
PACIFIC EARTHQUAKE ENGINEERING 
RESEARCH CENTER

Computational Modeling of Progressive Collapse in 
Reinforced Concrete Frame Structures 

Mohamed M. Talaat

and

Khalid M. Mosalam

University of California, Berkeley

PEER 2007/10
MAY 2008



 
 
 

Computational Modeling of Progressive Collapse in 
Reinforced Concrete Frame Structures 

 

 

 

Mohamed M. Talaat 
and 

Khalid M. Mosalam 

Department of Civil and Environmental Engineering 
University of California, Berkeley 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PEER Report 2007/10 
Pacific Earthquake Engineering Research Center 

College of Engineering 
University of California, Berkeley 

May 2008 



 

 iii

ABSTRACT 

The progressive collapse of structures during severe loading caused by earthquakes, blasts, and 

other effects causes catastrophic loss of life. Such collapse is typically caused by the inability of 

the structural system to redistribute its loads following the failure of one or more structural 

members to carry gravity loads. In reinforced concrete (RC) structures, the loss of gravity load-

carrying capacity in columns has been observed to trigger a chain of collapse events. This is 

especially true for structures built according to older building code provisions and thus 

possessing non-ductile reinforcement details. The evaluation of the vulnerability of these 

buildings to collapse in the event of an earthquake, and its expected improvement as a result of 

applying proposed seismic retrofit measures, e.g., using fiber-reinforced polymer (FRP) 

composites, is an important prerequisite in policy decisions and emergency preparedness. The 

objective of this report is to develop simulation tools for progressive collapse assessment. 

The methodology of the research presented in this report is divided into the development 

of simulation tools on the component and system levels. Component-level developments refer to 

modeling the behavior of seismically deficient RC columns, and establishing criteria for their 

collapse and removal from the computational finite element (FE) model of the structural system. 

System-level developments refer to modeling the mechanics of removing a structural element 

from the FE model during the simulation. 

Computational component models are developed and experimentally calibrated for the 

distribution of confining stresses in fiber-discretized cross sections of RC columns and for the 

confinement-sensitive constitutive material behavior of three common seismically deficient 

details: (1) inadequately confined core concrete, (2) buckling-prone longitudinal reinforcement, 

and (3) insufficiently developed lap-splices. Thus, a pseudo-solid modeling approach is pursued 

at the higher computational efficiency of uniaxial material models. Cross-section damage indices 

are formulated by aggregating the effects of hysteretic damage from the constituent fibers 

according to their respective constitutive models, and used to identify the collapse limit state and 

to establish removal criteria for the class of RC columns dominated by axial-flexure interaction. 

An existing analytical model from the literature is used to identify the collapse limit state and to 

establish removal criteria for the class of RC columns dominated by shear-axial interaction. The 
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developed computational models are implemented in an extensible form using an object-oriented 

software framework. The computational models are used to simulate a number of previous 

experimental studies on as-built and FRP-retrofitted RC columns with seismically deficient 

details. The results of the simulation exhibit the ability to predict not only the as-built response 

but also the effects and utility limit of the FRP retrofit. 

An analytical formulation is developed for the time-dependent problem of sudden 

removal of a structural element from a FE model using the principles of dynamic force 

equilibrium. An automatic element removal algorithm is analytically formulated, 

computationally implemented, and numerically tested for robustness using an idealized 

benchmark problem. This formulation is extended to include a simplified account of collision 

between the collapsed columns and the rest of the structure. 

The report concludes by presenting demonstration applications of the developed 

progressive collapse simulation tools using two test-bed structural systems representing older 

one- and five-story RC frame buildings partially infilled with unreinforced masonry (URM) 

walls. The applications include: (1) the deterministic assessment of progressive collapse response 

(i.e., the interaction between the URM wall and the RC frames, element collapse mode and 

sequence, the resulting change in system dynamic properties, and the eventual global collapse 

mechanisms); (2) the analysis of sensitivity in the progressive collapse response in terms of time 

to collapse and story drift ratios to uncertain structural system parameters and ground motion 

intensity; and (3) the probabilistic evaluation of the effect of intra-event variability (i.e., site 

location and building orientation) in ground motion records on the fragility of four limit states in 

one of the test-bed structures, namely the partial and the complete collapse of both the URM wall 

and the RC frame structure. 
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1 Introduction 

1.1 GENERAL 

The progressive collapse of building structures is a field of research that has been receiving 

increasing attention. “Progressive collapse” is defined as a disproportionately large structural 

failure resulting from a relatively local event such as the failure of a gravity load-carrying 

structural member and the subsequent inability of the structural system to redistribute the 

resulting overload through a path that can maintain overall stability and integrity. One major 

discipline where the ability to simulate and predict the extent of structural collapse is of 

particular importance is the emerging field of performance-based earthquake engineering 

(PBEE). PBEE represents a paradigm shift for the earthquake-resistant structural design 

procedure, from the process of adhering to prescriptive code-based design requirements toward a 

more holistic approach where an engineered structure has to satisfy a set of performance 

(functionality, life safety, cost of repair, etc.) benchmarks decided upon by the building’s 

stakeholders (PEER 1997). The risk of progressive collapse due to the loss of gravity load-

carrying capacity during a seismic event is particularly a concern for older structures, designed 

and detailed prior to the current knowledge about structural response to seismic excitation and 

the requirements of ductile design. The ability to assess that risk and to quantify the 

improvements resulting from proposed retrofit measures represents an important decision 

variable. Policymakers can use this risk evaluation data to make planning decisions, establish 

priorities, and allocate resources. In addition to assessing the vulnerability of existing structures, 

progressive collapse analysis can play a significant role in performing tradeoffs between 

structural design alternatives for new structures and in identifying potential weak links in a 

proposed structural design from a PBEE perspective. 

In the past decade, extensive research has been conducted to understand the behavior of 

individual structural components during cases of extreme loading in order to identify their 
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prevalent modes of failure and to establish the corresponding collapse limit states. Of relevance 

to this report is the work conducted on reinforced concrete (RC) columns with several non-

ductile details including deficient shear reinforcement by Elwood (2002), deficient and 

retrofitted lap splices by Xiao and Ma (1997) and by Ma and Xiao (1999), deficient and 

retrofitted transverse confinement for core concrete by Sheikh and Yau (2002), and inadequately 

restrained longitudinal reinforcement by Dhakal and Maekawa (2002a,b). In addition, relevant 

studies have been conducted on RC frames infilled with unreinforced masonry URM walls 

(Hashemi and Mosalam 2007), and RC shear walls (Massone and Wallace 2004), as well as 

other typical building components, in a trend that is likely to continue and further address more 

complex building components. The results from these studies have often been used either to 

calibrate phenomenological models or (less successfully) to construct physics-based models that 

reproduce degrading component response until the collapse limit state is imminent. 

Meanwhile, there has been limited research aimed at establishing a conceptual framework 

for performing analysis of progressively collapsing structures. For example, Kaewkulchai and 

Williamson (2004) proposes a simple approach based on static condensation of collapsed 

elements but that redistributes internal forces from collapsed elements as external nodal forces 

applied at the subsequent time step, an approach that is sensitive to the integration time step of 

the analysis. In contrast, Powell (2005) follows an energy balance method to characterize the 

dynamic behavior of a system attempting to reach a new equilibrium configuration following the 

collapse of a column. However, the integration of computational platforms that can perform 

progressive collapse analysis in an efficient and reliable manner with calibrated component 

models that can identify failure mode-specific collapse limit states and establish material-based 

criteria for removal of collapsed elements has been absent in the literature. Instead, macro-level 

damage indicators such as dissipated hysteretic energy Kaewkulchai and Williamson (2004) are 

often used. The construction of such a computational platform and populating it with a library of 

increasingly sophisticated component models and relevant collapse limit-state criteria are the 

ultimate objectives of this report. 
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1.2 CONTEXT AND SCOPE 

This report is envisioned as a component of a collaborative study program aimed at furthering 

the understanding of the dynamic structural response in deteriorating collapse-prone structural 

systems. The collaborative study program, as outlined in Figure 1.1, comprises experimental and 

analytical phases centering around—but not limited to—a prototype structural system composed 

of RC frames with and without URM infill wall. The components illustrated in the boxes 

numbered 1, 2, 4, 5, 6, 10, 14, and 16 in Figure 1.1 are addressed in Hashemi (2007) and focus 

on experimentally establishing the dynamic structural response data representing the interaction 

between the RC frames and the URM infill wall, and between the bare and infilled frames being 

connected by a RC slab. Furthermore, Hashemi (2007) establishes the damage progression in the 

respective structural members with the objective of calibrating existing computational models—

including strut-and-tie (SAT) idealizations—of the test structure for subsequent use in evaluating 

the uncertainties involved in assessing the structural safety of this type of structure using the 

techniques of structural reliability. The components illustrated in the boxes numbered 3, 7, 11, 

12, 17, and 18 in Figure 1.1 are addressed in Elkhoraibi (2007) and focus on developing 

improved hybrid simulation techniques to enable pseudo-dynamic testing of structures 

experiencing abrupt variation in stiffness during the seismic response. To achieve that goal, 

Elkhoraibi (2007 develops testing algorithms employing mixed-variable (displacement and 

force) control and error-compensating displacement control, with applications to steel, timber, 

RC, and masonry structures. 

This report focuses on the tasks outlined in the boxes numbered 8, 9, 13, and 15 in Figure 

1.1. These can be collectively described as the development and implementation of new 

computational models and procedures to simulate the progression of structural deterioration and 

collapse under extreme seismic loading. The computational solution strategy proposed in this 

research for structural systems experiencing possible loss of elements during the analysis is 

illustrated in Figure 1.2, where italicized text denotes the component models and procedures 

required in addition to those commonly available in conventional computational platforms for 

nonlinear time history analysis of structural systems. The computational tools developed in this 

report can be divided into two groups: component-level and system-level developments. 
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Component-level modeling aims at developing constitutive models on the material, the 

cross section, and the element levels, capable of accurately reproducing the response of concrete 

and reinforcing steel bars in structural elements suffering from deficiencies and/or extreme 

forces/deformations. This report focuses on structural collapse resulting from the loss of gravity 

load-carrying capacity and, in the applications it presents, explicitly considers the role of RC 

columns, as well as URM infill walls. The behavior and collapse potential of RC columns is 

considered in the distinct cases of ductile and non-ductile detailing. Moreover, the report 

considers columns externally retrofitted by fiber reinforced polymer (FRP) jacketing as an option 

to mitigate the effect of non-ductile design details. The examples of non-ductile behavior of the 

RC columns that are considered in this report include the inadequacy and failure of transverse 

confining reinforcement, buckling of reinforcing bars, inadequately developed lap-splices in 

reinforcing bars, and premature shear failure. These deficiencies are handled by the development 

of a confined fiber-discretized cross-section model that takes into account the internal 

distribution of confining stresses resulting from transverse reinforcement, along with 

confinement-sensitive uniaxial material constitutive models for concrete, buckling-prone 

reinforcing steel bars, and lap-spliced reinforcing steel bars. In addition to modeling the 

cyclically degrading structural response, these component models are coupled with energy- and 

deformation-based damage models to quantify the spread of material failure into the structural 

element and identify the element’s collapse limit state. 

System-level modeling starts from the establishment of criteria for element removal 

dependent on the material damage information and the element’s governing mode of failure. 

Upon violating any of its removal criteria at the end of an analysis time step, the element is 

eliminated from the structural model and is considered collapsed. Most importantly, accurate 

handling of dynamic load redistribution from the collapsed element to the remaining structure is 

essential in predicting the sequence and extent of system collapse. This is attributed to the path-

dependent nature of the collapse process and its sensitivity to initial conditions. Also important is 

the redistribution of masses and element-associated loads, especially after the collapse of 

horizontal structural elements such as beams. Elimination of elements and possibly nodes is 

conducted in a manner that ensures the connectivity and integrity of the remaining structural 

model and its applied gravity loads. The elimination procedure is performed using an adaptive 
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time-stepping algorithm to allow the continuation of the analysis in a robust and accurate manner 

and to minimize the potential of numerical non-convergence unless overall collapse takes place. 

The developed procedures are employed in applications involving structural collapse in shear-

damaged columns, flexure-damaged columns, and axially brittle truss members. 

Both component-level and system-level development follow a path starting by the 

formulation of an analytical model (or procedure) or the adoption of an existing one with 

possible modifications. Parametric study-style simulations are then performed to reproduce the 

solutions of benchmark problems or the observations from experiments performed on reduced-

scale specimens as a means to calibrate the analytical model parameters and better understand 

their characteristics and functionality. The analytical models and procedures are then 

implemented as new classes in an object-oriented computational modeling platform and 

integrated into a finite element (FE) structural analysis code. The advantages of the new classes 

in capturing the effect of local detailing on the simulated structural response of RC columns are 

individually demonstrated using experimental data from several experimental studies. Moreover, 

the ability of these new classes to interact smoothly in performing progressive collapse analysis 

of a redundant structural system with deficient columns is illustrated. Finally, the integration of 

these new classes into a PBEE study to conduct collapse assessment is demonstrated through 

examples of representative seismically deficient residential structural systems. 
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Fig. 1.1  Overview of collaborative study program. 
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Fig. 1.2  Proposed global solution algorithm for progressive collapse simulation. 
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1.3 CONTRIBUTIONS 

The ultimate objectives of this research are to establish and to validate a framework for 

conducting progressive collapse analysis of RC framed structures subjected to extreme dynamic 

loading. To achieve these objectives, this report presents the following main contributions: 

• A new constitutive material model for reinforcing steel bars susceptible to buckling. This 

model accounts for the lateral confining stiffness of transverse ties. 

• A constitutive material model for lap-spliced reinforcing steel bars, constructed by 

assembling and modifying previously developed models for monotonic response under 

prescribed confinement, hysteretic response, and hysteretic strength and stiffness 

degradation. 

• A constitutive material model for passively confined concrete, constructed by assembling 

and modifying previously developed models for monotonic response under variable 

confinement, hysteretic response under prescribed confinement, tension softening, and 

hysteretic strength degradation. 

• An analytical model for the spatial distribution of confining stresses within a circular RC 

column cross section based on assumption of a uniform confining jacket and a linear-

elastic relationship governing bond-stress at the interface. The resulting distribution can 

be approximated using a simple polynomial function for computational efficiency. 

• A material-based damage metric for tracking failure propagation and establishing the 

criteria for reaching the collapse limit state in columns controlled by flexure-axial 

interaction. 

• An algorithm for direct removal of collapsed elements during the analysis of a 

computational structural model and accounting for load and mass redistribution. 

• An implementation of the developed computational models into an extensible and 

modifiable object-oriented environment that facilitates further development and linkage 

to a wider set of structural engineering applications. 

• An importance ranking of the uncertainty in structural model parameters on the collapse 

response of the class of five-story RC frame buildings with URM infill walls, developed 

using deterministic sensitivity analysis. 
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• An investigation of the effect of site-to-site ground motion record variability (i.e., intra-

event variability) on the probability of structural collapse, developed using fragility plots. 

1.4 ORGANIZATION 

This report is organized into eight chapters and two appendices. Chapter 1 presents the 

background and motivation for the research, its scope, and its main contributions. It introduces 

the target computational solution procedure and sets in relative position the various component-

level and system-level developments presented henceforth. Chapter 2 presents the analytical 

formulations developed for the component modeling of uniaxial material response in buckling-

prone reinforcing steel bars and deficient lap splices. Chapter 3 presents the analytical 

formulation developed for the component modeling of confined fiber-discretized cross sections 

and the uniaxial material response of confined and unconfined concrete. The component models 

developed in Chapters 2 and 3 are calibrated using comparisons with the measured results 

obtained from several experimental investigations of individual steel bars, bar-pullout specimens, 

and concrete cylinders. These comparisons are used to identify typical ranges for model 

parameter values. 

Chapter 4 presents the implementation details of the component models as new classes 

into an object-oriented computational modeling platform and discusses the relevant aspects of 

the computational environment. This implementation is carried out within the modeling software 

OpenSees (open system for earthquake engineering simulation), whose open-source code and 

user’s manual are freely available on the internet (Mazzoni et al. 2004). In Chapter 5, the 

implemented classes are used to construct FE structural models of several experimentally 

investigated RC columns, and computationally reproduce the observed global and local 

responses under cyclic lateral loading. The aims of these simulations are to conduct a 

macroscopic verification of the implementation procedure and to verify the ability of the 

developed component models to integrally model structural behavior more complex than that of 

the simple test specimens used in their individual calibration (as discussed in Chapters 2 and 3), 

such as the interaction of multiple structural deficiencies in a column cross section and the 

effects of external FRP retrofit. Furthermore, these simulations are used to demonstrate the 
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contribution to the accuracy of the modeling process presented by the newly developed 

component models, and to establish system-dependent guidelines for their use in the modeling 

process (e.g., choice of type of finite element(s) and numerical integration parameters). 

Following the presentation of component-level developments, Chapter 6 outlines the 

analytical background for the dynamically compatible element removal procedure. In addition, it 

presents the element removal criteria adopted for the different modes of failure under 

investigation. It discusses the implementation details for automatically removing an element in 

the course of an ongoing analysis, and the necessary checks and adjustments to the analyzed 

structural system to maintain numerical and structural stability as well as physical relevance. 

Finally, the chapter concludes by presenting a benchmark example of a progressively collapsing 

trussed-beam structure subjected to seismic excitation. The simulation results validate the 

implementation of the automatic element removal algorithm and demonstrate the robustness and 

accuracy of the proposed procedure, while being performed independently of the developed 

component models discussed in Chapters 2–5 and the removal criteria based on their associated 

limit states discussed at the end of Chapter 6. 

In Chapter 7, the element removal algorithm is employed in the setting of more complex 

structural systems. In conjunction with the developed component models, the report proceeds to 

investigate the progressive collapse response in one-story and five-story URM-infilled RC 

structural systems representative of seismically deficient residential buildings. First, the 

performance of the element removal procedure is investigated in an application of a one-story 

structure for which experimental data are available. This offers an opportunity for model 

interpretation and for establishing a more transparent understanding of the response in the 

absence of such confounding factors as higher mode effects. Second, the element removal 

procedure is applied to a multi-story building to quantitatively establish its progressive collapse 

behavior and sensitivity to uncertainty in unknown system parameters during a major seismic 

event. Finally, a preliminary probabilistic study using the framework of PBEE is conducted on 

the one-story structural system to quantitatively assess the effect of intra-event variability (i.e., 

site location and building orientation) on its probability of collapse. 

Chapter 8 presents a summary of this report, lists its major findings, and points out 

directions for further investigation. Appendix A lists and identifies input parameters for the script 
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commands necessary to generate progressively collapsing model components and analyses 

within OpenSees. Appendix B presents the theoretical assumptions and analytical formulations 

developed for handling the impact by free-falling bodies on a progressively collapsing structure 

whose results are utilized in the analysis of the benchmark structural system in Chapter 6. 
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2 Modeling of Column Longitudinal 
Reinforcement 

This chapter deals with constitutive material modeling of reinforcing steel bars in RC columns. 

Of particular interest is the performance of deficient reinforcing bars due to non-ductile detailing 

leading to bar buckling in compression and lap-splice failure in tension. Of equal interest is the 

ability of the developed computational models to account for the anticipated improvement in the 

structural performance due to the application of local retrofit measures through external 

confinement of the deficient RC column cross sections. First, a review of the available literature 

on longitudinal reinforcement modeling with an emphasis on non-ductile details is conducted. 

Next, an analytical material model for the uniaxial response of steel bars laterally restrained by 

uniformly spaced transverse reinforcement is developed. The analytical model uses the concept 

of strain decomposition to solve the large-deformation problem of a buckled reinforcing bar in 

terms of axial stress-strain response while condensing the transversal and rotational degrees of 

freedom (DOFs). This model is calibrated by reproducing the experimentally reported behavior 

from several published investigations of reinforcing steel bars subjected to monotonic and cyclic 

axial loading. Finally, an analytical material model for the uniaxial response of lap-spliced steel 

bars is constructed by juxtaposing two analytical models from published literature, namely a 

model for confinement-sensitive monotonic lap-splice behavior and another model for cyclic 

bond-slip behavior. Components from both models are jointly utilized and developed further, 

along with the addition of a hysteretic damage rule. The developed lap-splice model is calibrated 

by reproducing the experimentally reported behavior from investigations of reinforcing steel bars 

embedded in concrete and subjected to monotonic and cyclic pull-out loading. 
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2.1 REVIEW OF PUBLISHED LITERATURE 

The literature reviewed in this chapter pertains to the role of longitudinal steel reinforcement as 

follows: 

1. Modeling of yielding and plasticity in steel bars 

2. Modeling of buckling in steel bars 

3. Modeling of lap-splice and bond-slip behavior in steel bars 

The body of literature on these topics is extensive, and this review does not pretend to be 

inclusive. Rather, only previous work that informs the background of the analytical models and 

modeling schemes conducted in the current study is reviewed. 

2.1.1 Modeling of Yielding and Plasticity in Steel Bars 

Reinforcing steel bars generally follow a linear-elastic response until their yielding strain is 

reached. Following yielding, nonlinear behavior characterized by elongation with little 

corresponding change in stress is typically observed, followed by a period of hardening up to a 

peak stress, which is followed by softening and, ultimately, fracture of the bar. The observed 

hysteretic behavior of the bars cannot be accounted for by isotropic hardening alone, but exhibits 

the so-called Bauschinger’s effect, which is an evidence of kinematic hardening as well 

(Bauschinger 1886). Accordingly, previous yielding under tensile stress reduces the compressive 

yielding stress and the corresponding unloading stiffness upon strain increment reversal. 

Similarly, previous yielding under compressive stress reduces the tensile yielding stress and the 

corresponding unloading stiffness. 

Analytical models for steel bars include the most simple bilinear model where the bar 

response is idealized by a high-stiffness linear elastic branch prior to yielding and a low-stiffness 

linear hardening (or perfectly plastic) branch until fracture. Upon strain increment reversal, the 

higher stiffness is restored until subsequent yielding is detected. This model can be adapted to 

reproduce both kinematic and isotropic types of hardening. More sophisticated multi-linear 

plasticity models have also been developed, with independent branches representing the elastic, 

yielding, hardening, and/or softening phases of the response, together with complex hysteretic 

rules. Examples of these models can be reviewed in Shames and Cozzarelli (1997). Upon careful 
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selection of parameters, these models can provide estimates of the stress in the bar throughout a 

given strain history with acceptable accuracy. However, these models are inaccurate in 

estimating the bar stiffness throughout the analysis under general loading history with the same 

accuracy, which plays a significant role in the accuracy of a dynamic analysis and in predicting 

the structural behavior at the onset and after bar buckling. 

Models for steel bar inelastic behavior which include explicitly nonlinear functions and 

can thus be used with greater accuracy to estimate the bar stiffness at any point along the loading 

history have been developed as well by several researchers. Early efforts include Mander et al. 

(1984) and Menegotto and Pinto (1973). The latter model is still widely used in modeling the 

cyclic behavior of steel bars because it is easy to implement and control using few physically 

meaningful parameters. It can be complemented by the work of Chang and Mander (1994) for a 

better representation of the nonlinear monotonic behavior and the yield plateau. Later work by 

Filippou and Zulfiqar (1990) and Balan et al. (1998) has the advantage of using an invertible 

stress-strain relationship. It should be stated that most of these analytical models do not explicitly 

account for low-cycle fatigue and fracture of reinforcing bars. Rather, a limit is imposed on the 

cyclic response (e.g., the plastic energy dissipation) after which the bar material is assumed to 

have fractured. Among the widely used damage models in engineering applications the Coffin-

Manson metal fatigue equations (Coffin 1962; Manson 1979) have been recently reviewed in 

Brown and Kunnath (2004) in the context of modeling low-cycle fatigue in reinforcing steel 

bars. 

2.1.2 Modeling of Buckling in Steel Bars 

Longitudinal bar buckling has received considerable attention from researchers in the last 

decade, resulting in different proposed modeling approaches. Experimental investigations were 

conducted on individual reinforcing bars by several researchers including Monti and Nuti (1992), 

Rodriguez et al. (1999), Bayrak and Sheikh (2001), and Dhakal and Maekawa (2002b). These 

experiments established monotonic and cyclic response data for bars with different strengths, 

slenderness (length to diameter) ratios, and axial load eccentricities. These data led to a number 

of analytical models to predict the onset of bar buckling and describe post-buckling behavior. 
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First, attention is given to models that predict the onset of buckling. Rodriguez et al. 

(1999) assumes that the buckling length is known a priori (e.g., equal to tie spacing) and 

calculates the critical buckling stress based on the classic Euler’s equation of stability and an 

experimentally calibrated effective length factor to account for the non-ideal boundary 

conditions. This model tracks the changes in bar stiffness by employing the reduced bar 

modulus, rE  (Timoshenko and Gere 1961), defined as 
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where sE  is the elastic (Young’s) modulus of the bar and stE  is the tangent modulus of 

the bar at the current strain level. To compute these moduli, Rodriguez et al. (1999) adopts the 

mechanical stress-strain relationship proposed by Mander et al. (1984). 

Experimental observations from RC column tests demonstrate that bar buckling can 

occur over multiple transverse tie spacings. Therefore, a variable buckling length as well as the 

lateral restraining effect of these ties should be explicitly considered in predicting the buckling 

load. In the unpublished preliminary study of Terenzani et al. (2001) the problem of the 

longitudinal bar supported by discrete lateral ties is idealized as a beam-column supported on 

uniformly distributed springs. An energy-minimization approach is then used to determine the 

effect of the restraining ties on the buckling length and the corresponding critical stress. This 

approach employs a strong theoretical background, and provides a practical closed-form 

analytical expression for estimating the buckling length. Certain simplifications are made, such 

as neglecting the confining effect of the dilating concrete as secondary to that of the transverse 

reinforcement, and the use of a simple bilinear material law for estimating the stress state of the 

longitudinal and transverse reinforcement. During the course of the studies presented in this 

report, a preliminary assessment suggested that the predictive accuracy of this model is sensitive 

to the choice of idealized tangent modulus and to how adequately it represents the actual bar 

stiffness at the onset of buckling. The study in Dhakal and Maekawa (2002c) is based on a setup 

similar to that of Terenzani et al. (2001) assuming a sinusoidal buckled shape function and 

minimizing the strain energy to calculate the critical load. However, Dhakal and Maekawa 

(2002c) elects to use discrete springs to model individual ties. This necessitates the use of 
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iterative procedures to determine the critical number of ties and the corresponding critical stress, 

which is computationally demanding. In addition, Dhakal and Maekawa (2002c) uses a 

simplified fracture energy-based approach to predict the compressive stress in steel bars 

corresponding to spalling of the cover concrete, whose lateral confining effect is neglected. The 

unpublished study of Terenzani et al. (2001) provides the motivation and background for the 

analytical developments presented in this report, and will be discussed in full detail  in the 

following section. 

In contrast to the above studies, Bayrak and Sheikh (2001) proposes a more complex 

formulation, which considers the dilation forces imposed by the cover concrete prior to spalling 

(assumed to be sinusoidally varying in the longitudinal direction) and the resultant forces from 

the distribution of transverse ties within the cross section. Hence, Bayrak and Sheikh (2001) 

presents a solution of the longitudinal bar as a beam-column subjected to axial, shear, and 

bending actions to compute the buckled shape and the deflection at mid-height under a set of 

idealized end-conditions. While the resulting analytical expression is moderately complex, it is 

based on an ideal set of assumptions, and its applicability is restricted to the considered geometry 

and tie configuration. In contrast, Berry and Eberhard (2005) proposes a straightforward 

empirical expression for the RC column lateral drift ratio at the onset of bar buckling, which 

incorporates the lateral drift at yield, axial load, cross-section area, concrete strength, transverse 

reinforcement ratio and strength, and a cross-section shape factor accounting for confinement 

effectiveness. The statistical analysis included in Berry and Eberhard (2005) employs results 

from 40 tests of flexure-critical RC columns, and results in a fit with 28% coefficient of variation 

(COV). 

Second, attention is given to models that predict the post-buckling behavior of 

reinforcing bars. Two distinct approaches exist. The first approach describes the behavior based 

on the average strain in the neighboring concrete. In this case, the material model is in effect a 

structural model of the reinforcing bar, and the model parameters need to be calibrated for the 

bar geometry. Justification for this average strain approach is presented in Bayrak and Sheikh 

(2001), arguing that while the buckled bar loses its bond with the neighboring concrete, the 

assumption of sustained bond can be maintained at transverse tie locations at the ends of a 

buckled bar. After calculating the mid-height lateral deflection of the buckled bar, Bayrak and 



 

16 

Sheikh (2001) resorts to a compiled library of experimental stress-average strain responses of 

bars subjected to different load eccentricities to define the monotonic post-buckling behavior. 

This procedure is tedious to implement in a general-purpose FE code, and is therefore further 

developed in Bae et al. (2005) by using the aforementioned experimental library to define a set 

of empirical relationships between lateral deflection and axial stress for variable bar diameter 

and buckling length. 

Other published research works which follow the average strain approach include Monti 

and Nuti (1992), Gomes and Appleton (1997), and Attolico et al. (2000). The original 

compressive stress-strain relationship of the bar is modified beyond the buckling stress to include 

a softening branch. Monti and Nuti (1992) uses an empirical four-parameter stress-strain 

relationship that explicitly includes the slenderness of the bar as well as kinematic and isotropic 

hardening. In an extension of this research, Attolico et al. (2000) proposes a modification to 

eliminate the anomaly of stress overshooting during brief unloading-reloading cycles. By 

assuming a plastic deformation mechanism for buckled bars and using equilibrium of local 

stresses, Gomes and Appleton (1997) proposes an analytical modification to the Menegotto-Pinto 

model (1973) to account for the non-uniform distribution of inelastic stresses across the bar cross 

section, and use it to predict the uniaxial response. 

In contrast to the above approach of dealing directly with average strain, Dhakal and 

Maekawa (2002a,b) use a micro-analytical approach to solve the nonlinear stability problem 

using local second-order strains of the buckled bar. This is performed to determine the 

monotonic softening behavior of buckled bars using solid modeling. Based on such simulations, 

made for a variety of bar geometry and strength configurations, this softening relationship is then 

parameterized using average strain quantities and included in a FE code. The cyclic behavior 

rules are adopted from Menegotto and Pinto (1973) after modifying the compressive loading 

envelope, as well as reducing the axial stiffness of buckled bars upon unloading from a 

compression stress state. 



 

17 

2.1.3 Modeling of Lap-Splice and Bond-Slip Behavior in Steel Bars 

Bond stress between reinforcing steel and neighboring concrete is the mechanism through which 

the straining actions are transferred along a RC column. In standard fiber section analysis, which 

relies on the Euler-Bernoulli beam assumption, perfect bond between a reinforcing bar and the 

neighboring concrete is typically assumed (Spacone et al. 1996a). However, this assumption is 

violated by steel bars bridging flexural cracks in concrete, deformation in embedded steel bars 

along their anchoring length, and lap-spliced bars. The transfer of interface shear stresses along a 

uniaxially loaded bar toward its stress-free end must be accompanied by relative displacements 

along the interface, i.e., slip. The amount of slip deformation in a RC column is a function of the 

stress gradient developed along the bar-concrete interface and does not induce stress-generating 

mechanical strain in the bar. Hence, it results in a more flexible column response than would take 

place in the absence of slip. Failure of the bond results in a reduced ability to develop stresses in 

the reinforcing bar and the degradation of the RC column’s lateral force capacity, as well as 

hysteretic pinching and reduction in stiffness and energy-dissipation capacity (Cho and Pincheira 

2006). 

Several attempts have been made to model the bond-slip mechanisms; Ngo and Scordelis 

(1967) and Nilson (1971) are pioneering examples. Experimental investigations have been 

conducted on bars embedded in concrete blocks and exhibiting hysteretic degradation in 

Viwathanatepa (1979) and a preliminary analytical model proposed. A later study by 

Eligehausen et al. (1983) proposes a multi-linear constitutive model to describe the hysteretic 

relationship between bond stress and slip deformation in an anchored bar as a function of the 

concrete strength, confinement, and interface geometry. Another multi-linear bond-slip 

constitutive model is proposed in Hawkins et al. (1982) based on measurements of slip in ribbed 

bars partially embedded in concrete blocks. The bars are loaded within their elastic range and 

therefore measured displacements can be converted to slip displacements by subtracting the 

elastic elongation at each stress level. The experimental setup spares the analytical model the 

need to make assumptions regarding the bond stress distribution along the interface by limiting 

the bonded length within the concrete blocks to one or few lugs. Hence the measured slip 

displacements are constant along the bonded length (Hawkins et al. 1982). 
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In Huang et al. (1996) and Engstrom et al. (1998), experimental pull-out tests are 

conducted on individual deformed bars located at the centers, edges, and corners of concrete 

blocks. The experimental observations are used to calibrate a constitutive model for monotonic 

bond-slip behavior whose parameters depend on the perceived adequacy of confinement, with a 

nonlinear ascending branch and multi-linear softening. A fully nonlinear relationship is proposed 

in Xiao and Ma (1997) for monotonic bond-slip behavior, which has the advantage of explicitly 

incorporating the amount of transverse confinement within the cross section. This latter feature 

enables the use of the model in applications, including externally retrofitted columns without the 

need for empirical modifications. A more recent bond-slip model is developed in Lowes et al. 

(2004) which uses non-local modeling to describe the dependence of the bond strength on the 

concrete and steel stress states. 

The bond model developed in Eligehausen et al. (1983) has been used in several 

modeling studies. In Monti et al. (1997a,b), this model is used together with a numerical 

integration scheme based on stress field interpolation to develop a bond-slip element for 

anchored bars in RC beams. Subsequently, Monti and Spacone (2000) modifies the force-based 

fiber element developed by Spacone et al. (1996a,b) to take advantage of the bond-slip element 

by Monti et al. (1997a,b) in modeling RC column behavior. In a similar modeling approach, 

Ayoub and Filippou (1999) follows a mixed integration scheme—interpolating both stress and 

slip along the finite element. The modeling efforts mentioned above rely upon re-formulating the 

bond-slip model in terms of stress-strain quantities in the context of fiber elements by using an 

adequate localization length that represents the size of the stress transfer region. Next, an 

equivalent of a strain decomposition scheme is followed, which splits the computed strain in the 

concrete fiber adjacent to a spliced bar along the stress transfer length between two materials 

(i.e., reinforcing bar and bond interface) acting in series. After satisfying the equilibrium of 

stresses in the two materials, according to the constitutive model of each, the cross-section 

resisting force vector and stiffness matrix are assembled. The choice of a localization length is 

affected by the numerical integration parameters and the anchoring length. A similar approach is 

followed in Xiao and Ma (1997) to model the monotonic lateral response of as-built and 

retrofitted RC columns containing deficient lap-splices, with the localization length being related 

to the splice length. An improvement on this model is proposed in Binici and Mosalam (2007) by 



 

19 

assuming an admissible linear distribution of bond stresses along the transfer length instead of 

the original assumption of a constant value in Xiao and Ma (1997). For all the models described 

in this paragraph, comparisons with experimental results are satisfactory. However, these 

formulations, while reasonably accounting for the effect of bond-slip occurring along the length 

of a single column, could not handle bond-slip occurring in joints connecting multiple members, 

e.g., beam-column joints. Research is currently ongoing in this field (Mitra and Lowes 2007). 

In contrast to using strain decomposition, Rubiano-Benavides (1998) proposes the 

addition of rotational springs at the column end nodes to account for the additional flexibility 

generated by bond-slip in anchored bars. This relies on a subjective procedure in calibrating the 

behavior of the added rotational spring. Another study (Cho and Pincheira 2006) uses a local 

bond-slip model to independently calibrate the backbone moment-rotation envelope of a 

rotational spring, and then adds multi-linear hysteretic unloading-reloading rules. A more recent 

and physics-based approach is adopted in Zhao and Sritharan (2007), where the rotational spring 

being used is composed of a fiber-discretized section that incorporates a bond-slip constitutive 

material model to explicitly estimate the amount of slip deformation. A more complex 

formulation can be found in Salem and Maekawa (2004), which follows a three-dimensional 

(3D) solid modeling approach. This model is highly accurate but is computationally demanding 

and not suitable for use with fiber elements. The models mentioned above assume that the bond 

failure mechanism involves shearing of the concrete keys between the deformed bar lugs, and do 

not explicitly account for bond failure due to splitting of the cover concrete surrounding the steel 

bar. This latter failure mode has been first investigated in Tepfers (1979). A number of fracture 

energy-based models have been developed to estimate the bond strength for this failure mode, 

e.g., Reinhardt and Van der Veen (1992). A comparative study and a deterministic sensitivity 

analysis of several such models for estimating bond strength due to concrete cover splitting was 

recently conducted in Talaat and Mosalam (2007) 

2.2 ANALYTICAL MODEL FOR BUCKLING-ENABLED STEEL BARS 

The proposed uniaxial material model for buckling-enabled steel bars is composed of several 

components as discussed in the following sections. The first component is the estimation of 
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critical buckling stress and corresponding buckling length in the presence of transverse ties. The 

effect of these ties is modeled as a continuous support of uniform, generally nonlinear, stiffness. 

The second component is the prediction of monotonic post-buckling behavior and softening, 

which is modeled using a strain decomposition approach. The third component is the prediction 

of cyclic behavior, which includes accounting for the reduced unloading stiffness of previously 

buckled bars. The fourth component is estimating hysteretic stress reduction and bar fracture, 

which is modeled as a low-cycle fatigue phenomenon. 

2.2.1 Geometric Setup 

The geometric setup and free-body diagram of the buckling-prone longitudinal steel bar encased 

within a RC column is shown in Figure 2.1, which are similar to those adopted in Terenzani et al. 

(2001) and Dhakal and Maekawa (2002c). The present model assumes that buckling takes place 

in the perpendicular direction away from the column cross section in a bar of diameter bd  over a 

buckling length bL  spanning more than one transverse tie spacing ts , and that the restraining 

effect of the transverse ties can be modeled by uniformly distributed nonlinear springs of axial 

stiffness tα  for each tie.  The concrete cover is assumed to spall prior to bar buckling and its 

restraining effect on the bar is not modeled. The kinematic boundary conditions are assumed 

such that the bar is prevented from translation or rotation at the beginning and end of the 

buckling length. The figure shows the free-body diagram of the buckled bar at equilibrium in a 

deformed configuration with buckling-induced lateral displacement nδ  at mid-height. This 

results in bending moments 1M  and 2M  as shown, in addition to the axial load P  satisfying 

equilibrium. The stress gradient of the buckling-prone longitudinal steel bar along the buckling 

length is ignored because in the relevant case of post-yield buckling within a plastic hinge 

region, the stress along the bar in this region is nearly constant. The inclusion of the stress 

gradient in the formulation, while offering little advantage, requires an iterative solution of the 

critical buckling length instead of the closed-form analytical expression derived in Equation 

(2.10). The buckled shape of the reinforcing bar is assumed to follow an infinite series of 

harmonic shape function as follows: 
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( ) ( ) ( )[ ]∑
∞

=
−=

1
2cos12 

n
bn Lnxxy πδ  (2.2)

which describes the lateral displacement ( )xy  at location x  along the buckling length 

bL . Moreover, the bar is assumed to have an initial imperfection (initial deformed shape) that 

results in an infinitesimal lateral displacement iδ  at mid-height. A series of harmonic functions 

similar to Equation (2.2) is assumed to describe the initial deformed shape. 
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Fig. 2.1  Geometry and free-body diagram of buckling-prone longitudinal bar. 

2.2.2 Detecting Onset of Buckling 

The elastic strain energy stored in the system due to the increase in axial load on the bar can be 

evaluated by algebraically adding the contributions from two terms. The first term is derived 

from the bending moment ( )xM  and curvature ( )xφ  along the buckling length bL , where 

( ) ( )xJExM bs φ= , bJ  is the moment of inertia of the bar cross section, and 

( ) ( )∑
∞

=
=

∂
∂=

1
2

2

2

2

2cos)(2)(
n

bn
b

Lnx
L
n

x
xyx πδπφ  (2.3)

Accordingly, the first term in the strain energy equation can be evaluated by making use 

of the orthogonal characteristic of trigonometric integrals as 
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where sE  is the elastic modulus of the bar material (i.e., steel) and the explicit reference 

to functional dependence on the location ( )x  has been dropped. For inelastic increments, sE  is 

replaced by the reduced modulus rE  from Equation (2.1), with stE  being the current tangent 

modulus of the bar material. 

The second term in the strain energy equation is derived from the stretching in the 

uniform springs representing the transverse tie stiffness. Introducing ttt sαβ =  as the uniform 

spring stiffness per unit length, and noting that the stretch in a spring at a distance x  is given by 

( )xy , the second term in the strain energy equation evaluates to 
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Combining Equations (2.4) and (2.5) leads to the elastic strain energy in Equation (2.6). It 

is worth mentioning that the strain energy stored in the axial deformation of the bar is considered 

negligible compared with the bending deformation. 
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The external work done by the applied force P  is evaluated by computing the resulting 

change (shortening) in the bar length LΔ . The updated length is evaluated by integration along 

the deformed shape and can be evaluated using the following first-order expansion: 
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Hence, the external work can be evaluated as 

∑
∞

=
≈Δ=Δ
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2
2

4 n
n

bL
PLPW δπ  (2.8)

Equations (2.6) and (2.8) are derived using elastic material properties. However, unless 

the transverse reinforcement spacing is severely inadequate, longitudinal bar buckling often takes 

place after yielding and during inelastic bar behavior. This fact can be addressed using 
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incremental forms of Equations (2.6) and (2.8). Hence, equating the expressions for internal and 

external work increments, substituting current material properties, and setting 1=n  for the 

critical case, leads to the following non-monotonic relationship between the critical buckling 

load crP  and the buckling length crL : 
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which is minimized with respect to crL  to find the minimum critical load min,crP  and the 

corresponding critical length min,crL . 
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The constraint tcr sL ≥  checks and verifies the initial assumption that the tie spacing is 

such that buckling takes place over multiple ties. In the case of wider tie spacing, tcr sL <  is 

inadmissible and buckling is assumed to take place between two adjacent ties ( tcr sL =min, ). In 

this case, the critical buckling load is corrected to exclude contribution to the strain energy by 

transverse tie stiffness, i.e., the second term in the parenthesis of Equation (2.9) becomes zero; 

hence the discontinuity in Equation (2.11) at tcr sL =min, . Hence, for a bar with cross-sectional 

area bA , it is more convenient to evaluate a critical buckling stress (compression is treated 

negative throughout this report unless otherwise noted) at any stage during the analysis as 
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where   tbrcr JEγ β=  is a quantity that reflects the effect of inelasticity in the bar and 

transverse ties on the critical buckling stress. Since the inelasticity is a function of the imposed 
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strain history, Equation (2.12) therefore describes a critical surface in the bar stress-strain space 

that when violated by the current compressive stress in the bar during the analysis determines the 

onset of buckling. This critical surface is generated by evaluating the value of min,crσ  at each 

axial strain increment. This procedure is demonstrated in Figure 2.2 for a bar buckling over a 

single tie-spacing length tcr sL =min, , where the mechanical stress-strain behavior of the bar is 

assumed to follow Chang and Mander (1994), with yield stress yσ  and ultimate stress uσ  (see 

Fig. 2.5). It can be observed from the above formulation that inelasticity in the bar will reduce its 

stiffness modulus and therefore reduce its buckling stress. Similarly, inelasticity or failure of the 

transverse ties will lead to a larger buckling length and therefore a lower critical stress. If it is 

desired that the bar constitutive material model include a yield plateau where the tangent 

modulus value is zero, the critical surface definition has to be modified in that yield plateau 

region. This can be achieved by using the secant instead of the tangent modulus in Equation (2.1) 

during the perfectly plastic region to avoid an unrealistic zero value of the critical stress. 
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Fig. 2.2  Onset of bar buckling and effect of bar inelasticity. 
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2.2.3 Monotonic Post-Buckling Behavior 

Upon detection of buckling in a longitudinal reinforcing bar, the post-buckling behavior is 

modeled based on a strain-decomposition scheme. First, consider the linear-elastic behavior of a 

classic axially loaded steel bar with time-invariant boundary conditions, i.e., no lateral supports 

due to transverse ties, and buckling length crL  corresponding to a critical compressive stress 

224 crbbcr LAEJπσ −= . The initial conditions of the bar correspond to no axial load and stress-

free ends. An initial imperfection in the bar is assumed that results in a mid-height lateral 

deflection iδ . The initially deflected profile of the bar along its buckling length can be described 

by a harmonic function ( )xyi , where 
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  (2.13) 

As a result, the length of the bar along the deflected profile is different from the shortest 

distance measured between the ends of the bar, which can be interpreted as an initial shortening 

corresponding to an initial stress-free strain fiε  expressed as follows: 
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When the bar is loaded with an axial load P , the resulting deflected profile ( )xy  is the 

algebraic sum of the initial profile ( )xyi , which represents a particular solution to the differential 

equation of a beam, and a profile ( )xy1  obtained from the general second-order equilibrium 

solution of a beam with fixed ends. 
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where bb EJPk =2 . Next, define the ratio Pα  such that 

222
22 4
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and substitute in Equation (2.15) to get (2.17), and then add (2.13) to get (2.18). 
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The physical significance of the previous derivation represents an interesting concept. An 

applied stress on the bar σ  results in amplification of the deflected shape resulting from the 

initial imperfection by a factor dependent on the ratio crP σσα = . As a result, the measured 

strain ε  along the buckling length of the bar comprises two components: the stress-inducing 

mechanical strain sε  in the steel material and an additional stress-free shortening fε  due to 

amplification of the initial imperfection. In the linear elastic range, the first term is dominant, and 

can typically be computed as ss Eσε = . The second term is computed by making use of 

Equations (2.14) and (2.18): 

( )21 P

fi
f α

ε
ε

−
=  (2.19)

The total strain measured along the bar is fst εεε += . Given the small typical values of 

pα  in the elastic range and the small common values for initial imperfection, the value of fε  is 

insignificant prior to buckling or yielding in compression and can be neglected in estimating the 

linear response without any notable loss of accuracy. 

However, yielding or buckling of the bar significantly changes its stiffness and alters the 

value of Pα . Hence, when the bar reaches either limit case, the structural system is redefined 

according to the new material constants, and the initial boundary conditions are set to the current 

configuration of the deflected and loaded bar. Consider the case of a bar that has reached its 

yielding strain and is starting to exhibit hardening behavior (i.e., not yet into the hardening 

range). The initial conditions are taken from the solution of Equation (2.18) with the applied 

stress and strain being set to the yield point in compression ( )syyy Eσεσ −=−− , . These initial 

conditions are listed with a superscript h  to denote that loading is taking place in the hardening 

phase: 
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y
h
i σσ −=  (2.20)

( ) ycryfiy
h
fi εσσεεε −≈−+−= 21  (2.21)

The approximation in Equation (2.21) is valid, since the stress-free strain can be ignored 

in the elastic range as discussed above. This has the advantage of eliminating the model’s 

sensitivity to the estimated value of the initial imperfection iδ . Next, the strain decomposition 

relationships are re-written to reflect the new boundary conditions: 
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where h
PΔα  is a redefinition of the ratio Pα  according to 

( ) 0≥
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−=Δ h
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h
cr

h
ish

P σσ
σεσα  (2.24)

where ( )sεσ  represents the bar’s constitutive material law and the updated critical stress 

h
crσ  is computed using (2.12) and the reduced stiffness modulus rE  from (2.1). Equations 

(2.22)–(2.24) can be satisfied using an iterative solver. Note that tε  and sε  represent the total 

and mechanical strains in the bar and are not affected by the hardening regime, hence the 

absence of superscript h . If the updated critical stress h
crσ  is lower than the yield stress and the 

bar therefore buckles prematurely, the material effectively unloads, while the observed (total) 

strain increases due to the amplification factor in Equation (2.23). Otherwise, the stress in the bar 

will continue to increase until it reaches the buckling stress. However, the bar’s stress-total strain 

response will exhibit reduced hardening stiffness due to the decomposition of total strain 

between a mechanical component that generates stress and a stress-free buckling-induced 

component. 

Finally, consider the case of a general material law for a steel bar with nonlinear inelastic 

behavior and laterally restrained by uniform transverse ties of nonlinear stiffness. Once buckling 

is detected according to Equation (2.12), define bσ  and bε , the compressive stress at the onset of 

buckling and the corresponding compressive strain magnitude, respectively. Then an updated 
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structural system with new boundary conditions can be approximately defined, following the 

example of Equations (2.20) and (2.21). The new set of boundary conditions are listed (with 

superscript b  to denote the buckling phase) by 

( ) ( ){ }min,:max crssb
b
i

s

σεσεσσσ
ε

≤==  (2.25)

( ) ( )011 −− −== σσσεε bb
b
fi  (2.26)

where 1−σ  refers to the inverse stress-strain relationship of the bar’s constitutive material 

law and ( )01−σ  is the strain corresponding to the beginning of the current compressive stress 

cycle ( ( ) 001 =−σ  for monotonic loading). Next, approximate b
crσ  as the terminal critical stress of 

the buckled bar at large deformations ∞|crσ , corresponding to asymptotic material tangent 

stiffness moduli (or rupture, if applicable) in the bar and transverse ties. 
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Therefore, equations similar to (2.22)–(2.24) are proposed with the substitution of 

superscript h  by b  and making the necessary adjustments (e.g., for the definition of b
PΔα ). The 

redefinition of boundary conditions and initial stress-free strain requires the addition of a residual 

strain term rε  to preserve strain compatibility of the decomposition equation. This residual strain 

is equivalent to the stress-free strain h
fε  in Equation (2.23) at the point where Equations (2.22)–

(2.24) are redefined (i.e., at the onset of buckling). The updated equations describing post-

buckling stress-strain behavior are written in terms of the redefined boundary conditions making 

use of Equations (2.25)–(2.27). 
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P σσ
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The main components and behavioral features of this model are illustrated in Figure 2.3. 

The mechanical stress-strain model for the bar is assumed to follow Chang and Mander (1994). 
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Fig. 2.3  Model illustration of monotonic post-buckling behavior. 

2.2.4 Cyclic Post-Buckling Behavior 

The point ( )unun σε ,  on the stress-strain path marks the end of a loading half-cycle and the start of 

an unloading one. An unloading half-cycle is defined as the path starting at peak strain and 

ending at zero stress (or earlier, if strain reversal takes place prior to reaching zero stress), while 

a loading half-cycle is defined as the stress-strain path starting at zero stress (or from the end of 

the preceding unloading half-cycle in which zero stress had not been reached) and ending at the 

peak strain. The end of a compression (negative) loading half-cycle is detected when the 

algebraic sign of the total strain increment tεΔ  is reversed from negative to positive. Following a 

loading half-cycle during which buckling has been detected, experimental results reported in the 

literature show that bars exhibit reduced axial stiffness, the buckling-induced shortening 

decreases, and the bar straightens out (Monti and Nuti 1992). This behavior can be modeled 

consistently using the strain decomposition approach employed in modeling post-buckling 

behavior. The recovered buckling-induced shortening can be expressed in terms of a positive 
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stress-free strain increment fεΔ . Hence, the bar material temporarily follows its constitutive law 

with a reduced mechanical strain increment fts εεε Δ−Δ=Δ . This results in a reduced overall 

unloading stiffness ( ) ts
unE εεσ ∂∂=  up to the point when 0=fε  and ts εε Δ=Δ . Afterwards, 

the relationship st εε =  is restored and the bar material follows its constitutive law in the original 

manner until subsequent buckling is detected. 

The relationship governing the distribution of strain increments is formulated to ensure 

continuity over its range as follows: 

ttun
f

f
ff εε

ε
ε

ηε Δ≤Δ=Δ  with 10 ≤≤ fη  (2.31)

where fε  and un
fε  are the stress-free strains corresponding to the current and unloading 

stress states, respectively. Moreover, for numerical stability, the resulting change in bar stiffness 

is gradual and continuous along the regime in which the stress-free strain varies from un
ff εε =  to 

0=fε , allowing a smooth transition to the constitutive material law. The choice of fη  should be 

made such that bars suffering from severe buckling should exhibit softer axial stiffness upon 

strain reversal as discussed above. The analytical study in Dhakal and Maekawa (2002b) 

suggests that the tangent stiffness at the beginning of the compression unloading half-cycle un
iE  

can be assumed as follows: 
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i EE εσσ=  (2.32)

where ( )un
tεσ  is the bar material’s mechanical stress at the unloading strain without 

considering the effects of buckling, as illustrated in Figure 2.4. Note that the effective bar 

stiffness is given by 
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During a compression unloading half-cycle, the derivative in the last term is expressed 

using Equation (2.31) as follows: 
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where ( )2
fO η  follows the usual asymptotic notation. Substituting Equation (2.34) in 

(2.33) and equating to (2.32) when un
ff εε =  yields 

( )( )21 un
t

un
f εσση −=  (2.35)

At the end of the tension loading half-cycle, the stress-free strain fε  is checked for full 

recovery. Unless fully recovered, the non-zero value of fε  is designated as the current residual 

strain rε  during the subsequent load cycle. At the end of the tension unloading half-cycle, the 

corresponding mechanical strain ( )0=σε s  is stored in order to be used in Equation (2.26) and 

the increasing compressive stresses are monitored and checked for buckling. Once detected, an 

updated bσ  and bε  are defined, and an updated set of Equations (2.25)–(2.30) is enforced until 

subsequent strain reversal. The main components and behavioral features of this model are 

illustrated in Figure 2.4. For clarity of illustration, the mechanical stress-strain behavior of the 

bar is assumed to follow the nonlinear model in Menegotto and Pinto (1973) without including a 

yield plateau. 
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Fig. 2.4  Model illustration of cyclic post-buckling behavior. 
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2.2.5 Hysteretic Stress Reduction and Bar Fracture 

The Coffin-Manson fatigue model (Coffin 1962; Manson 1979) is employed as described by 

Brown and Kunnath (2004) to model the hysteretic degradation of reinforcing steel bars and 

subsequent fracture. This model is based on the accumulation of plastic strain. It defines a 

cumulative damage index calculated at the end of each loading half-cycle according to 

1
2

1

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

cycleshalf f

p
s

cm

M
D

α
ε

 (2.36)

where pε  is the plastic strain accumulated between strain reversals. It is assumed to be 

equal to the strain amplitude after subtracting an elastic strain value equal to the stress amplitude 

( )minmax
ss σσ −  divided by the elastic stiffness modulus sE . fM  is the strain corresponding to 

fracture in monotonic tension, and cmα  is a model calibration parameter (typically 0.5–0.7 for 

metals). The damage index calculated after each loading half-cycle is used to compute a 

hysteretic stress reduction factor for subsequent loading half-cycles as follows: 

( ) sa
ss DR −= 1  (2.37)

where sa  is another model calibration parameter. When the damage index value is equal 

to zero prior to damage, the stress reduction factor is equal to unity causing no reduction in 

stress. When the damage index value reaches unity, the stress reduction factor becomes zero and 

the bar becomes inactive. The study in Brown and Kunnath (2004) suggests calibrated values of 

130.0=fM  and 506.0=cmα  for reinforcing steel bars. The parameter sα  is calibrated in the 

next section. 

In order to use the Coffin-Manson fatigue model discussed above and the calibration in 

Brown and Kunnath (2004) with the current reinforcing steel bars buckling model, a 

modification is suggested in Equation (2.38) for the definition of strain amplitude to account for 

the relatively rapid hysteretic degradation caused by buckling. The strain amplitude is therefore 

redefined as one composed of the mechanical axial strain amplitude ( )minmax
ss εε −  and the 

maximum compressive strain in the buckled bar’s cross section. The latter is computed from the 

maximum curvature maxφ  of the deformed (buckled) shape assuming Bernoulli-compliant 
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bending as 2max bd×φ . Thus strains accumulated mechanically are treated differently in 

assessing damage than those observed due to buckling-induced shortening. Reversing Equation 

(2.14) to compute the lateral offset δ  from the stress-free strain fε , substituting in Equation 

(2.3) to compute the corresponding curvature at mid-height of the buckled bar ( 2crLx = ), using 

1=n , multiplying by half the bar diameter, modifying fε  with the residual strain rε  according 

to the discussion at the end of the previous section, adding the mechanical strain amplitude, and 

subtracting the elastic strain value yields 

( ) ( )
s

rf
cr

b
ss

b
p EL

d minmax
minmax 2 σσεεπεεε −−−+−=  (2.38)

This plastic strain quantity can be used along with experimental data to calibrate fatigue 

models similar to Brown and Kunnath (2004) for bars suffering from multiple instances of 

buckling prior to fracture as discussed in the next section. 

2.2.6 Parameter Calibration and Experimental Verification 

In this section, the buckling-enabled model for longitudinal reinforcing steel bars developed in 

the present section is compared to experimental results published in Monti and Nuti (1992), 

Rodriguez et al. (1999), and Bae et al. (2005) to assess its validity and calibrate the parameter 

sα . Calibration of the parameter cmα  using the definition of plastic strain from Equation (2.38) 

requires experimental data of steel bars cyclically loaded until fracture while suffering from 

multiple instances of buckling, which proved difficult to find in the literature. Thus, the value 

calibrated in Brown and Kunnath (2004) is adopted for simplicity. The simulated experimental 

investigations include individual steel bars subjected to monotonically increasing compressive 

strains or cyclically increasing strains. The end conditions for all bars are such that they are 

prevented from rotation and lateral translation at both ends. Analytical simulation is performed 

using the proposed bar-buckling model and a mechanical stress-strain material model for the 

reinforcing steel. Unless otherwise mentioned, the mechanical stress-strain model in Chang and 

Mander (1994) is used. The stress-strain parameter values used in the analytical simulation for 

each group of experiments are listed in Table 2.1 and defined in Figure 2.5, where the subscript 
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sh  refers the onset of strain-hardening, and the subscript u  refers to ultimate stress state. In the 

case of some material properties not being reported such as the initial strain hardening modulus, 

or the cyclic behavior parameters, they are estimated within the range of typical steel properties 

and calibrated when applicable to the bars’ response observed prior to buckling. In the case of 

several parameters not being reported, the constitutive law in Menegotto and Pinto (1973) is used 

for the mechanical stress-strain relationship of the steel bars. The values of the parameter sα  

used in calibrating the simulated cyclic load tests are listed in Table 2.1. Due to the small number 

of experiments, no statistics are computed. However, the observed model response exhibited 

robust (little) sensitivity to small perturbations in sα  values. 

Table 2.1  Parameter values in simulations using the bar-buckling model. 

Experiment (Bae et al. 2005) (Rodriguez et al. 1999) (Monti and Nuti 1992) 

sE [GPa] 200 200 200 

shE [GPa] 5 10 8 

yσ [MPa] 440 409 490 

uσ [MPa] 640 700 Not Available 

shε  0.005 0.005 Not Available 

uε  0.16 0.18 Not Available 

sα  (for cyclic loading only) 0.30 0.10 
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(a) Model in Chang and Mander (1994) (b) Model in Menegotto and Pinto (1973) 

Fig. 2.5  Basic parameters of existing mechanical stress-strain models for steel. 

Figure 2.6 illustrates the comparison between the model predictions and the monotonic 

compression tests reported in Bae et al. (2005) for nine levels of the bar slenderness ratio 

12...,,5,4=bb dL . The simulation is successful in capturing the buckling stress for the majority 

of bars except for bars that buckle prior to reaching the yield stress, i.e., with very high 

slenderness ratio 10b bL d ≥ . This is because the critical buckling surface during the yielding 

plateau is not well-defined as previously described in Section 2.2.2. The model is moderately 

successful in reproducing the reduction in hardening stiffness between yielding and buckling. In 

that region, the analytical model shows higher stiffness than the experimental results, and as a 

result the predicted strains at the peak stress prior to softening are underestimated. The model is 

generally successful in describing the post-buckling softening in the bars. The analytically 

simulated softening branches show discontinuity and steeper gradients at the onset of buckling 

that cannot be observed in the experiments due to the load-application control process and 

average strain calculation method. The experimentally computed strains are averaged over a 
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gage length of 200 mm, which is less capable of capturing the sudden effects of strain 

localization. 
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Fig. 2.6  Model simulations of Bae et al. (2005) bar-buckling experiments. 

Figure 2.7 illustrates the comparison between the model prediction and the cyclic loading 

experiments conducted in Rodriguez et al. (1999) for two bars representing the compression 

(concave) and tension (convex) sides of an axially loaded RC column subjected to cyclic lateral 

displacement. Both bars have a slenderness ratio of 6. The simulation is successful in estimating 

the cycles where buckling is observed and the subsequent softening. The simulation is also 

successful in estimating the reduced stiffness moduli of the buckled bars upon unloading from 

compression, and is largely successful in reproducing the following hysteretic loops in tension 

and compression except for occasional overestimation of the hysteretic loop size during 

unloading from loading half-cycles of high strain magnitude. The simulation slightly 

overestimates the reduction in unloading stiffness following brief buckling sessions in Figure 

2.7b. 
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(b) Bar representing RC column’s convex side 

Fig. 2.7  Model simulations of Rodriguez et al. (1999) bar-buckling experiments. 



 

38 

Figure 2.8 illustrates the comparison between the model prediction and the cyclic loading 

tests conducted in Monti and Nuti (1992) for steel bars with slenderness ratios of 8 and 11. The 

pre-buckling response of the steel bars is supposed to follow the mechanical stress-strain model 

in Menegotto and Pinto (1973) due to the limited material properties reported in Monti and Nuti 

(1992). The simulation is successful in estimating the cycles where buckling is observed and the 

subsequent softening in stress. The simulation is also successful in estimating the reduced 

stiffness moduli of the buckled bars upon unloading from compression and in reproducing the 

subsequent hysteretic behavior in tension. The area of the hysteretic loops in compression is 

underestimated in the simulation while unloading from the 0.03 strain cycle due to the 

limitations of the mechanical stress-strain model. This can be calibrated in the presence of 

additional material property data and more detailed mechanical stress-strain models, e.g., the 

model in Chang and Mander (1994). Superimposed on the response is the estimation of the 

stress-strain response in the absence of buckling using the steel material model in Dhakal and 

Maekawa (2002b). The comparison illustrates the significance of the developed bar-buckling 

model in estimating the effect of buckling on the uniaxial response of longitudinal reinforcement. 

Moreover, similar to the present buckling model, an underestimation of the area of the hysteretic 

loops in compression especially for 11=bb dL  is also observed in the simulations based on the 

steel material model in Dhakal and Maekawa (2002b) without buckling. 
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Fig. 2.8  Model simulations of Monti and Nuti (1992) bar-buckling experiments. 
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2.3 ANALYTICAL MODEL FOR LAP-SPLICED STEEL BARS 

The proposed uniaxial material model for lap-spliced steel bars is based on a number of 

components. The first component is an admissible interpolation of bond stresses within the splice 

region. The second component is a strain decomposition approach. The third component is a 

constitutive bond-slip material model which combines a confinement-sensitive constitutive law 

for monotonic bond-slip behavior with multi-linear hysteretic unloading-reloading rules. The 

fourth component consists of an analytical model for hysteretic damage and stress reduction. 

2.3.1 Geometric Setup 

The geometric setup and assumed stress fields of two longitudinal steel bars lap-spliced within a 

RC column as adopted from Binici and Mosalam (2007) are shown in Figure 2.9. The spliced bar 

is referred to as “1,” while the starter bar is referred to as “2” in illustrations and subscripts. The 

distribution of bond shear stresses τ  along the splice length is assumed to vary linearly from 

zero at the stress-free end of each bar to a maximum stress mτ  at a distance sL , which satisfies 

the equilibrium of stresses at the stress-free end. At any location along the splice at a distance 1l  

from the stress-free end of the spliced bar, the equilibrium of axial stresses in each bar and bond 

stresses transferred to it can be respectively expressed using the following two equations: 

s
bmb

b
s L

ldldd
224

2
1

1
1

2

1 πτπτπσ ==  (2.39)

( ) ( )
s

s
bmsb

b
s L

lLdlLdd
224

2
1

1
2

2

2
−=−= πτπτπσ  (2.40)

Solving Equations (2.39) and (2.40) for the axial stresses in the bars 1sσ  and 2sσ  and then 

algebraically adding them, one obtains the total steel stress sσ  at a distance 1l  as follows: 

( )
sb

lls
msss Ld

llL 22

21 2 +−=+= τσσσ  (2.41)

which corresponds to the parabolic axial stress distribution along the splice length 

illustrated in Figure 2.9. In FE analysis, the spatial variation in the total steel stress is computed 

as a function of the integration point location within the splice length. 
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Fig. 2.9  Geometry and stress-strain distribution along spliced steel bars. 

2.3.2 Monotonic Lap-Splice Behavior 

The monotonic bond-slip relationship proposed in Xiao and Ma (1997) with minor modifications 

is briefly presented in this section. This relationship relates the bond stress mτ  to the slip 

displacement su  given the compressive strength cf ′  of the adjoining concrete, the maximum 

bond strength in the absence of lateral confinement τ ′ , the lateral confining stress acting on the 

spliced bars 3σ , and a non-dimensional factor or  representing the reinforcing bar grade. This 

bond-slip model follows the equation: 

( )
( ) r

ss

ss
m uur

uur

max,

max,max

1 +−
=

τ
τ  (2.42)

where Xiao and Ma (1997) proposes the following definitions for the model parameters: 

3max 4.1 σττ +′=  (2.43)

( )cs fu ′+= 3max, 75125.0 σ  [mm]  (2.44)

1.113 3 ≥′−= co frr σ  (2.45)

where or  is 2 for Grade 60 and 1.5 for Grade 40 steel, and in the absence of experimental 

measurement, it is assumed that 

bc df ′=′ 20τ [N, mm units] (2.46)
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The confining stress 3σ  is computed from the transverse reinforcement and its maximum 

value is assumed to correspond to a concrete dilation strain 0.0015  to0010.0≈dlε  (Seible et al. 

1997), after which confinement is experimentally observed to have insignificant effect on 

clamping the splices (Xiao and Ma 1997). Note that Hawkins et al. (1982) proposes a different 

relationship for max,su  in well-confined steel bars (see the following equation) that explicitly 

takes into account the diameter of the bar but not the magnitude of the confining pressure. 

cbb

c
s fdd

fu
′

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
= 310

1000
8

31

max,  [N, mm units] (2.47)

Together Equations (2.44) and (2.47) present lower and upper bounds, respectively. 

A strain decomposition approach similar to the one described in Section 0 is used in this 

section. The monotonic bond material described above is coupled as a uniaxial material in series 

with another uniaxial material representing the mechanical stress-strain response of reinforcing 

steel bars. Hence, 

slst εεε +=      with     sssl Lu=ε  (2.48)

where sε  is the mechanical strain such that ( )ss εσσ =  represents the total axial stress in 

the spliced bars according to their mechanical stress-strain constitutive law, and slε  represents 

normalized slip deformation. Equations (2.42), (2.48), and the mechanical stress-strain 

constitutive law are solved iteratively to satisfy the equilibrium of stresses along the splice region 

while preserving the kinematic compatibility of strain components and the constitutive law. 

Typically, due to the relative uniformity in spatial distribution of steel total stress along the splice 

length ( sσ  in Fig. 2.9), one integration point is deemed sufficient and computationally 

economical. The main components and behavioral features of this model are illustrated in Figure 

2.10. The mechanical stress-strain model for the bar is assumed to follow Menegotto and Pinto 

(1973) for simplicity of illustration. The figure illustrates the concept of using strain 

decomposition to simulate softening in the overall response following failure of the lap-splice 

while the spliced bars unload elastically. 
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Fig. 2.10  Model illustration of monotonic lap-splice behavior. 

Figure 2.11 illustrates an example simulation for the response of lap-spliced bars 

compared to that of bars with perfectly rigid bond, i.e., no lap-splice. Three lap-splice length-to-

diameter ratios 10,20,40=bs dL  are simulated to represent cases of adequate and inadequate 

designs. The first set of plots—shown in solid lines— illustrates the response of the lap-spliced 

bars in their as-built condition, i.e., no external confinement. The second set of plots—shown in 

dashed lines—illustrates the response of the lap-splice if retrofitted by external confinement of 3-

mm diameter circular spirals at a spacing of 25 mm in a cross section of 75 mm diameter. The 

simulated behavior of the retrofitted splices exhibits lower initial stiffness due to the increase in 

slip displacement max,su  in Equation (2.44) more than the corresponding increase in bond-stress 

capacity maxτ  in Equation (2.43). In this simulation, the mechanical stress-strain model of the 

bars follows Menegotto and Pinto (1973). Note that the bond-slip relationship is independent of 

the lap-splice geometric setup and can therefore be used to model the bond-slip of the anchored 

bars. This can be achieved if the free-body diagram in Figure 2.9 is modified to eliminate the 
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starter bar and include the proper stress condition at the embedded end of the anchored bar, with 

Equations (2.39) and (2.41) updated accordingly. 
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Fig. 2.11  Effect of splice length and confining stress on spliced bar response. 

2.3.3 Cyclic Lap-Splice Behavior 

Modeling the cyclic response of the lap-spliced bars involves modeling the cyclic bond-slip 

behavior. In addition to friction and interlocking between the interface concrete and the lugs on a 

deformed bar surface, compression loading on the spliced bars leads to direct bearing on 

concrete and alters the assumption of stress-free bar ends. Moreover, several researchers report 

that the bond-slip behavior and strength exhibit stiffer and stronger response if the bars are 

pushed toward each other and into the concrete instead of being pulled apart and out due to the 

additional confining action of the encasing concrete (Viwathanatepa 1979). However, in RC 

column cross sections subjected to flexural deformations, the primary role of the reinforcing steel 

bars is to transfer tensile stresses; the role of the reinforcing bars is secondary to the concrete in 

resisting compressive stresses. Moreover, a cross section whose lap-spliced bars had failed in 

tension will not be able to develop its bending moment capacity and—consequently—will 
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impose hardly any demand on the reinforcing steel bars located in its compression (concave) 

side. Thus, the effect of slip direction on the lap-splice behavior is not explicitly modeled. The 

concept of strain decomposition and equilibrium of stresses as illustrated in Figure 2.10 is used 

together with a hysteretic material model to represent the bond-slip behavior. The model consists 

of the envelope curve described by Equation (2.42), an unloading branch, a pinching branch, a 

reloading branch, and a hysteretic damage model. This section presents the cyclic response rules. 

Section 2.3.4 introduces the hysteretic damage model, while Section 2.3.5 presents comparison 

with experimental data and identifies typical value ranges for the calibrated model parameters. 

The proposed cyclic response rules draw their inspiration from Hawkins et al. (1982) and 

use some of the parameter values reported therein for guidance. The unloading branch follows an 

unloading modulus unS  from the unloading point ( )unun
su τ,  until stress reversal. The value of unS  

is assumed equal to the initial tangent modulus iS  of the envelope, obtained by differentiating 

Equation (2.42) as follows: 

( ) max,

max

0
1 sus

m
iun ur

r
u

SS
s

−
=

∂
∂==

=

ττ  (2.49)

Following stress reversal, the unloading branch continues linearly up to a residual bond 

stress rτ  depending on the present level of bond integrity (reflected by the unloading stress) as 

follows:  
un

rr k ττ −=  (2.50)

A value of 15.0=rk  is suggested in Hawkins et al. (1982). Hence the corresponding 

residual slip displacement is expressed by  

( ) unr
unun

srs Suu ττ −−=,  (2.51)

Subsequently, the response follows a pinching branch whose stiffness modulus pinS  

depends on the unloading slip displacement un
su  according to one of the two cases discussed in 

the following paragraph. 

The first case occurs if the bond response prior to unloading is mainly elastic, identified 

by unloading ( )unun
su τ,  from the envelope with e

s
un
s uu ≤ , where the superscript e  denotes the 

mainly elastic bond behavior and e
su  is a model parameter. The pinching branch in this case 
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coincides with a reloading branch whose stiffness modulus targets the point ( )ee
su τ,±  on the 

opposite-sign envelope curve, i.e., 

rs
e
s

r
e

e
pin uu

S
,+

−
=

ττ
 (2.52)

The response follows the stiffness modulus e
pinS  until it returns to the envelope without 

intermediate changes in stiffness, see Figure 2.12. The second case occurs if the bond response 

prior to unloading ( )unun
su τ,  exhibits significant inelasticity, i.e., e

s
un
s uu > . In this case, the 

response follows a reduced stiffness modulus i
pinS  (the superscript i  denotes inelastic bond 

behavior). The extent of the inelastic pinching is assumed to depend on the unloading secant 

modulus and thus reflects the severity of bond deterioration. For simplicity, this latter 

relationship is assumed linear as follows: 
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where 1≤pβ  and can be calibrated by fitting to experimental measurements (see Section 

2.3.5). Equation (2.54) retrieves the largest previously recorded slip displacement in the direction 

of the envelope to which unτ  belongs (see Fig. 2.12). The pinching regime ends when the 

pinching branch intersects the reloading secant modulus secS . This secant connects the origin to 

the farthest previous unloading point ( )unun
su τ̂,ˆ  on the opposite envelope after reducing the target 

stress by a factor pγ . 
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Equation (2.56) retrieves the largest previously recorded slip displacement in the 

direction opposite to the envelope to which unτ  belongs. The form of the expression for pγ  in 

Hawkins et al. (1982) is adopted and modified to 

( ) ( )
max,

,
min,max,max,min,

max
p

ults

e
ss

ppppp u
uu

γγγγγγ ≤
−

−−=≤  (2.57)

where ultsu ,  is the slip displacement corresponding to the loss of bond stiffness and can be 

determined experimentally or estimated according to an existing model, e.g., based on 

Eligehausen et al. (1983) as a multiple of max,su  (depending on confinement and bar surface 

conditions; see Section 2.3.5). The values of min.pγ  and max.pγ  are assumed equal to 0.65 and 

0.90, respectively, in Hawkins et al. (1982). After returning to the target point where the 

pinching branch intersects the reloading secant branch, the latter branch continues until it 

intersects the envelope and then follows the envelope until the next unloading occurs. 

Figure 2.12 illustrates schematically the hysteretic response of the bond-slip model. The 

loading path follows the roman letters a-b-c-d-e-f-g-h. The roman letters a-b-c-d′-e′-f′-g′-h′ 

describe a loading path for the case where the effect of hysteretic degradation is included, which 

is discussed in the next section. Note that the loading history in Figure 2.12 is such that the first 

unloading occurs while the bond behavior is mainly elastic, and as a result the pinching and 

reloading branches coincide following stress reversal. Loading takes place along the envelope 

curve a-b until unloading at b, which should temporarily be designated ),( unun
su τ  and, at the 

same time, ),( unun
su τ , until subsequent unloading (for clarity, designations not shown on the 

plot). The response then follows the slope unS  in Equation (2.49) along b–c before it starts 

elastic pinching at c, which is defined by Equations (2.50)–(2.51). The first pinching branch 

follows c–d according to Equation (2.52) until it intersects the envelope curve at d and continues 

along d–e. 

When unloading at e, the unloading point ),( unun
su τ  is designated ),( unun

su τ  and the 

farthest unloading point on the opposite-sign envelope (i.e., point b) is designated )ˆ,ˆ( unun
su τ  as 

the target of the subsequent reloading. This is opposite to the case when unloading first took 

place at b. Note that throughout the loading history, the designations ),( unun
su τ  and )ˆ,ˆ( unun

su τ  
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interchange as the direction of loading switches, whereas ),( unun
su τ  always denotes the most 

recent unloading point. Unloading from e follows the slope unS  in Equation (2.49) until f, 

defined by Equations (2.50) and (2.51). Subsequently, inelastic pinching starts with the pinching 

slope i
pinS  in Equation (2.53) until it intersects the linear reloading branch of slope secS  in 

Equation (2.55) at g, and then follows the reloading branch along g–h until it intersects the 

envelope curve at h. Subsequently, the response follows the envelope curve until further 

unloading. 
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Fig. 2.12  Hysteretic reduction of bond-slip envelope curve and reloading stiffness. 

An exceptional case occurs when unloading takes place from one direction of loading 

when the other direction has not been previously loaded or only loaded to a relatively low stress 

which results in an undefined or unrealistically high value of secS  that can never converge back 

to the envelope. This will often be the case at the first instance of unloading to be followed by 

inelastic pinching. In this case, the pinching branch continues until it intersects the envelope 

curve and the linear reloading branch with slope secS  is ignored. The hysteretic response to this 

exceptional case is illustrated in Figure 2.13 for one cycle of inelastic bond behavior prior to 
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unloading. The loading path follows the roman letters a-b-c-d-e, with the inelastic pinching 

branch c-d returning directly to the envelope at d and then continuing along d–e as discussed. 
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Fig. 2.13  Model illustration of hysteretic bond-slip behavior. 

2.3.4 Hysteretic Stress Reduction 

A hysteretic damage component is added to the bond-slip model to reduce the envelope curve 

and reloading stiffness due to hysteretic degradation. First, the following maximum slip 

displacement-based damage index is proposed: 

{ } s,ult
un
s

un
sp uu,uD ˆmax=  (2.58)

Next, the following reduction factor is defined and multiplied by the bond stress: 
( )( )nαα

pp
pnpDR 1111 −−−=  with pα<0  and 10 <≤ pnα  (2.59)

where pα  and pnα  are model parameters to be calibrated by fitting to experimental 

measurements (see Section 2.3.5), and n  is the number of minor loading half-cycles following 

the maximum slip level. A minor loading half-cycle is defined as one in which subsequent 

unloading takes place during pinching or reloading and before returning to the reduced envelope. 
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The effect of hysteretic stress reduction is illustrated in Figure 2.12 along the loading path 

designated by the roman letters a-b-c-d′-e′-f′-g′-h′. Loading along a-b and unloading along b-c 

are unaffected by hysteretic degradation. The branch d-e along the envelope curve is reduced to 

d′-e′ via multiplying the bond stresses at d and e by pR  in Equation (2.59), and so the elastic 

pinching slope along c-d is reduced. The unloading slope of e′-f′ is the same as e-f. Hysteretic 

degradation results in reduction of the envelope curve starting from h according to Equation 

(2.59), and therefore both the inelastic pinching slope along f′-g′ and the linear reloading slope 

along g′-h′ are consequently reduced. 

2.3.5 Parameter Calibration and Experimental Verification 

In this section, the lap-splice model developed for longitudinal reinforcing steel bars is compared 

to the experimental results published in Viwathanatepa (1979) and Hawkins et al. (1982) to 

assess its validity. In addition, the calibration process involved in performing the comparison is 

intended to inform the selection of default parameter values for the model. Table 2.2 lists the 

range and statistics of values used for every parameter in reproducing 15 cyclic and monotonic 

bar pull-out experiments. For monotonic model response, the sole important parameter is max,su , 

which affects the initial stiffness. The calibrated results show that this parameter can be 

estimated with little uncertainty as bounded by Equations (2.44) and (2.47). For the hysteretic 

response, the parameters max,s
e
s uu , rk , pβ , max,pγ , and min,pγ  have a secondary effect on the 

shape of pinching and reloading branches. They can be estimated with reasonable flexibility 

without significantly affecting the peak stress and the general profile of the response. The 

parameters max,, sults uu  and pα  play a primary role in determining the rate of hysteretic decay. 

The calibrated values of max,, sults uu  reflect considerable uncertainty and should be carefully 

evaluated taking into consideration the bar surface and confinement conditions. Finally, the 

parameter pnα  can be estimated with little uncertainty and has secondary influence on the model 

output. 
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Table 2.2  Calibrated bond-slip model parameter ranges. 

Parameter Minimum value Maximum value Mean Value COV 

max,su [mm] 1.15 1.40 1.34 0.075 

max,, sults uu  8.00 25.00 13.91 0.416 

max,s
e
s uu   0.10 0.20 0.16 0.313 

rk  0.15 0.20 0.16 0.150 

pβ  0.05 0.20 0.14 0.534 

max,pγ  0.90 0.95 0.91 0.015 

min,pγ  0.70 0.85 0.75 0.042 

pα  1.20 2.00 1.54 0.238 

pnp αα −  0.60 1.10 0.93 0.167 

 

The experiments reported in Hawkins et al. (1982) include individual steel bars bonded to 

anchored concrete blocks over a short length (only 1–4 lugs) and subjected to increasing push-

pull displacements. The bars are subjected to stresses lower than their yield strength in order to 

enable the reproduction of the local bond-slip behavior from the recorded forces and 

displacements by subtracting the elastic elongation of the bars. Slip deformations and stresses are 

assumed uniform along the bonded length. The experiments include monotonic and cyclic—both 

symmetric and asymmetric—displacement histories. The primary investigated variable in the 

experimental study is the concrete compressive strength, which varied between 18 and 47 MPa. 

The majority of the experiments are conducted using deformed bars of 25 mm diameter, while a 

few experiments are conducted on deformed bars of 19, 32, 36, 38, and 40 mm diameter and 

plain bars of 19 and 25 mm diameter. All bars used in testing are of 60 MPa nominal yield 

strength. 

Analytical simulation is performed using the proposed lap-splice model and the reported 

material properties. The experimental setup reported in Hawkins et al. (1982) results in 

reinforcing bars that are better-confined than typical column reinforcement yet provides no direct 
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means to estimate the confining stress. Therefore, the monotonic bond strengths were obtained as 

reported from the monotonic loading experiments, while max,su  was estimated using Equation 

(2.47). The bond-slip model was then verified and calibrated by reproducing measurements from 

the cyclic loading experiments. Figure 2.14a illustrates the comparison between the proposed 

model and the experiment of an asymmetric tension-only load history as well as the monotonic 

response of a 25 mm deformed bar embedded over two lugs in a 34 MPa concrete block. The 

simulated monotonic envelope successfully reproduces the pre-peak monotonic response and 

slightly underestimates the slope of the softening branch. The simulated cyclic response 

successfully estimates the peak stress, reproduces the hysteretic degradation, and predicts the 

residual bond stress capacity at the end of the experiment. However, the model overestimates the 

experimentally observed reloading stiffness due to its linear approximation. 

Figure 2.14b illustrates the comparison between the proposed model and the experiment 

of a symmetric load history as well as the monotonic response of a 25 mm deformed bar 

embedded over two lugs in a 47 MPa concrete block. The simulated response successfully 

reproduces the pre-peak monotonic response (while slightly underestimating the softening 

branch), the peak stress, and the hysteretic degradation on the tension (pull or positive) side. 

However, since the effect of slip direction has not been incorporated in the model, the simulated 

stresses in the early stages of the compression (push or negative) direction are underestimated. 

The comparison suggests that the error in estimation is not likely to have a significant effect on 

modeling of concrete column response, and that the error decreases with the increase of 

hysteretic bond degradation which is common during seismic loading. Moreover, the later post-

peak response of the model is of higher interest in modeling collapse-prone problems as is the 

case in this report than the early post-peak behavior. Also noted is a discrepancy between the 

simulated and measured residual bond stress directly after unloading in the push side, since the 

measured stresses show a temporary spike in the direction opposite to the preceding push loading 

and then decreases in magnitude to a level equal to the simulated stresses. It is thought that this 

spike exists due to the higher value of the static friction coefficient between the deformed bar 

and the neighboring concrete at the beginning of the deformation reversal than the kinematic 

friction later. The inclusion of such a spike in a computational model is numerically problematic 

and constitutes very little practical importance. It is observed that the linear pinching and 
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reloading branches in the model cannot accurately reproduce the nonlinear reloading behavior in 

all the experimentally observed reloading branches, yet this is considered an acceptable 

simplification. 
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(a) Asymmetric (one-sided) cyclic displacement history 
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(b) Symmetric cyclic displacement history 

Fig. 2.14  Model simulation of Hawkins et al. (1982) bond-slip experiments. 
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The experiments reported in Viwathanatepa (1979) include individual deformed steel 

bars embedded in column stubs over a variable anchorage length and subjected to increasing 

push-pull displacement histories. Bar diameter ranges from 19 to 32 mm, and the column stub 

(anchorage) length ranges from 381 to 635 mm. The bars are embedded in the center of the 

column stubs which are transversally reinforced to provide confinement. The applied force on 

the bar (from which the bar’s axial stress is computed) and the relative displacement between the 

bar at the end of the embedded length and the stub face are recorded. The strains in the bar along 

the embedded length are also recorded to reproduce the spatial distribution of slip deformation 

along the bar. The experiments include monotonic and symmetric cyclic displacement histories. 

Average concrete strength is 33 MPa, and steel material properties are reproduced in Table 2.3. 

Table 2.3  Steel properties used in modeling (Viwathanatepa 1979) experiments. 

Experiment 25 mm (#8) bar 32 mm (#10) bar 13 mm (#4) bar (ties) 

sE [GPa] 201 201 203 

shE [GPa] 15 15 20 

yσ [MPa] 469 471 493 

uσ [MPa] 738 738 745 

uε  0.13 0.13 0.12 

Tie spacing [mm] 100 

Number of branches in each tie 4 

 

Analytical simulation is performed using the proposed lap-splice model and the reported 

or estimated material properties. The mechanical stress-strain behavior of the steel bars is 

assumed to follow the model in Chang and Mander (1994). The confining pressure due to 

transverse reinforcement can be computed from the geometry and material properties of the 

transverse reinforcement according to the procedure outlined in Mander et al. (1988) and by 

assuming a transverse dilation strain of 00125.0=dlε  according to Xiao and Ma (1997). The total 

confining stress on the bars during the experiment is expected to be larger than those computed 

due to the effect of placement at the center of the column stub instead of the sides or corners. 
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However, the effect of this discrepancy was evaluated and found to be tolerable by comparing 

the simulated and measured peak stresses at bond failure in the cases of monotonic loading. 

Since the lap-splice model is developed for the geometric setup shown in Figure 2.9 where two 

bars slide relative to each other, the average total strain involved in its constitutive model is a 

sum of mechanical elongation and slip-induced strains in two bars, whereas the reported 

experiments involve one bar slipping relative to a fixed column stub. Therefore, the analytical 

model has to be manipulated in order to reflect the geometry of the experimental setup. This is 

achieved by multiplying by a factor of two the experimental displacement history before 

inputting it to the simulation in order to result in the correct slip-induced strains and 

corresponding stresses in the serially coupled materials’ respective constitutive models (i.e., steel 

bar and bond-slip). Experimental records of bar strains in Viwathanatepa (1979) illustrate that 

the distribution of slip displacement along the embedded length of the bar can be adequately 

interpolated as linearly varying from zero at the stress-free end to a maximum at the other end of 

the embedded length, which supports the computational procedure discussed above based on the 

geometric setup of Figure 2.9. 

Figure 2.15a illustrates the comparison between the simulation and the experimental 

results for a 25 mm bar embedded in a 635 mm column stub. The simulated response 

successfully identifies the peak stress cycle and estimates the peak stress in the pull direction. 

The reproduction of hysteretic degradation is generally successful. However, the simulated 

unloading stiffness is sometimes lower than its experimental counterpart, and the residual stress 

at unloading is underestimated for large displacement magnitudes. Figure 2.15b illustrates the 

comparison between the simulation and the experimental results for a 32 mm bar embedded in a 

635 mm column stub. Similar observations to those made for Figure 2.15a can be made for 

Figure 2.15b. However, the simulated unloading stiffness and residual stresses at unloading 

exhibit a better match to the experimental observations in Figure 2.15b than in Figure 2.15a. 

However, in Figure 2.15b the maximum stresses at the end of a few displacement cycles are 

overestimated relative to the experimental observations, which is not the case in Figure 2.15a. In 

both cases, the simulated stiffness and strength of the pre-peak response in the push direction are 

underestimated, but the post-peak response does not seem affected by neglecting the possibly 

asymmetric bond-slip behavior in the constitutive model. 
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(a) 25 mm (#8) bar embedded in 635 mm (25″) column stub 
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(b) 32 mm (#10) bar embedded in 635 mm (25″) column stub 

Fig. 2.15  Model simulation of Viwathanatepa (1979) bond-slip experiments. 
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2.4 SUMMARY 

In this chapter, analytical material models were proposed to model the confinement-dependent 

axial stress-strain response of buckling-prone and lap-spliced reinforcing steel bars. Closed-form 

analytical expressions for estimating the critical buckling length and corresponding stress were 

derived using an energy approach that incorporates the restraining effect of the transverse ties. 

The post-buckling stress-strain behavior of steel bars was modeled using a strain decomposition 

approach based on an assumed initial imperfection, which reproduces softening during 

compression loading and reduced stiffness while the buckled bar straightens during tension 

loading. Hysteretic stress reduction and fracture were modeled using a damage model based on 

low-cycle fatigue. The analytical model was calibrated using published data from three 

experimental investigations of reinforcing steel bars subjected to monotonic and cyclic loading 

that exhibit buckling. For lap-spliced reinforcing steel bars, a strain decomposition approach was 

adopted based on the equilibrium of axial and shear bond stresses along the splice region. A 

constitutive material law for cyclic bond-slip behavior was developed by combining a 

confinement-sensitive envelope curve, a set of multi-linear unloading-reloading rules, and a 

hysteretic stress reduction factor. The constitutive bond-slip material was calibrated using 

experimental data of locally bonded steel bars subjected to monotonic and cyclic deformations. 

The use of the bond-slip constitutive law to model bond-slip of lap-spliced bars using the 

proposed strain decomposition approach was calibrated using published data from experimental 

investigations of starter bars embedded in reinforced concrete column blocks. 
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3 Modeling of Concrete Column  
Cross Sections 

The nonlinear response of axially loaded RC columns to laterally imposed deformations is a 

phenomenon made complex by a number of factors. The interaction between cross-section 

response to axial load, bending moment, and shear force plays an important role. In addition, the 

geometry of a column, the proportioning of its core concrete, and the longitudinal and transverse 

reinforcement often define the force capacity and governing mode of failure. Moreover, the 

detailing of these materials affects the deterioration of a column’s lateral load-carrying capacity 

with the increase in number and magnitude of deformation cycles, and often determines a 

column’s ability to maintain its axial load-carrying capacity following the deterioration and loss 

of its lateral load-carrying capacity. 

FE modeling of RC columns whose behavior is dominated by flexure-axial interaction 

using fiber-discretization of beam-column element cross sections has been successfully 

established. The theoretical formulation for finite elements using fiber-discretized cross sections 

(referred to hereafter as fiber elements) to represent the spread of plastic regions along the 

element length (referred to hereafter as distributed plasticity) can be reviewed in e.g., Spacone et 

al. (1996a,b). Fiber elements invoke displacement-based, force-based, or mixed-interpolation 

formulations for numerically integrating the strain energy over the FE length. They offer a 

practical method to include the effect of flexure-axial interaction without the computational cost 

of solid modeling and multi-dimensional material constitutive models. However, the fiber-

discretized modeling of the cross-section response is independent of the element formulation 

being used, and in fact can be used in conjunction with lumped-plasticity elements such as beams 

with plastic hinges, as demonstrated in Mazzoni et al. (2004). The process of developing 

accurate fiber-discretization of a cross section depends on selecting an adequate mesh size and 
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accurate constitutive material models for the uniaxial response of individual fibers. Mesh 

selection has been extensively investigated in the literature, and with the abundance of uniaxial 

material models for reinforcing steel and concrete, there appears to be little room for 

improvement. However, this chapter introduces a fundamental improvement to the modeling 

process by combining the low computational cost of fiber elements together with confinement-

sensitive constitutive concrete material and cross-section models. 

Chapter 2 presented the modeling of the individual response of reinforcing steel. The 

modeling process accounted for two failure modes in non-ductile column design, namely the 

buckling of laterally restrained steel bars in compression and the failure of lap-spliced steel bars 

in tension. The analytical models in Chapter 2 explicitly account for the effect of lateral 

confinement whether supplied by internal ties or external retrofit measures. Both the confining 

stress and lateral stiffness supplied by transverse reinforcement were shown to be of importance. 

This chapter complements the previous one by introducing analytical models to compute the 

stress state in transverse reinforcement and include its effect on the individual cross-section 

fibers. First, a review of the available literature about incorporating the effect of transverse 

reinforcement on the lateral response of axially loaded columns is conducted. Next, a uniaxial 

material model and a cross-section model for the response of RC column cross sections subjected 

to the combined effect of axial force and bending moment are developed. Together these two 

models compute and explicitly account for the stress state and potential failure of transverse 

reinforcement based on their governing constitutive laws. These models are calibrated using 

comparisons with experimental results from Ahmad and Shah (1982), Lokuge et al. (2003), and 

Mosalam et al. (2007a,b). They can be used together with the material models developed in 

Chapter 2 to construct beam-column elements using distributed or lumped plasticity, following 

force-based, displacement-based, or mixed FE formulation. They can also be combined with the 

shear friction-based model developed in Elwood (2002)—and recently updated in Elwood and 

Moehle (2005)—to account for shear-axial interaction in shear-critical columns as discussed in 

Section 3.1.4. 
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3.1 REVIEW OF PUBLISHED LITERATURE 

The literature reviewed in this chapter pertains to the role of RC in columns as follows:  

1. Modeling of concrete behavior in tension  

2. Modeling of confined (and unconfined) concrete behavior in compression 

3. Modeling of transverse confinement 

4. Modeling of shear-axial interaction 

3.1.1 Modeling of Concrete Behavior in Tension 

Concrete behavior in tension may seem of secondary importance to modeling of collapse. 

Nonetheless, the relatively low tensile stresses that develop in concrete cross sections may 

significantly influence the stiffness of a column and possibly its force capacity, and thus may 

affect the demands imposed on the column during a dynamic analysis up to collapse where it is 

known that the collapse phenomenon is path dependent (Powell 2005). It is widely believed that 

concrete displays a linear behavior when subjected to a uniaxial tensile stress until cracking 

occurs when the tensile strength is reached. After initial cracking, tensile stress can still be 

transferred across a crack face through intact regions (commonly referred to as “the process 

zone”), and surface friction and does not drop instantly to zero (Bazant and Oh 1983). As the 

crack length grows, the crack width increases, shifting the process zone further toward the crack 

tip and reducing the ability to transfer tensile stress. This process is known as tension softening 

and is reviewed in Bazant et al. (2004). 

Several researchers conducted experimental tests on the monotonic tensile-softening 

behavior, e.g., Cornelissen et al. (1985), as well as on the cyclic behavior, e.g., Yankelevsky and 

Reinhardt (1989). Analytical models have been developed based on the basic properties of the 

concrete aggregates to determine the critical crack width at which the tensile stress capacity 

vanishes, as well as crack width values that affect the hysteretic behavior. A number of linear, 

multi-linear, and nonlinear models are reviewed in Van Mier (1997). A comparative study and a 

deterministic sensitivity analysis of several such models in the context of modeling bond failure 

due to concrete cover splitting is recently conducted in Talaat and Mosalam (2007). For the 

purpose of modeling the collapse of RC columns in this report, linear and multi-linear tensile-
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softening models are used after preliminary calibration showed that little accuracy can be gained 

by using computationally more expensive nonlinear models. 

3.1.2 Modeling of Confined Concrete Behavior in Compression 

The effect of transverse reinforcement on the strength and the ductility of concrete in a RC 

column core is well-established, and there are several analytical models that attempt to 

incorporate this effect into the uniaxial concrete stress-strain behavior. A literature review of 

existing confined concrete stress-strain models can be found in Teng and Lam (2004) and 

Lokuge et al. (2005). These existing confined concrete models are classified by their analytical 

form into three categories: Models based on equations proposed in Sargin et al. (1971), such as 

El-Dash and Ahmad (1995) and Attard and Setunge (1996); models based on equations proposed 

in Park et al. (1972), such as Sheikh and Uzumeri (1982) and Saatcioglu and Razvi (1992); and 

models based on equations proposed in Popovics (1973), such as Mander et al. (1988) and Binici 

(2005). The third class of constitutive models have the advantage of  using one continuous 

nonlinear function, suitable for numerical implementation, to describe both ascending and 

descending branches of the stress-strain curve in compression. 

Earlier modeling attempts define the confinement in terms of the estimated lateral stress 

supplied by the transverse ties. These models include Mander et al. (1988) and Razvi and 

Saatcioglu (1999), which are originally developed to model transverse steel-confined concrete. 

Owing to the yielding property of steel, the confining stress can be satisfactorily estimated for 

the entire analysis duration without explicitly computing the dilation strain in the core concrete. 

However, Pantazopoulou (1995) demonstrates that the core dilation strain under axial load best 

describes the internal damage sustained by concrete and should be used instead to determine the 

confining stress. This is true, since the concrete is passively confined and the confining stresses 

are being developed as the reaction of the confining medium to the lateral expansion of the core. 

Dilation-based monotonic envelope models have been developed in Pantazopoulou (1995) and 

Saenz and Pantelides (2007), which are particularly useful in modeling the effect of externally 

applied FRP composite wraps commonly used in retrofitting seismically deficient columns. FRP 

composites generally exhibit an elastic-brittle behavior and lack the analytically convenient 
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yielding characteristic of confining steel reinforcement (ties, hoops, or spiral) or jackets. Another 

analytical model has been developed in Lokuge et al. (2004) and (2005) for cyclic and 

monotonic behavior of high strength concrete (HSC) under active (prescribed) and passive 

confinement, respectively. The model developed by Binici (2005) uses the dilation strain in 

concrete, the constitutive model of the confining medium, and mechanical compatibility of 

lateral strains to develop a confining stress-based material model for confined concrete. The 

models developed in Binici (2005) and Lokuge et al. (2004) are modified and used for modeling 

the uniaxial behavior of confined concrete in this report, as will be presented and discussed in the 

next section. 

3.1.3 Modeling of Transverse Confinement 

Constitutive models for the uniaxial behavior of confined concrete cannot be employed directly 

in a column cross section before estimating the magnitude and spatial distribution of 

confinement supplied by transverse reinforcement under the combined action of axial load and 

bending moment. Earlier models assume the effect of confinement to be uniform throughout the 

cross section and estimate the confining stress using the steel yield stress, the geometry and 

arrangement (spacing) of transverse reinforcement, and an efficiency factor tied to the geometric 

shape of the cross section (Chung et al. 2002; Mander et al. 1988; Saatcioglu and Razvi 1992). 

Even though this approach is strictly developed for steel-confined concrete, it has been used in 

several studies for modeling the confining effect of FRP composites (Xiao and Ma 1997). 

The non-uniform distribution of confining stresses is studied in Mau et al. (1998) by 

means of linear-elastic FE solutions using solid elements. The results show that the confinement 

stresses vary significantly within the cross section and that the relationship between tie spacing 

and overall confinement efficiency is similar for circular and rectangular cross-section shapes. 

The use of solid modeling is computationally demanding for complex models involving 

extremely nonlinear behavior. There are a few studies available which attempted to model the 

non-uniform confinement effect within a RC cross section while avoiding solid modeling or 

resorting to heuristic approximations. A study by Parent and Labossiere (2000) includes the 

spatial distribution of confinement within a fiber element and relates the dilation strain of 
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individual fibers within the cross section to the computed axial strain at each fiber using 

equations proposed in Mirmiran and Shahawy (1997a,b). More recent studies of Binici and 

Mosalam (2007) and Mosalam et al. (2007b) describe a confining stress distribution model for 

FRP-confined cross sections using the equilibrium of bond stresses along the FRP-concrete 

interface. A comparison with experimental records of circumferential strains measured in FRP 

composites shows agreement with the analytical model. Moreover, computational simulations of 

several experiments of RC columns (see Chapter 5) suggest that the model performance is 

adequate for transverse steel-confined columns as well. A version of this latter model is 

implemented in this report, and hence its analytical formulation is presented and discussed in 

Section 3.3. 

3.1.4 Modeling of Shear-Axial Interaction 

In RC column with inadequate transverse reinforcement, shear failure can take place prior to 

flexural failure, resulting in a brittle mode of failure and a sudden reduction in lateral load-

carrying capacity. In RC columns designed with adequate transverse reinforcement, shear 

strength should be sufficient for the column to develop its flexural strength (i.e., yielding of 

longitudinal reinforcement) before shear failure takes place, resulting in a ductile behavior 

afterwards. However, the yielding of longitudinal reinforcement and the subsequent increase in 

flexural crack widths with increasing drift demands at nearly constant flexural demands, reduce 

the cross section’s ability to transfer shear stresses, and may ultimately lead to non-ductile shear 

failure. For shear-damaged columns, the loss of lateral stiffness leads to the inability to resist 

excessive lateral drift demands leading to axial collapse, i.e., loss of gravity load system, due to 

P-Δ effect. 

Several researchers have proposed analytical models for predicting shear failure of 

columns. Some of these models are based on lateral displacement ductility, e.g., Priestley et al. 

(1994), Sezen (2002), and Sezen and Moehle (2004). However, ductility-based models have been 

criticized for being highly sensitive to inherent variability in shear strength. In contrast, models 

proposed in Pujol et al. (1999), (2000), and Pujol (2002) estimate the drift capacity at shear 

failure based on statistical data, Coulomb failure, and Coulomb failure with displacement 
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history, respectively. However, these models do not describe the column response after shear 

failure nor address the hysteretic behavior. 

To address the issue of hysteretic behavior following shear failure, Ricles et al. (1998) 

uses an element model composed of a linear beam-column component which has flexural and 

shear nonlinear components lumped at both ends. This model predicts shear failure and accounts 

for post-failure stiffness and strength degradation, besides flexural inelasticity, using 

evolutionary yield surfaces. However, this model needs to be calibrated for each element and 

joint configuration independently. 

The model proposed in Elwood (2002) empirically defines an expression for the lateral 

drift at shear failure, and a shear-friction-based expression for the lateral drift at subsequent axial 

failure. These expressions are included below for completeness. 
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where Δ  is the lateral displacement, subscripts s  and a  refer to values at shear and the 

axial limit states, respectively, v  and P  are the applied shear stress and axial load, respectively, 

gA  is the gross cross-sectional area, cf ′  is the 28-day concrete compressive strength of the 

standard cylinder, ρ ′′  is the transverse reinforcement ratio tst bsA  where b  is the cross-section 

width or diameter, ts , stA , stf , and cd  are the spacing, cross-sectional area (all branches), yield 

stress and core depth from centerline to centerline of transverse reinforcement, respectively, and 
o65=θ  is assumed to be the orientation of the shear failure plane. Recent developments of this 

model in Elwood and Moehle (2005) correlate the angle θ  to the axial load level and reduce the 

buckled longitudinal bars’ axial capacity. However, the estimation of the buckled bar stress 

capacity is based on assuming no fracture in the transverse reinforcement and a corresponding 

buckling length between ts5.0  and ts  ( ts8.0  is adopted based on statistical correlation). The 

ratio between this model’s prediction of lateral drift values at axial collapse compared to results 

from 12 experiments reported in Lynn (2001) and Sezen (2002) are reported to have mean values 
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of 0.97 and 1.02, and coefficients of variations of 0.26 and 0.22, upon including or excluding the 

reduction in the buckled bar axial capacity, respectively. 

Equations (3.1) are used to define failure surfaces (hereafter referred to as “limit curves”) 

for two coupled nonlinear shear-axial springs added in series at the ends of a nonlinear beam-

column FE component to create a compound element, as illustrated in Figure 3.1. The behavior 

of the compound element can be characterized using three or four main phases as identified in 

Figure 3.1, based on shear-axial damage progression. Phase 1 takes place prior to shear failure; 

the response of the springs is linear-elastic and mainly rigid unless significant shear flexibility in 

short members needs to be accounted for. The only possible source of nonlinearity in this phase 

is due to the beam-column component. Phase 2 starts when the computed lateral drift in the shear 

spring violates the shear force-lateral drift limit curve. The shear spring follows a multi-linear 

hysteretic behavior with symmetric backbone curves while the flexural beam-column component 

unloads as a result. Phase 3 is identified when the computed lateral drift in the shear spring 

violates the axial force-lateral drift limit curve. Perfectly brittle axial collapse of the column may 

be defined at this stage. Alternatively, an optional Phase 4 (indicated by lighter tone in Fig. 3.1) 

can be adopted, in which the axial spring follows a softening branch, while the shear spring 

reaches a residual force capacity. This latter phase has been observed to present computational 

convergence problems (Elwood 2004). This analytical model has been computationally 

implemented as a LimitStateMaterial component in the structural modeling software platform 

OpenSees (Elwood 2002). This model can receive more support from additional experimental 

data to calibrate the softening branch of the axial spring component, and a physics-based 

expression for the shear failure limit curve, since the empirical formula proposed in Elwood 

(2002) is derived from statistical analysis of tests that show a considerable amount of scatter. 

Moreover, the data used for calibration of the shear and axial limit curve equations are derived 

from column experiments conducted mostly under compressive axial loads and none under 

tensile loads—which may occur in columns of RC frames while resisting overturning moments. 

However, this model is both practical and intuitive, and has been adapted to model the axial 

collapse of shear-critical columns in Chapter 7. 
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1. Shear failure

2. Hysteretic shear degradation

3. Axial failure

4. Axial load degradation
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Fig. 3.1  Shear-axial limit-state material model developed in Elwood (2002). 

3.2 ANALYTICAL MODEL FOR CONFINED CONCRETE MATERIAL 

The proposed uniaxial material model for confined concrete behavior has been formulated from 

five main components. The first and second components are the monotonic envelope in 

compression and the compatibility of lateral strains, both assumed to follow the model first 

developed in Binici (2005). The third component is the hysteretic loading and unloading rules, 

modified from Lokuge et al. (2004). The fourth component is the hysteretic strength reduction of 

the monotonic envelope, assumed to depend on dissipated hysteretic energy. The fifth 

component is the behavior in tension, assumed to follow confinement-independent linear pre-

cracking, softening, and unloading-reloading branches for simplicity. These five components are 

individually discussed in the following sections. The special case of unconfined (e.g., cover) 

concrete can also be modeled as a special case with confinement set to zero. 
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3.2.1 Monotonic Confined Concrete Envelope in Compression 

The adopted confined concrete envelope model is shown in Figure 3.2 and has been developed 

and fully discussed in Binici (2005) and Binici and Mosalam (2007). The governing equations 

are being reproduced herein for convenience and completeness. The envelope model 

incorporates the confinement ratio cf ′= 3σφ  and a Leon-Pramono failure criterion (Pramono 

and William 1989) which depends on the fracture energy in compression to determine the axial 

stress 1σ  at the elastic stress limit e,1σ , the peak stress cc,1σ , and the residual stress at the end of 

the softening branch r,1σ . Accordingly, 

( )( )φφφσ +−−+′−= 2
1 1 ccccc kmckf  (3.2)

where ck  is a hardening parameter equal to 0.1, 1.0, and 1.0 for evaluating e,1σ , cc,1σ  and 

r,1σ , respectively, and cc  is a softening parameter equal to 1.0, 1.0, and 0.0 for evaluating e,1σ , 

cc,1σ  and r,1σ , respectively, and 
tc

tc
c ff

ff
m

′′
′−′

=
22

, tf ′  being the concrete uniaxial tensile strength. 

The elastic strain limit e,1ε  and the strain cc,1ε  corresponding to peak stress are given by 
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where c,1ε  is the axial strain corresponding to unconfined compressive strength cf ′ . 

The proposed envelope describes the axial stress-strain behavior of confined concrete in 

compression using three continuous branches: a linear elastic branch, a Popovics-type function 

for the hardening branch (Popovics 1973), and an exponential softening branch (Pivonka et al. 

2000). This constitutive law is thus given by 
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where 1ε  is the axial compressive strain (negative) and cE  is the initial modulus of 

elasticity of  concrete. The material constant cr  is defined as 
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The parameter crα  controls the shape of the softening branch, which is characterized by 

the continuity requirement at the peak stress. In addition, a condition is imposed that the area 

under the softening region is equal to the fracture energy in compression—a material property 

obtained from a uniaxial compression test—divided by the characteristic length of the specimen 

in the loading direction, cfc lG . Accordingly, this confined concrete constitutive model includes 

a localization length (e.g., the gage length of the test specimen) over which average strain values 

are normalized. Referring to Figure 3.2: 
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3.2.2 Compatibility of Lateral Strains 

Deformations in the transverse direction are computed using the secant strain ratio sυ , 

( )φευεευ ,113 ss =−=  (3.9)
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This ratio is confinement dependent, and follows a continuous function of 1ε  (Binici 

2005). The lowest value of sυ  is equal to Poisson’s ratio of concrete in the elastic region: 
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up to a limiting value at large strains: 
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based on fitting experimental data reported in Smith et al. (1989). This continuous 

function satisfies the assumption of no volumetric strain at the peak axial stress, in accordance 

with triaxial compression results reported in Imran and Pantazopoulou (2001): 
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and takes the form: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
−

−−−=
−≥−

2
,11

0 exp
,11

c

e
lls

e

εε
υυυυ εε  (3.13)

where 

ce

ecc
c β

εε
log

,1,1

−
−

=Δ      with     
0υυ

υυ
β

−
−

=
l

pl
c  (3.14)

For a confined concrete cylinder or circular column, compatibility of lateral strains is 

enforced so that circumferential strains in the confining jacket and lateral strains in the 

neighboring concrete are equal at any imposed axial strain. This process is schematically 

illustrated in Figure 3.2, where the jacket strain and the confining stress provided by the jacket 

on the concrete cross section are computed by iteratively solving the following nonlinear 

equation: 

( ) ( ) 0, 3311 =+ σεφευε s  (3.15)

where ( )33 σε  is the circumferential strain demand in the jacket in order to result in the 

confining stress 3σ  according to the cross-section geometry and the constitutive material model 

of the jacket. In the case of a FRP or steel confining jacket, jD33 εσ =  in the elastic range and a 
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nearly constant value (e.g., zero for FRP and the yield stress for steel) afterwards. The parameter 

jD  is the effective jacket stiffness, given by 

cjjj RtED =  (3.16)

where jE  is the modulus of elasticity of the jacket in the hoop direction, jt  is the 

thickness of the continuous jacket (or an equivalent value for discrete ties as defined in Equation 

(3.17)) and cR  is the radius of the concrete cylinder or circular column. 
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Fig. 3.2  Strain-compatible confined concrete envelope model (Binici 2005). 

For reinforcing a steel-confined circular concrete column, Equation (3.16) is modified to 

account for the efficiency of discretely spaced transverse hoops or spiral along the length 

direction. In this case the equivalent jacket thickness to be used in Equation (3.16) is given by 
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where stA  and ts  are the cross-sectional area and spacing, respectively, of the transverse 

reinforcement and cD  is the core diameter defined by the centerline of the hoop or the spiral. 

This relationship was deduced from observations made in Ahmad and Shah (1982) of negligible 
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confinement effect for spiral spacing ct Ds 25.1>  (Binici 2005). The circumferential stress in the 

jacket can be scaled from Equation (3.16) as cjj Rt3σσ = . Equation (3.17) can be extended to 

RC columns of non-circular cross sections by introducing the well-known cross-section 

efficiency factors (Mander et al. 1988) to reflect the reduced confinement efficiency of non-

circular sections. 

3.2.3 Hysteretic Confined Concrete Behavior in Compression 

The hysteretic material model for confined concrete has been modified from Lokuge et al. 

(2004). The key elements of the model are demonstrated graphically in Figure 3.3. The model 

postulates that the relationship between compressive stress and strain under prescribed confining 

stress is invariant in the principal shear space. This model is reproduced and presented in detail 

below, since certain modifications have been introduced for numerical consistency. It should be 

noted that the original hysteretic model in Lokuge et al. (2004) is developed for concrete 

specimens subjected to a constant prescribed confining stress. In the current study, this hysteretic 

model has been extended to variable confinement by computing 3σ  at each load step, using 

lateral strain compatibility between the concrete and the confining jacket (Eq. (3.15)) and the 

confining stress distribution profile (see Section 3.3). 

The unloading curve is defined by the unloading point ( )unun σε ,  and the plastic strain 

plε . The latter is defined through the use of the strain aε  at a surrogate point (point a in Fig. 3.3) 

as 
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where cci,ε  are the axial and transversal strain values corresponding to the peak 

compressive stress of the confined envelope according to Equations (3.4) and (3.12). Following 

the computation of plastic strain, the problem is transformed to the normalized principal shear 

space, where the principal shear stress τ  and strain γ  are given by 

2
,

2
3131 εεγσστ −=−=  (3.21)

For the unloading curve, these principal shear stress and strain are normalized as follows: 

plun

pl
un ττ

ττ
τ

−
−

=  (3.22)

plun

pl
un γγ

γγ
γ

−
−

=  (3.23)

where unτ , unγ , plτ , and plγ  correspond to uni,σ , uni,ε , pli,σ , and pli,ε , respectively. Note 

that 0,1 =plσ  by definition and ( ) 0,3,3 ≥= plpl εσσ  according to the constitutive model of the 

confining medium, e.g., the jacket. The constitutive model for the unloading curve in the 

normalized principal shear space in Lokuge et al. (2004) is experimentally fitted to the following 

expression: 

( )143.0 2.1 −= uneun
γτ  (3.24)

The best-fit unloading correlation between normalized axial and lateral strains is given by 

( ) cp
unun

1
,1,3 εε =  (3.25)

where cp  is a parameter controlling the width of the unloading-reloading loops and is 

fitted to 445.10035.0 +′−= cc fp  [N, mm units] in Lokuge et al. (2004). The normalization of the 

axial and lateral strains follows the same manner as in Equation (3.23). In order to update the 

hysteretic material model to account for variable confinement, the value of 3ε  computed using 

Equation (3.25) is used to update the confining stress 3σ  according to the constitutive model of 

the confining jacket. This updated confining stress is then used in the transformation Equations 

(3.21). 

The reloading curve follows a similar procedure to that of the unloading curve. It is 

defined by a reloading point ( )roro σε ,  and a return point ( )newunnew σεε ,=  where 
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with parabolic transition in between, i.e., for ccnewe ,1,1,1 εεε −<−<− . For the reloading 

curve, the stresses and strains in the principal shear space are normalized as follows: 
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where newτ , newγ , roτ  and roγ  correspond to newi,σ , newi,ε , roi,σ  and roi,ε , respectively. The 

constitutive model for the reloading curve in the normalized principal shear space in Lokuge et 

al. (2004) is experimentally fitted to the following expression: 
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The best-fit reloading correlation between normalized axial and lateral strains is given by 

( ) cp
rere ,1,3 εε =  (3.30)

where cp  is the same parameter defined after Equation (3.23). Similar to the procedure 

discussed for the unloading curve, the confining stress 3σ  is updated according to the computed 

lateral strain 3ε  and the constitutive model for the confining jacket. 

To return to the envelope, the material follows a parabolic transition curve that preserves 

derivative continuity at the end of the reloading curve. This transition curve is defined by the 

stress state at the return point ( )newnew σε , , the ultimate strength of the confined envelope cc,1σ , 

and the envelope stress at the reentry point ( )rere σε ,  where 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

−×−+=
newro

newro

c

cc
newununre f ,1,1

,1,1,1
,1,1,1,1 2

εε
σσσ

σσεε  (3.31)

and ( )rere ,11,1 εσσ =  according to Equations (3.5). The ratio between axial and lateral 

strains along the transition curve is assumed to follow the secant strain ratio ( )φευ ,1s  according 

to Equation (3.9). Accordingly, 
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where 
new

newE
,11

11 εεεσ
=

∂∂=  is the tangent stiffness modulus at the end of the reloading 

curve. 
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Fig. 3.3  Confined concrete hysteretic material model (with first cycle in tension). 

3.2.4 Hysteretic Compressive Strength Degradation 

To account for hysteretic strength degradation in compression, the stress computed from the 

monotonic confined envelope is reduced over successive loading cycles through multiplication 

by a reduction factor obtained from a hysteretic damage model. Several energy- and ductility-

based damage models are present in the literature, e.g., Park and Ang (1985), whose parameters 
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can be calibrated using experimental data. In Lokuge et al. (2004) a simple factor is proposed 

based on the number of stress cycles as follows: 

( ) NnnRf −= 1  (3.33)

where n  is the current number of loading cycles and N  (assumed 100) is the number of 

cycles to failure. In this study, the following alternative hysteretic energy-based reduction factor 

is formulated and calibrated to the experimental results reported in Lokuge et al. (2003): 

( )
e

fc

n

i
iunref GUUnR

α

⎟
⎠
⎞

⎜
⎝
⎛ −= ∑

−

=

1

1
)(  (3.34)

where ( )iunre UU −  is the energy dissipated during the i th unloading-reloading cycle 

(shaded in Fig. 3.3) and eα  is a model calibration parameter as discussed in Section 3.2.6. If 

cracking takes place during a tensile loading cycle, the energy dissipated therein is automatically 

included in Equation (3.34), which results in a corresponding reduction of the monotonic 

envelope curve in compression. Consequently, previously cracked concrete will exhibit lower 

peak strength in compression. The computation of the term ( )iunre UU −  is simplified for 

numerical efficiency by assuming that the unloading and reentry stresses coincide. In addition to 

the stress reduction factor, the following maximum dilation-based damage index is defined: 

( ) f
fD αεε max,33}max{=  (3.35)

where max,3ε  is the fracture or maximum estimated strain in the transverse reinforcement 

of the confining jacket before the loss of confinement and fα  is a model calibration parameter. 

Typically, 1=fα  would be assumed if this damage index is solely used to determine whether 

loss of confinement has occurred, which is the case in this report. fα  may be calibrated to other 

values using experimental data if it is desired that the damage index values correspond to 

intermediate visual characteristics of damage defined as milestones prior to loss of confinement. 

In that regard and from the functional form of the damage index defined in Equation (3.35), it 

represents the damage level in the confined concrete fibers by considering the amount of lateral 

expansion sustained in the material and comparing it to the expected maximum expansion 

allowed before disintegration takes place. 
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3.2.5 Monotonic and Hysteretic Concrete Behavior in Tension 

The behavior in tension is assumed independent of the confining stress. Figure 3.3 illustrates the 

cyclic response path followed by the material in uniaxial tension. If tensile stress is detected 

during unloading, the material follows a linear-elastic response along the initial tangent modulus 

of concrete cE  up to the cracking stress tf ′ . Subsequently, the material follows a linear tension 

softening modulus tE . The strain corresponding to complete loss of tensile resistance to,1ε  is 

determined from the tensile fracture energy ftG  that is assumed to be a known (i.e., measured) 

material property. If strain reversal takes place after partial tension softening to a stress 0>trf , 

the material unloads linearly toward the origin following a secant modulus. Upon reloading to 

compression from tension, cracks are assumed to fully close and the reloading point in 

compression is relocated at the plastic strain. Subsequent tensile response of a previously cracked 

material follows the current secant modulus trE  up to the stress trf  and then starts to soften with 

modulus tE  (i.e., tE  does not degrade hysteretically), and so on until total loss of tensile strength 

(i.e., complete dissipation of ftG ). The assumption of linear unloading-reloading of cracked 

concrete with no residual crack widths underestimates the hysteretic energy dissipated if several 

tension cycles of low amplitude were to take place at the same cracked concrete fiber. However, 

this limitation of the model is considered a valid approximation for the purpose of modeling 

gravity-load collapse, which typically takes place long after flexural cracking has taken place. 

3.2.6 Parameter Calibration and Experimental Verification 

In this section, the uniaxial material model for confined concrete developed in the present section 

is compared to the experimental results published in Ahmad and Shah (1982) and Lokuge et al. 

(2003) to assess its validity and calibrate the parameter eα . The experiments reported in Ahmad 

and Shah (1982) include six concrete cylinders (75 × 150 mm) subjected to monotonic 

compression. Cylinder compressive strengths are 25 and 50 MPa. The cylinders are either 

unconfined or confined with spiral reinforcement placed flush with the concrete outer surface 

with no cover. Variable spiral spacing is investigated, with spiral yield strength of 414 MPa and 
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diameter of 3 mm. The concrete compressive fracture energy for these specimens is reported as 

estimated from the unconfined concrete response in Binici (2005). Note that the lower grade 

concrete has a slightly higher value despite the lower compressive strength due to higher 

ductility and less steep softening branch. Concrete tensile strength is not reported and is 

estimated as 2.5 and 5 N/mm2, respectively. Figure 3.4 illustrates the comparison between the 

observed and estimated stress-strain responses. The analytical model slightly overestimates the 

peak stress and corresponding strain for the case of 12.5 mm spiral spacing. However, the model 

is successful in reproducing the profile of the hardening and softening branches and the residual 

strength as affected by lateral confinement. The aforementioned discrepancy may suggest that 

the expression used in Equation (3.17) may overestimate the efficiency of spiral reinforcement in 

cases of closely spaced spirals resulting in a small spacing-to-diameter ratio. In addition, the 

discrepancy may be partially due to the approximation involved in estimating the tensile strength 

(see the definition of cm  in Equation (3.2)). 

The experiments reported in Lokuge et al. (2003) include 24 confined concrete cylinders 

(101.6 × 198 mm) subjected to cyclic compression. Concrete nominal strengths are 40, 60, 80, 

and 100 MPa. The cylinders are confined using a triaxial pressure apparatus with confining stress 

levels set to 4, 8, or 12 MPa. The measured response includes axial and lateral strains in the 

concrete cylinders, as well as axial stresses. The reported values of cylinder strength on the 

testing date are 43.6, 57.7, 83.0, and 105.9 MPa, respectively. Concrete fracture energy in 

compression and tension are estimated as cfc fG ′= 8.8  [N, mm units] and 250fcft GG =  

according to Mizuno et al. (1999) based on uniaxial load-test results. Tensile strength is 

estimated as cct fff ′+′=′ 175.005.0  [N, mm units], which is adapted from Binici and Mosalam 

(2007). Figure 2.8a illustrates the comparison between the observed and predicted behavior for 

cylinders with medium concrete nominal strength (40–60 MPa). The analytical model’s 

reproduction of the experimentally recorded behavior is satisfactory for all cases. Figure 2.8b 

illustrates the comparison between the observed and predicted behavior for cylinders with high 

concrete nominal strength (80–100 MPa). The analytical model’s reproduction of the 

experimentally recorded behavior is satisfactory prior to the softening branch. It is less so in 

reproducing the subsequent brittle, rapid loss of strength and limited, rapid dilation. This 
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discrepancy can be observed in cylinders whose nominal compressive strength is 100 MPa. The 

experimental records for these tests show very few data points due to the highly brittle nature of 

the softening branch and the difficulty in controlling the experimental loading setup. Hence, this 

uniaxial material model is suitable for modeling the confined behavior of normal-to-medium 

strength concrete and may be inaccurate for modeling the complete stress-strain response in 

concrete of compressive strength larger than about 90 MPa. The minimum and maximum values 

of the parameter eα  used during the simulations for reproducing all 24 specimens reported in 

Lokuge et al. (2003) are 0.9 and 1.5, with mean and COV values of 1.175 and 0.201, 

respectively. 
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(a) Concrete grade = 25 MPa 
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(b) Concrete grade = 50 MPa 

Fig. 3.4  Model simulations of Ahmad and Shah (1982) confined concrete tests. 
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(a) Medium-strength concrete cylinders 
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(b) High-strength concrete cylinders 

Fig. 3.5  Model simulations of Lokuge et al. (2003) confined concrete tests. 
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3.3 ANALYTICAL MODEL FOR CONFINED CONCRETE CROSS SECTION 

This section describes the development of the fiber-discretized cross-section model to be used in 

conjunction with the confined concrete uniaxial material model developed in Section 3.2. This 

cross-section model was originally developed in Binici and Mosalam (2007) for FRP-wrapped 

RC columns of circular cross-section geometry. The model is based on the equilibrium of 

interface shear stresses between a continuous FRP jacket and the concrete surface of a RC 

column cross section undergoing primarily flexural deformations. Columns with deficiency in 

shear capacity are outside the scope of the present model. This approach has been successfully 

extended for use with RC columns traditionally confined by transverse steel reinforcement using 

Equations (3.16) and (3.17). It can be readily extended to RC columns of non-circular cross 

sections by introducing the well-known cross-section efficiency factors (Mander et al. 1988) to 

reflect the reduced confinement efficiency of non-circular sections. The effect of stress 

concentration at the cross-section corners is not explicitly considered. 

3.3.1 Bond-Based Model for Spatial Distribution of Confining Stress 

Consider a circular RC cross section with radius cR  confined with a continuous jacket (e.g., FRP 

lamina) and subjected to the combined effect of axial force and bending moment (Fig. 3.6a). 

Following the classical beam theory, a linear axial strain distribution is assumed (Fig. 3.6b). In 

the compression zone, the jacket stress distribution—and, accordingly, the confining stress 

distribution—is expected to be non-uniform; the jacket stress reaches a maximum value max,jσ  at 

the extreme compression fiber and monotonically decreases to zero at the neutral axis location 

(Fig. 3.6e). In order to estimate this non-uniform confining stress distribution, the following four 

assumptions are made: (1) an elastic behavior is assumed to govern the relationship between 

stress and strain in both the jacket and the adhesive layer along the jacket-concrete interface; (2) 

the jacket and the adhesive are assumed thin compared to the concrete cross section, i.e., the 

column radius to the centerline of the jacket is approximately the same as the concrete column 

radius cR ; (3) the jacket and the adhesive can carry only axial and shear stresses, respectively; 

and (4) only shear deformation (i.e., no slip) takes place in the adhesive between the jacket and 
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the concrete cross section. Hence, considering the free-body diagram of the confining jacket in 

the compression zone (Fig. 3.6c), the equilibrium condition for an infinitesimal jacket sector of 

length ds  along the arc surrounding the cross section (Fig. 3.6d) is given by 

dstd jj τσ =  (3.36)

where jσ  is the jacket stress, jt  is the jacket thickness, and τ  is the interface shear 

stress. The assumed elastic material behavior of the adhesive and the jacket implies 

dsduE jjj =σ  (3.37)

aaj tGu=τ  (3.38)

where jE  is the modulus of elasticity of the jacket, ju  is the circumferential elongation 

of the jacket (equal to the shear deformation of the adhesive), aG  is the shear modulus of the 

adhesive, and at  is the thickness of the adhesive. Differentiating Equation (3.38), combining 

with Equation (3.37), substituting in Equation (3.36) after differentiating it, and substituting for 

θdRds c= , one obtains the following governing differential equation: 

0222 =− jj Add σθσ      with     ( ) ( )ajjac ttEGRA 22 =  (3.39)

where A  is a non-dimensional bond parameter. The solution of Equation (3.39) after 

substituting for the stress boundary conditions 0
0

=
=θ

σ j  and max,jj
c

σσ
θθ

=
=

 (see Fig. 3.6c) is 

given by 

( ) ( )cjj AA θθσσ sinhsinhmax,=  (3.40)

where θ  and cθ  are defined in Figure 3.6c. 

For the cross section subjected to a combined axial force and bending moment (Fig. 3.6), 

the confining stress 3σ  is linearly related to the jacket stress jσ  as discussed in Section 3.2.2. 

The lateral strain compatibility is iteratively enforced for the extreme concrete fiber in 

compression, i.e., at cθθ = , using Equation (3.15). Once the maximum jacket stress max,jσ  is 

known, the jacket and confining stresses at any location along the perimeter can be computed 

using the expression in Equation (3.40). Concrete fibers in the interior of the compression zone 

are assumed subjected to confining stresses equal to those of the fiber adjacent to the jacket at 
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the same distance cy  from the neutral axis (2D idealization). This modeling approach 

incorporates the spatial variation in the confining stress distribution within the compression zone 

and is capable of monitoring the lateral dilation of concrete and accordingly the stress state in the 

confining jacket. This feature has several advantages besides estimating the confining stress at 

individual concrete fibers for use with the confined concrete material model developed in 

Section 3.2. For FRP-retrofitted RC columns, the jacket rupture, which generally dictates the 

failure of a retrofitted column, can be explicitly predicted by comparing the computed jacket 

strain dsdu jj =ε  with the FRP rupture strain rupε . For longitudinal steel bars laterally 

restrained by transverse reinforcement, the lateral tie or hoop stiffness can be readily estimated 

for use by the bar-buckling model developed in Section 2.2. In addition, the confining effect of 

both steel ties or hoops and FRP lamina on clamping lap-spliced steel bars can be evaluated 

according to the model developed in Section 2.3. 
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Fig. 3.6  Confining stress distribution on  RC circular column cross section. 

In practice, it is difficult to estimate with high precision some quantities such as the 

adhesive thickness and the shear modulus in order to compute the value of the bond parameter 

A . The effect of uncertainty in this parameter on the global response of FRP retrofitted RC 

columns was investigated in Binici and Mosalam (2007) using a deterministic sensitivity analysis 

tool known as the Tornado diagram (Lee and Mosalam 2005), where individual model 

parameters of uncertain values are ranked in a descending order of the resulting uncertainty in 

the response quantity estimated by the model. The effect of uncertainty in the parameter A  on 

estimating the peak lateral force capacity of FRP-retrofitted columns subjected to monotonic 

lateral deformation was found to rank 11th out of 14 model parameters. The resulting uncertainty 
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in estimating the peak lateral force due to uncertainty in the parameter A  was shown to be 

significantly less than the resulting uncertainty due to other factors such as the jacket’s stiffness 

modulus, the concrete strength, and the applied axial load. For typical FRP-retrofitted columns, 

the value of the parameter A  ranges from about 1 to 5 (Binici and Mosalam 2007; Mosalam et 

al. 2007b). Figure 3.7 illustrates the variation in the confining stress spatial distribution within 

this range. Observe that the confining stress distribution in Figure 3.7 resembles a power 

function of the relative distance from the neutral axis given by 

( ) sp
cRy≈max,33 σσ  (3.41)

and can be approximated and input directly as such in order to minimize computation 

time and increase numerical efficiency. In the applications discussed in Section 5.1, the cross-

section moment capacity exhibits a moderate sensitivity (10–15% reduction in maximum value 

under monotonic loading) in response to increasing the exponent sp  in the range of 0.5–4.0. 

Moreover, the curvature capacity exhibits less than 5% corresponding reduction in maximum 

values. 
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Fig. 3.7  Spatial distribution of confining stress for typical bond parameter values. 
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3.3.2 Aggregated Cross-Section Damage Indices 

The material damage indices previously defined in Sections 2.2.5, 2.3.4, and 3.2.4 for the 

individual fibers constituting the discretized cross section are combined to define two aggregated 

damage indices. These damage indices, designated AD  and MD , quantify the effect of material 

damage on the cross section’s capacity to resist axial loads and bending moments, respectively. 

These aggregated damage indices are defined as follows: 

( )⎟
⎠
⎞

⎜
⎝
⎛ −Ι−= ∑

fibers
section-crossfiber11 AADD fiberconfA  (3.42)

( )⎟
⎠
⎞

⎜
⎝
⎛ −Ι−= ∑

fibers
section-cross

2
fiberfiber11 IhADD fiberconfM  (3.43)

where A  refers to the transformed area, I  to the transformed moment of inertia, and h  

to the distance between the fiber’s center and the uncracked section centroid. Areas and inertias 

are transformed using the ratio between the initial stiffness moduli of the individual fiber 

materials to obtain a homogeneous section. fiberD  is the material-specific damage index 

previously defined for individual fibers. confΙ  is an indicator variable for the loss of confinement 

whose value becomes 0 if transverse reinforcement fracture is detected and remains 1 otherwise. 

These damage indices are implicitly sensitive to the effect of confinement due to including the 

individual fiber responses according to their constitutive models, in addition to being explicitly 

sensitive to the confinement effect due to including the indicator variable confΙ  of the confining 

medium (ties or FRP jacket), and are therefore suitable for use with both deficient and retrofitted 

RC columns. The performance of these damage indices in representing the cross section’s 

damage state during an analysis is demonstrated in Chapter 5. 

3.3.3 Experimental Verification and Parameter Calibration 

In this section, the confining stress distribution model for RC cross sections developed in the 

present section is compared to results from an experimental program reported in Mosalam et al. 

(2007b). The experiments were designed specifically for the purpose of assessing the model 

validity and calibrating the exponent of the approximate confining stress distribution power 
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function. The experimental program was conducted at the Middle East Technical University 

(METU), Turkey. Four reduced-scale RC columns with identical dimensions and steel 

reinforcement were subjected to combined axial loads and bending moments. One of the 

columns is investigated in its as-built condition under constant axial load and monotonically 

increasing eccentricity, while the other three columns are strengthened by one layer of Carbon 

FRP (CFRP) laminate and subjected to monotonically increasing axial load at three different 

eccentricity levels (including concentric axial load, i.e., no eccentricity). Details of the 

experimental setup, specimen geometry, material properties, and loading regimes are discussed 

in Section 5.1, where they are used to assess the behavior of RC column models integrally 

formulated using the analytical component models developed in Chapters 2 and 3. In this section, 

only the results pertaining to the circumferential strain distribution in the confining jacket are 

discussed. CFRP jacket circumferential strains are measured and recorded during the 

experiments using electronic strain gages surface-mounted at four different locations around the 

cross sections at the mid-heights of the tested columns (see the insets in Fig. 3.8). The 

circumferential stresses in the jacket and the resulting confining stresses in the cross section are 

directly proportional to the circumferential strains, since the confining CFRP jacket used in the 

experiments exhibited a linear-elastic response until rupture. 

Figure 3.8a illustrates the confining ratio computed at each of the four gage locations 

using the circumferential strains measured at successive load increments for specimen 3, plotted 

against the relative distance from the cross-section centroid (normalized by the cross-section 

radius). These data are reduced in Figure 3.8b, which illustrates the confining stress normalized 

by the maximum confining stress computed from the strain measurements at Gage 4. 

Superimposed on the experimental relationships is the estimated confining stress distribution 

according to Equation (3.40) using a bond parameter 5=A , as well as power-function 

approximations of Equation (3.40) using Equation (3.41) of the second ( 2=sp ) and fourth 

( 4=sp ) orders. 

It can be observed that the confining stress distribution has a nonlinear profile that 

exhibits a close agreement with the analytical confined cross-section model. Furthermore, the 

comparison suggests that the confining stress distribution can be well represented using a fourth-

order power function for the present cross-section geometry. The normalized strain values 
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suggest that the neutral axis position lies above that of the cross-section centroid (assumed for 

simplicity in the predicted distribution plots shown in Fig. 3.8b) throughout most of the 

experiments (note the negative normalized circumferential strains at the location of Gage 1 in 

Fig. 3.8). Hence, an even closer agreement between the analytical and experimental results can 

be achieved using a more accurate determination of the neutral axis position. The compressive 

strains in the jacket correspond to adjacent concrete fibers being outside of the compression 

zone, whose axial response is not affected by the confining stress according to the constitutive 

concrete model in Section 3.2. It can also be observed that the normalization of the experimental 

data in Figure 3.8b results in the reversal of the order of symbols denoting the curvature levels 

from those shown in Figure 3.8a. This is due to the increase in lateral dilation strain and secant 

strain ratio sv  of the maximum compression fibers near Gage 4 (i.e., relative to the other fibers) 

due to the accumulation and localization of material damage with increased curvature levels. 

Hence, normalization of the measured circumferential strains by the measurement of Gage 4 

results in smaller values of normalized strains at Gages 1, 2, and 3 at higher curvature levels. 
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(a) Confinement ratios at gage locations 
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(b) Normalized confinement ratios at gage locations compared to model predictions 

Fig. 3.8  Model simulations of jacket strains in Mosalam et al. (2007b) column tests. 
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3.4 SUMMARY 

In this chapter, a brief review was conducted of existing analytical models for simulating RC 

column cross-section behavior leading to one of two distinct collapse modes, governed by shear-

axial and flexure-axial interaction. An analytical material model was developed for the hysteretic 

behavior of confined and unconfined concrete. This material model enforces lateral strain 

compatibility between the confined concrete and the confining jacket (or transverse 

reinforcement) to determine the stress state in both materials at each load step. This confined 

concrete material model was calibrated using published data from experimental investigations of 

concrete cylinders subjected to monotonic and cyclic uniaxial compressive loading. Another 

analytical model was developed to describe the spatial distribution of confining stresses within a 

confined circular RC cross section subjected to combined axial and flexural loads. This model is 

based on the equilibrium of bond stresses between the RC cross-section perimeter and the 

confining jacket. A closed-form analytical expression for the confining stress distribution was 

derived and shown to be approximately equivalent to a power law. The cross-section 

confinement model exhibits good correlation with experimental measurements of circumferential 

strains from distributed strain gages on cross sections of RC columns retrofitted with FRP jackets 

and subjected to monotonic flexure-axial loading. 
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4 Object-Oriented Implementation of Proposed 
Component Models 

The component models developed in Chapters 2 and 3 are implemented within OpenSees, an 

open-source FE modeling software developed using C++ programming language and object-

oriented software architecture (Mazzoni et al. 2004; McKenna 1997). Object-oriented 

architecture offers more flexibility, more reusability of computer code, and greater accessibility 

for independent researchers to add to the code than is available in the more traditional procedure-

oriented (PO) architecture. In PO architecture, a FE modeling software is based on hierarchical 

procedures that perform specific computations in a given order, e.g., stress-state determination, 

computation of tangent stiffness, and solution of the governing equations of motion. The 

resulting data structures are often tightly bound to each other and stored globally in the common 

memory available to the program. Any addition of new components such as element and material 

models must comply with the forms of the existing data structures to be able to communicate 

with the PO program. Such programs are often written to fit specific types of analysis or a certain 

class of solution methods. Extending an existing PO program by adding new solvers or solution 

methods is usually very difficult. 

In contrast, object-oriented software architecture is based on a number of independent 

modules that are loosely linked to each other. Each module stores its data locally and defines its 

own procedures and methods (a “method” is equivalent to a “function”; a “function-call” is an 

invocation of a method within the C++ code). These modules can communicate and exchange 

information and commands across each other. The software’s main code defines the interactive 

relationship between the separate modules only during the course of an analysis. This enables 

independent software developers and researchers to implement additional modules or 

submodules and link them to the main program without having to learn extensively about the 
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entire software architecture or being bound by a specific form of data structure. In addition, 

object-oriented software architecture offers independent researchers the ability to focus on 

making improvements in areas of their expertise, such as material and joint constitutive models, 

and then implement and test the new developments in the context of analyzing structural systems 

without having to write a FE code to do such things as meshing and performing time integration. 

In addition, existing modules can be modified and optimized to reflect improvements in available 

computing hardware and resources without having these modifications propagating throughout 

the entire software (Fenves et al. 2004). 

In C++ terminology, such independent modules are implemented using “classes.” A class 

represents a unit cell of an object-oriented program, which contains data and definitions of 

methods to manipulate these data, and has the ability to communicate with other classes. Most 

basically, a class provides: (a) the ability to construct instances of itself during runtime, often 

referred to as “objects” and (b) the method to destruct an object if commanded to do so. All 

objects that belong to the same class share the same functionality. Since classes are responsible 

for maintaining their data and for performing their own computations locally while providing 

information only about themselves when requested, internal data and procedures of a class are 

called “member variables” and “methods,” respectively. In addition to providing functionality, 

each class provides an interface that lists the available member variables and methods through 

which the main program and other classes can communicate with it. 

An important concept to object-oriented programming is that of inheritance, whereby 

new classes can be derived from existing “base” classes. Derived classes are sometimes referred 

to as “subclasses” apropos of the base class, and they possess the same functionality as the base 

class in addition to added properties. Consequently, classes representing high-level independent 

modules are implemented as “abstract classes,” which serve mainly as a title under which several 

other subclasses can be derived while sharing a common set of basic features and methods. 

Typically, the methods of abstract classes are declared “virtual,” supplying a default definition 

and leaving the flexibility to each subclass to implement its own version of the method. A 

method that is declared virtual in a base class and has no default definition is called “pure 

virtual” and must be implemented in all its subclasses. Hence, a base class representing a high-

level independent module resembles the stem of a tree with many branches. 
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Another important concept of C++ programming is the use of “pointers.” A pointer is an 

address in memory in which a variable is stored. This variable can be an object of a certain class 

or even simply a numerical value. This pointer can be used to pass messages to objects 

requesting that they perform certain methods or report the value of certain member variables. 

In this chapter, an outline is given of the modular software architecture of OpenSees, with 

emphasis placed on defining the classes relevant to this report. In the same context, the new 

classes added to OpenSees are identified, as well as the class relationships and interdependency 

with the main program. Next, the details pertaining to the implementation of each new class are 

discussed. The discussion provides the class interface needed to communicate with the other 

classes and highlights the steps necessary to extend these classes in the future (e.g., by deriving 

subclasses). The discussion also addresses implementation details, adopted methods for the 

numerical computation of analytical expressions, and modifications made to the analytical 

formulae in order to overcome runtime difficulties such as convergence errors. In textual 

reference, references to classes or objects are italicized, while references to methods or member 

variables are boldfaced. Member methods are often mentioned without preceding them with the 

associated class. However, in situations where ambiguity may arise, the method is preceded by 

the class name with two colons separating them. 

4.1 OVERVIEW OF OPENSEES MODELING PLATFORM 

OpenSees is a software framework for modeling structural behavior using the FE method. 

OpenSees is being collaboratively developed by the Pacific Earthquake Engineering Research 

(PEER) Center for use in PBEE studies (Mazzoni et al. 2004). The high-level architecture of 

OpenSees was initially developed in McKenna (1997) and is presented in several publications, 

including Fenves et al. (2004). OpenSees is composed of a number of independent modules in 

addition to an application program interface (API). The API defines the relationship between the 

independent modules through a set of function-calls that solicit information from the modules 

and request that they perform specific tasks. The collection of modules and API can together 

construct a runtime application which represents a structural or geotechnical engineering 

problem subjected to a series of analyses. This application is constructed by reading an 
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instructions code written by the analyst that represents the geometry and materials of the 

problem, as well as the analysis parameters to be applied to it. In the case of OpenSees, this 

instructions code is input using the Tool command language (Tcl) (Welch et al. 2003) into the 

interpreter module of OpenSees. The advantages of giving analysts a programmable language for 

defining structural models and solution options include the ability to conduct parametric studies 

in batch mode and to communicate with graphical user interfaces (Fenves et al. 2004). Thus, the 

implementation of new classes into OpenSees includes writing interpreter entries to enable the 

analyst to construct corresponding objects during the analysis. 

An illustration of four main OpenSees modules and the relationship between them is 

given in Figure 3.1, together with a conceptual representation of different OpenSees components 

and their interconnectivity. The most important module is the Domain, which maintains the 

information necessary to describe and represent the state of the FE model throughout the 

analysis. The Domain object is constructed using ModelBuilder subclasses, such as the one that 

interprets Tcl commands. The Domain class controls several DomainComponent subclasses 

(materials, elements, nodes, loads, etc.) to assemble the residual nodal force vector and stiffness 

matrix. The Analysis class is an abstract class that depends on the analyst’s choice of Integrator 

class to define the time integration method, the SystemOfEquations class to describe the 

characteristics of the stiffness matrix, and the ConvergenceTest class to define the criteria for a 

converged load step, etc. The equilibrium equations are solved using the Solver class chosen by 

the analyst, while possibly taking advantage of several “Compute Technology” capabilities such 

as parallel computing. Requested quantities from the analysis can be stored and displayed using 

Database and Visualization modules, both implemented using Recorder classes. 
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Abstract classes italicizedAbstract classes italicized

 

(a) Main high-level abstractions (b) Conceptual module layout 

Fig. 4.1  High-level objects in OpenSees software framework (Fenves et al. 2004). 

4.2 NEWLY IMPLEMENTED CLASSES IN OPENSEES 

The component models developed and verified in Chapters 2 and 3 have been implemented using 

14 new OpenSees classes. The new classes belong to the Material and DamageModel base 

classes. A partial OpenSees class map, illustrated in Figure 4.2, indicates the hierarchical 

relationship between the different classes. A triangle indicates an inheritance relationship and a 

circle indicates a “has-a” relationship where one class (the one farther from the circle) has 

exclusive access privileges to certain objects of the other class (the number of objects is 

indicated next to the circle). The abstract class Material is a subclass of the DomainComponent 

class. Two abstract subclasses of Material are extended in this report, namely 

SectionForceDeformation and, more extensively, UniaxialMaterial. 

The SectionForceDeformation class provides abstraction for several derived classes 

representing cross-section response, such as FiberSection2D and FiberSection3D. This class has 

been extended by deriving ConfinedFiberSec2D and ConfinedFiberSec3D classes representing 

the 2D and 3D versions, respectively, of the confined concrete cross-section model developed in 

Section 3.3. These two classes are collectively referred to as ConfinedFiberSec hereafter when 

no distinction needs to be made. Each object of this new derived class constructs and typically 

controls one typically UniaxialMaterial object that represents the confining hoop or FRP jacket. 

UniaxialMaterial subclasses include material templates that can be calibrated to represent steel, 
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concrete, and other common building material behavior. In addition, each object of a 

ConfinedFiberSec class constructs and maintains control over a number of material fibers 

representing discretized core and cover concrete (the number of which depends on the analyst) 

and longitudinal steel which may be lap-spliced (the number of which depends on the number of 

continuous and spliced bars, if any). While any UniaxialMaterial objects can be used within a 

ConfinedFiberSec, ideally confinement-sensitive UniaxialConfinedMaterial objects (defined in 

the next paragraph) are used to benefit from the cross section’s determination of the confining 

stress, which incurs an additional computational cost. 

A new abstract class called UniaxialConfinedMaterial is added to UniaxialMaterial in 

order to provide abstraction for classes of materials used in uniaxial fibers whose stress-strain 

responses in the main axis direction are affected by their stress states in the transverse 

direction(s). Subclasses derived from this abstract class include SteelRebar, which represents the 

buckling-enabled steel bar model developed in Section 2.2; LapSplice, which represents the lap-

spliced steel bar model developed in Section 2.3; and ConfinedConcrete, which represents the 

confined concrete material model developed in Section 3.2, in addition to an abstract 

UniaxialConfinedCurve class. Each object of the class ConfinedConcrete constructs and 

maintains control over an object of each of four new classes BiniciEnvelope, LokugeUnloading, 

LokugeLoading, and ParabolicTransition, in addition to one DamageModel subclass. The first 

four classes derive from the abstract class UniaxialConfinedCurve and represent the different 

confinement-sensitive branches describing the hysteretic behavior of the confined concrete 

material. This independent setup of material and hysteretic branches provides flexibility whereby 

any of these branch classes can be individually replaced by an alternate candidate branch class 

without rewriting the material class. Instead, the link to the corresponding branch in the 

ConfinedConcrete class can be modified to the new subclass of UniaxialConfinedCurve 

representing the candidate branch. Moreover, derived UniaxialConfinedCurve subclasses can 

serve independent of ConfinedConcrete to represent other UniaxialConfinedMaterial subclasses 

(e.g., the form of the Popovics-type curve in BiniciEnvelope class may be reused to model bond-

slip behavior). 

Each UniaxialConfinedMaterial object constructs and controls one DamageModel 

derived object. The role of these DamageModel derived objects is to track the structural damage 
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state sustained in the associated UniaxialConfinedMaterial object during the simulation and 

compute the hysteretic stress-reduction factors and damage indices defined in Chapters 2 and 3, 

which are later used in Chapter 6 to establish the component removal criteria. Four new 

DamageModel derived classes are implemented in this report: (1) CoffinManson evaluates the 

damage state based on plastic strain accumulation in steel bars, as defined in Section 2.2, (2) 

MaxSlip evaluates the damage state based on maximum slip displacement in lap-spliced bars, as 

defined in Section 2.3; (3) DissipatedEnergy evaluates the damage state based on the hysteretic 

energy dissipated in the confined concrete constitutive material model, as defined in Section 3.2; 

and (4) MaxNumCycle evaluates the damage state based on the damage factor proposed in 

Lokuge et al. (2004), which is also defined in Section 3.2. 

 

New classes underlined
Abstract classes italicized

ConfinedConcrete

UniaxialConfinedMaterial

LokugeLoadingLokugeUnloading ParabolicTransition BiniciEnvelope

UniaxialMaterial

ConfinedFiberSec (2D, 3D)

SectionForceDeformation

Material

1 1 1
1

nfiber

1

DissipatedEnergy

DamageModel

MaxSlip

UniaxialConfinedCurve LapSplice SteelRebar

nbar

1

CoffinManson

MaxNumCycles

nsplice

Steel01 Concrete01 FiberSection (2D, 3D)

nDMaterial

ParkAng

New classes underlined
Abstract classes italicized

ConfinedConcrete

UniaxialConfinedMaterial

LokugeLoadingLokugeUnloading ParabolicTransition BiniciEnvelope

UniaxialMaterial

ConfinedFiberSec (2D, 3D)

SectionForceDeformation

Material

1 1 1
1

nfiber

1

DissipatedEnergy

DamageModel

MaxSlip

UniaxialConfinedCurve LapSplice SteelRebar

nbar

1

CoffinManson

MaxNumCycles

nsplice

Steel01 Concrete01 FiberSection (2D, 3D)

nDMaterial

ParkAng   

Fig. 4.2  Partial OpenSees class map showing newly implemented components. 
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4.3 IMPLEMENTATION OF UNIAXIALCONFINEDMATERIAL SUBCLASSES 

UniaxialConfinedMaterial is a new abstract class that provides basic functionality to derived 

classes representing stress-strain response in the main axis direction of confinement-sensitive 

materials. This section provides the class interface and discusses the primary methods available 

to the base class. In addition, this section presents the derived classes that inherit from the base 

class to represent the analytical material models described in Chapters 2 and 3. Note that in 

displaying class interfaces, often only public members of a class (e.g., methods that can be 

invoked by other objects) are illustrated, while private members (e.g., variables and internal data 

structures) are not. 

4.3.1 UniaxialConfinedMaterial Abstract Class 

The class interface for UniaxialConfinedMaterial is illustrated in Figure 4.3. This is an abstract 

class that extends the abstractions provided in UniaxialMaterial in order to supply basic methods 

and member variables for derived classes representing confinement-sensitive uniaxial material 

behavior. Examples of additional member variables include quantities to describe confining 

stress and dilation strain values in the current and last converged load steps, and the secant ratio 

of lateral and axial strains. The additional methods are purely virtual (indicated by setting them 

equal to zero). They include three access methods to retrieve internal variables, in addition to one 

method to set the material stress state. This latter method, setTrialState() receives as arguments 

the strain and an optional strain rate similar to UniaxialMaterial::setTrialStrain(), in addition 

to an optional confining stress value and a pointer to a UniaxialMaterial object representing the 

hoop or jacket (typically supplied by the ConfinedFiberSec object). In the absence of the latter 

two arguments, the derived class should be equivalent to its base UniaxialMaterial. This is 

ensured in the implementation of the virtual setTrialStrain() method in the derived classes, 

which are discussed in the following sections. 
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class UniaxialConfinedMaterial : public UniaxialMaterial 
{ 
public: 
// Constructor and destructor 
 UniaxialConfinedMaterial (int tag, int classTag); 
 virtual ~UniaxialConfinedMaterial(); 
 
// Pure virtual methods inherited from base UniaxialMaterial class (not shown) 
 
// Main and access methods needed by confinement-sensitive subclasses 
 virtual int setTrialStrain(double strain, double strainRate, double sig_3, 

UniaxialMaterial* theHoop = 0); 
 virtual double getSig_3(void) = 0; 
 virtual double getEps_3(void) = 0; 
 virtual double getVs(void) = 0; 
}; 

Fig. 4.3  Class interface for UniaxialConfinedMaterial . 

4.3.2 SteelRebar Material Class 

The class interface for SteelRebarMaterial is illustrated in Figure 4.4, where the suffix 

“Material” is dropped for brevity in previous and future references to the class. The constructor 

receives as arguments the material and geometry parameters and uses them to populate the 

member variables of the constructed objects. Several of these parameters have default values 

listed in Appendix A and need not be explicitly input. Most importantly, the constructor assigns 

to each object of class SteelRebar a previously defined UniaxialMaterial object to represent the 

mechanical stress-strain constitutive law for the steel bar material, whose pointer is the 

constructor argument theRealBar. The class input allows the analyst the option to specify a 

UniaxialMaterial object representing the transverse reinforcement, e.g., hoop, pointed to by 

theDefaultHoop. Alternatively such material can be specified in the definition of the 

ConfinedFiberSec object containing the SteelRebar objects, and later provided to these objects 

during runtime using the pointer theHoop in the function-call to SteelRebar::setTrialStrain(). 
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If a pointer to a hoop is provided using both methods, only the UniaxialMaterial object to which 

theDefaultHoop points is considered in computing the critical buckling stress. This setup can be 

used in modeling buckling in steel bars laterally supported by specially arranged transverse 

reinforcement. If neither pointer is provided, the hoop stiffness is ignored in computing the 

critical buckling stress and the buckling length is set by the analyst using the argument spacing 

in the constructor. 

The method setTrialState() is overloaded to correspond with the purely virtual methods 

defined in the base classes UniaxialMaterial and UniaxialConfinedMaterial. An overloaded 

method is a method that has more than one definition depending on the number and types of 

arguments passed to it. The first definition corresponds to the case where the material object is 

being addressed as a UnixaialMaterial by existing OpenSees SectionForceDeformation or 

Element classes. In this case the call to the method is simply redirected to the second definition 

with the confinement information set to zero in the corresponding arguments. This second 

definition in turn invokes a number of methods to check the state of the steel bar with regards to 

yielding and buckling. If the bar is detected to have buckled, the strain decomposition approach 

discussed in Section 2.2 is enforced to compute the effective stress in the bar. This is performed 

using the built-in iterative method secantSolver() until the outcome of the objective() method, 

representing the compatibility of the total, the mechanical, and the buckling-induced strains, 

converges. 

The method checkYielding() is used to redefine the boundary conditions on the 

buckling-prone steel bar once yielding is detected in order to capture the additional reduction in 

bar stiffness due to initial imperfection in the transition phase between yielding and the onset of 

buckling (see Section 2.2.3). The implementation allows the analyst to disable this extra 

accuracy in modeling (e.g., for the sake of better numerical robustness) so that the bar will 

follow its constitutive material law without stress decomposition after yielding until buckling is 

detected. If bar buckling had not been detected during a compression loading half-cycle, the 

method setBucklingStress() is used to compute the critical buckling stress for the current stress 

states in the bar and the transverse ties. This critical stress is then checked against the current 

stress in the bar using the method checkBuckling(). Once bar buckling is detected, the method 

setBucklingStrain() is called. This method redefines the boundary conditions controlling the 
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strain decomposition equation to reflect the stress state at the onset of buckling. In addition, this 

method sets a flag member variable isBuckled to indicate buckling, which is reset upon recovery 

of the buckling-induced strain. 

The information necessary for keeping the damage state current is routinely passed on to 

the associated DamageModel object using the method setDamage() in the course of 

setTrialStrain(). Since the DamageModel objects typically associated with the SteelRebar class 

belong to the subclass CoffinManson, setDamage() is typically invoked upon strain reversal, 

which enables the computation of accumulated plastic strain (see Section 2.2.5). To preserve the 

continuity of the stress-strain response and the consistency of the computed tangent stiffness 

modulus, the corresponding stress-reduction factor is applied only upon stress reversal, using the 

method updateDamage(). The method getDamage() is an example of access methods used by 

other objects (e.g., ConfinedFiberSec) to query SteelRebar objects’ information (e.g., damage 

index value). 
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class SteelRebarMaterial : public UniaxialConfinedMaterial 
{ 
public: 
// Constructor and destructor 
 SteelRebarMaterial(int tag, double eu, double ey, double barDiam, 

UniaxialMaterial* theRealBar, int redMode, double spacing, double beta, 
UniaxialMaterial* theDefaultHoop, double strainRecRatio, double 
maxLatStrain, double Nf, double mf, double af); 

 ~SteelRebarMaterial(); 
 
// Main methods to set stress state using strain decomposition 
 int setTrialStrain(double strain, double strainRate = 0.0) {return setTrialStrain 

(strain, strainRate, 0, 0);};  
 int setTrialStrain(double strain, double strainRate, double sig_3, 

UniaxialMaterial* theHoop = 0);  
 double objective (double &aRealStrain); 
 int secantSolver(double *x1, double *x2, double tol); 
 
// Methods to check yielding/buckling & define strain decomposition param’s 
 void checkYielding(double strain, double ey); 
 int setBuckleStress(double strain, double springStiffness, double 

springSpacing, double A, double I, UniaxialMaterial* aRealMat); 
 void checkBuckling(double strain, double springStiffness, double 

springSpacing, double A, double I); 
 int setBuckleStrain (double &currentRealStrain); 
 
// Methods to communicate with associated DamageModel 
 int setDamage(void); 
 int updateDamage(void); 
 
// Access & pure virtual methods declared in base class (partial list)  
 double getDamage(void); 
}; 

Fig. 4.4  Class interface for SteelRebar material. 
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4.3.3 LapSplice Material Class 

The class interface for LapSpliceMaterial is illustrated in Figure 4.5. The class interface is 

similar to that of SteelRebar illustrated in Figure 4.4. The constructor operates in a similar way, 

as well as the communication with the associated DamageModel object. In addition, the 

constructor allows the analyst the option to specify a null value for the argument theRealBar, 

pointing to the UniaxialMaterial object representing the bar material’s mechanical stress-strain 

constitutive law. In this optional case, the constructed object will reproduce the behavior of the 

constitutive bond-slip law without considering strain decomposition with a bar material acting in 

parallel, which can be used for bond-slip model calibration purposes in the presence of such 

experimental observations. In contrast to class SteelRebar, the strain decomposition equation for 

class LapSplice is enforced at all times and not only when a critical (i.e., buckling) stress value 

has been violated (see Section 2.3). The method setTrialState() is overloaded in a manner 

similar to that of class SteelRebar. The built-in method secantSolver() enforces the convergence 

of the objective() method, which in LapSplice class represents the equilibrium between bond 

stress and total axial stress along the spliced bars. 

The method initiateEnvelope() is used to include the effect of lateral confinement on the 

bond capacity. It is invoked only during the first function-call to setTrialStrain(). This is 

performed in order to allow for the possibility that the UniaxialMaterial object representing the 

transverse ties be supplied using the function-call by the associated ConfinedFiberSec object, 

instead of being specified at the object’s construction using the constructor’s pointer argument 

theDefaultHoop. 
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class LapSpliceMaterial : public UniaxialConfinedMaterial 
{ 
public: 
// Constructor and destructor 
 LapSpliceMaterial(int tag, double spliceLength, double eps_dl, 

UniaxialMaterial* theRealBar, double tao_or_fc, double barDiam, double 
r_not, UniaxialMaterial* theDefaultHoop, double u_max, double 
pinchRatio1, double pinchThresh,  double pinchStrain, double 
unloadMult, double u_ult, double exponent, double expn, double 
slipStrainMult, double alpha, double beta); 

 ~LapSpliceMaterial(); 
 
// Main methods to set stress state using strain decomposition 
 int setTrialStrain(double strain, double strainRate, double sig_3 = 0, 

UniaxialMaterial* theHoop = 0); 
 double objective (double &aRealStrain); 
 int secantSolver(double *x1, double *x2, double tol); 
 int initiateEnvelope(void); 
 
// Methods to communicate with associated DamageModel (not shown) 
// Access & pure virtual methods (not shown) 
}; 

Fig. 4.5  Class interface for LapSplice material. 

4.3.4 ConfinedConcrete Material Class 

The class interface for ConfinedConcreteMaterial is illustrated in Figure 4.6, where the suffix 

Material is dropped for brevity in previous and future references to the class. The class interface 

designates as “friends” four UniaxialConfinedCurve subclasses representing the different 

branches of the hysteretic behavior. The mention of the suffix “Curve” in the subclass names is 

dropped for brevity in previous and future references and retained only in references to the base 

UniaxialConfinedCurve abstract class. Each ConfinedConcrete object owns one object of each 

derived subclass, and the friend designation allows such subclasses to access certain local 
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member variables of ConfinedConcrete objects at runtime. This accessibility is needed for the 

UniaxialConfinedCurve objects to update their state during the analysis and redefine their 

starting and ending points as explained in the next section. The implementation allows the 

analyst to specify a prescribed confining stress value, a UniaxialMaterial object representing the 

confining jacket (which can be alternately specified in the definition of the associated 

ConfinedFiberSec object), a combination of both, or neither. The constructor receives as 

arguments the material and damage model parameters and populates the corresponding member 

variables in the constructed objects. 

The definition of setTrialState() depends on whether lateral strain compatibility is 

requested in the function-call to the method or not. If so, the confining stress argument sig_3 in 

the function-call is null and is therefore computed using the pointer argument to the confining 

jacket theHoop. Otherwise, the confining stress value is passed on as an argument in the 

function-call and used directly in computing the axial stress. The method setCyclicState() is 

invoked when a change is detected in the hysteretic branch defining the material’s current stress 

state (e.g., a reversal in strain increment) in order to identify which UniaxialConfinedCurve 

derived object to call. The method addDefaultDamage() is used if the analyst chooses to use the 

dissipated energy-based damage model defined in Section 3.2.4. However, any existing 

DamageModel object implemented in OpenSees can be constructed and linked to the current 

ConfinedConcrete object if its parameters are calibrated to the material properties. Several 

DamageModel classes have previously been implemented in OpenSees, e.g., Park and Ang 

(1985). The majority of these DamageModel classes are documented and discussed in 

Altoontash (2004). 

The method getTangent() depends on the current hysteretic state of the object. 

According to the outcome of setCyclicState(), the corresponding UniaxialConfinedCurve 

derived object is responsible for computing and returning the tangent stiffness modulus. In the 

case that the derived object is of class BiniciEnvelope, the tangent can be computed only by 

using numerical differencing. Direct differentiation of stress-strain equations for class 

BiniciEnvelope is not feasible because of the equation’s complex dependence on the confining 

stress. Evaluation of the tangent stiffness moduli is discussed in detail in Section 4.4. 
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The static class-wide dummy object theShadowEnvelope of class BiniciEnvelope is 

constructed so that all objects of class ConfinedConcrete should use it in order to compute virtual 

stress states needed for computing the tangent by numerical differencing without altering the 

stress state of their own associated BiniciEnvelope object. A “static” designation means that there 

is only one such dummy BiniciEnvelope object available and accessible for all ConfinedConcrete 

objects combined. Since the material objects are asked by the Analysis class to compute the 

tangent stiffness moduli one-at-a-time, the use of one class-wide dummy BiniciEnvelope object 

for this purpose shared by all ConfinedConcrete objects at runtime reduces the demand on 

computational memory. 

The method getDamage() in turn queries the associated DamageModel object and 

retrieves the current information about the material’s damage state. The information necessary 

for updating the damage state (as discussed in Section 4.6) is routinely passed during the analysis 

to the associated DamageModel object in the course of executing the method setTrialStrain(). 
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class ConfinedConcreteMaterial : public UniaxialConfinedMaterial 
{ 
public: 
  friend class BiniciEnvelopeCurve; 
  friend class LokugeUnloadingCurve; 
  friend class LokugeLoadingCurve; 
  friend class ParabolicTransitionCurve; 
 
// Constructor and destructor 
 ConfinedConcreteMaterial(int tag, double fcc, double ecc, double Ec, double 

f3u, double e3u, double ft, double et0, double vs, double lc, double Gf, 
double paramP, double paramC, double paramA, DamageModel* 
theDamageModel, int theDamageMode, double sig_3p, UniaxialMaterial* 
theDefaultHoop); 

 ~ConfinedConcreteMaterial(); 
 
// Main methods 
 int setTrialStrain(double strain, double strainRate, double sig_3, 

UniaxialMaterial* theHoop = 0);  
 void setCyclicState(int stateTag); 
 int addDefaultDamage(int tag, double paramC); 
 
// Access, input-checking & pure-virtual methods from base class (partial list) 
 double getTangent(void); 
 double getDamage(void); 
 
// Class-wide dummy object for calculating tangent using differencing 
 static BiniciEnvelopeMaterial theShadowEnvelope; 
}; 

Fig. 4.6  Class interface for ConfinedConcrete material. 
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4.3.5 UniaxialConfinedCurve Abstract Class 

The class interface for UniaxialConfinedCurve is illustrated in Figure 4.7. Being an abstract 

class, all of its member methods are designated virtual. No stand-alone objects of this class or its 

derived classes can be constructed through the interpreter, nor can any such object exist in the 

domain independent of a UniaxialConfinedMaterial object which is designated as the “parent” 

object. Hence, every object of the current class has as a member variable a pointer called 

theParentMat. 

The method setParent() allows the assignment or reassignment of pointer member 

variable theParentMat. It is mainly used when constructing copies of the parent 

UniaxialConfinedMaterial object, e.g., during fiber-discretization, during which copies are also 

constructed of the associated UniaxialConfinedCurve objects. This method is then used to set the 

member variable theParentMat to point to the copied UniaxialConfinedMaterial object instead 

of the original one. 

The method updateAnchors() is invoked in the parent UniaxialConfinedMaterial object 

once its stress state necessitates redefining the associated UniaxialConfinedCurve (e.g., upon 

reversal of loading direction). The method receives as arguments the vector theMatData of 

ordered material properties and the array theParentMats of pointers to objects of class 

UniaxialMaterial, which allows flexibility for UniaxialConfinedCurve subclasses derived in the 

future whose redefining stress state(s) may depend on one or more Material objects in the 

Domain. For the case of a ConfinedConcrete parent object, the array of pointers references the 

object and its associated UniaxialConfinedCurve derived objects. The stress states defining the 

beginning and end points of a derived object from class UniaxialConfinedCurve can be updated 

using this information and later retrieved using access methods whose definition depends on the 

derived class. 

The method setTrialStrain() simply passes on the function-call made in the parent 

UniaxialConfinedMaterial object to the derived UniaxialConfinedCurve class. The methods 

getStartStrain() and getEndSig_3() are examples of the access methods used by other objects 

(e.g., the associated ConfinedConcrete object) to query derived objects of class 

UniaxialConfinedCurve for the stress states defining their start and end-points. 
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class UniaxialConfinedCurve : public UniaxialConfinedMaterial 
{ 
public: 
// Constructor and destructor 
 UniaxialConfinedCurve (int tag, int classTag); 
 virtual ~UniaxialConfinedCurve(); 
 
// Method to define the UniaxialConfinedMaterial that controls the curve 
 virtual void setParent(UniaxialConfinedMaterial* aNewParent) = 0; 
 
// Methods to update & retrieve (partial list) stress states defining curve object 
 virtual int updateAnchors(UniaxialMaterial** theParents, Vector theMatData) 

= 0; 
 virtual double getStartStrain(void) = 0; 
 virtual double getEndSig_3(void) = 0; 
 
// Main method to set the current stress state 
 virtual int setTrialStrain(double strain, double strainRate, double sig_3, 

UniaxialMaterial* theHoop) = 0; 
 
// Access & virtual methods declared in base class (not shown) 
 
protected: 
 UniaxialConfinedMaterial* theParentMat; 
}; 

Fig. 4.7  Class interface for UniaxialConfinedCurve. 

4.3.6 UniaxialConfinedCurve Subclasses 

Four classes are derived from the abstract UniaxialConfinedCurve as illustrated in Figure 4.2. 

These derived classes are BiniciEnvelope, LokugeUnloading, LokugeLoading, and 

ParabolicTransition. Aside from receiving the class-dependent curve parameters in order to 

populate the member variables, the four class interfaces are generally similar to that of base class 

UniaxialConfinedCurve and are not shown herein. Each derived class implements its methods to 
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correspond with its respective component of the confined concrete constitutive model discussed 

in Section 3.2, where the behavior in tension has been appended to LokugeUnloading. For all 

four derived classes, it should be noted that the implemented stress-strain relationships are setup 

to deal with compressive stresses and strains in the axial direction as possessing a positive 

algebraic sign. Hence, the function-call to their setTrialStrain() method within 

theParentMat::setTrialStrain() method reverses the algebraic signs of axial stress and strains 

arguments, while the corresponding access methods in the derived classes reverse the algebraic 

signs back when queried for these values. The significant additions to the class interface of 

UniaxialConfinedCurve are the methods added to enforce lateral strain compatibility. This latter 

step is performed mainly using a built-in secantSolver() method similar in construction to those 

defined in Sections 4.3.2–4.3.3, and an objective() method that represents lateral strain 

compatibility by checking the equilibrium of the resulting confining stresses in the core concrete 

and the confining jacket. 

4.4 EVALUATION OF MATERIAL TANGENT STIFFNESS MODULI 

All UniaxialConfinedMaterial derived classes implemented in the previous section are required 

by OpenSees architecture to define an access method that retrieves the Material object’s tangent 

stiffness modulus at the stress state current during runtime. The numerical convergence of the FE 

model’s Solver object requires accurate estimation of these tangent moduli. For 

UniaxialConfinedMaterial, an analytical evaluation of the tangent modulus may be difficult in 

certain cases due to the complex dependence of the stress-strain response on future confining 

stress values. In such cases, the tangent moduli have to be evaluated numerically. This section 

presents the analytical expressions used for evaluating the tangent modulus of each 

UniaxialConfinedMaterial derived class at every stress state where analytical evaluation is 

possible, and describes the numerical differencing approach used otherwise. In the following 

sections, the unknown tangent modulus is generically referred to as E  in each respective class. 
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4.4.1 SteelRebar Material Class 

The tangent stiffness modulus in a SteelRebar object is evaluated depending on its stress state. 

Three stress states are possible with respect to buckling: (1) a bar with no buckling-induced 

strain subjected to any strain increment, (2) a buckled bar subjected to a compressive strain 

increment, and (3) a buckled bar subjected to a tensile strain increment. In stress state (1), the 

tangent modulus is retrieved from the associated UniaxialMaterial object representing the bar’s 

mechanical stress-strain constitutive law, as identified by the pointer member variable 

theRealBar. This “mechanical” stiffness modulus is referred to hereafter as mE . 

In stress states (2) and (3), the following derivation is developed with reference to the 

analytical stress-strain model described in Section 2.2. Recall that the general definition of the 

tangent stiffness modulus E  at any stress state is given by 
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using the well-established chain rule of differentiation. The first term in Equation (4.1) is 

equivalent to the mechanical stiffness modulus of theRealBar object, namely, 
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After substitution, Equation (4.1) is re-written as  
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which can be solved to compute the tangent stiffness modulus in stress state (2) 
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During stress state (3) and according to Equation (2.34), the second term in (4.1) 

corresponds to 
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Substitution in (4.1) yields the following tangent stiffness modulus in stress state (3): 
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Note that if the method checkYielding() is enabled by the analyst, a potential stress state 

(4) may exist in which a yielding bar is subjected to a compressive strain increment prior to 

buckling. Referring to Section 2.2.3, stress state (4) is conceptually similar to stress state (2). 

Following Equations (2.28)–(4.7) while substituting superscript b  by h  and making necessary 

adjustments, the tangent stiffness modulus is derived for stress state (4) as follows: 
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4.4.2 LapSplice Material Class 

The tangent modulus in a LapSplice object is evaluated depending on the stress state in its 

associated bond-slip material model. Four stress states are possible: (1) loading along the 

envelope, (2) unloading, (3) pinching, and (4) reloading. It will be shown that the computation of 

tangent stiffness modulus for the latter three stress states follows the same approach. First, with 

reference to the lap-splice constitutive model described in Section 2.3, the following is true for 

the two serially linked materials: 
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where mE  is the mechanical stiffness modulus (see Section 4.4.1). Invoking the 

equilibrium of bond and axial stresses (see Eq. (2.41)), one obtains 
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Substitution in Equation (4.11) yields the following tangent stiffness modulus: 
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The stiffness S  of the bond-slip component (see Eq. (2.42)) during stress state (1) is 

defined as 
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Therefore, for stress state (1), one obtains 
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During stress states (2)–(4), the bond-slip material component exhibits a linear stiffness 

modulus S  (where the omitted subscript and superscripts depend on the stress state, as defined 

in Section 2.3.3). Hence, substituting the proper S  from Section 2.3.3 into the Equation (4.13), 

one obtains the corresponding tangent stiffness modulus for each stress state. 

4.4.3 ConfinedConcrete Material Class 

Evaluation of the tangent stiffness modulus of the ConfinedConcrete objects depends on the 

outcome of their respective setCyclicState() method and the corresponding 

UniaxialConfinedCurve derived object that fits the material’s current stress state. The tangent 

stiffness modulus is computed differently in each UniaxialConfinedCurve subclass, as described 

in the next sections. The ConfinedConcrete object queries only the appropriate 

UniaxialConfinedCurve derived object for its current stiffness modulus. 
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4.4.4 BiniciEnvelope Curve Class 

The tangent stiffness modulus for objects of class BiniciEnvelope cannot be evaluated 

analytically. This is due to the constitutive law’s complex dependency on the confining stress. 

Moreover, the confining stress varies during the analysis based on the confining jacket’s stress 

state, the applied cross-section forces, and the fiber location within the cross section. Therefore, 

the variation of this confining stress as a function of axial strain cannot be explicitly evaluated. 

Hence, the tangent stiffness modulus is computed using numerical differencing. Prior to failure 

of the confining jacket, a central difference is used. Hence, the previously discussed static object 

ConfinedConcrete::theShadowEnvelope is used to evaluate the virtual stress states { }−+
11 ,σσ  at 

imaginary axial strain values { }−+
11 ,εε  infinitesimally incremented and decremented from the 

current axial strain 1ε . Meanwhile, virtually incremented and decremented confining stress 

values { }−+
33 ,σσ  are computed and added to the virtual stress states being evaluated by adding 

infinitesimal values to the current confining stress 3σ . The values of these infinitesimal values 

are approximated based on the ratio of the confining stress increment 3σΔ  to axial strain 

increment 1εΔ  from the previous converged load step. Finally, the tangent stiffness modulus is 

approximated by 
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The static object is then reset so that another BiniciEnvelope object can use it. Upon 

failure of the confining jacket, the central difference approach outlined above becomes 

inaccurate due to the potentially brittle failure mode (especially in fibers with relatively high 

confinement ratios, φ , see Section 3.2.1). Hence, forward difference is used instead, whereby 

only one virtual stress state is evaluated and the tangent stiffness modulus is approximated by 
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4.4.5 LokugeUnloading Curve Class 

In objects of class LokugeUnloading, the constitutive law’s dependence on the variable confining 

stress is straightforward and differentiable. However, the variation in confining stress with axial 

strain is smooth but not necessarily explicitly computable. Hence, the tangent stiffness modulus 

for objects of class LokugeUnloading is evaluated based on the choice of the analyst. Three 

options exist: (1) using numerical differencing, (2) using closed-form differentiation while 

assuming the variation in confining stress, and (3) using closed-form differentiation while 

assuming fixed confining stress. In the third option, the variation in confining stress for 

individual fibers is disabled upon unloading and resumed upon returning to the envelope in order 

to enhance numerical robustness. The first option is implemented in a manner similar to 

BiniciEnvelope objects. The second and third options are simultaneously presented in the 

following paragraph. 

With reference to Section 3.2.3: 
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The first term in Equation (4.18) is expanded using the following series of chain-rule 

equations: 
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The second term in Equation (4.18) is evaluated assuming a linear jacket stiffness 

modulus jD : 
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Substituting through and adding all terms, the tangent stiffness modulus is expressed as 
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where the last term is only valid in option (2) and becomes zero in option (3) above. 

4.4.6 LokugeLoading Curve Class 

Similar to objects of class LokugeUnloading, the analyst has the choice between using numerical 

differencing or closed-form differentiation (either with assumed or disabled confining stress 

variation) for class LokugeLoading. Following a similar derivation to that presented in the 

previous section, Equation (4.20) is replaced by 
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The tangent stiffness modulus is therefore expressed as 
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where as for LokugeUnloading, the last term in Equation (4.26) is non-zero if the 

confining stress variation is enabled, otherwise it is set to zero. 

4.4.7 ParabolicTransition Curve Class 

The axial stress-strain relationship in objects of class ParabolicTransition does not depend on 

the confining stress. Unlike other UniaxialConfinedCurve derived classes, only the stress-state 

points defining the start and end points of this curve depend on the confining stress. With 

reference to Section 3.2.3, the tangent stiffness modulus is evaluated explicitly as follows: 
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4.5 IMPLEMENTATION OF SECTIONFORCEDEFORMATION SUBCLASSES 

The use of the newly developed UniaxialConfinedMaterial derived classes to model the flexural 

response of fiber-discretized cross sections is accomplished through constructing corresponding 

Fiber objects within a ConfinedFiberSec2D or a ConfinedFiberSec3D class, both subclasses of 

SectionForceDeformation. The analyst input for either ConfinedFiberSec class is essentially the 

same. The dimensionality of the class is decided by the geometry of the structural model. For the 

purposes of this report, only ConfinedFiberSec2D is fully implemented. The full implementation 

of ConfinedFiberSec3D involves the numerical solution of a planar geometry problem to 

determine the spatial orientation of the neutral axis during runtime and its normal distance from 

individual fibers. Since no ConfiendFiberSec3D objects are utilized in this report, C++ 

implementation of this numerical solution has not been completely carried out and this 

implementation is considered out of the scope of this report. 

The class interface for ConfinedFiberSec2D is illustrated in Figure 4.8, which is modified 

from the class interface for class FiberSection2D. Accordingly, additional arguments are 

received by the constructor to populate member variables of constructed objects by a pointer 

theHoop to a UniaxialMaterial object representing the transverse reinforcement or confining 

jacket, an integer confTag representing the power sp  of the confining stress distribution 

function (see Section 3.3), and the strain value e3Limit corresponding to failure in the confining 

jacket and subsequent loss of confinement. The method setTrialSectionDeformation() conducts 

a preliminary scan of all Fiber objects representing core concrete to identify the one with 

maximum compressive strain. Core Fiber objects in a cross section must share the same material 

tag as the first Fiber object to be defined by the analyst for the discretized cross section (using 

the Tcl interface). Next, the Fiber object’s method ConfinedConcrete::setTrialStrain() is 

invoked with a null confining stress argument in order to enforce lateral strain compatibility as 

discussed in Section 4.3.4. Once the stress state in theHoop object is set and the maximum 

confining stress is determined, Equation (3.41) is used to compute the confining stress at each 

fiber location. Fiber objects representing the cover concrete are assigned no confining stress. The 

individual Fiber objects’ setTrialStrain() and getDamage() methods are then invoked. The 

Fiber objects’ stresses and stiffness moduli are retrieved and assembled in the established fiber-
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section procedure (Spacone et al. 1996a,b) to compute the ConfinedFiberSec2D object’s stiffness 

matrix and resisting-force vector. Moreover, the Fiber objects’ retrieved damage indices are 

assembled to create the cross-section damage indices defined in Section 3.3.2. The access 

method getSecDamage() retrieves the 12 ×  vector of cross-section damage indices AD  and MD . 

It should be noted that each Fiber object may belong to any UniaxialMaterial subclass 

and not necessarily possess the extra functionality of UniaxialConfinedMaterial subclasses. 

Hence, the ConfinedFiberSec object must verify that each Fiber object corresponds to a subclass 

of UniaxialConfinedMaterial. If not, no attempt to exchange confinement-related or damage-

related information should be made in order to avoid a possible runtime segmentation fault in the 

case that the corresponding access methods were not properly implemented in the non-

UniaxialConfinedMaterial Fiber objects. This can be achieved by checking the class tag of each 

Fiber object (the class tag is unique to each class and is defined in its OpensSees 

implementation) and checking it against a list of UniaxialConfinedMaterial derived class tags. 

However, this approach is impractical as it requires constant updating of the list to reflect 

additional subclasses of UniaxialConfinedMaterial that may be added in the future.  Hence, the 

verification is instead conducted using “dynamic casting,” whereby each Fiber object is first 

assumed to belong to a UnixialConfinedMaterial subclass, and a pointer to it is ”cast” (or re-

declared) during runtime to the base class UnixialConfinedMaterial. According to standard C++ 

rules, if the assumption is valid (i.e., the dynamic casting is successful), this process results in a 

value for the newly declared pointer that belongs to the base class. However, if the assumption is 

not valid (i.e., the dynamic casting fails), the newly declared pointer value is null. This type of 

casting is called “dynamic” because it takes place during runtime and is not checked for validity 

by the C++ compiler beforehand. 
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class ConfinedFiberSec2D : public SectionForceDeformation 
{ 
public: 
// Constructor and destructor 
 ConfinedFiberSec2D(int tag, int numFibers, Fiber **fibers, UniaxialMaterial* 

theHoop, int confTag, double e3Limit);  
 ~ConfinedFiberSec2D(); 
 
// Main methods 
 int setTrialSectionDeformation(const Vector &deforms);  
 
// Access & pure virtual methods declared in base class (partial list) 
 Vector getSecDamage(void) 
}; 

Fig. 4.8  Class interface for ConfinedFiberSec2D. 

4.6 IMPLEMENTATION OF DAMAGEMODEL SUBCLASSES 

Four new derived classes are added to the abstract class DamageModel, as illustrated in Figure 

4.2. Similar to UniaxialMaterial, DamageModel is a DomainComponent subclass. An object of 

class DamageModel can be associated with any DomainComponent object that controls it to 

monitor damage propagation within itself. The associated DomainComponent objects are usually 

of class Material or Element. The class interface and functionality of the four derived classes are 

similar and therefore only that for class DissipatedEnergy is illustrated in Figure 4.9. The class 

configuration is relatively simple. The constructor populates the object with the relevant 

parameters—in this case the energy capacity Etot and an exponent CPow. When the main 

method setTrial() is invoked, it receives as arguments numerical values representing the current 

stress state of the associated DomainComponent object. These arguments typically contain 

information about the force (stress), deformation (strain), and stiffness modulus in the associated 

DomainComponent object. This information is used to incrementally update the DamageModel 

object’s member variable which stores the value of the corresponding damage index. It is up to 
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the DomainComponent object to decide when to send its updated stress-state information to its 

associated DamageModel object. For example, the method DissipatedEnergy::setTrial() is only 

called within a ConfinedConcrete object if its stress state corresponds to either the unloading or 

reloading branch. Hence, only the hysteretic energy dissipated between these two branches (i.e., 

not the envelope or transition branch) enters the computation; see shaded areas in Figure 3.3. 

Similarly the method CoffinManson::setTrial() is called only within a SteelRebar object upon 

strain reversal to record the accumulation of plastic strain. 

 

class DissipatedEnergy : public DamageModel 
{ 
public: 
// Constructor and destructor 
 DissipatedEnergy(int tag, double Etot, double Cpow); 
 ~DissipatedEnergy(); 
 
// Main method to set the current damage-sate 
 int setTrial(Vector trialVector); 
 
// Access and pure virtual methods declared in base class (not shown) 
}; 

Fig. 4.9  Class interface for DissipatedEnergy damage model. 
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5 Simulations of Experimentally Tested 
Deficient RC Columns 

In this chapter, the material and cross-section models, which have been developed and 

individually calibrated in the previous chapters, are combined to develop computational models 

of RC columns using the OpenSees computational platform. The column models are used to 

simulate the experimentally observed behavior of deficient RC columns previously investigated 

under extreme deformation demands. The selected suite of investigated RC columns includes 

specimens tested in their as-built condition or after retrofitting by FRP jackets, and subjected to 

load-tests whose results represent monotonic or hysteretic behavior. The results from four 

experimental programs are used in this study, according to the following designations and 

characteristics: 

1. Experimental Program A (Mosalam et al. 2007a,b): Monotonic behavior of as-built and 

FRP-retrofitted RC columns with inadequate core confinement. 

2. Experimental Program B (Sheikh and Yau 2002): Hysteretic behavior of FRP-retrofitted 

RC columns with inadequate core confinement. 

3. Experimental Program C (Xiao and Ma 1997): Hysteretic behavior of as-built and FRP-

retrofitted RC columns with deficient lap-splices. 

4. Experimental Program D (Henry 1998): Hysteretic behavior of as-built RC columns 

exhibiting longitudinal bar buckling and reinforcement fracture. 

The column specimens investigated in this chapter all exhibit a collapse mode dominated 

by flexure-axial interaction and are modeled using the aggregation of material and cross-section 

models developed in this report. A schematic representation of the lumped-plasticity beam-

column FE model used in the simulations and a typical discretization of the cross section 
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representing flexure-axial interaction in its plastic hinge region are illustrated in Figure 5.1. It is 

out of the scope of this report to calibrate the analytical model developed in Elwood (2002) to 

simulate the effect of shear-axial interaction and its LimitState implementation in OpenSees. This 

model has not been developed in this report and has been repeatedly calibrated by the model 

developers (Elwood 2002; Elwood and Moehle 2005). However, this model is used in the present 

report to account for the shear-axial collapse mode for RC columns and to formulate element 

removal criteria as discussed and implemented in Chapter 6. In addition, this model is used in 

Chapter 7 to demonstrate the process of progressive seismic collapse on two structures using the 

methodology developed in this report. 

Cover concrete fiber

Core concrete fiber
Steel bar fiber

Steel tie or spiral
FRP jacket (if any)

Bending axis
Cover concrete fiber

Core concrete fiber
Steel bar fiber

Steel tie or spiral
FRP jacket (if any)

Bending axis

Fixed 
end

Axial load
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displacement

Plastic hinge
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displacement

Plastic hinge
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column length

 

(a) Beam-column FE (b) Cross-section discretization  

Fig. 5.1  Typical details of FE model used in simulating deficient RC columns. 

5.1 EXPERIMENTAL PROGRAM A 

Experimental program A was designed specifically for the purposes of this study. It has been 

conducted at the Middle East Technical University (METU), Turkey, and first reported in 

Mosalam et al. (2007b). Four RC columns of circular cross section and identical dimensions and 

steel reinforcement are subjected to combined axial loads and bending moments. One of the 

columns is investigated in its as-built condition under fixed axial load and monotonically 

increasing eccentricity, while the other three columns are strengthened by one layer of CFRP 

composite and subjected to monotonically increasing axial load at three different eccentricity 
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levels. FRP jacket strain records from program A were used to evaluate the analytical cross-

section confinement model in Chapter 3. For completeness, the details of this experimental 

program are herein presented. 

5.1.1 Specimen Geometry and Test Setup 

All four specimens have the dimensions and longitudinal reinforcement illustrated in Figure 3.1. 

The total height of each specimen is 1000 mm. The middle 400 mm constitute the test region, 

having a diameter of 200 mm. The two column heads of each specimen are designed to mount 

the loading assembly and transfer the eccentric load to the column without sustaining damage 

outside the test region. For this purpose, three bolt holes in each were been formed during casting 

using steel pipes. Longitudinal reinforcement consists of six deformed bars of 10 mm diameter, 

continuous along the specimen length and uniformly distributed around the perimeter. The target 

concrete cover is 6 mm, yet this small cover could not be guaranteed because of difficulties in 

construction. Hence, a value of 10 mm is calibrated using the bending moment capacity of the 

as-built specimen and used in all the simulations. Within the test region, undeformed 4 mm 

diameter spirals with a pitch of 120 mm are used. In the transition and end zones, 6 mm diameter 

circular hoops with a spacing of 30 mm are used to safeguard against the possibility of failure 

outside the test region. The column heads are additionally confined by U-shaped deformed bars 

of 8 mm diameter. Prior to FRP application, all column surfaces are air-blown. Epoxy-

impregnated FRP is then wrapped around the columns, with a 150 mm overlap length maintained 

for anchorage. Additional FRP patches are placed in the transition zones so that premature 

failure outside the test region is eliminated. 

A steel reaction frame is used in the experiments as illustrated in Figure 5.3. Roller 

supports are placed at the ends of the specimen to eliminate moment restraint. A steel cable is 

passed vertically between the two (top and bottom) steel channel sections and fixed with chucks 

at top and bottom. A hydraulic jack is used to stress the cable against a steel plate in order to 

apply the eccentric axial load. The location of the steel plate along the channel sections is 

manipulated to provide the target eccentricity. Another hydraulic jack is placed directly on top of 

the column. Both hydraulic jacks are used to execute the load control scheme of specimen 1, 
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which is investigated in its as-built condition. Specimen 1 is subjected to monotonically 

increasing eccentricity while continuously adjusting the load in both hydraulic jacks as explained 

in Figure 5.3 so that their total force remains constant at 120 kN (approximately 44% of the 

nominal axial force capacity sygco AAfP σ+′= 85.0  with ( )2100π=gA  mm2 and ( )256π=sA  

mm2). Specimens 2 and 3 are investigated after being FRP-retrofitted by subjecting them to 

monotonically increasing axial load under constant eccentricities of 290 mm and 175 mm, 

respectively, where only the hydraulic jack connected to the steel cable is activated. Specimen 4 

is investigated after being FRP-retrofitted by subjecting it to monotonically increasing concentric 

axial load, where only the hydraulic jack placed on top of the column is activated. Linear-

variable displacement transducers (LVDTs) are used to measure the deformations of the column 

along the compression and tension sides of the test specimens over the length of the test region. 

Using these displacement measurements, a gage length of 400 mm, and the normal distance 

between the LVDTs, curvatures (for specimens 1, 2, and 3) and average axial strains (for 

specimen 4) are computed. In addition to LVDTs, electrical strain gages are mounted on the FRP 

composite to measure the circumferential strains for specimens 3 and 4. For specimen 4, 

additional strain gages are used to measure local axial strains and verify the calculated average 

strains from the measurements of the LVDTs. Lateral displacements of the column specimens 

along their heights were not measured, which would have made it possible to update the 

computed bending moments by including geometric P-Δ effects. 

Material properties for concrete, reinforcing steel, and FRP composites are listed in Table 

2.1. The target compressive strength is 10 MPa for all specimens. Manufacturer’s data for 

individual FRP fibers list a thickness of 0.165 mm, rupture strain of 0.015, and modulus of 

elasticity of 230 GPa. After epoxy impregnation, the FRP composite has a thickness of about 1 

mm and a modulus of elasticity of 61 GPa, obtained from CFRP test coupons. 
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(a) Elevation and reinforcement arrangement (b) Cross-section details 

Fig. 5.2  Specimen geometry and reinforcement for program A. 
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Fig. 5.3  Specimen setup and loading scheme for program A. 
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Table 5.1  Material properties for program A. 

Material property Value 

cf ′  [MPa]  8.7*, 8.9**, 9.4*** 

Concrete cover [mm] 10 

Longitudinal steel yσ  [MPa] 260  

Transverse steel yσ  [MPa] 400  

Longitudinal steel ratio [%] 1.50 

Transverse steel ratio [%] 0.22 

FRPE  [GPa] 61 

rupε  0.015 

* Specimen 1     ** Specimens 2 and 3     *** Specimen 4 

5.1.2 Computational Modeling of Test Specimens 

Computational simulation of experimental program A is conducted on the cross-section moment-

curvature level within the 400 mm test region. The cross-section confinement model and the 

confined concrete material model developed in Chapter 3 are used to model the column concrete 

cross section. The concrete cross section is fiber-discretized using 24 uniform-thickness layers 

along the radial direction within the core region and 6 layers within the cover region. Each such 

layer is segmented into 18 circumferential sectors, each encircling a °20  central angle (see Fig. 

5.1b). Since there is neither lap-splices nor reported bar buckling (except for specimen 1), 

longitudinal steel bars are modeled using the material model in Menegotto and Pinto (1973). The 

confining effect of transverse spirals in the test zone is secondary, since they are made 

insufficient by design, and hence are modeled assuming a simple bilinear material model until 

yielding and then fracture. FRP composites are modeled using an elastic-brittle material model. 

The equivalent FRP jacket stiffness is computed taking into account the overlap of FRP 

application in the circumferential direction along the column length. This results in an equivalent 

FRP thickness uniformly increased by 24%. Four structural models are then constructed of zero-
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length finite elements incorporating the constructed cross sections and subjected to the axial load 

and curvature histories recorded in the test zone. 

The confined concrete material model requires information about the damage localization 

length, fracture energies, and tensile strength, of which little data are directly available from the 

experiments. The localization length cl  is assumed equal to the product of the plastic hinge 

length and the weight of the integration point under consideration (1.0 for the zero-length 

element used in this study), as suggested in Coleman and Spacone (2001), in addition to a factor 

1≤lγ . The factor lγ  represents the extent of the damaged compression zone within the cross 

section, since the localization length cl  of the confined concrete material model is pertinent only 

to the compressive fracture energy fcG . The plastic hinge length is assumed to spread over the 

400 mm test region due to the near-constant bending moment demand (with the exception of the 

geometric nonlinearity effect) and the experimentally observed spread of damage over the entire 

test region. The factor lγ  is negatively correlated to the axial load eccentricity level and is 

calibrated in this study using the post-peak response of the column specimens. In program A, 

00.1=lγ  for all specimens except specimen 2 which is subjected to relatively high axial load 

eccentricity and hence 50.0=lγ  is chosen for it. Concrete compressive and tensile fracture 

energies cfc fG ′= 8.8  [N, mm units] and 250fcft GG =  were adopted from Mizuno et al. 

(1999) based on uniaxial compression tests. Concrete tensile strength is assumed to be 

ct ff ′=′ 35.0  [N, mm units]. 

5.1.3 Comparison of Observed and Simulated Behavior 

Specimen 1 is experimentally observed to fail at low curvature ductility due to cover spalling 

followed by buckling of longitudinal reinforcing bars. Specimens 2 and 3 sustain very high 

curvature ductilities, and exhibit a spread of several observable flexural cracks spaced at 

approximately 100 mm before the FRP jackets rupture. All FRP-strengthened columns are 

experimentally observed to fail as a result of FRP jacket rupture in a sudden and explosive 
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manner accompanied by a loud popping sound. Photographs of tested specimens are shown in 

Figure 5.4. 

(a) Specimen 1 (b) Specimen 2 (c) Specimen 3 (d) Specimen 4

FRP rupture

(a) Specimen 1 (b) Specimen 2 (c) Specimen 3 (d) Specimen 4

FRP rupture

 

Fig. 5.4  Photographs of tested specimens from program A. 

The measured and simulated moment-curvature results for specimens 1, 2, and 3 are 

compared in Figure 5.5a. Specimen 1 is experimentally observed to sustain a maximum bending 

moment of approximately 14.5 kNm at a curvature of 95 rad/km, exhibit brief hardening, and 

then soften rapidly to 9 kNm at a curvature of 225 rad/km. The computationally simulated 

response exhibits a close agreement to the experimental behavior at early stages of loading. Near 

the maximum bending moment, the simulated behavior exhibits slightly higher stiffness, 

reaching a maximum moment capacity of 14.6 kNm at a curvature of 70 rad/km, and softens 

afterwards. The simulated softening is only slightly less brittle than that observed, and the 

moment capacity reduces to 9.25 kNm at a curvature of 225 rad/km where the simulation is 

manually terminated after reaching the maximum experimentally recorded value. 

Specimens 2 and 3 (Fig. 5.5a) sustain maximum bending moments of 15.3 and 17.3 kNm, 

at corresponding curvatures of 1180 and 1040 rad/km, respectively. The increase in curvature 

ductility over specimen 1 due to retrofitting by FRP is evident. Specimen 2 exhibits lower 

stiffness than specimen 3 due to the larger imposed eccentricity. Simulations predict the 
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maximum moment capacity of specimens 2 and 3 to be 15.8 and 17.7 kNm, respectively, which 

are approximately equal to the experimentally observed values. However, the corresponding 

curvatures are predicted to be only 1000 and 960 rad/km, respectively. This may be attributed to 

the uncertainty in the estimated material properties and imperfect geometrical parameters that are 

difficult to control, e.g., FRP jacket thickness and concrete cover, especially when such a 

reduced specimen scale is involved. The increase in simulated stiffness may be attributed to the 

fact that the experimentally recorded bending moments are computed simply by multiplying 

axial loads by load eccentricity and are not amplified for geometric nonlinearity (P-Δ effect), 

which can be judged from Figure 5.4 to have been present. This discrepancy is more observable 

in specimen 2, since the imposed eccentricity is higher and hence the additional bending moment 

due to P-Δ effect is larger. It should be noted that the simplifying assumption of completely 

brittle failure of FRP and the subsequent complete loss of confinement effect in the cross section 

prevents the model from computationally reproducing the descending branch of the moment-

curvature response after FRP rupture. However, in seismic applications, this descending branch 

will rapidly lead to collapse of the retrofitted column due to dynamic P-Δ effects (Gupta and 

Krawinkler 2000) and its exact shape is of little interest to the present study. Instead of the 

descending branch, a sudden drop in moment capacity occurs, after which the moment capacity 

is controlled by the residual strength of core concrete (with confinement removed) and strain-

hardening of longitudinal steel bars (bar buckling and fracture prior to FRP rupture were not 

experimentally observed or computationally simulated). 

The axial load-average strain response of specimen 4, subjected to concentric axial 

loading, is presented in Figure 5.5b. The longitudinal strains are computed using measurements 

from LVDTs and electrical strain gages, while the circumferential strains are measured using 

electrical strain gages located around the cross section. Despite the axi-symmetric nature of the 

loading setup, the plots reveal differences that sometimes exceed 20% among the local strain 

gage measurements in the longitudinal direction, and larger differences between them and the 

averaged measurements of the LVDTs. It is thus believed that the applied axial load was not 

perfectly concentric and that slight eccentricities resulted from inadvertent moment restraint and 

friction at the specimen heads. For all longitudinal strain measurements, the experimental 

response is approximately linear up to an axial load value of approximately 440 kN and then 
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exhibits linear hardening up to failure, which occurs suddenly due to FRP jacket rupture at an 

axial load value of 770 kN. The LVDTs-measured longitudinal strain is -0.0175 at failure. The 

electrical strain gages reached their maximum strain of -0.01 and failed at an axial load of 725 

kN. At FRP jacket rupture, the circumferential strains in the FRP jacket are not uniform; the 

minimum and maximum are approximately 0.0052 and 0.0085, respectively. These values are 

lower than the 0.015 rupture strain of the FRP test coupons. Several researchers have previously 

reported that FRP-confined concrete cylinders tested experimentally under concentric loads were 

observed to fail at measured dilation strains lower than those corresponding to FRP rupture (Ilki 

and Kumbasar 2003; Mirmiran and Shahawy 1997a,b). This phenomenon is attributed to the 

internal friction between FRP jackets and dilating concrete, the multi-axial stress state in FRP 

jackets due to axial shortening of concrete, the stress concentration in FRP jackets induced by 

local crushing of concrete, and the difference in geometry between circular jackets and flat test 

coupons. The studies reported in Mirmiran and Shahawy (1997a,b) and Saenz and Pantelides 

(2007) observe that the reduction in concrete dilation capacity from FRP rupture strain is an 

increasing function of the confining FRP jacket stiffness (e.g., number of layers). 

The computationally simulated response of specimen 4 is presented in Figure 5.5b for 

two cases. The fist simulation represents a perfectly concentric axial load. The second simulation 

represents an imperfectly concentric axial load, whereby an assumed “accidental” eccentricity of 

15 mm (i.e., 7.5% of the column diameter) is imposed. In the first simulation, the bilinear axial 

load-longitudinal strain behavior observed in the experiment is successfully reproduced except 

for a relatively high early stiffness as previously discussed, and is afterwards bounded by the 

measurements obtained from the LVDTs and electrical strain gages. The longitudinal strain is 

estimated to be -0.01 at an axial load level of 710 kN, exhibiting a close match to local strain 

measurements. The circumferential strain is estimated to be 0.005 at an axial load level of 790 

kN, which is approximately equal to the minimum experimentally observed value. However, the 

FRP jacket rupture strain of 0.015 is not detected. This is attributed to the uncertainty in load 

eccentricity, amplified by the reduced scale of the test specimen. While not significantly 

affecting the early global stiffness or the measured average deformation quantities, a small 

eccentricity or moment restraint at the ends could significantly reduce the axial load capacity and 

result in early failure due to non-uniform distribution of strains in the brittle FRP jacket. The 
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potential extent of this effect is demonstrated by the results of the second simulation illustrated in 

Figure 5.5b. For an accidental eccentricity equal to 7.5% of the column diameter, the initial 

stiffness is barely reduced, and the axial load-longitudinal strain response remains bounded by 

the experimental observations. However, the maximum circumferential strain in the FRP jacket 

increases rapidly, and rupture is detected, i.e., circumferential strain of 0.015, at an axial load 

level of 795 kN. Note that according to the spatial distribution of confining stresses (see Section 

3.3), the maximum circumferential strain in the FRP jacket for eccentric loading is significantly 

larger than values measured elsewhere and from the average value. 
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(b) Specimen 4 

Fig. 5.5  Simulated and experimental program A column load-deformation results. 
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5.2 EXPERIMENTAL PROGRAM B 

Experimental program B uses experimental data that have been reported in Sheikh and Yau 

(2002). Twelve RC columns of circular cross section are subjected to constant axial load and 

increasing cycles of symmetric lateral deformation in a single-curvature setup. The objective of 

the experiments is to assess and compare the improved capacity and ductility of RC columns 

retrofitted or repaired using different configurations of FRP composites during seismic events. 

Experimental program B consists of four column specimens reported in Sheikh and Yau (2002). 

5.2.1 Description and Computational Modeling of Test Specimens 

All column specimens investigated in Sheikh and Yau (2002) have identical dimensions and 

steel reinforcement as illustrated in Figure 5.6a. Each column is 356 mm in diameter and 1470 

mm in length, in addition to a column stub of 510×760×810 mm dimensions. The column 

longitudinal reinforcement consists of 6 steel bars of 25 mm diameter distributed uniformly 

around the cross section. The transverse reinforcement consists of 9 mm spirals pitched at 300 

mm in the column’s designated plastic hinge region (within 800 mm of the face of the stub), and 

200 mm otherwise. The stub region is well reinforced to eliminate the possibility of failure 

outside the plastic hinge region. Four column specimens are investigated, using two different 

levels of applied axial load (relative to the axial load capacity oP ) and two different types of FRP 

retrofit (carbon (CFRP) and glass (GFRP)). Material properties are listed in Table 5.2. The 

deformation profile of the concrete core on both sides of the column is measured using LVDTs 

and later post-processed to compute curvature values. The transverse displacements measured at 

six locations along the column length. In addition, strain gages are mounted on longitudinal and 

transverse steel reinforcement at the stub face and within the plastic hinge region. The test setup 

is illustrated in Figure 5.6b. Specimen designation is as follows:  

1. ST2NT: 54% oP  axial load and two layers of 1.25 mm-thick (each) GFRP retrofit  

2. ST3NT: 54% oP  axial load and one layer of 1.0 mm-thick CFRP retrofit 

3. ST4NT: 27% oP  axial load and one layer of 0.5 mm-thick CFRP retrofit 

4. ST5NT: 27% oP  axial load and one layer of 1.25 mm-thick GFRP retrofit 
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Similar to program A, computational simulation of program B is conducted on the cross-

section moment-curvature level within the plastic hinge region. With reference to Section 5.1.2, 

18 and 8 uniform-thickness layers are used to discretize the cross section within the core and 

cover regions, respectively (see Fig. 5.1b). Each such layer is segmented into 18 circumferential 

sectors, each encircling a °20  central angle. The effective jacket thickness is uniformly increased 

by 8% to account for the overlap length of FRP application in the circumferential direction along 

the column length. Based on statistical correlation and regression analysis of surveyed data from 

column experiments, the following expression for the plastic hinge length is suggested in Lu et 

al. (2005), modified from Priestley and Park (1987): 

bcp dLL 16.8077.0 +=  (5.1)

where cL  is the length between the column’s contra-flexure points and bd  is the 

longitudinal steel bar diameter. The localization length lγ  factor is chosen as 1.0, 1.0, 0.25, and 

0.25 for specimens ST2NT, ST3NT, ST4NT, and ST5NT, respectively. As in program A, the 

smaller value of lγ  for the latter specimens is attributed to the fact that these two specimens are 

subjected to relatively high axial load eccentricity compared to the other two specimens. 

 

(a) Geometry and reinforcement (b) Test setup 

Figure 5.6  Specimen details and setup for program B. 
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Table 5.2  Material properties for program B. 

Material property Value 

cf ′  [MPa] 40.4*, 44.8**, 40.8*** 

Concrete cover [mm] 20 

Longitudinal steel yσ  [MPa] 500 

Transverse steel yσ  [MPa] 520  

Longitudinal steel ratio [%] 3.00 

Transverse steel ratio [%] 0.30 

FRPE † [GPa] 68±, 21.2±± 

rupε † 0.014±, 0.020±± 

* ST2NT and ST3NT     ** ST4NT     *** ST5NT     ± CFRP     ±± GFRP 

† Computed from stress-strain plots reported in Sheikh and Yau (2002) 

5.2.2 Comparison of Observed and Simulated Behavior 

The failure of all specimens is preceded by delamination of FRP wraps during the cycle in which 

concrete was crushed beyond its peak strength and started softening. This experimentally 

observed delamination spread over a length of 200 to 400 mm prior to FRP rupture. The 

delamination may have altered the confining stress spatial distribution within the cross section 

due to incomplete strain compatibility between concrete and FRP in the softening region. 

However, an investigative analysis conducted under the extreme assumption of uniform 

confining stress distribution for all simulated specimens resulted in only a 10–15% change in the 

computed bending moment capacities and less than 3% change in the predicted curvature 

ductility values. Specimen ST3NT has sustained some crushing damage in the concrete outside 

of the FRP-wrapped region. Hence, the FRP wraps for the later specimens in the experimental 

program are extended along the entirety of the column length (Sheikh and Yau 2002). 

The experimentally observed and computationally simulated moment-curvature 

responses of specimen ST2NT are illustrated in Figure 2.8a. An excellent agreement in moment 

capacity and stiffness is observed as well as in moment values in the positive curvature direction. 
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However, the moment values in the negative curvature direction are relatively overestimated. 

This may be attributed to the decreased efficiency of the FRP wrapping in the reverse 

deformation cycle due to the spread of FRP delamination caused in the forward deformation 

cycle. Hence, the difference between computationally simulated and experimentally observed 

moment response during the negative curvature cycles increases at larger curvatures. Most 

importantly, the curvature level at FRP rupture is predicted with excellent accuracy. Detection of 

FRP jacket rupture during the simulation results in sudden loss of strength, whereas the 

experimentally observed loss of strength due to the initiation of FRP jacket rupture is less brittle 

than the computational simulation. This is due to the elastic-brittle FRP material model and the 

subsequent complete loss of confining stresses in the entire cross section upon reaching the 

rupture strain at any point along the FRP jacket. It is known that physical damage in the test 

specimens must spread over some length of FRP wrapping before causing complete loss of 

confinement. The simulated response after detecting FRP jacket rupture is less brittle for 

specimens ST4NT and ST5NT (Fig. 5.8) than that for specimens ST2NT and ST3NT (Fig. 2.8) 

due to the thickness of FRP and applied axial load being relatively lower, and therefore the 

amount of confinement lost and the size of the affected compression zone are relatively smaller. 

The experimentally observed and computationally simulated moment-curvature 

responses of specimen ST3NT are illustrated in Figure 2.8b. Similar to specimen ST2NT, an 

excellent match is observed in the bending moment capacity and values in the positive curvature 

direction. The sudden softening experimentally observed just prior to FRP rupture is attributed to 

crushing damage observed during the experiment to the unwrapped concrete outside the 

designated plastic hinge region (Sheikh and Yau 2002), which is not computationally modeled. 

The experimentally observed and computationally simulated moment-curvature responses of 

specimen ST4NT are illustrated in Figure 5.8a. In spite of lower predicted hysteretic energy 

dissipation than experimentally observed, FRP rupture is predicted during the -150 rad/km 

deformation cycle shortly after its initiation has been experimentally observed. This may be due 

to the ability to experimentally observe the initiation of rupture in a few FRP strands in the non-

homogeneous material prior to its spread to cause explosive failure (especially under relatively 

low axial load of specimen ST4NT). The experimentally observed and computationally 

simulated moment-curvature responses of specimen ST5NT are illustrated in Figure 5.8b. An 
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excellent agreement is observed in moment capacity, positive moment values, and post-rupture 

behavior. FRP rupture is predicted near the end of a positive curvature cycle of 150 rad/km 

magnitude, while it is experimentally observed during the subsequent negative deformation 

cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

138 

-400

-300

-200

-100

0

100

200

300

400

-150 -100 -50 0 50 100 150
Curvature [1/km]

M
om

en
t [

kN
m

]

Experiment

Simulation

Reported FRP rupture

Predicted FRP rupture

Curvature [1/km]

M
om

en
t [

kN
m

]

-400

-300

-200

-100

0

100

200

300

400

-150 -100 -50 0 50 100 150
Curvature [1/km]

M
om

en
t [

kN
m

]

Experiment

Simulation

Reported FRP rupture

Predicted FRP rupture

Curvature [1/km]

M
om

en
t [

kN
m

]

 

(a) Specimen ST2NT 

-400

-300

-200

-100

0

100

200

300

400

-100 -80 -60 -40 -20 0 20 40 60 80 100
Curvature (1/km)

M
om

en
t (

kN
m

)

Experiment

Simulation

Reported FRP rupture

Predicted FRP rupture

Curvature [1/km]

M
om

en
t [

kN
m

]

-400

-300

-200

-100

0

100

200

300

400

-100 -80 -60 -40 -20 0 20 40 60 80 100
Curvature (1/km)

M
om

en
t (

kN
m

)

Experiment

Simulation

Reported FRP rupture

Predicted FRP rupture

Curvature [1/km]

M
om

en
t [

kN
m

]

 

(b) Specimen ST3NT 

Fig. 5.7  Simulated and experimental program B results: high axial load columns. 
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(a) Specimen ST4NT 
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(b) Specimen ST5NT 

Fig. 5.8  Simulated and experimental program B results: low axial load columns. 
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5.3 EXPERIMENTAL PROGRAM C 

Experimental program C uses experimental data that have been reported in Xiao and Ma (1997). 

Three half-scale RC bridge columns of circular cross section are subjected to constant axial load 

and increasing cycles of symmetric lateral deformation in a single-curvature setup. The objective 

of the experiments is to establish the behavior of RC bridge columns designed with longitudinal 

reinforcing steel lap-splice deficiency and to assess and compare the improvement in lateral 

load-carrying capacity and displacement ductility after being retrofitted or repaired using layers 

of FRP composites (GFRP composites are used). Both retrofitted and repaired columns exhibit 

increased load-carrying capacity and displacement ductility. Program C consists of one as-built 

and two retrofitted column experiments (no repaired columns) from Xiao and Ma (1997). 

5.3.1 Description and Computational Modeling of Test Specimens 

All column specimens investigated in Xiao and Ma (1997) have identical dimensions and steel 

reinforcement as illustrated in Figure 5.9a. Each column is 610 mm in diameter and 2642 mm in 

length, in addition to a RC footing of 432 mm thickness. Column longitudinal reinforcement 

consists of 20 steel bars of 19 mm diameter distributed uniformly around the circular cross 

section. The bars are lap-spliced to 20 starter bars of the same diameter anchored in the RC 

footing and extending to a length of 381 mm upward. Transverse reinforcement consists of 6.4 

mm hoops spaced at 127 mm along the entire column length. The RC footing is reinforced by a 

mesh of steel bars placed in the top and bottom layers, as well as X-shaped bars beneath the 

column joint to eliminate the possibility of failure outside the column (see Fig. 5.9a). Material 

properties are listed in Table 5.3 as reported in Xiao and Ma (1997). A fixed axial load of 712 

kN (5% oP ) is applied using two high-strength steel rods post-tensioned against a hydraulic jack 

on top of the column (see Fig. 5.9b). Symmetric lateral displacements cycles of increasing 

amplitude are then applied using a displacement-controlled actuator, with three repetitions at 

each displacement level. The applied lateral load is measured using a cylindrical load cell, as 

well as the lateral displacement applied at the column tip. In addition, electrical strain gages are 

mounted on the FRP composite jacket to measure the circumferential strain. Specimen 

designation is as follows: 
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1. C1A0: As-built 

2. C2R4: Four layers of 3.2 mm-thick GFRP each over a 610 mm length 

3. C3R5: Five layers of 3.2 mm-thick GFRP each over a 1220 mm length 

 

(a) Geometry and reinforcement (b) Test setup 

Fig. 5.9  Specimen details and setup for program C. 

Unlike programs A and B, a computational simulation of program C is conducted on the 

column’s lateral load-displacement level. Each structural model consists of a force-based 

lumped-plasticity beam-column element (see Fig. 5.1a), which is documented in detail under the 

“BeamWithHinges” section in Mazzoni et al. (2004). Given the experimental axial load-

application setup, the element stiffness matrix is configured to exclude P-Δ effects because the 

direction of the applied load (through post-tensioned rods) nearly follows the orientation of the 

column axis. However, a preliminary investigation suggested that this step has a minor effect on 

the simulation results due to the relatively low level of axial load. The end plastic hinges are 

defined using the confined cross-section model developed in Chapter 3 to account for flexure-

axial interaction. With reference to Section 5.1.2, 24 and 8 uniform-thickness layers are used to 

discretize the cross section within the core and cover regions, respectively (see Fig. 5.1b). Each 

such layer is segmented into 18 circumferential sectors, each encircling a °20  central angle. The 

fibers representing the core and cover concrete are modeled using the uniaxial concrete material 

model developed in Chapter 3. In the as-built column C1A0, the core concrete fibers are 

confined with the spiral reinforcement, whereas the cover concrete fibers are not. In the 

retrofitted column specimens C2R4 and C3R5, all concrete fibers are confined with the much 
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stiffer—and stronger—FRP jacket and the confining effect of the spiral is ignored for simplicity. 

The fibers representing the steel bars are modeled using the lap-splice uniaxial material model 

developed in Chapter 2, with the material model in Menegotto and Pinto (1973) representing the 

mechanical stress-strain constitutive relationship of the bars. For reasons of numerical stability, 

FRP composites are modeled using a bilinear uniaxial material model with a steep softening 

branch (10 times the elastic stiffness) to avoid discontinuity in their stress-strain response if they 

were modeled as elastic-brittle. The plastic hinge length is estimated using Equation (2.1). The 

beam-column element exhibits elastic behavior between the two end hinges. The flexibility of 

the elastic segment of the column between plastic hinges is computed using a calibrated value of 

half of the concrete elastic modulus to account for the effect of flexural cracking. Moreover, due 

to the cantilever loading setup, the behavior of the plastic hinge at the loaded end remains 

approximately within the linear range. The localization length factor lγ  is chosen as 1.0 for all 

columns. The constructed structural models are subjected to the imposed axial load and then to 

simulated pushover by monotonically increasing the imposed lateral deformation at the column 

tip. 

Table 5.3  Material properties for program C. 

Material property Value

cf ′  [MPa]  44.8 

yσ  [MPa] 462 

Concrete cover [mm] 38 

Longitudinal steel ratio [%] 2.00 

Transverse steel ratio [%] 0.20 

FRPE  [GPa] 48.3 

rupε  0.0114
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5.3.2 Comparison of Observed and Simulated Behavior 

Specimen C1A0 (as-built) is reported in Xiao and Ma (1997) to have developed its first 

longitudinal crack, indicative of the initiation of lap-splice failure, at a lateral displacement of 13 

mm. The maximum lateral load recorded at this lateral displacement is approximately 230 kN 

without exhibiting significant signs of steel bar yielding. The response is asymmetric, with 

lateral load capacity in the negative direction exhibiting larger values. Vertical cracks have 

spread within the lap-splice region after one displacement cycle at 41 mm. At 61 mm 

displacement, the lateral load capacity reaches 115 kN (50% of its maximum value) and the 

experiment is terminated. The failure of this specimen is experimentally observed to have been 

brittle with no significant ductility. Specimens C2R4 and C3R5 (FRP-retrofitted) are reported 

not to have exhibited any delamination or rupture in the FRP composites. However, fine 

horizontal cracks are observed during later displacement cycles. These specimens develop a 

maximum lateral load of approximately 290 and 330 kN, respectively. Both specimens exhibit 

signs of steel bar yielding at a lateral load value of approximately 230 kN, and thenceforth 

maintain a ductile behavior until the lap-splices are observed to fail at FRP circumferential 

strains of 0.0010 to 0.0015. The reduction in lateral load capacity following lap-splice failure is 

gradual and can be characterized as ductile in comparison to the brittle failure mode of the as-

built Specimen C1A0. Both retrofitted specimens exhibit an asymmetric lateral load-

displacement behavior, in which lateral load capacity in the negative direction exhibits larger 

values. The experiments are terminated at a lateral displacement level of 130 mm, at which the 

lateral load capacity is reduced to approximately 190 and 225 kN (66% and 68% of lateral load 

capacity), for specimens C2R4 and C3R5, respectively (Xiao and Ma 1997). 

The experimentally observed and computationally simulated lateral load-displacement 

responses of specimen C1A0 under cyclic and monotonic loading, respectively, are illustrated in 

Figure 5.10. An excellent agreement in lateral load capacity and stiffness is observed. The 

estimated lateral load capacity is bounded between the experimentally observed values in the 

positive and negative directions, and the corresponding lateral displacement at the initiation of 

lap-splice failure is slightly underestimated but still in close agreement with the experimentally 

observed values. The computational simulation successfully reproduces the brittle behavior 

following lap-splice failure, indicated by a sudden drop followed by rapid reduction in lateral 
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load capacity. The slope of the softening branch and the lateral load capacity at the maximum 

displacement are both estimated in close agreement with the envelope of the experimentally 

observed response. 
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Fig. 5.10  Simulated and experimental program C results: as-built column. 

The experimentally observed and computationally simulated lateral load-displacement 

responses of specimen C2R4 under cyclic and monotonic loading, respectively, are illustrated in 

Figure 5.11a. Similar plots for specimen C3R5 are illustrated in Figure 5.11b. A close agreement 

in lateral load capacity and lateral stiffness is observed, especially in the negative displacement 

direction. It is believed that the softer response in the positive direction is due to hysteretic 

degradation due to previous loading in the negative direction, which is not represented in the 

pushover analysis. The lateral load corresponding to yielding in longitudinal reinforcement is 

accurately predicted, whereas the corresponding displacement is slightly underestimated for both 

specimens. The hardening response until lap-splice failure and the subsequent reduction in lateral 

load capacity are successfully reproduced. The displacement level corresponding to initiation of 

lap-splice failure is slightly underestimated for specimen C2R4. The underestimation of 
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displacements at longitudinal bar yielding and lap-splice failure may be attributed to the 

uncertainty in estimating the plastic hinge length. It has been suggested in Priestley and Seible 

(1991) that FRP-wrapped column cross section may be able to spread the localization of 

structural damage along a greater length than as-built columns. A larger plastic hinge length 

prior to lap-splice failure (due to the stabilizing effect of FRP retrofit) when multiplied by the 

critical cross-section curvature value (e.g., corresponding to yielding of longitudinal 

reinforcement), will result in larger corresponding base rotation and hence in larger lateral 

displacement. In addition, the hysteretic damage accumulated in the column during earlier 

loading cycles may have resulted in larger flexibility in the cyclic experiments than the simulated 

pushover results. Nevertheless, simulations for both specimens C2R4 and C3R5 successfully 

predict the failure mechanism and the relatively gradual loss of lateral strength following lap-

splice failure. In addition, lateral load capacity at the maximum displacement is reasonably 

predicted, considering that the experimental values are further reduced due to unaccounted-for 

hysteretic damage. 
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(a) Specimen C2R4 
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(b) Specimen C3R5 

Fig. 5.11  Simulated and experimental program C results: retrofitted columns. 
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5.4 EXPERIMENTAL PROGRAM D 

Experimental program D uses experimental data that have been reported in Henry (1998). Two 

one-third scale RC bridge columns of circular cross section are subjected to constant axial load 

and increasing cycles of symmetric lateral deformations in a single-curvature setup. The 

objective of the experiments is to establish the behavior and usable ductility limit of RC bridge 

columns susceptible to longitudinal steel bar buckling. Both columns are investigated in their as-

built configuration without retrofit. The investigated parameters are the amount of transverse 

reinforcement and the level of applied axial load. 

5.4.1 Description and Computational Modeling of Test Specimens 

Both column specimens investigated in Henry (1998) have identical dimensions and longitudinal 

reinforcement as illustrated in Figure 5.12. Each column is 610 mm in diameter and 2440 mm in 

length, in addition to a RC anchor block of approximately 730 mm thickness. Column 

longitudinal reinforcement consists of 22 steel bars of 16 mm diameter distributed uniformly 

around the circular cross section and anchored by extending them inside the anchor block, while 

their ends are terminated with °90  bents. Transverse reinforcement consists of 6.4 mm spirals 

pitched at a spacing prescribed for each specimen along the entire column. Material properties 

are listed in Table 5.3. The experimental setup is similar to that shown in Figure 5.9b. A fixed 

axial load is applied on each specimen using two steel rods post-tensioned against a steel beam 

positioned at the top of the column. The axial load-application setup is such that the load follows 

the orientation of the column axis and hence excludes P-Δ effects. Symmetric cycles of 

increasing amplitude of lateral displacements are then applied using a displacement-controlled 

actuator, with three repetitions at each displacement level. The lateral displacement and the 

applied lateral load at the column tip are measured. The deformation profile of the concrete core 

on both sides of the column is also measured using LVDTs and later post-processed to compute 

curvature values. The axial strain at seven locations along three longitudinal bars (two located on 

opposite sides of the cross section, farthest from the neutral axis, and one located halfway 

between them, i.e., near to the neutral axis) is recorded using electrical strain gages. The 
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circumferential strain farthest from the neutral axis is measured for all spirals within 255 mm of 

the column base. Specimen designation is as follows:  

1. 415P: Axial load = 1310 kN (20% gc Af ′ ); transverse spiral pitch = 32 mm 

2. 415S: Axial load = 655 kN (10% gc Af ′ ); transverse spiral pitch = 64 mm 

Similar to program C, computational simulation of program D is conducted on the 

column’s lateral load-displacement level. Similar to Section 5.3.1, each structural model consists 

of a force-based lumped-plasticity beam-column element (Mazzoni et al. 2004). No P-Δ effect is 

included in the stiffness matrix. The end plastic hinges are defined using the confined cross-

section model developed in Chapter 3, with 18 and 2 uniform-thickness layers being used to 

discretize the cross section within the core and cover regions, respectively (see Fig. 5.1b). Each 

such layer is segmented into 18 circumferential sectors, each encircling a °20  central angle. The 

fibers representing the core and cover concrete are modeled using the uniaxial concrete material 

model developed in Chapter 3. The core concrete fibers are confined with the spiral 

reinforcement while the cover concrete fibers are not. The fibers representing the steel bars are 

modeled using the buckling-enabled steel bar uniaxial material model developed in Chapter 2, 

with the material model in Menegotto and Pinto (1973) representing the bars’ mechanical stress-

strain constitutive relationship. 

The plastic hinge length is adopted from the measured lengths over which longitudinal 

reinforcement is recorded to have yielded. These lengths are reported in Henry (1998) to be 765 

and 612 mm for specimens 415P and 415S, respectively, which are approximately 2.0 and 1.6 

times the values predicted by Equation (2.1). The flexibility of the elastic segment of the column 

between plastic hinges is computed using half of the concrete elastic modulus to account for the 

effect of flexural cracking. Similar to the FE models of program C columns, the behavior of the 

plastic hinge at the loaded end remains approximately within the linear range due to the 

cantilever loading setup. The localization length factor lγ  is chosen as 0.3 and 0.2 for specimens 

415P and 415S, respectively (specimen 415P is subjected to twice the axial load and hence to a 

lower eccentricity level given the comparable values of the experimentally observed bending 

moment capacities for both specimens). The constructed structural models are subjected to the 

imposed axial load and then to simulated pushover by monotonically increasing the imposed 
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lateral deformation at the column tip. For comparison and assessment of model performance, a 

second set of pushover analyses is constructed using the same structural models while disabling 

the buckling feature of the longitudinal steel bars. 

610 mm

19 mm clear cover

22 No. 5 Bars

Uniform spiral 
spacing

2440 mm

Actuator location

610 mm

19 mm clear cover

22 No. 5 Bars

Uniform spiral 
spacing

2440 mm

Actuator location

 

Fig. 5.12  Specimen details for program D. 

Table 5.4  Material properties for program D. 

Material property Value 

cf ′  [MPa]  37.2 

tf ′  [MPa]  3.2 

Concrete cover [mm] 19 

Longitudinal steel yσ  [MPa] 462 

Transverse steel yσ  [MPa] 607 

Transverse steel uσ  [MPa] 897 

sE  [GPa] 210 

shE  (assumed) 2% sE  

Longitudinal steel ratio [%] 1.5 

Transverse steel ratio [%] 0.66*, 0.33**

* 415P     ** 415S 



 

150 

5.4.2 Comparison of Observed and Simulated Behavior 

The experimentally observed behavior and failure modes of both column specimens are similar. 

Specimen 415P exhibits yielding in longitudinal steel at a lateral load of approximately 235 kN 

and a displacement of 28 mm. Subsequent hardening leads to a maximum lateral load of 

approximately 335 kN at a displacement of 125 mm. During the second displacement cycle at 

125 mm level, one longitudinal steel bar is observed to buckle, followed by fracture in two 

spirals on one side of the column. During the first displacement cycle at the maximum level of 

175 mm, spirals are observed to fracture on both sides of the column. During the subsequent 

displacement cycles at the 175 mm level, severe damage and disintegration are observed in the 

core concrete due to loss of confinement, and several longitudinal bars are observed to fracture. 

Specimen 415S follows a similar path, but exhibits lower lateral load capacity values due 

to the reduced levels of confinement and axial load. The lateral force corresponding to yielding 

in longitudinal steel is approximately 220 kN at a displacement of 23 mm. The maximum lateral 

load capacity is approximately 305 kN at a displacement of 125 mm. During the first 

displacement cycle at 125 mm level, several longitudinal steel bars are observed to buckle on 

both sides of the column. Bar buckling is observed to span multiple spirals, which shortly 

afterward start to fracture. During the maximum displacement level of 175 mm, the test is 

stopped due to the severe reduction of the column stiffness as a result of the disintegration of the 

concrete core in the area where the spirals have fractured. No longitudinal bars are reported to 

have fractured in specimen 415S (Henry 1998). 

The experimentally observed and computationally simulated lateral load-displacement 

responses of specimen 415P under cyclic and monotonic loading, respectively, are illustrated in 

Figure 5.13a. The simulated pushover, with or without bar buckling, estimates yielding in the 

first longitudinal steel bar at a lateral load of 223 kN and a displacement of 18 mm. With bar 

buckling enabled, the maximum lateral load capacity is estimated to be 302 kN at a displacement 

of 98 mm. Subsequently, the lateral load capacity exhibits slight softening that can be idealized 

as almost perfectly plastic. The first bar buckling is estimated to occur at a displacement of 134 

mm, and subsequently the lateral load capacity exhibits an observable reduction. At a lateral 

displacement of 168 mm, the onset of fracture is estimated in the spirals after reaching the 
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ultimate tensile stress capacity uσ . A severe reduction in the lateral load capacity ensues due to 

loss of confinement to the concrete core. With bar buckling disabled, no fracture in the spirals or 

brittle reduction in lateral load is predicted. Note that the experimentally simulated response 

exhibits higher stiffness in the early phase of loading, i.e., prior to yielding in longitudinal 

reinforcement, than the experimentally observed response. This may be attributed to the effect of 

cyclic loading on the bar-slip at the foundation (which is not modeled) and the opening and 

closing of flexural and shrinkage cracks. 

Similar results and comparisons for specimen 415S are illustrated in Figure 5.13b. The 

simulated pushover estimates yielding in the first longitudinal steel bar at a lateral load of 187 

and a displacement of 15 mm. With bar buckling enabled, the maximum lateral load capacity is 

estimated to be 261 kN at a displacement of 83 mm. The lateral load capacity subsequently 

exhibits slight softening. The first bar buckling is estimated to occur at a displacement of 134 

mm, subsequently the lateral load capacity exhibits a significant and rapid reduction. At a lateral 

displacement of 151 mm, the onset of fracture is estimated in the spirals and the lateral load 

capacity is further reduced. With bar buckling disabled, no fracture in the spirals or brittle 

reduction in lateral load is predicted. 

It should be noted that the effect of bar buckling on increasing the strain demand and 

subsequent fracture of spirals is not explicitly accounted for in the confined concrete cross 

section and buckling-enabled steel bar models. However, such effect is observed indirectly due 

to the interaction between the resulting overload in concrete fibers (due to buckling and 

subsequent softening of adjacent bar), the increased lateral dilation of the cross section, and the 

lateral strain compatibility in the confining spirals, as estimated by means of the developed 

confined concrete constitutive and cross-section models in Chapter 3. 

There is an observed difference between the predicted loss of lateral load following bar 

buckling and spiral fracture in each specimen. In specimen 415P, the column cross section is 

well confined. Hence, the extent of bar buckling when it occurs (the rate of subsequent softening 

in the bar) is limited due to the close spacing of the spirals laterally stiffening the bar (see 

Section 2.2). In addition, the closely spaced spirals result in well-confined core concrete fibers 

capable of carrying relatively high stresses (see Section 3.2). Moreover, due to the subsequent 

softening of the buckled bar being relatively limited, the resulting overstress in neighboring 
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fibers is limited  and so is the number of additional bars that buckle as a result. Hence, the 

resulting reduction in lateral load after bar buckling is limited relative to the simulation with bar 

buckling disabled. However, upon the fracture of spirals, the resulting loss of confinement and 

axial strength of the core concrete and steel bars, in addition to the relatively high axial load, lead 

to the predicted sharp reduction in lateral load capacity. In contrast, the column cross section is 

lightly confined in specimen 415S. Hence, the extent and the number of bars buckling due to the 

subsequent overstress are more significant relative to specimen 415P. Hence, the subsequent 

reduction in lateral load after bar buckling is more significant. The widely spaced spirals offer 

little confinement to the core concrete fibers and steel bars. Upon the fracture of spirals, the 

resulting loss of axial strength in the concrete fibers is not severe. This, in addition to the 

relatively low axial load, leads to a predicted reduction in lateral load capacity significantly less 

brittle than that of specimen 415P. 

 

 

 

 

 



 

153 

0

La
te

ra
l L

oa
d 

[k
ip

]

-40 Simulated pushover (buckling)

Simulated pushover (no buckling)

Experiment

40

0

La
te

ra
l L

oa
d 

[k
N

]

-178

178

Predicted onset of buckling
Predicted fracture of spirals

Displacement cycle in which first
bar buckling is reported,
followed by spiral fracture

-80
-2
Lateral Displacement [in]

0-6-8 -4 2 4 6 8
-356

80
-51
Lateral Displacement [mm]

0 15351-153 204-204 -102 102
356

0

La
te

ra
l L

oa
d 

[k
ip

]

-40 Simulated pushover (buckling)

Simulated pushover (no buckling)

Experiment

40

0

La
te

ra
l L

oa
d 

[k
N

]

-178

178

Predicted onset of buckling
Predicted fracture of spirals

Displacement cycle in which first
bar buckling is reported,
followed by spiral fracture

-80
-2
Lateral Displacement [in]

0-6-8 -4 2 4 6 8
-356

80
-51
Lateral Displacement [mm]

0 15351-153 204-204 -102 102
356

 

(a) Specimen 415P 

80

0

La
te

ra
l L

oa
d 

[k
ip

]

-80

-40

-2
Lateral Displacement [in]

0 62-6

Simulated pushover (buckling)

Simulated pushover (no buckling)

Experiment

8-8

40

-4 4

-51
Lateral Displacement [mm]

0 15351-153 204-204 -102 102
356

0

La
te

ra
l L

oa
d 

[k
N

]

-356

-178

178

Predicted onset of buckling
Predicted fracture of spirals

Displacement cycle in which first
bar buckling is reported,
followed by spiral fracture

80

0

La
te

ra
l L

oa
d 

[k
ip

]

-80

-40

-2
Lateral Displacement [in]

0 62-6

Simulated pushover (buckling)

Simulated pushover (no buckling)

Experiment

8-8

40

-4 4

-51
Lateral Displacement [mm]

0 15351-153 204-204 -102 102
356

0

La
te

ra
l L

oa
d 

[k
N

]

-356

-178

178

Predicted onset of buckling
Predicted fracture of spirals

Displacement cycle in which first
bar buckling is reported,
followed by spiral fracture

 

(b) Specimen 415S 

Fig. 5.13  Simulated and experimental program D column load-deformation results. 
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5.4.3 Demonstration of Cross-Section Damage Indices 

For the simulated pushover test specimens discussed in Section 5.4.2, the progression of damage 

is predicted using the cross-section damage indices developed in Section 3.3. Figure 5.14a 

illustrates the values of the damage index AD , representing the deterioration in cross-section 

axial load capacity, for increasing lateral displacements in specimens 415P and 415S. For 

comparison, the values of AD  are plotted as obtained from the pushover simulations conducted 

with and without bar-buckling enabled. In both cases, the increase in AD  values in both 

specimens exhibits a logarithmic trend with lateral displacements (the relationship is 

approximately linear when plotted in log-log space). With bar buckling enabled, AD  values 

increase asymptotically until the fracture strain is reached in the transverse spirals, after which 

they increase to 1.0 according to the definition of AD . Moreover, AD  values are consistently 

higher in specimen 415S than specimen 415P, which corresponds with the widely spaced spirals 

in specimen 415S. Consequently, higher axial strains are experienced in the concrete and 

longitudinal steel fibers, which result in faster accumulation of damage. The disabling of bar 

buckling does not result in significant discrepancies in the corresponding AD  values prior to 

fracture of the spirals. Since fracture in the spirals was not predicted in the simulations with bar 

buckling disabled, the corresponding AD  values continue to increase monotonically until they 

reach a maximum of 0.74 and 0.80 for specimens 415P and 415S, respectively. 

Figure 5.14b illustrates the values of the damage index MD  in both specimens, 

representing the deterioration in the cross-section bending moment capacity with increasing 

lateral displacements. Similar to Figure 5.14a, plotted MD  values are obtained from the pushover 

simulations conducted with and without bar-buckling enabled. In both specimens, the increase in 

MD  values exhibits an approximately bilinear trend with lateral displacements. With bar 

buckling enabled, MD  values increases steadily (at an increasing rate) until the predicted fracture 

of the transverse spirals, after which they increase to 1.0. Similar to that observed in AD , MD  

values are consistently higher in specimen 415S than specimen 415P. This observation is 

attributed to the same reasons, in addition to the curvature values along the critical cross sections 

of specimen 415S being larger than those of specimen 415P for the same lateral displacement 
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values, due to the smaller observed plastic hinge length in specimen 415S. Accordingly, the 

division of plastic rotation (approximately equal values for both specimens at the same lateral 

displacement levels) by a smaller plastic hinge length results in larger curvature values for 

specimen 415S. The discrepancy in plastic hinge lengths may in turn be attributed to the higher 

confinement of specimen 415P, the resulting relatively lower dilation strains in the core concrete, 

and the relatively more limited extent of cover spalling and bar buckling. The disabling of bar 

buckling results in more significant discrepancies in the corresponding MD  values than 

previously observed in AD  values prior to the fracture of the spirals. Moreover, the discrepancy 

is larger in specimen 415S than in specimen 415P due to the larger extent of bar buckling prior to 

fracture of the spirals, as previously discussed in Section 5.4.2. In the absence of predicted 

fracture in the spirals due to the disabling of bar buckling, the evolution of the corresponding 

MD  values continues monotonically until they reach a maximum of 0.8 and 0.83 for specimens 

415P and 415S, respectively. 

It is observed that AD  values computed with buckling disabled are slightly larger than the 

corresponding values computed with buckling enabled for lateral displacement values higher 

than those corresponding to maximum lateral load capacities in both column specimens. 

However, an opposite behavior is observed for MD  values. Since the value of the latter assigns a 

relatively larger weight to damage sustained in the fibers farthest from the cross-section centroid 

according to its definition (see Section 3.3), it is clear that the occurrence of bar buckling results 

in higher strain demands on these extreme fibers and hence reduces more rapidly the bending 

moment-carrying capacity of the cross section. The opposite effect on the axial load-carrying 

capacity is not entirely clear, yet may be attributed to a relative relief of the inner core fibers due 

to the increased strain values at the extreme fibers and the resulting outward shift of the cross 

section’s neutral axis. Consequently, the compressive strains and the corresponding lateral 

dilation in these inner core concrete fibers may decrease, and so may their corresponding 

material damage index value fD  (see Section 3.2.4). 

The performance of the proposed damage indices is illustrated to satisfactorily represent 

the progression of damage in the investigated RC column cross sections. Their prediction of the 

collapse limit state is consistent with the lateral displacement levels reported in Henry (1998) to 
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cause instability leading to terminating the experiments. If bar buckling is prevented, the damage 

indices predict that very limited reserve capacity is left in the investigated columns. Based on 

comparing the observed trends of AD  and MD  with bar buckling prevented, the loss of the 

bending moment-carrying capacity will always take place before the loss of the gravity load-

carrying capacity for these column specimens. 
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(a) Axial damage index AD  
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(b) Flexural damage index MD  

Fig. 5.14  Computed cross-section damage indices during column push-over simulations for 
test specimens of program D. 
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5.5 SUMMARY AND COMPARISONS 

In this chapter, RC column specimens from four experimental programs were modeled using the 

material and cross-section component models developed and implemented in Chapters 2–4. 

These columns represented a number of seismic deficiencies common to the non-ductile 

detailing of older RC construction for columns whose collapse is controlled by flexure-axial 

interaction. The range of deficient column behavior examined in the experimental programs 

included the failure of confining transverse reinforcement and external jackets, the loss of 

confinement to the concrete core, the failure of lap-splices, and the buckling of longitudinal bars, 

in addition to the fracture of internal transverse reinforcement and rupture of external FRP 

composites commonly used as a retrofit measure for existing non-ductile details. The examined 

RC columns contained seismically deficient as-built as well as FRP-retrofitted specimens, 

examined under applied axial load and applied monotonic or cyclic lateral displacement history. 

Computational simulations of the column experiments were performed on the level of the cross-

section moment-curvature response and the column lateral load-displacement response. Several 

structural models were developed using the OpenSees structural modeling platform in 

accordance with the documented geometry, the material properties, and the boundary conditions 

of the specimens in each experimental program. The OpenSees simulations utilized the 

component models developed in Chapters 2 and 3 to represent the flexure-axial behavior of RC 

column cross sections. 

The results from the simulations exhibited the ability to predict with good to excellent 

accuracy the behavior of seismically deficient as-built columns, including their lateral load 

capacities, the deformation levels at the initiation of failure in non-ductile details, and the 

resulting global modes of collapse reflected by the brittleness of the post-failure response. In 

addition, these simulations were able to account for the effects of retrofitting using FRP 

composites and estimate the resulting improvements in the lateral load capacity and the ductility. 

Most important, the simulations successfully identified fracture in the transverse steel 

reinforcement and rupture in the CFRP and GFRP composites used as retrofitting jackets, which 

typically define the ends of their usable range of application. Finally, the relationship between 

the lateral displacement and the cross-section damage indices developed in Section 3.3 was 

evaluated for two investigated column specimens exhibiting longitudinal bar buckling and 
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subsequent loss of core concrete confinement due to the fracture of transverse reinforcement. 

The correlations between the computed damage indices and the observed damage progression 

and collapse limit states in the investigated column specimens exhibited the expected trends. 

The comparison between force and deformation quantities corresponding to the yield, the 

ultimate response, and the residual capacity for specimens subjected to lateral loading is 

summarized in Table 5.5, Table 5.6, and Table 5.7, respectively. Some of the experimental 

quantities are approximated from the graphical plots of the experimentally observed response 

and are not reported in the source data. The error in estimating both the yield moment and the 

corresponding curvature in at least one loading direction is less than or equal to 10% in all but 

one experimental program. The error in estimating the maximum moment in all programs in at 

least one loading direction is less than or equal to 10%; however, there is more discrepancy in 

estimating the corresponding curvature. The error in estimating the residual moment in all 

programs in at least one loading direction is less than or equal to 15%. These estimates are 

considered within acceptable engineering accuracy and confirm the soundness of the component 

models developed in Chapters 2 and 3 and implemented in Chapter 4 of this report, and their 

ability to predict flexure-axial collapse of RC columns within a progressive collapse simulation. 
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Table 5.5  Comparison of experimental and simulated yield force and corresponding 
deformation quantities for column specimens of programs A–D. 

Specimen Yield moment [kNm] Curvature [rad/km] 

Program A Experiment Simulation % Error* Experiment Simulation % Error* 

1 13.5 14.3 5.9 60.0 49.0 18.3 

2 11.8 13.0 10.1 55.0 42.0 23.6 

3 15.5 14.7 5.2 75.0 63.0 16.0 

Program B Experiment Simulation % Error* Experiment Simulation % Error* 

ST2NT 
245 

-220 

245 

-246 

0.0 

11.8 

18.6 

-17.4 

18.7 

-17.2 

0.5 

1.1 

ST3NT 
219 

-200 

222 

-201 

1.4 

0.5 

13.5 

-10.3 

13.0 

-8.3 

3.7 

19.4 

ST4NT 
223 

-202 

251 

-205 

12.5 

1.5 

14.8 

-12.9 

20.0 

-12.0 

35.1 

7.0 

ST5NT 
200 

-216 

223 

-226 

11.5 

4.6 

15.5 

-18.9 

17.3 

-20.1 

11.6 

6.3 

 Yield lateral load [kN] Lateral displacement [mm] 

Program C Experiment Simulation % Error* Experiment Simulation % Error* 

C1A0** NA NA NA NA NA NA 

C2R4 
230 

-230 
±268 16.5 

16.5 

19.0 

-18.5 
±20.7 

8.9 

11.9 

C3R5 
230 

-230 
±271 

17.8 

17.8 

18.0 

-16.5 
±19.1 

6.1 

15.8 

Program D Experiment Simulation % Error* Experiment Simulation % Error* 

415P 
225 

-209 
±223 

0.8 

6.7 

20.0 

-18.5 
±18.0 

5.0 

2.7 

415S 
200 

-190 
±187 

6.5 

1.6 

18.0 

-16.0 
±15.0 

16.7 

6.3 

* Computed relative to experimental quantities 

** Column reinforcement did not yield (NA = not applicable). 
Values denoted by “±” refer to two simulations conducted under monotonic loading. 
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Table 5.6  Comparison of experimental and simulated maximum force and corresponding 
deformation quantities for column specimens of programs A–D. 

Specimen Maximum moment [kNm] Curvature [rad/km] 

Program A Experiment Simulation % Error* Experiment Simulation % Error* 

1 14.5 14.6 0.7 95 70 26.3 

2 15.3 15.8 3.3 1180 1000 15.3 

3 17.3 17.7 2.3 1040 960 7.7 

Program B Experiment Simulation % Error* Experiment Simulation % Error* 

ST2NT 
297 

-249 

313 

-320 

5.4 

28.5 

77.2 

-95.8 

97.0 

-95.8 

25.6 

0.0** 

ST3NT 
292 

-271 

318 

-319 

8.9 

17.7 

69.6 

-74.4 

76.3 

-74.4 

9.6 

0.0** 

ST4NT 
285 

-233 

285 

-286 

0.0 

22.7 

147.0 

-123.0 

147.0 

-123.0 

0.0** 

0.0** 

ST5NT 
262 

-230 

270 

-266 

4.3 

15.7 

130.0 

-153.0 

130.0 

-141.0 

0.0** 

7.9 

 Maximum lateral load [kN] Lateral displacement [mm] 

Program C Experiment Simulation % Error* Experiment Simulation % Error* 

C1A0 
220 

-230 
±224 

1.8 

2.6 

12.0 

-13.0 
±11.9 

0.8 

8.5 

C2R4 
275 

-290 
±314 

14.2 

8.3 

55~94 

-55~-94 
±74 NA*** 

C3R5 
330 

-340 
±345 

4.5 

1.5 

62~97 

-62~97 
±98.2 NA*** 

Program D Experiment Simulation % Error* Experiment Simulation % Error* 

415P 
335 

-315 
±302 

9.9 

4.1 

127.5 

-127.7 
±98 

23.1 

34.9 

415S 
285 

-265 
±261 

8.4 

1.5 

127.5 

-127.5 
±83 

34.9 

34.9 

* Computed relative to experimental quantities 

** Validity of comparison questionable because curvature values coincide with point of load reversal; see

Figures 2.8 and 5.8. 

*** Experimental quantities valid for comparison cannot be determined with certainty due to cyclic loading;

see Figure 5.11. 

Values denoted by “±” refer to two simulations conducted under monotonic loading. 
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Table 5.7  Comparison of experimental and simulated residual force and corresponding 
deformation quantities for column specimens of programs A–D. 

Specimen Residual moment [kNm] Curvature [rad/km] 

Program A Experiment Simulation % Error* Experiment Simulation % Error* 

1 9.0 9.25 2.8 225 225 NA** 

2 NA 

3 
NA (Behavior too brittle) 

 

Program B Experiment Simulation % Error* Experiment Simulation % Error* 

ST2NT NA 

ST3NT 
NA (Behavior too brittle) 

 

ST4NT 
NA 

-188 

NA 

-221 

NA 

17.6 

NA 

-170.0 

NA 

-158.0 

NA** 

ST5NT 
149 

NA 

165 

NA 

10.7 

NA 

64.5 

NA 

65.0 

NA 

NA** 

 Residual lateral load*** [kN] Lateral displacement [mm] 

Program C Experiment Simulation % Error* Experiment Simulation % Error* 

C1A0 
140 

-140 
±137 

2.1 

-2.1 

61 

-61 
±65 NA** 

C2R4 
225 

-205 
±225 

0.0 

9.8 

130 

-130 
±150 NA** 

C3R5 
255 

-275 
±281 

10.1 

2.2 

130 

-130 
±150 NA** 

Program D Experiment Simulation % Error* Experiment Simulation % Error* 

415P 
245 

-170 
±209 

14.7 

22.9 

178.5 

-178.5 
±178.5 NA** 

415S 
190 

-160 
±202 

6.3 

26.2 

178.5 

-178.5 
±178.5 NA** 

* Computed relative to experimental quantities 

** Comparison invalid because maximum deformation quantities are pre-determined. 

*** Experimental quantities are estimated from the envelope of the hysteretic response. 

Values denoted by “±” refer to two simulations conducted under monotonic loading. 
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6 Simulated Element Removal of Collapsed  
RC Members 

This chapter discusses the analytical and computational details of removing elements 

representing RC members that have collapsed during an ongoing FE simulation. First, a review 

of previously published literature involving the collapse of structural elements and element 

removal during progressive collapse simulation is conducted to some degree of detail since this 

field of research is relatively new. The following discussion introduces the mechanics of 

removing a collapsed element from the structural system. The principles of dynamic equilibrium 

are used to characterize how this removal affects the kinematics of the damaged structural 

system, the resulting dynamic redistribution of forces, and the corresponding updates to the FE 

model’s geometry, the boundary conditions, and the numerical solution procedure. The steps for 

automated element removal of collapsed elements are then formalized into a logical algorithm. 

This algorithm is implemented into a new class of OpenSees that enables runtime evaluation and 

monitoring of element removal criteria and updates the Domain object to reflect the removal of 

the collapsed elements. Concurrent updates to the Analysis objects are discussed in the same 

context. Next, a benchmark problem representing an idealized structural system is presented to 

verify the implementation of the element removal algorithm and demonstrate its robustness. The 

discussion is concluded by introducing the criteria adopted in this report to identify RC column 

collapse. These criteria are based on the damage indices defined in Section 3.3 for RC columns 

whose collapse is dominated by flexure-axial interaction, and on the axial load-drift capacity 

model (Elwood 2002) for RC columns whose collapse is dominated by shear-axial interaction. 

The discussion extends the interpretation of these criteria to apply to RC beams as well, which is 

utilized in the progressive collapse simulations presented in Chapter 7. Moreover, treatment of 

the potential collision between removed elements and the remaining intact part of the structure is 
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briefly addressed and further details are given in Appendix B. However, the implementation of a 

computational algorithm to identify contact and collision within a general structural model 

geometry is outside the scope of this report. It is believed that the full treatment of the collision 

phenomena within the progressive collapse of RC frame structures subjected to earthquake 

loading is of limited practical purposes and therefore is marginally addressed in this report for 

completeness. 

6.1 REVIEW OF PUBLISHED LITERATURE ON ELEMENT REMOVAL 

Progressive collapse assessment using nonlinear time-history FE simulation is an approach 

recently gaining popularity over traditional methods based on alternate-path analysis and 

redundancy-detailing. Examples of these traditional methods include applications for 

decommissioned RC structures (Virdi and Beshara 1992), existing RC building structures 

(Gilmour and Virdi 1998; Krauthammer et al. 2002), existing and retrofitted steel frame 

structures (Houghton and Karns 2002), retrofitted building structures (Crawford 2002), multi-

span bridges (Starossek 1999, 2006), and probabilistic evaluation methods (Ellingwood 2006). 

To the best of the authors’ knowledge, there is very limited literature on this developing field of 

research. Very few experimental investigations have been conducted on reduced-scale RC 

frames that are redundant enough to experience progressive collapse, with seismically deficient 

RC columns designed to lose axial load-carrying capacity. These studies include Kim and 

Kabeyasawa (2004), Wu et al. (2006), and Ghannoum (2007). Experimental data collected from 

these studies are intended to establish the behavior of RC systems after the loss of one or more 

load-carrying columns. However, the collapse modes observed in these studies remain limited, 

and difficult to generalize to cases involving disconnection and subsequent collision by collapsed 

elements. 

A recent analytical study reported in Grierson et al. (2005a,b) describes an analytical 

approach to use post-yield strength and stiffness degradation in order to conduct a quasi-static 

progressive failure analysis. Another analytical study reported in Kaewkulchai and Williamson 

(2004) defines a macro-level damage index to predict collapse of yielding beam-column 

elements based on maximum element deformations and accumulated plastic energy. Upon 
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reaching a threshold value (e.g., one) of the damage index, the collapsed element is removed 

from the structural system. External nodal forces are then applied at the end-nodes using a step 

function for the duration of the subsequent load step, to represent the effect of the redistributed 

internal forces from the collapsed element. This approach is valid for simulating quasi-static 

behavior but is sensitive to the choice of time step (i.e., time step size) during a dynamic 

simulation and may not be accurately representative of the stored energy imparted into the 

damaged structure due to the release of internal forces from the collapsed element. In the 

approach presented in Kaewkulchai and Williamson (2004), the downward motion of the 

collapsed element is virtually tracked using a condensation method that avoids redefining the 

unknown degrees of freedom (DOFs) and reassembling the stiffness matrix’s connectivity 

relationships to reflect the splitting of one node into two. Assuming that the equations of the 

Newmark’s β -method (Newmark 1959) describe well the relationship between kinematic 

quantities, the equations of motion for the collapsed element are uncoupled from those of the 

damaged structural system. Hence, the DOFs at the removed element’s separated node(s) are 

analytically computed from the state of the damaged structural system after each converged time 

step following element removal. This DOF condensation approach is extended in Kaewkulchai 

and Williamson (2006) to include a simplified approach to account for impact on the structure by 

a collapsed element, based on assumptions of a low-velocity impact by a perfectly plastic 

(undeformable) mass on a relatively stationary damaged structure which results in negligible 

local deformations at the impact location. The resulting impact force is assumed to have a 

negligible duration and result in immediate change of nodal velocity at the point of impact based 

on the mass and velocity of the impacting collapsed element. 

The consideration of locally released internal energy due to element collapse has been 

presented in a previous study by Pretlove et al. (1991). This study uses an energy balance 

approach to argue that the portion of strain energy stored in the structure and released upon the 

brittle collapse of a structural element will excite transient vibrations in the damaged structure. 

The study concludes that a quasi-static equilibrium-based assessment of the resulting force 

demands in structural elements is unconservative in assessing the potential for progressive 

failure. A case study is presented in Pretlove et al. (1991) of two stacked masses supported by 

two brittle tension-only wires of which one wire prematurely fails. With regards to the ratios of 
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wire cross-section areas and tensile strengths, a significant region is demonstrated where “static” 

safety overlaps with “dynamic” progressive failure. Another case study is presented in Pretlove 

et al. (1991) of a rigid circular wheel frame spoked with brittle pre-tensioned radial wires of 

which one wire prematurely fails. A significant discrepancy is again demonstrated in the level of 

pre-tension load that leads to progressive failure when quasi-static and dynamic analyses were 

singly adopted to compute force redistribution. These case-study demonstrations were conducted 

under the simplifying assumption of no distributed mass, plasticity, structural damping, or 

buckling taking place in the structural system and its elements (Pretlove et al. 1991). A similar 

study is reported in Ramsden (1987) on progressive failure analysis of undamped multiple 

degree-of-freedom (MDOF) truss structural systems with lumped masses, demonstrating similar 

conclusions. 

An analytical formulation to assess the effect of brittle element collapse on large-scale 

progressive collapse alternate to that of Kaewkulchai and Williamson (2004) is developed in 

Powell (2005). This formulation uses an energy balance method to characterize the displacement 

demand of a structural system immediately following the removal of a gravity load-carrying 

column. The damaged structural system is assumed to undergo maximum deformations that 

dissipate an amount of energy in each element equivalent to that dissipated assuming linear-

elastic element behavior over twice the deformations necessary to reach its new equilibrium state 

(under quasi-static loading conditions and given the damaged structural system’s updated 

geometry). According to this formulation, progressive collapse will be arrested if the load-

carrying capacity of the structural elements can withstand twice the additional redistributed load, 

computed using quasi-static analysis of the damaged structure. The progressive collapse will 

propagate if the structural load carrying-capacity cannot withstand one time the additional 

redistributed load. In between these two limits, the survival of the damaged structure is dictated 

by the ductility capacity of its structural elements and their ability to sustain the maximum 

deformation demands. The analytical formulation in Powell (2005) ignores the portion of locally 

released energy dissipated by viscous damping in the system. In justification of that Powell 

(2005) argues that the imposed displacement demands on the damaged structural system due to 

element collapse resemble a pulse of relatively short duration. This, in addition to computing the 

element deformation demands assuming that energy dissipation takes place only through 
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inelastic behavior of the damaged structural system, should make the approximation both valid 

and conservative. In addition, Powell (2005) characterizes the kinematic state of the damaged 

structural system at the onset of column gravity-load collapse using nodal displacements only. 

Hence, the analysis approach in Powell (2005) computes the deformation demands required to 

reach the new equilibrium state without considering the complete kinematic boundary conditions 

of the structural system (i.e., nodal velocities and accelerations) at the time of element removal. 

These quantities may result in amplifying the actual deformation demands on some structural 

elements and in reducing them on others. 

The study reported in Pretlove et al. (1991) also investigates the effect of uncertainty in 

spoke wire load-carrying capacity represented by the observed standard deviation in measured 

load-carrying capacity values. The experimental, the computational (i.e., Monte-Carlo 

simulation), as well as the analytical (i.e., using an assumed jointly normal distribution of spoke 

wire load-carrying capacity) responses to intentionally cutting one spoke wire is deemed to result 

in progressive failure if at least one more wire fractures, and to result in survival otherwise. 

Experiments and computations are conducted in accordance with both quasi-static and dynamic 

response conditions. The outcome of this study is fragility curves representing the conditional 

probability of survival given the pre-tension load ratio to the mean wire capacity. These fragility 

curves conclusively demonstrate the discrepancy between the outcomes of quasi-static and 

dynamic behavior, and the close agreement between experimental, computational, and analytical 

predictions. 

Two recent analytical studies in Haselton and Deierlein (2005) and Zareian and 

Krawinkler (2007) include the effect of uncertainty on simulated progressive collapse assessment 

of MDOF structural systems representing building structures. The uncertainty in the exciting 

ground motion is handled through the application of the incremental dynamic analysis (IDA) 

technique (Vamvatsikos and Cornell 2002, 2004) using multiple scaled ground motion records in 

the context of PEER’s PBEE methodology (Porter 2003). The effect of uncertainty in the ground 

motion is quantified using fragility curves of conditional collapse probability given some 

intensity measure of the ground motion (typically, the 5%-damped spectral acceleration of the 

equivalent single degree-of-freedom (SDOF) oscillator representing the structural system’s 

fundamental period, %)5,( 1TSa ). However, these two studies employ for the definition of 
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collapse a side-sway mechanism of the gravity load-bearing columns within an entire story, and 

thus assume ductile detailing in compliance with current building codes’ seismic provisions and 

do not explicitly conduct any removal of elements during the simulation. 

6.2 MECHANICS OF ELEMENT REMOVAL 

Consider the dynamic equilibrium of the internal node illustrated in Figure 6.1a. At time t  

during the simulation, two beam elements 1B  and 2B  and two column elements 1C  and 2C  are 

attached to the node. Generally, externally applied nodal forces may be applied directly at the 

node. However, for clarity of illustration, the free-body diagram of an interior node with no 

externally applied nodal forces is shown. The present discussion can be generalized to the case of 

externally applied nodal forces as long as these forces are prescribed a priori throughout the 

analysis duration and are not conditioned on the connectivity of structural elements attached to 

the node. The subscripted symbols F  and M  refer respectively to the resisting forces (both 

axial and shear forces) and bending moments from the attached elements, where the subscripts 

denote the element designation. The node has a lumped translational mass m  and rotational mass 

moment of inertia I . The dynamic equilibrium is satisfied by the inertial forces xma , yma , and 

αI  acting on the node, where xa  and ya  refer to the translational accelerations in the x  and y  

directions and α  refers to the rotational acceleration in the yx −  plane, respectively, in addition 

to any externally applied nodal forces. 
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(b) After element removal 

Fig. 6.1  Dynamic equilibrium of a node connected to a collapsed element. 

At time t , the lower column element 1C  is assumed to lose its axial load-carrying 

capacity and collapse in a brittle manner. Element 1C  is abruptly removed from the 

computational model of the structural system at the new time ttt Δ+=′  where tΔ  is the 

prescribed time step. The free-body diagram of the same node after removal of element 1C  is 

illustrated in Figure 6.1b, where the nodal masses and accelerations are updated to m′ , I ′ , xa′ , 
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ya′ , and α′ , respectively. In practical applications, the majority of the lumped nodal masses are 

derived from the floor system, and the contribution by individual columns is negligible. Hence, 

the updated masses m′  and I ′  may not be significantly different from the original masses m  and 

I . 

The dynamic equilibrium of the node under resisting and inertial forces can be expressed 

by 
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where exP  is the vector of externally applied nodal loads, subscripts x  and y  denote the 

principal directions of a Cartesian coordinate system, and the summation is conducted for the 

still-attached elements. Upon abrupt element collapse and removal, this dynamic equilibrium is 

disturbed by the sudden release of internal forces from element 1C  and must be restored before 

the solution can be continued for the following time steps. This can only be achieved through a 

corresponding change in the externally applied nodal forces (if any), the resisting forces from the 

still-attached elements, the inertial forces, or a combination thereof. Since the externally applied 

forces exP  are defined and applied directly on the node throughout the analysis, they are not 

affected by the removal of a collapsed element. The resisting forces in the still-attached elements 

( F ′  and M ′ ) can only change as a result of updated element deformations, which require a 

change in relative displacements (and possibly velocities) between the elements’ respective end-

nodes. These nodal displacements and velocities can be updated only as a result of updating the 

nodal velocities and accelerations, and requires a period of time. On the other hand, the inertial 

forces are directly related to the nodal accelerations. Such nodal accelerations need to change in 

order to update the nodal velocities and, subsequently, displacements, in order for the damaged 

structural system to reach a new equilibrium state. In order to satisfy dynamic equilibrium at 

time t′  after the abrupt release of resisting forces from element 1C , a corresponding abrupt 

change in accelerations xa′ , ya′ , and α′  must take place. Since the still-attached elements’ end-

nodes other than their shared node are under dynamic equilibrium themselves, this abrupt change 

is first localized at the shared node at time t′ . 
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In the following time steps, the abrupt change in nodal accelerations initiates a case of 

transient loading superposed on the damaged structural system, whereby the resulting changes in 

nodal velocities and displacements lead to an updated set of resisting (and inertia) forces that 

propagate outward through the still-attached elements into neighboring nodes in the damaged 

structural system. These updated nodal forces must satisfy dynamic equilibrium of their 

respective DOFs during every time step as well, which results in updated inertial forces and, 

consequently, updated nodal accelerations. This process will continue to propagate throughout 

the damaged structural system according to its element connectivity until updated nodal 

displacements (and velocities), corresponding to a new equilibrium state, are reached. 

It is not sufficient for progressive collapse assessment to estimate the resisting element 

forces in the damaged structural system based on its quasi-static response to the new equilibrium 

state, which is typically performed by superposing the released internal forces from the collapsed 

element as externally applied loads on the affected node(s). This insufficiency is due to the fact 

that the nodal velocities of the damaged structural model, upon reaching the new equilibrium 

state, will result in overshooting the corresponding displacements. This will in turn overload 

(increase) the deformation demand in the structural elements. Hence, in the absence of structural 

damping and external excitation (e.g., earthquake), a case of free-vibration of the damaged 

structural system will ensue, in which the initial transient phase is followed by a steady-state 

phase oscillating about the new equilibrium state. The resulting overload may lead to the 

collapse of additional structural elements, which are otherwise “safe” in the new equilibrium 

state according to quasi-static analysis. The arguments presented thus far in this section agree 

with Pretlove et al. (1991), albeit derived from a dynamic equilibrium approach, instead of an 

energy balance approach. 

If further element collapse takes place, a second transient phase is excited in the damaged 

structural model before it reaches another new equilibrium state and starts oscillating about it. As 

a result, additional elements may collapse due to overload. This process of dynamic force 

redistribution continues until either (a) the damaged structural system reaches an equilibrium 

state about which it can safely oscillate and the progression of element collapse is arrested, (b) 

the damaged structural system undergoes overall gravity-load collapse, or (c) the damaged 

structural system experiences partial large-scale collapse within sections of it which are 
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nevertheless compartmentalized while the rest of the structural system survives to a new 

equilibrium state. In the latter case, the structural system will probably need to be evacuated and 

demolished later, yet the prospect of maintaining life safety is enhanced compared to overall 

gravity-load collapse. 

In the presence of external excitation (e.g., earthquake), the transient excitation due to the 

collapse of an element is superposed on the input ground motion. During computational 

simulation, the time step of the input ground motion is typically larger than that necessary to 

accurately reproduce the transient effect resulting from the removal of a structural element. 

Particularly, because this transient behavior may trigger local axial vibrations in stiff structural 

elements whose natural period of vibration may be significantly short. Hence, in order to 

accurately represent the dynamic load redistribution, shorter time steps are typically needed 

immediately after element removal, during which the input ground motion record may be 

interpolated. An adaptive time-stepping scheme can be used to enable a computationally efficient 

solution. 

The interaction between structural damping (i.e., viscous and material damping) and the 

transient vibration resulting from abrupt element removal is an interesting phenomenon to 

explore. However, little literature exists on experimental or analytical treatments of this subject. 

Hence, classical viscous damping is assumed to change only as a result of the changes in the 

natural vibration periods of the intact structure upon removal of a collapsed FE. Nevertheless, 

additional material damping will be experienced due to energy dissipation through the 

combination of amplified element deformation during the transient phase and element 

inelasticity. 

Traditionally, the more conventional approaches to conducting progressive failure 

analysis involved multiplying the stiffness of a collapsed FE by a small multiplier in order to 

eliminate its contribution to the properties of the structural model while avoiding the 

computationally inefficient process of redefining the structural model’s DOFs and the stiffness 

matrix connectivity during an ongoing simulation. The advantages of explicitly removing a 

collapsed FE instead of assigning a low stiffness to it are threefold. First, it avoids numerical 

problems associated with ill-conditioned stiffness matrices. Second, suddenly releasing the 

internal forces from the removed FE and enforcing dynamic equilibrium at the end-nodes 
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enables the computation of the resulting increase in nodal accelerations. This leads to including 

the damaged structural model’s complete kinematic state at the time of FE removal in estimating 

the subsequent transient response and in determining if the structure can successfully redistribute 

the forces from the removed FE and oscillate safely about its new equilibrium position. Third, 

the motion of the collapsed FE can be tracked relative to the intact damaged structural model to 

estimate the time and kinematics at subsequent collision, if any, between the removed FE and the 

intact damaged structure. The kinematics of the separated nodes being known, this tracking can 

be conducted using a rigid-body analysis of the removed FE (if separation has taken place at both 

FE end-nodes) or the condensation approach developed in Kaewkulchai and Williamson (2004) 

(if separation has taken place at only one FE end-node). Thus, no redefinition of DOFs or 

stiffness matrix assembly of the damaged structural system is required. If subsequent collision 

with the intact damaged structure is detected, an analytical approach based on the assumption of 

“soft-impact” by an elastic (deformable) mass can be followed to characterize the physics and 

duration of impact following such collision and to compute the impact-induced forces and 

redistribution of masses resulting from this collision (Zineddin and Krauthammer 2007). This 

approach is based on the assumption of relatively negligible relative displacement during the 

impact duration between the impacting collapsed FE and the impacted intact damaged structural 

system at the contact location, in addition to low-velocity impact which precludes the possibility 

of punching or penetration (Schonberg et al. 1987). The simplified approach pursued for 

modeling element collision in the progressive collapse applications presented in this report is 

explained in detail in Appendix B. 

6.3 DESIGN OF ELEMENT REMOVAL ALGORITHM 

This section formalizes into a logical algorithm the steps required to implement automated 

removal of collapsed elements from a FE structural model during the course of an ongoing 

OpenSees simulation, as illustrated in Figure 6.2. After each converged analysis step, each 

Element object is checked for possible violation of its respective removal criteria, which are 

presented in Section 6.6. A violation of any criterion triggers the activation of the element 
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removal algorithm on the violating Element object (see Fig. 1.2). The algorithm is split into two 

main sets of procedures. 

The first set of procedures includes checking if the removal of the collapsed Element 

object will result in leaving any “dangling” nodes or “floating” elements behind, as illustrated in 

Figure 6.3. A dangling node is a Node object that will have no connectivity within the Domain if 

all its attached elements were to collapse and be removed during the simulation. Floating 

elements are Element objects that are connected to themselves but are completely disconnected 

from the rest of the damaged structural model and are unsupported against rigid body motion. An 

example of such floating elements are the Element objects that represent the interior of a 

collapsed column meshed by multiple beam-column finite elements, of which the Element 

objects representing the column ends are likely to violate their removal criteria (and thus get 

removed) first during a seismic event. The existence of either dangling nodes or floating 

elements will cause the Analysis object to permanently fail due to structural instability and lack 

of equilibrium (unless the Solver object can handle rigid-body motion). Hence, the removal 

algorithm identifies and removes such nodes and elements from the damaged structural model as 

well. Moreover, the successful removal of an Element object requires the identification and 

deletion of all its associated distributed forces from the load patterns existing in the Domain. 

Similarly, the removal of Node objects requires the identification and deletion of all its externally 

applied forces, imposed displacements, and fixed-point constraints (i.e., support fixities). Finally, 

this first set of procedures is concluded by updating the nodal masses lumped at the removed 

Element object’s end-nodes which are not left dangling. This is conducted by subtracting from 

the associated nodal masses the product of multiplying the removed Element object’s distributed 

mass (if defined) by an appropriate ratio (e.g., one half in the case of prismatic two-node beam-

column and truss elements) of its length. This set of procedures has been fully implemented 

within the source-code of OpenSees, as detailed in Section 6.4. 

The second set of procedures involves the tracking of the removed Element object’s 

motion after separation. Without adding an explicit node to the damaged structural model, the 

kinematics of the separated end-node(s) in the removed Element object at the time of separation 

are identified from the last converged dynamic equilibrium state of the structural model. These 

kinematics represent the initial conditions for the free-falling motion of the collapsed element. 
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This motion can then be tracked using the condensation approach proposed in Kaewkulchai and 

Williamson (2006) or the assumption of rigid-body motion of the element under the effect of its 

own gravity load (Appendix B). At the end of each subsequent converged time step, the position 

of the collapsed element, separated from one end or both ends, is compared with the state of the 

damaged structural model to determine when collision takes place. At the time of collision, the 

kinematics of both the impacting element and the damaged (impacted) structural system can be 

determined, most importantly the relative impact velocity. The impact force, duration, temporal 

variation of force over duration, and additional mass imparted from the impacting element at the 

impact location are computed and superposed on the damaged structural system during the 

subsequent time steps. This second set of procedures has not been fully implemented into the 

source-code of OpenSees. It is conducted in this report by conducting the necessary 

computations using the general-purpose software MATLAB (MATLAB 2007), and transferring 

the results through the Tcl language used by the analyst to build and perform OpenSees 

simulations. 

After completing both sets of procedures, the algorithm updates the state of the damaged 

structural system to include the updated masses, the geometry, and the impact forces (if 

applicable). The updating of the mass and stiffness matrices will result in updating the damping 

matrices as well if stiffness and/or mass-proportional damping is used. Since numerical 

convergence may face difficulties following such extreme events, especially in softening 

structural systems, the solution parameters may need to be updated. This is conducted by 

iteratively switching solver type (Newton-Raphson, Modified Newton-Raphson, etc.), 

convergence criteria (displacement norm, energy norm, etc.), and other options (e.g., time-step 

size) of the Analysis object, so that an ultimate failure to converge would be more likely to take 

place only if the damaged structural system has reached complete collapse (corresponding to 

global instability). 

 



 

176 

Identify nodal kinetics
at separation

Track collapsed element
motion until impact

• Remove dangling nodes
• Remove floating elements
• Delete element/node loads
• Remove element
• Update nodal masses

Identify location, compute force,
duration, and mass redistribution 

Check for dangling nodes,
floating elements, and

element loads and masses

Update structural model, time
step, and solution parameters

Start
from
main
code

End
back to
main
code

Italicized text
executed outside
of OpenSees

Identify nodal kinetics
at separation

Track collapsed element
motion until impact

• Remove dangling nodes
• Remove floating elements
• Delete element/node loads
• Remove element
• Update nodal masses

Identify location, compute force,
duration, and mass redistribution 

Check for dangling nodes,
floating elements, and

element loads and masses

Update structural model, time
step, and solution parameters

Start
from
main
code

End
back to
main
code

Italicized text
executed outside
of OpenSees  

Fig. 6.2  Automatic element removal algorithm. 
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Fig. 6.3  Elements, nodes, and loads requiring removal due to element removal. 

6.4 IMPLEMENTATION OF ELEMENT REMOVAL ALGORITHM 

The implementation of the automatic element removal algorithm discussed in the previous 

section is carried out as a new class in the software platform OpenSees. The new class is 

declared a subclass of the abstract class Recorder (see Section 4.1). This declaration is made in 

order to take advantage of the existing inter-class interaction in OpenSees. According to the API 

main program, which specifies the relationship between the high-level classes representing 

OpenSees modules, all Recorder objects are called and ordered to execute their main method 

record() after each and every converged load step in the Domain object. In addition, all 

Recorder classes have access to the Domain object in order to extract the information they are 
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requested to record from the associated nodes, elements, materials, etc. This information is 

specified in the constructor method arguments at each Recorder object’s instantiation (i.e., 

creation) during runtime. 

The new Recorder derived class is called RemoveRecorder, whose class interface is 

illustrated in Figure 6.4. The constructor of the class receives as arguments a number of ID 

arrays that identify several DomainComponent objects to monitor, in addition to the Vector 

object remCriteria of threshold values representing element removal criteria. Moreover, in 

accordance with all Recorder classes, the constructor arguments include a pointer to the Domain 

object and the flag echoTimeFlag set by the analyst to indicate whether or not to print the 

current time at each recording time-step deltat in the output file filename. Two types of 

RemoveRecorder objects can be constructed according to the analyst’s specification. The object 

type is specified by the type of input ID objects to the constructor and determines the definition 

of the main method record(). 

The first type of RemoveRecorder objects is associated with an array of Element objects, 

represented by the constructor argument eleIDs. These Element objects are deemed vulnerable to 

collapse and subsequent removal by the analyst (e.g., all elements). Accompanying this is an 

optional array secIDs, which identifies the components (e.g., cross sections) within the Element 

objects (if any) where the element removal criteria are checked. In the current implementation, a 

total of six removal criteria are defined on the element and component (cross-section) levels. 

These removal criteria are discussed in Section 6.6. Another optional argument to this type of 

RemoveRecorder objects is an array of Element object identifiers slaveEleIDs. These are the 

Element objects that will become floating elements within the Domain object once all the 

Element objects specified in the eleIDs argument have collapsed and been removed by the 

RemoveRecorder object. 

The second type of RemoveRecorder objects is associated with a Node object represented 

by the constructor argument nodeID. This is a Node object that will become a dangling node 

within the Domain if all its attached elements were to collapse during the simulation. This 

second type of RemoveRecorder objects requires an array of attached Element objects identified 

by the constructor argument eleIDs. This requires that all attached Element objects have been 

deemed vulnerable by the analyst and assigned removal criteria within previously defined 
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RemoveRecorder objects of the first type. Since it is unlikely that two Node objects will have the 

same connectivity to Element objects, each RemoveRecorder object of the second type is 

associated with only one Node object. It is impractical for large structural models to require the 

analyst to identify and list all nodes that may potentially become dangling during the course of a 

simulation. Therefore, future development of the RemoveRecorder class should eliminate this 

need by identifying a method to efficiently and reliably check the connectivity of all Node 

objects attached to a collapsed Element object and identify the ones that are attached to no other 

Element objects in the Domain object. This method was not implemented in the current version 

of class RemoveRecorder due to a limitation in the existing data structures of OpenSees, whereby 

Element objects store the identities of their associated Node objects, whereas Node objects do not 

store the identities of their attached Element objects. This means that the full automation of 

dangling node removal in the current version of OpenSees will require a search through all 

Element objects in the Domain upon the removal of any one Element object in order to check the 

connectivity of its associated Node objects, which is computationally impractical. 

The definition of the main method record() depends on the type of the RemoveRecorder 

object. In objects of the first type, this method scans the Element objects identified in the 

constructor argument eleIDs and retrieves the information characterizing their respective 

damages-states. If the removal criteria are identified on a component level, the 

DomainComponent objects identified in the constructor argument secIDs are scanned and the 

values of their respective damage-state information retrieved from each Element object. Next, 

these values are compared to the corresponding threshold values defined in the constructor 

argument remCriteria (a threshold value of zero signifies that the corresponding removal 

criterion is disabled and is to be ignored during the execution of the method). If one active 

removal criterion is violated, the corresponding Element object is eliminated (removed) from the 

Domain by invoking the method elimElem(). However, the Element object is not destroyed or 

deleted from the program memory. It is only reset to its initial state by invoking its member 

method revertToStart(). The primary reason for eliminating the collapsed Element object from 

the Domain while not destroying it is that there may be other objects in the OpenSees program 

(e.g., other Recorder objects) associated with the collapsed Element object through pointers. 

Having not been informed of the Element object’s destruction, these associated objects would try 
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to invoke methods on the non-existent Element object, causing a fatal runtime error. However, 

by resetting the collapsed Element object any element information “recorded” after its removal 

can be clearly identified and filtered-out during post-processing. 

The retrieval of the elements’ damage information is achieved through the extension of 

existing Element classes to include a new method getRemCriteria(). This method is declared 

virtual in the abstract base class Element, and then implemented individually for the derived 

Element classes which may be removed during an analysis. Currently supported Element classes 

include beam-column elements whose cross section is fiber-discretized using ConfinedFiberSec 

objects (both lumped and distributed plasticity, see Sections 3.3 and 4.5); zero-length elements 

whose constitutive law is defined using members of class LimitState (see Section 3.1), which 

represent the shear-axial coupled zero-length elements developed in Elwood (2002); and brittle 

truss elements (see Section 6.5). If all the Element objects identified in eleIDs are removed, the 

method record() invokes the method elimSlaves(), which in turn invokes the methods 

elimElem() and elimNode() on all the Element objects identified in slaveEleIDs and their 

associated Node objects, respectively. The methods elimElem() and elimNode() remove an 

Element and a Node object, respectively, from the Domain while resetting them to their initial 

states, in accordance with the first set of procedures discussed in the previous section. 

In RemoveRecorder objects of the second type, the method record() compares the list of 

attached Element objects identified in eleIDs with the list remEles of Element objects already 

removed by all RemoveRecorder objects during the simulation up to  the last converged time 

step. If all the attached Element objects have already been removed, the method elimNode() is 

invoked on the Node object identified by nodeID. 

The identity and pointers to all Element and Node objects removed from the Domain by 

an object of class RemoveRecorder are stored in class-wide static arrays, as well as the number 

of RemoveRecorder objects currently existing in the Domain. Accordingly, when the destructor 

method of an object of class RemoveRecorder is invoked, the object first checks to see if it is the 

last RemoveRecorder object in the Domain and, if so, destroys all previously removed Element 

and Node objects in order to clear up the program memory. This step is significant in parametric 

or other multiple-run studies (e.g., IDA), where a large number of simulations is scheduled to run 

in batch mode, and the accumulation of memory leaks due to DomainComponent objects not 
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explicitly destroyed can negatively affect the computational efficiency. An optional log file 

filename may be constructed by the RemoveRecorder class and used by the method record() to 

indicate which DomainComponent objects were removed during the simulation, at what time and 

for what reason (i.e., which removal criterion was violated). This optional log file is closed by 

the last RemoveRecorder object to be destroyed. The method restart() is used to restore to the 

Domain object the previously removed components for subsequently scheduled simulations, e.g., 

in a parametric study. 

The modification of the analysis time step (and possibly Analysis object options) 

following element removal is left flexible to the analyst’s preference. Since Tcl is a script 

language, it offers the advantage of defining within the input to OpenSees interpreter a procedure 

for adaptive time-stepping and iterative solver modification (Mazzoni et al. 2004). One such 

procedure has been developed and used in the progressive collapse applications presented in this 

report (see Chapter 7). 
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class RemoveRecorder: public Recorder 
{ 
public: 
// Constructor and destructor 
 RemoveRecorder(int &nodeID, ID &eleIDs, ID &secIDs, ID &slaveEleIDs, const 

Vector remCriteria, Domain &theDomainPtr, bool echoTimeFlag, double 
deltat, const char* filename); 

 ~RemoveRecorder(); 
 
// Main method invoked by the Domain after a converged load step 
 int record(int commitTag, double timeStamp); 
 
// Internal methods used by the class to check and remove components 
 int checkEleRemoval(Element* theEle, int &theComponent, Vector Criteria); 
 int elimElem(int theDeadEleTag, double timeStamp = 0); 
 int elimNode(int theDeadNodeTag, double timeStamp = 0); 
 int elimSlaves(double timeStamp = 0); 
 
// Static class-wide lists of removed components to be destructed after analysis 
 static int numRecs, int numRemEles, numRemNodes; 
 static Vector remEleList, Vector remNodeList; 
 static Element** remEles; 
 static Node** remNodes; 
 
// Access & pure virtual methods declared in base class (partial list) 
 int restart(); 
}; 

Fig. 6.4  Class interface for RemoveRecorder. 
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6.5 VERIFICATION OF ELEMENT REMOVAL ALGORITHM 

In this section, the OpenSees implementation of the element removal procedure developed and 

automated in Sections 6.2–6.4 is verified using a benchmark problem representing an idealized 

structural system subjected to earthquake excitation. The benchmark structural system is 

constructed specifically for the purpose of this validation. It consists of trussed cantilever beams 

of different lengths, positioned on top of each other. The behavior of two truss members within 

the structural system is allowed to alternate between being brittle or ductile in order to create 

four case-studies demonstrating the path-dependency of the progressive collapse process. Non-

complex element removal criteria are adopted in order to make the analysis of the results more 

straightforward and exclusively relevant to the element removal procedure. Similarly, no viscous 

damping is considered. The structural system is subjected to its own gravity loads, in addition to 

an input excitation, Figure 6.5, applied in the vertical direction at all supports, i.e., nodes 1, 2, 4, 

5, and 12. This excitation is scaled to peak ground acceleration (PGA) of 1.04g from ground 

motion acceleration recorded during the 1994 Northridge earthquake (Tarzana station, 90° 

direction). Given the small size of this computational model, adaptive time stepping is not 

deemed to save significant computational time. Hence, a fixed analysis time step of 0.005 sec is 

chosen. 
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Fig. 6.5  Input ground acceleration record for benchmark problem. 
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6.5.1 System Properties of Benchmark Problem 

The geometry and FE model idealization of the benchmark problem is illustrated in Figure 6.6. 

Circled numbers denote structural elements, while uncircled numbers denote nodes. All 

dimensions shown are in meters. The structural system consists of two independent cantilever-

like canopies. Each canopy consists of one horizontal elastic beam supported by two inclined 

truss members. The beams are assumed to exhibit linear-elastic behavior and are modeled using 

elastic beam-column elements. The truss members are modeled using truss elements that exhibit 

a linear elastic behavior prior to reaching an axial load magnitude of yF . Subsequently, they 

exhibit either a brittle or a perfectly plastic behavior, as discussed in Section 6.5.2. Nonlinear 

geometry and large-deformation effects are included in the FE model by employing a co-

rotational formulation for the geometric transformation equations which relate element quantities 

(e.g., orientation, resisting forces, stiffness, etc) to global coordinates. This formulation updates 

the local coordinate systems of individual finite elements during the analysis and uses the 

updated coordinate system to compute the current element length and include geometric stiffness 

terms (Crisfield 1990; Crisfield and Moita 1996). The mass is lumped at the nodes as listed in 

Table 6.1. The properties of area for each element are listed in Table 2.2. Note that nodal gravity 

loads associated with these lumped masses are included in the simulation before the application 

of the seismic support excitation. 

Table 6.1  Lumped masses at unrestrained nodes of benchmark problem. 

Node 1 6,7 8 9–11

Mass [ton] 10 4 6 4 
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Table 6.2  Element properties of benchmark problem. 

Element EA  [kN] EI  [kNm2] yF  [kN] 

1 2,000 3,000 100 

2 100,000 5,000 ∞ (Elastic)

3 1,000 1,000 50 

4–9 100,000 10,000 ∞ (Elastic)

10,11 3,000 5,000 150 
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Fig. 6.6  Geometry and FE model of benchmark problem (dimensions in meters). 

6.5.2 Progressive Collapse Case-Studies 

By selecting combinations of the ultimate ductility limits for the truss elements used in 

constructing the FE model, four case-studies are investigated. Accordingly, in each case study, 

some of the truss elements fail in a ductile manner, and others fail in a brittle manner. This is 

performed in order to explore the path-dependent nature of the progressive collapse process and 

the sensitivity of the developed element removal procedure to this process. Prior to reaching their 

ultimate ductility limits, ductile truss elements are assumed to exhibit a perfectly plastic behavior 



 

185 

after yielding, linear-elastic unloading, and equal magnitudes of yield force in compression and 

tension. These elements are assumed to collapse upon reaching their ultimate ductility limits. 

The designation of the case-studies and the corresponding ultimate ductility limits for the truss 

elements are listed in Table 6.3. 

Table 6.3  Ultimate truss element ductility limits for benchmark problem. 

Truss element 1,11 3 10

Case 1 5 5 5

Case 2 5 5 1

Case 3 5 1 5

Case 4 5 1 1

 

It is further assumed that collapsed truss elements separate from the structural system at 

the location of their connection with the beam elements. Accordingly, the collapse of truss 

element 3 will cause it to fall and collide with the lower canopy. Given the undeformed 

configuration and geometry, the collision should take place approximately at node 9 (slightly to 

the right). For simplicity of the analysis, the collision is assumed to take place exactly at node 9, 

which implies an assumption of 0.1 m axial shortening in the collapsed truss element. As a result 

of the collision, the impacting truss element is assumed to deform in a flexural mode along its 

length, simply supported at nodes 4 and 9. The energy of the impact is assumed to be dissipated 

during one half-cycle of such flexural deformation, after which it rapidly decays (e.g., due to 

friction). After this half-cycle, truss element 3 is assumed to apply no additional impact forces at 

nodes 4 and 9 and remain passively supported prior to collapse of the lower canopy. The effect 

of the impact force on the collapse potential of the lower canopy is thus investigated. In the case-

study simulations involving collapse of truss element 3, the time and duration of collision and the 

resulting impact force are computed and added as a time-varying externally applied load at node 

9. The computation of these quantities is discussed in detail in Appendix B. In addition to 

impact, such collision will result in additional mass at noted 9. It is assumed that the collapsed 

truss elements contribute 2 tons of the mass lumped at each of their end-nodes. Hence, the 
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collision with (or the loss of) a collapsed element at any node results in updating its assigned 

lumped mass and gravity loads by adding (or subtracting) 2 tons. 

6.5.3 Results and Discussion 

All simulations were successfully conducted without exhibiting numerical convergence 

problems. Cases 1 and 2 result in similar responses where no element collapse is observed in 

either case. In the upper canopy, truss elements 1 and 3 exhibit brief yielding inducing a 

maximum ductility demand of 1.17 and 1.11, respectively, but their ultimate ductility capacity of 

5.0 is not reached. The absolute force magnitude-axial strain responses of these two truss 

elements for Cases 1 and 2, normalized using their respective values at yield, are illustrated in 

Figure 6.7a. In the lower canopy, truss elements 10 and 11 exhibited linear-elastic behavior. 

Case 3 results in partial collapse of the upper canopy. Truss element 3 reaches its ultimate 

ductility limit of 1.0 after 8.875 sec and subsequently collapses onto the lower canopy. As a 

result, the maximum ductility demand on truss element 1 increases to 2.1 but does not reach 5.0, 

and the upper canopy exhibits no further collapse progression. Since the upper canopy’s response 

is not affected by whether truss members in the lower canopy are ductile or brittle, it exhibits the 

same response in Case 4. The absolute force magnitude-axial strain responses of the two truss 

elements 1 and 3 for Cases 3 and 4, normalized using their respective values at yield, are 

illustrated in Figure 6.7b. Figure 6.7c illustrates the time history of the normalized axial forces in 

truss elements 1 and 3 for all four cases. The time-history response for truss element 3 is 

identical for all cases prior to reaching its ultimate ductility limit in Cases 3 and 4, after which 

the response is discontinued for these two cases (at 8.875 sec). The response for truss element 1 

is identical for all cases prior to 8.875 sec. Subsequent response exhibits higher average force 

values in Cases 3 and 4 than Cases 1 and 2, and longer periods of yielding before the damaged 

upper canopy starts to oscillate about a new equilibrium state. The collapse of truss element 3 

results in a significant permanent displacement in the vertical direction at node 1, as illustrated in 

Figure 6.8a. The nodal displacements are normalized using their respective values due to the 

action of gravity load only, before the application of earthquake excitation. 
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(a) Normalized force-deformation for 

Cases 1 and 2 (brittle truss element 3) 

(b) Normalized force-deformation for 

Cases 3 and 4 (ductile truss element 3) 
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(c) Normalized force time-histories 

Fig. 6.7  Simulated response of elements 1 and 3 for benchmark problem. 

In the lower canopy, collapsed truss element 3 collides with node 9 at 11.260 sec. The 

resulting impact load results in reaching the yield force of truss elements 10 and 11. 

Subsequently, in Case 3, the ductility capacity of truss elements 10 and 11 is sufficient to prevent 

the progression of collapse to the lower canopy. The lower canopy reaches a new equilibrium 

state and starts oscillating about it while supporting additional load and mass from the partially 

collapsed upper canopy. In Case 4, truss element 10 reaches its ultimate ductility capacity of 1.0 

at 12.370 sec and collapses. Before the lower canopy could safely reach a new equilibrium state, 

truss element 11 reaches its ultimate ductility limit of 5.0 and collapses at 14.07 sec, leading to 

complete collapse of the lower canopy. The vertical displacement time-histories (normalized by 
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the displacement due to gravity load application) at nodes 8, 9, and 11 are illustrated in Figure 

6.8b–d, respectively. 
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(a) Node 1 (b) Node 8 
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(c) Node 9 (d) Node 11 

Fig. 6.8  Simulated nodal displacement time-histories for benchmark problem. 

The ability of the implemented element removal procedure to update the structural 

system during the course of an ongoing simulation, in order to conduct progressive collapse 

analysis, is established. In addition, the four case-studies considered in the benchmark example 

explore the sensitivity of the progressive collapse process to the choice of criteria for truss 

element collapse (ductility capacity), which in turn results in different times and sequences of 

collapse for individual elements. The results of this exploration are summarized by comparing 

the corresponding maximum ductility demand on each truss element (Fig. 6.9), as well as the 

simulated deformed shapes and collapse progression of the case-studies (Figs. 6.10–6.12). 
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Figure 6.9 compares the maximum ductility demands imposed on each truss element 

during each case-study simulation and lends insight to the sensitivity of the outcome and extent 

of the benchmark system collapse to its constituent element properties. For the cases involving 

truss elements 1, 3, and 11 having an ultimate ductility capacity larger than 1.17, the maximum 

ductility demand on truss element 10 never reaches 1.0 and the structural system survives the 

earthquake. However, if the ductility capacity of truss element 3 is reduced to 1.0 (i.e., by 

14.5%), the maximum ductility demand on truss element 1 nearly doubles, and the upper canopy 

of the structural system avoids complete collapse only if the corresponding ductility capacity of 

element 1 is greater than 2.1. Meanwhile, the maximum ductility demands on both lower canopy 

truss elements 10 and 11 exceed 1.0. If both have a ductility capacity larger than 1.31, the lower 

canopy does not collapse. However, if the ductility capacity of truss element 10 is reduced to 1.0 

(i.e., by 23.6%) and it collapses, the lower canopy completely collapses as truss element 11 

cannot sustain the resulting overload even at a ductility capacity equal to 5.0. 
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Fig. 6.9  Simulated maximum element ductility demands for benchmark problem. 
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The deformed shapes and collapse progression resulting from the simulation of Cases 1 

and 2, Case 3, and Case 4, are illustrated in Figure 6.10, Figure 6.11, and Figure 6.12, 

respectively (displacement amplification factor = 1). The simulated deformed shapes of the 

structural system are compared at 9.5, 11.5, and 14.5 sec, following main element collapse 

events in individual case studies. Note that the deformed shapes of beam-column elements are 

plotted without accounting for the rotation at their end-nodes but rather simply by a straight line 

connecting the two end-nodes. Cases 1 and 2 exhibit no collapse at all, despite the presence of a 

brittle truss element in the lower canopy for Case 2. Case 3 results in partial collapse of the upper 

canopy due to a brittle truss element. However, the collapse gets arrested and contained in both 

the upper and lower canopies without propagating further due to the ductility capacity of the 

remaining truss elements. Case 4 results in partial collapse of the upper canopy which still gets 

contained there as well. However, the lower canopy suffers from complete collapse due to the 

presence of one brittle truss element and despite the ductility capacity of the remaining truss 

element. The case-study simulations demonstrate the sensitivity in the occurrence and extent of 

progressive collapse predicted by the element removal procedure to the structural model 

parameters (i.e., element removal criteria). Given this sensitivity, it is recommended that 

simulation-based progressive collapse assessment be conducted in a probabilistic framework and 

using statistical methods of evaluation. This is explored in the demonstration applications 

developed in Chapter 7. 
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Fig. 6.10  Snapshots of benchmark structural model deformed shape (Cases 1 and 2). 
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Fig. 6.11  Snapshots of benchmark structural model deformed shape (Case 3). 
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Fig. 6.12  Snapshots of benchmark structural model deformed shape (Case 4). 

6.6 CRITERIA FOR ELEMENT REMOVAL 

In the present report, two sets of element removal criteria are defined for two different modes of 

failure in seismically deficient and retrofitted RC columns. Moreover, these removal criteria, 

developed primarily for RC columns, are re-interpreted in order to be used as removal criteria for 

RC beams as well. In addition, a set of removal criteria based on maximum axial deformation is 

defined for truss members for use in constructing the benchmark problem discussed in the 

previous section. These criteria are explained in the following sections, with reference to 

OpenSees Element classes in which they are implemented. It is worth repeating that it is up to the 

analyst to decide which removal criteria to activate during the simulation. However, if an 

activated removal criterion is violated, the resulting criterion-dependent update to the structural 

system follows the courses defined in the following sections. 
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6.6.1 Removal Criteria for RC Beam-Columns due to Flexure-Axial Interaction 

Two element removal criteria correspond to violating pre-set threshold values of damage indices 

reflecting the structural integrity of individual cross sections along the column length. Two 

damage indices have been defined in Section 3.3 for evaluating the damage state of confined RC 

cross sections. These damage indices are based on evaluating calibrated material-level damage 

indices for the constituent fibers and aggregating them over the cross section to minimize the 

arbitrariness in calibration. One of these damage indices, AD , represents the degradation in the 

axial load-carrying capacity of the cross section. The other damages index, MD , represents the 

degradation in the bending moment-carrying capacity of the cross section. These damage indices 

are currently implemented for SectionForceDeformation (hereafter referred to as Section for 

brevity) subclasses ConfinedFiberSec only. 

When the value of AD  reaches its pre-defined threshold value, the associated Section 

object is considered to have lost its axial load-carrying capacity. As a result, the Element object 

that contains this Section object is removed from the Domain as previously discussed in Sections 

6.2–6.4. This threshold value is defined by the analyst when constructing the corresponding 

RemoveRecorder object. In this report, this threshold value is suggested as 

1=AD  (6.2)

As a future extension, it is proposed that a threshold value that reflects the level of axial 

load oPP  applied on the column can be developed, where P  is the axial load in the RC column 

and oP  is the nominal cross-section axial force capacity under concentric compression. 

When the value of MD  reaches its pre-defined threshold value, the associated Section 

object is considered to have lost its bending moment-carrying capacity. The consequences of 

reaching this threshold value depend on the function of the associated beam-column Element 

object in the structural system. In Element objects representing RC beams (i.e., horizontal 

structural members subjected to primarily bending moments and relatively low axial loads), 

reaching this threshold constitutes collapse and the Element object is removed from the Domain 

object as previously discussed in Sections 6.2–6.4. In Element objects representing RC columns 

(i.e., vertical structural members subjected to significant axial loads), the Element object is 
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redefined to release the rotational stiffness of its end-nodes. Subsequently, this Element object 

functions as a strut member supporting only the axial load after its end moments are released, 

until subsequent loss of the axial load-carrying capacity. In the applications conducted in this 

report, this latter model of collapse was not encountered in elements representing RC columns 

and thus the automation of this end moment-releasing procedure has not been fully 

implementation into OpenSees. In this report, this threshold value is suggested as 

1=MD  (6.3)

A relationship dependent on the nominal moment capacity is not proposed, since it is 

well-established that the loss of flexural capacity is controlled by the degree of deformation 

ductility and not the moment capacity, and that the moment capacity can continue to diminish 

while not being completely lost up to deformation levels much larger than those corresponding to 

any nominal cross-section moment capacity. 

Several OpenSees Element classes are currently supporting the removal criteria discussed 

in the present section. These classes include force- and displacement-based distributed plasticity 

fiber elements, as well as force-based lumped plasticity beam-column elements, whose plastic 

hinge regions are defined using fiber-discretized ConfinedFiberSec objects. 

6.6.2 Removal Criteria for RC Beam-Columns due to Shear-Axial Interaction 

Two element removal criteria correspond to violating the limit curve equations corresponding to 

the drift-capacity model developed in Elwood (2002) (see Section 3.1). Recall that shear-axial 

coupled zero-length Element objects are constructed, and connected in series to a beam-column 

Element object in order to construct a compound beam-column element. When the axial limit 

curve is reached (Eq. 3.1) in the LimitState object defining the constitutive law of the coupled 

zero-length Element objects, this LimitState object is removed from the Domain object as 

previously discussed in Sections 6.2–6.4. Consequently, the connectivity between the associated 

beam-column Element object with the structural system is severed at one end-node. Optionally, 

when the shear limit curve is reached (Eq. 3.1) in the LimitState object, the consequences of 

reaching this shear limit curve in beam-column Element objects representing RC beams 

constitute collapse and the LimitState object is removed from the Domain, severing the 
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associated beam-column Element object’s connectivity to the structural model. Hence, shear-

damaged RC columns are allowed to maintain their axial load until they reach the axial load-

lateral drift capacity limit state, while shear-damaged RC beams can be made to collapse in a 

brittle manner in the absence of a compressive axial force that prevents the shear cracks from 

propagating. 

OpenSees Element classes which currently support these removal criteria include zero-

length elements whose constitutive law is defined using LimitState classes. These zero-length 

elements can be connected to all inelastic as well as elastic beam-column elements in OpenSees 

to model their shear-axial interaction behavior (Elwood 2002). 

6.6.3 Removal Criteria for Truss Members 

Two element removal criteria correspond to violating maximum (positive) or minimum 

(negative) axial deformation values. When the axial deformation (related to the computed axial 

strain in the UniaxialMaterial object associated with the Element object representing the truss 

member) reaches one of the maximum or minimum threshold values defined by the analyst, the 

Element object is removed from the Domain, as previously discussed in Sections 6.2–6.4. The 

choice of these threshold values enables modeling both brittle and ductile truss member behavior 

prior to collapse. 

OpenSees Element classes that currently support these removal criteria include truss 

elements following linear and nonlinear geometry. The constitutive behavior of these elements is 

defined using either a single UniaxialMaterial object or a pre-defined Section object, typically of 

the FiberSection or ConfinedFiberSec subclasses to take advantage of fiber discretization. 

6.7 SUMMARY 

In this chapter, a detailed survey of the limited literature on progressive collapse simulation was 

conducted. Previous analytical formulations to account for the removal of a load-carrying 

structural element from a structural model during an ongoing simulation were presented. These 

formulations utilized force equilibrium, DOF condensation, or energy balance approaches to 
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account for dynamic load redistribution from collapsed finite elements, and the resulting impact 

from collision between the collapsed element and the damaged structure. 

An analytical formulation was developed based on the dynamic equilibrium of forces to 

account for abrupt element removal and to simulate the dynamic redistribution of forces using 

the resulting transient change in structural system kinematics. The analytical formulation was 

complemented by discussion of the resulting effects on the numerical behavior and potential 

changes to the numerical solution procedure of the dynamic equilibrium equations. This 

analytical procedure was formalized into a logical algorithm that separately accounts for 

collapsed element removal and for potential collision. The majority of the algorithm was 

implemented and compiled as a new class within the software platform OpenSees. The 

remaining components of the algorithm were implemented using the programmable input 

language (Tcl) which is used to construct simulation applications for OpenSees. This dual 

implementation approach automates the critical parts of the progressive collapse analysis yet 

provides the analyst enough flexibility to set removal-dependent solution parameters at runtime 

(e.g., adaptive time-stepping). 

The implemented algorithm was computationally verified using a benchmark structural 

system of trussed cantilever beams. Four case-study simulations of the benchmark structural 

system highlighted the sensitivity of the progressive collapse process to the uncertainty in 

structural system parameters, represented by the chosen threshold values for element removal 

criteria. These criteria reflected the effect of ductile versus brittle detailing of structural members 

and joints, as well as uncertainty in the material properties used (and hence, while not explicitly 

investigated, applied loads). Given the observed results, it is recommended that this sensitivity be 

evaluated beforehand for the unknown structural system parameters and reduced by conducting 

progressive collapse simulations using statistical evaluation methods within a probabilistic 

framework. The chapter was concluded by introducing the element removal criteria used for 

determining mode-dependent (shear or flexure) axial-load collapse in seismically deficient and 

retrofitted RC columns, RC beams, as well as in brittle and ductile truss members. 
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7 Progressive Collapse Simulation: 
Applications to RC Structures 

In this chapter, two test-bed structural systems are constructed and presented. Each test-bed 

structural system consists of RC moment-resisting frames, infilled with URM wall(s) in one or 

more bays. Hence, both test-bed structural systems are examples of RC frame/URM wall 

construction. In addition, the columns of the RC frames contain seismically deficient 

reinforcement details. These two test-bed structural systems are a one-story multi-frame building 

and a five-story multi-bay frame building. The test-bed structural systems are used to conduct 

three application studies of progressive collapse assessment using the methodology, structural 

component models, and element removal algorithm developed and implemented in the previous 

chapters of this report, hereafter collectively referred to as the computational developments. 

These three applications studies are designated as follows: 

1. Application A: Deterministic progressive collapse simulation of a one-story RC 

frame/URM wall system; 

2. Application B: Sensitivity analysis of progressive collapse in a five-story RC frame/URM 

wall system; 

3. Application C: Probabilistic progressive collapse assessment of a one-story RC 

frame/URM wall system. 

The objective of application A is to investigate the performance of aggregating the 

aforementioned computational developments in modeling progressive structural collapse in a 

moderately complex structural system, which includes URM wall-RC frame interaction and 

seismically deficient RC column details leading to multiple modes of gravity-load collapse (i.e., 

flexure-axial and shear-axial). The one-story structural system is selected for two reasons: (a) to 

take advantage of existing experimental data from a similar physical model previously subjected 
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to shake-table seismic excitation at the University of California, Berkeley, and (b) to render the 

analysis of the results more transparent by considering a single DOF in the lateral direction and 

thus excluding the dynamic effects of higher modes of vibration. Application A compares the 

simulated dynamic response and mechanism of progressive collapse in the structural system to 

two intensity levels of the same ground motion (i.e., acceleration) record. 

The objectives of application B are to simulate the progressive collapse response of a 

more complex multi-story structural system located at a given geographic location during a 

specified seismic event, and to investigate the sensitivity of the global response variables to 

assumed uncertainties in selected system parameters, e.g., material properties, and in ground 

motion intensity measures, e.g., spectral acceleration, representing an uncertain seismic hazard 

level. The progressive collapse response of the test-bed structural system is first investigated 

using a set of reference uncertain parameter values to establish a reference set of simulated 

response variables, e.g., the time at incipient collapse. Next, a parametric study is performed to 

conduct a deterministic sensitivity analysis. 

The objective of application C is to investigate the effect of uncertain measures of ground 

motion intensity, e.g., PGA, and characteristics, e.g., orientation, on the probability of predicting 

progressive collapse in the one-story structural system defined in application A. An empirical 

probability of collapse is defined and utilized to construct fragility curves representing four limit 

states of structural collapse, namely in-plane and out-of-plane collapse in the URM wall, and 

partial and complete gravity-load collapse of the structural system. The fragility curves represent 

the conditional probability of reaching the corresponding limit state, during simulations using 

ground motions of random characteristics, given the uncertain measure of ground motion 

intensity at a specific hazard level. The hazard level is defined by the probability of the 

associated intensity measure being exceeded at the building site location in a 50-year period. 

Fourteen ground motion records from the same seismic event are utilized in application C. These 

are selected in order to reflect the uncertainty in ground motion characteristics due to site 

location and building orientation, i.e., intra-event variability.. 

In all three applications A, B, and C, a building site location is assumed in Los Angeles 

County at a latitude and longitude of 34.3 and -118.5, respectively. The selection of the building 

site is discussed in Section 7.3. 
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7.1 APPLICATION A: DETERMINISTIC PROGRESSIVE COLLAPSE 
SIMULATION OF ONE-STORY RC FRAME/URM WALL SYSTEM 

A one-story, seismically detailed structure consisting of three moment-resisting RC frames of 

identical dimensions and reinforcement, placed parallel to each other and connected by a RC slab 

and transverse RC beams, was previously constructed and subjected to predetermined ground 

motion records of increasing intensity using a shake- table. The middle RC frame was infilled 

with a URM wall prior to testing. The objective of the experiment was to establish the structural 

contribution and interaction of “non-structural” URM walls in structural systems where the RC 

frames have been designed to single-handedly resist the lateral loads during seismic events, and 

to calibrate a SAT model for representing the behavior of URM walls in RC frames. Another 

important objective of the experimental study was the assessment of lateral force distribution 

among the two bare RC frames and the infilled RC frame and the redistribution of the lateral 

force upon the damage and eventual collapse of the URM wall. Complete details of this 

experimental study are documented in Hashemi and Mosalam (2007). 

In the next section, the geometry, material properties, and relevant details of the physical 

model are presented. Next, a FE computational model of the physical model described in 

Hashemi and Mosalam (2007) is constructed and calibrated using data from the shake-table 

experiments. Subsequently, the FE model is artificially modified to introduce seismically 

deficient reinforcement details in the RC columns. This modified FE model represents the test-

bed structural system used in application A. The test-bed structural system is subjected to scaled 

ground motion records (N-component) from Lamont 375 station, of the moment magnitude 

2.7=wM  earthquake that struck Düzce, Turkey, in November, 12, 1999. For two different 

intensity levels, the collapse sequence and mechanisms are identified. In addition, time-history 

results representing the simulated dynamic behavior in terms of lateral displacement, base-shear 

force, and fundamental period of vibration are presented and discussed. 

7.1.1 Details of Shake-Table Test-Structure and Experimental Observations 

Figure 7.1a illustrates the physical model of the one-story structural system investigated in 

Hashemi and Mosalam (2007). The structural system consists of three one-bay moment-resisting 
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RC frames arranged in parallel to resist the lateral loads, and infilled with URM wall in the 

middle frame. URM Infill walls are more commonly located on the perimeter of a building, but 

in Hashemi and Mosalam (2007), the URM infill wall is situated in the center due to concerns 

about the shake-table capacity and the undesirable torsional mode of deformation in the test 

structure resulting from possible non-simultaneous failure of perimeter walls. The dimensions 

used in the physical model represent a 75%-sclae of typical dimensions due to the limitation of 

the shake-table size. Accordingly, the three RC frames are 4115 mm wide and 3219 mm high, 

arranged at 1830 mm spacing. The columns are square in cross section with 305 mm side width, 

eight 19 mm diameter longitudinal steel bars, and four branches of 10 mm diameter ties at 95 

mm spacing over 610 mm from the faces of the joints and 152 mm spacing elsewhere. One 

concentric unbonded longitudinal steel rod of 32 mm diameter was installed along each column 

prior to casting. Prior to shake-table testing, these unbonded steel rods were each post-tensioned 

to apply an axial force of 290 kN and 145 kN on individual columns of the infilled and bare RC 

frames, respectively. The longitudinal beams are 267 mm wide and 343 mm deep with three 19 

mm diameter steel bars on each side and 10 mm diameter closed stirrups at 70 mm spacing over 

711 mm from the face of the beam-column joint and 203 mm spacing elsewhere. The middle 

frame is infilled with a URM wall 102 mm thick. Four transverse beams connecting the frame 

corners are 229 mm wide and 305 mm deep with two 19 mm diameter steel bars on each side 

and 10 mm diameter closed stirrups at 305 mm spacing. The three frames are connected at the 

top by a RC slab 95 mm thick, reinforced by a double-layer mesh of 10 mm diameter steel bars 

with 305 mm spacing. The slab extends outside the perimeter beams by 229 mm in each 

direction. 
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(a) 3D layout (b) Shake-table setup 

Fig. 7.1  Shake-table test structure geometry and setup (Hashemi 2007). 

The dimensions and reinforcement of structural members of the physical model are 

summarized in Table 7.1. The nominal yield stress of the 19-mm bars is 458 MPa. The specified 

28-day compressive strength of the standard concrete cylinder is 31 MPa, and the split-tension 

strength is 3.0 MPa. The masonry wall is made of clay bricks with modular size of 102×203×68 

mm, whose average 28-day compressive strength of the standard masonry prism is 17 MPa. The 

average shear strength for constructed masonry panels 102-mm thick is 1.81 MPa. Material 

properties are summarized in Table 7.2. Additional lead weights totaling 320.0 kN were 

uniformly distributed on the RC slab. Figure 7.1b presents a photograph of the test structure prior 

to shake-table testing. The physical model was experimentally tested under unidirectional 

seismic excitation in the north direction as indicated by the arrow labeled “N” in Figure 7.1b. 
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Table 7.1  Geometry and details of shake-table test structure (Hashemi 2007). 

Structural 

member 

Dimensions 

[mm] 
Main reinforcement 

Transverse reinforcement 

(closed stirrups) 

Slab 95 10-mm bars @305 mm t&b* Not applicable 

Column 305×305 
8 19-mm bars 

32-mm post-tensioned rod 

10-mm @ 95 mm over 610 mm from 

column face, then @152 mm 

Longitudinal 

beam 
267×343 3 19-mm bars t&b* 10-mm @ 70 mm over 711 mm from 

column face, then @203 mm 

Transverse beam 229×305 2 19-mm bars t&b* 10-mm @ 305 mm 

Footing 457×356 4 22-mm bars t&b* 10-mm @ 102 mm 

URM wall 102 Not applicable Not applicable 

* top and bottom 

Table 7.2  Material properties of shake-table test structure (Hashemi 2007). 

Material property Value 

Concrete cf ′  [MPa] 31.0 

Concrete tf ′  [MPa] 3.0 

Concrete cover [mm] 15 

Steel yσ  [MPa] 459 

Steel uσ  [MPa] 600 

Steel sE  [GPa] 210 

Steel shE  (assumed) 1.0% sE

 

Figure 7.2 demonstrates the instrumentation used to measure the quantities representing 

the global response of the test structure. Eleven accelerometers were used to measure the 

acceleration response of the slab (7 longitudinal, 3 transversal, and one vertical). Three 

additional accelerometers (longitudinal, transversal, vertical) were installed at the base of the 

URM wall. Eight displacement transducers were used to measure the displacement of the roof 

slab (five transducers) and the shake table (three transducers) relative to the stationary ground. 

Another eight transducers were used to measure the relative in-plane displacements within the 
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roof slab. In addition to global response measurements, 75 displacement transducers (measuring 

diagonal wall and frame deformations, gap opening and sliding between the URM wall and the 

adjacent frame, and average curvature profile along column lengths) and 78 strain gages 

(installed on embedded reinforcing steel bars) were monitored in every shake-table experiment. 

 
 

(b) Foundation plan (b) Roof plan 

Fig. 7.2  Shake-table test structure instrumentation (Hashemi 2007). 

The test structure was subjected to scaled ground motion records from Loma Prieta 

(1989), Northridge (1994) and Düzce (1999) earthquakes. The record intensities were scaled to 

represent decreasing probabilities of being exceeded in 50 years. The higher scale factors were 

limited by the shake-table capacity. The peak ground acceleration ranged within the 

experimental program from 0.27g to 1.93g. The behavior of the test structure exhibited an initial 

stiff response, which was expected due to the presence of the URM wall. At low excitation 

levels, the initial lateral stiffness was approximately 70 kN/mm, the fundamental vibration period 

was 0.135 sec, and the energy-equivalent damping ratio was approximately 4.3%. With the 

increase of the ground motion scale and damage to the URM wall, the stiffness decreased, while 

the fundamental vibration period and the damping ratio increased. The URM wall ultimately 

collapsed due to corner crushing of individual bricks and inclined cracks advancing from the 

corners inwards (at 45° to 60° from the vertical axis). Upon URM wall collapse, flexural cracks 
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had started to appear at the beam-column joints, lateral stiffness had decreased to approximately 

30 kN/mm, while the fundamental vibration period and the damping ratio increased to 

approximately 0.180 sec and 11%, respectively. During the shake-table application of the ground 

motion level corresponding to complete disintegration and subsequent removal of the URM wall, 

these values have reached approximately 10 kN/mm, 0.400 sec, and 13%, respectively. 

One major concern of the structural system investigated in Hashemi and Mosalam (2007) 

was the behavior of the test structure following failure in the stiff URM wall. The failure of the 

URM wall at the corners due to crushing of the URM and the resulting redistribution of 

horizontal forces to columns of the infilled RC frame in a short transfer length created a short-

column situation which is vulnerable to shear failure if inadequate transverse reinforcement was 

provided in the RC columns. In the experimental study, the columns of the infilled RC frame 

showed higher levels of distress than the columns of the bare frames but continued to perform 

mainly in a flexural mode without exhibiting signs of shear failure. After URM wall removal, 

significant flexural cracks spread along most of the column lengths, and the lateral stiffness of 

the structural system decreased significantly, but the columns maintained their vertical load-

carrying capacity, and finally the test had to be stopped due to excessive damage at the column-

footing joints. 

7.1.2 Construction and Calibration of FE Model for Shake-Table Test Structure 

A FE model is constructed using OpenSees and calibrated to match the dynamic behavior of the 

shake-table test structure. An idealized FE model outline in Figure 7.3 presents an overview of 

the model designations for referencing during further discussion of member numerical 

idealization in the following paragraph. The FE model consists of displacement-based beam-

column elements with fiber-discretized cross sections to represent the RC frame members C1 

through C6 and B1 through B3. The URM wall is idealized using two struts S1 and S2, which 

are modeled using compression-only truss elements. Elastic truss elements (shown in dashed 

lines in Fig. 7.3) are used to model the in-plane behavior of the RC slab. Coupled springs (not 

shown) at the base of the infilled frame’s columns C3 and C4 are used to model shear-axial 

interaction. Elastic beam-column elements are used to model beams B4–B7. 
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Fig. 7.3  FE model abstraction of shake-table test structure. 

The element meshing of the bare RC frame C1-B1-C2 is illustrated in Figure 7.4. Nodes 

1 and 2 are restrained from all translations and rotations. All beam-column elements use 

displacement-based distributed plasticity formulation with fiber-discretized cross sections 

(Filippou and Fenves 2004). The beam-column elements used to represent the plastic hinge 

zones of columns C1 and C2, namely elements 111, 113, 121, and 123 in Figure 7.4, have a 

length of 366 mm each (Eq. 5.1). Two Gauss numerical integration points are used along the 

length of each of these elements. With reference to Chapter 4, the cross section of these elements 

is discretized using ConfinedFiberSec2D with a grid of 10×10 ConfinedConcrete layers of fibers 

for the core concrete and 2 extra layers of fibers in each direction for the cover concrete (with 

confining stress set to zero for the latter fibers). The longitudinal steel is modeled using 

buckling-enabled SteelRebar fibers with bar mechanical stress-strain relationship according to 

Menegotto and Pinto (1973). The transverse reinforcement is modeled using a bilinear material 

model. A confinement efficiency factor of 0.75 is estimated according to Mander et al. (1988) for 

the square shape of the cross section with four stirrup branches (one square tie and one diamond 

tie) relative to the circular shape. The beam-column elements at the interior of the columns, 

namely elements 112 and 122, are modeled using nine Gauss numerical integration points each 

and cross-section discretization identical to that of their neighboring elements representing the 

plastic hinge zones. However, since experimental observations showed no damage or tie fracture 

taking place in the RC frames away from the column ends, the steel bars are assigned the 
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material model from Menegotto and Pinto (1973) with bar buckling disabled for computational 

efficiency. Similarly, a constant confining stress equal to that computed assuming yielding of the 

transverse ties is preset and applied to the core concrete fibers. 

The beam-column elements used to represent the plastic hinge zones of beam B2, namely 

elements 101 and 103 in Figure 7.4, have a length of 303 mm each (Eq. 5.1). Two Gauss 

numerical integration points are used along the length of each of these elements. Along with 

element 102, the cross sections of elements 101 and 103 are discretized using a layered mesh of 

5×10 ConfinedConcrete fibers for the core concrete (10 layers parallel to the bending axis) and 

one extra layer of fibers in each direction for the cover concrete. According to the 

recommendations of ACI (2002), a 1030-mm effective width of the RC slab was considered in 

resisting compressive stresses and meshed using one layer of ConfinedConcrete fibers with 

confining stress set to zero. Since no damage or stirrup fracture is experimentally observed in the 

beams, the confining stress for the core fibers is estimated assuming yielding of the transverse 

stirrups and preset during the analysis. The meshing of the other bare frame, C5-B3-C6, is 

similar to the present frame. In the other bare frame, columns C1 and C2 are replaced by C5 and 

C6, and the last and second digits in the respective node and element numbers shown in Figure 

7.4 are changed from 1 and 2 to 5 and 6, respectively. Similarly, beam B1 is replaced by B3, and 

node numbers 101 and 102 are changed to 107 and 108, while element numbers 101, 102, and 

103 are changed to 107, 108, and 109, respectively. 

11

1 2

12

111 112

211 212

101 102

111

112

113

101 102 103

123

122

121

Node

Beam-column FE in plastic hinge zone
General beam-column FE

Core concrete fiber
Cover concrete fiber

Steel bar fiber

Steel tie
Bending axis

Beam cross-sections

Column cross-sections
 

Fig. 7.4  FE mesh of one-story test-bed structure (bare frame). 
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The element meshing of the URM-infilled frame C3-B2-C4 is illustrated in Figure 7.5. 

Nodes 3 and 4 are restrained from all translations and rotations. Nodes 30 and 40, located at the 

same respective locations of nodes 3 and 4, are plotted separately for clarity. The elements and 

nodes corresponding to those of the bare frame are similar to those described in the previous two 

paragraphs. The URM wall is modeled using the two truss elements 1003 and 1004 to represent 

the struts S1 and S2 idealized in Figure 7.3. The axial force-deformation behavior of these truss 

elements is represented by Concrete01, a concrete-like material in OpenSees (Mazzoni et al. 

2004) with a parabolic pre-peak behavior in compression, linear post-peak behavior, and no 

tensile capacity, as illustrated in Figure 7.5. The parameters for this stress-strain curve were 

calibrated in Hashemi and Mosalam (2006) from experimentally measured material properties 

and are reported as 0028.0=moε , 0042.0=muε , 17=mof  MPa, and 2=muf  MPa, 

corresponding to a strut member area of 223 mm2. The zero-length elements 130 and 140 

representing shear-axial interaction in the potential short columns forming as a result of URM 

wall partial collapse are constructed using LimitState material (Elwood 2002) to define shear and 

axial limit surfaces (see Section 3.1). 
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Fig. 7.5  FE mesh of the one-story test-bed structure (infilled frame). 
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The transverse beams B4 through B7 and the RC slab connecting the top of the three 

frames were not observed to exhibit significant signs of damage besides flexural cracking during 

the shake-table tests. Therefore, the flexural stiffness is modeled using elastic beam-column 

elements connecting nodes 11 to 13, 13 to 15, 12 to 14, and 14 to 16 (see Fig. 7.3). The flexural 

stiffness of these beam-column elements is computed assuming a 1000-mm effective width of 

the slab contributing to the beam cross section with 0.7 times the uncracked concrete Young’s 

modulus of elasticity (ACI 2002). Note that the aspect ratio of the RC slab is 2.25:1 which means 

that its vertical loads will be transferred in a one-way path perpendicular to the RC frame 

orientation. The in-plane stiffness of the RC slab is modeled using elastic truss elements 

connecting nodes 11 to 14, 12 to 13, 13 to 16, and 14 to 15 (see Fig. 7.3). During the shake-table 

experiments, the vertical loads on the RC slab remain approximately constant, while the in-plane 

shear forces change as a result of the applied lateral loads due to the shake-table acceleration and 

the different stiffness between the bare and infilled RC frames. The in-plane stiffness of the RC 

slab is computed as a shear panel deforming under applied shear forces and used to calibrate the 

equivalent truss elements. The in-plane shear stiffness is observed in Hashemi and Mosalam 

(2007) to remain approximately constant throughout the shake-table experiments, and can be 

estimated from the published results as equal to 406.0 kN/mm. Assuming linear geometric 

transformation of displacement and force components in the plane of the RC slab leads to 

equivalent truss elements of stiffness 243.15 kN/m each.  

The post-tensioning loads on the columns are applied as external nodal forces at nodes 11 

through 16. Each frame is assumed to be responsible for a tributary area of the RC slab gravity 

load equal to one half of the RC frame spacing on each side, with the infilled frame carrying 

twice as much gravity load as the bare RC frames. The distributed masses and gravity loads from 

the structural elements are lumped at their end-nodes. Co-rotational geometric transformation is 

used for all elements (Crisfield 1990). The numerical time integration is performed using the 

Newmark β -method assuming constant acceleration during each time step (Newmark 1959). 

Based on snap-back test results in Hashemi and Mosalam (2007), a stiffness-proportional viscous 

damping ratio 045.0=ζ  is assumed to exist in the fundamental mode of vibration (Chopra 

2001). The stiffness matrix considered in computing the damping matrix is computed as the 

mean of the initial stiffness matrix and that of the last converged analysis step. The reason for 



 

209 

selecting this is to avoid rapid numerical reduction in viscous damping with the spread of 

structural damage and the corresponding decrease of global stiffness. 

The FE model’s estimation of the fundamental vibration period is 0.121 sec, compared to 

an experimentally recorded value of 0.135 sec. This 10.4% difference can be attributed to the 

development of shrinkage cracks in the test structure that are absent from the FE model. 

However, the FE model reasonably reproduces the force-displacement time histories of the test 

structure at levels of ground motion up to and including collapse of the URM wall. Example 

results from the model calibration study are demonstrated in Figure 7.6. The input ground motion 

used for exciting the shake-table test structure was recorded during the 1994 Northridge 

earthquake (Tarzana station in the 90° direction) and scaled to PGA = 0.61g. The ground motion 

record used as input in the FE simulation is the output (i.e., filtered) acceleration signal from the 

shake table as measured by the built-in accelerometers in the driving actuators instead of the 

input command signal to the shake table, and is illustrated in Figure 7.6a. The experimentally 

observed and computationally simulated displacement time-histories of the roof, measured at the 

middle frame in the shaking direction, are compared in Figure 7.6b. It can be observed that the 

FE model results demonstrate general agreement with the experimental results, while 

underestimating the maximum displacement response (5.26 mm simulated compared to 6.56 mm 

observed, i.e., 19.8% error) and generally exhibiting smaller displacement magnitudes. This 

discrepancy is attributed to the tensile strength assigned to the concrete material model, and its 

effect on the initial stiffness of the FE model during the simulation, as compared to the test 

structure that had already been partially cracked due to shrinkage and more importantly previous 

shaking conducted on it before this level of shaking of PGA = 0.61g 

To investigate the role of concrete tensile strength, the FE simulations are repeated with 

the concrete tensile strength ignored, hypothetically assuming fully cracked cross sections prior 

to shake-table testing. The computationally simulated (with concrete tensile strength set to zero) 

and experimentally observed displacement time-histories of the roof are compared in Figure 

7.6c. It can be observed that ignoring the tensile strength of concrete leads to an improved 

estimate of the maximum lateral displacement (5.89 mm simulated compared to 6.56 mm 

observed, i.e., 10.2% error) and a closer agreement in displacement values during the early 

interval of the dynamic response before the PGA has been reached (i.e., at time values smaller 
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than 8 sec), which suggests that some cracking had pre-existed in the physical model due to prior 

shake-table tests performed at lower seismic intensity levels. However, ignoring the tensile 

strength of concrete results in overestimating the lateral displacement magnitude in the rest of the 

record after the PGA has been reached (i.e., at time values larger than 8 sec), since the absence of 

tensile strength results in less dissipation of hysteretic energy through inelasticity (i.e., material 

damping). Such hysteretic energy dissipation would have been caused by the advancement of 

cracks and subsequent softening in previously uncracked concrete fibers due to the stronger 

shaking and higher deformation demands experienced during the present—higher—seismic 

intensity level. 
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90° direction, PGA = 0.61g) 
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(b) Roof displacement history with concrete tensile strength included in FE model 
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(c) Roof displacement history with concrete tensile strength ignored in FE model 

Fig. 7.6  Simulated and experimental test data of shake-table test structure. 
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7.1.3 Modified FE Model for One-Story Test-Bed Structural System 

After calibration, the FE model of the shake-table test structure is artificially weakened by 

introducing seismically deficient details in individual RC columns where plastic hinges are 

expected to form. The transverse tie spacing is increased to 150 mm, which is half the least 

column dimension, the maximum value allowed by the ACI building code used in 1960s’ 

construction (ACI 1963). This increased transverse tie spacing makes the longitudinal bars more 

susceptible to bar buckling. In addition, it makes columns C3 and C4 more susceptible to the 

formation of a short-column mechanism following URM wall partial collapse, leading to shear 

failure and subsequent collapse in a shear-axial mode. Lap-splices are inserted at the column-

footing level of columns C5 and C6 in order to observe the resulting difference in RC frame 

response and prevent simultaneous (non-progressive) collapse of the otherwise-symmetric bare 

frames. The length of the lap-splice is 20 times the bar diameter which meets the minimum 

requirements of 1960’s construction (ACI 1963) and is deemed inadequate according to current 

standards (ICC 2003). In the applications presented in this chapter, the strut elements 

representing the URM wall are assumed to collapse in a brittle manner and are removed upon 

softening to mof75.0 , representing a case of brittle URM wall collapse. 

Preliminary analysis indicated that columns C3 and C4 are likely the first columns to 

axially collapse—almost simultaneously—and therefore the transverse beams B4–B7 will 

experience large deformations as a result of the axial load from the collapsed columns being 

redistributed to the intact four corner columns C1, C2, C5, and C6. It is likely that these beams 

will be subjected to excessive transverse (vertical) displacements leading to crushing of concrete 

in compression and subsequent loss of bending moment capacity. However, due to the continuity 

of the longitudinal steel bars along the full length of these beams, they will subsequently act as 

catenaries supporting the vertical load through the action of inclined resisting axial forces in a 

manner similar to inclined cables until the longitudinal steel fractures. In addition, the catenary 

beams’ capacity to support vertical loads will exhibit a hardening response with the increase of 

transverse displacement due to the increase in inclination angle and thus become more capable of 

carrying higher vertical component of the resisting axial force. 
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In order to model the effect of the large-displacement behavior of beams B4 through B7 

as discussed above, an independent FE simulation has been conducted separately of the modified 

FE model. The geometric setup of the latter FE simulation is illustrated for beams B4 and B6 in 

Figure 7.7a, which shows a side view of the modified FE model with the elements and nodes 

representing the model after column C3 has been removed. A monotonic downward 

displacement is imposed at node 13. Beams B4 and B6 are modeled using a total of 12 

displacement-based fiber-discretized beam-column elements with five Gauss integration points 

each. The cross-section discretization is similar to that of the beam cross section illustrated in 

Figure 7.4. Co-rotational geometric transformation is used. The reinforcing steel fracture strain is 

assumed equal to 0.130 as a typical value, since it was not reported in Hashemi and Mosalam 

(2007). The simulation is performed under displacement control to compute the relationship 

between the downward displacement at node 13 and the vertical reaction at node 1 which 

represents one half of the applied vertical load required at node 13. 

This relationship as predicted by the OpenSees simulation is illustrated in Figure 7.7b. 

The simulated response reaches the moment capacity at a vertical reaction force of 244.5 kN and 

a displacement of 22.25 mm, and softens due to crushing of RC fibers (exhibiting a brief 

numerical irregularity) to a vertical reaction of 164.5 kN at a displacement of 36.6 mm, and then 

starts to exhibit hardening at an increasing rate through catenary action as the inclination angle 

increases nonlinearly with the downward displacement until fracture is predicted in the 

longitudinal steel at a vertical reaction of 449.8 kN and a displacement of 486.2 mm. In order to 

be used with the modified FE model described earlier in this section, this relationship is idealized 

by a multi-linear envelope defined by the force coordinates of 245 kN, 150 kN, and 450 kN at 

the corresponding displacement coordinates of 20 mm, 45 mm, and 490 mm. 

Four nonlinear spring elements are used to represent the idealized envelope in Figure 

7.7b. Each of these nonlinear spring elements is then defined to describe the relationship between 

the vertical DOFs at the end-nodes of each transverse beam B4 through B7 and attached to each 

beam’s end-node nearest to nodes 13 and 14. Prior to removal of column C3 (or C4), the 

behavior of these nonlinear springs is in the linear-elastic range (i.e., downward displacement 

less than 20 mm). Following the removal of column C3 (or C4), no significant load reversal is 

expected in these nonlinear springs due to the vertical load they are required to transfer to the 



 

intact columns. Momentary load-reversal, if any, follows the initial stiffness. Reaching a 

downward displacement of 490 mm constitutes the element removal criterion for these nonlinear 

springs. The transverse beams are considered axially rigid perpendicular to the RC frames, since 

only a two-dimensional excitation of the FE model is conducted (in-plane with the RC frames).
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Fig. 7.7  OpenSees simulation of large-displacement response in transverse beams. 
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7.1.4 Ground Motion Selection and Scaling 

The ground motions recorded during the Düzce (1999) earthquake are characterized by two 

intervals of high-amplitude shaking. Therefore, a structural system that has been badly damaged 

during the first interval of high-amplitude shaking may as a result completely collapse during the 

second interval of high-amplitude shaking. The ground motion record illustrated in Figure 7.8, 

which has been used in the shale-table experiments after filtering of the Lamont station record in 

the north direction, has a scaled PGA of 1.26g. It is used as the reference ground motion record 

and scaled for conducting the deterministic progressive collapse simulations of application A. 

Scaling of the ground motion record is conducted by matching the elastic 5%-damped spectral 

acceleration of the scaled record at the fundamental period of vibration (hereafter referred to by 

%)5,( 1TSa ) to a spectral acceleration value of 3.39g. This value is computed from the uniform 

probabilistic hazard curves published by the U.S. Geological Survey (USGS 2002), and 

corresponds to 2% probability of being exceeded in 50 years (hereafter referred to as 2/50 hazard 

level) at the chosen location of the building site. This hazard level corresponds to the maximum 

considered earthquake (MCE) for the design of new structures, with an estimated return period 

(RP) of 2475 years, according to the National Earthquake Hazard Reduction Program guidelines 

(NEHRP 2001). In addition to the 2/50 hazard level, one other simulation was conducted for the 

FE model subjected to a “rare” event of twice the scale factor, i.e., =%)5,( 1TSa  6.78g 

(corresponding to a hazard level between 1/250 and 1/500). The specifics of site location 

selection are discussed in detail in Section 7.3. 
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Fig. 7.8  Reference ground motion record used in application A. 
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7.1.5 Results and Discussion 

Three time-history plots representing the simulated global response of the FE model for the case 

of =%)5,( 1TSa 3.39g are illustrated in Figure 7.9 during the time interval involving high-

amplitude shaking. Figure 7.9a illustrates the horizontal displacement time history at node 14 at 

the intersection of column C4 and beams B2, B5, and B7, with the significant events leading to 

collapse as indicated. Complete collapse and onset of free-fall takes place after approximately 

16.30 sec. It is initiated by the loss of capacity of the URM wall, corresponding to compression 

failure in struts S1 and then S2, at 5.17 and 5.33 sec, respectively. Following the removal of strut 

S1, the resulting increase in the shear force demand on the columns of the infilled frame, i.e., C3 

and C4, results in shear failure in elements 130 and 140 (see Fig. 7.5), respectively. 

Concurrently, the increase in lateral deformation demands on columns C5 and C6 results in the 

initiation of lap-splice failure. The first indication of bar buckling is estimated at 5.59 sec in 

column C2. The damaged FE model survives the first interval of high-amplitude shaking and 

continues to support its gravity load while exhibiting lateral strength degradation. However, the 

damaged FE model does not survive the second interval of high-amplitude shaking. At 

approximately 15.70 and 16.00 sec, column C2 and then column C6 suffer from fracture of the 

transverse ties and loss of confinement. These successive failures and subsequent FE removals 

result in disproportionate axial load redistribution to shear-damaged column C4, which promptly 

collapses due to reaching the axial force-lateral drift limit curve of the zero-length element 140. 

With all columns on one side of the structure removed, a side-sway global collapse mechanism 

takes place. The remaining columns, C3, C1, and C5 soon collapse in sequence. The mode, 

sequence, and time of FE collapse are summarized in Table 7.3. 

Figure 7.9b illustrates the vertical displacement time history at nodes 12, 14, and 16 

(nodes 14 and 16 almost overlap due to the near-simultaneous removal of columns C4 and C6). 

The vertical displacement starts to exhibit disproportional increase once the column supporting 

the corresponding node is removed at the times indicated in Figure 7.9a, and ultimately exhibits 

unrestrained increase indicative of free-fall. Figure 7.9c illustrates the total base shear force time 

history. A maximum base shear force of 776 kN is recorded shortly before the ultimate collapse 

of the URM wall (strut S2), and strength degradation follows. At approximately 15.5 sec, a base 
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shear force of 610 kN is recorded. This places a significant lateral force demand on the columns 

of the RC frames which are already severely damaged and therefore start to collapse on one side 

of the structural system. This successive column collapse triggers excessive accelerations in the 

RC slab and initiates the side-sway mechanism from which the structural system does not 

recover. 
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(a) Horizontal displacement at node 14 
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(b) Vertical displacements 
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(c) Total base shear force 

Fig. 7.9  Partial simulated time-history results for =%)5,( 1TSa 3.39g. 
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Table 7.3  Simulated sequence of structural system collapse for =%)5,( 1TSa 3.39g. 

Collapse mode Wall strut Confinement loss Shear-Axial Confinement loss 

Collapsed FE S1 S2 C2 C6 C4 C3 C1 C5 

Time [sec] 5.170 5.330 15.715 16.041 16.067 16.276 16.285 16.310 
 

In the case of =%)5,( 1TSa 6.78g, the simulated events leading to initiation of collapse are 

similar to those of the previous case, namely the collapse and removal of the wall struts followed 

by the onset of shear failure in the RC columns of the middle frame. However, the eventual 

sequence of FE collapse and resulting global collapse mechanism are different. As a result of the 

higher intensity, the FE model does not survive the first interval of high-amplitude shaking and 

completely collapses in less than 7.00 sec. 

Figure 7.10a illustrates the horizontal displacement time history at nodes 11, 13, and 15 

starting from shortly before the initiation of URM wall collapse until complete collapse for 

=%)5,( 1TSa 6.78g. The three plots are nearly coincidental for the three nodes prior to collapse 

and removal of three columns and remain close afterwards. This suggests that the membrane 

action of the RC slab—even though its shear rigidity is modeled—results in the structure 

behaving essentially as a SDOF plane frame prior to the removal of the vertical load-carrying RC 

columns. The progression of collapse in the structure is initiated by the loss of capacity of the 

URM wall indicated by compression failure in strut S1 at 4.75 sec, followed by shear failure in 

the columns of the middle frame (i.e., C3 and C4). The compressive failure of strut S2 takes 

place shortly afterwards at 4.80 sec, followed by lap-splice failure in columns C5 and C6. At 

5.20 sec, the first bar buckling is detected in column C2 and then C1. At 6.14 sec, shear-damaged 

columns C3 and C4 collapse due to excessive lateral displacement demands resulting in the loss 

of axial load capacity (i.e., reaching the axial force-lateral drift limit curve) in zero-length 

elements 130 and 140, respectively. The increases in axial force and lateral displacement 

demands result in severe buckling in the longitudinal bars and complete loss of bond in lap-

splices before the remaining columns successively collapse due to fracture of the transverse ties 

and loss of confinement. The mode, sequence, and time of FE member collapse and subsequent 

removal are summarized in Table 7.4. 
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Figure 7.10b illustrates the time-history response of the vertical displacement in nodes 

11, 13, and 15. The effect of including the catenary action of the transverse beams is evident 

after the collapse and removal of column C3. Node 13 starts to move downwards, yet at a slower 

rate than that of free-fall due to the axial load being transferred to columns C1 and C5 through 

beams B4 and B6, respectively. Only after the removal of column C1, the downward motion of 

node 13 becomes unrestrained. Figure 7.10c illustrates the total base shear force time history. A 

maximum base shear force of 781 kN is experienced shortly before the ultimate collapse of the 

URM wall (strut S2). 

The progression of damage in the FE model can be monitored using the change in its 

dynamic properties and linked to major events of individual FE collapse and removal. The 

fundamental period of vibration based on the eigen solution of the tangent stiffness matrix is 

selected as a global measure of dynamic properties since it captures the abrupt changes in 

stiffness caused by element removal. Figure 7.11 illustrates the evolution of the simulated 

fundamental period of vibration in the case of =%)5,( 1TSa 6.78g for the time range 

corresponding to Figure 7.10. This plot has been smoothed using a running-mean averaging 

procedure with a window size of 0.20 sec (MATLAB 2007) in order to eliminate imaginary 

values computed during times when the structure is exhibiting softening behavior and the global 

tangent stiffness matrix is not positive-definite; hence the length of the record is slightly 

shortened due to the averaging procedure. 
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(a) Horizontal displacement  
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(b) Vertical displacement 
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(c) Total base shear force 

Fig. 7.10  Partial simulated time-history results for =%)5,( 1TSa 6.78g. 

 

Table 7.4  Simulated sequence of structural system collapse for =%)5,( 1TSa 6.78g. 

Collapse mode Wall strut Shear-Axial Confinement loss 

Collapsed FE S1 S2 C3 C14 C2 C1 C5 C6 

Time [sec] 4.750 4.800 6.135 6.138 6.165 6.411 6.583 6.610 
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The initial fundamental period is 0.121 sec, and starts to increase with the spread of 

damage to the URM wall until it reaches 0.35 sec by the time the URM wall collapses. The 

fundamental period continues to increase afterwards due to shear failure in the columns of the 

infilled frame. A brief stability in the fundamental period is followed by an increase up to 0.90 

sec during the time intervals in which lap-splice failure and bar buckling start to take place. 

Afterwards, the fundamental period momentarily stabilizes and then starts to decrease due to the 

closure of cracks and increased column stiffness during an interval of relatively low-amplitude 

shaking. 

Following the collapse of column C3, the fundamental period starts to increase and is 

further amplified by the collapse of columns C4 and C2 to 2.70 sec. The fundamental period then 

decreases momentarily due to the change in the direction of shaking before increasing at the 

collapse of column C1 to 2.75 sec, and then momentarily decreases again. Since the damage 

induced in each side of the column face is dependent on the loading direction, the lateral stiffness 

of a column severely damaged in one direction can be momentarily higher during unloading in 

the opposite direction and the global stiffness matrix is therefore stiffer during intervals of 

displacement reversal. On the contrary, the abrupt removal of a column and removing its 

contribution to the stiffness matrix during a displacement cycle results in a sudden decrease in 

global stiffness and a corresponding increase in the fundamental period. However, the large 

“spike” in value is unrealistic as will be discussed in Section 7.2.5. Following the almost-

simultaneous removal of the remaining two columns (i.e., C5 and C6), the stiffness matrix 

becomes singular and the fundamental period increases indefinitely. 
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Fig. 7.11  Simulated evolution of fundamental vibration period ( =%)5,( 1TSa 6.78g). 
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Figure 7.12 graphically compares the two different global collapse mechanisms 

experienced for the two levels of earthquake intensity discussed above, namely 

=%)5,( 1TSa 3.39g and 6.78g. For each case, the original geometry of the FE model is plotted as 

well as the deformed geometry (without displacement amplification) at a time step during the 

analysis in which only three RC columns are intact. After collapse of the URM wall, the 

simulation results illustrated in Figure 7.12a indicate initial gravity-load collapse of two corner 

columns followed by one intermediate column on the same side of the structural system, while 

the RC slab behaves as a rigid diaphragm. The structural system will eventually collapse in a 

lateral side-sway mode which coincides with the direction of shaking in the plane of the URM 

wall, with significant debris expected to spread on one side outside the structure. In contrast, 

following URM wall collapse, the simulation results depicted in Figure 7.12b indicate initial 

gravity-load collapse of two interior columns, causing flexural failure in the RC slab along its 

major bending axis above the collapsed URM wall. The structural system will eventually 

collapse by caving inwards, with the outer frames and the RC slab folding toward the inner 

frame. Consequently, most of the debris is expected to fall within the footprint of the structure 

and not to spread outside it. 
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Fig. 7.12  Comparison of global collapse mechanisms resulting from different 
ground motion intensity levels of Düzce 1999 earthquake. 

7.2 APPLICATION B: SENSITIVITY ANALYSIS OF PROGRESSIVE COLLAPSE 
IN FIVE-STORY RC FRAME/URM WALL SYSTEM 

A five-story RC frame/URM wall structural system is adopted as a test-bed for application B in 

order to investigate the progressive collapse behavior of multi-story structural systems. The five-

story structural system is designed to include seismically deficient RC column details, similar to 
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those investigated in application A. As a result of the relatively stiff URM wall and the 

seismically deficient column details, the collapse of the URM wall in any given story and the 

subsequent increased force and deformation demands on the RC columns are expected to 

significantly change the dynamic characteristics and modal properties of the structural system. 

The resulting localization of further damage and deformation in the story with collapsed URM 

wall may result in a soft-story collapse mechanism if the RC columns of this story cannot 

maintain their gravity load-carrying capacity under such increased lateral deformation demands. 

The progressive collapse response is thus dependent on the stiffness of the URM wall, the 

mass and gravity loads of each story, the amount of damping in the structural system (which 

plays a role in determining the maximum deformation demands and the effect of higher modes of 

vibration), in addition to the intensity of the earthquake, all of which are uncertain random 

variables. The simulated collapse progression and its effect on the dynamic properties of the test-

bed structural system of application B subjected to a MCE ground motion record are first 

investigated. Two simulated response variables, namely the maximum story drifts and the time at 

incipient collapse, are defined and discussed. In addition, the change in modal vibration periods 

with the progression of collapse in the structure is also investigated. Finally, the influence and 

relative importance of uncertain parameters defining the aforementioned random variables are 

assessed using the Tornado diagram analysis, a deterministic method for the analysis of 

sensitivity in the simulated response variables to an estimated range of variation in the individual 

(i.e., assumed uncorrelated) uncertain parameters. 

7.2.1 Five-Story Test-Bed Structural System 

The test-bed structural system adopted for application B is a three-bay five-story planar RC 

frame infilled with a URM wall in the middle bay of each story. This planar structural system is 

assumed to represent a uniform module of a typical building structure constructed in the 1960s. 

The RC frames and URM wall of the reference structural system are similar in dimensions and 

reinforcement to those of the one-story structural system investigated in application A, except 

where mentioned in this section. The spacing between the individual plane frames in the building 

structure is assumed to be 3500 mm, since the frame spacing of 1830 mm adopted in Hashemi 
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(2007) was imposed by the floor area of the shake table available. The design dead and live loads 

on each floor, including the roof for simplicity, are adopted from Hashemi (2007) and rounded to 

5.5 kPa and 2.5 kPa, respectively. 

The dimensions and steel reinforcement of the RC frame and URM wall members were 

described in Section 7.1.1. In accordance with the design recommendations for 1960s 

construction (ACI 1963), the spacing between the transverse ties is increased to 150 mm as 

discussed in Section 7.1.3. Moreover, a lap-splice in the longitudinal reinforcement is inserted 

above the floor level of each column in the second and fourth floors. As discussed in Section 

7.1.3, the length of this lap-splice is taken according to ACI (1963) as equal to 20 times the 

longitudinal bar diameter.  

7.2.2 FE Model of Five-Story Test-Bed Structural System 

The geometry of the FE model representing the five-story test-bed structural system for 

application B is illustrated in Figure 7.13. This model consists of displacement-based beam-

column elements to represent the RC frame members, compression-only diagonal truss elements 

to represent the URM walls, and coupled shear-axial zero-length elements at the bases of the 

columns of the intermediate bay which are susceptible to shear failure following the partial 

collapse of the URM wall in each story. Frame members are referred to by the letter C for 

columns and B for beams, followed by the floor and bay numbers. Struts representing the 

diagonals of a URM wall bay are referred to by the letter “S,” followed by the floor and the bay 

number at the lower node. The coupled zero-length elements are shown only at the foundation 

level (nodes 3 and 4) for clarity of illustration. Meshing of the FE model and fiber-discretization 

of the beam-column element cross sections have been previously discussed in Sections 7.1.2 and 

7.1.3. 

Nodes 1 through 4 are fully restrained from all translations and rotations. Masses and 

gravity loads are lumped at the nodes. Co-rotational geometric transformation is used for all 

elements (Crisfield 1990). Material properties used in the FE model were previously listed in 

Table 7.2. The FE model has simulated vibration periods of 0.446, 0.146, 0.086, 0.081, and 

0.064 sec for the first five modes of free vibration. Rayleigh viscous damping is assumed, with a 
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damping ratio of 05.0=ζ  (see Section 7.2.4) for the first and third modes of vibration by 

combining mass- and stiffness-proportional damping (Chopra 2001). Hence, the respective 

multipliers of the mass and stiffness matrices are found to be 0.807 Hz and 0.834 kHz-1, 

respectively. 
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Fig. 7.13  FE model of five-story test-bed structural system. 
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7.2.3 Reference Ground Motion Record and Hazard Level 

The filtered ground motion record that corresponds to the Düzce (1999) earthquake as previously 

defined in application A is adopted as the reference ground motion record for application B as 

well. This ground motion record has been discussed in Section 7.1.4 and shown in Figure 7.8. 

The MCE hazard level of 2/50 is selected as a reference hazard level for application B. 

Scaling of the ground motion is conducted taking into consideration the significant 

changes that take place in the test-bed structural system’s stiffness and dynamic characteristics as 

a result of collapse in the URM wall panels. The simulated fundamental vibration period 

increases from 0.446 to 0.591 sec upon elimination of the strut elements in the first story, which 

have been observed during preliminary simulations on the FE model to be the first structural 

elements to collapse. Hence, an elastic 5%-damped first-mode spectral acceleration of the FE 

model is computed as an average of the spectral acceleration values for the indicated range of 

vibration periods. This average value is denoted by %)5,( 1TSa  and is found equal to 1.038g. The 

elastic pseudo-acceleration response spectrum and the averaging process are illustrated in Figure 

7.14. The ground motion record is scaled so that the value of %)5,( 1TSa  for the scaled record 

would match the target design value corresponding to the reference hazard level at the selected 

building site location (USGS 2002). This target spectral acceleration value is computed for the 

average first-mode vibration period to be 2.493g. 
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Fig. 7.14  Elastic 5%-damped response spectrum used in application B. 

7.2.4 Modeling Uncertainty in Parameters for Deterministic Sensitivity Study 

The effect of uncertainty in the system parameters is investigated and compared to the effect of 

uncertainty in the earthquake hazard level to determine their relative importance. This 

comparison is conducted using the Tornado diagram analysis, a deterministic method developed 

to numerically determine the sensitivity in a simulated response quantity of interest to 

uncertainty in input parameter values. Using this method, the relative importance of accounting 

for uncertainty in the input parameters with respect to the resulting accuracy and reliability of the 

simulated output is established. In this method, a reference point is initially set by computing the 

simulated response quantity using a set of reference values (e.g., the estimated mean values) of 

the uncertain input parameters. Next, these input parameters, assumed uncorrelated, are 

individually varied within a given range of uncertain values typically parameterized by their 

COV. The resulting changes in magnitude of the simulated response quantity are computed, 

compared, and sorted across the different parameters. These magnitudes are hereafter referred to 

as “swings” and are adopted as a sensitivity measure. A graphic comparison of the computed 
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swings is used to establish the relative importance of the input parameters. A larger swing 

indicates a higher relative importance for the associated input parameter and, consequently, a 

larger influence for the uncertainty associated with the input parameter in determining the 

outcome of the simulation. An extensive review of the Tornado diagram method can be found in 

Lee and Mosalam (2005), and applications of this method similar to the present study can be 

found in Binici and Mosalam (2007) and Talaat and Mosalam (2007). 

For the test-bed structural system defined in application B, the simulated maximum first-

story drift and time at incipient collapse are defined as the output quantities of interest. The 

uncertain parameters investigated in this application are the mass (i.e., gravity load on the 

structural system) the stiffness of the URM wall, the viscous damping ratio, and the seismic 

hazard level determining the intensity of the ground motion. The reference gravity load on the 

building is related to the expected occupancy of the structure and is taken as equal to the seismic 

design recommendations of the full dead load in addition to a live load factor LL = 0.25, i.e., one 

quarter of the design live load for gravity (NEHRP 2001). The maximum gravity load is assumed 

to correspond to a case of full occupancy and full live load (LL = 1.00), while the minimum 

gravity load on the building is assumed to correspond to a case of no occupancy and no live load 

(LL = 0.0). 

The uncertain stiffness of the URM wall is calculated by considering the uncertain 

maximum strength of the diagonal struts mof  (see Section 7.1.2) and a deterministic 

corresponding strain 0028.0=moε . Hence, the initial stiffness of the URM wall, momomi fE ε/2= , 

has the same distribution as mof . The non-negative mof  is assumed to have a lognormal 

distribution. The sample mean and COV of mof  are estimated in Hashemi (2007) from 

experimental material tests to be 17.0 MPa and 0.10, and taken as estimates of the population 

median (which is more robust and more typically used than the mean for lognormal distribution) 

and COV, respectively. The reference value of mof  is taken equal to the estimated mean value. 

The mean, maximum and minimum values of mof  are computed taking into consideration the 

estimated level of uncertainty (represented by the COV value) and an assumed confidence 

interval. Since the uncertain gravity load is varied over the range from no occupancy to full 

occupancy (i.e., corresponding to a near-certain confidence interval), the uncertain stiffness of 
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the URM wall is assumed to vary over a confidence interval of 0.997, in order to establish a 

common ground for comparing the resulting sensitivity. According to the lognormal distribution, 

these values are computed as follows (Ang and Tang 1975): 

2
)5.0(

ˆ1ˆˆ δ+= momo ff  (7.1)

( )( ) ⎥⎦
⎤

⎢⎣
⎡ +=

5.02
)5.0(

max ˆ1ln3expˆ δmomo ff  (7.2)

( )( ) ⎥⎦
⎤

⎢⎣
⎡ +−=

5.02
)5.0(

min ˆ1ln3expˆ δmomo ff  (7.3)

where mof̂ , )5.0(m̂of , and δ̂  are  the estimated mean, median, and COV, respectively. 

Similar to the URM wall stiffness, the viscous damping ratio is treated as a random 

variable with a lognormal distribution. Preliminarily, a median value of 045.05.0 =ζ  is adopted 

in accordance with application A (see Section 7.1) and a relatively large COV of 0.4 is 

preliminarily assumed to represent the uncertainty corresponding to typical structural 

engineering applications. Following the example of Equations (7.1)–(7.3), mean, maximum, and 

minimum values of 0.0487, 0.1019, and 0.0199, respectively, are computed for a 0.997 

confidence interval. Since viscous damping is often subjectively estimated in dynamic structural 

analysis at rounded percentage values, the reference (mean), maximum, and minimum values 

used in the Tornado diagram analysis are shifted to 0.05, 0.10, and 0.02, respectively, which 

coincides with the practical range typically used in structural engineering analyses, thus 

approximately fitting the arbitrarily estimated COV value of 0.4. 

The reference seismic hazard level is set to the 2/50 MCE level (NEHRP 2001). The 

sensitivity of the collapse response is investigated between the hazard levels of 1/50 and 3/50. 

The values of the corresponding elastic spectral accelerations are listed along with the uncertain 

system parameter ranges in Table 7.5. The structural system and FE model corresponding to the 

reference set of parameter values are hereafter referred to as the reference structural system and 

reference FE model, respectively. 
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Table 7.5  Statistics of uncertain system parameters in Tornado diagram analysis. 

Parameter Distribution Reference COV Minimum Maximum 

miE [GPa] Lognormal 6.07 0.1 4.46 8.14 

ζ  [%] Lognormal 5.0 0.4 2.0 10.0 

LL [%] NA* 25.0 NA* 0.0 100.0 

%)5,( 1TSa  [g] 

(Hazard level) 
NA* 2.493 

2/50 
NA* 

2.205 

3/50 

2.915 

1/50 

* Not Applicable 

7.2.5 Progressive Collapse Response of Reference Five-Story Structural System 

The simulated response of the reference five-story structural system eventually exhibits global 

collapse due to the formation of a soft first-story mechanism. The diagonal struts representing 

the URM wall in the first-story collapse and are removed at 5.061 and 5.581 sec for struts S12 

and S13, respectively. The removal of the diagonal struts results in shear failure in the first-story 

columns C12 and C13. At 7.761 sec, column C13 loses its gravity load-carrying capacity due to 

shear-axial interaction and is removed from the FE model, closely followed by the removal of 

column C12 at 7.826 sec. The removal of these two columns results in beams B11, B12, and B13 

acting as catenaries and therefore causing both remaining columns of the first story (i.e., C11 and 

C14) to drift laterally inwards. The increase in first-story lateral drift results in severe bar 

buckling and ultimately collapse of column C11 due to fracture of the transverse ties at 7.891 

sec. The structural system starts to undergo almost-rigid body rotation at the connection with its 

one remaining column in the first story, i.e., C14, until the imposed curvature on the column 

cross section results in its flexure-axial collapse due to transverse tie fracture at 8.229 sec. The 

structure then undergoes unrestrained free-fall. It should be noted that the formation of the soft-

story mechanism after the removal of the two columns C12 and C13 results in excessive lap-

splice slip in the second-story column C21, which ultimately collapses at 7.690 sec. The 

resulting redistribution of forces contributes to the collapse of the lower-story column C11 taking 

place before column C14. The times corresponding to individual FE removal are indicated on the 
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story drift time-history plots in Figure 7.15. The sequence, mode, and time of FE collapse are 

summarized in Table 7.6. 
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Fig. 7.15  Simulated drift time-histories of reference five-story structural system. 

Table 7.6  Simulated sequence of collapse for reference five-story structural system. 

Collapse mode Wall strut Shear-Axial Confinement loss 

Collapsed FE S12 S13 C13 C12 C21 C11 C14 

Time [sec] 5.061 5.581 6.761 6.826 7.690 7.891 8.229 

 

The effect of progressive collapse on the simulated structural system response can be 

demonstrated by interpreting the time-history responses of story drifts illustrated in Figure 7.15. 

The story drift is defined as the average drift ratio (i.e., difference in lateral displacements 

normalized by story height) calculated from the four pairs of nodes located at the top and bottom 

ends of each column (e.g., node pairs (11, 1), (12, 2), (13, 3), and (14, 4) for the first-story drift; 

see Fig. 7.13). The story drifts are plotted for the first and fifth stories, as well as the overall drift 
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computed at the roof relative to the ground floor. The times corresponding to FE removal are 

also indicated in Figure 7.15. The story drift time-histories for the first and fifth story before 

removal of the diagonal strut S12 are similar to each other and to the overall drift. This indicates 

that the dynamic response is dominated by the first mode of vibration, which is in accordance 

with modal analysis results of another five-story structural system modeled in Hashemi (2007) 

with similarity in general characteristics to this reference five-story structural system. 

After removal of the first story diagonal struts, the first-story drift increases 

disproportionately compared to the fifth-story drift as the first mode shape changes due to the 

localization of damage in the weakened first story and as the participation of higher modes of 

vibration potentially increases. This leads to shear failure in columns C12 and C13 and the 

initiation of the soft-story mechanism due to localization of further deformation in the weakened 

first story. This is indicated by the increase in magnitude and the permanent positive shift in the 

first-story drift values. The maximum first-story drift value prior to collapse is 0.037 at 7.687 

sec. During the same time interval, the fifth-story and overall drifts increase to maximum values 

of 0.013 and 0.017, respectively. The subsequent removal of column C21 and then C11 on one 

side of the FE model results in a collapse mode in which the structural system undergoes nearly 

rigid-body rotation about the first-story top end of column C14 (i.e., node 14) before its removal 

(see Fig. 7.18c). Hence, the first-story drift values start to exhibit unrestrained increase in the 

positive direction, while the fifth-story and overall drifts exhibit unrestrained increase in the 

negative direction. The time at incipient collapse is defined as the time at which unrestrained 

increase in inter-story drift is initiated, as illustrated in Figure 7.15. Accordingly, the maximum 

“meaningful” drift values are only defined for the time period preceding incipient collapse, 

which takes place at 7.891 sec, coincidental with the removal of column C11. 

The effect of collapse progression on the dynamic properties of the structural system, as 

represented by the simulated periods of vibration for the first four modes, is demonstrated in 

Figure 7.16. The fifth vibration period is not illustrated because it does not exhibit different 

behavior from the first four and cannot be included in the same page without severely reducing 

the scale of the plots. These plots have been smoothed using a running-mean averaging 

procedure with a window size of 0.20 sec as previously discussed in Section 7.1; hence the 

length of the record is slightly shortened due to the averaging procedure. As stated earlier, the 
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initial periods of vibration are, respectively, 0.446, 0.146, 0.086, and 0.081 sec, and start to 

increase with the spread of damage to the URM walls. At approximately 5.05 sec, when the 

diagonal strut S12 reaches its compressive strength and starts to exhibit softening, the vibration 

periods have elongated by a factor ranging from 1.9 to 2.8 where these elongated periods are 

0.991, 0.405, 0.240, and 0.150 sec. The subsequent softening response results in a momentary 

decrease in the simulated period for the first and second modes until strut S12 is removed, which 

results in an observed sudden increase in all four vibration periods to 1.351, 0.751, 3.376, and 

0.360 sec. The spikes observed in the simulated vibration periods at the time of element removal, 

especially that of the third vibration mode, are interpreted as a numerical indication of the abrupt 

change in the mathematical model representing the structural system and not a quantitative 

measure of the actual period of vibration as would be measured by a snap-back test, which may 

be better estimated by the average increase in vibration period following the spike. Only the first-

mode vibration period continues to steadily increase afterwards with the localization of damage 

in columns of the first story and reaches 2.210 sec after removing strut S13 at approximately 

5.60 sec, whereas the second mode vibration period only exhibits a modest change to a value of 

0.489 sec. 

The removals of shear-damaged columns C12 and C13 at approximately 6.80 sec result 

in sudden increases (i.e., spikes) in all four vibration periods. The magnitude and immediacy of 

these increases are consistently descending from the first mode to the fourth. These increases 

indicate a major change in the properties of the structural system that corresponds with the 

formation of a soft first-story mechanism. Subsequently, the simulated period of the first 

vibration mode exhibits a spike at 7.14 sec before decreasing rapidly to zero at 7.54 sec. This is 

an indication of a non-positive definite stiffness matrix. The implication of this observation is 

that the structural system, if subjected to quasi-static lateral force distribution (i.e., pushover) 

consistent with its first mode of vibration at its current state, will exhibit a softening lateral load-

displacement response. 

Subsequent to the sudden increase (i.e., spike) at 6.95 sec, the second vibration period 

exhibits other spikes at 7.68 sec, corresponding to the collapse and removal of column C21, and 

at 7.89 sec, corresponding to the collapse and removal of column C11 and the initiation of the 

aforementioned rigid-body rotation mechanism of incipient collapse. In between the spikes, the 
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second vibration period exhibits smaller values with an increasing trend. At 8.00 sec, the 

simulated second period of vibration undergoes a sudden drop to zero, indicating that the quasi-

static lateral load-displacement response (i.e., pushover) of the second vibration mode is 

exhibiting softening as well. 

Subsequent to the sudden increase (i.e., spike) at 7.08 sec, the third vibration period 

exhibits other spikes at 7.72, corresponding to the collapse and removal of column C21, and at 

7.88 sec, corresponding to the removal of column C11 and the initiation of the aforementioned 

rigid-body rotation mechanism of incipient collapse. In between the spikes, the third vibration 

period exhibits a nearly constant trend oscillating around a period of approximately 2.250 sec. At 

7.89 sec, the simulated third period of vibration undergoes a sudden drop to zero, indicating that 

the quasi-static lateral load-displacement response (i.e., pushover) of the third vibration mode is 

exhibiting softening as well. 

In contrast to the lower vibration modes, the fourth mode vibration period reaches a 

maximum value of 3.361 sec at the initiation of incipient collapse but does not drop all the way 

to zero. Ultimately, after the removal of column C14, the last column connecting the structure to 

the ground, the stiffness matrix becomes singular and all the simulated vibration periods, 

including the fourth, increase indefinitely. 
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(a) First mode of vibration 
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(b) Second mode of vibration 
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(c) Third mode of vibration 
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(d) Fourth mode of vibration 

Fig. 7.16  Simulated evolution of vibration periods in reference five-story FE model. 
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The evolution of vibration periods suggests that FE collapse events excite temporary 

participations from several higher vibration modes and shift their corresponding mode-shapes 

and vibration periods. However, the subsequent dynamic response is dominated by the first 

vibration mode which continues to accumulate damage, evidenced by a steady increase in its 

vibration period. Subsequent FE collapse events again momentarily shift all vibration periods. 

After the first vibration mode reaches a state where it exhibits softening and loss of quasi-static 

stability (i.e., non positive-definite stiffness matrix), the second mode seems to dominate the 

dynamic response by exhibiting a positive trend with time in its vibration period between the 

spikes corresponding to the FE removal times, while higher mode periods, e.g., the third mode, 

oscillate about nearly constant shifted values in between the spikes. It is believed that this 

domination of the dynamic response by the lowest stable vibration mode is a result of the explicit 

FE removal procedure being used which creates a vibration mode for the damaged structural 

system significantly less-stiff (and thus more dominant) than the remaining higher vibration 

modes, especially after the localization of damage and the majority of subsequent element 

collapse events in the first story. 

Figures 7.17 and 7.18 demonstrate the progression of collapse in the reference structural 

system during the simulation through snapshots of the deformed FE model geometry at time 

intervals corresponding to significant changes in the model. For simplicity of the demonstration, 

the deformed geometry is approximated by connecting the nodes at the ends of the beam and 

column members while ignoring the intermediate nodes, and using straight lines instead of the 

actual deformed shapes of the FE elements. 
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(a) Time = 5.1 sec (removal of S12) (b) Time = 5.6 sec (removal of S13) 

0 2 4 6 8 10 12

0 

2 

4 

6 

8 

10

12

14

Horizontal Co-ordinate [m]

Ve
rti

ca
l C

o-
or

di
na

te
 [m

]

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

Horizontal Co-ordinate [m]

V
er

tic
al

 C
o-

or
di

na
te

 [m
]

(c) Time = 6.8 sec (removal of C13) (d) Time = 7.0 sec (removal of C12) 

Fig. 7.17  Snapshots of deformed FE model geometry demonstrating early stages of collapse 
progression in reference five-story structural model (no amplification). 
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(c) Time = 8.2 sec (collapse mechanism) (d) Time = 8.3 sec (free-fall) 

Fig. 7.18  Snapshots of deformed FE model geometry demonstrating late stages of collapse 
progression in reference five-story structural model (no amplification). 
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7.2.6 Results and Discussion of Deterministic Sensitivity Analysis 

The sensitivity of the progressive collapse response to parameter uncertainty is investigated 

using two output quantities, namely the simulated time at incipient collapse and the simulated 

maximum first-story drift prior to or at incipient collapse. The simulated time at incipient 

collapse exhibits more suitable characteristics for the objectives of this application. This is 

specifically because the effects of changing several system parameters result either in localizing 

the structural damage in the first story and thus decreasing the time at incipient collapse, or 

spreading the damage into the other stories of the structural system and thus delaying incipient 

collapse or avoiding it altogether. As a result, the change in the simulated time at incipient 

collapse is thought to be an effective measure for the influence of an uncertain parameter value 

on the system’s vulnerability for progressive collapse. On the other hand, the simulated story 

drifts will likely exhibit a decrease in the cases in which global collapse is avoided. However, in 

cases where global collapse takes place, the magnitude of the simulated story drifts may not 

exhibit a predictable pattern with the induced change in uncertain system parameters. Instead, the 

maximum drift is controlled by local variables such as the axial load and the corresponding 

lateral deformation ductility of individual RC columns, and is thus not expected to be an 

effective sensitivity measure. 

Figure 7.19 illustrates the Tornado diagram summarizing the sensitivity results for the 

simulated time at incipient collapse, with swings around the reference value of 7.891 sec ordered 

in an ascending fashion. The largest swing is associated with the earthquake intensity. Increasing 

the hazard level to 1/50 results in a stronger earthquake and earlier incipient collapse at 6.920 

sec, whereas decreasing the hazard level to 3/50 results in no collapse for the 23.000 sec duration 

of the simulation where only the URM wall collapse is predicted in the first story. The next 

important uncertain parameter is the URM wall stiffness. The higher stiffness value results in 

larger forces being redistributed to columns C12 and C13 upon URM wall collapse, leading to 

earlier incipient collapse at 7.469 sec. On the contrary, the lower wall stiffness results in lower 

forces being redistributed to the columns of the infilled bay of the RC frame at URM wall 

collapse. In addition, the low-stiffness URM walls exhibit complete collapse in the second and 

third stories, and partial collapse (i.e., collapse of one diagonal strut) in the fifth story as well, 

which reduces the subsequent localization of damage and story drift demands in the first story. 
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This enables the structural system to survive the earthquake without gravity load collapse in any 

RC column, despite sustaining severe damage in the URM walls. The observed asymmetry in the 

swings of these two parameters around the reference value is because one case of each resulted 

in global collapse, within the same time interval of high-amplitude ground shaking as the 

reference case, while the other case of each resulted in no global collapse. 

Next in importance to the URM wall stiffness is the distributed mass on the structure in 

terms of the live load factor (LL). The assumption of full occupancy results in higher gravity-

induced axial loads on the RC columns (i.e., lower lateral drift capacities) and the URM walls. 

This leads to the collapse of at least one diagonal strut in each of the first four stories and to 

slightly earlier incipient collapse at 7.681 sec. On the other hand, the assumption of no 

occupancy results in lower gravity-induced axial loads on the RC columns and URM wall. As a 

result, the structural system survives the first interval of high-amplitude shaking and incipient 

collapse is delayed until 16.37 sec. The observed asymmetry in the swing of this parameter 

around the reference value is because the case of maximum occupancy resulted in global 

collapse within the same time interval of high-amplitude shaking as the reference case, while the 

case of no occupancy resulted in delaying the occurrence of incipient collapse until the second 

time interval of high-amplitude shaking (see Fig. 7.8). 

The least-important parameter for the time at incipient collapse in terms of uncertainty is 

the viscous damping ratio. No fundamental change in the time, extent of localization, or overall 

mechanism of incipient collapse is observed as a result of changing the damping ratio in the 

range between 2% and 10%. 



 

242 

6 8 10 12 14 16 18 20 22 24

1

2

3

4

Time at Incipient Collapse [sec]

U
nc

er
ta

in
 P

ar
am

et
er

miE

ζ

%)5,( 1TSa

LL

No incipient collapseReference value

 

Fig. 7.19  Tornado diagram for simulated sensitivity of time at incipient collapse. 

Figure 7.20 illustrates the swings of the simulated first-story drift, with the uncertain 

parameters ordered according to their relative importance established by the simulated time at 

incipient collapse in Figure 7.19. The comparison with Figure 7.19 serves to demonstrate that the 

use of story drift is ineffective in assessing the ranking of uncertain parameters in terms of their 

importance for progressive collapse behavior in simulations involving direct removal of a 

collapsed FE. Except for the least-important uncertain parameter, i.e., the viscous damping ratio, 

the magnitude of the swings is in opposite order to that of Figure 7.19. The most important 

parameter, the earthquake intensity and the corresponding seismic hazard level, possesses the 

second-shortest swing. In addition, the computed swing is oddly offset from the reference value. 

This is because the low-intensity earthquake results in no collapse and a much smaller first-story 

drift than the reference value, while the high-intensity earthquake results in earlier formation of 

the soft-story collapse mechanism and thus a slightly smaller first-story drift than the reference 

value prior to incipient collapse. The largest simulated swing in the first-story drift is associated 

with the uncertainty in occupancy in terms of the live load factor. This is attributed to the effect 

of the resulting increase in the column axial load on the lateral displacement ductility and thus on 
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the lateral drift capacity at collapse of individual columns (e.g., the axial force-lateral drift limit 

curve). Furthermore, the simulated drift values corresponding to the two cases where no global 

collapse took place (i.e., minimum earthquake intensity and minimum URM wall stiffness) are 

oddly larger than the drift value simulated for the case of maximum occupancy which 

nevertheless resulted in global collapse. Thus, the simulated time at incipient collapse is deemed 

more effective than the simulated maximum story drift as a sensitivity measure in this 

application. 
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Fig. 7.20  Diagram of unordered swings for simulated sensitivity of first-story drift. 

It warrants commenting that the swings representing sensitivity in the simulated time at 

incipient collapse for the first two uncertain parameters in Figure 7.19 are close in magnitude, 

and that both parameters include a minimum-value case where incipient collapse was avoided. 

However, in the case of the lower-stiffness URM wall, the survival of the structural system 

comes at the expense of more extensive propagation of URM wall collapse into the structure and 

a larger maximum first-story drift demand than in the case of the lower-intensity ground motion 

record (see Fig. 7.20). Moreover, the minimum URM wall stiffness corresponds to a 0.997 

confidence interval of possible values, while the minimum ground motion intensity corresponds 
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to decreasing the reference hazard level by only one percentage point of being exceeded in 50 

years. Thus, the most important uncertain parameter with regard to the possibility of progressive 

collapse is the earthquake hazard level. However, the most important system parameter for the 

investigated test-bed structural system investigated, which determines the vulnerability to 

progressive collapse (and spread of damage) during a given seismic event at a specified hazard 

level, is the stiffness of the URM wall. 

7.3 APPLICATION C: PROBABILISTIC PROGRESSIVE COLLAPSE 
ASSESSMENT OF ONE-STORY RC FRAME/URM WALL SYSTEM 

In Section 7.2, the sensitivity of the simulated time at incipient collapse of the five-story test-bed 

structural system presented in application B was investigated with respect to an estimated range 

of uncertainty in the system parameters and seismic hazard level. According to this investigation, 

it was observed that the uncertainty in the input ground motion intensity as characterized by the 

seismic hazard level is of paramount relative importance to the outcome of progressive collapse 

simulation. Application C investigates further the effect of uncertainty in the ground motion 

characteristics. This is conducted using an ensemble of selected ground motion records 

belonging to the same earthquake in order to generate empirical probability values for reaching 

specified limit states of collapse progression in the simulated test-bed structural system when 

subjected to these ground motion records. This ensemble is presented in Section 7.3.1, and 

consists of two horizontal components of seven strong motion records obtained during the 1994 

Northridge earthquake. The resulting fourteen ground motion records are selected from closely 

spaced recording stations located at sites with nearly similar soil conditions and nearly equal 

distances from the surface projection of the fault rupture plane that triggered the earthquake. 

However, the time-history profile and intensity of the individual ground motion records show 

considerable difference from one recording site and orientation to the other. The differences in 

the ensemble of ground motion records represent a measure of the aleatory uncertainty in the 

input ground motion to a structural system located within the same geographic area due to the 

site location and orientation of the structure. Aleatory uncertainty is inherent in nature and 

cannot be influenced (i.e., reduced) by increasing the number or quality of observations. 
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The FE model used in application A (see Section 7.1) is subjected to the ensemble of 14 

ground motion records, each scaled to represent 7 seismic hazard levels in application C. The 

effect of the complexity in the ground motion scaling technique is explored by investigating two 

scaling procedures to compute two distinct sets of seismic intensity measures (presented in 

Section 7.3.2). The FE model of the test-bed structural system is then subjected to the ensemble 

of scaled ground motion records. The results from the simulations are used to construct fragility 

curves for each of four collapse limit states (defined in Section 7.3.3). Each fragility curve 

represents the conditional probability of reaching the corresponding limit state given the value of 

the adopted seismic intensity measure corresponding to a specified hazard level. An empirical 

probability is defined as the number of simulations in which the corresponding limit state is 

reached divided by the total number of simulations per hazard level, i.e., 14 in this application. 

Due to the large number of simulations involved and the associated cost in terms of 

computational time, the probabilistic analysis is conducted for the FE model representing the 

one-story test-bed structural system previously defined in Section 7.1. 

7.3.1 Selection and Characteristics of Ground Motion Records 

A building site location is considered in the region affected by the Northridge (1994) earthquake 

in Los Angeles. The selected building site is located near the intersection of Golden State 

Highway (Interstate 5) and the San Diego Freeway (Interstate 405), and has the latitude and 

longitude coordinates of 34.3(N) and -118.5(W), respectively, 43.0 km away from the epicenter 

of the earthquake. Ground motion acceleration records obtained from seven recording stations 

during the earthquake have been documented and used without scaling in Ghannoum (2007) and 

Moehle et al. (2005). These records were utilized in a preliminarily exploration of the influence 

of the orientation and site-to-site variability of ground motion records from the same earthquake 

(i.e., intra-event variability) on the dynamic behavior and simulated collapse of a three-story RC 

frame structural system with shear-deficient reinforcement in two out of four RC columns 

(Moehle et al. 2005). The selected recording station sites are all closely located within a distance 

of 5.2 to 6.5 km from the fault rupture plane, and have nearly similar soil conditions and NEHRP 

soil classification C and D (ICC 2003). The two orthogonal components of the horizontal ground 
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motion at each recording station yield a total of 14 records. The locations of the selected building 

site and recording stations are indicated on the map of the earthquake locality in Figure 7.21. The 

recording station designations and site information are listed in Table 7.7. 
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Fig. 7.21  Northridge (1994) earthquake locality showing recording stations (Moehle et al. 
2005) and selected building site location. 

Table 7.7  Summary of ground motion recording stations used in application C. 

Recording station Code Rru [km]* VS30 [m/s]** 

Jensen Filter Plant JEN 5.4 373 

Newhall Fire Station NWH 5.9 269 

Newhall West Pico Canyon Road WPI 5.5 286 

Rinaldi Receiving Station RRS 6.5 282 

Sylmar Converter Station SCS 5.3 251 

Sylmar Converter Station East SCE 5.2 371 

Sylmar Olive Grove Medical Center SYL 5.3 441 

* Distance from fault rupture plane 

** Average shear-wave velocity in the top 30 m of soil 
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The horizontal ground motions are recorded in two orthogonal directions, which are not 

coincidental at each recording station. Hence, the two components of each record are referred to 

as “Component 1” and “Component 2.” Components 1 are chosen as the direction per record in 

which the elastic spectral acceleration response is higher for the test-bed structural system. An 

average value of the elastic spectral acceleration response %)5,( 1TSa  is computed for a vibration 

period range of 0.121–0.192 sec, corresponding to the FE model’s fundamental vibration period 

with the diagonal strut elements included and removed, respectively. These elastic spectral 

acceleration values are used in comparing and classifying the ground motion components in 

Table 7.8, as well as in the scaling of individual ground motion components in the next section. 

The elastic spectral acceleration responses of each ground motion component group are 

illustrated in Figure 7.22. The values of the elastic spectral acceleration and peak ground 

acceleration corresponding to each ground motion component are listed in Table 7.8. 

It can be observed from both Table 7.8 and Figure 7.22 that the intra-event variability 

significantly affects the characteristics of these ground motion components. For example, the 

elastic spectral acceleration value for JEN292 is nearly double that of its orthogonal component 

JEN022, and nearly triple that of WPI046 in the same component group (see Table 7.8). It can 

also be observed that the spread in the elastic spectra of individual ground motion components 

around the mean spectra generally increases as the fundamental vibration period increases, i.e., 

with the expected progression of damage and element removal from the FE model (see Fig. 

7.22). It can also be observed that NWH090 is classified as a Component 1, while SYL090, 

measured in the same orientation, is classified as a Component 2 because the elastic spectral 

acceleration response of NWH090 and SYL360 records are higher than those of NWH360 and 

SYL090 records, respectively (see Table 7.8). These observations suggest that there are no clear 

independent effects of site location and measurement orientation, and that an interaction effect 

between these two factors exists. 
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(a) Components 1 
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(b) Components 2 

Fig. 7.22  Elastic 5%-damped response spectra of records used in application C. 
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Table 7.8  Unscaled seismic intensity measures of records used in application C. 

Component 1 Component 2 

Record PGA [g] %)5,( 1TSa  [g] Record PGA [g] %)5,( 1TSa  [g] 

JEN292 1.023870 1.8011 JEN022 0.570622 0.9417 

NWH090 0.583030 1.3155 NWH3600.589780 1.0988 

WPI046 0.454930 0.5943 WPI316 0.325431 0.4173 

RRS228 0.825195 1.2973 RSS318 0.486504 1.0854 

SCS142 0.897237 1.2291 SCS052 0.612467 0.8901 

SCE018 0.828279 1.3825 SCE288 0.493035 1.2162 

SYL360 0.843306 1.2507 SYL090 0.604490 0.8726 

7.3.2 Hazard-Specific Scaling Procedures for Ground Motion Records 

In the present application, each component of the ground motion records presented in the 

previous section is treated as an independent ground motion record. The intra-event variability in 

the time-history profile between individual records is thus considered due to site location and 

building orientation combined. The scaling of individual components is based on the USGS 

uniform hazard curves for seismic intensity measures (USGS 2002). Two different ground 

motion scaling procedures are investigated to explore the influence of the complexity in the 

scaling procedure on the robustness of the fragility analysis. The first procedure is based on 

matching the PGA as the adopted seismic intensity measure of individual records (see Table 7.8) 

to the hazard-specific values listed in Table 7.9. The second procedure is based on matching the 

magnitude of the system-specific elastic spectral acceleration response %)5,( 1TSa  as the adopted 

seismic intensity measure of individual records (see Table 7.8) to the hazard-specific values 

listed in Table 7.9. The hazard-specific elastic spectral acceleration values are linearly averaged 

from the two values computed at approximate fundamental vibration periods of 0.1 and 0.2 sec 

to represent the change in stiffness of the FE-simulated structural system upon removal of the 

diagonal struts, as previously discussed in Sections 7.2.3 and 7.3.1. The first procedure is thus 

less complex than the second one, since it does not consider the dynamic characteristics of the 
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structural system in assessing the seismic intensity measure corresponding to each hazard level, 

and is therefore more straightforwardly appealing to use. The second procedure involves the 

estimation of the structural system’s dynamic properties and expected progression of major local 

collapse events leading to potential global collapse before selecting the ground motion scaling 

factors. This procedure may be made even more complex if the mechanism of collapse is 

significantly sensitive to the values of the scaling factors being computed. In the present 

application, the significant difference in lateral stiffness between the URM wall and the RC 

frames result in collapse always being initiated in the URM walls. 

Table 7.9  Hazard-specific seismic intensity measures at selected building site location. 

Hazard Level 1/50 2/50 3/50 5/50 10/50 20/50 50/50 

RP [years] 4975 2475 1642 975 475 224 72 

PGA [g] 1.8407 1.5887 1.4344 1.2339 0.9676 0.6790 0.2706 

%)5,1.0(aS [g] 3.6857 3.1366 2.7767 2.3784 1.8124 1.2484 0.5058 

%)5,2.0(aS [g] 4.6824 3.8789 3.4726 2.9261 2.2447 1.5323 0.6389 

%)5,( 1TSa [g] 4.1841 3.5078 3.1247 2.6523 2.0286 1.3904 0.5724 

7.3.3 Definition of Collapse Limit States 

Four collapse limit states are investigated in application C, defined as follows: 

1. In-plane failure of the URM wall: defined by the collapse and removal of at least one 

diagonal strut from the FE model; 

2. Out-of-plane collapse of the URM wall: defined by the collapse and removal of both 

diagonal struts from the FE model; 

3. Partial collapse of the structural system: defined by the collapse and removal of the 

beam-column elements representing at least two RC columns; 

4. Complete collapse of the structural system: defined by the collapse and removal of the 

beam-column elements representing all six RC columns. 
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The in-plane failure of the URM wall refers to major, continuous diagonal cracking 

and/or corner crushing developing in one and/or opposite directions of the URM wall that 

effectively eliminate the URM wall’s capacity to transfer lateral loads while maintaining a 

reduced capacity to transfer gravity loads and out-of-plane bending moments. The out-of plane 

collapse of the URM wall refers to disintegration and loss of the URM wall integrity altogether. 

During the analysis it was observed that, for the structural system being considered, partial 

collapse (limit state 3) almost always led to complete collapse (limit state 4), due to the structural 

system’s inability to dynamically redistribute gravity loads after the loss of the URM wall and 

two of its RC columns. Therefore, collapse limit state 3 can be considered redundant for this 

specific application. 

7.3.4 Results and Discussion 

The empirical probability of reaching each of the four previously defined collapse limit states in 

the simulated one-story test-bed structural system due to exposure to a seismic event similar to 

the 1994 Northridge earthquake in the neighborhood of the building site location is illustrated 

using the multiple fragility curves in Figure 7.23. Figure 7.23a represents the fragility curves 

conditioned on the specified hazard levels defined in terms of PGA. It can be observed that even 

at relatively frequent hazard levels (20/50), the probability of in-plane failure of the URM wall 

exceeds 0.1, and this probability quickly approaches near-certainty (>0.9) as the hazard level 

becomes rarer than 3/50. The probability of out-of-plane collapse of the URM wall exceeds 0.1 

only at hazard levels rarer than 10/50, and would only exceed 0.9 at a hazard level rarer than 

1/50. As discussed earlier, the probabilities of partial and complete collapse are almost identical, 

with one exception at the 2/50 hazard level; hence only the more important limit state of 

complete collapse is referred to in this discussion. The probability of complete collapse remains 

lower than 0.2 for frequent hazard levels up to 3/50 or less. It then increases steadily and reaches 

a maximum of 0.57 at the 1/50 hazard level. 

Figure 7.23b represents the fragility curves conditioned on the specified hazard levels 

defined in terms of the elastic spectral acceleration. It can be observed that the probabilities of 

in-plane failure and out-of-plane collapse in the URM wall, as well as partial collapse in the RC 
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frame are non-zero even at the most frequent hazard level of 50/50 (i.e., the ground motion 

scaling factors for the 50/50 hazard level are generally higher when computed based on the 

elastic spectral acceleration than when based on the PGA). The probability of in-plane URM 

wall failure increases steadily, and rapidly reaches approximately 0.8 at the 10/50 hazard level, 

after which it exhibits little to no increase before increasing again to 1.0 at the 1/50 hazard level. 

The probability of out-of-plane collapse of the URM wall, however, increases steadily and 

rapidly to 0.5 at the 10/50 hazard level. Afterwards, it increases slowly up to the 2/50 hazard 

level, before resuming a rapid increase to exceed 0.9 at the 1/50 hazard level. The probabilities 

of partial and complete collapse are identical for hazard levels less frequent than 50/50. The 

probability of complete collapse increases steadily from 0.0 at the 50/50 hazard level to 0.43 at 

the 5/50 hazard level; afterwards it exhibits little increase and momentarily stabilizes at 0.5 

between the 3/50 and 2/50 hazard levels, before exhibiting a rapid increase to approximately 0.7 

at the 1/50 hazard level. 

The fragility curves illustrated in Figure 7.23 suggest that the effect of intra-event 

variability is an important factor on the ability to reliably predict the progressive collapse 

outcome of the one-story test-bed structural system. The structural system has been subjected to 

ground motion components recorded at multiple orientations in similar site locations and soil 

conditions during the same earthquake. Nevertheless, these components represented different 

intensities and exhibited large variation in a time-history profile and the elastic response spectra. 

The variability in the ground motion components is reduced by scaling them to common 

intensity measures (i.e., PGA and elastic spectral acceleration) at each hazard level for the 

selected building site location. However, for each hazard level between 10/50 and 2/50, the 

probability of reaching each limit state is larger than zero and less than 1.0. Thus, the simulation 

results using at least one scaled ground motion component have reached all limit states, whereas 

the results using another similarly scaled component have not reached any. These results 

emphasize the paramount importance of addressing this intra-event variability in a fundamental 

manner within the framework of PBEE in order to develop consistent and unified selection and 

scaling procedures for the ground motion records being used in computational simulations of 

structural collapse. 
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(a) Hazard levels characterized by PGA 
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(b) Hazard levels characterized by %)5,( 1TSa  

Fig. 7.23  Fragility curves for individual collapse limit states of application C. 
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The comparison between Figure 7.23a and b is represented in Figure 7.24, where the 

fragility plots for limit states 1 and 4 are compared for the two ground motion scaling 

procedures. In this comparison, the hazard level is represented by the corresponding return 

period in years, shown in linear scale in Figure 7.24a and in logarithmic scale in Figure 7.24b. 

This comparison reveals that the computed probabilities of reaching each limit state are generally 

higher or equal for both hazard levels when using the elastic spectral acceleration as an intensity 

measure than when using the PGA. This means that the use of PGA for estimating the expected 

collapse losses due to seismic events, although temptingly less complex, is likely to result in 

lower predicted probabilities of collapse in this application. This is because the computed ground 

motion scaling factors for each hazard level are found to be generally higher when computed 

based on the elastic spectral acceleration for the test-bed structural system than when based on 

the PGA. In addition, the resulting fragility curves in Figure 7.24a exhibit more similar trends 

with the increase in return period using %)5,( 1TSa  scaling for both limit states, consisting of 

convex functions whose slopes are monotonically decreasing (except for the last point which 

represents a very rare event, i.e., once in 4750 years). Meanwhile, the PGA-scaled fragility 

curves, with the exception of the longest return period, exhibit dissimilar trends: an 

approximately linear trend for limit state 1 where the slope alternately increases and decreases in 

between return periods, and a concave function for limit state 4 whose slope is monotonically 

increasing. This discrepancy in trends may be due to the elastic spectral acceleration being 

closely related to the dynamic characteristics of the structural system in addition to the ground 

motion characteristics, and having thus more relevance to the structural system’s seismic 

behavior. This is especially so for the current test-bed structural system, since it does not have 

the added complexity of higher modes of vibration and its dynamic response is foremost 

controlled by its fundamental mode and period of vibration. 

The comparison between the fragility curves in Figure 7.24b with the return periods 

plotted using a logarithmic scale exhibits different characteristics. With the exception of the 

shortest and the longest return periods, the %)5,( 1TSa -scaled fragility curves still exhibit parallel 

trends consisting of convex functions with monotonically decreasing slopes for both limit states. 

Hence, early increases in the return period’s logarithm result in relatively large increases in the 

computed probability of collapse, while later increases in the return period’s logarithm result in 
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limited increases in this probability. Moreover, the PGA-scaled fragility curves now exhibit 

parallel trends consisting of concave functions with monotonically increasing slopes. Contrary to 

the %)5,( 1TSa -scaled fragility curves, early increases in the return period’s logarithm result in a 

relatively small increase in the computed probability of collapse, while later increases in the 

return period’s logarithm result in relatively large increases in this probability. The observations 

in the current paragraph emphasize the previous conclusion about the scaling based on the elastic 

spectral acceleration resulting in higher estimates of the probability of collapse than the scaling 

based on the PGA for this application. At very short (i.e., <250) and very long (i.e., >2500) 

return periods, the aforementioned opposite trends result in the fragility results from the two 

different scaling procedures intersecting for limit state 1 and becoming commensurate for limit 

state 4. 
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(a) Linear scale for return period 
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(b) Logarithmic scale for return period 

Fig. 7.24  Comparison between PGA- and %)5,( 1TSa -scaled fragility curves. 
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7.4 SUMMARY 

In this chapter, three application studies were presented for progressive collapse FE simulations 

using the computational developments presented in the previous chapters of this report. The 

object of each of the three applications was one of two RC frame/URM wall test-bed structures 

located at a specific site in Los Angeles. In the first application, deterministic computational 

simulations were successfully performed for progressive collapse in a one-story test-bed 

structural system consisting of three RC frames connected by a RC slab and infilled with a URM 

wall in the middle frame. The FE model of the structural system was calibrated using results 

from a physical test structure previously subjected to shake-table experiments. The simulations 

were performed using the component models developed to predict damage progression and 

gravity-load collapse due to seismically deficient RC column details that were artificially 

introduced into the FE structural model. The hitherto modified FE model was subjected to two 

hazard-specific levels of scaled ground motion record from Düzce (1999) earthquake. Direct 

element removal of the collapsed columns and URM wall was successful in simulating the 

dynamic force redistribution to the intact part of the computationally modeled structural system 

and the resulting momentary changes in its fundamental period of vibration. The two ground 

motion scales resulted in significant differences in the predicted collapse sequence and eventual 

global collapse mechanism, emphasizing the sensitivity of the response to the input ground 

motion intensity and the need for a feasible probabilistic approach in the context of performance-

based evaluation. 

In the second application, a deterministic computational simulation and a sensitivity 

study were successfully performed for progressive collapse response in a five-story test-bed 

structural system consisting of one three-bay RC frame infilled with a URM wall in the middle 

bay. First, a set of reference system parameters (i.e., mass, URM wall stiffness and viscous 

damping) was defined for the structural system. Next, a deterministic progressive collapse 

simulation established the reference progressive collapse response of the FE-modeled five-story 

structural system subjected to a ground motion record from the 1999 Düzce earthquake, which 

has been scaled in accordance with a reference hazard level. The effect of collapse progression 

on the simulated individual story and overall drifts, the evolution of modal vibration periods, and 

the estimated time at incipient collapse were investigated. Finally, a deterministic sensitivity 
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analysis was conducted using the Tornado diagram analysis method to assess the influence and 

relative importance of uncertainty in the aforementioned system parameters and hazard level 

(i.e., ground motion intensity factor) on the variables characterizing the simulated progressive 

collapse response of the FE model, namely the simulated time at incipient collapse and the 

maximum first-story drift. A comparison of the results indicated that the use of time at incipient 

collapse is more effective in assessing the sensitivity of progressive collapse to—and 

demonstrates better correlation with the induced changes in—the uncertain parameters. The 

analysis of the sensitivity results identified the uncertainty in ground motion intensity and the 

associated hazard level as the most important sources of uncertainty in the outcome of the 

progressive collapse simulation. Moreover, for the given input seismic event, the most important 

uncertain system parameter was concluded to be the stiffness of the URM wall. 

In the third application, a probabilistic study was performed to assess the influence of 

intra-event variability (i.e., site location and building orientation) on the outcome of progressive 

collapse simulations of the one-story test-bed structural system at different seismic hazard levels. 

Fourteen ground motion records, occurring in different orientations at closely spaced recording 

stations located in sites with similar soil conditions during the Northridge (1994) earthquake, are 

scaled to correspond to seven specified hazard levels at the building site location. Two sets of 

scaled ground motion records were obtained using as seismic intensity measures either the PGA 

or the elastic 5%-damped first-mode spectral accelerations. Four limit states characterizing the 

extent of collapse in the FE-modeled structural system were developed. An empirically 

computed probability of reaching each limit state in the FE model conditioned on each hazard 

level was defined and used to construct corresponding fragility curves for the test-bed structural 

system. The results indicated that intra-event variability is an important factor in determining the 

outcome of computational progressive collapse simulations even for ground motion records 

obtained from closely spaced locations and scaled to correspond to the same hazard level. In 

addition, the computed fragility curves resulted in higher estimates of the progressive collapse 

probability for all limit states of the test-bed structural system when the hazard levels were 

defined using the elastic spectral acceleration than when they were defined using the peak 

ground acceleration. 
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8 Summary, Conclusions, and Future 
Extensions 

8.1 SUMMARY 

Computational tools for the simulation of progressive collapse, divided into component and 

system levels, are developed. Development, implementation, and calibration of constitutive laws 

and damage models for material and cross-section behavior at the component level are discussed 

in Chapters 2–4. Component models are combined to model the behavior of reinforced concrete 

(RC) columns with seismically deficient details in Chapter 5, where simulated results are 

compared with results from laboratory tests. An algorithm for the identification and direct 

removal of collapsed elements from a structural model during a computational simulation is 

developed, implemented, and demonstrated using a benchmark problem in Chapter 6. The 

component models and element removal algorithm are used together to conduct system-level 

progressive collapse studies in Chapter 7. 

Three analytical material models and one confined cross-section model are introduced to 

represent the effect of seismically deficient details and retrofit by fiber-reinforced polymer (FRP) 

composites on the hysteretic behavior for RC columns whose collapse is dominated by axial-

flexure interaction. An analytical constitutive material model is developed, implemented, and 

calibrated for the axial stress-strain behavior of longitudinal reinforcing bars susceptible to 

buckling. This model accounts for the lateral restraining effect of the transverse reinforcement in 

computing the critical length and stress at the onset of buckling. Moreover, the model considers a 

consistent strain decomposition approach to simulate the post-buckling softening behavior, and 

incorporates hysteretic stress reduction to predict steel bar fracture using a damage model based 
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on low-cycle fatigue. It is calibrated using published experimental data for reinforcing steel bars 

subjected to monotonic and cyclic loads. A second analytical constitutive material model is 

developed, implemented, and calibrated for the axial stress-strain behavior of lap-spliced 

reinforcing bars. This model combines a strain decomposition approach based on the equilibrium 

of axial and shear bond stresses along the splice region with a developed constitutive law for 

hysteretic bond-slip behavior of the lap-splice. This constitutive law represents a hysteretic bond-

slip relationship, which accounts for the effect of confining stress and hysteretic degradation on 

the bond-slip behavior. The predictions of the calibrated lap-splice material model compares well 

with published experimental data of reinforcing bars embedded in concrete. A third analytical 

constitutive model is developed, implemented, and calibrated for the hysteretic behavior of FRP-

confined, steel-confined, and unconfined concrete. This model enforces lateral strain 

compatibility between the confined concrete and the confining medium (external jacket or 

internal transverse reinforcement), and accounts for hysteretic strength degradation using a 

stress-reduction factor and a damage index based on dissipated energy and maximum 

compressive strain. This analytical model is calibrated using published experimental data of 

concrete cylinders subjected to monotonic and cyclic uniaxial compressive loading. 

A fourth analytical model is implemented to describe the spatial distribution of confining 

stresses within a fiber-discretized FRP-confined circular RC cross section subjected to general 

axial and flexural loads. This analytical model is based on the equilibrium of bond stresses 

between the cross section perimeter and the confining jacket, and the derived confining stress 

distribution is shown to be equivalent to a power law. The predictions of this cross-section model 

compare well with laboratory test measurements from a specifically designed series of four 

column tests. Two material-aggregated damage indices are proposed for describing the 

degradation in axial force and bending moment strength of fiber-discretized cross sections, and 

to serve as removal criteria for RC columns whose collapse is dominated by flexure-axial 

interaction. An existing analytical model is adopted from the literature to establish element 

removal criteria for RC columns whose collapse is dominated by shear-axial interaction. 

The implementation of the computational development is carried out in an object-

oriented environment using the software platform OpenSees. The details of the object-oriented 

implementation of the component-level developments, the resulting hierarchical class 
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relationships, and the capabilities for expanding the existing library to include further component 

models are comprehensively discussed. 

The implemented constitutive material and cross-section models are successfully 

integrated to develop computational models of previously tested seismically deficient RC 

columns. The experimentally observed response of as-built and FRP-retrofitted RC column 

specimens from four published experimental programs is satisfactorily reproduced 

computationally. The range of deficient column behavior examined in the experimental programs 

include the failure of transverse steel reinforcement, the loss of confinement to the concrete core, 

the failure of lap-splices, the buckling of longitudinal bars, in addition to the fracture and rupture 

in internal spirals and external FRP composites used for retrofit. The relationship between the 

proposed cross-section damage indices and the observed collapse limit states and damage 

progression with the increase in lateral displacement values is investigated. 

The system-level developments include the formulation, implementation, and 

computational verification of a dynamically compatible computational element removal 

algorithm. The mechanics of removing a collapsed finite element (FE) from the structural model 

during an ongoing simulation are formulated using the principles of dynamic equilibrium, which 

characterize how this removal affects the transient kinematics of the damaged structural system 

and the dynamic redistribution of forces. The implemented element removal algorithm accounts 

for the redistribution of internal forces and masses from collapsed elements and the removal of 

applied external loads from removed components, in addition to independently tracking the 

motion of the collapsed elements in order to detect subsequent collision with the intact part of the 

structural model. The numerical robustness of the implemented element removal algorithm is 

computationally tested and verified using an idealized structural system of trussed cantilever 

beams subjected to seismic excitation. The results from the computational study confirm the 

numerical robustness and functionality of the implemented algorithm, while highlighting the 

sensitivity of the progressive collapse outcome to the uncertainty in the structural system 

parameters. 

The component-level and system-level developments are combined to conduct three 

demonstration applications of progressive collapse FE simulations of seismically deficient RC 

frame structures infilled by unreinforced masonry (URM) walls. Two test-bed structural systems 
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are investigated, namely a one-story and a five-story RC frame infilled with URM walls 

representative of residential construction details common in the 1960s. In the first application, a 

deterministic computational simulation is successfully performed for the progressive collapse in 

the one-story test-bed structural system subjected to two hazard-specific levels of scaled ground 

motion using a record from the Düzce (1999) earthquake. The results from the FE model of the 

structural system are compared with results from a previous shake-table experiment, and then 

modified to simulate seismically deficient RC column details. The two ground motion scales 

result in significant differences in the predicted collapse sequence and eventual global collapse 

mechanism. In the second application, a deterministic computational simulation and a sensitivity 

study are performed for the progressive collapse response in the five-story test-bed structural 

system. The deterministic progressive collapse simulation establishes the response of the 

structural system subjected to a ground motion record from the Düzce (1999) earthquake, 

relative to a reference set of typically unknown system parameters (i.e., mass, URM wall 

stiffness, and viscous damping) and seismic hazard level. The relative importance of the 

uncertainty in the unknown parameter values is then established using the Tornado diagram 

method as a form of deterministic sensitivity analysis. In the third application, a probabilistic 

study is performed to assess the influence of intra-event variability (i.e., site location and 

building orientation) on the outcome of progressive collapse simulations of the one-story test-bed 

structural system, assumed to exist in a building site located in Los Angeles County and 

subjected to different seismic hazard levels. Fragility curves are developed for four progressive 

collapse limit states using an empirically defined probability of being reached during the FE 

simulation, conditioned on seven different hazard levels. A set of fourteen ground motion 

records obtained from closely spaced recording sites during the Northridge (1994) earthquake is 

used. The probabilistic study additionally investigates the effect of the ground motion scaling 

method by considering as seismic intensity measures both the peak ground acceleration and the 

first-mode elastic spectral acceleration, resulting in two independent sets of scaled records and 

two corresponding sets of fragility curves. 
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8.2 CONCLUSIONS 

The major findings of this report can be listed in the following general points. It should be noted 

that these conclusions are limited to the specific cases studied: 

• The distribution and effect of confining stresses in a RC cross section can be accurately 

simulated using the proposed analytical model for fiber-discretized cross sections. In as-

built columns with seismically deficient details, the effect of the confining stresses is 

important in predicting the non-ductile stress-strain response of constituent fibers. In 

FRP-retrofitted RC columns, the effects of confining stresses and the stress state in the 

confining FRP composite are important in estimating the improved strength and ductility. 

• The confinement-sensitive uniaxial behavior of concrete, buckling-prone longitudinal 

steel bars, and lap-spliced steel bars can be accurately modeled using the developed and 

calibrated constitutive material models. 

• In a study of as-built and FRP-retrofitted seismically deficient RC columns, the 

developed constitutive material and cross-section models successfully reproduce the 

lateral load capacity, the deformation level at the initiation of failure in non-ductile 

details, the effects of FRP-retrofitting, and the fracture and the rupture in the transverse 

steel and the FRP reinforcement. 

• The proposed cross-section damage indices exhibit good correlation with the observed 

collapse limit states and damage progression in modeled RC column specimens whose 

collapse is dominated by axial-flexure interaction. 

• Internal force redistribution from collapsed structural elements can be simulated by 

considering the dynamic equilibrium of forces and the kinematically compatible transient 

behavior of the damaged structural system as it tries to reach a new equilibrium state. The 

dynamic amplification of element deformation demands associated with element removal 

suggests that progressive collapse assessment methods based on alternative path analysis 

or similarly involving quasi-static redistribution of internal forces are not conservative in 

their approximation. This conclusion is limited to cases where structural members 

collapse suddenly, which has not always been demonstrated in laboratory seismic tests. 

• The computational implementation of the developed component models and element 

removal algorithm exhibits a robust and stable numerical behavior, and is made readily 
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extensible by its object-oriented architecture. 

In addition, the major findings drawn from the study of the investigated test-bed 

structural systems can be summarized in the following points: 

• The presence of an infill wall plays a leading role in determining the strength, stiffness, 

and seismic demand forces and displacements of RC frame/URM wall structural systems. 

Being significantly stiffer than bare RC frames, the resulting decrease in the fundamental 

vibration period affects the seismic displacement and demand forces, the majority of 

which are resisted by the relatively stiffer URM wall until its collapse. The collapse of 

the URM wall significantly increases the fundamental vibration period of the structural 

system and modifies its dynamic characteristics and the resulting seismic force and 

deformation demands. 

• The relatively low ductility of the URM wall results in suddenly increased force demands 

on the columns of the infilled frame after the URM wall collapses, and subsequent 

localization of damage and deformation demands leading to the possible formation of 

soft-story collapse mechanisms. 

• The use of the time at incipient collapse to quantify the effect of uncertain system 

parameters on the progressive collapse response and to conduct sensitivity analysis is a 

more effective measure, both theoretically and practically, than the use of maximum 

inter-story drifts. 

• Among uncertain system parameters, the stiffness of the URM wall is found to have the 

largest influence on the outcome of a progressive collapse simulation using a specific 

ground motion record, followed by the system mass and then, with minimal influence, the 

viscous damping ratio. 

• The aforementioned sensitivity of progressive collapse to the change in the URM wall 

stiffness, within essentially its entire uncertain range, is approximately comparable to the 

sensitivity to a relatively small change in the considered seismic hazard level, namely a 

±1% probability of being exceeded in 50 years. 

• The fragility analysis results indicate that intra-event variability is a very important 

phenomenon in determining the outcome of computational progressive collapse 

simulations. 
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• The simulated fragility curves exhibit significant sensitivity to the ground motion scaling 

procedure used. The use of elastic spectral acceleration results in higher estimates of the 

progressive collapse probability than the use of peak ground acceleration. 

8.3 FUTURE EXTENSIONS 

This study can be further pursued in the following directions: 

• Development of an analytical model for RC columns whose collapse is dominated by 

shear-axial interaction based on constitutive modeling and computational mechanics. 

• Implementation of methods to modify the type or internal degrees of freedom of an 

element during the course of an ongoing simulation, e.g., conversion of a beam-column 

element to a truss element after the complete loss of flexural capacity at the ends of the 

original beam-column element. 

• Development of component models for modeling the degrading behavior and collapse 

criteria of structural members other than these considered here, such as beam-column 

joints and the membrane action of floor elements. 

• Modification of the OpenSees data structure to allow the automatic time-efficient 

identification of dangling nodes after element removal. 

• In-depth investigation of the numerical properties of the equations of motions in 

mathematical models representing progressively collapsing systems as regards to their 

numerical stability and accuracy, especially with respect to the effect of viscous damping 

coefficients on higher modes of vibration. 

• Implementation of new methods in OpenSees to enable automatic time-efficient 

identification of collisions by comparing, after each converged time-step, the deformed 

geometry of the damaged FE model and the collapsed elements during their free-fall. 

• Implementation of a 3D confined cross-section model for use with recently developed 3D 

strut-and-tie models for explicit modeling of the out-of-plane collapse of URM walls. 

• Optimization of the numerical implementation of the developed component models to 

enhance the numerical efficiency and reduce the simulation times for the FE models 

containing large numbers of degrees of freedom. This optimization is of particular 
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importance given the envisioned probabilistic assessment framework requiring an 

extensive number of computational simulations, which can be rendered unfeasible by the 

associated processing time. 

• Investigation of other commonly used building structural systems to identify the system 

parameters significantly affecting their progressive collapse behavior, and to establish the 

sensitivity and the order of importance of the different uncertain parameters governing 

the structural response. 

• Research on the reliability of existing ground motion selection and scaling methods, 

leading to the establishment of system-specific procedures for the selection and scaling of 

appropriate records for use in simulation-based progressive collapse assessment. 

• Identification of an appropriate probabilistic performance-based earthquake engineering 

framework for reliably conducting progressive collapse simulation-based assessment. 

This framework should identify the sufficient number and characteristics of ground 

motion records to be used and establish clear provisions to account for unknown system 

parameters. 
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Appendix A: Tcl Input Commands for Developed 
OpenSees Classes 

OpensSees Tcl input commands are introduced according to the following order: 

Command ReqArgs String $Value … <OptArgs (= Def) –Switch $Value …> 

where, 

Command Command name to invoke the object constructor 

ReqArgs Required arguments for the command 

String Keyword argument of the command (e.g., element type) 

$Value… Numerical variables representing the values of arguments 

OptArgs Optional arguments for the command, some have default values 

Def Default value (if any) of optional argument 

-Switch String preceded by “-“ to specify an optional command entry 

A.1 CONFINEDFIBERSEC2D CLASS 

section RCFiber $secTag <-Hoop $hoopTag> <-Conf -$pow=2> <-e3max $fractStrain>  

{#fiber data} 

$secTag Integer identifying the cross section being defined  

$hoopTag Integer identifying pre-defined hoop uniaxial material 

-pow Integer power of the confining stress distribution function, 0 = constant 

$fractStrain Strain corresponding to fracture of hoops, used to compute damage index 

#fiber data List of fiber areas, locations, material tags, etc. (refer to OpenSees user’s manual). 

Material tag of the first group of fibers to be defined must be that of the core 
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concrete. Additional core concrete fibers can be defined later (e.g., for irregularly 

shaped cross sections) within the fiber-section block using the same material tag. 

A.2. UNIAXIALCONFINEDMATERIAL SUBCLASSES 

A.2.1 ConfinedConcrete 

uniaxialMaterial ConcreteBLE $matTag  $fc $ec $Ec $fu $eu $ft $et0 $lc $Gfc $pc 

<$nu=0.2 $dmgTag=0 $prstrs=0 $hoopTag=0  $alphae=0> 

$matTag Integer identifying the material being defined  

$fc Compressive strength 

$ec Strain corresponding to compressive strength 

$Ec Initial Young’s modulus 

$fu Residual strength, ignored in current implementation 

$eu Strain corresponding to residual strength, ignored in current implementation 

$ft Tensile strength 

$et0 Strain corresponding to complete loss of tensile capacity 

$lc Localization length (fraction of plastic hinge length) 

$Gfc Compressive fracture energy 

$pc Hysteretic loop controller, recommended $pc = 1.445-0.0035$fc [MPa] 

$nu Initial Poisson’s ratio 

$dmgTag Integer tag of pre-defined associated damage object 

$prstrs External prescribed confining stress, if any 

$hoopTag Integer tag of pre-defined associated hoop uniaxial material 

$alphae Power of normalized dissipated energy-based envelope reduction factor 

A.2.2 SteelRebar 

uniaxialMaterial SteelRebar $matTag $esh $sh/eu $barTag $barDiam $hoopSpac 

<$hoopTag=0 $beta=1 $recRatio=-2 $e3max=0.1  $eult=0.13 $mf=0 $af=0> 

$matTag Integer identifying the material being defined 
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$esh Strain at the beginning of strain-hardening, enter as negative value to include 

post-yielding reduction in stiffness prior to buckling and as positive value to 

ignore 

$sh/eu Terminal inelastic to elastic stiffness ratio if entered as a positive value, or strain 

at which to compute this ratio if negative value  

$barTag Integer tag of pre-defined material representing bar’s constitutive law 

$barDiam Diameter of reinforcing bar 

$hoopSpac Spacing of hoops 

$hoopTag Integer tag of pre-defined associated hoop uniaxial material 

$beta Efficiency multiplier for hoop stiffness 

$recRatio User-defined maximum tensile strain recovery ratio for buckled bars, set 

magnitude >1 to enforce Equation (2.35), positive values indicate constant 

recovery ratio (not recommended), negative value indicate linearly varying 

recovery ratio (recommended) 

$e3max Strain corresponding to minimum stiffness in the restraining hoops 

$eult Fracture strain (for Coffin-Manson damage model), 0 = no fracture 

$mf Power of Coffin-Manson damage index 

$af Power of Coffin-Manson stress-reduction factor 

A.2.3 LapSplice 

uniaxialMaterial LapSplice $matTag $hoopSpac $barDiam $barTag $taomax 

<$e3max=0.00125 $rnot=2 $hoopTag = 0 umax=0.25[mm] $pinchRatio=0 $kr=0 

$ueRatio=0.5 $EunRatio=1 uult=10 $alphap=0 $alphapn=0 $gmax=0.9 $gmin=0.7> 

$matTag Integer identifying the material being defined 

$hoopSpac Spacing of hoops 

$barDiam Diameter of reinforcing bar 

$barTag Integer tag of pre-defined material representing bar’s constitutive law 

$taomax Maximum bond strength 

$rnot Bond-slip shape parameter, 2.0 for Grade 60 steel, 1.5 for Grade 40 steel 
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$hoopTag Integer tag of pre-defined associated hoop uniaxial material 

$umax Slip displacement corresponding to maximum bond stress 

$pinchRatio Ratio of pinched reloading stiffness to initial bond-slip stiffness 

$kr Ratio of residual stress to unloading stress upon strain reversal 

$ueRatio Ratio of elastic slip displacement to maximum slip displacement $umax 

$EunRatio Ratio of unloading stiffness to initial bond-slip stiffness 

$alphap Power of slip-based stress-reduction factor for maximum-slip cycle, pα  

$alphapn Power of slip-based stress-reduction factor for internal slip cycles, pnα  

$gmax Reloading stress factor for slip cycles reentering before elastic slip, max,pγ  

$gmin Reloading stress factor for slip cycles reentering at large slip, min,pγ  

A.3 REMOVERECORDER CLASS 

A.3.1 Element Removers 

recorder Collapse <–ele $ele1…$elen> <-eleRange $eleStart $eleFin> <-slave –ele slave1 … 

–eleRange $slaveStart $slaveFin> <-sec $sec1…$secn> <-time> <-crit $critID1 

$critThresh1 …> <-file $filename>  

$ele1..$elen Integer(s) identifying the elements being checked for collapse 

$eleStart Integer identifying the first element in a range 

$eleFin Integer identifying the last element in a range 

$slave1… Integer(s) identifying the elements that need to be removed if all elements defined 

in this set are removed (typically, the interior elements of multi-element columns) 

$slaveStart Integer identifying the first slave element in a range 

$slaveFin Integer identifying the last slave element in a range 

$sec1…$secn Critical cross section identifiers, use dummy integer for truss and similar elements 

$critID1 Potential collapse modes to be checked, Options are: 

axialDI = axial damage index, flexure-axial  mode 

flexureDI = flexure damage index, flexure-axial mode 

axialLS = axial limit state, shear-axial mode 
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shearLS = shear limit state, shear-axial mode 

maxStrain = maximum elongation 

minStrain = maximum shortening 

$critThresh1 Threshhold values for the selected criteria 

$filename File name for element removal log. Only one log file is constructed for all 

recorder commands. The first file name input to a collapse recorder command will 

be used and any subsequent file names are ignored. 

A.3.2 Node Removers 

recorder Collapse –ele $ele1<…$elen> –node $node  

$ele1…$elen Integers identifying connected elements 

$node Node number be removed when all elements defined in the command are removed 
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Appendix B: Simplified Modeling of Impact 
Force and Duration 

The illustration in Figure 5.14 demonstrates the steps of determining the time of collision and 

duration of impact between truss element 3 after its collapse and the rest of the intact structure of 

the benchmark problem presented in Chapter 6. At the time of collapse of element 3, 0t , the 

kinetics of the separated end-node from element 3 (i.e., node 1b) are obtained from the last 

converged state of the structural system. The displacements, velocity, and acceleration can be 

used to compute the angular position, velocity, and acceleration at time 0t  (Fig. 5.14a). These 

quantities represent initial conditions for the collision problem being considered. The angular 

position of the collapsed truss element at any time )(tθ  is governed by the following differential 

equation, 

0cos
2

=+ θθ LMgI M  (B.1)

where MI  is the element’s mass moment of inertia about end-node 4 (i.e., 32MLI M = ), 

M  is the element’s mass, and L  is the element’s length. With the initial conditions 00 )( θθ =t  

and 00 )( θθ =t , the solution for )(tθ  is computed and compared to the position of node 9 until 

collision is determined. The time at collision is denoted ct , and the corresponding kinematics of 

node 1b are cct θθ =)(  and cct θθ =)( . These latter quantities constitute the initial conditions for 

the impact problem. 

The equations of motion governing the collapsed element and the damaged structure 

during impact are coupled and difficult to solve. Impact is assumed to take place at one point 

(collision of node 1b and node 9). Assume that )(tR  is the resulting reaction force between the 

two bodies at the point of collision and that )(tR is a function of the resulting relative 

displacements between u  of the impacting (collapsed) element and su  of the impacted structure. 
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For simplicity, assume that both impacting and impacted bodies have one scalar DOF each. 

Hence, the coupled equations of motion take the form 

( ) 0=−+ suuRuM  (B.2)

( ) ( ) 0=+−− ssss uFuuRuM  (B.3)

where M  and sM  are the masses of impacting and impacted bodies, respectively, ( )suF  

is the structural resisting force in the impacted structure, and viscous damping is ignored. The 

assumption of soft impact states that uus <<  and allows Equations (B.2) and (B.3) to be 

uncoupled as follows: 

( ) 0=+ uRuM  (B.4)

( ) ( ) 0=+− sss uFuRuM  (B.5)

Hence, Equation (B.4) can be solved to compute the impacting element’s displacement u  

and the resulting impact force ( )uR , which can then be used in Equation (B.5) to solve for the 

impacted structure’s displacement su  and induced resisting force demands ( )suF . Assuming 

soft-impact, and hence negligible relative deformation at the point of collision, the structural 

response of the collapsed truss element after impact is modeled upon collision as a beam 

supported at nodes 4 and 9 with a proportion of mass MM 5.01 =  allocated to inserted node 1c 

at mid-span (see Fig. 5.14b). This assumption excludes the occurrence of punching of the intact 

structure and/or disintegration of the collapsed element upon collision. Hence, the governing 

differential equation becomes 

0cos11 =++ θgMKuuM  (B.6)

where 348 LEIK =  is the beam’s flexural stiffness, i.e., the applied force at mid-span 

required to produce a unit transverse displacement. This differential equation can be solved using 

the initial conditions ( ) ( ) ( ) 2,0, Ltutut ccccc θθθ ===  to compute ( )tu . The reaction force on 

the beam at nodes 9 and 4 are thus computed as 

( ) ( )
2
KtutR =  (B.7)

If we assume that there is no friction during collision, the forces at node 9 due to the 
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impact and additional gravity load can thus be computed from equilibrium as 

( ) ( )
( )

( ) gMtRgM
t

tRtF
c

I 22 coscos
+≅+=

θθ
 (B.8)

where MM 25.02 =  is the proportion of element mass lumped at each of nodes 4 and 1b. 

Finally, the duration of impact ItΔ  is computed as one half of the natural vibration period of the 

subsystem illustrated in Figure 5.14b, which is the time duration required for the collapsed 

element to bounce back after the collision and be on the verge of rebounding off the intact 

structure. Hence 

K
MtI

5.0π=Δ  (B.9)

It is unrealistic to assume that the impacting element will rebound off the intact structure 

as in an elastic collision. Instead there is likely to be a short interval of highly damped transient 

response including brief rebounds and collisions of decreasing magnitude before it comes to a 

steady-state of applying its gravity load equally to nodes 4 and 9 as vertical reaction forces. The 

effect of damping in this short duration is difficult to predict, especially with further inelasticity 

expected to take place in the impacting element and locally in the impacted intact structure 

resulting in significant energy dissipation. Hence, a practical and conservative assumption is 

made that the impacting element after one half cycle of vibration undergoes negligible transient 

response that is ignored and the steady-state reaction forces are applied directly. This results in a 

sinusoidal temporal variation of impact load on the intact structural system as illustrated in 

Figure 5.14c. 
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(a) at time 0tt =  (c) Temporal variation of impact force 

Fig. B.1  Demonstration of collision and impact modeling. 
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