Ground-Motion Prediction Equations for Arias Intensity Consistent with the NGA-West2 Ground-Motion Models

Charlotte Abrahamson
Department of Chemical Engineering
University of California, Santa Barbara

Hao-Jun Michael Shi
Department of Mathematics
University of California, Los Angeles

Brian Yang
Department of Computer Science
Stanford University

PEER Report No. 2016/05
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley

July 2016
Disclaimer

The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the study sponsor(s) or the Pacific Earthquake Engineering Research Center.
Ground-Motion Prediction Equations for Arias Intensity Consistent with the NGA-West2 Ground-Motion Models

Charlotte Abrahamson
Department of Chemical Engineering
University of California, Santa Barbara

Hao-Jun Michael Shi
Department of Mathematics
University of California, Los Angeles

Brian Yang
Department of Computer Science
Stanford University

PEER Report 2016/05
Pacific Earthquake Engineering Research Center
Headquarters at the University of California, Berkeley
July 2016
ABSTRACT

Following the approach outlined in the Watson-Lamprey and Abrahamson [2006] conditional model for Arias intensity, we use the NGA-West2 database to derive a new scaling model for Arias intensity given peak ground acceleration (PGA), $T = 1$ sec spectral acceleration (SA_T), shear-wave velocity in the top 30 m (V_{S30}), and magnitude. By combining this conditional model with each of five NGA-West2 ground-motion models for PGA and SA_T, we derived five new ground motion prediction equations (GMPEs) for the median and standard deviation of Arias intensity. These five GMPEs for Arias intensity capture the more complex ground-motion scaling effects found in some of the NGA-West2 GMPEs, such as hanging-wall effects, sediment-depth effects, soil nonlinearity effects, and regionalization effects. This allows for Arias intensity values to be estimated that are consistent with the NGA-West2 GMPEs.
ACKNOWLEDGMENTS

This study was supported by the Pacific Earthquake Engineering Research Center (PEER). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsoring agency.

We thank Dr. Norman Abrahamson for suggesting this problem to us, for providing guidance regarding data analysis methods, interpretation of the results, and insights into engineering applications, and for providing helpful suggestions on the manuscript. We also thank Dr. Yousef Bozorgnia for providing the dataset for CB12 and useful comments on the manuscript.
CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... v

TABLE OF CONTENTS ... vii

LIST OF TABLES ... ix

LIST OF FIGURES ... ix

1 INTRODUCTION ..11

1.1 Traditional Models for Arias Intensity ...11

1.2 Conditional Ground-Motion Models ...11

2 DATASET ...13

2.1 Dataset Selection ...13

3 CONDITIONAL ARIAS INTENSITY MODEL ..15

3.1 Functional Form ...15

3.2 Evaluation of Residuals ...16

3.3 Evaluation of Aleatory Variability ...17

3.4 Comparison of Conditional I_a Models ...18

4 ARIAS INTENSITY GROUND MOTION PREDICTION EQUATIONS31

4.1 Moving from Conditional Models to Traditional Models31

4.2 Model Results ..32

5 CONCLUSIONS ..39

6 REFERENCES ..41
LIST OF TABLES

Table 3.1 Parameter estimates, standard errors, and t-ratios for scaling model.16
Table 3.2 Standard deviation of the conditional I_a residuals by magnitude bin.18
Table 4.1 Parameter Values for Computing the Standard Deviation..32
Table 4.2 Inter-event, intra-event, and total standard deviations for two different datasets and reference GMPEs...34

LIST OF FIGURES

Figure 2.1 Magnitude and distance distribution of the selected I_a dataset.14
Figure 3.1 Inter-event residuals of the conditional I_a model as a function of magnitude (top) and Z_{TOR} (bottom)..20
Figure 3.2 Intra-event residuals of conditional I_a model as a function of (a) PGA, (b) SA_{T1}, and (c) V_{S30}..21
Figure 3.3 Intra-event residuals of the conditional I_a model as a function of parameters not included in the conditional model...22
Figure 3.4 Intra-event residuals of the conditional I_a model as a function of rupture distance separated by magnitude bin. ...23
Figure 3.5 Intra-event residuals of conditional I_a model for sites with expected hanging-wall effects ($M \geq 6$, dip ≤ 60, $R_{JB} \leq 5$ km, $R_x > 0$) as a function of R_{JB}. The red curve shows the mean residual...24
Figure 3.6 Intra-event residuals of conditional I_a model for sites with expected hanging-wall effects ($M \geq 6$, dip ≤ 60, $R_{JB} \leq 5$ km, $R_x > 0$) as a function of (a) magnitude and (b) dip. The red curve shows the mean residual.25
Figure 3.7 Intra-event residuals of conditional I_a model for sites with expected hanging-wall effects ($M \geq 6$, dip ≤ 60, $R_{JB} \leq 5$ km, $R_x > 0$) after including the HW term in Equation (3.4). The red curves shows the mean residual for distance bins and the red dashed curves show the plus and minus one standard error of the mean residual...26
Figure 3.8 Normal probability plot for the (a) inter-event residuals and the (b) intra-event residuals for the conditional I_a model...27
Figure 3.9 Normal probability plot for the intra-event residuals (in ln units) using the mixture model for the conditional I_a model...28
Figure 3.10 Comparison of the scaling for the WLA06 conditional I_a model with the results of this study. ...29
Figure 3.11 Comparison of the scaling for the WLA06 conditional I_a model with the results of this study. Because the PSA ($T=1$) is correlated with PGA, the scaling with PGA or PSA is shown for fixed magnitudes (fixed spectral shape). ...30
Figure 4.1 Comparison of the distance scaling of the median I_a models for strike–slip faults for $V_{S30} = 520 \text{ m/sec}$ (TBA03 class C, SBP09 class B). (a) $M = 5$, (b) $M = 6$, (c) $M = 7$, and (d) $M = 8$. ..35

Figure 4.2 Comparison of the magnitude scaling of the median I_a models for strike–slip faults for a rupture distance of 10 km and $V_{S30} = 520 \text{ m/sec}$ (TBA03 class C, SBP09 class B). ..36

Figure 4.3 Comparison of the magnitude scaling of the median I_a models for strike–slip faults for a rupture distance of 10 km and $V_{S30} = 270 \text{ m/sec}$ (TBA03 class D, SBP09 class D). ..36

Figure 4.4 Comparison of the median I_a for dipping faults for $M = 7$ and $V_{S30} = 520 \text{ m/sec}$ (TBA03 class D, SBP09 class D). ..37

Figure 4.5 Comparison of the standard deviations for the I_a models based on the NGA West2 GMPEs using Equation (4.4) with the standard deviations from previously published I_a models. Also shown are the standard deviation estimated from the NGA-West2 data within 80 km using the ASK14 I_a model and the standard deviation estimated from the NGA-West1 data used by CB12 with the Campbell and Bozorgnia [2008] GMPE (CB08). ..38
1 Introduction

1.1 TRADITIONAL MODELS FOR ARIAS INTENSITY

Arias intensity (I_a) has been recognized as a useful indicator of damage potential for earth dams in seismic analysis [Travasarou et al. 2003]. There have been several empirical models developed for I_a in the past decade (e.g., Travasarou et al. [2003] (TBA03); Stafford et al. [2009] (SBP09); Foulser-Piggott and Stafford [2012] (FPS12); and Campbell and Bozorgnia [2012] (CB12). These I_a models have used a relatively simple parameterization to fit the Arias intensity with the exception of the CB12 model. This creates a potential inconsistency with the pseudo-spectral acceleration (PSA) values developed using ground-motion prediction equations (GMPEs) with more complex parameterization. For example, if the site is located over the hanging wall, then the PSA values at short periods may be increased by a factor of 2 to 3 compared to footwall sites at the same distance; but if the I_a model does not include hanging-wall effects, then the I_a computed for the site may be too small and may not be consistent with the I_a expected for the given PSA. Similarly, if there are strong nonlinear site effects, then the PSA values based on GMPEs that include nonlinearity will be inconsistent with the I_a values based on I_a models that do not include these effects.

1.2 CONDITIONAL GROUND-MOTION MODELS

Watson-Lamprey and Abrahamson [2006] developed a conditional model for I_a that included the observed peak ground acceleration (PGA) and 1-sec spectral acceleration (S_{AT1}) as predictive parameters in addition to the earthquake magnitude, distance, and time-averaged shear-wave velocity over the top 30 m (V_{S30}). The I_a model is called conditional because it estimates the I_a given the observed PGA and S_{AT1} values.

This report uses the conditional ground-motion model approach to develop an updated conditional model for I_a that is consistent with the NGA-West2 ground-motion models. The advantage of the conditional ground-motion model approach for predicting the I_a is that the more complicated scaling that are included in the NGA-West2 GMPEs—such as short-distance saturation, hanging-wall effects, soil-depth effects, soil nonlinearity effects, and regionalization effects—are accommodated by estimating the median and standard deviations of the PGA and S_{AT1} using the NGA-West2 GMPEs [Abrahamson et al. 2014 (ASK14); Boore et al. 2014 (BSSA14); Campbell and Bozorgnia 2014 (CB14); Chio and Youngs 2014 (CY14); and Idriss, 2014 (I14)]. This allows for estimation of I_a values that are consistent with the estimated PSA.
values from more recent GMPEs to include more complex scaling, such as the NGA-West2 GMPEs.
2 Dataset

2.1 DATASET SELECTION

This study used the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 database [Ancheta et al. 2014], which includes earthquakes that occurred through 2011 and contains over 21,000 three-component recordings from California and worldwide, with moment magnitudes, M, ranging from $M3.0$–$M7.9$. We use the same subset of this dataset as the ASK14 model, which consists of 15,730 recordings (distances between 0 and 400 km from 326 earthquakes with magnitudes between 3 and 7.9). There were five recordings with missing I_a values [Record Serial Number (RSN) 4236, 8164, 8165, 8166, 8169]. The initial regression studies also found that there were ten recordings that were significant outliers in terms of only their I_a values (RSN 9048, 13483, 14046, 14727, 15374, 17041, 17206, 17305, 17800, and 20407). We did not correct these ten records and simply removed them from our dataset.

The resulting magnitude and distance distribution of the 15,715 recordings in the selected dataset is shown in Figure 2.1. Of this dataset, 506 recordings have a minimum usable frequency greater than 1 Hz, indicating that their SA_{71} values are unusable. Removing these 506 recordings leads to our final dataset of 15,209 recordings.
Figure 2.1 Magnitude and distance distribution of the selected I_a dataset.
3 Conditional Arias Intensity Model

3.1 FUNCTIONAL FORM

The Arias intensity is defined as

\[I_a = \frac{\pi}{2g} \int a^2(t) \, dt \]

(3.1)

where \(a(t) \) is the acceleration in m/sec\(^2\), \(g \) is the acceleration of gravity, and \(I_a \) is the Arias intensity in m/sec [Arias 1970]. Following Watson-Lamprey and Abrahamson [2006], we develop a conditional model for Arias intensity that includes the observed PGA and \(SA_{T1} \) as predictor variables. Watson-Lamprey and Abrahamson [2006] used the following functional form for their conditional \(I_a \) model:

\[
\ln \left(I_a \, (m/sec) \right) = c_1 + c_2 \ln(V_{S30}) + c_3 M + c_4 \ln(\text{PGA}) + c_5 \ln(SA_{T1}) + c_6 \ln(R_{\text{rup}}) + c_7 \left[\ln(R_{\text{rup}}) \right]^2
\]

(3.2)

An initial exploratory analysis using the NGA-West2 database showed that the coefficients for the distance terms (\(c_6 \) and \(c_7 \)) were not significantly different from zero. (\(c_6 \) and \(c_7 \) are highly correlated so both terms cannot be determined. The \(t \)-ratio for \(c_6 \) is -0.16.) Therefore, the distance terms were removed and the form listed in Equation (3.3) was used for developing the conditional \(I_a \) model.

\[
\ln \left(I_a \, (m/sec) \right) = c_1 + c_2 \ln(V_{S30}) + c_3 M + c_4 \ln(\text{PGA}) + c_5 \ln(SA_{T1})
\]

(3.3)

where \(V_{S30} \) is in m/sec, and PGA and \(SA_{T1} \) are in g.

It is common to use a random-effects regression model for developing GMPEs to account for the correlation in the data through the event terms (e.g., Abrahamson and Youngs [1992]); however, because we developed a conditional model that includes the recorded PGA and \(SA_{T1} \) as input parameters, some of the correlation within an event is already captured through the observed PGA and \(SA_{T1} \) terms. We used the random-effects regression in the statistics program JMP (SAS Institute) to estimate the coefficients for the conditional \(I_a \) model. The resulting coefficients are listed in Table 3.1 along with the standard errors of the estimates. Table 3.1 shows that the \(I_a \) scales more strongly with PGA than \(SA_{T1} \) because the \(I_a \) is a high-frequency
parameter; however, the SA_{T1} term is also statistically significant, shown by the large t-ratio of 44.

This conditional model for I_α has a total standard deviation of 0.38 natural log units (intra-event standard deviation $\phi = 0.35$, inter-event standard deviation $\tau = 0.15$). This standard deviation is much smaller than the standard deviations for traditional I_α models (not conditioned on observed PGA and SA_{T1}) that are about 1.0 natural log units, indicating that the I_α can be computed with much smaller aleatory variability if PGA and SA_{T1} are known, due to strong correlation of the I_α with the PGA and SA_{T1}.

Table 3.1 Parameter estimates, standard errors, and t-ratios for scaling model.

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>t-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>0.47</td>
<td>0.069</td>
<td>7</td>
</tr>
<tr>
<td>c_2</td>
<td>-0.28</td>
<td>0.0085</td>
<td>-33</td>
</tr>
<tr>
<td>c_3</td>
<td>0.50</td>
<td>0.011</td>
<td>45</td>
</tr>
<tr>
<td>c_4</td>
<td>1.52</td>
<td>0.0038</td>
<td>399</td>
</tr>
<tr>
<td>c_5</td>
<td>0.21</td>
<td>0.0047</td>
<td>44</td>
</tr>
</tbody>
</table>

3.2 EVALUATION OF RESIDUALS

The residuals for the conditional I_α model are shown in Figures 3.1 and 3.2 as a function of the four model input parameters: PGA, SA_{T1}, M, and V_{S30}. Figure 3.1 shows the inter-event residuals as a function of magnitude. Figure 3.2 shows the intra-event residuals as a function of PGA, SA_{T1}, and V_{S30}. The lack of trends in the residuals shows that the simple scaling in Equation (3.3) adequately captures the dependence of the I_α on these four parameters.

We also checked the residuals for other parameters that are used in GMPEs for PSA but were not used in our conditional I_α model. The lower frame of Figure 3.1 shows the inter-event residuals as a function of depth to top of rupture (Z_{TOR}). Figure 3.3 shows the intra-event results as a function of rupture distance (R_{RUP}), soil depth to $V_5 = 1$ km/sec ($Z_{1.0}$), and rock PGA (PGA1100) for soil sites with $V_{S30} < 270$ m/sec. There is no trend in the residuals as a function of these parameters, indicating that the I_α scaling with these parameters, including the effects of nonlinear site response on the I_α, is captured in the conditional model through the use of the observed PGA and SA_{T1} values. To check the magnitude dependence of the distance scaling, Figure 3.4 shows the intra-event residuals versus distance separated by magnitude. There are no systematic trends in the residuals, indicating that the magnitude dependence of the distance scaling for I_α is also captured through the use of the observed PGA and SA_{T1} values.

Finally, we checked the residuals for sites that are expected to show hanging-wall (HW) effects. The intra-event residuals for sites on the HW side of the rupture ($R_x > 0$) and located over or near the hanging-wall (Joyner-Boore distance, $R_{BB} < 5$ km) from earthquakes with $M > 6$ and dip $< 60^\circ$ show a small under-prediction of the I_α. The trend in the residuals is nearly constant with R_{BB}, magnitude, and dip. The average amplitude of the offset in the HW residuals (0.11 ln units) is small compared to the size of the HW effects in the GMPEs (e.g., about 0.7 ln units in the ASK14 model for sites over the HW), indicating that the simple conditional model accounts
for most of the HW effect. Because sites located over the HW are an important factor in building design, an additional term is added to the conditional I_a model to improve the model for HW sites. Although the residuals show a constant shift, this needs to be tapered for sites at larger distances, smaller magnitudes, and steeper dips. Therefore, we applied the form of the dip, magnitude, and distance tapers for the HW term from the ASK14 model [Equations (3.5), (3.6), and (3.7)]. The HW term is given by:

$$HW_{\text{resid}} = c_8 F_{HW} T_1(\text{dip}) T_2(M) T_3(R_{jb})$$ \hspace{1cm} (3.4)$$

where F_{HW} is a flag that is 1 for sites located on the hanging-wall side of the rupture and 0 for sites located on the footwall side of the rupture:

$$T_1(\text{dip}) = \begin{cases}
(90 - \text{dip}) / 45 & \text{for dip} > 30 \\
60 / 45 & \text{for dip} < 30
\end{cases}$$ \hspace{1cm} (3.5)$$

$$T_2(M) = \begin{cases}
1 & \text{for } M \geq 6.5 \\
1 + 0.2(M - 6.5) - 0.8(M - 6.5)^2 & \text{for } 5.5 < M < 6.5 \\
0 & \text{for } M \leq 5.5
\end{cases}$$ \hspace{1cm} (3.6)$$

$$T_3(R_{jb}) = \begin{cases}
1 & \text{for } R_{jb} = 0 \\
1 - \frac{R_{jb}}{15} & \text{for } R_{jb} < 15 \\
0 & \text{for } R_{jb} \geq 15
\end{cases}$$ \hspace{1cm} (3.7)$$

The estimate of c_8 is 0.09 with a standard error of 0.03.

3.3 EVALUATION OF ALEATORY VARIABILITY

The regression analysis assumes that the $\ln(I_a)$ residuals have a normal distribution. This assumption is evaluated using normal probability plots. Figure 3.8 shows the normal probability plots of the inter-event and intra-event residuals. The distribution of inter-event residuals is consistent with a normal distribution except for the lower tail, which is not important for engineering applications because we are concerned with large damaging ground motions. The distribution of the intra-event residuals is generally consistent with the normal distribution, with the exception of the upper and lower tails, starting at about the 1% and 99% levels (e.g., about ±2.3 standard deviations). Figure 3.8 shows that the I_a intra-event residuals have fat tails compared to the normal distribution. Similar fat tails have been observed for the intra-event response spectral values using the NGA-West2 dataset [Geopentech 2015 Chapter 11].

The fat tails for the intra-event residuals can be described using a mixture model, given by the weighted average of two normal distributions: one has a mean of 0, standard deviation of 0.40 and weight of 0.56; the other has a mean of 0, standard deviation of 0.27 and weight of 0.44. The normal probability plot using the mixture model is shown in Figure 3.9. The mixture model adequately captures the fat tails in the upper range.
The intra-event residual distribution deviates from a normal distribution at around 2.3 standard deviations, but it is consistent with the mixture model distribution up to 4 standard deviations. If the I_a model is used to compute probabilistic hazard at low probability levels, then the mixture model should be used to compute the conditional probability of exceedance as shown below, where $\Phi(x)$ is the cumulative standard normal distribution.

$$P(I_a > z|PGA, SA_{T1}, M, V_{S30}) = 0.56 \left[1 - \Phi \left(\frac{\ln(z) - \ln(I_a)}{\phi_1 + \tau} \right) \right] + 0.44 \left[1 - \Phi \left(\frac{\ln(z) - \ln(I_a)}{\phi_2 + \tau} \right) \right]$$

(3.8)

where ϕ_1 and ϕ_2 are the intra-event standard deviations from the mixture model ($\phi_1 = 0.40$ and $\phi_2 = 0.27$), and τ is inter-event standard deviation ($\tau = 0.15$).

The regression also assumes that the I_a residuals are homoscedastic. This assumption is evaluated by visual inspection of the scatter of residuals shown against the predictive parameters in Figures 3.1, 3.2, 3.3, and 3.4. The amplitude of the scatter of residuals does not appear to have any trends with the predicted parameters (magnitude, PGA, SA_{T1}, and V_{S30}). For PSA GMPEs, the standard deviation is often modeled with a dependence on the earthquake magnitude (e.g., ASK14, BSSA14, CB14, CY14, and I14). The magnitude dependence of the standard deviation for the conditional I_a model is evaluated by computing the intra-event and inter-event standard deviations for different magnitude ranges (Table 3.2). There is no systematic increase or decrease in the inter-event and intra-event standard deviations (τ and ϕ) with magnitude.

<table>
<thead>
<tr>
<th>Magnitude Range</th>
<th>Number of Earthquakes</th>
<th>Number of Recordings</th>
<th>ϕ (LN units)</th>
<th>τ (LN units)</th>
<th>σ (LN units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5–3.5</td>
<td>25</td>
<td>821</td>
<td>0.38</td>
<td>0.11</td>
<td>0.40</td>
</tr>
<tr>
<td>3.5–4.5</td>
<td>169</td>
<td>7713</td>
<td>0.36</td>
<td>0.14</td>
<td>0.39</td>
</tr>
<tr>
<td>4.5–5.5</td>
<td>54</td>
<td>2235</td>
<td>0.33</td>
<td>0.17</td>
<td>0.37</td>
</tr>
<tr>
<td>5.5–6.5</td>
<td>49</td>
<td>1785</td>
<td>0.29</td>
<td>0.16</td>
<td>0.33</td>
</tr>
<tr>
<td>6.5–7.5</td>
<td>25</td>
<td>2622</td>
<td>0.37</td>
<td>0.14</td>
<td>0.40</td>
</tr>
<tr>
<td>7.5–8.5</td>
<td>4</td>
<td>539</td>
<td>0.35</td>
<td>too few eqk</td>
<td></td>
</tr>
</tbody>
</table>

3.4 COMPARISON OF CONDITIONAL I_a MODELS

The conditional I_a model developed in this section is compared to the WLA06 conditional I_a model in Figures 3.10 and 3.11. The coefficients for the magnitude scaling and V_{S30} scaling in the current model are similar to the coefficients in the WLA06. This leads to similar magnitude and V_{S30} scaling between the two models; see Figure 3.10.

The coefficient for the $\ln(PGA)$ term is much larger in the current model (1.52) than in the WLA06 model (1.30), suggesting that the current model leads to stronger scaling with PGA than the WLA06 model; however, the $\ln(PGA)$ is correlated with the $\ln[PSA(T=1)]$, and the
coefficient for the ln[PSA(T=1)] term is much smaller in the current model (0.21) than in the WLA06 model (0.33). This difference in the PSA(T=1) scaling offsets much of the difference in the PGA scaling between the two models.

Because the relative values of the PGA and PSA(T=1) depend on the spectral shape, Figure 3.11 shows the scaling with ln(PGA) for magnitudes of 5.0, 6.5, and 8.0. The largest differences in the ln(PGA) scaling is at the M5 range. This reflects the large increase in the number of recordings from moderate magnitude earthquakes in the NGA-West2 dataset used in this study compared to the NGA-West1 dataset used by WLA06. Similarly, the scaling with ln[PSA(T=1)] is shown in the right-hand frame of Figure 3.11 for magnitudes 5.0, 6.5, and 8.0. As with the ln(PGA) scaling, the correlation of the ln(PGA) and the ln[PSA(T=1)] values reduces the differences in the predicted I_a from the two models.

The predicted I_a values using the current conditional I_a model and using the WA06 conditional I_a model are very similar even though the current model uses a much larger database. In contrast, the predicted I_a values using the traditional (non-conditional) approach show a stronger dependence on the dataset used to develop the model (see Chapter 4). Therefore, using the conditional I_a model approach leads to more robust ground-motion models for I_a than using the traditional approach.
Figure 3.1 Inter-event residuals of the conditional I_s model as a function of magnitude (top) and Z_{TOR} (bottom).
Figure 3.2 Intra-event residuals of conditional I_a model as a function of (a) PGA, (b) SA_{T1}, and (c) V_{S30}.
Figure 3.3 Intra-event residuals of the conditional I_a model as a function of parameters not included in the conditional model.
Figure 3.4 Intra-event residuals of the conditional I_a model as a function of rupture distance separated by magnitude bin.
Figure 3.5 Intra-event residuals of conditional I_a model for sites with expected hanging-wall effects ($M \geq 6$, dip ≤ 60, $R_{JB} \leq 5$ km, $R_x > 0$) as a function of R_{JB}. The red curve shows the mean residual.
Figure 3.6 Intra-event residuals of conditional I_a model for sites with expected hanging-wall effects ($M \geq 6$, dip ≤ 60, $R_{jB} \leq 5$ km, $R_x > 0$) as a function of (a) magnitude and (b) dip. The red curve shows the mean residual.
Figure 3.7 Intra-event residuals of conditional I_h model for sites with expected hanging-wall effects ($M \geq 6$, dip ≤ 60, $R_x > 0$) after including the HW term in Equation (3.4). The red curves shows the mean residual for distance bins and the red dashed curves show the plus and minus one standard error of the mean residual.
Figure 3.8 Normal probability plot for the (a) inter-event residuals and the (b) intra-event residuals for the conditional I_a model.
Figure 3.9 Normal probability plot for the intra-event residuals (in ln units) using the mixture model for the conditional I_a model.
Figure 3.10 Comparison of the scaling for the WLA06 conditional I_s model with the results of this study.
Figure 3.11 Comparison of the scaling for the WLA06 conditional I_a model with the results of this study. Because the PSA ($T=1$) is correlated with PGA, the scaling with PGA or PSA is shown for fixed magnitudes (fixed spectral shape).
4 Arias Intensity Ground Motion Prediction Equations

4.1 MOVING FROM CONDITIONAL MODELS TO TRADITIONAL MODELS

For a given earthquake scenario and site location, we use the median PGA and median S_{AT1} values from the individual NGA-West2 ground motion models combined with the conditional I_a model in Equations (3.3) and (3.4) to develop a median I_a for each NGA-West2 model, as shown in Equation (4.1).

$$
\ln \left[I_a \text{ (m/sec)} \right] = c_1 + c_2 \ln \left(V_{S30} \right) + c_3 M + c_4 \ln \left(\text{PGA} \right) + c_5 \ln \left(S_{AT1}\text{med} \right) + c_6 F_{IW}^J \begin{cases}
1 & \text{if } R_{JB} < 5 \text{ km} \\
1 - \frac{R_{JB} - 5}{5} & \text{if } 5 < R_{JB} < 10 \text{ km} \\
0 & \text{if } R_{JB} > 10 \text{ km}
\end{cases}
$$

This median I_a depends on the median PGA and S_{AT1} from the NGA-West2 GMPEs and is no longer conditioned on the observed PGA and S_{AT1}.

The variance for the I_a GMPE can be calculated using propagation of errors [Bevington and Robinson 1969] as follows:

$$
\sigma_{\ln(I_a)}^2 = \sigma_{\ln(I_a)\ln(PGA),\ln(S_{AT1})}^2 + \sigma_{\ln(PGA)}^2 \left(\frac{\partial \ln(I_a)}{\partial \ln(PGA)} \right)^2 + \sigma_{\ln(S_{AT1})}^2 \left(\frac{\partial \ln(I_a)}{\partial \ln(S_{AT1})} \right)^2 + 2 \text{COV}[\ln(PGA),\ln(S_{AT1})] \left(\frac{\partial \ln(I_a)}{\partial \ln(PGA)} \right) \left(\frac{\partial \ln(I_a)}{\partial \ln(S_{AT1})} \right)
$$

where

$$
\text{COV}[\ln(PGA),\ln(S_{AT1})] = \rho \left[\sigma_{\ln(PGA)} \sigma_{\ln(S_{AT1})} \right] \left[\sigma_{\ln(PGA)} \sigma_{\ln(S_{AT1})} \right]
$$

and ρ is the correlation coefficient, and ϵ is the normalized residual from the NGA-West2 GMPE. The partial derivatives were calculated from Equation (4.1). The $\sigma_{\ln(PGA)}, \sigma_{\ln(S_{AT1})}$ term is the standard deviation for the conditional I_a in Equation (3.3). We used the correlation
coefficient, \(\rho[\varepsilon_{\ln(PGA)}, \varepsilon_{\ln(SaT_1)}] \), from the Baker and Jayaram [2008] model. Although this correlation model was derived from the NGA-West1 dataset, Carlton and Abrahamson [2014] showed that correlations are stable for different datasets. The values of the partial derivatives, correlation coefficient, and standard deviation of the conditional \(I_a \) model in Equations (4.2) and (4.3) are listed in Table 4.1.

<table>
<thead>
<tr>
<th>(\sigma_{\ln(I_a)\ln(PGA)\ln(SaT_1)})</th>
<th>(\rho \left[\varepsilon_{\ln(PGA)}, \varepsilon_{\ln(SaT_1)} \right])</th>
<th>(\frac{\delta \ln(I_a)}{\partial \ln(PGA)})</th>
<th>(\frac{\delta \ln(I_a)}{\partial \ln(SaT_1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38</td>
<td>0.52</td>
<td>1.53</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Using the values in Table 4.1, the total standard deviation (combined intra-event and inter-event) for the \(I_a \) GMPEs is given by Equation (4.4).

\[
\sigma_{\ln(I_a)} = \sqrt{0.144 + 2.34\sigma^2_{\ln(PGA)} + 0.04\sigma^2_{\ln(SaT_1)} + 0.318\sigma_{\ln(PGA)}\sigma_{\ln(SaT_1)}} \quad (4.4)
\]

where \(\sigma_{\ln(PGA)} \) and \(\sigma_{\ln(SaT_1)} \) are the standard deviations given by the NGA-West2 models. The intra-event and inter-event standard deviations can also be estimated. The correlation for the intra-event and inter-event residuals are very similar [Carlton and Abrahamson 2014]. Assuming the correlations from Baker and Jayaram [2008] are valid for both the intra-event and inter-event residuals, the intra-event and inter-event standard deviations for the \(I_a \) are shown in Equations (4.5) and (4.6).

\[
\phi_{\ln(I_a)} = \sqrt{0.144 + 2.34\phi^2_{\ln(PGA)} + 0.04\phi^2_{\ln(SaT_1)} + 0.318\phi_{\ln(PGA)}\phi_{\ln(SaT_1)}} \quad (4.5)
\]

\[
\tau_{\ln(I_a)} = \sqrt{0.144 + 2.34\tau^2_{\ln(PGA)} + 0.04\tau^2_{\ln(SaT_1)} + 0.318\tau_{\ln(PGA)}\tau_{\ln(SaT_1)}} \quad (4.6)
\]

As a check, the \(I_a \) values are computed using the median PGA and \(SaT_1 \) from the ASK14 GMPE, i.e., it is no longer a conditional model. Using these estimated \(I_a \) values, the inter-event and intra-event residuals of the \(I_a \) are computed using a random-effects regression with only a constant term. The estimated constant term is small: 0.02 natural log units. The inter-event residuals and the intra-event residuals do not show a trend with magnitude or distance. The small constant term and the lack of trends in these residuals indicate that \(I_a \) based on the conditional \(I_a \) model combined with the ASK14 GMPE for the median PGA and \(SaT_1 \) is consistent with the scaling of the observed \(I_a \) values.

4.2 MODEL RESULTS

The resulting \(I_a \) models using the five NGA-West2 GMPEs are compared to previously published \(I_a \) models. Figures 4.1(a-d) compare the distance scaling of the \(I_a \) models for vertically dipping strike–slip earthquakes for \(V_{S30} \) of 520 m/sec for magnitude 5, 6, 7, and 8, respectively. Default values are used for the focal depth and depth to top of rupture terms. The default values
for \(Z_{1.0}\) and \(Z_{2.5}\) are 0.22 km and 0.94 km for \(V_{S30} = 520\) m/sec, respectively, based on the scaling in ASK14 for \(Z_{1.0}\) and the scaling in CB14 for \(Z_{2.5}\). For \(V_{S30} = 270\) m/sec, the \(Z_{1.0}\) and \(Z_{2.5}\) values are 0.47 km and 1.98 km, respectively. At large distances, the \(I_a\) models have a steeper slope than the previously published models because they scale with the NGA-West2 GMPE’s, which are better constrained at large distances. The resulting models are also more tightly grouped than the other models are, comparatively. This shows that the resulting models are more robust than models based on the common approach of conducting an independent regression for the \(I_a\) model, which generally does not have the physical constraints built into how the model extrapolates as in the case of the PSA GMPEs.

Figures 4.2 and 4.3 compare the magnitude scaling for the \(I_a\) models for vertically dipping strike–slip earthquakes for a rupture distance of 10 km and two \(V_{S30}\) values: 270 m/sec and 520 m/sec. In the \(M_6\)–\(M_7\) range, the NGA-West2 \(I_a\) models are similar to prior models, but they differ at \(M_5\) and \(M_8\) magnitudes where the previous models have fewer data and are extrapolated. Here, the CB14 model is similar to the CB12 model because of similar complex forms but mainly differ at \(M_8\) magnitudes with lower values in the CB12 model.

Figure 4.4 compares the short-distance scaling for the \(I_a\) models for dipping faults for \(M_7\). This shows a larger difference between the NGA-West2 \(I_a\) model and prior models that did not include hanging-wall effects (all except CB12) for sites located over the hanging wall due to the simple forms used in prior models.

Figure 4.5 compares the standard deviations for the \(I_a\) models developed herein with the standard deviations from previously published models. The standard deviations for the new models are generally consistent with the FPS12 empirical model but are significantly larger than the TBA03, SBP09 and CB12 empirical models. Both the FPS12 and CB12 use the NGA-West1 dataset and use a direct regression on the \(I_a\) data, but the selected subsets are different. As a result, the FPS12 standard deviation is much larger than the CB12 standard deviation.

To understand the cause of the difference in the standard deviations, Figure 4.5 includes a comparison with the standard deviation computed from the CB12 dataset from NGA-West1 and the ASK14 dataset from NGA-West2. The intra-event and inter-event standard deviations for \(\ln(I_a)\) computed using these two subsets are listed in Table 4.2. Applying the results of the conditional \(I_a\) model to the CB08 equation for PGA and \(SA_{T1}\) and corresponding dataset for computing residuals leads to \(\phi = 0.78\) and \(\tau = 0.36\), which are similar to the standard deviation terms from CB12 (\(\phi = 0.77, \tau = 0.31\)). In contrast, applying the conditional \(I_a\) model to the ASK14 model for PGA and \(SA_{T1}\) and corresponding dataset leads to much larger \(\phi\) and \(\tau\) values (\(\phi = 0.89, \tau = 0.61\) for \(M > 5.5\)), which are consistent with the standard deviations for the five new models based on the NGA-West2 equations. They are also consistent with the standard deviation of the FPS12 empirical model. This shows that the increase in the standard deviations for the new \(I_a\) models compared to several of the previous empirical models, shown in Figure 4.5, is not an artifact of the use of a conditional \(I_a\) model. Instead, it is related to the selected dataset.
Table 4.2 Inter-event, intra-event, and total standard deviations for two different datasets and reference GMPEs.

<table>
<thead>
<tr>
<th>Dataset and reference GMPE</th>
<th>Magnitude range</th>
<th>ϕ (LN units)</th>
<th>τ (LN units)</th>
<th>σ (LN units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASK14 ($R_{rup} < 80$ km)</td>
<td>$3.0 < M < 4.0$</td>
<td>1.23</td>
<td>0.72</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>$4.0 < M < 5.5$</td>
<td>1.16</td>
<td>0.72</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>$M > 5.5$</td>
<td>0.89</td>
<td>0.61</td>
<td>1.08</td>
</tr>
<tr>
<td>CB08</td>
<td>$M > 4.3$</td>
<td>0.78</td>
<td>0.36</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Figure 4.1 Comparison of the distance scaling of the median I_a models for strike–slip faults for $V_{S30} = 520$ m/sec (TBA03 class C, SBP09 class B). (a) $M = 5$, (b) $M = 6$, (c) $M = 7$, and (d) $M = 8$.
Figure 4.2 Comparison of the magnitude scaling of the median I_a models for strike-slip faults for a rupture distance of 10 km and $V_{S30} = 520$ m/sec (TBA03 class C, SBP09 class B).

Figure 4.3 Comparison of the magnitude scaling of the median I_a models for strike-slip faults for a rupture distance of 10 km and $V_{S30}=270$ m/sec (TBA03 class D, SBP09 class D).
Figure 4.4 Comparison of the median I_a for dipping faults for $M = 7$ and $V_{530} = 520$ m/sec (TBA03 class D, SBP09 class D).
Figure 4.5 Comparison of the standard deviations for the I_s models based on the NGA West2 GMPEs using Equation (4.4) with the standard deviations from previously published I_s models. Also shown are the standard deviation estimated from the NGA-West2 data within 80 km using the ASK14 I_s model and the standard deviation estimated from the NGA-West1 data used by CB12 with the Campbell and Bozorgnia [2008] GMPE (CB08).
5 Conclusions

It is common to develop estimates of the I_a in addition to the PSA values for defining the design ground motion. If the I_a is estimated using an I_a GMPE based on a simple functional form but the PSA is estimated using GMPEs that considers more complex effects, such as hanging-wall effects and nonlinear site effects, then there may be inconsistencies between the estimated I_a value and the estimated PSA. This inconsistency can be avoided by using conditional I_a models combined with the GMPEs for PGA and SA_{T1}. A key advantage of the approach used in this paper is that the extrapolation and more complex scaling in the GMPEs can be captured in the I_a model. Also, because the conditional I_a model has a small standard deviation, it is more robust than traditional I_a models, leading to a suite of I_a models that have a much smaller range of median I_a than the traditional models. The derived models have a larger standard deviation than many of the previous models, which we attribute to dataset differences.

The conditional I_a model [Equation (3.3)] can be used directly (without the NGA-West2 GMPEs) to develop design I_a values that are consistent with the design spectrum by using the PGA and SA_{T1} of the design spectrum as inputs to the conditional I_a model. The full I_a model [Equations (4.1) and (4.4)] combines the conditional I_a with a PSA GMPE-producing I_a models that include complex features of the PSA GMPE, such as hanging-wall effects, nonlinear site effects, directivity effects, magnitude, and/or distance dependent standard deviations. This paper combined the conditional I_a model with the five NGA-West2 GMPEs, but the conditional I_a model, with its small variability and simple form, can be combined with other crustal GMPEs. In addition, as new PSA GMPEs are developed in the future, the conditional I_a model developed herein can be combined with new PSA GMPEs to rapidly develop new I_a GMPEs consistent with new PSA GMPEs because the standard deviation of the conditional I_a model is very small relative to the other aleatory terms in GMPEs.
6 References

Campbell K.W., Bozorgnia Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthq. Spectra, 24: 139–171.

PEER REPORTS

PEER reports are available as a free PDF download from http://peer.berkeley.edu/publications/peer_reports_complete.html. Printed hard copies of PEER reports can be ordered directly from our printer by following the instructions at http://peer.berkeley.edu/publications/peer_reports.html. For other related questions about the PEER Report Series, contact the Pacific Earthquake Engineering Research Center, 325 Davis Hall Mail Code 1792, Berkeley, CA 94720. Tel.: (510) 642-3437; Fax: (510) 642-1655; Email: clairejohnson@berkeley.edu.

PEER 2015/06 Adjusting Ground-Motion Intensity Measures to a Reference Site for which \(V_{S30} = 3000\) m/sec. David M. Boore. May 2015.

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEER 2013/18</td>
<td>Identification of Site Parameters that Improve Predictions of Site Amplification</td>
<td>Ellen M. Rathje and Sara Navidi.</td>
<td>July 2013.</td>
</tr>
<tr>
<td>PEER 2013/07</td>
<td>Update of the Chiu and Youngs NGA Ground Motion Model for Average Horizontal Component of Peak Ground Motion and Response Spectra</td>
<td>Brian Chiu and Robert Youngs.</td>
<td>May 2013.</td>
</tr>
<tr>
<td>PEER 2013/06</td>
<td>NGA-West2 Campbell-Bozorgnia Ground Motion Model for the Horizontal Components of PGA, PGV, and 5%-Damped Elastic Pseudo-Acceleration Response Spectra for Periods Ranging from 0.01 to 10 sec.</td>
<td>Kenneth W. Campbell and Yousef Bozorgnia.</td>
<td>May 2013.</td>
</tr>
<tr>
<td>PEER 2013/04</td>
<td>Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set</td>
<td>Norman Abrahamson, Walter Silva, and Ronnie Kamai.</td>
<td>May 2013.</td>
</tr>
<tr>
<td>PEER 2013/02</td>
<td>Hybrid Simulation of the Seismic Response of Squat Reinforced Concrete Shear Walls</td>
<td>Catherine A. Whyte and Bozidar Stojadinovic.</td>
<td>May 2013.</td>
</tr>
<tr>
<td>PEER 2013/01</td>
<td>Housing Recovery in Chile: A Qualitative Mid-program Review</td>
<td>Mary C. Comerio.</td>
<td>February 2013.</td>
</tr>
<tr>
<td>Publication Number</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>PEER 2008/06</td>
<td>Shaking Table Tests and Numerical Investigation of Self-Centering Reinforced Concrete Bridge Columns.</td>
<td>Hyung IL Jeong, Junichi Sakai, and Stephen A. Mahin.</td>
<td>2008</td>
</tr>
<tr>
<td>PEER 2007/11</td>
<td>Bar Buckling in Reinforced Concrete Bridge Columns.</td>
<td>Wayne A. Brown, Dawn E. Lehman, and John F. Stanton.</td>
<td>2008</td>
</tr>
<tr>
<td>PEER 2007/06</td>
<td>Development of Improved Procedures for Seismic Design of Buried and Partially Buried Structures.</td>
<td>Linda Al Atik and Nicholas Sitar.</td>
<td>2007</td>
</tr>
<tr>
<td>PEER 2007/02</td>
<td>Campbell-Bozorgnia NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters.</td>
<td>Kenneth W. Campbell and Yousef Bozorgnia.</td>
<td>2007</td>
</tr>
<tr>
<td>PEER 2007/01</td>
<td>Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters.</td>
<td>David M. Boore and Gail M. Atkinson.</td>
<td>2007</td>
</tr>
<tr>
<td>PEER 2006/12</td>
<td>Societal Implications of Performance-Based Earthquake Engineering.</td>
<td>Peter J. May.</td>
<td>2007</td>
</tr>
<tr>
<td>PEER 2006/10</td>
<td>Application of the PEER PBEE Methodology to the I-880 Viaduct.</td>
<td>Sashi Kunnath.</td>
<td>2007</td>
</tr>
<tr>
<td>PEER 2006/09</td>
<td>Quantifying Economic Losses from Travel Forgone Following a Large Metropolitan Earthquake.</td>
<td>James Moore, Sungbin Cho, Yue Yue Fan, and Stuart Werner.</td>
<td>2006</td>
</tr>
<tr>
<td>PEER 2006/07</td>
<td>Analytical Modeling of Reinforced Concrete Walls for Predicting Flexural and Coupled–Shear-Flexural Responses.</td>
<td>Kutay Orakcal, Leonardo M. Massone, and John W. Wallace.</td>
<td>2006</td>
</tr>
</tbody>
</table>

Experimental Assessment of Columns with Short Lap Splices Subjected to Cyclic Loads. Murat Melek, John W. Wallace, and Joel Conte. April 2003.

ONLINE PEER REPORTS

The following PEER reports are available by Internet only at http://peer.berkeley.edu/publications/peer_reports_complete.html.

PEER 2010/102 Analysis of Cumulative Absolute Velocity (CAV) and JMA Instrumental Seismic Intensity (I(IM)) Using the PEER–NGA Strong Motion Database. Kenneth W. Campbell and Yousef Bozorgnia. February 2010.

The Pacific Earthquake Engineering Research Center (PEER) is a multi-institutional research and education center with headquarters at the University of California, Berkeley. Investigators from over 20 universities, several consulting companies, and researchers at various state and federal government agencies contribute to research programs focused on performance-based earthquake engineering.

These research programs aim to identify and reduce the risks from major earthquakes to life safety and to the economy by including research in a wide variety of disciplines including structural and geotechnical engineering, geology/seismology, lifelines, transportation, architecture, economics, risk management, and public policy.

PEER is supported by federal, state, local, and regional agencies, together with industry partners.

PEER Core Institutions:
University of California, Berkeley (Lead Institution)
California Institute of Technology
Oregon State University
Stanford University
University of California, Davis
University of California, Irvine
University of California, Los Angeles
University of California, San Diego
University of Southern California
University of Washington

PEER reports can be ordered at http://peer.berkeley.edu/publications/peer_reports.html or by contacting

Pacific Earthquake Engineering Research Center
University of California, Berkeley
325 Davis Hall, Mail Code 1792
Berkeley, CA 94720-1792
Tel: 510-642-3437
Fax: 510-642-1655
Email: peer_editor@berkeley.edu

ISSN 1547-0587X