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ABSTRACT

This report describes simulations of the inelastic seismic behavior of steel braced frames, including
the effects of low-cycle fatigue. For steel braced frames under complex loading conditions, a wide
variety of behavior mechanisms and failure modes may occur for each type of member and con-
nection. Thus, numerical models that assess the initiation and propagation of failure during cyclic
loading need to account for multi-axial states of material nonlinearity, local and global buckling,
and the exhaustion of the ability of the material to deform inelastically caused by low-cycle fatigue.

Following a review of existing material models for simulating structural steel deterioration,
a series of investigations are conducted using finite element modeling techniques. A new, numeri-
cally efficient continuum damage mechanics material model capable of simulating inelastic behav-
ior and deterioration of mechanical properties because of low-cycle fatigue has been devised and
implemented in a finite element software LS-DYNA. Computational results obtained with this new
material model correlate well with test results for several beam-to-column connections, individual
braces, and braced frame subassemblies. Recommendations for characterizing material properties
for these types of analyses are developed and presented. A series of analyses are presented that
evaluate and refine several requirements for detailing and analyzing special concentrically braced

steel frame buildings.
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1 Introduction

1.1 BACKGROUND

Engineers frequently use various types of computer analysis to assess the safety of engineered
structures. Simplified analysis methods are often employed in the design of standard structures.
Modeling guidelines and acceptance criteria used in conjunction with such simplified methods are
intended to provide acceptable conservatism relative to the safety and serviceability of the structure.
In some cases, however, more refined analysis methods are required. Such refined analysis is used

in situations where:

1. Existing structures are to be evaluated for loading or environmental conditions more severe
than initially considered in design. Simplified analysis methods not directly related to the
expected behavior of as-built structural elements may not be able to quantify adequately the
true capability of a structure to withstand more severe loading conditions, raising questions

regarding the need to retrofit or upgrade a structure for the new criteria.

2. An existing structure is to be architecturally or functionally remodeled, requiring removal
or shifting of structural members, changing the overall size of the building, or altering the

type and configuration of the structural system.

3. New structural systems employ unusual features, details, or configurations where simplified
analysis methods may not be adequate or where the incorporation of these new structural
elements introduce significant uncertainties regarding the adequacy of the proposed design.
Modern architecture often does not conform to past practices regarding gravity and lateral

load resisting systems and tends to incorporate unusual details or member proportions.

4. A precise evaluation of the safety or performance of a structure is required for hypothetical

man-made or natural hazards. Today, various stakeholders (owners, occupants, government



officials, insurance companies, financial institutions) are requesting assessment of the safety
and the probable losses that might occur as a result of a variety of natural and man-made

hazards.

In cases such as these, commonly used simplified analysis methods may not be able to
give a true picture of actual damage or losses. Thus, a more complex analysis is needed that can
simulate the various behavior modes that can occur at the element and structural level and track the
evolution of damage from onset to eventual member and structural failure. Because several modes
of behavior can potentially occur in all members and connections, the models must simulate to a
fair degree of accuracy those modes, and correctly identify those modes that control behavior and
ultimate failure.

Although this work focuses on the behavior of components, it is recognized that the local
failure of a part of one member may not lead to the loss of structural integrity of that member or
of the structure as a whole. Where collapse does occur, it may involve one or several local regions
of the structure. In some cases, the failure of one element may be critical to the overall stability of
the structure. The complete structure, or a substantial portion of the structure above (and below)
the element or region that initially fails, may collapse. Situations where a local failure leads to
disproportionate damage or collapse of large portions of a structure are known as “progressive
collapse.”

Predicting the onset of damage within a large and complex structure, and the consequence
of such local damage on other elements and the structure as a whole, requires analytical models that
simulate to a fair degree of accuracy the behavior of structural elements and systems undergoing
large inelastic deformations. As such, available analysis procedures and models will be reviewed
and evaluated to assess their ability to predict the behavior and failure of elements and structural
systems.

For structures subjected to earthquakes, material models need to account for cyclic plas-
ticity, including deterioration and eventual failure because of low-cycle fatigue. The deterioration
of a member may alter not only the distribution of forces and damage within a structural system,
but also the response history. Because response history influences the degree of deterioration, ac-
curate material and component models that predict the response of structures subjected to severe

earthquake shaking or other transient dynamic excitations are critical.



In seismic-resistant design, equivalent static or dynamic analysis based on elastic repre-
sentations of member properties are commonly employed, even though significant inelastic action
is expected. Engineers are increasingly interested in predicting inelastic response using nonlinear
static or nonlinear dynamic analysis procedures. For nonlinear static methods, a realistic structural
model is subjected to a fixed distribution of lateral forces, which monotonically increase in intensity
with time. Such static inelastic “pushover” analyses, fairly common in design practice, provide a
design engineer with a general indication of the distribution of inelastic deformations (and internal
forces) within the structure, the global load capacity of the structure, and the lateral displacement
at which certain key events occur (initial yielding, initiation of member failure, loss of global sta-
bility, etc.). Nonlinear dynamic time history analysis are computationally more demanding, but
provide a more realistic prediction of the response quantities of interest.

Nonlinear time history analysis of structures during design usually assume ideal ductile
member behavior. The computer model estimates global response quantities (interstory drift, story
shears, etc.) and locally required plastic deformation demands (plastic hinge rotations, plastic
strains, efc.) based on ideal ductile behavior. Although this assumption is quite broad, it is generally
accepted because the elements and connections can subsequently be detailed to develop predicted
inelastic demands, or if the resulting details are objectionable or the structure does not meet accep-
tance criteria for the overall system behavior, the configuration, the proportions, and the details of
the structural system and elements can be changed.

Members and connections in new and especially existing structures have finite ductility
capacities, however, and because a certain degree of deterioration of properties might be expected
generally, infinitely ductile models may not be adequate for seismic or other abnormal loading
conditions, as inelastic demands will likely lead to deterioration and possible failure of members.
These weakened members will, in turn, influence dynamic response and overall system stability.

In order to assess behavior of an element or structure as it approaches failure under earth-
quake or other excitations, several types of nonlinear behavior need to be considered. These relate
to material inelasticity, fracture, low-cycle fatigue, and local and global geometric nonlinearities.

In this research, the effects of suddenly started, quasi-brittle fracture are not considered.
Where issues of fracture mechanics need to be taken into account, a large number of small-sized

finite elements are required. Such analysis models and methods do not lend themselves to the anal-



ysis of a complete structural system under dynamic loading. Thus, it is assumed in this research that
a separate fracture-mechanics-based analysis should be carried out on individual fracture critical
regions. Where behavior is found to be vulnerable to quasi-brittle or ductile fracture, this report
assumes that (1) a simplified material or damage model is devised that would mimic the mode of
fracture detected or (2) problematic details would be changed to mitigate the vulnerability. Re-
gardless, the research presented herein includes scenarios where members rupture because of the
materials reaching and exceeding their ability to develop further inelastic deformations, either under
monotonic or cyclic loading. Such ruptures may appear similar to and have similar consequences
as fracture, but they are different physical phenomena and require different analysis approaches.

Steel braced frames are the focus of this investigation. For such structures (see the frame
designated as a braced frame in Fig. 1.1), lateral load resistance is, in large part, because of the
braced frame acting as a vertically oriented truss. The braces, columns, beams, and connections are
subjected to significant axial loads. Braces are generally expected to respond in the inelastic range
during moderate and severe earthquakes. At displacement levels associated with brace yielding or
buckling, significant bending and shear demands can also develop in all members and connections.
Under these complex-loading conditions, a wide variety of behavior mechanisms and failure modes
must be taken into account for each type of member and connection. The particular behavior that
occurs and the consequence of its occurrence depend on material properties, member proportions,
local details, and the applied loading or deformations (which will depend not only on the externally
applied loads, but also on the behavior of adjacent members and connections). Thus, models that
assess the potential for failure to propagate throughout the structure need to account for multi-axial
states of material nonlinearity, local and global buckling, and low-cycle fatigue.

This investigation considers elements that make up typical concentrically braced steel frames.
These include conventional bracing members that may buckle laterally and locally during loading
in compression. Because braced frames are often used as part of a dual system, some attention will
be given to the modeling of conventional steel beam-to-column connections. Additional issues
related to modeling and analysis in moment-resisting frame components and connections are the
focus of a parallel study carried out at Stanford University (Lignos and Krawinkler, 2007).

Generally speaking, three basic approaches will be taken to modeling structural members

of the type examined in this report. These are referred to as (1) phenomenological models, (2)
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Figure 1.1 Schematic steel building comprising braced and moment-resisting frames

physical theory models, and (3) finite element models.

* Phenomenological Models. Phenomenological models use a simplified physical repre-
sentation of the member in question. For example, a phenomenological model for a brace
usually consists of a simple uniaxial, pin-ended truss element with a hysteretic axial force-
axial deformation relation defined by a set of generic rules that simply mimic the hysteretic
response observed for a brace. The user is responsible for inputting data that enables the
generic brace model to represent the particular design being analyzed. In the case of a flex-
urally dominated beam, a common phenomenological model represents the member as an
elastic beam connected at each end to the element’s nodes by means of inelastic rotational
springs. The rotational springs are simplified in terms of rules that define the hysteretic
nature of the moment-rotation characteristics of the plastic hinge region at the end of the
member. To model the effects of spalling of concrete, and yielding, buckling, and fracture
of steel, more and more complex rules are employed. Generally, these rules do not depend

on or attempt to track the actual occurrence of concrete spalling, or steel yielding, buckling,



or fracture. These models depend on having an extensive database of experimental results
with which the numerical modeling parameters can be identified. Where various behav-
ior modes can occur (bending plus axial buckling, flexure plus shear, or flexure plus axial
loading) the rules become even more complex or are uncoupled, leading to questionable

results.

Physical Theory Models. In many cases, member behavior can be well represented by
certain established but simplified rules of mechanics. For example, in a beam with low
axial load and shear, plastic hinges occur at easily identified locations. Outside of these
regions, this beam will behave in a nearly elastic manner. Within the plastic hinge region,
the material may yield and undergo various actions that will affect its properties. In such
cases, it may be acceptable to make certain assumptions regarding the distribution of strains
across a section and the distribution of curvatures along the member, and track the actual
stress-strain history in individual material fibers located across the section. In this way, cer-
tain types of physical behavior can be tracked automatically in the analysis, so that complex
empirically calibrated rules are not needed. As shown later, this can be applied to a variety
of beams, columns, and braces; however, some of the assumptions may not be valid, as
the typical fiber-based model incorporates only unidirectional material properties. Conse-
quently, multi-axial stress states and three-dimensional phenomena [such as local buckling,
section warping, or distortion (because of shear or torsion), bar pull out, efc.] cannot be eas-

ily represented.

Finite Element Models. Although the phenomenological and physical theory models de-
scribed above are special forms of finite elements, the more general case, where a member
and structure is divided up into a variety of small shell or solid elements, allows the re-
sponse of the structure in various modes to be simulated. Such finite element formulations
can account for multi-axial stress states, nonlinear material properties, and changes in ge-
ometry that occur during loading. Because of the large number of elements and the absence
of simplifying assumptions, these models are often computationally expensive and time-
consuming to develop and execute; however, they usually produce results close to those

expected of real structures. Nevertheless, these models cannot reproduce behavior that is



not incorporated in the model (e.g., buckling because of large displacements, material fail-
ure, efc.), and they put much more reliance on having well-defined multi-directional mate-
rial property models. As such, careful calibration of these models to test results is needed,
and the degree of improvement in response prediction compared to the increased level of

effort to perform these models should be carefully considered.

This investigation studies the ability of finite element formulations to simulate accurately
the behavior modes of interest in braces, beams, beam-to-column connections, and braced-frame
subassemblies. Compared to phenomenological models, these models require more computational
effort, but incorporate more realistic physical representations of members and materials, including

the initiation and evolution of damage up to and including complete failure.

1.2 OBJECTIVES AND SCOPE OF RESEARCH

The objectives of the research presented in this report are as follows: (1) to review available in-
formation on the behavior and analysis of members and subassemblies from steel concentrically
braced frames where elements are subjected to deterioration; (2) to develop improved numerical
models that simulate adequately the behavior of a steel braced frames up to and including fail-
ure; (3) to use the improved models to evaluate and refine several requirements for detailing and
analyzing special concentrically braced steel frame building.

The remaining chapters of this report derive from the objectives listed above. Chapter 2
reviews existing experimental investigation. Chapter 3 reviews and evaluates material models on
structural steel deterioration. Chapter 4 develops an improved cyclic damage plasticity model.
Chapter 5 discusses calibration, validation and application of the new damage material model using
test results from beam-to-column connections, individual braces, and braced-frame subassemblies.
Chapter 6 provides studies of steel braced frame behavior, including brace proportions, connection
details, lateral bracing for beams, and estimate of interstory drift demands. Concluding remarks and
recommendations are discussed in Chapter 7. An appendix includes a constraint method developed
in this research for pushover analysis and a discussion on instability of the Newmark integrator.

Part of the research presented in this report was undertaken as a subproject of the Phase VI

CUREE/Kajima Collaborative Research Project on factors leading to the progressive collapse of



structures. In this research, the cyclic behavior and modeling of steel structural elements and con-
nections, with emphasis on those subjected to high axial loads, are examined as they approach and
reach failure. This work complements parallel work at Stanford University under the supervision
of Professor H. Krawinkler on steel and reinforced concrete elements and connections where axial
loads do not dominate the expected mode of behavior (Lignos and Krawinkler, 2007), and work
at the University of Buffalo under the supervision of Professor A. Reinhorn on large displacement

analysis of structural systems (Sivaselvan et al., 2007).



2 Review of Existing Experimental Investigations

This research focuses on braces, beams, columns, and connections that are part of braced steel
frames, where members are subjected to high axial loads alone or in combination with bending and
shear. Some aspects of conventional moment frame construction will also be addressed, as these
elements may be used in combination with braced frames as a gravity load resisting system or a
backup lateral load resisting system. Both static and dynamic loading situations will be considered,
although, the focus will not be on cases where strain rate effects or where local inertial forces along
the length of a member need to be considered. The analysis models considered will include the
effects of material inelasticity, local and global buckling, and low-cycle fatigue on the behavior and
failure of various elements and structural systems. Thus experimental results that investigate such
behavior are of interest. This chapter reviews experimental data from investigations of conventional

braces, gusset plates, braced-frame subassemblies, and beam-column connections.

2.1 INVESTIGATIONS OF CONVENTIONAL BRACES

Tremblay (2002) compiled and interpreted the results of more than 100 tests of steel braces available
at that time. These tests include braces fabricated from square hollow structural section (HSS)
sections, pipes, wide flange sections, double channels, single and double angles, and structural “T”
sections. This compilation does not include recent tests by Tremblay ez al. (2003), Elchalakani et
al. (2003), Goggins et al. (2005), Yang and Mahin (2005), Fell et al. (2006), Han et al. (2007),
Tremblay et al. (2008), and Lehman et al. (2008).

Tremblay (2002) used this database to assess several useful engineering relationships used
in design. For example, the initial buckling load was compared for the braces in the database to
theoretical predictions and to equations included in United States and Canadian building codes,

demonstrating that code values are often conservative; they tend to underestimate the buckling



capacity of braces, especially for slender braces.

Importantly, Tremblay also examined several other simplified relations that may be used to
develop and interpret phenomenological models for braces. For example, relations exist that predict
the out-of-plane displacement of buckling braces and the deterioration of the compressive buck-
ling capacity of braces. For this later case, a relation was developed between the compressive load
capacities of braces that have been shortened by a displacement equal to five times the displace-
ment at the onset of buckling. Similar relations were developed for lower and higher normalized
displacements.

Tremblay also provided information on the cyclic ductility that a brace may develop as a
function of loading history and brace slenderness. This ductility factor shows considerable vari-
ability and sensitivity to loading history. This variability must be considered when evaluating the
ability of refined analysis models to predict member failure. The refined analysis may suggest a
higher level of confidence in the predicted deformation capacities than that can be supported by
test data.

Also of significance is that the ductility values presented by Tremblay are cyclic values,
defined as the sum of the peak elongation displacement and compressive displacement divided by
the displacement at first buckling. Thus, for a loading history where the amplitudes of displacement
are equal in both tension and compression, the ductility values should be divided by two to estimate
the maximum shortening of the brace prior to failure. The cyclic ductilities range from about 6 to
more than 20, corresponding to unidirectional ductilities for symmetric cycles of about 3 to more
than 10. Thus, the braces considered in the database are not too ductile, with the stockier braces
having less ductility capacity.

A similar empirical investigation of a nearly identical database has examined the energy
dissipation capacity of braces and the deterioration of energy dissipation efficiency and compres-
sion capacity with cumulative plastic shortening as a function of member type and slenderness ratio
(Lee and Bruneau, 2005). This research points out many difficulties in defining useful parameters
for design or analysis purposes.

Earlier studies of brace test data by Lee and Goel (1987) and Ikeda et al. (1984) have
produced specific recommendations for two different types of phenomenological model used for

braces (Jain and Goel, 1978; Ikeda et al., 1984). With parameters estimated empirically, hysteretic
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loops can be predicted using the analytical models. As noted previously, these loops do not directly
account for any phenomena associated with yielding or buckling of the brace. They only follow the
general shape of the hysteretic loops based on empirically derived parameters. Ikeda et al. (1984)
suggested that the parameters are not well conditioned, however, and are, in fact, very sensitive to
materials, section shape, loading history, efc. lkeda and Mahin (1984) subsequently developed a
physical theory model for brace buckling that was also calibrated to available test data. This model
utilized a generalized plastic hinge based on classic plasticity at the center of the member and a
large displacement formulation for the internal lateral displacements within the brace. It proved
difficult to properly model the behavior of braces in the re-straightening phase from a previously
buckled configuration, and a variety of empirical adjustments were imposed to improve accuracy.

Test data are needed to evaluate existing brace models and calibrate new ones. Because of
their availably at the beginning of this investigation, the primary experiment source of data used is
a series of eight nearly identical Hollow Structural Section (HSS) braces tested at the University
of California at Berkeley (Yang and Mahin, 2004; Uriz, 2005). The braces (see Fig. 2.1) consisted
of square 6 x 6 x 3/8 HSS sections fabricated from ASTM A500 Grade B steel having specified
minimum strengths of F, = 46 ksi and F, = 58 ksi. Mill certificates showed that the specimens
were considerably stronger, with F, = 60 ksi and F, = 65 ksi. The ends of the HSS sections were
slotted and welded to gusset plates at each end. The framing members — to which the gusset plates
were attached at both ends — were fixed against rotation, but axial elongation or shortening of the
brace was permitted. Some specimens were reinforced locally near their ends where there was a
reduction of the net area of the brace because of the slots used to fasten the braces to the gusset
plates. The KL/r ratio for the braces, considering K = 1 and the length L extending from the faces
of the framing members to which the gusset plates were attached, was 51 for all specimens.

Three different types of axial displacement histories were imposed along the longitudinal
axis of the brace. One of the loading protocols consisted of a cyclic displacement history based on a
nonlinear analysis of a Special Concentrically Braced Frame (SCBF) that was subsequently tested
(Uriz, 2005). This would facilitate comparison of hysteretic loops for individual braces and braces
tested as part of a structure. A second loading protocol consisted of a near-fault type history, where
there was a modest cycle with compressive loading followed by a large excursion in tension, fol-

lowed, in turn, by a series of smaller cycles about an offset position. A similar test was done where
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the signs of the displacement excursions were reversed (i.e., the large displacement excursion was
in compression). Finally, a third type of protocol was used where a series of symmetric, constant
amplitude displacement cycles at several levels were imposed until the brace failed. These test
results were previously used to assess damage accumulation models and the sensitivity of failure

to the loading history (Uriz, 2005).

2.2 INVESTIGATIONS OF GUSSET PLATES

A comprehensive three-year literature review on the behavior of gusset plates was completed in
2005 (Chambers and Ernst, 2005). Including more than 200 papers and reports, this review evalu-
ates the results in terms of the capability of modern codes and analysis methods to predict behav-
ior. The conclusions state that the amount of information available on gusset plates for conditions
similar to those found in current design practice, and for loads representative of seismic loading
conditions, are too few to make an adequate assessment.

To help address this issue, a series of tests are currently under way at the University Wash-
ington, Seattle, under the supervision of Professors C. Roeder and D. Lehman (Roeder et al., 2006;
Lehman et al., 2008). These tests place the braces along the diagonal of a single story, single
bay frame. The braces include buckling restrained braces as well as conventional braces that are
allowed to buckle.

A variety of gusset plate details are used. Initially, gusset plate connections were designed
by considering the conventional Whitmore section (effective width, Whitmore, 1952) and the uni-
form force method (Thornton, 1991; AISC, 2005a), which are basically strength-based design
methods and do not consider the inelastic deformation demands expected during seismic loading
from brace buckling or frame rotations. Currently, the investigation has expanded to include a num-
ber of configurations and alternative design methods for the gusset plates. Previous test results have
shown that current gusset plate details tend to fail prematurely along the weld connecting the plate
to the supporting beam and column, or initiate fracture into the beam or column. Representative
damage observed in their tests is shown in Figure 2.2.

A series of simple gusset plate tests were carried out at the University of California at Berke-

ley by Markarian and Mahin (2004). In these tests, only frame flexural deformations were imposed,

12



with no axial tensile or compression loads. The beams-column connections were pinned, consist-
ing of a simple shear tab connection from the beam to the column. The addition of the gusset
plate resulted in considerable moment transfer and stress states that do not appear in typical design
or analysis practices. These tests demonstrated a tendency for the beams and columns to exhibit
complex states of stress, and for the connection to fail in a brittle fashion.

More recent tests have been conducted on gusset plate connections in a buckling-restrained
braced frame (BRBF) system by Kishiki ez al. (2008). In these tests, interaction between framing
components and the gusset plate was considered, but the influence of bracing forces was ignored.
Beam-column frame subassemblies with the gusset plate were subjected to cyclic lateral loading.
It was found that the effective length of the beam was shortened by the presence of the gusset plate
connections, indicating that the critical section of the beam was moved to the toe of the gusset plate.
On the other hand, the effective length of the column was hardly affected by the gusset-plate when

a rectangular hollow section (RHS) was used for the column.

2.3 INVESTIGATIONS OF BRACED FRAME SUBASSEMBLIES

Most tests of braced frames have used small-scale models or have employed details that are not
currently in use. Valuable data were obtained from Japanese pseudo-dynamic tests of a full-scale,
six-story special concentrically braced frame and eccentrically braced frame. These tests were
performed at the Building Research Institute, Tsukuba, Japan, in the mid-1980s (Midorikawa et
al., 1988; Foutch et al., 1986). One-third scale models of the same structures were tested on the
University of California at Berkeley shaking table (Whittaker ez al., 1989).

Relatively few recent tests have been conducted on multistory subassemblies of concentri-
cally braced frames. One recent example was carried out by Uriz (2005). The frame is shown in
Figure 2.3, and the displacement history imposed at the roof of the structure is shown in Figure
2.4. The frame suffered extensive damage to the braces in the lower level, the columns at the base
of the building, and in the beam-column connections at the first-story level. A wide variety of be-
havior was observed, from yielding, local buckling, local tearing, brace fracture, and column local
buckling and connection fracture (Uriz, 2005). Following brace buckling, the strength of the frame

degraded significantly from cycle to cycle. This specimen provides a good test of the ability of
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various methods to predict behavior associated with members undergoing bending and axial load,
lateral buckling, and local buckling.

Uriz (2005) reported that the distribution of lateral drift was nearly equal for the top and
bottom stories at the beginning of test. Both levels developed slight amounts of buckling, but full
lateral buckles formed in the lower level, with local buckling occurring almost immediately (Fig.
2.5). Because of the reduced load capacity of the buckled braces, the forces in the upper (and lower)
level decreased, and no further tendencies were observed for the upper level to buckle. This re-
sulted in a weak-story response, with nearly all of the inelastic behavior and damage concentrated
in the lower level. This led to the complete fracture of the braces during the first design level dis-
placement excursion (Fig. 2.6), with failure of the lower-level beam-column connections occurring
soon thereafter (Fig. 2.7).

The hysteretic loop relating the roof lateral force versus base shear is shown in Figure 2.8.
The points marked A, B, C, and D represent the initial tearing and final complete fracture of the
braces in the lower story. Points E and F represent the fracture of the lower beam to column con-
nection, first on one side of the structure and then on the other. The initial buckling of the braces
is easily identified by the sudden nonlinearity of the system, with slight negative post-buckling
tangent stiffness. Substantial deterioration of the specimen load capacity occurred upon cycling at
the level that induced first buckling of the lower level braces. This buckling occurred at relatively
small drifts compared to drifts considered for design purposes in the United States. The braces
completely fractured during subsequent cycles at this drift level or during the first excursion to the
design level.

A series of four full-scale, two-story, single-bay, braced-frame tests were performed at the
National Center for Research on Earthquake Engineering (NCREE) in Taiwan (Powell ez al., 2008).
The first test was a braced frame with HSS tube braces in a multi-story X-brace configuration. It
provided an experimental examination of the multi-story X-brace system and of the mid-span gusset
plate connections. At the same time, it was a confirmation study for past research on corner gusset
plate connections performed at the University of Washington.

Several tests of BRBFs have recently been carried out at University of California at Berkeley
(Uriz, 2005). The tested subassemblies consist of a portion of a seven-story BRBF. Two configura-

tions of braces were considered. These included a chevron configuration with each unbonded brace
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having a single flat plate for the yielding core; in one brace the core was oriented horizontally and
in the other it was oriented vertically. The second configuration utilized a single unbonded brace
oriented across the diagonal of the frame. Two brace sizes were considered: one where the core
was the same size as used for the chevron configuration and another where the area was doubled
(and the core was cruciform in shape).

The buckling restrained braces (BRBs) performed quite well in these tests compared to
conventional braces; however, considerable yielding was noted throughout the surrounding frame.
This included shear yielding of the column webs, yielding of the columns and gusset plates, and
yielding of the beam to column connection regions. In addition, gusset plate buckling was noted.
Interestingly, this buckling occurred when the attached brace was in tension. The buckling was a
result of the kinematic distortion of the gusset plate that occurred as a result of frame action (the
gusset plate is squeezed as the brace is loaded in tension). Eventually, fracture was noted in the
beams adjacent to the gusset plate. This fracture appeared to be induced as a consequence of frame
bending behavior.

A series of tests on BRBFs have been carried out at the NCREE in Taiwan (Tsai et al.,
2006). The basic differences between these tests and the single diagonal brace test conducted by
Uriz (2005) is as follows: (1) a different type of BRB is used; (2) a concrete-over-metal-deck floor
system is used; and (3) the frame is subjected to two horizontal components of motion using the
pseudo-dynamic test method, leading to bidirectional-bending effects in the columns. The speci-
men was able to undergo a substantial number of simulated earthquakes. During a moderate level
test, a fracture in the welds of the gusset plate to the column was noted and required repair before
conducting the subsequent tests. The NCREE has also tested BRBFs in a three-story configuration

where the columns were concrete filled steel tubes (Tsai et al., 2004).

2.4 INVESTIGATIONS OF BEAM-COLUMN CONNECTIONS

The steel moment connection data used herein are from two sources. One is a series of welded
steel beam-column connection tests (Tanaka et al., 2000) conducted by Kajima Corporation, Japan.
These tests incorporated box columns and beams with horizontally tapered haunches so that the

beam flanges widened to conform to the width of the column. The columns were made of welded
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square tube section of 400x400x 19 (mm) and steel grade of SS400 (F, =280 MPa, F, =430 MPa).
Beams were made of rolled wide-flange section of 500x200x 10x 16 (mm) and steel grade of SS400
(Fy=270 MPa, F, =420 MPa). The distance from the column axis to the load point at beam is 2000
mm. Various forms of ductile behavior were observed with the specimens eventually developing
fractures. Specimen BW10, which developed significant local buckling prior to terminating the
test, is studied herein. The test setup for specimen BW10 is shown in Figure 2.9.

The other set of data used here is from Suita et al., (2000), where a variety of Japanese
post-Kobe style and U.S. post-Northridge style welded beam-to-column connections were tested.
This experimental study compared beams having uniform sections and reduced beam sections in
the plastic hinge region. Duplicate specimens fabricated by two manufacturers were tested to iden-
tify variability in performance with different heats of steel and manufacture. The beam-column
connections with a uniform flange section and no weld access hole (NWAH) failed because of low-
cycle fatigue. They are used in current research. The columns were made of cold-formed square
tube sections of 350 x 350 x 12 (mm) and steel grade of BCR295 (F, = 295 MPa, F, = 400 MPa).
The beams were made of rolled wide-flange sections of 500 x 200 X 10 x 16 (mm) and steel grade
of SN400B (F, = 235 MPa, F,, = 400 MPa). The distance from the column axis to the load point
at beam is 3000 mm. The test setup for specimen N4 studied herein is shown in Figure 2.10.

An extensive database of results of steel beam-to-column connection tests has recently been

compiled by Lignos and Krawinkler (2007).

2.5 CONCLUDING REMARKS

Considerable experimental data exists on components such as conventional braces, beams, columns,
and connections, and on subassemblies including these components. Some of this well-documented

data will be used to calibrate or validate the numerical models developed in this research.
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(a) Specimen

(b) End connection

Figure 2.1 Experimental setup for conventional brace test (Yang and Mahin, 2005)
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(b) Complete rupture

Figure 2.2 Gusset plate damage (Roeder et al., 2006)
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Figure 2.3 Test setup for SCBF (Uriz, 2005)
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Figure 2.4 Target roof displacement history of SCBF test (Uriz, 2005)
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(a) Global buckling

(b) Local buckling

Figure 2.5 Brace buckling (Uriz, 2005)
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(a) Crack propagation

(b) Complete rupture

Figure 2.6 Brace failure (Uriz, 2005)

21



- 9
'
1

Figure 2.7 Beam-column connection failure (Uriz, 2005)
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3 Structural Steel Deterioration

For structural steel subjected to a severe cyclic loading history, such as that experienced during
a strong earthquake, several stages of behavior commonly exist during the course of material de-
terioration. Initially, it is assumed there are no macroscopic cracks or defects, thus no stress or
strain singularities are associated with the material. The material is then loaded non-proportionally
and cyclically into the inelastic regime under asymmetric stress and strain histories of varying am-
plitude. Deterioration then develops because of imposition of large plastic deformation, resulting
in substantial energy dissipation. This causes progressive failure of the material volume through
ductile damage and fracture associated with microvoid nucleation, growth, and coalescence. After
complete failure of a local material volume, a macroscopic crack is initiated eventually.

Damage resulting from plastic deformation in ductile metals is mainly because of the for-
mation of microvoids, which initiate (nucleate) either as a result of fracturing or debonding of
inclusions such as carbides and sulfides from the ductile matrix. The growth and coalescence of
microvoids under increasing plastic strain progressively reduces the material’s capability to carry
loads and can result in complete failure. Figure 3.1 shows the section of a tensile specimen dur-
ing the necking process (defined as a mode of tensile deformation where relatively large amounts
of strain localize disproportionately in a small region of the material, Bridgman, 1952), clearly
demonstrating void accumulation at the specimen center (Puttick, 1959). Figure 3.2 schematically
illustrates the nucleation, growth, and coalescence of such microvoids (Anderson, 1995). If the
initial volume fraction of voids is low, each void can be assumed to grow independently; upon
further growth, neighboring voids interact. Plastic strain eventually concentrates along a sheet of
voids, and local necking instabilities develop as shown schematically in the figure.

A proper modeling of this microvoid nucleation and growth mechanism is needed to predict
ductile failure in steel members and structures. In the context of continuum mechanics, plasticity

and damage models are essential for the simulation. Plastic, damage, and fracture behavior of



structural steel under monotonic and cyclic loading are discussed in the following sections.

3.1 PLASTIC BEHAVIOR AND MODELS

Isotropic hardening and/or kinematic hardening are commonly used to describe the plastic behav-
ior of metal-like materials under complex loading conditions. Prager (1956) and Ziegler (1959)
initiated the fundamental framework used for kinematic hardening rules. Armstrong and Frederick
(1966) developed a nonlinear kinematic hardening rule that generalized its linear predecessor. In
this model, the kinematic hardening component is defined to be an additive combination of a purely
kinematic term (i.e., the linear Prager/Ziegler hardening law) and a dynamic recovery term, which
introduces the nonlinearity. When combined together with isotropic hardening, such a model can
account for the following observed phenomena: (1) The nonlinear Bauschinger effect (Fig. 3.3);
(2) cyclic hardening (Fig. 3.3); and (3) ratcheting (Fig. 3.4).

The Armstrong and Frederick’s rule was further extended by Chaboche (1986, 1989), where
an additive decomposition of the back stress was postulated. The evolution equation of each back
stress component is similar to the work done by Armstrong and Frederick (1966). The advantages
of this superposition are that a larger strain range can be realistically modeled, and a more accurate
description of ratcheting is provided. These features allow modeling of inelastic behaviors of metals
that are subjected to cycles of load, resulting in significant inelastic deformation and, possibly, low-
cycle fatigue failure. Discussion of these plasticity models can be found in Lemaitre and Chaboche

(1990).
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Figure 3.1 Void accumulation in a tensile specimen (Puttick, 1959)
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Figure 3.2 Void nucleation, growth, and coalescence in ductile metals
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3.2 DAMAGE AND FRACTURE UNDER MONOTONIC LOADING

Two alternative approaches are generally considered for modeling material failure: local approaches
and global approaches. Local approaches focus on issues related to micromechanics, whereas

global approaches address issues of fracture mechanics.

3.2.1 Local Approaches

The local approach to fracture can be defined very generally as the combination of the following
two factors: (1) the computation of local stress and deformation values in the most loaded zones
of a component or structure; and (2) the use of predefined empirical models corresponding to var-
ious fracture mechanisms, such as cleavages, ductile fracture, fatigue, creep, stress-corrosion, etc.
(Rousselier, 1987). The parameters needed for these empirical models are obtained by calibration
to experimental data.

Many damage models have been developed since the initial micromechanics studies of Mc-
Clintock (1968) and Rice and Tracey (1969). The models can be categorized into two classes: (1)
void volume fraction models and (2) continuum damage mechanics models. In the first group,
failure is predicted when void volume fraction reaches a critical value. In the second group, the
material is considered fractured when the reduction of the effective area exceeds a critical value.

Both types of models can be written in the form of stress-modified critical plastic strain:
Damage evolution D= f F(o)G (€) dt (3.1a)
Failure criteria D = D, (3.1b)

where o is the stress tensor, F is the stress modification function, €” is the plastic strain rate tensor,
G is the plastic strain rate function, D represents the damage of the material, and D, is the value
of the critical damage parameter at failure. For example, the Rice and Tracey (1969) model can be
written as

F (o) = exp (1.50/0%) G (") =¢&" (3.2)
where 0, = o : 1/3 is the mean stress, o, = MHO'H is the equivalent stress, 0, /0, is the

stress triaxiality, and &” is the equivalent plastic strain rate, defined as

. 2
=3¢ ¢ (3.3)
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For the porous metal plasticity model (GTN model) developed by Gurson (1977), and Tvergaard
and Needleman (1984), a sophisticated yield function is developed and the void growth part is given
by
F(o)=1 G(e)=¢el=¢€:1 (3.4)
where £} is the volumetric plastic strain rate, and 1 is the second-order identity tensor 1 = ¢;;e;®e;.
For the ductile damage model proposed by Lemaitre (Lemaitre, 1992; Dufailly and Lemaitre,
1995), which is based on continuum damage mechanisms (CDM) introduced by Kachanov (1958),
the damage evolution function becomes

F (o) = [;—V] G (&) = & (3.5)

where S is a material constant in energy density units, 7 is a dimensionless material constant, and
Y is the internal energy density release rate, calculated as

Y:%aﬂWPﬁa (3.6)

where D¢ represents the fourth-order elasticity tensor
. 1
D :K1®1+2G<I[—§1®1) (3.7)
where A and G are the Lamé constants, and I is the fourth-order symmetric identity tensor.

1
I= 5 [0t + dudju] e ® e; @ e, @ e (3.8)

The Rice and Tracey (1969) model and the Lemaitre (1992) model predict very similar trends in
the case of proportional loading, as seen in Figure 3.5, where the equivalent plastic strain to failure
?:J’i versus stress triaxiality o,/c, is plotted for the two models. In the case of nonproportional
loading, Marini ef al. (1985) showed that the two models also give similar results. Recently,

Steglich et al. (2005) investigated the relationship between the CDM and the GTN models.

3.2.2 Global Approaches

Global approaches are based on asymptotic continuum mechanics analysis. Under some situations,
single- or dual-parameters can uniquely characterize the crack tip condition. Well-known single-

parameter variables are stress intensity K, J-integral, and CTOD (crack tip opening displacement).

30



1.8

15 .\ —e— Rice and Tracey (1969)
—&— Lemaitre (1992) v=0.3

1.2

1 TR
| il

0.3 pas

Equivalent plastic strain to failure s,p

0.0

0.0 0.3 0.6 0.9 1.2
Stress triaxiality o /o
m eq

Figure 3.5 [Equivalent plastic strain to failure versus stress triaxiality

A well-known dual-parameter formulation is based on the addition of a 7T-stress parameter that
characterizes the crack tip constraint.

All these parameters are defined at the global level of the crack medium, within the frame-
work of fracture mechanics. They are applicable to a number of situations where it is not necessary
to know the exact state of stress or damage in the vicinity of the crack tip (ranging from a two-
dimensional, almost elastic medium, with only a small plastic zone relative to the crack size; to
a three-dimensional medium subjected to proportional loading or cyclic loading in fatigue). On
the other hand, this approach may prove deficient in some cases, because of the size of the cracks,

pronounced overall plasticity during ductile fracture, or loading history effects.

3.2.3 Relation between Local and Global Approaches

A systematic comparative and parametric study of local and global models was reported by Xia
and Shih (1995) using the representative volume element (RVE) methodology. Here, the size of
the elements in the fracture process layer (the fracture elements representing the crack) in the local

approach is the key parameter linking the local and global approaches, and an approximate equality
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exists:

Jie = pdorg 3.9)

where Jj. is the critical J-integral under the Mode I condition, d is the size of the elements, o
is the flow stress, and u is a factor of order unity, suggesting that the element size in local ap-
proaches should be on the order of J;./0y or CTOD to obtain consistent results. This may make

local approaches infeasible for large structural systems or subassemblies.

3.3 DAMAGE AND FRACTURE UNDER CYCLIC LOADING

In this section, local approaches (as defined in previous section) to modeling damage and frac-
ture under cyclic loading are examined in more detail. This approach is compared to the popular
Manson-Coffin rule for low-cycle fatigue. The traditional Manson-Coffin rule “increments” the
damage state only at the end of each cycle. In contrast, the micromechanics and damage plasticity

approach “ramps” the damage continuously during cycling.

3.3.1 Manson-Coffin Rule

The Manson-Coffin rule is a popular model for low-cycle fatigue because of its simplicity. Gener-
ally, it is written in the form

AS ’ c
T” = &}(2Ny) (3.10)

where Ag,/2 is the amplitude of plastic strain, Ny is the number of cycles, &) is the ductility
coefficient, and c is the ductility exponent. In 1953, Manson, recognizing the form of Equation
(3.10) relating fatigue life and plastic strain range, suggested that the magnitude of 1/c was “in
the neighborhood of three” (Manson, 1953). Coffin (1954) showed that for practical purposes the
fatigue property c is approximately equal to —1/2, and that &, 1s related to the monotonic fracture
ductility &¢ (Tvernelli and Coffin, 1959). Actually, c commonly ranges from —0.5 to —0.7 for most
metals, with —0.6 as a representative value.

Despite a large amount of work to generalize this law to multi-axial states of stress (e.g.,
Morrow, 1964) and to complex histories of loading (Manson et al., 1971), it remains a model

generally only applied to uniaxial periodic loadings. Still, a wide variety of tests of structure,

component, and material specimens have demonstrated the general validity of the Manson-Coffin
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relation, and the range for the coefficient ¢ cited above.

Recently, Uriz (2005) utilized the Manson-Coffin rule together with the Palmgren-Miner
linear hypothesis for damage accumulation (Palmgren, 1924; Miner, 1945) and the rainflow cycle
counting method (Matsuishi and Endo, 1968) to predict the low-cycle fatigue behavior of uniax-
ially loaded struts. This approach mimics the rupture of uniaxially loaded material fibers used to
represent the cross section of a member. The rainflow cycle counting method was simplified so
that only several recent cycles were considered. This allows computation of damage during the
response rather than just at the end. After parameter calibration it was shown that the prediction
matched the experiment quite well. Note that the continuous damage models discussed in this chap-
ter do not rely on cycle counting algorithms, but rather damage continuously accumulating based

on the damage mechanics models presented.

3.3.2 Continuous Damage Models

Not much attention has been given to the possibility of incorporating damage into cyclic plasticity
by means of micromechanics. Recent works on porous metal plasticity are those of Leblond et al.
(1995), Besson and Guillemer-Neel (2003), and Cedergren et al. (2004). These models introduce
nonlinear kinematic hardening into the GTN model. As far as continuum damage mechanics is
concerned, Pirondi and Bonora (2003) introduced uniaxial conditions to model stiffness recovery
during tension-compression cyclic loading. Kanvinde and Deierlein (2004) extended the Rice and
Tracey (1969) formulation to incorporate a cyclic void growth model (CVGM). They revised the

material characteristic D, in Equation (3.1).

D, = D,y exp(1&”) (3.11)

so that the critical void volume fraction decreases as the equivalent plastic strain increases, and

then revising the stress modification function as

F(o) = ——exp(1.50,/0¢,) (3.12)

so that the void volume fraction decreases (heals) in compression.

Lemaitre (1992) introduced a relative simple modification for damage evolution in cyclic
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loading

Yy .
. [—] gr o1 >0
D=1{1S (3.13)

0 otherwise
where o is the maximum principal stress. Here, damage does not accumulate when all principle

stresses are in compression. In the present investigation, this is further revised for simpler imple-

mentation as:

AIE

Teg 3 (3.14)

0 otherwise

Y71. " 1
]é” 7. >

This simplification has negligible effect for most states of stress.

To schematically illustrate the difference between the CVGM and CDM models, prelimi-
nary results of an analysis of an individual brace (presented later in more detail in Section 5.2.1) are
shown in Figures 3.6 and 3.7. From Figure 3.6 it can be seen that for the cyclic void growth model,
the damage D increases during some portions of the deformation cycle and then heals in other
portions, and the critical damage parameter D, decreases with pseudo-time [according to Equation
(3.11)]. In contrast, for the same example, the continuum damage model given by Equation (3.14)
only increases with increasing pseudo-time, and the critical damage parameter D, is a constant.
The numerical values of the critical damage parameters, D, for the CVGM and D, for the CDM
models will, in general, differ. For the sake of this illustration, they have been loosely calibrated
to tail at about the same time.

It is also worth mentioning that although the critical equivalent-plastic-strain approach
(F (o) = 1, G (€") = &”) can be used in proportional loading cases where the triaxiality is con-
stant and known, it is unsuitable for arbitrary cases of cyclic loading. As illustrated in Table 3.1
(and approximately in Figs. 3.8 and 3.9), fatigue life (number of cycles to failure) will tend to be
underestimated if large strain amplitude data are used to calibrate the parameters (by a factor of
4 in the table); conversely, the fatigue life will tend to be overestimated if small strain amplitude
data are used to calibrate the parameters. This is an inherent and important drawback of applying
the critical equivalent-plastic-strain criterion to cyclic loading. This drawback is one of the rea-
sons why “stress-modified” critical plastic strain criteria, such as CVGM and CDM, are typically
used to simulate low-cycle fatigue failure behavior under arbitrarily varying strain histories. The

other reason is the triaxiality-independence of critical equivalent plastic strain criterion; the effect
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of triaxial constraint on the initiation of rupture is a well-known phenomenon.

3.3.3 Simple Comparison of Continuous Damage Models with Manson-Coffin Rule

Although the basic trends predicted by the Manson-Coffin rule have been verified by considerable
low-cycle fatigue data, the rule increments the damage state only at the end of each cycle. This rule
is not suitable for the case where the number of cycles to failure is less than 10 because this will
not allow a point in a material to fracture until the end of a full cycle. Continuous damage models
resolve this difficulty. Thus, it is useful to use the Manson-Coffin rule as a reference and to compare
the results of different continuous damage models to the results predicted by the Manson-Coffin
rule.

For this comparison, the cyclic void growth model in Equation (3.11) and (3.12) and the
simplified continuum damage mechanics model in Equation (3.14) are evaluated for low-cycle fa-
tigue and compared against the Manson-Coffin rule. A uniaxial stress condition model is subjected
to a series of constant-amplitude strain cycles considering several amplitudes of maximum strain.
These cyclic deformation histories are imposed until rupture of the material occurs. In this way,
standard Manson-Coffin type plots can be prepared for the analysis results, and these can be com-
pared directly with the most basic Manson-Coffin criteria for an ideal experiment, as shown in
Figures 3.8 and 3.9. Both models predict results that agree with those computed with the Manson-
Coffin rule, with the ductility exponent ¢ ranging from —0.5 to —0.7; i.e., corresponding to typical
values for metals.

Note that the low-cycle fatigue criterion based on critical equivalent plastic strain results
in a fixed ductility exponent ¢ equal to —1. As such, it cannot predict the correct trend of low-
cycle fatigue for metals. Thus, although the effective plastic strain criterion can be calibrated for
a particular material and specimen configuration subjected to a specific loading protocol, the same
failure criterion might be inappropriate for different loading histories at other locations within the
same structure.

Considering that the CDM result in Figure 3.9 is more accurate than the CVGM result in
Figure 3.8, and that the CDM is comparatively easy to implement and numerically more efficient,
the simplified CDM model in Equation (3.14) is chosen herein as the damage evolution model

for further investigation. It is believed that some underlying relationship should be satisfied when
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continuous damage models match the Manson-Coffin relation, suggesting that deeper investigation

1s needed.

3.4 CONCLUDING REMARKS

This chapter systematically reviews material models for structural steel subject to plasticity, dam-
age, and failure, and subject to cyclic loading history. Among several models reviews, the so-
phisticated low-cycle fatigue model based on damage mechanics is chosen because of its ability to

reproduce the Manson-Coffin relation with reasonable accuracy.

Table 3.1 Predictions of failure for an ideal Manson-Coffin experiment

Calibrated to large strain amplitude data

Strain amplitude Failure Cycle Test/EPS

Test 2
EPS* 0.20 9 1.00
Test 32
EPS 0.05 ] 4.00

Calibrated to small strain amplitude data

Strain amplitude Failure Cycle Test/EPS

Test 2
EPS 0.20 ] 0.25
Test 32
EPS 0.05 39 1.00

*EPS — critical equivalent-plastic-strain criterion
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4 Cyclic Damage Plasticity Model

This chapter develops a cyclic damage plasticity model based on the review of material models in
the previous chapter. First, the theory of plasticity and damage evolution is presented. Next, imple-
mentation of plasticity and damage models using the cutting-plane algorithm or the closest-point
algorithm is discussed. Finally, examples of the time-integration procedure for brick and shell ele-
ments is shown. The cyclic damage plasticity model is used in the next two chapters for calibration,

validation, application, and studies of steel braced frame components and subassemblies.

4.1 THEORY OF PLASTICITY AND DAMAGE EVOLUTION

Components of the damage plasticity model, including strain rate decomposition, yield criterion,

isotropic and kinematic hardening behavior, and damage evolution are summarized in this section.

4.1.1 Strain Rate Decomposition

The rate-of-deformation tensor € is written in the additive form of the elastic and plastic strain rate
components as

E=é+é& (4.1)

4.1.2 Elastic Behavior

The elastic behavior is modeled as isotropic hypoelasticity, i.e., the corotational rate of the Cauchy

stress tensor ¢ is calculated from the elastic strain rate tensor €° as
o=D°:¢€ (4.2)
where D¢ represents the fourth-order elasticity tensor

1
D' =xl®1+2G(1-31e1) (4.3)



where A and G are the Lamé constants, 1 is the second-order identity tensor, and I is the fourth-order

symmetric identity tensor.

1= (5,",'8,' ® e; (443)

1
=5 [6adj+dudule;®e;@e e (4.4b)

4.1.3 Plastic Behavior

The plastic behavior is modeled as pressure-independent plasticity. If the Huber-von Mises yield

condition is adopted, the yield surface is defined by the function
F=0-0,=0 (4.5)

where o, is uniaxial yield stress, and ¢ is the effective von Mises stress, with respect to the effective
deviatoric stress tensor

se =devjo| —a=s5s-«a (4.6)

where s is deviatoric stress tensor and « is the back stress tensor, which is decomposed into multiple

tensor components
a= Z @, (4.7)
J

The effective von Mises stress is defined as

&(se) = V ;se ‘8. = \/gllse” (48)

The model follows the associated Levy-Saint Venant plastic flow rule, i.e., the plastic strain
rate tensor is defined as

& =—1=-=1= 5@ (4.9)

n=>2 (4.10)
o
Note that for the sake of implementation simplicity, n is not a unit vector; its norm is
2
n|= /= 4.11
|| 3 (4.11)
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Adoption of the above form of von Mises yield criterion results in 1 = &7, where &” is the

. 2
& = 1/gel’ L &P (4.12)

4.1.4 Nonlinear Isotropic/Kinematic Hardening Model

equivalent plastic strain rate defined as

The size of the yield surface o is a function of the equivalent plastic strain &” for materials that
either cyclically harden or soften.

oy =0y (&) (4.13)

where the equivalent plastic strain is defined as an accumulation

(1) = fo (0 dr (4.14)

The evolution of the back stress tensor components are of the Armstrong-Frederick type
(Armstrong and Frederick, 1966), defined as

. 2 . - -
O’j = ngfp —yja'jsp = [C]n —yjaj] 8p (415)

where C; and y; are material parameters. The recall term y,a,&” introduces the nonlinearity in the
evolution law. The law can be degenerated into the linear kinematic one by specifying only one «

component with y = 0.

4.1.5 Damage Evolution Model

Based on the principle of strain equivalence (Lemaitre, 1971): “Any strain constitutive equation
for a damage material may be derived in the same way as for a virgin material except that the
usual stress is replaced by the effective stress,” the stress tensor (in the damaged material) op is

calculated from the effective stress tensor o as
op=0c(l-D) (4.16)

where D is the damage variable, whose rate is given by Lemaitre’s model (Lemaitre, 1992; Dufailly

and Lemaitre, 1995)
Y

5_1I5

t
B _ _ o 1
g’ & > &l and z sz

Teg 3 (4.17)

0 otherwise
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where 0, = o : 1/3 is the mean stress, 0., = +/3/2||lo|| is the equivalent stress, 0,/ is the
stress triaxiality, &) is damage threshold, S is a material constant in energy density units, 7 is a

dimensionless material constant, and Y is the internal energy density release rate, calculated as

Y = %0’: DT o (4.18)

4.2 IMPLEMENTATION OF THE PLASTICITY MODEL

In numerical analysis, the state variables of a material model such as stress, and elastic and plastic
strain are updated from one discrete time to the next, known as “time integration” of state variables.
The corresponding discretization and the update procedure of these state variables, i.e., implemen-

tation of the plasticity model is presented in this section.

4.2.1 Backward Euler Difference Scheme

First, the state variables are discretized using a backward Euler difference scheme. Subscript i

represent the step number; (e);’s are variables at time ¢;

&, =& +A1 (4.19a)
o1 =0, +D°: (Ae - A€’) (4.19b)
A€’ = ;niHA/l (4.19¢)
Aa; = [Cinipq —yj(@;)i1] A (4.19d)

4.2.2 Elastic-Plastic Operator Split

Next, the state variables are updated using a two-step algorithm: (1) an elastic trial predictor fol-
lowed by (2) a plastic corrector that performs projection of the trial states onto the yield surface.

The elastic predictor obtains the trial elastic states by freezing plastic flow during the time step as

gl = g7 (4.20a)
o4 =0+ D" Ae (4.20b)
Aerrial — (4.20c)
AaT =0 (4.20d)

J
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The plastic return-mapping corrector then updates the states as

Jtrial
z+1 Sp + A
o =0l D A€
3
A€’ = §ni+1A/l

A, = [Cimiy — y(@))i1] Ad

(4.21a)

(4.21b)
(4.21c¢)

(4.21d)

The plastic corrector can be implemented either using the cutting-plane algorithm or the

closest-point algorithm. For the theory of these two algorithms, see Simo and Hughes (1998). The

development of these two algorithms for the damage plasticity model is shown below.

4.2.3 Cutting-Plane Algorithm

For the cutting-plane algorithm, in the k-th iteration, the states are integrated from (#)®) to (@)*+1),

with linearization about (e)®):
_ ,(k+1) L(k) 2 59(k)
gf—f—l 1+1 + A /l(
(k+1) (k) (k) 21
Oy =0;,—-3Gn z+1A

k+1 k
(a'j)z(:l_ )= (@; )1(+)1 [C "z(+)1 —yj(a );+1] A

oy (B18) = 0 (E) + G (&) a2

i+1 i+1 aé

Solution of the yield function

(k) (k) (k)
o)y, OF o o  OF o wy  OF T
0=F., ~F1+1+a A‘7'1'+1+(9 Aa l+1+ay Ao yl+1
g 30 ) A2 0Ty (p(0Y A2
—F 1+§l+1'( 3Gnl+1A/l )+0—(1+1)A/1
3 (k) ")
oM [C n, — v >z+1] A2
obtains "
A2Q0) — Fii

3G+— (2 Zc - z+1'[271 () ,H}

Because linearization is used to update the state except for

o () ~ oy (2119) 4 22 (51

2 9(k)
i+1 i+1 OEP i+1 )A /1
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(4.22a)
(4.22b)
(4.22¢)

(4.22d)

(4.23)

(4.24)

(4.25)



the yield function can be calculated that

FI = oy (510) 4 9 (7 0) A0 — o (477 (4.26)

If the isotropic hardening function o, (£”) is defined using a piecewise linear curve, and

A220) is small enough, the linearization of o, is accurate. Then, the error of F M) above may be
g ¥ i+1

ignored. This leads to a non-iterative algorithm:

trial
Al =A% = ’;1 (4.27)
where
60—’ = 3 ria
k=3G+— &)+ > ¢i- S > yj(a,-)i] (4.28)
J J
whereby the states are updated as
g, =& + A (4.29a)
o = ol - 3Gn AA (4.29b)
(@)1 = (@) + [Cimi = ()| A2 (4.29¢)
And because
084 _ LGy + §AA% : Z (a)) 4.30
a€i+1 - k i+1 2 aei—i—l : ; Yi\&;)i ( . )
where
trial trial trial I- § pirial g ptrial
on!{ _ on!{ ' ds, i 2 i+1 i+l [QG (I[— 11 o 1)]
Oeiv1  Osyf)  O€in T 3 4.31)
2G ( 1 3 .. .
= (1--1e1-Za g n;f:;’)
AN
then from
o = ol - 3Gn{ AA (4.32a)
do;y = D¢ : deiy — 3G[n{4/dAA + dnY AA] (4.32b)
. (9A/l n{ri(il
= |D* - 3Gn/Y - 3GAL—"—|: de; 4.32
i1 © 0€i1 O€i11 e (4329

the algorithm consistent tangent moduli can be obtained as

00y 1

1 ~ . . ~
e~ Diy; =«k1®1+2GO;, (1 - §1 ®1) -3GO0 @ n4 = Dij4 (4.33)
i+
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where

3GAA

0,‘4.1 =1- o (4343)
Uit

~ 3G

01 = y — (1= 6i1) (4.34b)

. 9G2A 3 .
Dit1 = ol fﬁl@{[ﬂ— 5"%1@"5#‘11]
l+1

Zy, ;) ]} (4.34¢)

4.2.4 Closest-Point Projection Algorithm

For the closest-point projection algorithm, in iteration number k, the states are integrated from (e)®

to ()%, with linearization about (e)®):

_p(k)
gy =&+ AW (4.35a)
s = sl 3GaM), AW (4.35b)
k k
(aj)§+)1 (@))i + [C "z(+)1 Vj(aj)§+)1] AW (4.35¢)
resulting in
K (k)
Seiv1 = Six1 ~ ®ip
: (@;)i Q)
_ st_rtal 3G + /l(k)n
[ il Z 1+ y;A2%) Z y]m i+l (4.36)
3G + AA® ")
l+1 Z '}/JA/l z+1
where
trlal 4.37
£ = st ZH%M (4.37)
From the yield function
k _(k _p.(k
0= F1(+)1 z(—i-)l O'y( i+(1)) (4.38)
obtain
(k) ) ® =P (k)Y (k)
Seit1 = Tip1Mip1 = Oy <3f+1 )”i+1 (4.39)
Hence, the direction nfi)l is determined exclusively in terms of .fgi)l
© 'f(k)1
i+
nfh = 2 where M = \[ e (4.40)

i+1
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Therefore,

oy (20) n) =

)
i+1 i+1 t+1n1+1 A/l

l+1

3G+Z yA/l(k

and the following nonlinear scalar equation is obtained

0= g(A/l k))

o B a1 - )

and

0g 3 & (@)
98 (A 0) =20 S Vi)
GA/I( ) 2 il ZJ: (1+yjA/l(k))2

C; oo,
- 3G - ! _ 2 (ghWw
Zj: (1+ yjA,wc))? oeP ( b )

Advancing to the next iteration by Newton’s method

P -1
AAEHD — A [ 2 Agﬂ (A/l("))] g(2a®)

After convergence, the states are updated as

l+1 = 8 + A/l (&+D)
sip1 = s - 3G\ TV A
(@)); + C; AL+ p3 D
(@))iy1 =

1+ y,A100)
Because €, is fixed in the plastic corrector

A/l 8slrtal
_ 0 9g (M)ﬁ L 98 OSin
0€i1 T 0AA 0€i 1 5S§fﬁl 0€i 1
og oAl 3 1

AA —n; :2G(]I——1 1)

= oM ge,, T amn 3° ¢
g 0AA

A

GA/I( A) (96,-+1

+ 3Gn,-+1

0Al 3G 0g
e, =~ ity where k = ——(A/l)

S0 oA
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(4.41)

(4.42)

(4.43)

(4.44)

(4.45a)
(4.45b)

(4.45¢)

(4.46)



Then from
on; _ on; ) 011
0€i11 5§i+1 ' €1

3
[-5ni®ni | 1 (@) OAL
2 ;2G@——1®1y+§: i) o
3 (

Oiy1 1+ )/jA/l)Z e
-2 :2G@——1®1)+__§:Zi4£_;%
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and

trial
Oir1 = 0-z+1 3Gn,~+1A/1

d0-i+1 = Del . d€i+1 - 3G[n,+1dA/l + dn,-+1A/l]

0AA _ SGA/laniH

€i+1 0€it1

= Del - 3Gn,-+1 ® . d6i+1

the algorithm consistent tangent moduli is obtained as

80'1' 1 ~ ~
1 = Di+1 =xk1®1+ 2G0i+1 (I --1® 1) - 3G9,~+1n,~+1 ® (7 Di—H
0€i 1 3
where
3GAA
Oip1 =1 - —
Oit1

~ 3G
9i+1 k (1 - 9t+1)

~ 9G?AQ 3
Dij1 = % [--n1® "i+1] :
Oit+1 2

Z yila@))i®ni
(1+7y,A2)

J
4.3 IMPLEMENTATION OF THE DAMAGE MODEL

The damage state is updated using a trapezoidal scheme

o3[ 2] o
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(4.50a)
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where

1 -
YiZEO'iI[De] 1:0'[ (452)

The stress in the damaged material is then updated as
0pit1 =0i1(1 = Diyq) (4.53)

Because of the major symmetry of the elastic moduli, the algorithm consistent tangent mod-

uli for the stress (in the damaged material) is derived as follows:

% = l0'1'4-1 : [De]_l : 001 | 100 : [De]_l DO
€1 2 0€ir1 2 0€i (4.54)
=0 [De]_l : 0011
0€i 1
then OAD;  1[(Y;\'  (Yi1\'] 0Aa Y\ ' 19y,
i:_[(_i)+( i+1)] f( i+1) LN ladaa!
0€;11 2|\S S o€ 2\ S S €11 (4.55)
L[ (Y] A tAA (Y7 el 0074 '
_5[(§)+(5 )]aei+1+2s(s ) i D 5o
and finally
00pi1 _ 90t (1=Diy1) — 011 ® 9AD; (4.56)

€1 0€i 11 0€i11

4.4 TIME-INTEGRATION EXAMPLES

The pseudo-code for the time-integration procedure using a non-iterative cutting-plane algorithm
for brick and shell elements is listed step-by-step below. For the sake of simplicity and clarity, there
is only one back stress tensor component and isotropic hardening is not included. The complete
cyclic damage plasticity model with two back stress tensor components, piecewise linear isotropic
hardening, and damage evolution was implemented as LS-DYNA mat_153 (mat_damage 3, LSTC,
2007). A simplified version with one back stress tensor component, linear isotropic hardening,
and critical equivalent plastic strain damage criterion was implemented as LS-DYNA mat 165

(mat_plastic_nonlinear kinematic, LSTC, 2007).

4.4.1 Integration Procedure for Brick Elements

1. Compute incremental average strain

Asl + ASQ + ASg
3

A“':uvg = (457)
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10.

Compute incremental hydrostatic stress

Ap = 3KAg,,
. Compute trial stress o"!
o = o+ Ap 4 2G (Mg — Aggy,) (i=1,2,3)
U;rial =0+ Ap + GAS,' (l = 4, 5, 6)

Compute trial hydrostatic stress

o.tlrzal + 0_t2rzal + O.grlal

3

trial __

trial
e

Compute trial deviatoric effective stress s

Strzal — O_{rml _ ptrml - q; (l — 1, 2, 3)

e, i

trial trial .
seit =0 = a; (i=4,5,6)

. Compute second invariant of trial effective deviatoric stress

. N\2 . N2 . N2
trial trial trial
(sei)” + (sez) + (s23")

trial __
Jy' =

Compute trial Mises stress

5_lrtal _ [ 3 ngl

. Compute flow direction n

trial

n=—_ (i=1,2,3,4,5,6)

5—trial

Compute equivalent plastic strain increment

5_trzal -0,

3G +C - gy [23: na; + 26: Qniai)
i=1 i=4

=

Agl =

Update total equivalent plastic strain
& =& + A&
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(4.58)
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(4.59b)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)



I1.

12.

4.4.2

4.5

. Follow the procedure of brick element and compute normal stress o

. Follow the procedure of brick element and compute normal stress o

Update back stress a
@; = a; + (Cn; —ya;) A&? (i =1,2,3,4,5,6) (4.67)

Update stress o

o= o - 3Gn A" (i=1,2,3,4,5,6) (4.68)

Integration Procedure for Shell Elements

. For plane stress iteration number j = 1, compute fully elastic normal strain

%4
gl = - . (1 + &) (4.69)

(0.
3

. For iteration number j = 2, compute fully plastic normal strain

e = — (&1 + &) (4.70)

().
3

. Compute estimated normal strain

() (-1)

i+1 -1) &3 —¢& -1
séﬁ ) = 8:(3] ) _ —f’j) 3(j_1)aéj ) 4.71)
O3 —03

Compare séj ) and séj +1), check convergence and check normal stress condition o-éj ) = 0; if

either check does not satisfy its tolerance, increase j, and go to step 4.

Update state.

CONCLUDING REMARKS

The theory, implementation, and examples of the cyclic damage plasticity models are discussed

in detail. The model was implemented by the authors in finite element software LS-DYNA as

Material 153 (mat_damage 3, LSTC, 2007). This newly developed material model is used in the

following chapters.
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5 Calibration, Validation, and Application

This chapter focuses on calibration, validation, and application of the new damage material model
using experimental results from beam-to-column connections, individual braces, and braced-frame
subassemblies. Material calibration procedures using monotonic and cyclic experimental data is
discussed, followed by the application of the calibrated material model to components and sub-

assemblies of steel braced frame.

5.1 MATERIAL CALIBRATION

The material model developed in Chapter 4 has several plasticity and damage properties. These

properties can be calibrated using monotonic and/or cyclic experimental data, discussed as follows.

5.1.1 Calibration Using Monotonic Data

For monotonic loading in uniaxial tension test, the stress-plastic strain curve represented by the

model is given by

C C
o=0y,+ 7_11 [1—exp (—y1€")] + y_j [1 —exp (—yq.€”)] + He” (5.1)

where o is the uniaxial stress, &” is the uniaxial plastic strain, o, is the initial yield stress, C1, y1,

C,, and vy, are kinematic hardening parameters, and H is linear isotropic hardening parameter. If

¥: = 0, the nonlinear term — [1 — exp (—y;&”)] is reduced to a linear term C;&”. Equation (5.1) may

1

be used to determine the plasticity parameters if only monotonic tension test data is available.
The physical meaning of kinematic hardening parameters C; and vy, can be illustrated by

specifying Co = H = 0; then Equation (5.1) becomes

C
o=0,+ 7—1 [1—exp (—y1€")] (5.2)
1
making the initial slope (derivative (9_01-’ ) equal to Cy, and the saturated yield stress equal to
EF [ep=0



£ P
Figure 5.1 [Illustration of kinematic hardening parameters
5.1.2 Calibration Using Cyclic Data
For uniaxial stress cyclic loading, the evolution of back stress is given by
@; = CiéP — y,a €| = — (a — nC;/y;) ny;€" (5.3)

where a;’s are the uniaxial back stress components, £” is the uniaxial plastic strain rate, and n =
sign(&”) is the plastic flow direction. Equation (5.3) is transformed as
&; .
———— = —ny;& (5.4)
a; — I’lCi/’yi '
If the plastic strain increases or decreases monotonically, direction n is constant. Integration of

Equation (5.4) results in

a; — nC;/y
ajo — nC;/y;
where the subscripts 0 denote the initial values. Equation (5.5) can be written as

In = —ny; (8” - sg) (5.5)

a; = nC;/y; + (@i — nC;/y;) exp [—ny,- (8” - 68)] (5.6)

For a stabilized symmetric cycle, the amplitude and peaks of back stress are Aq;/2 and
+Aq;/2, respectively. Similarly, the amplitude and peaks of plastic strain are Ae” /2 and +Ae” /2,

respectively. Substitute them into Equation (5.5) and obtain
Aai/Q—nC,-/yi B 1
~Aa;/2 -nCily;  exp[2(y:Aer/2)]

(5.7)
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which leads to the relation between back stress and plastic strain amplitudes

Aa; ; Ag?
il 9tanh (7,-—8) (5.8)
2 Yi 2

For the tension half cycle, direction n = 1, then Equation (5.6) becomes

C |G Agf\ AgP
o =—— [— tanh (y,-—g) + —] exp [—7,- (s” + —8)] (5.9)
Yi Vi 2 Yi 2
For the tension half cycle of a stabilized symmetric cycle, when the cyclic hardening is saturated,

the stress-plastic strain curve is given by

, C1 C1 AgP C1 Ag?
oc=o0,+——|—tanh|y;— |+ —|exp|-n1 SP+T
V1

Y 2
Y1 Y1 (5.10)
C2 C2 AgP C2 AgP
+ — —|—tanh|yo—— |+ —|[exp|—y2 e’ + —
Yo 72 2 Y2 2

Equation (5.10) may be used to determine the kinematic hardening parameters using cyclic test
data. Then, isotropic hardening parameters can be obtained by removing the kinematic hardening
part of the stress-equivalent plastic strain curve. The material properties may be further adjusted
by running numerical tests and using a least-square nonlinear fitting process to improve fidelity.
The above calibration process may result in widely different sets of kinematic hardening
parameters (C1, y1, Co, and y») depending upon the strain range of interest. Interest in response
with a larger range of strain tends to result in lower kinematic hardening modules. Using a series
of material tests of Japanese SM490 steel (Fujimoto et al., 1985) and SS440 steel (Nishimura et
al., 1994) as examples, calibration results in two sets of parameters. Parameters in Set A are C; =
30000, y; = 300, Co = 2000, and vy = 15, and parameters in Set B are C; = 4000, y; =
400, C; = 500, and vy, = 0. The results are shown in Figures 5.2 to 5.5 for SM490 steel and
Figures 5.6 to 5.9 for SS440 steel, both for cases of cyclic loading. Compared to the experimental
results, the numerical results predicted by the parameters in Set A are more accurate than those in
Set B, in which the ranges of strain are relative small. For larger ranges of strain, however, the
numerical results presented with the parameters in Set A are not as good as those in Set B. This is
demonstrated in Figure 5.10, which compares results for monotonic tensile tests. Thus, there are
two options: a user may choose Set A to obtain round corners during smaller strain cycles, or Set

B for better agreement during larger strain cycles or monotonic straining. Other sets of parameters
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may be determined by “trial and error” to provide a balance of characteristics more appropriate for
a particular application.

The best method of calibrating damage parameters is unknown because of current lack of
detailed low-cycle fatigue data. Additional research and material testing is needed.

If no specific input is provided by the user, “default” values are provided in the implemen-
tation of the damage plasticity model to maintain backward compatibility with LS-DYNA Material
104 (LSTC, 2007). The “default” values for S and 7 are 0,,/200 and 1, respectively, where o is
the initial yield stress. The effect of different values of parameter ¢ on the rate of deterioration can

be seen in the simulated Manson-Coffin curves plotted in Figure 3.9.
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Figure 5.2 Experimental versus numerical results (SM490 cyclic test 1)
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Figure 5.3 Experimental versus numerical results (SM490 cyclic test 2)
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Figure 5.4 Experimental versus numerical results (SM490 cyclic test 3)
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Figure 5.6 Experimental versus numerical results (SS440 cyclic test 1)
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Figure 5.7 Experimental versus numerical results (SS440 cyclic test 2)
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Figure 5.8 Experimental versus numerical results (SS440 cyclic test 3)
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Figure 5.9 Experimental versus numerical results (SS440 cyclic test 4)
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5.2 VALIDATION AND APPLICATION TO COMPONENTS

Finite element analyses were done to assess the ability of the newly developed damage plasticity
model to simulate the hysteretic behavior of braces, braced-frame subassemblies, and beam-to-
column connections. The focus of this investigation was to evaluate the prediction of local buckling
and the evolution of damage because of low-cycle fatigue. Individual braces and beam-column con-
nection subassemblies are described in this section and braced-frame subassemblies are described
in Section 5.3.

All finite element models were built using fully integrated shell elements (Engelmann et
al., 1989; Simo and Hughes, 1986; Pian and Sumihara, 1985) and implicit time integration. This
type of shell element is based on a combined co-rotational and velocity-strain formulation. An
embedded element coordinate system that deforms with the element is defined in terms of the
nodal coordinates (LSTC, 2007). The Mindlin theory of plates and shells (Mindlin, 1951) is used
to determine the velocity of any point in the shell.

Shell elements instead of solid elements were selected for these studies because the optimum
element type determined here for single braces is adopted for subsequent analyses of braced-frame
subassemblies and beam-column connections. Because the computational effort for a complete
braced frame is substantially greater than for an individual brace, efficient finite element models
are preferred. A shell element is more time-consuming than a solid element in that shell elements
require zero-normal stress iterations. But many more solid elements are required through the wall
thickness to capture the combined membrane and plate actions. Because shell and solid elements
have the same number of degrees-of-freedom per element, more total CPU time is expected for
models developed with solid elements than those with shell elements.

The choice of shell elements instead of beam elements is based on the consideration that
beam elements assume that plane sections remain plane and the sectional coordinates of integration
points on plane sections remain constant during the course of analysis. This assumption makes it
impossible to model local buckling of a tube-section brace using beam elements. For shell elements,
a tube section is built with several elements. Therefore, there are sufficient degrees-of-freedom
related to local buckling deformation.

Crack initiation and propagation is modeled by element erosion (element removal). Once
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the material point damage parameter exceeds a critical damage state corresponding to fracture, it
is considered failed and is removed from a model. Although the shell element size is much larger
than the material characteristic length of deterioration (~ 0.01 in., Kanvinde and Deierlein, 2004),
the gradients of equivalent plastic strain and damage variable contours are small with respect to the
characteristic length before crack initiation. Therefore, it is acceptable to have shell element sizes
larger than the characteristic length, but a mesh convergence test is required. Mesh convergence

for a single brace is examined in Section 5.2.1 using progressively refined finite element meshes.

5.2.1 Single Brace

A finite element model was built for the single-brace test specimens discussed previously in Section
2.1 (Yang and Mabhin, 2005). Because the yield stress and ultimate stress were the only material
properties known for the braces, the damage evolution constants for the steel material needed to be
calibrated using the overall results for individual braces. The applied displacement history for each
experiment was extracted and prescribed as a time-varying displacement boundary condition at one
end of the brace and the other end was fixed. No initial imperfection was introduced in the finite
element model. The buckling was expected to be trigged by perturbations of numerical truncation
or round-off error.

The analysis results are shown in Figures 5.11 to 5.14. Global buckling (Fig. 5.11), local
buckling and damage localization (Fig. 5.12), crack initiation (Fig. 5.13), and crack propagation
(Fig. 5.14) were successfully simulated, demonstrating that the cyclic damage plastic model is
suitable even though only basic plasticity and damage models were used. Comparisons between
experimental and numerical results for the axial force — axial displacement hysteretic curves are
shown in Figures 5.15 to 5.17, and the comparisons for peak loads in each half cycle are shown in
Figures 5.18 to 5.20. By incorporating the damage model, the numerical analyses predict with a
fair degree of accuracy the strength deterioration and the resulting force-displacement curve over
the whole loading history. This makes it reasonable to extend the modeling of an individual brace
to a larger model of a complete braced-frame subassembly.

The mesh sensitivity of plastic strain was validated using models with successively smaller
elements. Plastic strain was chosen as the index of quality because it is the major source of dam-

age. Four different element sizes in the refined mesh region at brace mid-span (Fig. 5.12) were
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evaluated. Figure 5.21 shows the time history of plastic strain for these four element sizes. Note
that both the equivalent plastic strain and the damage state are seen to converge reliably when the
element size is on the order of shell thickness. Obviously after crack initiation, the gradients of
both the equivalent plastic strain and the damage state are much higher. Mesh sizes larger than the
material characteristic length combined with element erosion for cracking will result in a larger en-
ergy release rate at the crack tip (Xia and Shih, 1995) and blunt the crack front to an unrealistic size,
resulting in an exaggerated ductile behavior of the crack tip. But this is a local behavior of the crack
tip, and before it behaves inelastically, the strength and stiffness of a typical brace member have sig-
nificantly deteriorated because of lateral and local buckling; therefore, the exaggerated crack front
blunting when using large-size shell elements should have less influence on the force-deformation
performance. Note that mesh sizes at the same scale of the material characteristic length may be
required for analyses of local crack tip behavior. It is believed that the choice of shell element at
sizes around the shell thickness achieves an overall model that is as simple as reasonably possible
with reasonable accuracy for analyses of braces and braced-frame subassemblies. This choice of

shell element size is applied to all analyses in this research.
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Time: 7.00500e+000 (8 of 74)
(dashed line for undeformed shape)

Figure 5.11 Global buckling of brace specimen 5 (after Yang and Mahin, 2005)

Figure 5.12 Local buckling of brace specimen 5 (after Yang and Mahin, 2005)
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Figure 5.13 Crack initiation of brace specimen 5 (after Yang and Mahin, 2005)

Figure 5.14 Crack propagation of brace specimen 5 (after Yang and Mahin, 2005)
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Figure 5.16 Hysteresis loops of brace specimen 7 (after Yang and Mahin, 2005)
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Figure 5.17 Hysteresis loops of brace specimen 8 (after Yang and Mahin, 2005)
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5.2.2 Single Beam-Column Connection

A finite element model was built for the welded steel beam-column connection subassembly tested
by Tanaka et al. (2000) and discussed previously in Section 2.4. Half of the specimen is modeled
and symmetry boundary conditions were applied. The finite element model is shown in Figure
5.22. The newly developed cyclic damage plasticity model was used. The parameters of com-
bined isotropic and nonlinear kinematic hardening were calibrated against experimental data from
Nishimura et al. (1994).

Figure 5.23 shows the numerical result of the load-displacement curve compared with the
experiment. Most of the hysteretic features are well captured by the simulation. Some comparisons
of the simulations and the experiments for the buckling shape are shown in Figures 5.24 to 5.26.
The simulation results match the experimental ones very well.

The last half cycle of the experiment displacement history starts from —60 mm to 80mm.
In the numerical analysis, the displacement history was extended with 10 cycles of displacement
amplitude at 80 mm. Further local buckling was observed and the hysteretic loop stabilized, but
no low-cycle fatigue-induced fracture was observed. In order to apply and validate the material
model, the beam-column connection test by Suita ef al. (2000) was also simulated and is discussed

below.
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Time: 0.00000e+000 {1 of 56)

Figure 5.22 Finite element modeling of BW10 specimen
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Figure 5.23 Hysteretic loop of BW10 specimen
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Figure 5.24 BW10 behavior comparison 1
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(a) Experimental result

(b) Numerical result

Figure 5.25 BW10 behavior comparison 2
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(a) Experimental result

(b) Numerical result

Figure 5.26 BW10 behavior comparison 3
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The beam-column connections experiment by Suita et al. (2000) discussed in Section 2.4
was also analyzed. The specimens ruptured because of low-cycle fatigue in a region of the beam
flanges where large plastic deformation and local buckling occurred. Specimen N4 was numerically
simulated and the results are plotted in Figures 5.27 to 5.30.

The finite element model used is shown in Figure 5.27. Because there was no weld access
hole, the structural mesh was easily established. To reduce computational costs, only the region
near the face of the beam-column connection is refined. Because a single beam framed into the
column, and assumptions of symmetry could not be used as in the case of the column tested by
Tanaka et al. (2000), the whole column (instead of half) was modeled.

The newly developed cyclic damage plasticity model was used for the simulations. The ini-
tial estimate used for the material modeling parameters was almost identical to that used in BW10,
except that the initial yield stress was changed to match those obtained from coupon tests for Spec-
imen N4. Damage was calculated, and the elements eroded during the analysis as damage accu-
mulated.

Because no detailed cyclic material stress-strain data was available for this specimen to
calibrate the model, the default damage parameter set for the material was used as an initial estimate.
The “default” damage parameter S is around F'y/200 to F,, /200, where F, and F,, are the yield stress
and the ultimate stress of the steel, respectively. For this test specimen (N4, Set B), the reported F
for the flange was 295 MPa and that for the web was 325 MPa.

Figure 5.28 presents and compares the numerical load-displacement curves with the exper-
imental data. Both buckling and damage features are well captured by the analysis. The buckled
shape is shown in Figure 5.29, and the final fracture pattern in the flange is shown in Figure 5.30.

These results match the final damage description in Suita et al. (2000) very well.
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Time: 0.00000e+000 {1 of 91)

Figure 5.27 Finite element modeling of N4 specimen
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Figure 5.28 Hysteretic loop of N4 specimen
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5.3 VALIDATION AND APPLICATION TO SUBASSEMBLIES

5.3.1 Subassembly Subjected to Quasi-Static Loading

A finite element model was developed for the braced-frame subassembly discussed previously in
Section 2.3, as an extension of the approach used to model for the individual brace discussed in
Section 5.2.1. Details including the gusset plate and the shear tab in beam-column connection are
modeled. For the sake of simplicity, no out-of-plane offset of the shear tab is modeled. The roof
level displacement was prescribed. The base was fixed and out-of-plane constraints were imposed
on the column ends and beam mid-spans as they were in the experiment.

The analysis results are shown in Figures 5.31 and 5.32. The distribution of damage within
the subassembly is accurately simulated (Fig. 5.31). The sequence and nature of global and local
buckling and fracture of braces are very similar to those of test results. In additional, the damage and
fracture at the beam-column connection, right near the corner of the shear tab, were predicted as well
(Fig. 5.32). Considering that the material parameters used were approximate, these results show
that the cyclic damage plasticity model predicts overall response to a reasonable degree and should
be useful for damage evaluation of the steel structures, especially if the material properties are well
defined. Figures 5.33 and 5.34 show the base shear-roof displacement hysteresis curves for the
experimental and numerical analysis, respectively. Note that strength, stiffness, and deterioration

in the overall behavior of the braced frame are well simulated.
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Figure 5.31 Damage and fracture of brace

Time: 1.30000&+002 (66 of 66)

Figure 5.32 Damage and fracture of beam-column connection
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Figure 5.33 Experimental result for braced frame
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5.3.2 Subassembly Subjected to Dynamic Loading

The previous subsection simulated the subassembly subjected to quasi-static loading. To predict re-
sponse under dynamic loading, masses were assigned to the floor levels, and the LA23 ground mo-
tion was imposed. LA23 is one of the 20 ground motions assembled for the SAC project (Somerville
et al., 1997) representing an exceedance probability of 2% in 50 years, derived from the free-field
motion recorded at a distance of 3.5 km during the 1989 Loma Prieta earthquake. The design base
shear capacity of the structure, based on the methods used in ASCE 7-05, was used to determine
the weight of a structure that the code would assume could be supported by the braced frame. The
total weight was equally distributed between both floors. The model and ground motion are shown
in Figure 5.35.

The failure mode at time ¢ = 13.8 second is shown in Figures 5.36 to 5.38 from different
points of view. The braces in the first story buckled and restraightened repeatedly, causing the
bottom story to become a soft story.

From the hysteretic loops shown in Figure 5.39 and first-story drift time history shown in
Figure 5.40, one can see that extremely large interstory drifts occur for the selected earthquake
motion. Comparison of models with and without damage incorporated are also shown in Figures
5.39 and 5.40. For the model without damage, the structure does not collapse; for the one with
damage, substantial deterioration of strength and stiffness occurs and the structure collapses. The

significant difference suggests the importance of considering damage in the simulation.

5.4 CONCLUDING REMARKS

Computational results obtained with the new cyclic damage plasticity model correlate well with the
test results for individual braces, beam-to-column connections, and braced-frame subassemblies.
These applications of the model illustrate the importance of considering material nonlinearity, local
and global buckling, and the exhaustion of the ability of the material to deform inelastically caused

by low-cycle fatigue.

85



Ground Acceleration (g)
o.

M 1N Am AhA

04

ay

BN AN AVIA VARALL

0.3

Time (s)

03

025

n2

015

01

005

0

Time: 0.00000&+000 (1 of 151)

Figure 5.35 Subassembly model and ground motion
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6 Studies of Steel Braced Frame Behavior

For Special Concentrically Braced Frame (SCBF) systems, energy dissipation is achieved by ten-
sion yielding and compression buckling of the braces, and all other components are intended to
remain essentially elastic. To achieve desirable ductile behavior in the braces, the AISC Seismic
Provisions for Structural Steel Buildings (AISC, 2005b) have several requirements for proportions
and details of SCBF systems. Requirements that are closely related to studies of steel braced frame

behavior in this chapter include:

* Slenderness of brace. Bracing member slenderness is quantified as the slenderness ra-
tio KL/r, where K is the effective length factor, L is the laterally unbraced length of the
member, and r is the governing radius of gyration. Brace slenderness is limited to ensure

adequate compressive strength and resistance to the cyclic degradation of the brace.

» Compactness of section. Sections are classified as compact, noncompact, or slender-
element sections. Compact sections are those capable of developing a fully plastic stress
distribution and of possessing a rotation capacity of approximately three before the onset
of local buckling (AISC, 2005b). Compactness of section is quantified in terms of width-
thickness ratios A = b/t. For flanges of rectangular hollow structural sections, width b is
the clear distance between webs less the inside corner radius on each side, and the thick-
ness ¢ is the design wall thickness. The post-buckling performance of the braces is also
dependent on the compactness of the members. Higher width-to-thickness ratios may lead
to earlier and more severe local buckling, which in turn results in premature rupture of the

brace and lower energy dissipation capacity.

* Connections. Connections are responsible to combine and transmit forces between the
bracing element and framing beams and columns. Requirements for these connection de-

tails help realize ductility and energy dissipation of the system by preventing premature



failure modes.

* Beams. For V-type and inverted V-type frames, beams must be continuous between columns
and must be designed for vertical unbalanced loads associated with yielding of the tensile
brace and buckling of the compressive brace. Beam top and bottom flanges must be braced

at the intersection of the braces and beam.

This chapter first looks at the effects of brace proportions (slenderness ratio KL /r and width-
thickness ratios b/t) on the fatigue life capacity of bracing members subjected to cyclic deformation
histories. Here, fatigue life demand is how much the brace needs to deform inelastically to achieve
expected system performance. In contrast, fatigue life capacity is how much the brace is able to
deform inelastically before failure occurs from low-cycle fatigue. Fatigue life demand can for ex-
ample be specified as the demanded deformation history of a brace corresponding to two interstory
drift cycles of 2%, followed by three interstory drift cycles of 1%.

A parametric study of fatigue life demand for SCBF systems with different structural period,
brace slenderness and compactness, ground motion characteristics, and so on, is not considered in
this research. In the current research, only fatigue life capacity is investigated. Factors affecting
fatigue life capacity are discussed in Section 6.1. After fatigue life demand and capacity are both
well understood, one can compare them for a given structure and to avoid fracture, adjust the design
parameters of the structure such that the fatigue life demand is satisfied by the fatigue life capacity.
Code requirement of braces proportions (slenderness of member and compactness of section) may
be similarly determined by statistical comparison of fatigue life demand and capacity of different
structures.

Next, the effect of connection details on damage accumulation in the column is studied.
Although the tensile, flexural, and compressive strength requirement for connection in the AISC
Seismic Provisions helps forces transfer and ensure system integrity, high local stress and large
plastic deformation in the column leading to fracture may affect the performance. Some connection
details may result in crack initiation and propagation in the column, as observed in Uriz (2005) (Fig.
2.7), and simulated in Section 5.3 (Fig. 5.32). Because damage control of columns is essential to
maintain integrity of the gravity load resisting system, it is necessary to evaluate and compare

damage evolution in columns for different connection details. To reduce the damage accumulation
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in the column, improved connection details are recommended in Section 6.2.

The position of lateral bracing for beams in V-type and inverted V-type braced frames is
discussed next. The most common position for lateral bracing is at the intersection of braces and
beam, i.e., both top and bottom flanges are laterally braced at the section passing through the work-
ing point of braces at beams. As shown in Section 6.3, however, lateral bracing at this position
may result in local buckling of gusset plates. More appropriate positions and methods to compen-
sate for problems detected for currently recommended lateral bracing positions are suggested and
evaluated.

Finally, Chen et al. (2008) found that for low-rise braced frames with short foundational
periods, estimates of interstory drift based on elastic spectra diverge from nonlinear response his-
tory analysis results for intense ground motions. An alternative interstory drift estimation method
for low-rise braced frames that respond inelastically during strong earthquake ground shaking is
suggested based on the modal pushover analysis procedure. This method is discussed in Section
6.4.

The following questions are answered for all the four studies of steel braced frame behavior

in this chapter.

1. Is the fatigue life capacity of braces a function of the slenderness ratios KL/r or the width-

thickness ratios b/1, or a function of both?
2. Which connection details mitigate damage accumulation in the columns?

3. Is there a more appropriate position of lateral bracing for beams than the intersection of

braces and beam?

4. It is possible to better estimate the interstory drift for low-rise braced frames?

6.1 BRACE PROPORTIONS

The proportions of the braces in a SCBF system, including their slenderness and compactness, are
critical when considering compressive buckling strength and, more importantly, the postbucking
hysteresis performance of brace members. It is well established that overall instability of braces,

including overall compressive buckling strength and cyclic strength degradation, are mostly de-
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pendent on slenderness ratios KL/r (Bruneau et al., 1998; Galambos, 1998). In addition, the
width-thickness ratio b/t has been shown to be a significant factor for fracture because of local
instability, including local buckling and low-cycle fatigue (Goel, 1992; Hassan and Goel, 1991;
Tang and Goel, 1989). Despite these advances, it is still unclear whether and how the slenderness
ratios KL/r affect the fatigue life capacity of braces, which is closely related to local instability.

Tremblay (2000) demonstrated that frames with very slender braces designed for compres-
sion strength behavior behave well because of the system overstrength inherent with their tension
yielding, which results in a reduction in the fatigue life demand. Higher overstrength factor reduc-
ing the demand of fatigue life can be explained intuitively by Newmark and Hall’s energy preserva-
tion for short-period systems (Newmark and Hall, 1982): if the strength increases, the deformation
and ductility demand decreases. Besides the overstrength factor, it is believed that fatigue life de-
mand also depends on the period and the hysteresis of the structure, the characteristics of ground
motion, and the contribution of framing actions, etc. A separate systematic research on fatigue life
demand is expected to be carried out and not considered in this research.

Regarding the fatigue life capacity, dependence on different factors has been proposed in
existing literature: dependence on slenderness ratios KL/r only, dependence on width-thickness
ratios b/t only, and dependence on both. Goel and his colleagues showed that the fatigue life
capacity of a brace member depends on both slenderness ratios KL/r and width-thickness ratios
(b’ —2t)/t (equivalent to b/t in AISC Specifications). The fatigue life capacity is generally constant
when slenderness ratios KL/r are smaller than 60 but increases with an increase in slenderness
ratios KL/r when it is larger than 60 (Tang and Goel, 1987, 1989). They give:

o (&'/d) (60)

— (KL/r < 60)
| o= o
262% (KL/r > 60)
(6" —21) /1]

where Ny is the accumulated tensile deformation normalized by the tensile yield deformation, the
width 2’ is the clear distance between webs, and the depth d” is the clear distance between flanges.
Based on the test results of Lee and Goel (1987) and Liu and Goel (1987), Tang and Goel (1987,
1989) observed that a larger slenderness ratio KL/r resulted in less severe local buckling and pro-
posed that overall buckling also affects the fracture life capacity of the bracing members. Based on

study of the hysteretic behavior of bracing members in Jain and Goel (1978), Tang and Goel (1987,
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1989) also proposed that the effect of the slenderness ratio KL/r is not considered in the fatigue
life capacity when it is less than 60.
Lee and Goel (1987) proposed a refined fatigue life capacity formula, suggesting that the

ductility depends on only compactness:

46/F,)" (4 /d + 1
Ay =1335 U6/F,) 16( [d+ ) (6.2)
| (b7 = 20)/1]" g
where A is the accumulated effective tension excursion of braces, defined as
Ap= ) (0141 + Ay) (6.3)

In a tension half cycle of the load-deformation loops of the braces, A, is the tension deformation
from the load reversal point to one third of the tension yield strength of the brace P, /3, and A, is
the tension deformation from one third of the tension yield strength of the brace P,/3 to the end
point of the tension half cycle.

Tremblay (2002) analyzed existing experimental data for braces with various slenderness
and compactness ratios. He proposed that the normalized range in a cycle deformation history is a

linear function of the slenderness ratio KL/r.

kL | F,
,1]»:2.4+8.37 ﬂZ—% (6.4)

where 1 is the peak-to-peak deformation range normalized by tensile yield deformation. Tremblay

et al. (2003) later proposed that

oL bd\ " (KL\O3
=14 == 0.0455(24 —) 6.5
K +Dy{00 55(r t) (r ] (6.5)

where D, is the tensile yield deformation of the braces. These two equations suggest either no or
little dependence on width-thickness ratios b/1.

Recently, Fell (2008) analyzed almost the same set of experimental data for braces, but
proposed that the maximum range in a cyclic deformation history is a function of width-thickness

ratios b/t
2

L[ (b)2+md\(b\
A= —la|l——||- 6.6
where A} is the peak-to-peak deformation range of braces, the width 4’ is the clear distance between

webs, and the depth d’ is the clear distance between flanges. Based on experimental data, Fell
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(2008) suggested the plastic hinge length is given by L, = b’ /2 + md’, m = 0.5, « = 0.9, and
B =-0.53.

These conflicting opinions regarding factors controlling fatigue life capacity arise from sev-
eral reasons, the primary one being the characteristics of the experimental data. A comparison of
the statistical data in Tremblay (2002) and Fell (2008) demonstrates that the specimens with higher
ductility have larger slenderness ratios and smaller width-thickness ratios, and the specimens with
lower ductility have smaller slenderness ratios and larger width-thickness ratios.

It is difficult to distinguish the contributions of these two parameters: does the ductility
comes from larger slenderness ratios or smaller width-thickness ratios? The dispersion of ductility
may also be attributed to variation of the ductility measure, variation of the deformation histories,
and probable variations of the steel fatigue properties. Clearly, more research is needed on this
issue.

In summary, in order to get a better understanding of how proportions and deformation
histories effect ductility, experiments with one parameter altered at each step in the study would
be necessary. This type of experiment is conducted numerically and presented in this section. The
numerical parameter matrix is shown is Table 6.1. The first two parameters are width-thickness
ratios b/t and slenderness ratios KL/r. For the hollow square section, the radius of gyration is
proportional to the width b. Thus by changing thickness ¢ and fixing width b, it is possible to vary
b/t while keeping KL/r constant, and vice versa. The third parameter is the number of cycles per
deformation level. The fourth parameter is the tension/compression asymmetry ratio. For a T/C
asymmetry ratio of 3:1 and deformation range of 1.0, the peak tensile deformation is 0.75 and peak
compressive deformation is 0.25. The deformation history imposed has an increasing amplitude
level series of 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.5, 6.0, 7.5, 9.0, 10.5, and 12.0 times tensile yield
displacement (range series of 1.0, 1.5, 3.0, 4.0, 6.0, 9.0, 12.0, 15.0, 18.0, and 21.0 times tensile
yield displacement). Therefore, the fatigue life can be uniquely identified for a given deformation
level to failure, where “failure” is defined here as cracking of three sides of a brace section and
significant loss of strength (Fig. 5.14).

Brace 1 in Table 6.1 used as the reference in these analyses is the same size as the sin-
gle brace described in the previous chapter (Section 5.2.1), with a b/t of 14.2 and KL/r of 50.

The number of cycles per deformation level for the reference case is two, the tension/compression
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asymmetry ratio is 1:1. The corresponding deformation history is shown in Figure 6.1, and the
deformation level to failure for the reference brace is /2 = 7.5 (Figs. 6.3b, 6.4b, 6.5b, 6.6b, and
Table 6.1). Note that uy is the deformation range to failure normalized by tensile yield deforma-
tion, and /2 is deformation level (deformation amplitude) to failure normalized by tensile yield
deformation.

The numerical results are grouped and displayed in Figures 6.3 to 6.6, and the deformation
levels to failure are summarized in Table 6.1. The influence of width-thickness ratios b/t is shown
in Figure 6.3 demonstrating clearly that the width-thickness ratios b/¢ have a pronounced effect
on ductility capacity: the smaller the width-thickness ratios, the higher the ductility. As shown in
Figure 6.4, however, even though it is clear that specimens with smaller KL/r have higher com-
pressive buckling strength and tend to dissipate more energy within each cycle, it is more noticeable
that they have an almost identical deformation level at failure. In other words, slenderness ratios
have little effect on ductility capacity.

The number of cycles per deformation level also plays an important role (Fig. 6.5). Ob-
viously, increasing the number of cycles at a deformation level causes more cumulative plastic
deformation (and thus more damage). This suggests that for a given ground motion, structures
with shorter periods may experience more cycles, and thus more damage for the same maximum
drift is expected. Finally, for the asymmetry deformation history, bias in terms of compression
leads to less ductility, as shown in Figure 6.6, which may be because compressive deformation is
concentrated at the mid-span of the brace where local buckling occurs, but tensile deformation is
distributed along the length of brace.

Based on numerical analysis, it is evident that fatigue life capacity is heavily dependent
on width-thickness ratios b/r and deformation histories. Slenderness ratios KL/r appear to have
negligible, if any, effect on fatigue life capacity. It is worth noting that slenderness ratios KL/r
may reduce fatigue life demand (Tremblay 2000; Uriz 2005). Careful experimental validation of
these observations from numerical simulations is advised.

Based on the above discussion and evaluation on fatigue life capacity, for its counterpart,
fatigue life demand, the following important parameters are suggested. Fatigue life demand may
be specified as the demanded deformation history of a brace, e.g., corresponding to two interstory

drift cycles of 2% followed by three interstory drift cycles of 1%. In this sense, the fatigue life
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demand is, essentially, a loading protocol for braces. The four most important basic parameters for
realistic loading protocols are numbers, amplitudes, sequence, and asymmetry of cycles.

These four parameters depend on many factors:

* First, they depend on the intensity [e.g., peak ground acceleration (PGA) and duration] and
the frequency content of ground motion, which in turn depend on the magnitude of the

earthquake, the distance from the epicenter, the soil type at the site, ezc.

 Second, they depend on the configuration, strength, stiffness, and modal properties (peri-
ods and participation factors) of the structure, as well as the contribution of framing beam
and column members, and the effects of response modification coefficients (R factors) and

system overstrength factors (€2 factors) (ASCE 7-05).

* Third, they depend on the deterioration characteristics of the structure. For braced frames,
compressive strength, overstrength factor, and resistance to the cyclic degradation of braces
may depend on the slenderness ratios KL/r as well as steel yield strength F,. All these
factors are equally important and interact with each other. For example, the period of a
structure has a significant effect on the response to near-fault ground motions; compressive
strength, overstrength factor, and slenderness ratios KL/r may be not fully independent of

each other and they may be reduced to a smaller number of independent factors.

There are many decisions and judgments to be made in developing a loading history that
is statistically representative of the full range of ground motions and structural characteristics. A
detailed discussion of the development of loading histories for steel moment frames and wood-
frame structures that are good guidelines for future development of fatigue life demand for braced
frame systems can be found in Krawinkler et al. (2000a, b). For braced frame systems, it is rec-
ommended that several variations be considered, including consideration of both “ordinary” and
near-fault ground motions, the duration of earthquake versus the period of a structure, the slen-
derness ratios KL/r and resulting overstrength factor, and steel yield strength F, and hardening
properties. Other variations of parameters should also be considered, with the cumulative damage
concepts kept in mind. Considering both a series of response history analyses of single-story braced

frame systems and a statistical analysis of the response history of brace deformation, a representa-
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tive loading history can be developed with proper numbers, amplitudes, sequence, and asymmetry
of cycles.
Once the deformation history or the fatigue life demand is developed, code requirements

for brace proportions can be determined. For example, if the following assumptions are met:
1. The reference history in this parametric study (Fig. 6.1) is a typical deformation history;

2. The plasticity and damage properties calibrated against Yang and Mahin (2005) in this re-
search are typical material properties for ASTM A500 Grade B steel;

3. The braces of the braced frames are oriented at 45 degrees, and the nominal yield strain of

braces is &, = 0.16% approximately;

then from a normalized deformation level to failure for different width-thickness ratios b/t sum-
marized in Table 6.1, a relationship can be developed between interstory drift ratios to failure and
width-thickness ratios b/t. For example, for b/t = 14.2, the deformation level to failure is 7.5
times the yield deformation. By assuming 45-degree orientation of braces, the interstory drift to
failure is 2 X &, X 7.5 = 2.4%. This relationship is shown in Figure 6.2. Based on this relationship,
in order to achieve interstory drift capacity without failure at 2.5%, the limiting width-thickness
ratio b/t is 13.1.

Alternatively, test protocols of the “pass or fail” type proposed by Tremblay and Bouatay
(2002) may be used to determine the limiting width-thickness ratios b /7. In this type of test, a brace
system is said to be adequate if it survives the applied displacement history. The largest width-
thickness ratio b/t of survivals is the critical factor. Tremblay and Bouatay’s deformation histories
do not include all the variations discussed herein. In particular, they are independent of structural
properties (such as the slenderness ratios KL/r), which may be important based on observations by
Tremblay (2000); the histories were proposed with careful consideration of the individual effects
of four ground motion types.

The four proposed deformation histories adopted in current research represent (1) crustal
(intra-plate) earthquakes that occur in Eastern North America (rich in high frequency), (2) crustal
earthquakes occurring along the Pacific coast, (3) west coast near-field ground motions that are

characterized by large acceleration pulses leading to high ground velocity and displacement, and

97



(4) earthquakes occurring along the Cascadia subduction zone. These four deformation histories are
shown in Figure 6.7. In order to show clearly the failure of unsatisfying braces, a tensile excursion
is appended at the end of the original histories. “Failure” is defined here as cracking of three
sides of a brace section and a significant drop of strength, and the appended tensile excursion and
corresponding resistance response are purely for visual demonstration of the failure (“strength lost”
or “strength recovered” annotated in Figs. 6.8 to 6.11).

When a braced frame is subjected to an interstory drift history, one brace in the pair is in
tensile deformation while the other is in compressive deformation — and vice versa — if defor-
mation of beam is ignored. Based on the previous parametric analysis in this section, compressive
asymmetry causes more damage. Therefore, the deformation histories applied to braces are the
ones biased in terms of compression, i.e., only the braces with greater compressive deformation are
analyzed, as they are related to the limiting width-thickness ratios.

Braces with different width-thickness ratios b /7 are analyzed using these four “pass or fail”
type loading protocols. The results are shown in Figures 6.8 to 6.11 for four loading histories,
respectively. For both west crustal events at distance and west near-field events, the critical width-
thickness ratios b/t are 13.2. Braces with width-thickness ratios less than 13.2 will survive the
applied displacement history. For east crustal events at distance and west subduction events, the
critical width-thickness ratios b/t are 16.4 and 15.9, respectively. The critical width-thickness ratios

for four loading histories are summarized in Table 6.2.
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Table 6.1 Numerical experiment matrix for brace proportion

b/t KL/r No.ofcycle T/C pus/2

1 142 51 2 /1 7.5
2 8.1 51 2 /1 105
3 282 5l 2 /1 6.0
4 142 32 2 /1 7.5
5 142 70 2 /1 7.5
6 142 100 2 /1 7.5
7 142 51 1 /1 9.0
8§ 142 5l 3 /1 6.0
9 142 51 2 3/1 7.5
10 14 51 2 13 6.0

Table 6.2 Numerical results of “pass or fail” type loading histories

Event b/t Pass/Fail Peak Def. Peak IDR*

15.3 Pass

East crustal events at distance 16.4 Pass 5D, 1.6%
17.6 Fail
12.5 Pass

West crustal events at distance 13.2  Pass 7D, 2.2%
14.2 Fail
12.5 Pass

West near-field events 13.2  Pass 12D, 3.8%
14.2 Fail
14.9 Pass

West subduction events 159 Pass 5D, 1.6%
17.0 Fail

* Peak Interstory Drift Ratios are calculated by assuming that the braces are 45-degree
oriented and the nominal yield strain of braces is &, = 0.16%
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6.2 CONNECTION DETAILS

The AISC Provisions place a great deal of emphasis on brace-to-gusset connection details. Al-
though the connection between the brace and the frame is strengthen by the gusset, the “rigid” zone
created by the beam-column connection and the gusset plate generate more deformation and dam-
age to a member immediately surrounding the zone: the column and the beam. This may result in
cracks in column flanges and webs, as seen in the inverted-V type SCBF test discussed in previous
chapter, or cracks in beam flanges and webs, as seen in the BRBF test in Uriz (2005).

Several methods for reducing damage accumulation in the column are analyzed in this sec-

tion, including:

1. Reduced depth (Fig. 6.14). Reducing the depth of column has two effects. First, the stiff-
ness and strength of the column is reduced; and second, for a given curvature, the strain at
the outer fiber will decrease with decreasing section depth. These two effects counteract

each other and together may help alleviate damage in the column.

2. Thickened web (Fig. 6.15). Thickening the web increases the stiffness and strength of the

column. Stiffness and a stronger column will have less deformation and damage.

3. Thickened flanges (Fig. 6.16). Thickening the flanges has a similar effect as the thickened
web. Because the flange has more outer fibers, thickening the flanges are expected to be

more effective.

4. Stiffener (Fig. 6.18). There is a tensile component of interface force between the beam and

the column. A stiffener may distribute the tensile force and reduce damage at the column.

5. Reinforcing plates at the flanges (Fig. 6.19). The reinforcing plates locally strengthen the

damage zone of the column.

6. T-shear tab (Fig. 6.20). A T-section shear tab is a variation of the reinforcing plate, but

easier to manufacture and install.

7. Welded flanges (Fig. 6.21). Welding the flanges of a beam and a column provides a more

uniform interface force transfer than does a shear tab.
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8. Stiffener and welded flanges (Fig. 6.22). Combine the stiffener and welded flanges and

create a standard moment connection.

The two-story SCBF used in this numerical analysis is identical to the one discussed in the
previous chapter, which was subjected to a displacement history at the top of the frame. The critical
damage state of steel material was 0.5 (typical value, Lemaitre, 1992), beyond which is considered
failure. The history of maximum damage at the column was recorded and compared in Figure 6.12.
Modification methods listed in the legend are sorted by damage state, with the largest damage state
history at the top.

The numerical analysis shows that strengthening the column uniformly (reduced depth,
thickened web, and thickened flanges) is, in general, less effective than strengthening the column
locally at the damage zone. Reinforcing plates are the most effective method. Unfortunately, this
is the least feasible method because it is difficult to access the weld near the beam web. The use
of a stiffener and a combination of stiffener and welded flanges are good candidates for effective
damage reduction methods.

The combination of stiffener and welded flanges results in more damage than using the
stiffener by itself because the connection becomes more rigid. As the displacement history at the top
of the frame is prescribed, rigid connections lead to more deformation at the column. For structures
subjected to earthquake ground motion, more rigid connections lead to higher stiffness, which
generally results in less overall deformation. Therefore the difference between using a stiffener and
a combination of a stiffener and welded flanges are expected to be less. Finally, the combination
of a stiffener and welded flanges is a standard moment connection, which can be easily designed
by structural engineers. Based on these considerations, the combination of a stiffener and welded

flanges are recommended.
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Figure 6.16 Details of column: thickened flange
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Figure 6.17 Details of reinforcement: reference
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Figure 6.18 Details of reinforcement: stiffener
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Figure 6.20 Details of reinforcement: T-shear tab
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Figure 6.22 Details of reinforcement: stiffener and welded flanges
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6.3 LATERAL BRACING FOR BEAMS

For V-type and inverted V-type braced frames, beam top and bottom flanges must be laterally
braced at the intersection of the braces and beam. Bracing helps the beams resist rotation about
the longitudinal axis (lateral-torsional buckling), in accordance with the AISC Seismic Provisions.
Although AISC specifies the required brace strength and stiffness, the term “intersection of braces
and beam” is not precisely defined. In an idealistic model, braces are pin-connected to the beam
at the mid-span point. But in reality, the brace-gusset-beam connection is not a point but a region.
Thus, there are at least two bracing configurations: one where the lateral bracing is at the middle
of the beam, and another where two lateral bracing members are provided, one at each end of the
gusset plate (Fig. 6.23). Note that the lateral bracing members at the top flanges and continuous
bracing by the slab are not shown in the figures. Although the first configuration is most common in

structural engineering practice, the second one might be more appropriate. For example, consider:

1. For special moment frames, the Seismic Provisions (Section 9.8) require that lateral bracing
members for beams shall be placed at locations where changes in the cross section occur
and where analysis indicates formation of a plastic hinge. For SCBFs, at the edges of the
gusset plate, the cross section changes because the gusset plates enhance beam bending
stiffness. Moreover, because of the vertical unbalanced load, it is possible that a plastic
hinge in the beam will form at the ends of the gusset plate during inelastic deformation of
the braced frame. To this end, placing lateral bracing members at the gusset plate edges

would be consistent with practices for special moment frames.

2. Gussets are typically detailed in accordance with Seismic Provisions Commentary Section
C13.1. This results in a fixed-fixed boundary with a sidesway buckling configuration for
the gussets, with coefficient K = 1.2 (AISC 2006). As the brace-gusset-beam connection
is not a rigid region out-of-plane, the configuration with lateral bracing members at the
edge of the gusset (Fig. 6.23b) is more likely to satisfy the fixed-end condition, typically

assumed in design practice.

The analysis results of braced frames with the two types of bracing configurations subjected

to earthquake ground motion are compared. Structural parameters of the braced frame are described
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in Section 6.4. The SAC LA32 ground motion that was randomly chosen and is large enough to
buckle the braces, was applied to the structure. The comparison of first-story hysteretic loops is
shown in Figure 6.24, and a comparison of behaviors is shown in Figures 6.25 and 6.26. As can
be seen, the gusset with a lateral bracing member at the middle buckled out of plane, which then
led to lateral torsional buckling of the beam, as well as a plastic hinge at the beam right next to
the connection (Figs. 6.25b, 6.26b). The configuration with two lateral bracing members at the
edges of the gusset provided sufficient stiffness against torsional deformation of the beam and the
beam-column connection; therefore, energy dissipation was localized at the braces, which is ideal
for SCBFs.

A braced frame with only one lateral bracing member at the middle, but with a thicker gusset
design with a fixed-pin boundary with a sidesway buckling configuration was also analyzed. The
result is similar to the two-lateral-bracing-member configuration, with buckling localized in braces.

Alternatively, the in-plane buckling connection might be used to reduce twisting forces on
the beam. An example of this kind of connection (Rutherford and Chekene, 2008) is shown in
Figure 6.27. In order to eliminate the out-of-plane buckling mode of the gusset-brace-gusset com-
ponent, the out-of-plane bending stiffness at the ends of the component has to be increased. Here,
stiffeners are used to strengthen the gusset and prevent it from compression buckling. Thicken-
ing of the gusset and incorporating a gusset stiffener effectively increase the out-of-plane radius of
gyration, thereby increasing its compression buckling strength. Thus, the in-plane bucking connec-
tion is also helpful when only one lateral bracing member at the middle is feasible. The analysis
results of the same braced frame but with the in-plane buckling connection included are shown is
Figure 6.28. The energy dissipation is again localized in the braces, and buckling of the gusset is

prevented.
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Time: 1.20000e+01 {41 of 61)

(a) One lateral bracing member at the middle

Time: 1.20000e+001 {41 of 61)

(b) Two lateral bracing members at the edge of gusset plate

Figure 6.25 Damage modes for drift to the right

121



Time: 1.28000e+01 {44 of 61)

(a) One lateral bracing member at the middle

Time: 1.29000e+001 (44 of 61)

(b) Two lateral bracing members at the edge of gusset plate

Figure 6.26 Damage modes for drift to the left
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Figure 6.27 Detail used to induce in-plane buckling of braces

Time: 1.20000¢+001 {41 of 50)

Figure 6.28 Analysis result of in-plane buckling of braces
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6.4 ESTIMATE OF INTERSTORY DRIFT DEMANDS

For moment frames, and tall braced frames, which have relatively long fundamental periods falling
into the Newmark and Hall displacement-preserved range (Newmark and Hall, 1982), the elastic
spectral analysis may give a reasonably conservative estimate of average drift demands for inelastic
systems. In other words, for short-period braced frames, the estimation based on elastic spectra is
relatively poor. It is not clear whether equivalent nonlinear modal analysis, namely modal pushover
analysis (MPA), can be used to realistically estimate interstory drift for low-rise braced frames. In
this section, a three-story SCBF structure is evaluated using nonlinear response history analysis
(RHA) and MPA, and the results compared. A new method for pushover analysis using a multiple
point constraint is derived based on the principle of virtual work and is presented in Appendix A.

The nonlinear static procedure or pushover analysis (FEMA 273, FEMA 356) has been
adopted by structural engineers as a building evaluation tool for seismic demand estimations. Based
on structural dynamics theory, while retaining the simplicity of existing pushover analysis, the
MPA procedure was developed to include modal contributions that may be significant to seismic
demands (Chopra and Goel, 2002). The procedure has been applied to SAC buildings (Goel and
Chopra, 2004), height-wise regular generic frames (Chintanapakdee and Chopra, 2003) and irreg-
ular generic frames (Chintanapakdee and Chopra, 2004). The goal of this section is to bridge the
gap between computationally intensive RHA and efficiency-demanding design practice based on
a comparison of results for low-rise braced frames with short fundamental periods. The results in
terms of maximum interstory drift ratios (IDRs) are compared, and based on these analyses, the
method to estimate interstory drift demands is suggested.

The model building (DASSE, 2007) developed to investigate the SCBF systems is a rectan-
gular structure with four perimeter braced-frame subassemblies. Braces are arranged as a double-
story X-type. The building was designed in conformance with the provisions of 2006 IBC, ASCE
7-05, and AISC 341-05. A typical building floor plan and frame elevation are shown in Figure 6.29.
A finite element model was developed for the braced-frame subassembly, using shell elements and
the cyclic damage plasticity model. The finite element model is shown in Figure 6.30.

First, the model building was subjected to the sixty ground motions that were assembled for

the SAC project (Somerville ef al., 1997), representing seismic events ranging from the frequently
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occurring to those that are very rare, and was evaluated using RHA procedure. In all 60 analyses,
the maximum interstory drift occurs in the first story, thus, hereinafter maximum interstory drift
ratios refer to those ratios in the first story. In the RHA, a standard Newmark integrator is adopted.

Discussion on the instability of the Newmark integrator can be found in Appendix B.

2%

Figure 6.30 Finite element model and refined regions of the building
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Then the model building was evaluated using MPA:
. The natural frequencies w;, and modes ¢,, were computed with modal analysis.

. For the nth mode, the base-shear-roof displacement, V,,,-u,,, a pushover curve by nonlinear
static analysis of the building using lateral force distributions s = mé¢, was developed.
The structural deformation history is saved. A new pushover method using constraints

(Appendix A) is adopted in this research.

. The V},-u,,, pushover curve was converted to the force-deformation, F,/L,-D,, relation for
the nth-mode equivalent inelastic single-degree-of-freedom system with unit mass. This

step 1s illustrated in Figure 6.31, where M, is the nth-mode effective modal mass.

. The force-deformation hysteresis relation for the nth-mode single-degree-of-freedom sys-
tem was idealized. In this analysis, a peak-oriented stiffness deteriorating hysteresis type
was chosen based on a comparison of the monotonic and cyclic pushover curves for Mode

1, shown in Figure 6.32.

. The peak deformation D, of the nth-model inelastic single-degree-of-freedom system de-
fined by the hysteretic force-deformation relation developed in Step 4 with response history

analysis was computed.

. The peak roof displacement u,, associated with the nth-mode inelastic system from u,, =

I'¢,.D, was computed.

. From the structural deformation history obtained in Step 2, the story displacements vector

at roof displacement equal to u,, was extracted.

. Steps 3 to 7 were repeated for all modes to be included.

. The total responses by combining the peak modal responses using an appropriate model
combination rule was determined. The SRSS rule was used in this paper. Some modal

properties are listed in Table 6.3.
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Table 6.3 Elastic modal properties of the three-story SCBF subassembly

n T,(s) b, Ly Viu/M, (in/sec?)
10521 [0.32,0.71,1.00]" 126 200
2 0204 [1.00,0.95,-1.00]" 0.33 1300
3 0.146 [1.00,-0.80,0.25]" 0.26 4000

In Step 5, the behavior of the second and third modal inelastic single-degree-of-freedom
systems were essentially elastic because of their relative high yield forces compared to the first
mode (Table 6.3).

Maximum interstory drifts (in Story 1) from elastic spectral analysis and RHA are compared
in Figure 6.33. Estimates of interstory drift based on elastic spectra substantially diverge from
nonlinear RHA results for intense ground motions. This is similar to the observations reported by
Chen et al. (2008). Maximum interstory drifts (in Story 1) from MPA and RHA are then compared
in Figure 6.34. In contrast to estimates using elastic spectra, good agreement is observed between
predictions using MPA as proposed above (with inelastic spectra) and simulations using RHA,
for MPA of both the first mode and the first three modes. The results of MPA for the first three
modes are slightly better than those for the first mode in terms of the coefficient of determination
R? (0.9568 versus 0.9651). The reason why the improvement is small is again because of the elastic
behavior of the second and third modal single-degree-of-freedom systems, as well as smaller modal
contribution factors for higher modes. Thus, the dominant interstory drift response is that for the
first mode.

As demonstrated above, for low-rise braced frames with short fundamental periods that do
not fall into the Newmark and Hall displacement-preserved range, the MPA procedure estimates

interstory drift with reasonable accuracy.

6.5 CONCLUDING REMARKS

A series of analyses are presented that evaluate and refine several requirements for detailing and
analyzing special concentrically braced steel frame buildings. Numerical simulations demonstrate

that the fatigue life capacity of braces is heavily dependent on width-thickness ratios and defor-
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mation histories. Recommendations are presented for developing fatigue life demand or loading
protocols for use in numerical and experimental investigations. Improved beam-column connec-
tion details are recommended to reduce the damage accumulation. More appropriate lateral bracing
positions for beams in V-type and inverted V-type braced frames are suggested and evaluated. A
method to estimate interstory drift demands for low-rise braced frames is suggested based on the

modal pushover analysis procedure.
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Figure 6.32 Monotonic and cyclic pushover curves for Mode 1
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7 Conclusions

This research focuses on simulations of the inelastic seismic behavior of steel braced frames includ-
ing the effects of low-cycle fatigue. Numerical models that assess the initiation and propagation of
failure during cyclic loading need to account for multi-axial states of material nonlinearity, local
and global buckling, and the inability of the material to deform inelastically because of low-cycle
fatigue. This study simulates failures caused by low-cycle fatigue using finite element models.
Compared to phenomenological models, finite element models require more computational effort
but incorporate more realistic physical representations of members and materials, including the ini-
tiation and evolution of damage through complete failure. In addition to examining the inelastic
behavior and failure of traditional steel beam-to-column connections, members and connections
in concentrically braced frames were investigated to better understand the influence of global and
local buckling on member deterioration and failure.

Following a review of existing material models for simulating structural steel deterioration,
a series of investigations are conducted using finite element modeling techniques. Finite element
methods can directly account for complex states of stress and changes in deformed shape. Material
models are critical for constitutive behavior at integration points of the finite element models; how-
ever, available material models tend to emphasize behavior associated with ideal ductile response
or with failure occurring under monotonic loading conditions (e.g., during metal-forming processes
or vehicle collision). These models are not suitable for progressive collapse analysis under cyclic
loading where the consequence of this adverse behavior on the subsequent response or integrity of
the structure is of interest.

Therefore, a new, numerically efficient continuum damage mechanics material model capa-
ble of simulating inelastic behavior and deterioration of mechanical properties because of low-cycle
fatigue has been devised and implemented in a finite element software LS-DYNA (LSTC 2007).

Computational results obtained with this new material model correlate well with test results for



several beam-to-column connections, individual braces, and braced-frame subassemblies. These
applications of the finite element model to realistic cases involving progressive collapse illustrate
the importance of material deterioration and rupture. Unfortunately, the ability of the material
model to predict ultimate behavior depends heavily on the material modeling properties specified.
Recommendations for characterizing material properties for these types of analysis are developed
and presented.

A series of analyses are presented that evaluate and refine several requirements for detailing
and analyzing special concentrically braced steel frame buildings, demonstrating that the fatigue
life capacity of braces is heavily dependent on width-thickness ratios and deformation histories.
Member slenderness ratios are shown to have negligible effect on fatigue life capacity. Therefore,
recommendations are presented for developing fatigue life demand or loading protocols for use in
numerical and experimental investigations. Next, damage evolution in gusseted beam-to-column
connections is evaluated and compared for different connection details, and improved connection
details are recommended to reduce the damage accumulation. The position of lateral bracing mem-
bers for beams in V-type and inverted V-type braced frames are also examined. More appropriate
positions and methods to compensate for problems detected for currently recommended lateral
bracing member positions are suggested and evaluated. Finally, for low-rise braced frames that
respond inelastically during strong earthquake ground shaking, an alternative method to estimate
interstory drift demands is suggested based on the modal pushover analysis procedure.

Additional research work is needed to develop improved guidelines for modeling. These
depend on having high-quality data on the cyclic hysteretic properties of the materials being an-
alyzed and on their low-cycle fatigue characteristics. In addition, more experience with the new
continuum damage mechanics model is required, including analysis of systems with high axial
loads in members, considering a wider range of behavior. For such elements to become more use-
ful and reliable, it is essential to obtain additional high-quality data for evaluation and calibration.
When such models can be implemented with confidence, they can be used to improve structural
details, assess the behavior of structures subjected to unusual loading, and provide a mechanism for
calibrating simpler numerical (phenomenological or physical theory) models that can be applied to

large structures where computational costs prohibit the use of finite element models.
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Appendix A: Applying Proportional Loads
Using Constraints

A.1 INTRODUCTION

Several structural analyses require a fixed load pattern, with all load magnitudes varying with
a single scalar parameter. This is known as “proportional loading.” One example of an analysis
that requires proportional loading is a pushover analysis in which loads are applied at some or
all stories. Another example is multiaxial compression — or tension — of concrete specimens in
which two or three surface loads are applied.

One source of difficulty in performing such analysis is that part of structure, or the whole
structure, may undergo softening because of mechanical deterioration and/or large deformations.
For such conditions, the load factor must decrease to maintain equilibrium as the structure softens.
To conduct these types of analyses, a sophisticated load-adjusting scheme is necessary with an
accompanying solution procedure.

Several such schemes have been proposed, including the well known arc-length method
(Crisfield, 1981; Ramm, 1981). A comprehensive discussion of load-adjusting schemes can be
found in Clarke and Hancock (1990).

Load-adjusting schemes are useful for solving an equilibrium state with global instability,
which manifests itself in a global load-displacement response that has a negative tangent stiffness
and a smooth equilibrium path in load-displacement space. However, typical global load-adjusting
schemes may not work if the instability is localized because of a severe local nonlinearity and the
equilibrium path is no longer smooth. An example of an analysis that may address the limitation
of such a load-adjusting scheme would be an analysis of a reinforced concrete structure, where
tensile cracks of the concrete result in randomly distributed local instabilities.

When an external load is applied at only one degree-of-freedom of a structure, it is con-



venient to prescribe incremental displacement at this degree-of-freedom — making the structural
response stable — thereby making it easier to evaluate the load-displacement behavior of the
structure. However, if loads are to be applied at multiple degrees-of-freedom, prescribing dis-
placements at all these degrees-of-freedom is not applicable for proportional loads; a priori dis-
placements needed to maintain the proportional load pattern are unknown for a nonlinear structure.

For laboratory experiments, several well-developed methods for applying proportional
loads exist. Inspired by these laboratory methods, a new numerical method is developed for ap-
plication of proportional loads. The degrees-of-freedom corresponding to the prescribed propor-
tional loads are called “target degrees-of-freedom.” In the proposed method, an additional control
degree-of-freedom is introduced, and a multiple point constraint (MPC) involving the control
degree-of-freedom and the target degrees-of-freedom is formulated. By prescribing the displace-
ment of the control degree-of-freedom, proportional loads can be applied at target degrees-of-

freedom without applying a load-adjusting scheme.

A.2  EXPERIMENTS WITH PROPORTIONAL LOADING

One method used by laboratories to apply proportional loads is through multiple actuators. Dis-
placement of one actuator is prescribed and the resistance of this actuator is measured. The loads
to be applied at other degrees-of-freedom are calculated using predefined load proportionality,
and then these forces are applied by other actuators to maintain the prescribed load distribution.
This method of laboratory testing is described by Okamoto et al. (1982). However, this method is
not suitable for numerical analysis because it needs feedback control, which does not fit into the
standard numerical analysis procedure.

Another method is the Whiffle-Tree load system (Harris and Muskivitch, 1980; Harris and
Sabnis, 1999). This mechanical system involves an articulated set of load distribution bars and one
actuator to apply a single concentrated load (Fig. A.1).

Note that the articulated system of the Whiffle-Tree is statically determinate. To apply
proportional loading with proportions (p1, ps, p3,- - , pn), Where n is the number of the loads, a
Whiftle-Tree load system may be designed as follows: first, Loads 1 and 2 are combined with a

loading beam at one level below the test structure. At the level below this, another loading beam
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Figure A.1 Whiffle-Tree load system (Harris and Muskivitch, 1980)

carries the previously combined Loads of 1 and 2 on one end, and Load 3 on the other end with a
resultant of the sum of the first three loads, as shown in Figure A.2. This procedure can be repeated
to include all loads.

Given that all loading beams are pin-connected, the proportionality of length can be ob-
tained from moment equilibrium:

R R T P
I pi I pitp L p1+ p2+ ps

(A.1)

The loading beams can be flexible, and as long as the length proportionalities are maintained, the
load distribution will be maintained even if the loading beams deform, translate, or rotate. If the
loading beams are stiff enough as to be considered rigid, the relations between displacements can
be derived.

From Figure A.3 we write

_ bd + hdy _ pidi + pads

dio =
2 L+ 1y P1+ D2 (A2)
dooe — l3dio + l12ds _ (p1+ p2) di2 + pads _ pidy + pads + p3ds '
128 Lo+ 13 p1+ p2 + p3 p1+ p2+ p3

Continuing this derivation reveals that an interesting relation of displacements implied by the

Whiffle-Tree System:

d d d d
d1234:P1 1 + pady + p3dz + pady (A3)
P1+Pp2+p3+ps

or

p1dy + pods + psds + pady — (p1+ p2 + p3 + pa) dioza =0 (A4)

A3



Po

dip34
v
1123 14 ‘d“
diy
v B
Iy Iy ld3
dp,
dy 1 l ldz ;
i
P P> P3 Py

Figure A.2 Articulated system of the Whiffle-Tree

A.3 NUMERICAL PROPORTIONAL LOADING

Suppose a linear multiple point constraint is applied to the original structural system where the

proportional loads are applied:

Z (pid;) - (Z Pi) dy =0 (A.5)

where p; is proportion of load, d; is displacement, at the i-th degree-of-freedom, and d, is the
displacement at the new degree-of-freedom introduced by the multiple point constraint. Displace-

ment d can be considered as a weighted average displacement:

Z (pid;) (A.6)

do= ="
' ZP[

where the weight for d; is the corresponding load proportion p;. Ifthis kinetic constraint is satisfied,

the application of the principle-of-virtual-work to the rigid constraint will lead to
Py 6do + ) (~P; 6d;) = 0 (A.7)
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d,
Figure A.3 Interpolation relation for displacements

where P;’s are the proportional loads applied on the original structure by the constraint, and Py
and (—P;)’s are the loads on the constraints corresponding to dy and d;’s. Because the constraint
is rigid, the right-hand side of Equation (A.7) — the internal virtual work — is zero. Because dd,
and dd;’s are the corresponding virtual displacements, they are also required to satisfy the kinetics

constraint in Equation (A.5), i.e.,

D (piod) = (D pi) 6do =0 (A.8)

Combining Equations (A.7) and (A.8) and eliminating d, leads to

Z {[piPO - (Z Pi) P,-] (‘5d,-} =0 (A.9)

The above derivation is true even if the additional degree-of-freedom dj is further constrained
such that 6dy = 0 (e.g., dj is under displacement control as a prescribed time history). As long as
all d;’s are at free degrees-of-freedom, their variations dd;’s are arbitrary. Thus their coefficients

must vanish:

piPO_(Zpi)Pi:O Vi (A.10)

or more usefully
(Pr:Py:---:Py)=(p1:pa:-:py) iprii() (A.11)
In other words, the constraint Y (pid;)) — (X pi)dy = 0 enforces load proportionality
(Py:Py:---:P,)=(p1:pa:---: py). The application of the virtual work principle provides an

alternative support for the relation found from displacement interpolation in the previous section,

i.e., Equation (A.4) for the case of four target degrees-of-freedom. The above derivation proves
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the validity of the proposed numerical method of applying proportional loads using multiple point
constraints. Because the proof relies only on the linearity and rigidity of the constraint and prin-
ciple of virtual work — but does not depend on the properties of the original system — it can be

applied to all linear and nonlinear structures.

A4 LINEAR EXAMPLE

Consider a structure consisting of two independent springs with stiffness 1 and 2, respectively. A
load pattern of proportionality 2:1 is applied to the springs. The goal is to evaluate the behavior
of the structure. For this simple example, the loading can be directly applied because of linearity,
e.g., 4 and 2 (for proportionality 2 : 1). When the displacements of 4 and 1 are obtained, the
behavior can be evaluated (Fig. A.4):

P1 = ]_dl and PQ = 2d2 (A12)
k]=1 d1=4 P1=4
7 \-----Illll----.—P
ky=2 dy=1 P,=2
i il —

Figure A.4 A linear example

Next, the constraint method developed above is applied. In order to maintain the loading

proportionality of 2 : 1, or p; = 2 and p, = 1, the linear constraint would be:

2d, + 1dy — 3dy = 0 (A.13)

where again dj is displacement at the additional degree-of-freedom introduced by this constraint.
As shown in the previous section, the application of the principle of virtual work to the rigid
constraint will lead to

Py 6dy — Py 8dy — Py 8dy = 0 (A.14)
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Virtual displacements ddy, dd;, and dd- are also required to satisfy the kinetics constraint in Equa-
tion (A.13), i.e.,

Combining Equations (A.14) and (A.15) and eliminating d leads to
(2Py — 3P1) 6dy + (Py— 3P3) 6dy =0 (A.16)

where d; and d, are free degrees-of-freedom, so their variation éd; and dd, are arbitrary. Thus

their coefficients must vanish:
2Py —3P1 =Py—3P;,=0 or P :Py,=2:1 (A.17)
The constraint 2d; + 1dy — 3dy = 0 is rewritten as
gd)=0d-d, =0 (A.18)

where Q = {2 1}, d ={d; d>), and ;lg = 3d,. If the Lagrange multiplier method is used, then

the general equation to solve the constrained problem is
K Q'

d P
TR

For the above linear example, this equation becomes

1 0 2||d; 0

0 2 1|9d2¢y =140 (A.20)

2 1 0| 3d,
Solving this system of equations with weighted average displacement dy, = 3 [d is introduced in
Equation (A.13)] will result in displacements d; = 4, d> = 1 and loads P; = 4, P, = 2. The loads
satisfy proportionality of 2 : 1.

A.5S NONLINEAR SOFTENING EXAMPLES

In this section the multiple point constraint method is demonstrated for two inelastic systems: one
consists of nonlinear springs and the other is the biaxial tension of a shell element with nonlinear

material response.
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A.5.1 Nonlinear Springs

Consider a system consisting of three springs, all with a stiffness of 1000 (Fig. A.5). Spring 1 and
Spring 2 are linear. Spring 3 yields at a strength of 50 and has a post-yield stiffness of —200.

A u >
d2 P2
A = >
d3 P3
4 = R

Figure A.5 Nonlinear springs

Load proportionality at Springs 1, 2 and 3 are 1 : 2 : 3. Therefore, the constraint is
di1 + 2ds + 3ds — 6dy =0 (A.21)
where d is time-varying weighted average displacement prescribed as
dy = t/100 (A.22)

The system is solved by using LS-DYNA (LSTC, 2007), the constraint is applied using keyword
constrained linear global. The results are shown in Figures A.6 to A.8. Figure A.6 shows that
Spring 3 yields and softens at about four second, but the other two springs unload elastically.
Figure A.7 shows consistent results: d3 increases and d; and d, decrease around the same time.

The load proportionality 1 : 2 : 3 is kept constant and shown in Figure A.8.
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A.5.2 Biaxial Tension of a Shell Element with Nonlinear Material

A single shell element system is subjected to biaxial tension (Fig. A.9). The size of the shell
element is 1 X 1, and the thickness is 1. The Young’s modulus of the material is 10, 000, and the
yield stress and post-yield modulus in uniaxial tension test is 50 and —2, 000, respectively.

The load proportionality specified in the two directions is 2 : 1. When the displacements

are small, the stress proportionality is approximately 2 : 1. The constraints are
2d1 +d2—3d0:0 and d’l—dlzdé—dgzo (A23)

or

2dy + 2d, + dy + dy — 6dy = 0 (A.24)

where d is the time-varying weighted average displacement prescribed as
dy = /10000 (A.25)
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Figure A.9 Biaxial tension of a shell element

The system is again solved using LS-DYNA. The results are shown in Figures A.10 and A.11.
Figure A.10 shows that &1, increases and &5, decreases after the material yields and softens at
around 40 seconds. The approximate stress proportionality 2 : 1 is kept constant, as shown in

Figure A.11.

A.6 PRACTICAL EXAMPLE FOR PUSHOVER ANALYSIS

The proposed method applying proportional loads using multiple point constraints is further il-
lustrated with a pushover analysis of a three-story steel braced frame. The prescribed first-mode
load distribution is 0.32 : 0.71 : 1.00 (Table 6.3, Fig. A.12). The story shear-roof displacement
response for each story solved in LS-DYNA is shown in Figure A.13. The story shear proportion-
ality, 2.03 : 1.71 : 1.00, is constant and consistent with the applied load distribution before and
after the highly nonlinear responses, such as buckling and fracture of the brace, and fracture of

the column.
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Figure A.12 Pushover analysis model of braced frame
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Figure A.13 Story shears versus roof displacement of braced frame
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A.7 A SPECIAL CASE

Consider the following constraint:

Z (pidi) —cdy =0 (A.26)

where c is a non-zero constant. If ) (p;d;) = 0, specifically if Y, p;, = 0 and the d;’s are iden-
tical, then dy must be zero. Following the same procedure in Section A.3, it is still possible to
prove that the specified load proportions are satisfied. It is valid to apply a load at the degree-
of-freedom corresponding to d, and maintain load proportionality. However, it is not possible to
prescribe a time-varying non-zero displacement at this degree-of-freedom, as it will conflict with
the constraint. Fortunately, the structural system can be extended by adding another “dummy”
degree-of-freedom at which a non-zero stiffness pivot is provided, e.g., a “dummy” linear spring
connecting this degree-of-freedom and a fixed degree-of-freedom. The multiple point constraint
is then extended to the additional degree-of-freedom such that 3 (p:d;) # 0.

For example, if loads are applied to the two identical springs (Fig. A.14) with proportion-

ality 1 : —1, the linear constraint would be
dl - d2 - Cd() =0 (A27)

To avoid the singular stiffness when prescribing the displacement at dy, a “dummy” spring and
a “dummy” degree-of-freedom are added at ds, shown in Figure A.14. For the new system, the
revised constraint is

d1 - d2 + d3 - do == 0 (A28)

Then the constraint conflict can be solved.
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A.8 CONCLUDING REMARKS

A numerical method for applying proportional loading using multiple point constraints is devel-
oped based on the principle of virtual work. It is applicable for an arbitrary number of loads, in
arbitrary directions, and for an arbitrary type of structure. Some examples demonstrate the appli-
cation and the accuracy of the multiple point constraint method. This method provides a stable

and efficient way to evaluate structures that may undergo softening.

A.l5



Appendix B: Discussion on Instability of
Newmark Integrator

B.1 INTRODUCTION

The Newmark integrator (Newmark, 1959) is one of the most popular classes of time integrators.
It has been considered unconditionally stable if parametersy > 1/2and 8 > y/2 are used (Hughes,
1987); B = 1/4 and y = 1/2 are the most widely used combination of parameters. However, there
is one situation that has been generally ignored: if the mass is zero, and parameters 8 = 1/4 and
y = 1/2 are used, the integrator becomes unstable.

Zero modal mass is not rare in structural dynamic analyses. It is common to assign zero
(distributed) mass density to finite elements but a lumped mass at the nodes. In this case, there
is no rotary inertia at the nodes, and modal analysis shows a mode with zero mass. If the whole
system is solved without static condensation, the zero-mass mode is excited when force is applied,
and instability will occur.

In this chapter, the linear stability of the Newmark integrator for zero mass is analyzed,

and the instability is demonstrated with a numerical example.

B.2 LINEAR STABILITY ANALYSIS

Consider a linear single-degree-of-freedom mass-damper-spring system, which can be described

by equation

ma; 1 + CVit1 + kl/tH_l =0 (Bl)

at time t,,1, where m is mass; c is the damping coefficient; k is stiffness; and a, v, and u are

acceleration, velocity and displacement, respectively. If a Newmark integrator with parameters



B =1/4andy = 1/2 is applied, then

h2
Uiy = U + V,‘]’l + — (Cl,‘ + Cli+1)
4 (B.2)

h
Vigl = Vi + 3 (ai + aiy1)

where £ is the integration time step. If a;,; from Equation (B.1) is substituted into (B.2), then

2
Z (CV,' + ku,- + CVit1 + ku,-+1)
(B.3)

h
mviy1 = mv; — 5 (CV,‘ + ku,- + CVit1 + ku,-+1)

mu; . = mu; + mv;h —

This system of equations can be rearranged into the recursion form

Vi1 = Ay, (B.4)

where vector y = [u, v]” and A is the amplification matrix

1 4Am + 2hc — h’k 4hm
" dm 2 2k (B-5)
m+2he +h —4hk 4m — 2he — W%k
The eigenvalues of the amplification matrix are
[4m — h?k| + 2h V2 — dmk
r= (B.6)

4dm + 2hc + h?k
Linear stability of recursion requires that these eigenvalues lie within the unit circle in the complex
plane, and those on the circle have multiplicities of 1 (Iserles, 1996). In other words, if ||r|| < 1
and those roots with ||r|| = 1 are not repeated, then the integrator is stable. If mass is larger than
zero m > () and parameters y > 1/2 and 8 > y/2 are used, the integrator is unconditionally stable
(Hughes, 1987).

But if mass is zero (m = 0), the eigenvalues become

—hk + 2¢ N ] d ) 2hk (B.7)
= — =-1 an =1- :
2T e hk " " 2¢ + hk
Ifc > 0and h > 0, then r» € (—1,1), and there is only one eigenvalue r; = —1 lying on the

unit circle. Numerical error will propagate from one step to the next constantly. If the damping
coefficient is also zero, ¢ = 0, then both eigenvalues become —1. They both lie on the unit circle
and the multiplicity is 2. For this case, the Newmark’s method becomes unstable. The numerical

error will grow linearly (instead of exponentially).
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B.3 DEMONSTRATION

Figure B.1 shows a system with three nodes connected by two truss elements. Node 1 is fixed.
The mass at the Node 3 is 0.001. The stiffness of truss elements is 1. Loads are applied at Node 2

and 3, and P, = P53 = 0.0016¢, where ¢ is time. The system stiffness and mass matrixes are

1.6 -0.8 0 O
_ . M= (B.8)
~0.8 0.8 } lo 0.001}
m,=0 m;=0.001
k,=0.8 k,=0.8
1 2 3
A _ -
_— S
P, Py

Figure B.1 System for demonstration

For the damped system, stiffness proportional damped is applied using Rayleigh damping
¢ = aM + bK, with a = 0 and b = 0.005. This results in a damping ratio {; = 5% for the
first mode (w; = 20). Modes of the system are ¢; = [0.5,1]7, and ¢, = [1,0]". Mode 1 has
non-zero modal mass (M; = 0.001), whereas Mode 2 has zero modal mass (M, = 0). Based on
the linear stability analysis in previous section, if the Newmark integrator is used to solve this
dynamics system, Mode 1 is stable and Mode 2 is unstable. Because Mode 2 contributes only to
the displacement of Node 2 (¢22 = 0), Node 3 will be stable and Node 2 will be unstable.

The analytical solution of acceleration for system mq + cg + kq = at is

Wy

a
— exp —{wyt sin wyt (m #0)

g=1" Vi-¢ (B.9)
0 (m = 0)

where w, = \k/m,{ = c¢/(2mw,) < 1 and w; = w, 4/1 — 2. By superposition, the accelerations

for undamped system in Figure B.1 are

as = 0.06 sin 20¢
(B.10)

az = 0.12sin 20¢
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and analytical solutions of accelerations for { = 5% under-damped system are

0.06
as = ———exp(—t) sin(20 V0.9975¢
* = Jomors sl )

0.12
a3 = ——
* T \0.9975

Figures B.2 and B.3 compare the results for the undamped system. Figures B.2a and B.3a

(B.11)
exp(—1) sin(20 V0.9975¢)

are the analytical solutions; accelerations at Node 2 and 3 are both sinusoidal curve. If zero mass
at Node 2 is specified, the error for Mode 2 will grow linearly, shown in Figure B.2b for a time
step of 0.005. Figures B.2b and B.3b also show that the instability is at Node 2 only. This is
because Mode 2 has no component at Node 3. If a small mass is assigned at Node 2, then as
shown in Figure B.2c, the instability is diminished. The oscillation at Node 2 is expected because
high-frequency vibration of Mode 2 is not damped out. Figures B.4 and B.5 compare the results
for the damped system. Figures B.4a and B.5a show the analytical solution of ever-decreasing
oscillation of acceleration at Node 2 and 3. If the mass at Node 2 is zero, the absolute error of Mode
2 will propagate constantly and the numerical solution oscillates about the analytical solution.
The numerical result for this case is shown in Figure B.4b. The high-frequency part (Mode 2) of
acceleration at Node 2 never decreases, even if its low-frequency part (Mode 1) at Node 2 does
because of damping. If a small mass is assigned at Node 2, then the numerical result will quickly

converge to the analytical one, as observed in Figure B.4c.

B.4 DISCUSSION

B.4.1 Source of Initial Numerical Error

The truncation error is small for a second order integrator and it decreases with decreasing step
sizes. The round-oft error is negligible for double precision evaluation. Therefore, they are not
the major source of the initial numerical error that linearly grows, as observed in Figure B.2b,
or propagates constantly, as observed in Figure B.4b. One possible source of the major initial
numerical error comes from the discrepancy of zero initial velocity in the numerical solution and
non-zero initial velocity in analytical solution. For a system with non-singular mass, zero initial
velocity is commonly specified as the initial condition. This is compatible with the analytical

result. For a mode with zero mass, however, the analytical solution of velocity may be non-zero. If
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zero initial velocities in numerical solution are still adopted, then there can be an initial numerical

error. The error in velocity is amplified when differentiated into acceleration.

B.4.2 Other Values of Parameter

If parameters y = 1/2, 8 > y/2 are used, the eigenvalues of the amplification matrix are

2 28 — 1)h?k + |h+Jc? — dmk — (43 — 1)h%k?
r: m+ (28 - )%k £ [h+c® = dmk = (45 = 1)i?k| B.12)
2m + hc + 2Bh%k

If mass is zero, m = 0, the eigenvalues become

(2B = 1)hk £ +Jc? — (48 — 1)h%k?
2 + 2Bhk

(B.13)

rg=

If ¢ > 0 and & > 0, then the integrator is unconditionally stable, even when m = 0. But if ¢ = 0,

then
28—1)xiv4B8 -1
7’12:('8 )£ iVip (B.14)
b Qﬁ
where i is the imaginary unit. It can be calculated that ||r|| = 1, therefore a numerical error will

propagate from one step to the next constantly. It is interesting to find thatify = 1/2, 8 > 1/4, the
Newmark integrator is stable even if the mass is zero. The most commonly used parameter set —
y =1/2,8 = 1/4 —is, in fact, the worse case if mass is zero. Numerical results for parameters
y =1/2,8=1/4+0.01 are shown in Figures B.6 and B.7. One can observe from the figures that

even if the mass is zero at Node 2, the results are stable provided g is strictly larger than /2.

B.5 CONCLUDING REMARKS

Ifthe mass is zero, the second order equation is infinitely stiff (in fact, it is a first order equation, but
is solved as a second order one). Previously it was commonly believed that an implicit numerical
integrator was adequate to address this situation and that Newmark integrator is unconditionally
stable if parameters y > 1/2 and 8 > /2 are used. This chapter analyzed the linear numerical
stability of Newmark integrator, and demonstrated that even if Newmark integrator is implicit, it
can be unstable for the case of zero mass. It is better to apply a small amount of mass and/or a

small amount of damping to all degrees-of-freedom in a structural system to avoid this instability.
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