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ABSTRACT 

Numerical models are a key component for methodologies used to estimate tsunami risk, and 
model predictions are essential for the development of Tsunami Hazard Assessments (THAs). 
By better understanding model bias and uncertainties and, if possible, minimizing them, a more 
reliable THA will result. This study compares the run-up height, inundation lines, and flow-
velocity field measurements between GeoClaw and the Method of Splitting Tsunami (MOST) 
model predictions in the Sendai Plain. In general, run-up elevation and average inundation 
distance are overpredicted by the models. However, both models agree relatively well with each 
other when predicting maximum sea surface elevation and maximum flow velocities. To explore 
the variability and uncertainties in the numerical models, the MOST model is used to compare 
predictions from four different grid resolutions (30 m, 20 m, 15 m, and 10m). Our work shows 
that predictions of statistically stable products (run-up, inundation lines, and flow velocities) do 
not require use of high-resolution (less than 30 m) Digital Elevation Maps (DEMs) at this 
particular location. In addition, the Froude number variation in overland flow is presented. The 
results provided in this paper will help understand the uncertainties in model predictions and 
locate possible sources of errors within a model. 
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1 Introduction 

1.1 BACKGROUND 

On March 11, 2011, a Mw = 9.0 earthquake generated a tsunami 130 km off the coast of Sendai, 
Japan [Mori et al. 2011]. This event was one of the worst in Japanese history, killing more than 
15,000 people and causing more than $200 billion (USD) in damage. Available data shows that 
in some areas run-up elevations reached 40 m, and flow velocities reached more than 14 m/sec 
[Mori et al. 2011; Koshimura and Hayashi 2012]. This event raised the safety concerns of many 
coastal communities. Along the Sendai Plain, the tsunami traveled more than 5 km inland, with a 
maximum measured run-up of approximately 9.4 m and an average of 2.5 m above Mean Sea 
Level (MSL) [Mori et al. 2011]. The tsunami velocities measured by Koshimura and Hayashi 
[2012] at different locations on the Sendai Plain ranged from 2–8 m/sec. The measurements 
collected during and after the Tohoku event provided researchers with a great opportunity to 
model, study, and understand the nearshore and onshore hydrodynamics of tsunamis. 

Numerical model predictions are important for the development of probabilistic and 
deterministic methods that are used for Tsunami Hazard Assessments (THA). Generally, 
methodologies for Probabilistic Tsunami Hazard Assessment (PTHA) use numerical models to 
predict various parameters (run-up, inundation, and flow velocity), which are then used to 
perform a statistical analysis to compute recurrence interval rates at a given location [Geist and 
Parsons 2006; González et al. 2009, Thio et al. 2012; and González et al. 2013]. In a 
deterministic approach, worst-case scenarios are modeled by considering physical limitations of 
the natural occurrences [Gonzalez et al. 2007]. Better understanding of model bias and 
uncertainties will result in more accurate and reliable THAs and PTHAs, thus leading to 
improved risk assessment and hazard mitigation in coastal areas susceptible to tsunamis and 
better evacuation, maritime, land-use, and construction planning. 

Previous decades saw the development of numerical models that can accurately predict 
tsunami run-up, inundation, and flow velocity. Despite the surge of “state-of-the-art” numerical 
models and their widespread use in this field, there remains a need for more robust models for 
better evacuation and construction planning. The study reported herein compared measured field 
data with run-up and flow-velocity results obtained from two tsunami models: the Method of 
Splitting Tsunami (MOST) [Titov and Synolakis 1995; 1998] and GeoClaw [LeVeque 1997; 
2002]. Available field-survey data and video footage analysis measurements are used to compare 
model run-up and flow-velocity predictions. Possible sources of error and uncertainty in their 
predictions are analyzed and discussed. This study includes detailed comparisons between 
observations and numerical simulations in Sendai, focusing on the Sendai Plain area. 
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2 Methodology 

2.1 FIELD MEASUREMENTS AND OBSERVATIONS 

The field-survey data published in Mori et al. [2011] and the flow-velocity measurements 
obtained from Koshimura and Hayashi [2012] were used to compare the accuracy and reliability 
of numerical model predictions. More than 5300 measurements were recorded by a large group 
of scientists and researchers. A total of 63 universities and 297 people were involved in this 
project, which covered 2000 km of the Japanese coast. The maximum measured run-up elevation 
in Sendai was 9.4 m [The 2011 Tohoku Earthquake Tsunami Joint Survey Group 2011]. Only 
10% of the run-up measurements were greater than 5 m. This study focused on the Sendai Plain 
(particularly from 38.10° N to 38.28° N), where the wave front reached more than 5 km inland 
from the shoreline (with the average being 4.2 km). 

Flow-velocity estimates measured by Koshimura and Hayashi [2012] were obtained from 
a two-dimensional (2D) projective transformation video analysis. One of the two locations where 
measurement estimates were made was the Sendai Plain. The video used in the analysis was 
taken by a Japanese broadcasting company. Flow-velocity estimates were made at four different 
locations within the Sendai Plain. These locations are at a distance of 1000–3000 m from the 
coastline. The maximum measured flow velocity was 8.0 m/sec. 

The grids used in this study are from the M7000 digital contoured bathymetric data and 
the GSI 10-m digital elevation models (http://fgd.gsi.go.jp/download/). Five nested grids were 
used in the numerical models. The propagation grid, or grid A, was the coarsest grid at 3 arc-
minutes. Four additional nested grids (1 arc-min, 20 arc-sec, 4 arc-sec, and 1 arc-sec) were used 
covering the area of interest. Also, three additional grids were created (0.67 arc-sec, 0.50 arc-sec, 
and 0.33 arc-sec) by interpolating the 1 arc-sec grid. These grids were used to analyze 
convergence and variability within the MOST model predictions. All the grids were referenced 
to Mean Sea Level (MSL) vertical datum and the World Geodetic System [ICAO 1984] 
horizontal datum. 

2.2 TSUNAMI MODELING 

The Method of Splitting Tsunami (MOST) model was developed as part of the Early Detection 
and Forecast of Tsunami (EDFT) project, and introduced by Titov and Synolakis [1995; 1998]. 
This model is currently used by U.S. National Oceanic and Atmospheric Administration for 
propagation and inundation forecasting [Titov 2009]. The MOST model has been validated and 
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successfully tested in various studies [Titov and González 1997; Titov and Synolakis 1998; and 
Synolakis et al. 2007]. Wei et al. [2011] modeled the 2011 Tohoku tsunami by using MOST to 
perform a detailed analysis of run-up height and inundation along the Japanese coast. MOST 
solves the 2+1 nonlinear shallow water equations: 

( ) ( ) 0x yht uh vh    (2.1) 

t x y x xu uu vu gh gd Du      (2.2) 

t x y y yv uv vv gh gd Dv      (2.3) 

where  , ,x y t  equal wave amplitude, d is the water depth,      , , , , , ,h x y t x y t d x y t  , 

 , ,u x y t , and  , ,v x y t  are the depth-averaged velocities, and  , ,D h u v  is the drag coefficient 

computed by Equation (2.4): 

 
42 2 23, ,D h u v n gh u v


   (2.4) 

Run-up and inundation were only performed in the higher resolution grids (1 arc-sec, 
0.67 arc-sec, 0.5 arc-sec, and 0.4 arc-sec, or approximately 30 m, 20 m, 15 m, and 10 m, 
respectively). A Manning coefficient of n = 0.025 was used in all simulations. For a detailed 
description of the MOST model, see Titov and Synolakis [1995; 1998]. 

GeoClaw, developed by LeVeque [1997; 2002], is an open-source tsunami model 
approved by the U.S. National Tsunami Hazard Mitigation Program (NTHMP). It has been 
validated by comparing real and artificial data (run-up, inundation, and flow velocity) with 
model results [LeVeque and George 2006; George 2008; González et al. 2011, Berger et al. 
2011; LeVeque et al. 2011; and Arcos and LeVeque 2015]. GeoClaw uses the finite volume to 
solve the 2D nonlinear shallow water equations in conservative form: 

    0t x y
h uh vh    (2.5) 
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where  , ,h x y t  is the fluid depth,  , ,u x y t  and  , ,v x y t 	are the depth-averaged velocities, 

 , ,B x y t  is the topography or bathymetry, and  , ,D h u v  is the drag coefficient computed by 

Equation (2.4), with the Manning coefficient, n = 0.025 constant throughout the grid. For a 
detailed description of GeoClaw, see LeVeque [2002] and the other references provided above. 

The initial condition used in both models is an initial sea-surface deformation based on 
Yokota et al. [2011]. This source model was created by carrying out a quadruple joint inversion 
of the strong-motion, teleseismic, geodetic, and tsunami datasets. The resulting model has a 
maximum co-seismic slip of approximately 35 m and a seismic moment of 224.2 10 Nm , which 
yields Mw = 9.0. 
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3 RESULTS AND DISCUSSION 

3.1 INTER-MODEL COMPARISON 

A 30-m resolution grid was used for the inter-model comparison analysis. Figure 3.1 shows the 
maximum free-surface elevation during the Tohoku tsunami event for the MOST and GeoClaw 
models. Both models predict that higher free-surface elevations occur at the central part of the 
Sendai Plain, around 38.20° N 140.975° E, with maximum wave amplitudes ranging from 8–12 
m. Both models agree relatively well with each other when predicting sea surface elevation near 
the shoreline, with the MOST model yielding slightly higher predictions. 

For consistency purposes, seven run-up measurements from the field data were removed 
from the analysis; see Table 3.1. These run-up measurements were located very close to the 
shoreline and led to an irregular inundation line when combined with the other run-up points. 
This analysis used a total of 46 run-up measurements from the Sendai Plain. Table 3.2 presents 
some statistics from field data and model predictions. The predicted average distance for the 
wave front as it traveled inland was 4460 m and 4740 m from the MOST and GeoClaw models, 
respectively, compared to 4450 m calculated from field data. Table 3.2 presents the average 
absolute difference between the field data and the two models. The GeoClaw model 
overestimated the inundation distance by 18% more than the MOST model. 

 

 
(a) (b) 

Figure 3.1 Predictions of the maximum tsunami amplitudes (m) in the Sendai Plain 
by the (a) MOST and (b) GeoClaw models. 
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Table 3.1 Field-data measurements not used in this study. 

Lat. (ºN) Lon. (ºE) 

38.1725 140.9538 

38.1822 140.9583 

38.2394 140.9533 

38.2718 140.9981 

38.2724 140.9980 

38.2799 141.0506 

38.2799 141.0484 

Table 3.2 Average inundation distance from field measurements and models. 

 MOST model GeoClaw model Field data 

Avg. (m) 4460.5 4739.3 4451.5 

Max. (m) 6246.4 6562.4 5947.0 

Min. (m) 1993.3 2746.9 2107.3 

Avg. Abs. Diff. (m)* 525.2 644.3 N.A. 

*Average absolute difference between field data and model predictions. 

Figure 3.2a shows field data run-up measurements and the predicted run-up by both 
models. The average run-up from the 44 field-data measurements is 1.89 m, with a standard 
deviation of 0.70 m, while the average run-up calculated by MOST and GeoClaw is 3.01 m and 
3.34 m, respectively. Thus, much of the model run-up results lay approximately two to three 
standard deviations away from the mean of the field data. The run-up standard deviation for both 
models is 0.16 m and 0.33 m for the MOST and GeoClaw models, respectively. Figure 3.2b 
shows the inundation line predicted by both models and the field data run-up height 
measurements at the Sendai Plain (38.10° N to 38.28° N). Both models provide a reasonably 
accurate prediction of the inundation line, thus indicating an inconsistency, i.e., the inundation 
line is well predicted, but the run-up elevation is not. This will be addressed later. 

Figure 3.3 shows the probability density function (pdf) of the run-up height obtained 
from field data and the models. This pdf, and all pdfs presented in this paper, were generated 
using all relevant field or modeled data between 38.10° N to 38.28° N along the Sendai Plain. 
Although the model distributions have a similar shape, with means within 10% of each other, 
clearly they overestimate the observed run-up. To further analyze the run-up predicted by both 
models, the field data run-up height measurements were compared with the elevation from the 
numerical topographic grid at the location of the run-up measurements using the Sendai 30-m 
resolution topography. 

Figure 3.4 presents a histogram of the estimated differences, which shows that most of 
the differences range between (-3 m) to (-1 m), indicating that there is an error in the topography. 
Due to the spread of the histogram, this error cannot be simply attributed to a datum 
inconsistency. The differences between run-up elevations and topographic grid elevations would 
also indicate that it should not be possible for a model to agree with both the inundation line and 
the run-up elevation when using this GSI topography data. Such errors are particularly 
significant for flat coastal areas such as the Sendai Plain. 
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(a) (b) 

Figure 3.2 Comparison of run-up height measurements and inundation line among 
field data, the MOST model, and the GeoClaw model during the 2011 
Tohoku event in the Sendai Plain. 

 

Figure 3.3 Comparison of the run-up heights probability density functions among 
the interpolated field data, the MOST model, and GeoClaw model. 
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Figure 3.4 Estimated differences between field data run-up heights and the 
topographic elevations from the numerical grid at the location of the run-
up measurements. 

In addition to flow depths, tsunami flow velocities were analyzed to understand the 
tsunami hazard at a particular location, e.g., currents are more destructive than wave height 
amplitudes during many tsunami events [Synolakis 2004; Lynett et al. 2012; and Lynett et al. 
2014]. Figure 3.5 presents the maximum flow velocities in the Sendai Plain predicted by the 
MOST and GeoClaw models, respectively. Both models are in agreement predicting the 
locations of high-flow velocities. In addition, both models show a rather complex profile of 
overland flow velocity, with a number of local maxima. These local maxima are due to 
topographic features and properties of the incident wave form. 

Koshimura and Hayashi [2012] measured the tsunami flow velocities at four different 
locations in the Sendai Plain. Figure 3.6 shows the modeled tsunami flow velocities and field 
measurements at these locations. Both models underpredicted the flow velocity at F1, which is 
close to the coastline and overpredicted at Y1 and K3, which are further inland. At F2, GeoClaw 
overpredicted the two data measurements, while the MOST model underestimated them. There 
are several reasons why a numerical model might over- or underestimates flow-velocity 
measurements: complex and unresolved bathymetry/topography, improper friction coefficients, 
no inclusion of tides, and numerical dispersion and dissipation errors. A higher friction 
coefficient, perhaps more appropriate to rice paddies (e.g., n = 0.035), would likely decrease 
flow speeds further inland, which is the area with largest model–data discrepancy. 
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(a) (b) 

Figure 3.5 Maximum flow velocities predicted by the (a) MOST and (b) GeoClaw 
models. 

 

Figure 3.6 Comparison of maximum flow velocities at the Sendai Plain between 
Koshimura and Hayashi [2012] measurements (gray triangles), MOST 
model predictions (circles), and GeoClaw model predictions (squares). 
The vertical bars on the model data provide the standard deviation of the 
predictions in the measurement window. Two measurements were taken 
at F2. 

Figure 3.7 compares the pdfs of modeled maximum shoreline flow velocity and flow 
velocity at the 1-m inland flow depth. These two locations are meant to represent limits of the 
overland flow area; one comparison was performed at the shoreline and another near the 
inundation limit, but still at a significant flow depth. Since there is no available data at these 
locations, it is very difficult to assess accuracy of the models. Many of the model velocity 
predictions at the shoreline are between 5–9 m/sec, with means of 7.30 and 7.34 m/sec for 
GeoClaw and MOST models, respectively. The shapes of the shoreline flow-velocity pdfs tend 
to agree well with small differences in their means. Figure 3.7b shows that both models agree 
well when predicting the maximum flow velocities at the 1-m flow depth. The peak of the 
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GeoClaw distribution is located around 1.63 m/sec, with an average of 1.60 m/sec, while the 
peak for MOST is located around 1.20 m/sec, with an average of 1.63 m/sec. 

 
(a) 

(b) 

Figure 3.7 Comparisons between GeoClaw and MOST models: (a) probability density 
functions of maximum shoreline flow velocities; and (b) 1-m depth 
maximum flow velocities at the Sendai Plain. 

3.2 VARIABILITY AND UNCERTAINTIES: THE MOST MODEL 

Unquantified uncertainties and variabilities within a model can lead to unknown errors in a THA. 
This section uses the MOST model to further explore and understand possible sources of error 
within a model. For this part of the analysis, four inundation grids (1 arc-sec, 0.67 arc-sec, 0.50 
arc-sec, and 0.33 arc-sec) were used to compare inundation, run-up, and velocity predictions 
made by the MOST model. As was previously mentioned, finer grids were created by 
interpolating the 1 arc-sec topography data. Figure 3.8 shows a pdf of the run-up height 
calculations from the different grids. Both run-up and inundation line predictions numerically 
converge within the tested grid sizes. There are small deviations in the inundation line and run-
up calculations when using different grid resolutions (30 m–10 m). In this case, it seems 
reasonable to conclude that there is no need to use inundation grids finer than 30 m when 
calculating run-up and inundation lines. 

Figure 3.9 shows a comparison of maximum shoreline flow velocity pdfs and 1-m flow 
depth maximum velocity pdfs for the different grid resolutions. Averages for shoreline velocities 
are around 7.50 m/sec, and for 1-m flow depth velocities are around 1.70 m/sec. Initially, there 
appears to be numerical convergence between the 30 m, 20 m, and 15 m resolution simulations at 
the shoreline; however, the 10-m resolution grid diverges, with an average maximum velocity of 
8.03 m/sec. While this divergence is relatively small with a change of 7% in mean values 
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between the 15 m and 10 m results, this difference is not easy to reconcile. Further study reveals 
that this variance between the 15-m and 10-m results appears to be driven by a difference in the 
prediction of the steep front of the incoming bore, with the understanding that breaking in this 
model is controlled through numerical dissipation. However, it is difficult to assess whether this 
variance is physical (i.e., a better resolution of the process) or numerical (i.e., resulting from 
different numerical errors). Stable numerical results were not achievable for grid sizes less than 
10 m. Such a divergence with finer resolutions is not found at the inland location. 

Figure 3.10 shows the calculated mean flow velocity at six different flow depths (where 6 
m corresponds approximately to the shoreline): note that the means seem to converge at lower 
flow depths. Also, the greatest increase in flow velocity between flow depths was found to be 
from 2–3 m, with an average increase of 2.69 m/sec for the tested grids. It is commonly assumed 
that the Froude number (Fr) is near 1 at the shoreline and decreases inland, but Figure 3.10 
shows an irregular Fr profile. The Fr is very near 1 at the shoreline, greater than 1 (supercritical 
flow) at flow depths of 3–5 m, and less than 1 (subcritical flow) at flow depths of 1–2 m. 

It is reasonable to expect a steady decrease in velocity if assuming a simple beach as the 
wave front makes its way inland; however, the simulation results provided in Figure 3.11a show 
otherwise. Between 400–1200-m inland, maximum velocities (again the mean of the maximum 
velocities across the studied Sendia Plain) appear to be constant. Analysis of numerical output 
demonstrates that small bathymetry/topography features can cause large changes in predicted 
flow velocities, producing secondary peaks. Further inland, results from the MOST model show 
a steady decline in velocity from 1200–2800 m, with a negative slope of about 0.002 for all grid 
resolutions. Peak-flow velocities fluctuate from 6–17 m/sec and standard deviations from 0.9–1.7 
m/sec. 

 

 

Figure 3.8 Comparison of the run-up heights probability density functions between 
the four different grid resolutions using the MOST model. 
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(a) 

 
(b) 

Figure 3.9 (a) Comparison of the maximum shoreline flow velocities probability 
density functions; and (b) 1-m depth maximum flow velocities probability 
density functions between the four different grid resolutions using MOST. 

 

 

Figure 3.10 Mean flow velocity at different flow depths. The 6-meter flow depth 
corresponds approximately to the shoreline. The thick black line 
represents the calculated mean flow velocities using a Froude number of 
1. 
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(a) 

 
(b) (c) 

Figure 3.11 Inland maximum flow velocities across shore in the Sendai Plain: (a) 
comparison of the average flow velocities between GeoClaw model and 
the four different grid resolutions using the MOST model; (b) comparison 
of peak-flow velocities; and (c) comparison of standard deviations. 
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4 CONCLUSIONS 

This study compares the results from field data obtained from the 2011 Tohoku tsunami with 
predictions obtained from two numerical models: the MOST and GeoClaw model. In general, 
both models overpredicted the run-up elevation. On the other hand, the inundation line predicted 
by both models was in good agreement with field data observations; this inconsistency can be 
attributed to errors in the topographical data. By comparing observed run-up elevation 
measurements to DEM elevations at the same location, the topography bias ranged from (- 3m) 
to (-1 m). This bias is very significant for this particular location since the Sendai Plain is 
relatively flat. Given this topography, it should prove impossible to obtain acceptable agreement 
for both the run-up elevation and inundation line. For inter-model agreement, both numerical 
models agree relatively well with each other when predicting maximum sea surface elevation 
and maximum velocities, with MOST model yielding slightly higher predictions for both. Note 
that both models predict similar maximum velocity at the shoreline—see Figure 3.7—a key 
metric. 

When predicting run-up heights and inundation lines using the MOST model, numerical 
convergence was achieved using the 30-m resolution inundation grid, suggesting that grids finer 
than 30-m resolution are not necessary when calculating these parameters at this particular 
location. Generally, when trying to simulate velocities, it is recommended to use higher-
resolution topography, as small local changes in bathymetry/topography can cause similarly 
large local changes in the speed. Predictions of overland flow showed that the Froude number 
varies at different flow depths, which is contrary to what is commonly assumed. At flow depths 
of 3–5 m, the flow is considered supercritical, indicating that speed would increase in the 
presence of buildings or structures. Finally, it was expected that the maximum flow velocity 
would decrease as the wave makes its way inland, but this pattern was not obvious between the 
400-m and 1200-m contour lines, as complexities in the topography and flooding waves 
obscured this idealized expectation. 
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