Semi-Automated Procedure for Windowing Time Series and Computing Fourier Amplitude Spectra for the NGA-West2 Database

Tadahiro Kishida
Olga-Joan Ktenidou
Pacific Earthquake Engineering Research Center

Robert B. Darragh
Walter J. Silva
Pacific Engineering & Analysis
El Cerrito, California

PEER Report No. 2016/02
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley

May 2016
Disclaimer

The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the study sponsor(s) or the Pacific Earthquake Engineering Research Center.
ABSTRACT

This document introduces and describes the data processing methods developed for computing Fourier amplitude spectra (FAS) in the NGA-West2 project. The products of this study can be used to estimate high-frequency attenuation, kappa (κ), to estimate site amplification through empirical spectral ratios, as well as to aid in the development of ground-motion models (GMMs) based on FAS. To accommodate different potential user objectives, we selected five time windows in the acceleration time series (noise, P-wave, S-wave, coda, and the entire record) for which we compute the FAS. The processing starts with the time-aligned, instrument-corrected, tapered, and filtered acceleration time series. The proposed window selection method is developed through trial and error, and tested against a range of ground motions with different magnitudes and hypocentral distances from different regions. This document summarizes the steps for window selection and FAS computation, and describes the output data format. This report will be accompanied by the final products of the PEER NGA-West2 Project, namely, the published report describing the database [Ancheta et al. 2013] and the flatfile, which can be downloaded in excel format at: http://peer.berkeley.edu/ngawest2/databases/.
ACKNOWLEDGMENTS

The authors are grateful to Norm Abrahamson and Dave Boore for providing comments and sharing their experiences. This project would not have succeeded without the contribution of Sahar Derakhshan and Sifat Muin, who performed the bulk of the data processing. We acknowledge Yousef Bozorgnia for his leadership and guidance, and Claire Johnson for editing the report. This project was supported primarily by the Pacific Earthquake Engineering Research Center (PEER). Olga-Joan Ktenidou was also partially funded by PG&E, the French Sigma Project, and the GFZ German Research Centre for Geosciences. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the above organizations.
CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... v

TABLE OF CONTENTS ... vii

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

1 METHODOLOGY FOR DATA PROCESSING ..1
 1.1 Introduction..1
 1.2 Time Windows Required for Data Processing ..2
 1.3 Overview of the Data Processing Method ...2
 1.4 Entire Record: Time Window ..4
 1.5 Pre-Event Noise: Time Window ...4
 1.6 P-Wave: Time Window ..7
 1.7 S-Wave: Time Window ..10
 1.8 Coda: Time Window ..14
 1.9 Flagged Records ...18
 1.10 D_c (Mean) Removal, Tapers, Zero Padding, and FAS Computation18
 1.10.1 D_c (Mean) Removal and Tapers ..18
 1.10.2 Zero Padding and Fourier Spectra ..19
 1.11 Frequency Range Limitations and Considerations ..21
 1.12 Examination of the Proposed Method with Different Hypocentral Distances ..22
 1.13 Output File ..33
 1.14 Summary ..34

REFERENCES ...35
LIST OF TABLES

Table 1.1	Source duration versus moment magnitude based on the theoretical rupture duration. ..13
Table 1.2	Source duration versus moment magnitude after adjustments based on the NGA-West2 and Greek data. ...13
Table 1.3	Recommended source duration versus moment magnitude for this study13
Table 1.4	Types of flagged records during data processing. ...18
Table 1.5	Cosine taper length applied to windowed accelerations. ..19
Table 1.6	Common duration for FAS calculation (covers 91% of the total number of records). ...21
Table 1.7	Records used for 21305648 California earthquake, 09/06/2003 (M4.0)31
Table 1.8	Records used for Tottori, Japan, earthquake, 10/16/2000 (M6.6)31
Table 1.9	Records used for El Mayor-Cucapah, Mexico, earthquake, 4/4/2010 (M7.2) ...32
Table 1.10	Records used for Denali, Alaska, earthquake, 11/03/2002 (M7.9).32
LIST OF FIGURES

Figure 1.1 The five time windows extracted from a sample time series (Tottori earthquake, HYG007). The vertical (UD) component is the bottom trace. ...2

Figure 1.2 Example of a late S trigger: to be rejected by the user: (a) unprocessed; and (b) processed recording of Lytle Creek earthquake, Station 24278, 021 component. ..4

Figure 1.3 Example of visual inspection of P-wave arrival time by (a) the entire, and (b) the magnified records. The vertical component is the bottom trace.6

Figure 1.4 Example of a short noise window with its flag (Niigata earthquake, CHBH14). ...7

Figure 1.5 Comparison of the selected S-wave arrival (red) with the theoretical S arrival (yellow) computed from the selected P arrival (blue): (a) the selected S arrival matches the theoretical S-arrival reasonably well; and (b) the selected S arrival occurs significantly earlier than the theoretical, indicating a late P-triggered record...9

Figure 1.6 Variation in S-wave duration with magnitude based on visual inspection of Greek events (records and durations taken from Ktenidou et al. [2013].12

Figure 1.7 Comparison of various schemes to predict $T_{d\text{-rup}}$ with the observed durations from data. ..13

Figure 1.8 Coda window starts (a) near, (b) after, and (c) earlier than the theoretical [Aki 1969] coda arrival time..16

Figure 1.9 Example of the automatic computation of the coda window duration and flag. ...17

Figure 1.10 User-defined flag if the S- or coda window is problematic, e.g. contains an aftershock. ...17

Figure 1.11 Computed FAS for all time windows shown in the example record of Figure 1.1 (Tottori earthquake, station HYG007). ...21

Figure 1.12 The automatic choice of windows (after manual P and S selections) for a series of records of the 21305648 California earthquake at: (a) Haviland Hall, U. C. Berkeley, 10 km, (b) Angel Island, 20 km, (c) Mountain View; Fire Station 3, 50 km, (d) Mt. St. Helena, 100 km, and (e) Oroville Dam, Oroville, 200 km. ..24

Figure 1.13 The automatic choice of windows (after manual P and S selections) for a series of records of the Tottori, Japan, earthquake at (a) SMNH01, 6 km, (b) SMN015, 9 km, (c) OKY004, 20 km, (d) OKYH03, 50 km, and (e) HYG007, 100 km. ...26
Figure 1.14 The automatic choice of windows (after manual P and S selections) for a
series of records of the El Mayor-Cucapah, Mexico, earthquake at: (a)
Cerro Prieto Geothermal, 10 km, (b) El Centro Array #10, 20 km, (c)
Elmore’s Ranch 50 km, (d) North Shore Salton Sea 2, 100 km, (e)
Redlands - Garden & Mariposa, 200 km, and (f) Ground to Air Transmit
and Receive Compound, 490 km. ..28

Figure 1.15 The automatic choice of windows (after manual P and S selections) for a
series of records of the Denali, Alaska, earthquake at: (a) Carlo, 70 km,
(b) PS#10, 85 km, (c) R109 60 km, (d) PS#08, 115 km, (e) PS#07, 200
km, (f) 8039, 297 km. ..30

Figure 1.16 FAS example output file for an entire recording (Denali, Alaska,
earthquake at station 8039, UP). ..33

Figure 1.17 FAS example output file for a coda window (Denali, Alaska earthquake
at station 8039, UP). ...33
1 Methodology for Data Processing

1.1 INTRODUCTION

The Fourier Amplitude Spectrum (FAS) is used in a number of applications, including spectral analysis and inversions, the study of site effects and amplification, the measurement of high-frequency attenuation (kappa, or κ), and the development of predictive ground motion models (GMMs).

In the past, GMMs were most often developed directly from 5% damped pseudo-acceleration response spectra (PSa). Recently, more focus has been placed on GMMs that fit Fourier rather than response spectra. For instance, within the Next Generation Attenuation (NGA) project sponsored by the Pacific Earthquake Engineering Research Center (PEER), FAS models were developed to provide GMMs for PSa, (e.g., PEER. [2015]), based on the inverse random vibration theory. Often, GMMs developed for a certain host region need to be adjusted so that they can be applied to a target region. In such cases, one of the typical adjustments needed is to the κ parameter [Anderson and Hough 1984]. Typically, κ is measured on FAS using various approaches (as summarized in Ktenidou et al. [2014]). Ktenidou et al. [2016] recently studied κ for rock sites in the NGA-East database [Goulet et al. 2014].

Based on these experiences, PEER recognizes the importance of computing FAS for the NGA-West2 database, which has been used by researchers and practitioners worldwide following its publication [Ancheta et al. 2013]. The computation of FAS for the NGA-West2 database is unique because it includes more than 60,000 records that have been already processed with instrument corrections, filtering, and baseline corrections. Furthermore, different time windows may be of interest for different studies, so another challenge is that the computation of FAS should be performed for different time windows (e.g., P-wave, S-wave, and coda, etc.). This report describes the semi-automated procedure developed to compute FAS for large databases. It is calibrated so that the majority of visual checks and basic processing can be implemented by less experienced analysts. For example, this procedure only requires selecting the P- and S-wave onset; the flagging of events requires further inspection by an experienced analyst. This windowing procedure is explained in the following sections, followed by a description of the FAS computation.
1.2 TIME WINDOWS REQUIRED FOR DATA PROCESSING

Five different time windows were selected from the acceleration time series, as shown schematically in Figure 1.1. The first time window includes the entire record (blue box in the figure), which contains the pre-event noise recorded before the P-wave onset, along with the P, S, and coda waves. The second window contains only the pre-event noise (pink box), the third the P-waves (yellow box), the fourth the S-waves (green box), and the fifth contains the coda waves (gray box). All windows are selected during the processing stage to provide the time windows used in the FAS calculation. Not all time windows are available for all records—for example, due to late trigger and limitation of record length—but as late S-triggers have been rejected in the NGA-West2 dataset, the first (entire) and fourth (S-wave) windows are always available for any record herein. All windows are explained in more detail in the following sections, following an overview of the semi-automated processing procedure conducted by the analyst.

Figure 1.1 The five time windows extracted from a sample time series (Tottori earthquake, HYG007). The vertical (UD) component is the bottom trace.

1.3 OVERVIEW OF THE DATA PROCESSING METHOD

A brief overview of the data processing method is given in this section, while the details of the steps are explained in the following sections. The data processing method consists of the following four steps.

- **Step 1:** First, the analyst visually inspects the tapered and filtered acceleration time histories. If there is a problem (e.g., late trigger), then the wave forms are not accepted. Similar quality checks have been done in
the NGA-West1 [Chiou et al. 2008] and NGA-West2 projects [Ancheta et al. 2013]; therefore, we expect virtually all records to be accepted in this process. Since standard PEER processing [Chiou et al. 2008] tapers the acceleration time histories at the beginning of the record, late-triggered records are often difficult to determine. Therefore, recordings previously flagged as late P- or S-wave triggered recordings should be re-examined by an experienced analyst. If the analyst believes the S-wave onset to have taken place before the actual triggering of the instrument, then the recording is flagged for further review; for many applications, the entire S-wave window is required (e.g., for the estimation of α). This step also updates column JL “flag for late S trigger” in the flatfile [Ancheta et al. 2013].

- **Step 2:** Next, the analyst must select the P-wave onset. The analyst inspects the entire time series zooms in on the arrival of the P-wave with an enlarged window to facilitate the selection of the first arrival. The analyst picks the P-arrival time with a fiducial mark. The processing code will then automatically determine the noise window length. If the noise window length is too short compared to the pre-tapered record length, the processing code flags the record to indicate a possible inadequacy. The definition of the noise window flag is described in the following section. This step may update column JM “flag for late P trigger” in the flatfile.

- **Step 3:** The next screen shows the predicted S-wave first arrival as computed by the processing code based on the selected P-wave arrival and the hypocentral distance from the flatfile. If, based on that, the analyst believes that an error was made in their initial P-wave arrival selection or in late P-trigger cases, they have the opportunity to go back to the previous step and re-select the first P arrival time. If the estimated and selected S-wave first arrivals times are significantly different, then the code automatically flags the record as a possible late P trigger. This step again may update flatfile column JM.

- **Step 4:** Based on the chosen S-wave onset, the code computes the expected end of the S-wave window, as well as the beginning and the end of the coda window, provided the time series is of sufficient duration. The code will automatically flag the record if the coda time window duration is too small or does not exist. The definition of the coda flag is described in the following section. Even though the analyst cannot modify these windows, they may flag the record if they observe a problem, such as the existence of an aftershock in the S-wave or coda windows. An experienced analyst will then reprocess the record and may modify the choice of time windows.
1.4 ENTIRE RECORD TIME WINDOW

The time window for the entire record includes pre-event noise (if available), P-wave (if available), S-wave, and coda waves (if available), as shown in Figure 1.1. Before developing these time windows, every time series must be reviewed and deemed appropriate or rejected for FAS calculation. For example, if the recording is a late S-trigger as determined by the trigger flag in the flatfile or by this project, we will not process the recording. Figure 1.2 shows an example of late S-triggered records in NGA-West2 database; Figure 1.2(a) shows the unprocessed (untapered) recording, and Figure 1.2(b) shows the processed one with cosine tapering applied at the start of the recording. By comparing these figures, it is difficult to determine whether the recording is late S-triggered or not by using only the processed recording. Therefore, all rejected recordings in this process are further reviewed by experienced analysts.

![Unprocessed recording: Late S Trigger is clear.](image)

![Processed recording: Late S Trigger is unclear.](image)

Figure 1.2 Example of a late S trigger: to be rejected by the user: (a) unprocessed; and (b) processed recording of Lytle Creek earthquake, Station 24278, 021 component.

1.5 PRE-EVENT NOISE TIME WINDOW

The time window for the pre-event noise is useful in order to compute the signal-to-noise ratio (SNR) of the S-wave or other windows, where SNR can be used to assess if the amplitude of the signal is strong enough at a given frequency to use in various applications. However, the existence of a noise window is not an absolute necessity for this purpose: the experienced analyst can also evaluate the quality of the signal by computing SNR with respect to the P-wave or coda window (if those are available), or by the shape of the FAS (as low- and high-frequency noise may be identified by increasing amplitude trends in the FAS away from the peak of the spectrum). Therefore, late-P-triggered records are not rejected in this study, but the record is flagged if a noise window is unavailable or inadequate (less than about 10 sec).

The start time (t_n) and end time (t'_n) of the pre-event noise are automatically selected based on the visual pick of the P-wave arrival time (t_p) as follows:
\[t^f_n = t_p - 1.0 \text{ sec} \] \hspace{2cm} (1.1)

\[t_n = \max(0, t^f_n - D_S) \] \hspace{2cm} (1.2)

where \(D_S \) is the S-wave duration defined in the following section. Equation (1.1) shows that the noise window ends 1.0 sec before the \(P \)-wave arrival, which ensures that initial (e.g., emergent) \(P \)-wave arrivals are generally excluded from the noise window. The maximum duration of the pre-event noise window is the same as the S-wave window duration in Equation (1.2) because the main objective of this window is to compute SNR of the S-wave FAS. So the noise window is defined here (contrary to some studies) by first choosing its end, and then its beginning. The typical duration of pre-event noise is 10 sec for most of the processed recordings in the NGA-West2 database (with \(M < 5 \)); hence \(t_n \) equals 0 for many of these records.

In selecting the \(P \)-wave arrival visually, the analyst inspects all three acceleration components. A zoom window option can magnify the 20 sec around the selected \(P \)-wave arrival time to facilitate precise selection. Figure 1.3 shows the visual inspection of the \(P \)-wave arrival for the ground motion shown in Figure 1.1. Figures 1.3(a) and 1.3(b) show the entire and the magnified time series, respectively. If the analyst believes the \(P \)-wave arrival has taken place before the start time of the record, then the \(P \)-wave arrival selected should be outside of the trace and to the left to indicate a negative time value. In that case, the code will automatically flag the record. The code also automatically flags the record if \(t_p \leq 10 \) sec, to indicates a possibly inadequate (short) noise window length. This is done to notify the database user that FAS of the noise window could include insufficient spectral resolution because of the tapers applied at the beginning of the record. In general, the beginning taper length in the NGA-West2 project is 1% of the entire record length, although shorter tapers were used especially for vertical recordings from analog instruments. Figure 1.4 shows an example recording with a pre-event noise, which is flagged as 1 based on the following flag definition scheme shown in Equation (1.3):

\[
\text{flag} = \begin{cases}
-999, & t_p \leq 0 \text{ sec} \\
1, & 0 < t_p \leq 10 \text{ sec} \\
0, & t_p > 10 \text{ sec}
\end{cases}
\] \hspace{2cm} (1.3)
Figure 1.3 Example of visual inspection of P-wave arrival time by (a) the entire, and (b) the magnified records. The vertical component is the bottom trace.
Figure 1.4 Example of a short noise window with its flag (Niigata earthquake, CHBH14).

1.6 P-WAVE TIME WINDOW

The start time of the P-wave window is taken as the end of the noise window defined as t_n' in Equation (1.1). The end time of the P-wave window (t_n') is obtained by visual inspection based on the S-wave arrival time (t_s) as follows:

$$t_n' = t_s - 0.5 \text{ sec}$$

where 0.5 sec is for the noise taper applied at the start of the S-wave window for the FAS calculation. The S-wave arrival time is selected visually by the analyst by observing the increase in amplitude and increase in low-frequency content on both the acceleration and displacement time series. As a selection guide, the theoretical S-wave arrival time (t'_s) is also plotted with the traces. This is automatically computed based on the selected P-wave arrival time and the hypocentral distance as follows:

$$t'_s = t_p + \Delta t_{S-P} \approx t_p + R_h/8$$

where R_h is hypocentral distance (in km), and can be obtained from the flatfile [Ancheta et al. 2013]. P- and S-wave crustal velocities are taken as 6.0 and 3.5 km/sec, respectively, when deriving Equation (1.5). If the selected P-wave arrival time is correct, then the S-wave arrival time should not differ greatly from the plotted theoretical arrival time, provided the assumed crustal velocities are representative. If it does differ significantly, this may mean that the selected P-wave arrival time in the previous step was in error. If the analyst believes they can improve their selection, they have the option to go back a screen and re-select the P-wave arrival or onset time. This leads to an updated theoretical S-wave arrival time and a new check by the analyst. If
the theoretical S-wave onset is again not close to the selected S-wave arrival time by the analyst, and if the theoretical S-wave arrival occurs later than the selected S arrival, then the problem is probably due to a late P-wave trigger. In this case, the code automatically flags the record as a possible late P trigger for an experienced analyst to reprocess. In order to automate this flag, an acceptable difference in the theoretical and selected S-wave arrival times had to be determined, which in turn cannot be constant but must depend on distance. For nearby events, the acceptable error must be small (no more than a few seconds); however, for distances of several hundreds of kilometers, the acceptable error may be large, e.g., of the order of several seconds. Hence, after several tests, the limit for an acceptable difference was set at 30% of the Δt_{S-P} in Equation (1.5).

This step also may update column JM of the flatfile (which is the ‘flag for late P trigger’), along with the pre-event noise flag shown in Figure 1.4. Figure 1.5 shows the comparison of t'_S and t_S for two example recordings. Figure 1.5(a) shows a case where t'_S matches t_S reasonably well, whereas Figure 1.5(b) shows a case where these are significantly different. These cases are flagged as 0 and 1, respectively, based on the following classification scheme:

$$\text{flag} = \begin{cases}
1, & t'_S - t_S \geq 0.3 \cdot R_s / 8 \\
0, & t'_S - t_S < 0.3 \cdot R_s / 8
\end{cases}$$

(1.6)
Figure 1.5 Comparison of the selected S-wave arrival (red) with the theoretical S arrival (yellow) computed from the selected P arrival (blue): (a) the selected S arrival matches the theoretical S arrival reasonably well; and (b) the selected S arrival occurs significantly earlier than the theoretical, indicating a late P-triggered record.
1.7 S-WAVE TIME WINDOW

The start time of the S-wave window \((t_s)\) is taken as the end of the P-wave window \((t_p')\), defined in Equation (1.4). The end time of the S-wave window is defined as:

\[
 t_s' = t_s + D_S
\]

where \(D_S\) is the estimated duration of the S-waves (from an extended rupture or other paths) at the recording station. In this project the automatic selection of the S-wave window for FAS computation is an important objective. Therefore, it will satisfy this objective if \(D_S\) is estimated as reasonably conservative to include all the S-wave arrivals. In general, \(D_S\) can be written as the sum of two factors:

\[
 D_S = T_{d-rup} + T_{d-prop}
\]

where \(T_{d-rup}\) is the source rupture duration and \(T_{d-prop}\) the path duration for the propagation of the S-wave from the source to the station. \(T_{d-rup}\) allows the total observed duration to increase due to wave scattering and multiple paths. \(T_{d-rup}\) depends on parameters such as moment magnitude, fault dimensions, rupture velocity, stress drop, and rupture mechanism. For circular rupture, \(T_{d-rup}\) is calculated as \(1/f_c\), where \(f_c\) is the corner frequency of the event [Brune 1970; 1971]. For unilateral rupture, the duration would be twice that value. \(T_{d-prop}\) depends on the hypocentral distance and on the structure of the crust, e.g., mainly lateral variations in \(V_S\).

We compared Equation (1.8) against various sets of recordings in a two-step procedure to calibrate the two components. A subset of carefully hand-picked \(D_S\) values was created from several events in Greece and the NGA-West2 database—with a range of magnitudes and distances. Acceleration and displacement time series were inspected visually to estimate \(D_S\), where displacement time series were mainly reviewed to judge the S-wave duration. More weight was assigned to results obtained from stations with \(V_{S30}\) greater than 300 m/sec, as some soft sites may cause an overestimation in the visual S-wave duration (possibly due to the generation of strong surface waves in basins).

In Step 1, we plot \(D_S\) against distance, in different magnitude bins, for the Greek and NGA-West2 events. Figure 1.6 shows example plots of \(D_S\) for the Greek data, which were previously studied at one site from a variety of magnitudes and distances [Ktenidou et al. 2013]. Hypocentral distance effects on the S-wave duration may be approximated for regions such as California [W. J. Silva, personal communication, 2013] as follows:

\[
 T_{d-prop} = 0.1 \cdot R_h \text{ (sec)}
\]
This expression (i.e., the empirical factor of 0.10) agrees reasonably well with the significant durations of D_{a5-75} and D_{a5-95}, for which Kempton and Stewart [2006] found factors of 0.07 and 0.15, respectively. In Figure 1.6, the solid lines correspond to a slope of 0.1, as in Equation (1.9). The intercepts of T_{d-rup} are fixed at 10 sec for $M < 4.5$ and at 15 sec for $4.5 < M < 6.5$ to illustrate the increasing trends of T_{d-prop} against R_h. The figure shows that T_{d-prop} is conservatively predicted by Equation (1.9) for this range of magnitudes.

After having fixed T_{d-prop} by Equation (1.9), we then estimated T_{d-rup} in Equation (1.8) in Step 2. Assuming Brune’s [1970; 1971] ω^2 source model and Aki’s [1967] scaling law hold, f_c is calculated as follows:

$$f_c = 4.9 \times 10^6 \beta \left(\frac{\Delta \sigma}{M_0} \right)^{1/3} \quad \text{(1.10)}$$

since

$$M_0 = 10^{1.5M+16.05} \quad \text{(1.11)}$$

where β is shear-wave velocity at the source and was taken as 3.2 km/sec. $\Delta \sigma$ is the stress drop and was taken as 60 bar (6 MPa) for an average value in California [Atkinson and Silva 1997]. Using Equation (1.10), we calculated T_{d-rup} in Table 1.1 as $1/f_c$. Figure 1.7 compares the T_{d-rup} in Table 1.1 to those observed from Greek and NGA-West2 events. It shows that Table 1.1 underestimated D_S for almost all Greek and NGA-West2 events. Hence the theoretical T_{d-rup} defined as $1/f_c$ is not adequate for this study.

Based on this observation, a longer T_{d-rup} was defined for $M < 6.5$, following the results for the Greek data. For $M > 7$ events, which are greater than the Greek data magnitude range, the theoretical approach to define T_{d-rup} worked well, although it tended to slightly underestimate some durations (see Figure 1.7). The theoretical approach ($1/f_c$) also significantly underestimated one distant record of the Denali ($M_7.9$) earthquake in Alaska. To avoid underestimation, a more conservative rule for large-magnitude earthquakes was chosen by assuming unilateral fault rupture (i.e., $T_{d-rup} = 2/f_c$), which is the case for the Denali earthquake (e.g., Ozacar and Beck [2003]). Table 1.2 and Figure 1.7 show T_{d-rup} after applying these adjustments.

T_{d-rup} for $M < 6.5$ is now well constrained. However, for $M > 6.5$, assuming $T_{d-rup} = 2/f_c$ led to overestimations of the overall duration except for the Denali recording. T_{d-rup} as defined in Table 1.2 also included the coda waves and very often exceeded even the entire record duration. Therefore, we modified the large-magnitude rule to $T_{d-rup} = 1/f_c$, multiplied with a constant factor of 1.4. This was an attempt to be less conservative and to
include all possible later arriving significant S-waves, while reducing the large durations for large magnitudes. Table 1.3 shows the modified $T_{d-\text{rup}}$ values, which are also plotted in Figure 1.7. The figure shows that these are acceptable duration estimates for magnitudes between 3.5 and 7.9. These values allow coda windows for most recordings with adequate total length, while keeping the strongest motion in the S-wave window.

These values are implemented into the data processing code for the automatic selection of the S-wave window. If, based on inspection, the analyst believes these automatically picked values to be significantly incorrect for a given record, or if the S-wave window is contaminated by an aftershock, then the record is flagged by the analyst for additional processing because the only modification the analyst can perform in this step is to correct an erroneous S-wave arrival time. An example recording is presented at the end of this report in Figures 1.12–1.15.

![Figure 1.6](image_url)

Figure 1.6
Variation in S-wave duration with magnitude based on visual inspection of Greek events (records and durations taken from Ktenidou et al. [2013]).
Figure 1.7 Comparison of various schemes to predict T_{d-rup} with the observed durations from data.

Table 1.1 Source duration versus moment magnitude based on the theoretical rupture duration.

<table>
<thead>
<tr>
<th>Magnitude (Mw)</th>
<th>Source duration (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M < 5$</td>
<td>1</td>
</tr>
<tr>
<td>$5 < M < 6.5$</td>
<td>3</td>
</tr>
<tr>
<td>$6.5 < M < 7.5$</td>
<td>10</td>
</tr>
<tr>
<td>$7.5 < M < 7.9$</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 1.2 Source duration versus moment magnitude after adjustments based on the NGA-West2 and Greek data.

<table>
<thead>
<tr>
<th>Magnitude (Mw)</th>
<th>Source duration (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M < 4.5$</td>
<td>10</td>
</tr>
<tr>
<td>$4.5 < M < 6.5$</td>
<td>15</td>
</tr>
<tr>
<td>$6.5 < M < 7.9$</td>
<td>$2/f_c$</td>
</tr>
</tbody>
</table>

Table 1.3 Recommended source duration versus moment magnitude for this study

<table>
<thead>
<tr>
<th>Magnitude (Mw)</th>
<th>Source duration (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M < 4.5$</td>
<td>10</td>
</tr>
<tr>
<td>$4.5 \leq M < 6.9$</td>
<td>15</td>
</tr>
<tr>
<td>$6.9 \leq M < 7.9$</td>
<td>$1.4/f_c$</td>
</tr>
<tr>
<td>$M \leq 7.9$</td>
<td>33</td>
</tr>
</tbody>
</table>
1.8 CODA TIME WINDOW

One definition of the onset of the coda window is twice the S-wave travel time after the S-wave arrival time [Aki 1969; Phillips and Aki 1986; and Kato et al. 1995]. This definition generally provides the directionally averaged coda wave due to backscattered waves coming from all directions. It also gives a theoretically consistent coda-wave onset. However, it may also allow S-waves into the coda window for cases of long source duration and short hypocentral distance. Finally, it may also exclude many records for which post-S-wave windows are available, but not long enough to include this delayed onset of the window, especially at long hypocentral distances.

As an alternative, the coda window onset definition is defined as beginning immediately following the S-wave windows [Novelo-Casanova and Lee 1991; Wong et al. 2001]. This definition maximizes the number of coda windows available from the dataset, although some of these records may contain late arriving S- and/or surface waves. Further discussion on this issue includes Padhy et al. [2011], who discussed the various assumptions made in literature for the coda onset, and Satoh et al. [2001], who presented a comparison between early and late coda onsets.

For this project, which had the goal of obtaining as many FAS from coda windows as possible, a new approach was devised. In this approach, the end of the coda window is defined to make use of as much of the record as is available. Information is provided to the user as to the quality of coda onset; by distinguishing between the different definitions, the user can select which coda windows to use for their analyses.

The end of the coda window is generally defined as the end of the record. However, given that a few records have unusually long durations, we compared the actual end-of-record time (t_{end}) with an artificial end-of-record time ($t_{\text{end}} = t_S + 3D_S$) to avoid choosing the coda window at the end of these time histories, since the window will then probably be dominated by the least significant ground motion. Hence, the end of the coda window is defined as the minimum of these two values:

$$t'_c = \min(t_{\text{end}}, t_S + 3D_S) \quad (1.12)$$

The coda window length (D_c) is simply chosen to be the same as D_S if possible. When this window length is unavailable (i.e., due to overlap with the S-wave window), then the D_c is the remaining duration between t'_S and t'_c. Hence, the start time of the coda window (t_c) is taken to be:

$$t_c = \max(t'_S, t'_c - D_S) \quad (1.13)$$

and the duration of the coda window is then less than the S-wave duration and given by:

$$D_c = t'_c - t_c \leq D_S \quad (1.14)$$
We examined these window definitions on several records and confirmed that they work well except in those cases where coda windows included S-waves. Such windows were flagged by the analysts for further review.

The processing code automatically flags the record in two cases, depending on the location of the coda window in the time series. In the first case, the code compares \(t_c \) with the theoretical value for the coda window onset \((t_{\text{theo}} = t_S + 2R_n/\beta) \). If \(t_c \leq t_{\text{theo}} \), a flag is added; this will be included in the final flatfile so that users can choose the definition for the coda window. This flag does not lead to reprocessing by an experienced analyst, but it is provided to assist the data user in case they wish to exclude coda windows that do not comply with the theoretical coda onset definition. Figure 1.8 shows some examples of coda windows. In Figure 1.8(a), the coda window starts near the theoretical [Aki 1969] coda arrival, whereas in Figure 1.8(b), it starts at a later time. In Figure 1.8(c), the window starts before the theoretical arrival due to the limited record length. These different coda window onsets are flagged by the following equation and are shown in Figure 1.8.

\[
\text{flag} = \begin{cases}
1, & t_c \leq t_{\text{theo}} \\
0, & \text{otherwise}
\end{cases}
\]

(1.15)

In the second case, a check for possibly inadequate (short) coda window durations is performed. A coda window has a length of \(D_c \leq D_S \), but that duration may not provide adequate spectral resolution, especially considering the standard PEER processing [Ancheta et al. 2013] cosine tapering at the end of the entire record. The taper at the end of the record is 5% of the entire record duration (e.g., 2 sec for a 40 sec-long record and 15 sec for a 300 sec-long record). Since the percentage is a constant, we can check \(D_c \) against the taper duration \((D_{\text{tap}} = 0.05t_{\text{end}}) \).

We require that the taper duration is not greater than 30% of the coda window length (i.e., \(D_c \geq D_{\text{tap}}/0.3 = 0.17\cdot t_{\text{end}} \)), and that the coda window length is greater than 10 sec. If these conditions are not satisfied, then the record is flagged as having possibly inadequate coda duration, and it is reprocessed by an experienced analyst. Figure 1.9 shows an example recording for the coda window. Based on the following classification scheme, the recording was flagged as 1 sec during the data processing.

\[
\text{flag} = \begin{cases}
-999, & \text{no coda window} \\
1, & D_c < 10 \ | \ D_c < 0.17\cdot t_{\text{end}} \\
0, & \text{otherwise}
\end{cases}
\]

(1.16)

The automatic selection of the coda window cannot be altered by the analyst. If the analyst believes these automated values to be incorrect, or if the coda-wave window contains an aftershock, the record is flagged for further processing. Figure 1.10 shows an example recording that includes a small aftershock in the coda window. The flagged records are then further reviewed by experienced analysts.
Figure 1.8 Coda window starts (a) near, (b) after, and (c) earlier than the theoretical [Aki 1969] coda arrival time.
Figure 1.9 Example of the automatic computation of the coda window duration and flag.

Figure 1.10 User-defined flag if the S- or coda window is problematic, e.g., contains an aftershock.
1.9 FLAGGED RECORDS

Most flagged records are reviewed and reprocessed by experienced analysts, with the exception of late S-wave triggers (which are reviewed to confirm before rejection from further processing) and late coda onsets (which are accepted). Information from the flags, such as late P/S triggers, short-noise/coda windows, coda-waves onsets that do not follow the theoretical onset rule of Aki [1969], and various other issues (e.g., aftershocks), can then be included in the FAS flatfile. Table 1.4 summarizes all of the flags during data processing.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late S-wave trigger</td>
<td>User</td>
<td>Rejection (after confirmation)</td>
</tr>
<tr>
<td>Late P-wave trigger</td>
<td>Auto (criterion: $\Delta t_{S-P} \geq 30% \cdot R_p / 8$)</td>
<td>Review</td>
</tr>
<tr>
<td>Short noise window</td>
<td>Auto (criterion: $t_p \leq 10$ sec)</td>
<td>Review</td>
</tr>
<tr>
<td>Short coda window</td>
<td>Auto (criterion: $D_s \leq 10$ sec or $D_s \geq 0.17t_{sw}$)</td>
<td>Review</td>
</tr>
<tr>
<td>Coda onset prior to 2* S-wave travel time</td>
<td>Auto (criterion: $t_c \leq t_{theo}$)</td>
<td>- (for info only)</td>
</tr>
<tr>
<td>Coda contaminated with S-waves; aftershock in S-wave or coda window; contamination in noise</td>
<td>User</td>
<td>Review</td>
</tr>
</tbody>
</table>

1.10 D_C(MEAN) REMOVAL, TAPERS, ZERO PADDING, AND FAS COMPUTATION

1.10.1 D_C (Mean) Removal and Tapers

Before calculation of the FAS, the various windowed time series are processed in the time domain for D_C removal as defined by the following equation:

$$a' = a = \bar{a}$$ \hspace{1cm} (1.17)

where a' denotes the acceleration time series after D_C removal. a and \bar{a} denote the windowed acceleration time series and the mean offset value, respectively. Cosine tapers are then applied to the beginning and end of each time window. Table 1.5 lists the length of cosine tapers applied to the acceleration series: recall that in most cases the entire time history has already been tapered with 1% and 5% at beginnings and ends.
Table 1.5 Cosine taper length applied to windowed accelerations.

<table>
<thead>
<tr>
<th>Windowed time histories</th>
<th>Cosine taper length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start time</td>
</tr>
<tr>
<td>Entire record</td>
<td>1% of total length</td>
</tr>
<tr>
<td>Pre-event noise</td>
<td>0.5 sec</td>
</tr>
<tr>
<td>P-wave window</td>
<td>0.5 sec</td>
</tr>
<tr>
<td>S-wave window</td>
<td>0.5 sec</td>
</tr>
<tr>
<td>Coda-wave window</td>
<td>0.5 sec</td>
</tr>
</tbody>
</table>

1.10.2 Zero Padding and Fourier Spectra

Following tapering and then \(D_c \) (mean) removal, a series of zeros is added to the end of the records. A common duration \((D_{tot}) \) is chosen for all windows in the dataset, so that the resulting FAS have a common frequency step \((df = 1/D_{tot}) \). This is convenient for users for two reasons:

- A common \(df \) for the different time windows of each record (\(P-, S-, \) coda, and noise) facilitates the computation of SNR, which is a check often performed before choosing the useable frequency range of the data.
- If a user wishes to process a large number of data, providing a common \(df \) facilitates statistical calculations at chosen frequency values. One need only select frequencies without interpolation of the data near the required value. This process maintains the variance of the signal and should facilitate future analyses.

In order to decide on the value of \(D_{tot} \), we sorted all the records in the NGA-West2 flatfile based on the time step \((dt) \), and listed the longest recordings for the different time steps. Table 1.6 shows the longest recordings for time steps of 0.0025, 0.0050, 0.0100, and 0.0200 sec, respectively. These time steps represent 91\% of NGA-West2 database. The longest duration in the flatfile is 1010 sec (Table 1.6), which was recorded at Shexnian Station from the Wenchuan earthquake. Nearly all (91\%) of the recordings will be padded by a series of zeros at the end, to a \(D_{tot} \) of 1,310.72 sec, which is a common power of two for these \(dt \) values. This process creates a consistent \(df \) of 0.000763 Hz.

However, some recordings (9\%) do not have the instrument sampling \(dt \) as a multiple of 0.0025 sec. For example, many recordings of the Kocaeli, Turkey, earthquake, have a \(dt \) of 0.0078 sec. When the recording has a different time step from those listed in Table 1.6, the duration is selected as a power of two multiplied with the time step that creates the closest duration possible to 1310.72 sec, but shorter. This algorithm is expressed by the following equation:

\[
D_{tot} = 2^k dt
\]
\hspace{1cm}(1.18)
where

\[K = \text{floor} \left[\log_2 \left(\frac{1310.72}{dt} \right) \right] \]

(1.19)

For example, if the \(dt \) is 0.0078 sec, \(K \) is calculated to be 17, hence \(D_{\text{tot}} \) becomes 1,022.3616 sec. This \(D_{\text{tot}} \) is consistent for these recordings but requires additional interpolation if FAS values are compared to other recordings; note that the recordings with different time steps are only 9% of total database.

By using the windowed time series after \(D_C \) removal, tapering, and zero adding, FAS and Fourier Phase Spectra (FPS) are computed as follows:

\[FAS_k = T |C_k| \]

(1.20)

where

\[C_k = \frac{1}{N} \sum_{j=1}^{N} x(j) \omega^{(j-1)(k-1)} \]

(1.21)

\[\omega = e^{(-2\pi i)/N} \]

(1.22)

\[T = N dt \]

(1.23)

\(C_k \) is the Fourier coefficient for each frequency \(df(k-1) \), where \(df \) is the frequency step. The term \(x(j) \) represents a time series, \(N \) represents the number of data points in the time series, and \(dt \) is the time step of the series. The FPS is calculated from the real and imaginary values of Fourier spectra as follows:

\[FPS = \tan^{-1} \left[\frac{\text{Im}(C)}{\text{Re}(C)} \right] \]

(1.24)

where the phase ranges from \(-\pi\) to \(\pi\) in the output. The FAS flatfile will be populated following the smoothing and de-sampling procedures used in the NGA-East project [Goulet et al. 2014]. Figure 1.11 shows an example of the computed and smoothed FAS for all time windows, using the example record of Figure 1.1. The FAS in the figure have units of \(g \)’s and have been smoothed to show the trends at high frequencies.

The current NGA-West2 flatfile does not until now include metadata columns with the sampling rate of each instrument or the total number of data points of each record. This is because up to now the focus of the NGA projects has been to provide users with response spectral values. In the framework of the current project, which aims at providing users with time series and FAS, columns with sampling rates and numbers of points will be added to the FAS flatfile.
Table 1.6 Common duration for FAS calculation (covers 91% of the total number of records).

<table>
<thead>
<tr>
<th>df (sec)</th>
<th>RSN for longest recordings</th>
<th>Number of points</th>
<th>Duration (sec)</th>
<th>Duration after zero padding (sec)</th>
<th>Power</th>
<th>df (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0025</td>
<td>495</td>
<td>4113</td>
<td>10.2825</td>
<td>1310.72</td>
<td>19</td>
<td>0.000762939</td>
</tr>
<tr>
<td>0.005</td>
<td>4620</td>
<td>202001</td>
<td>1010.005</td>
<td>1310.72</td>
<td>18</td>
<td>0.000762939</td>
</tr>
<tr>
<td>0.01</td>
<td>4614</td>
<td>60001</td>
<td>600.01</td>
<td>1310.72</td>
<td>17</td>
<td>0.000762939</td>
</tr>
<tr>
<td>0.02</td>
<td>8152</td>
<td>7500</td>
<td>150</td>
<td>1310.72</td>
<td>16</td>
<td>0.000762939</td>
</tr>
</tbody>
</table>

1.11 FREQUENCY RANGE LIMITATIONS AND CONSIDERATIONS

Finally, we emphasize that, although FAS are computed up to each record’s Nyquist frequency, this does not mean that a spectrum is usable within the entire frequency range. The user should consult the flatfile for the high-pass frequency for each horizontal component (values HP-H1, HP-H2, columns DT-DU) and low-pass frequency (LP-H1, LP-H2 values, columns DV-DW) depending on the filtering performed on the traces. The recommended minimum and maximum usable frequencies are determined from a previous study by Abrahamson and Silva [1997], and are calculated by the following expressions taking into account both components, H1 and H2:

Lowest Usable Frequency (LUF) = 1.25·max(HP-H1, HP-H2) \hspace{1cm} (1.25)

Highest Usable Frequency (HUF) = min(LP-H1, LP-H2)/1.25 \hspace{1cm} (1.26)
A second caution is that these filters were based on noise in the entire record and are only strictly applicable to the entire record spectrum (see Figure 1.11). Shorter time windows may have increased levels of noise in the spectrum. Additionally, the user should note those cases in the flatfile that contain zero values for LP-H1, LP-H2; zero indicates that the filtering was performed prior to PEER acquiring the data; generally, this is Volume II data when the unprocessed (Volume I) data were not available. In these cases, the user should assess the usable frequencies for those records through visual inspection of the FAS.

The user will also notice that window lengths (e.g., pre-event noise window) are sometimes shorter than 1/LUF. In that case, the FAS at periods longer than the window length are generated by adding a series of zeros at the end of the windows. Therefore, in such cases, the lowest usable frequency is 1/(window length) rather than the LUF defined by Equation (1.25). Finally, the data recorded by the KiK-net and K-Net arrays in Japan have an instrument response modified by an anti-alias filter that exhibits decay similar to a three-pole Butterworth filter with a corner frequency of 30 Hz [Aoi et al. 2004]. The user should consider that, regardless of the filters mentioned in the flatfile, these records have a maximum usable frequency of about 30/1.25 = 24 Hz, due to the anti-alias filter incorporated in the data acquisition system. This is of great importance if such records are used to compute high-frequency parameters such as \(\kappa \) (Ktenidou et al., 2014).

1.12 EXAMINING THE PROPOSED METHOD FOR DIFFERENT HYPOCENTRAL DISTANCES

Example records were processed for a range of regions, magnitudes, and distances, to test the proposed methodology using NGA-West2 data. The selected recordings are from the following earthquakes: 21305648 California earthquake, 09/06/2003 (M4.0), Tottori, Japan, 10/16/2000 (M6.6), El Mayor-Cucapah, Mexico, 4/4/2010 (M7.2), and Denali, Alaska, 11/03/2002 (M7.9). Tables 1.7–1.10 list the processed records. The hypocentral distances range from 5 to 500 km, in order to examine the windowing procedure proposed in this study. Figures 1.12–1.15 show the selected time windows for all four earthquakes. These figures demonstrate that obtaining the complete set of all five time windows (noise, \(P \)-wave, \(S \)-wave, coda, and the entire record) becomes difficult as magnitude increases. This is expected, because for larger-magnitude recordings, the recording generally does not include significant pre-event or coda windows. In addition, nearly all large-magnitude recordings in NGA-West2 have shorter lengths due to a variety of factors, including analog recording systems, trigger levels, pre-event memory length, and total record length criteria established by the strong-motion networks (e.g., GGS\(\times \)CSMIP and UGSS\(\times \)NSMP). In contrast, the small-to-moderate California dataset was generally obtained from continuously recording seismic networks (e.g., CIT\(\times \)SCSN, BDSN, and the USGS). Therefore, these recordings generally have significantly longer pre-event and post-event lengths because these lengths were requested by PEER from the data network providers. Hence, the FAS can also be calculated for the pre-event and coda windows for these data. In summary, the proposed window selection method works well for this range of recordings.
Figure 1.12 The automatic choice of windows (after manual P and S onset selections) for a series of records of the 21305648 California earthquake at: (a) Haviland Hall, U.C. Berkeley, 10 km, (b) Angel Island, 20 km, (c) Mountain View; Fire Station 3, 50 km, (d) Mt. St. Helens, 100 km, and (e) Oroville Dam, Oroville, 200 km.
Figure 1.13 The automatic choice of windows (after manual P and S onset selections) for a series of records of the Tottori, Japan, earthquake at (a) SMNH01, 6 km, (b) SMN015, 9 km, (c) OKY004, 20 km, (d) OKYH03, 50 km, and (e) HYG007, 100 km.
Figure 1.14 The automatic choice of windows (after manual P and S onset selections) for a series of records of the El Mayor-Cucapah, Mexico, earthquake at: (a) Cerro Prieto Geothermal, 10 km, (b) El Centro Array #10, 20 km, (c) Elmore's Ranch, 50 km, (d) North Shore Salton Sea 2, 100 km, (e) Redlands - Garden & Mariposa, 200 km, and (f) Ground to Air Transmit and Receive Compound, 490 km.
Figure 1.15 The automatic choice of windows (after manual P and S onset selections) for a series of records of the Denali, Alaska, earthquake at: (a) Carlo, 70 km, (b) PS#10, 85 km, (c) R109, 60 km, (d) PS#08, 115 km, (e) PS#07, 200 km, and (f) 8039, 297 km.
Table 1.7 Records used for 21305648 California earthquake, 09/06/2003 (M4.0)

<table>
<thead>
<tr>
<th>RSN</th>
<th>Hypocentral distance (km)</th>
<th>Station name</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>13046</td>
<td>10.15</td>
<td>Haviland Hall, U.C. Berkeley</td>
<td>BKBRKHHLN.AT2 BKBRKHLE.AT2 BKBRKHLZ.AT2</td>
</tr>
<tr>
<td>13002</td>
<td>19.75</td>
<td>Angel Island</td>
<td>NCCAGHHE.AT2 NCCAGHHE.AT2 NCCAGHNZ.AT2</td>
</tr>
<tr>
<td>19595</td>
<td>50.31</td>
<td>Mountain View; Fire Station 3 North</td>
<td>1775HNN.AT2 1775HNE.AT2 1775HNZ.AT2</td>
</tr>
<tr>
<td>19622</td>
<td>98.47</td>
<td>Mt. St. Helens</td>
<td>NMHHN.AT2 NMHHN.AT2 NMHHN.AT2</td>
</tr>
<tr>
<td>19584</td>
<td>200.13</td>
<td>Oroville Dam, Oroville</td>
<td>ORVHNN.AT2 ORVHNE.AT2 ORVHNZ.AT2</td>
</tr>
</tbody>
</table>

Table 1.8 Records used for Tottori, Japan, earthquake, 10/16/2000 (M6.6)

<table>
<thead>
<tr>
<th>RSN</th>
<th>Hypocentral distance (km)</th>
<th>Station name</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3947</td>
<td>5.86</td>
<td>SMNH01</td>
<td>SMNH01NS.AT2 SMNH01EW.AT2 SMNH01UD.AT2</td>
</tr>
<tr>
<td>3943</td>
<td>9.12</td>
<td>SMN015</td>
<td>SMN015NS.AT2 SMN015EW.AT2 SMN015UD.AT2</td>
</tr>
<tr>
<td>3907</td>
<td>19.72</td>
<td>OKY004</td>
<td>OKY004NS.AT2 OKY004EW.AT2 OKY004UD.AT2</td>
</tr>
<tr>
<td>3921</td>
<td>49.82</td>
<td>OKYH03</td>
<td>OKYH03NS.AT2 OKYH03EW.AT2 OKYH03UD.AT2</td>
</tr>
<tr>
<td>3895</td>
<td>99.64</td>
<td>HYG007</td>
<td>HYG007NS.AT2 HYG007EW.AT2 HYG007UD.AT2</td>
</tr>
</tbody>
</table>
Table 1.9
Records used for El Mayor-Cucapah, Mexico, earthquake, 4/4/2010 (M7.2).

<table>
<thead>
<tr>
<th>RSN</th>
<th>Hypocentral distance (km)</th>
<th>Station name</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5825</td>
<td>12.65</td>
<td>Cerro Prieto Geothermal</td>
<td>GEO000.AT2, GEO090.AT2, GEO-V.AT2</td>
</tr>
<tr>
<td>5991</td>
<td>60.73</td>
<td>El Centro Array #10</td>
<td>E10320.AT2, E10230.AT2, E10-UP.AT2</td>
</tr>
<tr>
<td>8522</td>
<td>104.87</td>
<td>Elmore’s Ranch</td>
<td>CIERRHNN.AT2, CIERRHNE.AT2, CIERRHNZ.AT2</td>
</tr>
<tr>
<td>6025</td>
<td>153.58</td>
<td>North Shore Salton Sea 2</td>
<td>NSS2360.AT2, NSS2-90.AT2, NSS2-UP.AT2</td>
</tr>
<tr>
<td>5949</td>
<td>260.49</td>
<td>Redlands - Garden & Mariposa</td>
<td>23164357.AT2, 23164-87.AT2, 23164-UP.AT2</td>
</tr>
<tr>
<td>8527</td>
<td>547.45</td>
<td>Ground To Air Transmit And Receive Compound</td>
<td>CGATRHN.AT2, CGATRHN.AT2, CGATRHNZ.AT2</td>
</tr>
</tbody>
</table>

Table 1.10
Records used for Denali, Alaska, earthquake, 11/03/2002 (M7.9).

<table>
<thead>
<tr>
<th>RSN</th>
<th>Hypocentral distance (km)</th>
<th>Station Name</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2114</td>
<td>68.25</td>
<td>Carl</td>
<td>CARLO-90.AT2, CARLO360.AT2, CARLO-UP.AT2</td>
</tr>
<tr>
<td>2111</td>
<td>84.89</td>
<td>PS10</td>
<td>PS10-047.AT2, PS10-317.AT2, PS10-UP.AT2</td>
</tr>
<tr>
<td>2107</td>
<td>62.59</td>
<td>R109</td>
<td>R109-90.AT2, R109360.AT2, R109-UP.AT2</td>
</tr>
<tr>
<td>2112</td>
<td>115.82</td>
<td>PS08</td>
<td>PS08-49.AT2, PS08319.AT2, PS08-UP.AT2</td>
</tr>
<tr>
<td>3832</td>
<td>201.09</td>
<td>PS07</td>
<td>PS07-39.AT2, PS07309.AT2, PS07-UP.AT2</td>
</tr>
<tr>
<td>2104</td>
<td>296.96</td>
<td>8039</td>
<td>FS_7-90.AT2, FS_7360.AT2, FS_7-UP.AT2</td>
</tr>
</tbody>
</table>
1.13 OUTPUT FILE

This section describes the format of the output files. Fourier amplitude spectra are provided for the five time windows and will be used to populate the FAS flatfile. Figures 1.16 and 1.17 show examples of the FAS output file format for the entire window and the coda window, respectively. Note that the filtered and non-filtered FAS in Figure 1.16 are the same in the output file for the entire time history since the filtered recording in NGA-West2 are used without the application of any additional filter. The output file for the other four time windows (Figure 1.17) only populates the non-filtered FAS column, because the filters were chosen based on the FAS spectrum of the entire time series and not on these shorter time windows.

Figure 1.16 FAS example output file for an entire recording (Denali, Alaska, earthquake at station 8039, UP).

Figure 1.17 FAS example output file for a coda window (Denali, Alaska, earthquake at station 8039, UP).
1.14 SUMMARY

This report introduces a semi-automated approach for calculating FAS for the NGA-West2 acceleration time-history database. We devise and document a method for selecting time windows, and evaluate the method with the FAS computed from a suite of sample records with a range of different magnitudes and hypocentral distances that span the NGA-West2 dataset. A common frequency step (df) is used that allows more than 90% of the FAS to be used without interpolation to a common frequency. A zoom option facilitates accurate selection of P-arrival onset is a newly added feature to the standard PEER data processing code. Flags for late P-triggering, short-noise time window, short-coda time window, coda onset, and contamination of a window (i.e., one that includes an aftershock) have also been added as output metadata of this procedure and are to be included in the flatfile. These updates and flags to the data-processing code ensure the quality of the FAS database and allow the user to select FAS data in the NGA-West2 based on these criteria. Lastly, this report documents the output file format. This document will be updated if the data processing method is significantly revised. A FAS flatfile will be provided for the NGA-West2 database, based on implementation of the results and recommendations of this study.
REFERENCES

PEER reports are available as a free PDF download from http://peer.berkeley.edu/publications/peer_reports_complete.html. Printed hard copies of PEER reports can be ordered directly from our printer by following the instructions at http://peer.berkeley.edu/publications/peer_reports.html. For other related questions about the PEER Report Series, contact the Pacific Earthquake Engineering Research Center, 325 Davis Hall, Mail Code 1792, Berkeley, CA 94720. Tel.: (510) 642-3437; Fax: (510) 642-1655; Email: peer_editor@berkeley.edu.

PEER 2015/06 Adjusting Ground-Motion Intensity Measures to a Reference Site for which $V_{S30} = 3000$ m/sec. David M. Boore. May 2015.

Identification of Site Parameters that Improve Predictions of Site Amplification. Ellen M. Rathje and Sara Navidi. July 2013.

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title</th>
<th>Authors/Editors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEER 2006/02</td>
<td>Pacific Earthquake Engineering Research Center Highway Demonstration Project.</td>
<td>Anne Kiremidjian, James Moore, Yue Yue Fan, Nesrin Basoz, Ozgur Yazali, and Meredith Williams.</td>
<td>April 2006</td>
</tr>
<tr>
<td>PEER 2005/10</td>
<td>First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures.</td>
<td></td>
<td>September 2005</td>
</tr>
<tr>
<td>PEER 2005/06</td>
<td>Global Collapse of Frame Structures under Seismic Excitations.</td>
<td>Luis F. Ibarra and Helmut Krawinkler.</td>
<td>September 2005</td>
</tr>
<tr>
<td>PEER 2005/04</td>
<td>Numerical Modeling of the Nonlinear Cyclic Response of Shallow Foundations.</td>
<td>Chad Harden, Tara Hutchinson, Geoffrey R. Martin, and Bruce L. Kutter.</td>
<td>August 2005</td>
</tr>
<tr>
<td>PEER 2004/06</td>
<td>Performance-Based Regulation and Regulatory Regimes.</td>
<td>Peter J. May and Chris Koski.</td>
<td>September 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
The following PEER reports are available by Internet only at http://peer.berkeley.edu/publications/peer_reports_complete.html.

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Report Title</th>
<th>Authors/Authors Affiliations</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEER 2011/106</td>
<td>Self Compacting Hybrid Fiber Reinforced Concrete Composites for Bridge Columns.</td>
<td>Pardeep Kumar, Gabriel Jen, William Trono, Marios Panagiotou, and Claudia Ostertag.</td>
<td>September 2011</td>
</tr>
<tr>
<td>PEER 2010/108</td>
<td>Probabilistic Tsunami Hazard in California.</td>
<td>Hong Kie Thio, Paul Somerville, and Jascha Polet, preparers.</td>
<td>October 2010</td>
</tr>
<tr>
<td>PEER 2010/106</td>
<td>Verification of Probabilistic Seismic Hazard Analysis Computer Programs.</td>
<td>Patricia Thomas, Ivan Wong, and Norman Abrahamson.</td>
<td>May 2010</td>
</tr>
<tr>
<td>PEER 2010/103</td>
<td>Post-Earthquake Traffic Capacity of Modern Bridges in California.</td>
<td>Vesna Terzic and Božidar Stojadinović.</td>
<td>March 2010</td>
</tr>
<tr>
<td>PEER 2010/102</td>
<td>Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (I_{JMA}) Using the PEER–NGA Strong Motion Database.</td>
<td>Kenneth W. Campbell and Yousef Bozorgnia.</td>
<td>February 2010</td>
</tr>
<tr>
<td>PEER 2010/101</td>
<td>Rocking Response of Bridges on Shallow Foundations.</td>
<td>Jose A. Ugalde, Bruce L. Kutter, and Boris Jeremic.</td>
<td>April 2010</td>
</tr>
</tbody>
</table>

The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. Investigators from over 20 universities, several consulting companies, and researchers at various state and federal government agencies contribute to research programs focused on performance-based earthquake engineering.

These research programs aim to identify and reduce the risks from major earthquakes to life safety and to the economy by including research in a wide variety of disciplines including structural and geotechnical engineering, geology/seismology, lifelines, transportation, architecture, economics, risk management, and public policy.

PEER is supported by federal, state, local, and regional agencies, together with industry partners.

PEER Core Institutions:
University of California, Berkeley (Lead Institution)
California Institute of Technology
Oregon State University
Stanford University
University of California, Davis
University of California, Irvine
University of California, Los Angeles
University of California, San Diego
University of Southern California
University of Washington

PEER reports can be ordered at http://peer.berkeley.edu/publications/peer_reports.html or by contacting

Pacific Earthquake Engineering Research Center
University of California, Berkeley
325 Davis Hall, Mail Code 1792
Berkeley, CA 94720-1792
Tel: 510-642-3437
Fax: 510-642-1655
Email: peer_editor@berkeley.edu

ISSN 1547-0587X