
the resulting SDHC estimate, which is given by Equation 6.5. However, the IF cannot be
determined from minimizing Equation 6.5 because the term Pr(EDP > z | IM = s) in this
equation is unknown.

To overcome this problem, we propose to choose the IF by minimizing the epistemic
uncertainty in the hazard curves for influential IMs, instead of for EDPs. Specifically, given
a set of EDPs and corresponding demand levels of interest, one first specifies a set of IMs
(Step 1) and corresponding intensity levels that are deemed most influential to the demands.
Then, the IF is chosen by minimizing the epistemic uncertainty of the hazard curves for
such IMs. This approach assumes that when the epistemic uncertainty from influential IMs
is minimized, the epistemic uncertainty for EDPs is also minimized. We summarize this
approach as follows:

1. For each prospective IF:

a) Randomly sample n values of IM from the IF.

b) Compute the hazard curve for each of the NIM elements in IM, by applying
Equation 6.4a to the n randomly sampled values of IM.

c) Repeat the latter two steps until NHC number of hazard curves (e.g., NHC = 100)
have been computed for each element of IM.

d) Construct a 95% confidence interval (CI) of the hazard curve for each element of
IM.

2. Choose the IF that leads to the smallest 95% CI for the IMs and exceedance rates of
interest.

This approach is illustrated in Figure 6.2 for g1 and g3 from Figure 6.1. For each of
the two IFs and for each of the four IMs, the 95% CI of the hazard curve is presented. As
expected, the CIs of the hazard curves for A(T1) and A(2T1) from g3 are smaller than those
from g1, at exceedance rates less than 10−5, because g3 concentrates on the tail regions of
A(T1) and A(2T1) more so than g1 (compare densities at large intensity levels in Figures 6.1b-
c). If one assumed that the nonlinear response of the system is most sensitive to A(T1) and
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A(2T1) at exceedance rates less than 10−5, then g3 would be chosen over g1. In this chapter,
the IS-based method for selecting GMs is evaluated for several choices of the IF.
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Figure 6.2: Illustration of proposed approach for choosing IF among several possibilities;
NHC = 103. Hazard curves for (a) A(T4); (b) A(T1); (c) A(2T1); (d) D5−75.

6.5 Methodology for Evaluation

In order to evaluate the IS-based method in its ability to accurately estimate SDHCs for
a given structure at a specified site, we employ the methodology that has been described
comprehensively in [Kwong et al., 2015b]. In essence, this methodology involves three main
steps. First, a universe of synthetic GMs is generated such that they are consistent with
the earthquake rupture forecast of the site. Second, benchmark hazard curves are computed
using Eqs 5, 9, and 12 of [Kwong et al., 2015b]. Third, SDHCs are estimated by applying
the IS-based procedure to a subset of this universe of synthetic GMs; this is important
for isolating the biases caused by the ground motion selection and modification (GMSM)
procedure on its resulting SDHC estimates. By comparing the SDHC estimates from the
IS-based method against the respective benchmarks in this context, the potential bias from
the GM selection procedure can be quantified. Furthermore, if the selected GMs are hazard-
consistent with respect to a particular collection of IMs, then such comparisons also permit
identification of insufficient IMs.
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6.6 Case Study Considered

A case study is chosen where most of the tools needed in the evaluation methodology (i.e.,
benchmark hazard curves, benchmark-consistent prediction models, etc.) are readily avail-
able. The site chosen is identical to that depicted in Fig 2a and described in Section 3.1 of
[Kwong et al., 2015b]; in essence, the seismicity of the site is controlled by a single strike-slip
fault that is located 10 km away, and earthquakes occur randomly with magnitudes following
the Youngs & Coppersmith PDF, at an activity rate of ν = 0.02 earthquakes per year. Two
GM simulation models were utilized to generate two universes of 104 GMs; these models are
described in Section 3.1 of [Kwong et al., 2015b] and are referred to as Rezaeian’s GM model
[Rezaeian and Der Kiureghian, 2008] and Yamamoto’s GM model [Yamamoto and Baker,
2013]. In the interest of brevity, most results in this chapter are shown for Rezaeian’s GM
model; other results may be found in Appendix D.

In order to apply the IS-based selection procedure to a database of synthetic GMs, GM
prediction models (GMPMs) that are “consistent with the benchmark” must be available.
Such benchmark-consistent GMPMs were developed for 120 IMs and for each GM model,
following the approach outlined in Section 5 of [Kwong et al., 2015b]. The selection of func-
tional forms, determination of optimal standard deviations, and consideration of correlations,
are documented in Appendix B.

Two well-vetted reinforced concrete frames – 4-story and 20-story – are considered. These
frames were studied in many past publications (e.g., [Yamamoto, 2011], [PEER GMSM
Working Group, 2009], etc.) and have been modeled in OpenSEES [Mazzoni et al., 2006].
The four modal periods of vibration for the 4-story frame are: T1 = 0.94 sec, T2 = 0.30 sec,
T3 = 0.17 sec, T4 = 0.12 sec; for the 20-story frame, the four modal periods are: T1 = 2.6
sec, T2 = 0.85 sec, T3 = 0.46 sec, T4 = 0.32 sec. For each frame, the EDPs considered are: (i)
peak (over time) floor displacements (PFD), (ii) peak story drift ratios (PSDR), (iii) peak
floor accelerations (PFA), (iv) maximum of peak story drift ratios over all stories (MSDR),
and (v) maximum of peak floor accelerations over all floors (MFA). Thus, a total of 14 EDPs
are considered for the 4-story frame and a total of 62 EDPs are considered for the 20-story
frame.

6.7 Estimating SDHCs without Scaling Ground

Motions

In this section, we evaluate the IS procedure in its ability to estimate SDHCs without scaling
GMs and with different choices of the IF. In order to facilitate comparison between the results
from this procedure against those from a typical application of PSDA, n = 300 GMs are
selected herein for computing SDHCs of each system. For each multistory frame, four IMs
are chosen to select GMs (Step 1): spectral accelerations at the fundamental vibration period
of the structure, A(T1), twice the fundamental period, A(2T1), and the fourth-mode period,
A(T4), and 5-75% significant duration, D5−75. The periods 2T1 and T4 were chosen to roughly
consider period lengthening during inelastic response and higher-mode effects.
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With IM specified, two choices of the IF were considered for selecting unscaled GMs. The
first IF, denoted by g1, is a MVLN distribution whose parameters are determined from all 104

unscaled, GMs in the database. The second IF, denoted by g3, is a two-component mixture
of MVLN distributions developed via Equation 6.6; the first component is identical to g1

whereas the second component is a MVLN distribution whose parameters are determined
from only those motions in the database that satisfy the following criteria: (i) A(T1) ≥ 1g
and (ii) A(2T1) ≥ 0.5g. These two IFs were discussed in Section 6.4 with reference to
Figures 6.1-6.2. With these inputs to the IS-based method specified, g1 is evaluated first,
followed by g3.

The IS-based method offers a direct means of enforcing hazard consistency with respect to
IM. Using Rezaeian’s GM model and the 4-story frame as an example, n = 300 values of IM
were randomly generated from g1 (Step 4), which were in turn used to select n = 300 GMs
from the database of size 104 (Step 5). Applying Equations 6.3 and 6.4a to the selected GMs
leads to estimates of hazard curves for any IM. In particular, Figure 6.3 presents hazard
curves from these selected motions for nine different IMs: A(T4), A(T1), A(2T1), A(4T1),
peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement
(PGD), cumulative absolute velocity (CAV), and D5−75. As expected, the selected motions
are hazard-consistent with respect to the four IMs considered in selecting GMs (highlighted
in red) since for each of these IMs, the 95% CI of the hazard curve estimate covers the
benchmark. Observe that by design of the IS-based selection procedure, hazard consistency
for D5−75 at exceedance rates down to approximately 10−6 can be directly enforced.

More importantly, Figure 6.3 demonstrates that the GMs selected by the IS-based method
are also hazard-consistent with respect to many other IMs, even though only four IMs are
chosen to select GMs. This is the case because (i) the specified IM is strongly correlated
with many other features of the GM, and (ii) record scaling is avoided, which preserves
the inter-dependence structure among all IMs. Thus, the IS procedure offers the ability to
enforce hazard consistency over a wide range of IMs and exceedance rates (through various
choices for IM and the IF). Based on the hazard consistency of the selected motions depicted
in Figure 6.3, the resulting SDHCs of the 4-story frame are expected to be unbiased.

This expectation is confirmed in Figure 6.4, where the resulting SDHCs of the 4-story
frame are presented together with the respective benchmarks for four EDPs: (i) peak roof
displacement, PFD4, (ii) peak first story drift ratio, PSDR1, (iii) peak roof acceleration,
PFA4, and (iv) MSDR. The SDHCs from IS are unbiased because the 95% CI of each SDHC
(from bootstrapping [Efron and Tibshirani, 1993]) essentially covers the benchmark over a
wide range of exceedance rates. However, the epistemic uncertainty of such SDHC estimates
near collapse (i.e., around 2 × 10−5) is relatively large. These observations regarding bias
and epistemic uncertainty are also valid for all other EDPs considered for this frame, even
though only four IMs are utilized in selecting a single ensemble of n = 300 GMs to estimate
such SDHCs.

The preceding evaluation of the IS-based method with g1 for the 4-story frame is repeated
for the 20-story frame. Ground motions are again selected (with g1 as the IF) to be hazard-
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Figure 6.3: Hazard consistency of the motions selected with g1 for the 4-story frame, with
respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA; (f) PGV; (g) PGD; (h)
CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and 95%
CI of estimate from IS in chained black (Rezaeian’s GM model).

consistent for four IMs: (i) A(T4), (ii) A(T1), (iii) A(2T1), and (iv) D5−75. As in the case of
the 4-story frame, the selected GMs are hazard-consistent with respect to many more IMs
than the four used in the selection process. Consequently, we expect the resulting SDHCs
of the 20-story frame to be unbiased.

This expectation is confirmed in Figure 6.5. In this figure, the SDHCs of the 20-story
frame resulting from the GMs selected by g1 are presented together with the respective
benchmarks for four EDPs: peak roof displacement, PFD20, peak first story drift ratio,
PSDR1, peak roof acceleration, PFA20, and MSDR. As in the case of the 4-story frame,
the IS-based SDHCs of the 20-story frame are again unbiased for all EDPs considered. The
epistemic uncertainty of the SDHC estimates at low exceedance rates is again relatively large
for displacements and drifts but not for accelerations of this frame. These conclusions are
supported by results from analyses starting with Yamamoto’s GM model (see Appendix D).

How would the results change if a different IF was chosen for the IS-based method?
Recall from Equation 6.5 that for a given site, structure, and number of GMs n, the epistemic
uncertainty in the SDHCs from IS is dictated by the IF. Thus, different choices of the IF lead
to different degrees of epistemic uncertainty in the resulting SDHC estimates. As mentioned
in Section 6.4, the IF cannot be determined by minimizing Equation 6.5 because the term
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Figure 6.4: Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with g1 as the IF, against benchmark (Rezaeian’s GM model).

Pr(EDP > z | IM = s) is unknown. Nevertheless, perhaps we can minimize the epistemic
uncertainty associated with EDPs by minimizing the epistemic uncertainty associated with
influential IMs. This seems reasonable because if IM is perfectly sufficient for the EDP, then
by definition, the EDP is a function of only IM and hence, minimizing uncertainty for IM
is tantamount to minimizing uncertainty for the EDP.

To test this idea, we evaluate the IS-based method with g3 as the IF. Specifically, η and
g2 in Equation 6.6 were chosen so that at exceedance rates less than 10−4, the resulting g3

led to a reduction (relative to g1) in epistemic uncertainty of the hazard curves for A(T1)
and A(2T1); see Figure 6.2. Consequently, by choosing g3 as the IF, one is assuming that
the nonlinear response at such exceedance rates is influenced primarily by these two IMs.

Figure 6.6 examines hazard consistency of the GMs selected from g3 for the 4-story
frame in Rezaeian’s GM model, with respect to the same nine IMs shown in Figure 6.3.
Comparing this figure against Figure 6.3, we observe that the GMs selected from g3 are
hazard-consistent for lower exceedance rates than those from g1. Moreover, we observe in
this figure that at exceedance rates less than 10−5, the epistemic uncertainty in the hazard
curves for A(T1) and A(2T1) is smaller than that for IF=g1. In fact, a similar reduction in
epistemic uncertainty at low exceedance rates is observed for all nine IMs except for A(T4)
and PGA. These observations were expected because g3 places more probability density than
g1 at large intensity levels of A(T1) and A(2T1) (Figure 6.1), and such IMs are in turn well

123



0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

PFD
20

 [in]

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

 

 

Benchmark

IS

95% CI

(a)

0 2 4 6 8

10
−4

10
−3

10
−2

10
−1

PSDR
1
 [%]

(b)

0 0.5 1 1.5

10
−4

10
−3

10
−2

10
−1

PFA
20

 [g]

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

(c)

0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

MSDR [%]

(d)

Figure 6.5: Comparison of SDHC estimates for several EDPs of the 20-story frame from IS,
with g1 as the IF, against benchmark (Rezaeian’s GM model).

correlated with many other IMs. If the nonlinear response of the 4-story frame is indeed
primarily influenced by intense levels of A(T1) and A(2T1), then the reduction in epistemic
uncertainty of the hazard curves, as shown in Figure 6.6, suggests that a similar reduction
will be obtained for the SDHCs.

With g3 as the IF, Figure 6.7 presents the SDHCs for the 4-story frame. Comparing this
figure against Figure 6.4, we observe that the SDHCs from both choices of the IF are unbiased
but the epistemic uncertainty in the SDHCs differ. At low annual rates of exceedance, the
choice of g3 as the IF leads to smaller epistemic uncertainty in the displacement and drift
hazard curves but slightly larger epistemic uncertainty in the acceleration hazard curves.
These observations suggest that intense levels of A(T1) and A(2T1) have dominant influence
on large displacements and drifts but not on large accelerations of the building.

The evaluation of IS with g3 as the IF was repeated for three other cases: the 20-story
frame with Rezaeian’s GM model, and both frames starting with GMs from Yamamoto’s
model (see Appendix D). In all cases, the choice of g3 as the IF leads to unbiased SDHCs with
smaller (relative to g1) epistemic uncertainty in the displacement and drift hazard curves and
slightly larger epistemic uncertainty in the acceleration hazard curves, thus confirming the
conclusions reached earlier for the 4-story frame in Rezaeian’s model. These results suggest
that: (i) SDHCs from IS with unscaled GMs are usually unbiased, and (ii) the IF should
be chosen such that at low exceedance rates, the epistemic uncertainty of hazard curves is
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Figure 6.6: Hazard consistency of the motions selected with g3 for the 4-story frame, with
respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA; (f) PGV; (g) PGD; (h)
CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and 95%
CI of estimate from IS in chained black (Rezaeian’s GM model).

minimized for all IMs that are deemed influential to all EDPs of interest.

6.8 Estimating SDHCs with Scaled Ground Motions

In practice, GM records that are intense enough may be lacking. For example, the largest
observed value of A(T1) in a given database might conceivably be less than the mode of the
target PDF shown in Figure 6.1b. In this case, the IFs for A(T1) that are derived from purely
unscaled GMs would no longer concentrate on intense levels of this IM; i.e., the IFs shown in
Figure 6.1b would be shifted towards the left. As a result, the hazard curve estimates from
the IS-based method will exhibit a relatively large degree of epistemic uncertainty at low
exceedance rates, despite the fact that they may be unbiased. This problem can be overcome
by either: (i) adding more synthetic GMs to the database that are also intense and unscaled,
or (ii) scaling the motions in the existing database; we investigate the latter option next.

By allowing GMs to be scaled, the effective size of the database increases and hence, more
prospective IFs can be developed. For instance, a two-component mixture of MVLNs was
introduced via Eq 12 in [Kwong et al., 2015c], where the IF is controlled by three inputs: (i)
the specified database of unscaled GMs, (ii) the maximum acceptable scale factor, SFmax,
and (iii) a target fraction of scaled GMs, γ. Through varying the parameters SFmax and γ,
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Figure 6.7: Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with g3 as the IF, against benchmark (Rezaeian’s GM model).

different IFs can be constructed for minimizing the epistemic uncertainty of hazard curve
estimates.

However, record scaling also potentially introduces bias into the hazard curve estimates,
depending on the sufficiency of IM relative to the EDP (and seismic demand level, z)
of interest. This issue was investigated in Section 6 of [Kwong et al., 2015c], where the
relationship between various levels of record scaling and bias in SDHCs of the (same) 4-story
frame was explored. The results from that study suggest that the inelastic response of the
4-story frame is sensitive to the long-period content and duration of the GM. Furthermore, it
was concluded that a vector of IMs becomes increasingly insufficient as the extent of record
scaling increases, leading to the recommendation that when employing the IS-based method
with scaled GMs, (i) SFmax should be less than or equal to 5, and (ii) γ should be less than
or equal to 0.5.

In this section, we evaluate the IS-based method with scaled GMs by first choosing
inputs that are based on knowledge gained from the study mentioned in the preceding
paragraph. First, in order to minimize potential biases caused by record scaling, six IMs are
chosen for IM to select GMs: A(T4), A(T1), A(3T1), displacement spectrum intensity (DSI)
[Bradley, 2011], CAV, and D5−75. The IMs A(3T1) and DSI are chosen because as previously
mentioned, the nonlinear response of the 4-story frame is judged to be sensitive to the long
period content of the GM. Second, the IF is chosen as the two-component mixture defined
by Eq 12 in [Kwong et al., 2015c], with SFmax = 5 and γ = 0.5.
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With IM and the IF defined, we first examine the GMs selected and scaled for the 4-
story frame in Rezaeian’s model. Figure 6.8 presents the hazard curves computed from these
scaled GMs, with respect to the same nine IMs used in Figure 6.3. Comparing these two
figures against each other, we observe that the scaled GMs are generally hazard-consistent
at lower exceedance rates (or equivalently, larger intensity levels) than the unscaled GMs
selected by g1. For instance, the scaled GMs are hazard-consistent with respect to A(T4) for
almost all exceedance rates down to 10−7 (Figure 6.8a) whereas the unscaled motions are
hazard-consistent for exceedance rates down to only 10−4 (Figure 6.3a). Furthermore, at low
exceedance rates, the epistemic uncertainty of the hazard curves from the scaled motions
tends to be less than that from the unscaled motions. These observations are expected
because the IF with SFmax = 5 and γ = 0.5 puts more probability density around large
values of IM than g1.

However, the use of record scaling implies that the inter-dependence structure among IMs
is modified and as a result, scaled GMs tend to be less hazard-consistent than unscaled GMs.
For example, the scaled motions depicted in Figure 6.8g are hazard-consistent with respect
to PGD only at exceedance rates down to about 10−4, even though six IMs are utilized in
the selection process; in contrast, the unscaled motions depicted earlier in Figure 6.3g are
hazard-consistent with respect to PGD at exceedance rates down to about 10−6, even though
four IMs are utilized in the selection process. Whether or not such hazard inconsistencies of
scaled motions lead to bias in the resulting SDHCs depends on the sufficiency of IM with
respect to the EDPs of interest.

Computed by applying Equation 6.4b to the RHA results from the scaled GMs, the
SDHCs for the 4-story frame are presented in Figure 6.9. Comparing this figure against
Figure 6.4 for unscaled GMs selected by g1, we see that scaling GMs leads to smaller epistemic
uncertainty of the SDHCs. Compared to the benchmark SDHCs however, the SDHCs from
scaled GMs are more biased than those from unscaled GMs selected by g1; in particular,
we observe a significant underestimation of the roof acceleration hazard curve at exceedance
rates less than 10−3. This bias indicates that the vector of six IMs employed in selecting
GMs is insufficient for estimating large roof accelerations of this frame; put differently, large
levels of this response quantity are influenced by hazard inconsistencies with respect to IMs
that have not been utilized to select GMs. One way to minimize such hazard inconsistencies
is to minimize record scaling, which preserves the inter-dependence structure among IMs.

The IS-based method with SFmax = 5 and γ = 0.5 is also evaluated for the 20-story
frame with Rezaeian’s model. The same six IMs used in selecting GMs for the 4-story frame
are also used to select GMs for the 20-story frame: A(T4), A(T1), A(3T1), DSI, CAV, and
D5−75. By design of the IS-based procedure, the GMs selected for the 20-story frame are
ensured to be hazard-consistent with respect to these six IMs over a relatively wide range of
exceedance rates, despite the fact that they have been scaled.

The resulting SDHCs for the 20-story frame are presented in Figure 6.10. Comparing
this figure against Figure 6.5 for unscaled GMs selected by g1, we observe that the epistemic
uncertainty in the SDHCs from scaled GMs is not appreciably less than that from the un-
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Figure 6.8: Hazard consistency of the motions selected with SFmax = 5 and γ = 0.5 for
the 4-story frame, with respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA;
(f) PGV; (g) PGD; (h) CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in
dashed black, and 95% CI of estimate from IS in chained black (Rezaeian’s GM model).

scaled GMs. This is because the IF for scaled GMs is chosen herein by specifying SFmax and
γ to be respectively, 5 and 0.5, instead of specifying these values on the basis of minimizing
the epistemic uncertainty in hazard curves for IMs, as described at the end of Section 6.4
with reference to Figure 6.2. Compared to the respective benchmarks, we observe that the
SDHCs from scaled GMs are essentially unbiased for this frame, unlike those shown in Fig-
ure 6.9 for the 4-story frame. This good agreement indicates two possibilities: either (i) IM
is sufficient for the nonlinear response of the 20-story frame, or (ii) the selected GMs happen
to be hazard-consistent with respect to all IMs that are influential to the response and are
excluded from IM. To see which of these two possibilities is more plausible, we repeat the
evaluation of the IS-based method with record scaling, using Yamamoto’s GM model.

Starting with Yamamoto’s model, GMs are selected via IS and utilized for estimating
SDHCs of both frames; these SDHCs are presented in Figures 6.11-6.12. For each frame,
GMs are again selected such that they are hazard-consistent with respect to the same six IMs
over a wide range of exceedance rates. The resulting SDHCs for the 4-story frame are now
essentially unbiased (Figure 6.11); unlike the results for Rezaeian’s model where a signifi-
cant underestimation of the roof acceleration hazard curve was observed (Figure 6.9c), the
estimated roof acceleration hazard curve for Yamamoto’s model is unbiased (Figure 6.11c).
Because bias was observed in Rezaeian’s model, we know that the vector of six IMs used
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Figure 6.9: Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with SFmax = 5 and γ = 0.5, against benchmark (Rezaeian’s GM model).

for selecting GMs is insufficient for estimating large roof accelerations of this frame; hence,
the good agreement observed in Yamamoto’s model indicates that the particular selection of
GMs in this model happen to be hazard-consistent with respect to IMs that are influential
to roof acceleration. Without the benchmark SDHCs in Rezaeian’s GM model (Figure 6.9),
one could have erroneously concluded that the vector of six IMs is sufficient for this frame
on the sole basis of the good agreement observed in Yamamoto’s model (Figure 6.11).

The results for the 20-story frame tell a slightly different story. Comparing Figure 6.12
for Yamamoto’s model against Figure 6.10 for Rezaeian’s model, we observe that the SDHC
estimates for this frame from scaled GMs are essentially unbiased in both models. Although
the good agreement observed in both models could have been caused by the fact that in each
model, the particular selection of GMs is hazard-consistent with respect to all influential IMs,
the consistent observation from both models suggests that, for the extent of record scaling
considered herein, the vector of six IMs used in selecting GMs is indeed sufficient for the
nonlinear response of the 20-story frame.
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Figure 6.10: Comparison of SDHC estimates for several EDPs of the 20-story frame from
IS, with SFmax = 5 and γ = 0.5, against benchmark (Rezaeian’s GM model).

6.9 Estimating SDHCs of Multiple Systems from a

Single Ensemble of Ground Motions

When designing a new structure or retrofitting an existing structure, it is common to con-
sider several alternative designs. For evaluating designs, SDHCs can be developed for each
alternative by PSDA. When the fundamental period of each alternative design is different
however, PSDA typically requires GMs to be re-selected (and scaled) for each system, which
can be cumbersome when many systems are considered for the site. By using a single en-
semble of GMs instead, we can more readily take advantage of high-performance computing
resources (e.g., XSEDE machines) that are becoming increasingly available for performing
nonlinear RHAs in OpenSEES [Ventura et al., 2015, McKenna and Fenves, 2008]. Conse-
quently, the ability to select a single ensemble of GMs for accurately estimating SDHCs of
multiple systems at the same site seems like an attractive proposition; in this section, we
evaluate the IS-based method in its ability to achieve this goal.

We saw earlier that the bias in SDHCs is dictated directly by the particular selection
of GMs. Specifically, as long as the motions are hazard-consistent with respect to a set
of IMs that is sufficient, then the resulting SDHC estimates are unbiased. However, for
general, complex MDF systems, it is difficult to identify (a priori) IMs that are sufficient.
To overcome this problem, one can employ a large number of IMs in the selection of GMs,
as in the GCIM method [Bradley, 2010a]. Another solution is to select GMs based on fewer
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Figure 6.11: Comparison of SDHC estimates for several EDPs of the 20-story frame from
IS, with SFmax = 5 and γ = 0.5, against benchmark (Yamamoto’s GM model).

IMs, but at the same time, minimize the degree of record scaling.

This alternative is motivated by previous results demonstrating that unscaled GMs can
be hazard-consistent with respect to a large number of IMs, even when a small number of IMs
was employed in the IS-based selection process. For example, Figure 6.3 demonstrates that
the motions selected by g1 are hazard-consistent with respect to all nine IMs at exceedance
rates greater than 10−4, despite the fact that only four IMs were employed in selecting
GMs. Such is the case because the four IMs are well correlated with many other IMs and
simultaneously, the inter-dependence structure among IMs is preserved by avoiding record
scaling altogether.

To obtain a single ensemble of GMs that results in accurate SDHCs for several systems,
one would need a vector of IMs that: (i) covers the most important aspects of the GM, and
(ii) is not specific to a particular structure. The three characteristics of far-fault GMs that
are most influential to structural response are: amplitude, frequency content, and duration
[Kramer, 1996]. Motivated by this idea, we selected GMs with four non-structure-specific
IMs: PGA, PGV, PGD, and D5−75.

Using these four IMs as IM, g3 as the IF (see Figure 6.1 and Equation 6.6), and Reza-
eian’s GM model, a single ensemble of n = 300 unscaled GMs was selected by the IS-based
method. The hazard consistency of these selected motions was examined in Figure 6.13,
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Figure 6.12: Comparison of SDHC estimates for several EDPs of the 20-story frame from
IS, with SFmax = 5 and γ = 0.5, against benchmark (Yamamoto’s GM model).

with respect to nine IMs: A(0.1s), A(1s), A(5s), A(10s), PGA, PGV, PGD, CAV, and
D5−75. As expected from the design of the IS-based procedure, the selected motions are
hazard-consistent with respect to all four IMs (highlighted in red) at exceedance rates down
to 10−6. In addition to the IMs that were chosen for the selection process, the selected mo-
tions are also hazard-consistent with respect to IMs such as CAV and spectral accelerations
at various vibration periods. Such hazard consistency suggests that the resulting SDHC
estimates will be unbiased for many systems.

To explore this expectation, RHAs were performed for both multistory frames, subjected
to the same set of n = 300 GMs mentioned in the preceding paragraph. The resulting SDHCs
of the 4-story and 20-story frames are presented in Figures 6.14 and 6.15, respectively. We
observe that the SDHCs for both frames are practically unbiased for all EDPs and demand
levels considered, even though only a single ensemble of GMs has been utilized. If one desires
to reduce the epistemic uncertainty in the SDHCs at low exceedance rates, one can increase
the number of GMs n and/or choose a different IF (Section 6.4). Repeating this evaluation
for Yamamoto’s GM model led to similar observations. Therefore, these results suggest that
accurate SDHC estimates of multiple systems can be obtained from a single ensemble of
GMs by applying the IS-based method with IM specified as PGA, PGV, PGD, and D5−75.
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Figure 6.13: Hazard consistency of the motions selected from a non-structure-specific IM,
with respect to: (a) A(0.1s); (b) A(1s); (c) A(5s); (d) A(10s); (e) PGA; (f) PGV; (g) PGD;
(h) CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and
95% CI of estimate from IS in chained black (Rezaeian’s GM model).

6.10 Comparison with the GCIM Method

It is of interest to compare the IS-based method against the GCIM approach to GM selection
[Bradley, 2010a]. The latter method can be viewed as the state-of-the-art procedure in
selecting GMs, in the sense that any IM can be employed to select GMs and potential biases
caused by improper GM selection can be estimated in a practical fashion. Despite this
holistic nature, estimating SDHCs with GCIM typically requires record scaling 3 and several
ensembles of GMs.

Table 6.1 compares the two methods for estimating SDHCs for a given structure at a
specified site. The two methods are similar in that a wide variety of IMs can be chosen to
select GMs, so long as GMPMs are available for such IMs. However, IS differs from GCIM in
several ways. First, it is not necessary in IS to choose a conditioning scalar IM, IM∗, and as
a result, unscaled GMs can be readily selected. Note that the choice of IM∗ can appreciably
affect the resulting SDHCs, even when a large number of IMs are utilized for selecting GMs
(see e.g., Fig 11 of [Bradley et al., 2015]). Second, if scaling is desired in IS, the degree of
record scaling can be controlled by two parameters: (i) the maximum scale factor, SFmax,

3By utilizing a lognormal weighting kernel, GCIM can be used to estimate SDHCs without record scaling
[Bradley et al., 2015].
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Figure 6.14: Comparison of SDHC estimates for several EDPs of the 4-story frame from a
single non-structure-specific set of GMs, against benchmark (Rezaeian’s GM model).

and (ii) the target fraction of scaled motions in the ensemble, 0 ≤ γ ≤ 1; by minimizing the
degree of scaling, fewer IMs may be utilized to select GMs without causing excessive bias in
the demands [Kwong et al., 2015c]. Third, by using a single target distribution of IM from
PSHA in IS (Equation 6.1), a single set of GMs can be developed for directly enforcing hazard
consistency and computing SDHCs of multiple systems. Finally, unlike GCIM, a practical
approach for estimating potential bias in demands caused by improper GM selection is
unavailable in IS; however, such estimates of bias from GCIM can be significantly different
from the actual bias, as demonstrated in Chapter 5.

The inputs for GCIM are chosen to facilitate comparison against the SDHC from the
IS-based method with a non-structure-specific vector of IMs. To control for the epistemic
uncertainty in a SDHC estimate arising from a finite number of GMs, NGM = 25 motions were
selected for each of the NIM∗ = 12 intensity levels of IM∗ leading to a total of 25×12 = 300
GMs for each GCIM-based SDHC estimate. Moreover, the four IMs in the IS-based method
– PGA, PGV, PGD, and D5−75 – were also employed to select motions in GCIM. Finally,
PGV was chosen as IM∗ for scaling GMs for the 4-story frame, since the fundamental period
of the frame, which is 0.95 sec, lies in the velocity-sensitive region of the response spectrum,
and D5−75 does not vary with record scaling.

Figure 6.16 examines hazard consistency of the GMs selected by GCIM, with respect to
the same nine IMs presented in Figure 6.13. By scaling motions to intensity levels of PGV,
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Figure 6.15: Comparison of SDHC estimates for several EDPs of the 20-story frame from the
same set of GMs utilized in Figures 6.13-6.14, against benchmark (Rezaeian’s GM model).

the selected motions are, as expected, hazard-consistent with respect to PGV at exceedance
rates down to about 10−6. Because PGA, PGD, and D5−75 were also considered in the
selection of GMs, the selected GMs are also hazard-consistent with respect to these three
IMs; specifically, the motions are hazard-consistent down to an exceedance rate of 10−7 for
PGA and PGD but only down to 10−4 for D5−75. The hazard consistency for D5−75 does
not extend to lower exceedance rates because the Kolmogorov-Smirnov test in GCIM does
not capture the tails of the GCIM distributions for D5−75 [Kwong et al., 2015a]. In contrast,
the selected motions from IS are hazard-consistent with respect to D5−75 at exceedance
rates down to 10−6 (Figure 6.13i) because IS aims to directly satisfy hazard consistency at
low exceedance rates through various choices of the IF. Whether or not such large values of
D5−75 are influential to the nonlinear response of the structure is unknown until the resulting
SDHC estimate is compared against the benchmark SDHC. As in IS, the selected motions
from GCIM are also hazard-consistent with respect to other IMs such as CAV and spectral
accelerations at various periods, even though only four IMs are employed in the selection
process. This suggests that the resulting GCIM-based SDHC estimates should be unbiased.

The SDHC estimates resulting from the motions selected by GCIM are presented in Fig-
ure 6.17. Despite extensive record scaling, the SDHCs are unbiased for all displacements and
drifts. In fact, the epistemic uncertainty of the SDHC estimates is even smaller than that
from IS (Figure 6.14). However, the SDHC estimates from GCIM could also be significantly
biased for some EDPs. For instance, Figure 6.17c demonstrates that the GCIM-based es-
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Table 6.1: Comparison of using GCIM and IS (without scaling GMs) to compute SDHCs of
a given structure at the specified site.

Attribute GCIM IS

Need to choose
Yes No

conditioning scalar IM?
Can all selected Possibly (see

Yes
GMs be unscaled? [Bradley et al., 2015])
Limits on scaling

Not typically used
Controlled by

of GMs parameters SFmax & γ

Type of IMs considered

Spectral accelerations, Spectral accelerations,
peak ground measures, peak ground measures,
spectrum intensities, spectrum intensities,

cumulative effects cumulative effects
Number of IMs used to Many (e.g.,

Few (e.g., 4-6)
select GMs more than 14)

Total number of PSHA- NIM∗ deaggregations 1 target distribution for
based calculations for and NIM∗ IM (Eq 6.1) and 1 choice

selecting GMs GCIM distributions of Importance Function
Total number of NIM∗ sets of 1 ensemble of

GMs used NGM GMs n = NIM∗ ×NGM GMs
How hazard consistency Kolmogorov- Direct comparison

is enforced Smirnov tests of hazard curves
Is sub-procedure available for

Yes No
checking bias in demands?
Can 1 set of motions be

No Yesused to compute SDHCs
for several systems?

timate significantly underestimates the roof acceleration hazard curve at exceedance rates
less than 10−3. In fact, such underestimation is observed for accelerations at all floors of
the building. Furthermore, the GCIM-based estimate of floor acceleration hazard curves
remained biased even when the number of IMs employed to select motions was increased
from four to 24 (see Chapter 5).

The biases in floor accelerations are caused indirectly by record scaling and directly
by hazard inconsistencies of the selected GMs with respect to IMs that are influential to
floor accelerations. When record scaling is avoided altogether, hazard inconsistencies of the
selected GMs tend to be minimized and hence, the resulting SDHCs tend to be unbiased;
for example, the IS-based method with unscaled GMs leads to unbiased estimates of roof
acceleration hazard curves for the 4-story frame (see Figures 6.14c, 6.7c, and 6.4c). In
contrast, when GMs are scaled in IS, an underestimation in floor accelerations that is similar
to that from GCIM is also observed (Figure 6.9c). Because the scaled motions from both
IS and GCIM are hazard-consistent with respect to many IMs and exceedance rates (see
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Figure 6.16: Hazard consistency of the motions selected and scaled to PGV from GCIM
with the same four non-structure-specific IMs employed in IS, with respect to: (a) A(0.1s);
(b) A(1s); (c) A(5s); (d) A(10s); (e) PGA; (f) PGV; (g) PGD; (h) CAV; and (i) D5−75.
Benchmark in solid green, estimate from GCIM in dashed black, and 95% CI of estimate
from GCIM in chained black (Rezaeian’s GM model).

Figures 6.8 and 6.16), these biases imply that the scaled motions in each method are hazard-
inconsistent with respect to IMs that are influential to floor accelerations; put differently,
the IMs for which the scaled motions are hazard-consistent are insufficient for estimating
floor accelerations.

Besides offering the ability to directly enforce hazard consistency and readily select GMs
without record scaling, the IS-based method also offers the ability to select a single set
of GMs, which differs from the use of NIM∗ sets in GCIM for a single SDHC estimate.
Although it is possible to utilize a relatively few number of GM sets (e.g., ≥ 3) in GCIM
to estimate SDHCs [Bradley, 2013b], the results from such an approximation depend on
how EDP | IM is parameterized and how the integral in the PSDA equation is evaluated
[Bradley et al., 2015]. With multiple ensembles of GMs in GCIM, it is necessary to repeat
the selection process multiple times. Furthermore, each selection involves: (i) performing
deaggregation for IM∗, (ii) determining the target GCIM distributions for IM, and (iii)
randomly sampling values of IM from the GCIM distributions. In contrast, these three
steps are done only once in IS: (i) determine the target distribution for IM from PSHA
(Equation 6.1), (ii) choose an IF (Section 6.4), and (iii) randomly sample values of IM from
the IF. As mentioned previously, a single set of GMs facilitates the use of high-performance
computing resources that are becoming increasingly available for performing nonlinear RHAs
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Figure 6.17: Comparison of SDHC estimates for several EDPs of the 4-story frame, from
GCIM with the same four non-structure-specific IMs employed in IS, against benchmark
(Rezaeian’s GM model).

in OpenSEES [Ventura et al., 2015, McKenna and Fenves, 2008].

6.11 Conclusions

The IS based GM selection procedure developed earlier for estimating SDHCs of structures
at a specified site [Kwong et al., 2015c] enables us to take advantage of unscaled yet intense
GMs for estimating SDHCs, through various choices of the IF. Moreover, it enables us to
directly enforce hazard consistency of the selected motions with respect to a given set of IMs
and to estimate SDHCs with a single ensemble of GMs. In this chapter, we evaluated the
IS-based method in its ability to accurately estimate SDHCs of multistory building frames,
leading to the following conclusions:

1. The method simplifies the selection of GMs for estimating SDHCs, by reducing the
number of: (i) sets of GMs for RHAs, (ii) IMs chosen to select GMs, and (iii) target
distributions of IM to be computed from PSHA.

2. When implementing the method without scaling GMs:

a) The resulting SDHCs are unbiased for all EDPs, systems, and GM simulation
models considered.
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b) The epistemic uncertainty of the resulting SDHCs varies, depending on the choice
of the IF.

3. When implementing the method with scaled GMs (up to SFmax = 5):

a) The SDHCs remain unbiased for all cases except for the peak floor accelerations
of the 4-story frame in Rezaeian’s GM model.

b) The vector-valued IM consisting of A(T4), A(T1), A(3T1), DSI, CAV, and D5−75 is
insufficient for estimating large floor accelerations of the 4-story frame but appears
to be sufficient for estimating the nonlinear response of the 20-story frame.

c) The scaled GMs tend to be hazard-inconsistent with respect to more IMs than
when scaling is avoided.

4. When implementing the method with a non-structure-specific vector of IMs, accurate
SDHC estimates of multiple systems can be obtained from a single ensemble of GMs.

5. The potential bias and epistemic uncertainty of the hazard curve estimates depend
on the choice of the IF and hence, the IF must be carefully chosen, following the
guidelines presented in Section 6.4. In essence, the IF should be chosen such that
at low exceedance rates, the epistemic uncertainty of the resulting hazard curves is
minimized for all IMs that are deemed influential to all EDPs of interest.

6. Unlike the GCIM method of selecting GMs, which can be considered as the state-of-
the-art in GM selection, the IS-based method:

a) avoids the need to choose a conditioning scalar IM, facilitating the selection of
unscaled GMs;

b) directly enforces hazard consistency of GMs at low exceedance rates, through
various choices of the IF;

c) utilizes fewer IMs to select GMs (e.g., 4-6);

d) reduces the number of ensembles of GMs required for a single SDHC estimate from
NIM∗ ensembles down to one (where NIM∗ is chosen to satisfactorily approximate
the integration in PSDA); and

e) offers the ability to accurately estimate SDHCs of multiple structures with a single
ensemble of GMs.

7. With the same number of IMs and GMs in both GCIM and IS, the IS-based method
without scaling leads to less bias but larger epistemic uncertainty in the SDHC esti-
mates.

The preceding conclusions are based on SDHCs for structures at an idealized site. For a re-
alistic site with several earthquake sources and aleatory variability in source-to-site distance,
the target probability distribution of IM from PSHA, f from Equation 6.1, and the lack
of recorded GMs may collectively render it difficult to obtain a database-driven IF, g, that
concentrates on intense levels of the IMs while simultaneously avoiding record scaling.
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Chapter 7

Conclusions

In this report, the issue of selecting and scaling ground motions for estimating seismic demand
hazard curves (SDHCs) of structures is investigated. The key contributions are summarized
as follows:

1. An approach to rigorously quantify potential biases in SDHC estimates from ground-
motion selection and modification (GMSM) procedures is developed, leading to the
important notion of a benchmark SDHC ;

2. Based on the concept of Importance Sampling, a novel ground motion selection pro-
cedure is developed that allows: (i) hazard consistency to be directly enforced for a
user-specified collection of IMs, and (ii) SDHCs of a structure to be estimated from
a single ensemble of ground motions, with the option of avoiding record scaling alto-
gether; and

3. Contemporary GMSM procedures are evaluated for a variety of structures and response
quantities in their ability to accurately estimate SDHCs at a given site.

This investigation has led to the following major conclusions:

1. Biases in SDHC estimates are caused directly by hazard inconsistencies of the specific
selection of ground motions with respect to intensity measures (IMs) that are influ-
ential to the response and indirectly by GMSM procedures; such procedures are only
a means for enforcing hazard consistency of a particular selection of ground motions,
with respect to a user-specified collection of IMs;

2. As long as ground motions are selected to be hazard-consistent with respect to an IM
that is sufficient, the resulting estimates of the SDHC are unbiased, irrespective of the
level of record scaling;

3. Given that a particular selection of ground motions is hazard-consistent with respect to
a vector of IMs, any bias observed in the resulting estimate of the SDHC implies that
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the vector of IMs is insufficient for that particular response quantity. The concept of a
benchmark, developed in Chapters 2-3, enables such biases to be directly determined
and hence, insufficient IMs to be identified; and

4. Based on the evaluation of three contemporary GMSM procedures – (i) “exact” Con-
ditional Spectrum (CSexact), (ii) Generalized Conditional Intensity Measure (GCIM),
and (iii) Importance Sampling (IS) – the following can be concluded:

a) The SDHCs from CS-exact are unbiased for many systems and response quan-
tities, but in some cases, the annual rate of collapse is overestimated and floor
accelerations are underestimated. The epistemic uncertainty in the SDHCs is
relatively small;

b) The SDHCs from GCIM are unbiased for many systems and response quanti-
ties, but in few cases, the floor accelerations are underestimated. The epistemic
uncertainty in the SDHCs is relatively small; and

c) The SDHCs from IS are unbiased for all systems and response quantities consid-
ered when record scaling is avoided altogether; however, the epistemic uncertainty
in the SDHCs depends on the Importance Function chosen to select ground mo-
tions. When ground motions are scaled in IS, both the SDHC bias and epistemic
uncertainty depend on the IMs and the Importance Function chosen to select
ground motions.

The work in this report is limited in that:

1. Only two multistory frames were studied.

2. Although representative of the Bay Area in Northern California, the site considered is
idealized.

3. Only a single horizontal component of ground motion was investigated herein.

4. Near-fault effects of ground motions were not considered.

Future research should consider more structural systems and sites to confirm the generality
of the conclusions presented in this report.
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Appendix A

Derivations for the Proposed
Importance Sampling Procedure

A.1 Derivation for Equation 4.7a

Let a randomly generated vector of IMs from the Importance Function (IF), gX(x), be
denoted by X and let a random sample of n vector-valued IMs be denoted by {X1, . . . ,Xn}.
Let a single element of the vector Xi be denoted by Xi and the rest of its elements be denoted
by Xc

i ; that is, Xi = {Xi,X
c
i}. The resulting estimate of the hazard curve for an IM 1 is

given by Equation 4.5a, repeated here for convenience:

λ̂IM(x) =
ν0

n

n∑
i=1

[I(Xi > x) · w(Xi)] (A.1)

where xi is capitalized and wi is replaced by w(Xi) to emphasize that the hazard curve
estimate is random because the IMs generated from the IF are random.

Taking the expectation of λ̂IM(x) in Equation A.1 with respect to gX(x) gives

EX

[
λ̂IM(x)

]
= ν0 · EX [I(X1 > x) · w(X1)]

= ν0

∫
s

[I(s > x) · w(s)] g(s) ds

= ν0

∫
s

∫
sc

[I(s > x) f(s)] dsc ds

= ν0

∫
s

I(s > x)

(∫
sc
f(s) dsc

)
ds

= ν0

∞∫
x

f(s) ds

= λIM(x) (A.2)

1Only IMs included in IM are considered in this section.
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where each transition is obtained from:

1. Each ith vector, Xi, is independent and identically distributed, with the joint distribu-
tion as gX(x).

2. Rule of the lazy statistician.

3. Definition of Importance Sampling weight and rewriting domain of integration.

4. Indicator function does not depend on sc.

5. Definition of the indicator function and definition of the marginal distribution, fX(s),
relative to the joint distribution, fX(s).

6. Definition of the complementary cumulative distribution function (CCDF) and appli-
cation of Equation 4.2.

A.2 Derivation for Equation 4.7b

Let a randomly generated vector of IMs from the Importance Function (IF), gX(x), be de-
noted by X and let a random sample of n vector-valued IMs be denoted by {X1, . . . ,Xn}.
Each vector-valued IM corresponds to a ground motion time series and hence, a random
sample of vector-valued IMs corresponds to an ensemble of n ground motions. Let an arbi-
trary EDP of the ith ground motion be denoted by Zi. The resulting estimate of the hazard
curve for an EDP is given by Equation 4.5b, repeated here for convenience:

λ̂EDP (z) =
ν0

n

n∑
i=1

[I(Zi > z) · w(Xi)] (A.3)

where zi is capitalized and wi is replaced by w(Xi) to emphasize that the hazard curve
estimate is random because the IMs generated from the IF are random. By introducing the
IF, gX(x), the joint probability distribution of Z and X, denoted by fZ,X(z,x) = fZ|X(z |
x) · fX(x) (see Figure 4.2), becomes gZ,X(z,x) = fZ|X(z | x) · gX(x).

152



Taking the expectation of λ̂Z(z) in Equation A.3 with respect to gZ,X(z,x) gives

EZ,X
[
λ̂EDP (z)

]
= ν0 · EZ,X [I(Z1 > z) · w(X1)]

= ν0

∫
t

∫
s

[I(t > z) · w(s)] gZ,X(t, s) ds dt

= ν0

∫
t

I(t > z)

∫
s

w(s)
[
fZ|X(t | s) g(s)

]
ds dt

= ν0

∞∫
z

(∫
s

f(s) fZ|X(t | s) ds

)
dt

= ν0

∞∫
z

fZ(t) dt

= λEDP (z) (A.4)

where each transition is obtained from:

1. Each ith vector (X, Z)i is independent and identically distributed, with the joint dis-
tribution as gZ,X(t, s) = fZ|X(t | s) · g(s).

2. Rule of the lazy statistician.

3. Indicator function does not depend on s and definition of joint distribution gZ,X(t, s).

4. Definitions of the indicator function and of the Importance Sampling weight.

5. Marginal distribution fZ(t) from joint distribution fZ,X(t, s) = f(s) · fZ|X(t | s) (see
Figure 4.2).

6. Definition of CCDF and use of Equation 4.2.

The expected values of the hazard curve estimates for IMs that are excluded from those
chosen to select ground motions (i.e., IM /∈ IM) may be derived in a fashion similar to that
presented in this section.

A.3 Derivation for Equation 4.8

The variance of λ̂IM(x) in Equation A.1, with respect to the joint distribution of X, is

VX

[
λ̂IM(x)

]
=

ν2
0

n
· VX [I(X1 > x) · w(X1)]

=
ν2

0

n

{
EX

[
[I(X1 > x) · w(X1)]2

]
− (EX [I(X1 > x) · w(X1)])2}

=
1

n

{
ν2

0 · EX

[
[I(X1 > x) · w(X1)]2

]
− λ2

IM(x)
}

(A.5)
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where each transition is obtained from:

1. Each Xi is independent and identically distributed with the joint distribution as g(x).

2. Computational formula for variance.

3. Recognizing that ν0 · EX [I(X1 > x) · w(X1)] = λIM(x) (see Equation A.2 in Sec-
tion A.1).

The term EX

[
[I(X1 > x) · w(X1)]2

]
in Equation A.5 may be rewritten as follows:

EX

[
[I(X1 > x) · w(X1)]2

]
=

∫
s

[I(s > x) · w(s)]2 g(s) ds

=

∫
s

[
I(s > x) · w2(s)

]
g(s) ds

=

∫
s:s>x

f 2(s)

g(s)
ds (A.6)

where each transition is obtained from:

1. Rule of the lazy statistician.

2. Square of the indicator function is the indicator function.

3. Definitions of the indicator function and of the Importance Sampling weight.

Substituting Equation A.6 into Equation A.5 gives

VX

[
λ̂IM(x)

]
=

1

n

ν2
0

∫
s:s>x

f 2(s)

g(s)
ds− λ2

IM(x)

 (A.7)

A.4 Derivation for Equation 4.9

The variance of λ̂EDP (z) in Equation A.3, with respect to the joint distribution of Z and X,
is

VZ,X

[
λ̂EDP (z)

]
=

ν2
0

n
· VZ,X [I(Z1 > z) · w(X1)]

=
ν2

0

n

{
EZ,X

[
[I(Z1 > z) · w(X1)]2

]
− (EZ,X [I(Z1 > z) · w(X1)])2}

=
1

n

{
ν2

0 · EZ,X
[
[I(Z1 > z) · w(X1)]2

]
− λ2

EDP (z)
}

(A.8)

where each transition is obtained from:
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1. Each ith vector (X, Z)i is independent and identically distributed, with the joint dis-
tribution as gZ,X(t, s) = fZ|X(t | s) · g(s).

2. Computational formula for variance.

3. Recognizing that ν0 · EZ,X [I(Z1 > z) · w(X1)] = λEDP (z) (see Equation A.4 in Sec-
tion A.2).

The term EZ,X
[
[I(Z1 > z) · w(X1)]2

]
in Equation A.8 may be rewritten as follows:

EZ,X
[
[I(Z1 > z) · w(X1)]2

]
=

∫
s

∫
t

[I(t > z) · w(s)]2 gZ,X(t, s) dt ds

=

∫
s

∫
t

[
I(t > z) · w2(s)

] [
fZ|X(t | s) g(s)

]
dt ds

=

∫
s

∫
t

[
I(t > z) · f

2(s)

g(s)

]
fZ|X(t | s) dt ds

=

∫
s

[∫
t

I(t > z) · fZ|X(t | s) dt

]
f 2(s)

g(s)
ds

=

∫
s

Pr(Z > z | X = s) · f
2(s)

g(s)
ds (A.9)

where each transition is obtained from:

1. Rule of the lazy statistician.

2. Square of the indicator function is the indicator function and definition of joint distri-
bution gZ,X(t, s).

3. Definition of the Importance Sampling weight.

4. The ratio f2(s)
g(s)

does not depend on t.

5. Definition of conditional CCDF of Z | X.

Substituting Equation A.9 into Equation A.8 gives

VZ,X

[
λ̂EDP (z)

]
=

1

n

{
ν2

0

∫
s

Pr(Z > z | X = s) · f
2(s)

g(s)
ds− λ2

EDP (z)

}
(A.10)

The variance of the hazard curve estimates for IMs that are excluded from those chosen to
select ground motions (i.e., IM /∈ IM) may be derived in a fashion similar to that presented
in this section.
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A.5 Derivation for Equation 4.15

Given an observed value of the vector-valued IM from the Importance Function, IMIF , and
a computed value of the vector-valued IM from the scaled ground motion time series, IMP ,
the optimal scale factor can be derived by first rewriting Equation 4.13 to express ∆ as a
quadratic function of the scale factor, SF . Substituting Equation 4.14 into Equation 4.13
and rearranging terms gives

∆ =

NIM∑
j=1

 ln
(
IMIF,j

IMU,j

)
− αj ln(SF )

σj

2

(A.11)

Setting the first derivative of ∆ with respect to SF to zero leads to the scale factor that
minimizes ∆:

∂∆

∂SF
=

NIM∑
j=1

2

 ln
(
IMIF,j

IMU,j

)
− αj ln(SF )

σj

( −αj
σj · SF

)
= 0 (A.12)

Assuming SF is never zero, Equation A.12 is equivalent to:

NIM∑
j=1

 ln
(
IMIF,j

IMU,j

)
− αj ln(SF )

σj

(αj
σj

)
= 0 (A.13)

Distributing the summation in Equation A.13 and rearranging terms gives

NIM∑
j=1

(
αj
σ2
j

)
ln

(
IMIF,j

IMU,j

)
= ln(SF )

[
NIM∑
i=j

(
αj
σj

)2
]

(A.14)

Finally, isolating SF in Equation A.14 leads to the desired optimal scale factor:

SFoptimal = exp


NIM∑
j=1

(
αj

σ2
j

)
ln
(
IMIF,j

IMU,j

)
NIM∑
j=1

(
αj

σj

)2

 (A.15)
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Appendix B

Documentation of Developing
Benchmark-Consistent Prediction
Models

This appendix documents the development of benchmark-consistent prediction models that
are needed to select ground motions within a universe of synthetic ground motions generated
from a stochastic model. For both stochastic models – Rezaeian’s and Yamamoto’s – a total
of 120 intensity measures (IMs) were considered. These IMs include 5%-damped spectral
accelerations at the same vibration periods utilized in the NGA West 2 project [Bozorgnia
et al., 2014] (i.e., a total of 111 periods ranging from 0.01 to 20 sec), peak ground acceleration
(PGA), peak ground velocity (PGV), peak ground displacement (PGD), cumulative absolute
velocity (CAV), acceleration spectrum intensity (ASI), spectrum intensity (SI), displacement
spectrum intensity (DSI), 5-95% significant duration (D5−95), and 5-75% significant duration
(D5−75).

B.1 Functional Forms

To facilitate the development of functional forms, the 120 IMs were partitioned into four cat-
egories: (i) spectral accelerations, (ii) peak ground parameters (PGA, PGV, and PGD), (iii)
spectrum intensity related parameters (ASI, SI, and DSI), and (iv) cumulative based mea-
sures (CAV, D5−95, and D5−75). For each category and each stochastic model, a polynomial-
based functional form (see Equation 3.13) was determined via the approach described in
Section 3.6. In Rezaeian’s model, the following functional forms were employed:

1. Spectral accelerations: linear

2. Peak ground parameters: linear

3. Spectrum intensity related parameters: linear

4. Cumulative based measures: cubic
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In Yamamoto’s model, the following functional forms were employed:

1. Spectral accelerations: purequadratic

2. Peak ground parameters: purequadratic

3. Spectrum intensity related parameters: purequadratic

4. Cumulative based measures: cubic

Figure 3.6 illustrated the linear and purequadratic functional forms; the cubic functional
form is illustrated in Figure B.1. The determination of σoptimal is discussed next.
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Figure B.1: Functional form for D5−75 under stochastic model from: (a) Rezaeian; (b)
Yamamoto.

B.2 Benchmark Consistency of

Ground-Motion-Prediction Models

Once the functional forms for all 120 IMs are finalized via exploratory data analysis, the
standard deviations, σ, of the ground-motion-prediction models (GMPMs) were further ad-
justed to achieve consistency with respect to the benchmark, as elaborated in Section 3.6.
In essence, the standard deviation is modeled as a nonparametric function of magnitude
and at each magnitude interval, the value of σ was adjusted so that the GMPM-based esti-
mate of the hazard curve agrees closely with the benchmark hazard curve (see Figure 3.7a).
Figures B.2-B.19 document such hazard-consistent GMPMs for IMs unrelated to spectral
accelerations.
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B.3 Correlations between IMs

The correlation between IMs (more precisely, between the residuals of the IMs) were discussed
in Section 3.6. As mentioned therein, the correlations were occasionally found to depend on
the earthquake magnitude. For generality, the correlation between a pair of IMs is modeled
as a function of the magnitude by computing a correlation for each magnitude interval
shown schematically by the dotted lines in Figure B.1. The correlations between spectral
accelerations at various vibration periods were shown in Figure 3.8; correlations between
IMs that are unrelated to spectral accelerations were also computed.

B.4 Figures for Confirming Benchmark Consistency
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Figure B.2: Benchmark-consistency of GMPM for PGA under Rezaeian’s stochastic model.

159



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Rezaeian

PGV [g−sec]

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

 

 

Benchmark IMHC

Approx. 95% CIs

IMHC from           
benchmark−consistent
GMPM                

Figure B.3: Benchmark-consistency of GMPM for PGV under Rezaeian’s stochastic model.
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Figure B.4: Benchmark-consistency of GMPM for PGD under Rezaeian’s stochastic model.
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Figure B.5: Benchmark-consistency of GMPM for ASI under Rezaeian’s stochastic model.
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Figure B.6: Benchmark-consistency of GMPM for SI under Rezaeian’s stochastic model.
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Figure B.7: Benchmark-consistency of GMPM for DSI under Rezaeian’s stochastic model.
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Figure B.8: Benchmark-consistency of GMPM for CAV under Rezaeian’s stochastic model.
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Figure B.9: Benchmark-consistency of GMPM for D5−95 under Rezaeian’s stochastic model.
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Figure B.10: Benchmark-consistency of GMPM for D5−75 under Rezaeian’s stochastic model.
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Figure B.11: Benchmark-consistency of GMPM for PGA under Yamamoto’s stochastic
model.
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Figure B.12: Benchmark-consistency of GMPM for PGV under Yamamoto’s stochastic
model.
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Figure B.13: Benchmark-consistency of GMPM for PGD under Yamamoto’s stochastic
model.
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Figure B.14: Benchmark-consistency of GMPM for ASI under Yamamoto’s stochastic model.
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Figure B.15: Benchmark-consistency of GMPM for SI under Yamamoto’s stochastic model.
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Figure B.16: Benchmark-consistency of GMPM for DSI under Yamamoto’s stochastic model.
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Figure B.17: Benchmark-consistency of GMPM for CAV under Yamamoto’s stochastic
model.
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Figure B.18: Benchmark-consistency of GMPM for D5−95 under Yamamoto’s stochastic
model.
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Figure B.19: Benchmark-consistency of GMPM for D5−75 under Yamamoto’s stochastic
model.
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Appendix C

Additional Results for Chapter 5

In Chapter 5, results for the 20-story building frame were omitted for the GCIM method
because they are similar to those presented for the CS-exact method. For completeness, these
results for GCIM are provided in this appendix for both stochastic models: (i) Rezaeian’s
and (ii) Yamamoto’s.

Figures C.1 and C.2 present the SDHCs of the 20-story frame that were determined by
ground motions (GMs) selected from GCIM, for Rezaeian’s and Yamamoto’s GM models,
respectiely. The four EDPs presented are the same as those discussed in Section 5.6: (i)
peak (over time) roof displacement, PFD20, (ii) peak first-story drift ratio, PSDR1, (iii)
peak roof acceleration, PFA20, and (iv) maximum (over all floors) floor acceleration, MFA,
which were chosen to illustrate responses that are often of interest in loss assessments in
performance-based earthquake engineering. Practically speaking, the SDHC estimates from
GCIM are unbiased for all EDPs and exceedance rates of the 20-story frame considered.
This is to be expected since: (i) the SDHC estimates for the same frame from CS-exact were
also essentially unbiased (Figures 5.5 and 5.6), and (ii) GCIM includes more features of the
GM in the selection process than CS-exact.
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Figure C.1: Comparison of SDHC estimates for several EDPs of the 20-story frame from
GCIM against benchmark (Rezaeian’s GM model).
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Figure C.2: Comparison of SDHC estimates for several EDPs of the 20-story frame from
GCIM against benchmark (Yamamoto’s GM model).
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Appendix D

Additional Results for Chapter 6

In Chapter 6, the Importance Sampling (IS) approach for selecting ground motions (GMs)
was evaluated and results were presented almost exclusively for GMs generated by Rezaeian’s
stochastic model. In this appendix, the salient results for Yamamoto’s stochastic model are
provided for completeness.

D.1 Importance Sampling with g1 as the Importance

Function

The subsequent figures complement those presented in Section 6.7 where unscaled GMs were
selected with g1 as the Importance Function (IF). For both frames, the vector of intensity
measures (IMs) utilized to select GMs, denoted by IM, consists of: A(T1), A(2T1), A(T4),
and D5−75.

Figure D.1 examines hazard consistency of the GMs selected for the 4-story frame under
Yamamoto’s model. As expected from the design of the IS-based method, the selected GMs
are hazard-consistent with respect to the four IMs that were chosen to select GMs, which
are highlighted in red. More importantly, the selected GMs are also hazard-consistent with
respect to other IMs that were excluded from the selection process (e.g., A(4T1), CAV,
etc.); this is consistent with the observations obtained from studying Rezaeian’s model.
Consequently, the resulting SDHCs are expected to be unbiased.

This expectation is confirmed in Figure D.2, where the SDHCs of the 4-story frame,
resulting from the GMs examined in Figure D.1, are presented. Specficially, SDHCs are
shown for four EDPs: (i) peak (over time) roof displacement, PFD4, (ii) peak first story
drift ratio, PSDR1, (iii) peak roof acceleration, PFA4, and (iv) maximum (over height)
story drift ratio (MSDR). As in the case of Rezaeian’s model, the SDHCs resulting from the
unscaled GMs selected by g1 are unbiased for all of these EDPs because the 95% bootstrapped
confidence intervals (CIs) cover the respective benchmarks, over a wide range of exceedance
rates.
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The preceding analysis with g1 was also repeated for the 20-story frame. After selecting
GMs to be hazard-consistent with respect to IM as in Figure D.1, RHAs of the 20-story
frame were performed. Applying Equation 4.5b to the computed values of EDPs leads to
the SDHCs depicted in Figure D.3 for four EDPs: (i) peak roof displacement, PFD20, (ii)
peak first story drift ratio, PSDR1, (iii) peak roof acceleration, PFA20, and (iv) MSDR.
As in the case of Rezaeian’s model, Figure D.3 demonstrates that the SDHCs resulting from
the unscaled GMs selected by g1 are unbiased for all EDPs considered.
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Figure D.1: Hazard consistency of the motions selected with g1 for the 4-story frame, with
respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA; (f) PGV; (g) PGD; (h)
CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and 95%
CI of estimate from IS in chained black (Yamamoto’s GM model).

D.2 Importance Sampling with g3 as the Importance

Function

The subsequent figures complement those presented in Section 6.7 where unscaled GMs were
selected with g3 as the IF, and the vector of IMs employed to select GMs for each frame
consists of: A(T1), A(2T1), A(T4), and D5−75. As discussed in Sections 6.4 and 6.7, the IF
g3 is developed from Equation 6.6 by choosing η and g2 such that the epistemic uncertainty
of the hazard curves for A(T1) and A(2T1) are minimized at low annual rates of exceedance
(see Figure 6.2). This new IF is studied to illustrate the effects of the IF on the epistemic
uncertainty of all hazard curve estimates.

180



0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

PFD
4
 [in]

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

 

 

Benchmark

IS

95% CI

(a)

0 2 4 6 8

10
−4

10
−3

10
−2

10
−1

PSDR
1
 [%]

(b)

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

PFA
4
 [g]

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

(c)

0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

MSDR [%]

(d)

Figure D.2: Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with g1 as the IF, against benchmark (Yamamoto’s GM model).

Figure D.4 summarizes the GMs selected for the 4-story frame from g3 as the IF. Because
the IF g3 places more probability density at large values of A(T1) and A(2T1) than the
IF g1 (Figure 6.1), the epistemic uncertainty of the hazard curve estimates for these two
IMs is reduced at exceedance rates less than about 10−4 (compare Figure D.4b-c against
Figure D.1b-c). Furthermore, the epistemic uncertainty of the hazard curve estimates for
other IMs (e.g., PGA, CAV, etc.) is also reduced at low exceedance rates. When the EDPs
of the 4-story frame are highly sensitive to large values of A(T1) and A(2T1), we expect the
epistemic uncertainty of the resulting SDHC estimates to also be reduced.

Figure D.5 presents the SDHCs of the 4-story frame, resulting from GMs selected by
g3. Comparing this figure against Figure D.2, we observe that the SDHCs in both cases
are unbiased but the epistemic uncertainty in the estimates differ. At low annual rates of
exceedance, the epistemic uncertainty in the SDHCs from g3 is smaller than that for SDHCs
determined from g1.

Ground motions were also selected by g3 for the 20-story frame. After confirming hazard
consistency of the selected GMs, as illustrated by Figure D.4 for the 4-story frame, RHAs of
the frame were performed and the computed values of EDPs were in turn used to estimate the
SDHCs. These SDHCs are shown in Figure D.6. As in the case of the 4-story frame for both
stochastic models, the choice of g3 changes the epistemic uncertainty but not the accuracy
of the resulting SDHCs. Comparing Figure D.6 for g3 against Figure D.3 for g1, we observe
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Figure D.3: Comparison of SDHC estimates for several EDPs of the 20-story frame from IS,
with g1 as the IF, against benchmark (Yamamoto’s GM model).

that the SDHC estimates are unbiased in both cases but the epistemic uncertainty differs;
for displacements and drifts, g3 reduces the epistemic uncertainty whereas for accelerations,
g3 slightly increases the epistemic uncertainty. This indicates that large levels of A(T1) and
A(2T1) do not have a dominant influence on large accelerations of this building.

D.3 Importance Sampling with a

Non-Structure-Specific Vector of Intensity

Measures

The subsequent figures complement those presented in Section 6.9 where unscaled GMs were
selected with a non-structure-specific vector of IMs and g3 as the IF. Motivated by the desire
to estimate SDHCs for multiple structures from a single ensemble of GMs, the vector of IMs
for selecting GMs was chosen to consist of non-structure-specific IMs: PGA, PGV, PGD,
and D5−75.

Figure D.7 examines hazard consistency of the GMs selected from the non-structure-
specific vector of IMs. As expected from the design of the IS-based procedure, the selected
motions are hazard-consistent with respect to the four IMs, which are highlighted in red.
Because these IMs are strongly correlated with many other IMs and because GMs have not
been scaled, the selected GMs are also hazard-consistent with respect to other IMs (e.g.,
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Figure D.4: Hazard consistency of the motions selected with g3 for the 4-story frame, with
respect to: (a) A(T4); (b) A(T1); (c) A(2T1); (d) A(4T1); (e) PGA; (f) PGV; (g) PGD; (h)
CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and 95%
CI of estimate from IS in chained black (Yamamoto’s GM model).

CAV and spectral accelerations at various periods of vibration). Such hazard consistency
suggests that the single ensemble of GMs may lead to accurate SDHC estimates for several
systems.

This expectation is confirmed in Figures D.8-D.9, where the SDHCs that were estimated
from the same ensemble of GMs, are shown for the 4-story and 20-story frames, respectively.
Even though the same set of GMs was utilized for each frame, these figures demonstrate that
the resulting SDHCs are unbiased for all EDPs and exceedance rates of interest. However,
the epistemic uncertainty of the displacement and drift hazard curves for the 4-story frame is
smaller than those for the 20-story frame. This suggests that if small epistemic uncertainty
in the SDHCs is desired for many systems when utilizing a single ensemble of GMs, then
the total number of GMs in the ensemble should be more than what has been documented
in this study (which is n = 300 GMs).

183



0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

PFD
4
 [in]

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

 

 

Benchmark

IS

95% CI

(a)

0 2 4 6 8

10
−4

10
−3

10
−2

10
−1

PSDR
1
 [%]

(b)

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

PFA
4
 [g]

A
n
n
u
al

 R
at

e 
o
f 

E
x
ce

ed
an

ce
, 
λ

(c)

0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

MSDR [%]

(d)

Figure D.5: Comparison of SDHC estimates for several EDPs of the 4-story frame from IS,
with g3 as the IF, against benchmark (Yamamoto’s GM model).
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Figure D.6: Comparison of SDHC estimates for several EDPs of the 20-story frame from IS,
with g3 as the IF, against benchmark (Yamamoto’s GM model).
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Figure D.7: Hazard consistency of the motions selected from a non-structure-specific IM,
with respect to: (a) A(0.1s); (b) A(1s); (c) A(5s); (d) A(10s); (e) PGA; (f) PGV; (g) PGD;
(h) CAV; and (i) D5−75. Benchmark in solid green, estimate from IS in dashed black, and
95% CI of estimate from IS in chained black (Yamamoto’s GM model).
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Figure D.8: Comparison of SDHC estimates for several EDPs of the 4-story frame from a
single non-structure-specific set of GMs, against benchmark (Yamamoto’s GM model).
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Figure D.9: Comparison of SDHC estimates for several EDPs of the 20-story frame from the
same set of GMs utilized in Figures D.7-D.8, against benchmark (Yamamoto’s GM model).
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