Optimum Frame to Decrease Torsion Effects in Wood Soft Story

Kamiar Kalbasi Anaraki^{1&2}, *Graduate Student/Intern*; Garrett Hagen¹, P.E., S.E.; Daniel Zepeda¹, P.E., S.E.; Kristijan Kolozvari^{2&3}, Ph.D., P.E.; Michael Mehrain³, Ph.D., P.E., S.E.; Farzad Naeim³, Ph.D., P.E., S.E.;

¹Degenkolb Engineers, Los Angeles; ²Cal State Fullerton, CA; ³Mehrain Naeim International, CA;

Introduction & Background

Why this study conducted

Peer review of group, indicated that current frames mandated by city of LA are over strength the weak-

line and may cause either negative torsion diaphragm capacity problem.

Approach

Provisions

- ATC-116
- LA City Ordinance
- FEMA P-807
- FEMA P-695
- ASCE-41

Numerical model (Using OpenSees)

Geometry

Masses in X dir. Masses in Y dir. $\sum (M_{\chi})_{i} = \sum (M_{V})_{i}$

Mass Distribution & P-Δ Effect

Materials Backbone

Approach (Cont.)

Diaphragm Capacity

- Diaphragm capacities considered in procedure
- **100 plf:** aged buildings
- newly built buildings
- extreme condition Rigid:
- All types of diaphragms are assumed axially rigid.

Frame Property and Location

- 1-bay moment frame located in opening line designed based on current LA ordinance.
- Strength & Stiffness of 60 $-\alpha: 0.167$ **-**α: 0.333| the frame are modified \$\hat{z}^{40}\$ $-\alpha$: 0.667 using α^* factor. α =1: base shear strength demand α =3: drift controlled strength demand **Drift** [%]

Analysis

Incremental Dynamic Analysis (IDA)

Whole story goes off and cause collapse

In Between

Collapse occur due to punching through diaphragm

Results

Adjusted Fragilities Parameters

Diaph.	α=0		α <i>=0.5</i>		$\alpha = 1.0$		α=2.0		$\alpha = 3.0$	
	S _{CT}	β								
Rigid	0.82	0.40	0.86	0.41	0.87	0.43	0.88	0.43	0.88	0.42
300 plf	0.69	0.37	0.75	0.39	0.81	0.41	0.81	0.41	0.79	0.44
100 plf	0.54	0.37	0.68	0.39	0.71	0.37	0.72	0.38	0.72	0.38

Sensitivity Study

Conclusions

- third One current recommended of stiffness is enough and optimal stiffness for frame in the opening line.
- Diaphragm capacity can affect the collapse mode severely.
- Although the considered damping ratio can affect the probability of collapse, the optimal frame will remain the same.

Acknowledgements

- **Degenkolb Engineers**
- Mehrain Naeim International Inc.