New Trends in Numerical Modeling of Seismic Soil-Structure Interaction -

Youssef M.A. Hashash, Ph.D., P.E.

May 17, 2021

DOE - PEER Workshop - Day 1".
Large-Scale Shake Table Testing for the Assessment of Soil-Foundation-Structure System Response for Seismic Safety of DOE Facilities.

Collaborators:

Yuamar I. Basarah Ozgun Numanoglu, Ph.D.
Guangchao Xing Alvin P. Bayudanto
Karim AlKhatib Muhsin Acar

Department of Civil and Environmental Engineering
Grainger College of Engineering
University of Illinois at Urbana-Champaign
Outline

• Motivation

• State-of-the-practice modeling methods

• Considerations for seismic soil-structure interaction modeling

• Developments & applications

• Conclusions and engineering implications
Motivation: Physical infrastructure performance and resilience under extreme events – Earthquake Shaking
Motivation: Physical infrastructure performance and resilience under extreme events – Earthquake Shaking

- Settlement under nuclear power plant
 - Significant settlement in Kashiwazaki NPP, 2007 Chuetsu EQ
 - Collapse of subway station
 - 1995 Kobe EQ
 - Wall failure in buried reservoir
 - Reservoir wall failure
 - Liquefaction induced building movement
 - 1999 Kocaeli EQ
 - Cracks in Concrete Face Rockfill Dam @ joints
 - Regional connector
 - Tall building-excavation
 - 2008 Wenchuan EQ
Outline

• Motivation

• State-of-the-practice modeling methods
 • Considerations for seismic soil-structure interaction modeling
 • Developments & applications
 • Conclusions and engineering implications
Simplified methods and Code-based Procedures for Seismic Soil-structure Interaction

ASCE 7-16 Chapter 19:
- SSI may be used with equivalent lateral force, linear dynamic, or nonlinear dynamic analysis.
- Site class C, D, E, or F
- Modified response spectrum to consider SSI

Needs to represent the soil and structure explicitly to understand the seismic behavior of SSI system

Tall Building Initiative (TBI, 2017):
- Fixed base model: Input motion applied directly at the base of the building (No SSI)
- Bathtub model using springs to represent soil for flexible base
- Complete SSI model where all components are modeled explicitly

Fixed base model

Springs at foundation level only

Bathtub model with springs

Complete System

No SSI Modeling → Complete SSI model
Outline

• Motivation

• State-of-the-practice modeling methods

• Considerations for seismic soil-structure interaction modeling
 o Input: Site investigations and ground motions
 o Elements of seismic soil-structure interaction analysis
 o Structural modeling and soil-structure interface conditions

• Developments & applications

• Conclusions and engineering implications
Elements of Seismic Soil-structure Interaction Analysis

Free-field condition
- 1D site response analysis
 - DEEPSOIL, SHAKE, Strata Shear beam model
- Soil liquefaction assessment

Soil-structure interaction
- Ex.: Tunnel, Tall building, Nuclear power plant on sand ...

- **Soil-structure-underground structure interaction:**
 - Tall building-tunnel system in urban area

- **Soil-fluid-structure interaction:**
 - Dam & buried reservoir
• The interface between soil and structure can be modeled as full-slip, non-slip, or something in between by modeling friction (reflecting real world conditions).
Gaps/Needs in Numerical and Material Constitutive Modeling

• Higher fidelity representation of both the structure and soil as well as interface interaction - friction, sliding, gapping.

• 3-D geometries and multi-directional base excitation.

• Simulation run times and need for representation of uncertainty – computational cost.
Outline

• Motivation

• State-of-the-practice modeling methods

• Considerations for seismic soil-structure interaction modeling

• Developments & applications
 o Advances in soil constitutive modeling (I-soil)
 o Seismic settlement of heavy structures on dense sands
 o Other problems
 o Computational considerations

• Conclusions and engineering implications
Advances in Soil Constitutive Modeling (I-soil)

Ozgun A. Numanoglu, Youssef M.A. Hashash

Sponsored by

United States Nuclear Regulatory Commission
Protecting People and the Environment
Conceptual Constitutive Model for Seismic Behavior of Sands

1. Small strain stiffness
2. Normalized Secant Modulus Reduction
3. Hysteretic Damping - Non-Masing type
4. Shear Induced Volumetric Response
Development of I-soil – A New Practical Soil Model

• Model formulation
 o Piecewise-linearized, hysteretic, non-Masing type nonlinear model to represent modulus reduction and damping curves.
 o Models shear induced volumetric strains and excess porewater pressures.
 o Represents medium dense to very dense sand behavior. Promising for loose to medium sands. Easy to calibrate and use.

• Analysis platform:
 o Implemented in LS-DYNA (with solid-fluid coupled framework)

• Not included
 o Plasticity due to hydrostatic loading
 o Anisotropy
 o Critical state behavior

Why LS-DYNA?
- Designed to solve dynamic problems
- Detailed representation of structural components
- Fluid modeling capability
- Ease of use (e.g., GUI, pre- and post-processor)
- Computationally efficient
- Parallel computing capabilities
- Easy to automate/queue analyses
Model Formulation: One-dimensional Framework

- Simple spring slider systems
- Elastic perfectly plastic behavior
- Produces Masing type hysteretic behavior upon un/reloading
- Extended to include non-Masing hysteretic behavior to avoid over-estimating damping during strong shaking
Model Formulation: One-dimensional Framework

- Superposition of \(n \) number of spring and slider components distributed in parallel
- Simple summation formulation to model piecewise linearly nonlinear behavior

\[
\tau(\gamma) = \sum_{c=1}^{m} \tau^c_y + \sum_{c=m+1}^{n} G^c \gamma
\]

\(i = 1:m \) non-yielded
\(i = m+1:n \) yielded components

Allows representation of normalized modulus reduction

Components 1 to \(n \) (\(n = 4 \) for demonstration purposes)

Piece-wise linear backbone made of 4 user defined points
Volumetric Response Calibration: η_{dsr}

- Values between 0.4 – 0.8 with mean value of 0.51 for 10 – 1200 kPa, 40 – 95% D_R
- $\eta_{dsr} = 0.51 \Rightarrow \phi'_{dsr} = 31^0 \leq \phi'_{critical \ space} (or \ constant \ volume) = 30^0 - 32^0$
Volumetric Response Calibration: A_0

- A trial-and-error procedure to obtain good estimation of hysteretic and volumetric response

- e.g., $A_0 = 0.4$ captures both behavior well for a given sand specimen

![Diagram showing constant volume cyDSS with measured and computed data for different cycles.](image)
For a given trial, the aim is to keep the residuals near zero value throughout shearing.
Input Parameters

<table>
<thead>
<tr>
<th>Source</th>
<th>Parameters/ Symbol</th>
<th>Physical Contribution/ Meaning</th>
<th>Dense Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Contribution/ Meaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference effective mean stress at which the parameters are defined</td>
<td>σ'_ref</td>
<td></td>
<td>kPa</td>
</tr>
<tr>
<td>Normalized modulus reduction curve (MR) and shear wave velocity (Vs)</td>
<td>n number of τ - γ pairs</td>
<td>Curve fitted n point discretized backbone curve at σ'_ref that matches Vs at very small strains and MR at different shear strain levels</td>
<td>MR: Darendeli (2001) Vs: Field Measurement (Alternatively Menq (2003) correlation)</td>
</tr>
<tr>
<td>MR curves at different confining pressures</td>
<td>b</td>
<td>Power law coefficient defining the effective mean stress dependency characteristics of stiffness</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Arulmori et al. 1992)</td>
</tr>
</tbody>
</table>
Seismic settlement of heavy structures on dense sands

Ozgun A. Numanoglu, Youssef M.A. Hashash, Scott M. Olson, Alfonso Cerna Diaz, Cassandra J. Rutherford, Thomas Weaver, Lopamudra Bhaumik

Sponsored by

National Science Foundation
WHERE DISCOVERIES BEGIN
Seismic Settlement of Dense Sand

- Uni-bi-directional broadband base excitations
- 95% relative density Ottawa 40/70 sand material
1-D to 3-D stepwise modeling approach

- 1D Nonlinear site response => Shear beam => Three dimensional SSI

- Profile from shear beam simulations
- Pressure dependency of constitutive model handles the effect of increase in confining pressure

Rigid Steel Box with YM: 200 GPa
Poisson’s ratio : 0.3

• 1D Nonlinear site response => Shear beam => Three dimensional SSI
Representative model- experiment comparisons
Seismic Settlement of Dense Sand

- Spectral response
- Housner and Arias intensities
- Seismic settlements
- Normalized excess porewater pressures
- Representative results for Landers event
Structure settlements: Modified Tokimatsu and Seed (1987) method + multi-dimensional SSI simulations

- With the help of FEM and I-soil on estimation of the effects of structure on soil behavior (increased confinement), much better empirical estimations were achieved.

- Strains were extracted from central array under the structure
Numerical Simulations of Kashiwazaki-Kariwa Nuclear Power Plant, Japan

Alvin Bayudanto, Ozgun A. Numanoglu, Youssef M.A. Hashash
Summary of Geotechnical Problems and Objective of Study

Problems:
- Free-field ground subsidence at Service Hall
- Differential settlements at Unit 1 Reactor Building that caused broken water pipes and flooding
- Differential settlements at Unit 3 Turbine Building and Transformer House that caused displaced duct, oil leakage, and fire
- Temporary shut down for survey and maintenance

Objective of Study:
Utilizing I-soil in LS-DYNA to evaluate seismic settlements of nuclear power plant structures.

Sources:
PEER REPORT (2011)
Sakai et al. (2009)
Tokimatsu (2008)
3-D Soil-Structure Interaction Model (SSI) – Bidirectional Simulations

| | Unit 1 Reactor Building | Unit 3 Turbine and Transformer House |
|----------------------------|-------------------------------------|
| Number of Solid Elements | 247,080 | 226,257 |
| Number of Cores | 4 physical and 4 logical cores | 4 physical and 4 logical cores |
| Computational Time (64 seconds motion duration) | 15 hours 9 minutes 57 seconds | 23 hours 12 minutes 44 seconds |

May, 2021

Hashash et al (2021)
3-D SSI Seismic Settlements – Measurement vs Numerical Simulations

<table>
<thead>
<tr>
<th>Unit 1 Reactor Building</th>
<th>Unit 3 Turbine and Transformer House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settlement of Structures</td>
<td>Negligible</td>
</tr>
<tr>
<td>Settlement of Soil Near Structures</td>
<td>17.5 cm</td>
</tr>
<tr>
<td>Findings</td>
<td>Numerical simulations agreed well with measurement</td>
</tr>
<tr>
<td></td>
<td>Numerical simulations captured the observed settlement</td>
</tr>
</tbody>
</table>

- **Settlements**: The settlements of the structures were negligible, while the soil near the structures showed measurable settlements.
- **Findings**: The numerical simulations matched well with the measured data. Numerical simulations accurately captured the observed settlements.
Other problems – simulations calibrated with centrifuge experiments

Simulation of Soil-Structure-Underground Structure Interaction
Yuamar Basarah, Ozgun A. Numanoglu, Youssef M.A. Hashash,
Michael Musgrove, Shideh Dashti

Numerical Simulation of a Concrete Faced Rock-fill Dam
Muhsin Acar, Ozgun A. Numanoglu, Youssef M.A. Hashash

Numerical Modeling of LEAP Centrifuge Test
Guangchao Xing, Ozgun A. Numanoglu,
Maria Kontari, Youssef M.A. Hashash

Seismic Fluid-structure-soil Interaction of Buried Water Reservoirs
Karim AlKhatib, Youssef M.A. Hashash, Katerina Ziotopoulou, James Heins, Brian Morales
High Performance Computing (HPC)
Computational Platform for Large-scale Simulations

- Running large scale of simulations to evaluate the uncertainties
- Needs more powerful computer resources
- Using high performance computing (HPC) or supercomputer
 - Contains thousands of compute nodes (servers) that work together to complete tasks faster (parallel processing)
 - Submit a single job up to 6,144 cores with 128 nodes at one time
 - Max durations: 48 hrs/job
 - Max jobs in queue: 25 jobs

HPC Stampede in Texas Advanced Computing Center

Source: Introduction to HPC https://www.youtube.com/watch?v=blkVuN6CVs
Example of runtime comparison (Tall building-tunnel)

Stampede vs Single server

For 32.7 s of simulation

<table>
<thead>
<tr>
<th>Machine</th>
<th>No of cores</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single server</td>
<td>12</td>
<td>25 hr</td>
</tr>
<tr>
<td>HPC on Stampede</td>
<td>12</td>
<td>11 hr</td>
</tr>
</tbody>
</table>

Number of elements: 394,958

Number of layers: 51 layers

75 m (75 meters)
Role of large scale testing facilities

- All the considered simulations based on centrifuge experiments or field performance studies.
- Large scale testing facilities will provide importance additional capabilities to further enhance fidelity of simulations.
- Experimental cost and time considerations.
- In-place soil characterization
- Reproduce selected existing centrifuge experiments?
- Interface behavior?
Conclusions and Engineering Implications

- Advances in analysis software, computing hardware, and big data management tools has enabled a new era in the analysis of complex nonlinear seismic soil-structure interactions (SSSI) in three dimensions (3D). Multiple available platforms.

- Three-Dimensional SSSI modeling, with relatively simplified soil models, was successfully employed in analysis of complex engineering problems including: (a) settlement of heavy structures on dense sand, (b) tall building-tunnel interaction, (c) soil liquefaction, (c) concrete-face rock fill dams, (e) buried water supply reservoirs.

- Large scale testing facilities provide important data for further validation of SSI simulations.

- If interested: The presented new constitutive model (I-soil) that is calibrated, tested, and implemented in the numerical analysis platform LS-DYNA is computationally efficient and easy to use and available upon request – Contact: hashash@illinois.edu.

- Expanded presentation (KGS 2021 Lecture):
 - https://www.youtube.com/watch?v=sQZHOxe_p-Q
Thank you

Questions?