COLLAPSE FRAGILITY OF REINFORCED CONCRETE MOMENT FRAME BUILDING UNDER PULSE-LIKE MOTIONS

Jin Zhou, Graduate Student Researcher, UC Davis Sashi Kunnath, Professor, UC Davis University of California, Davis

Abstract

The effect of different element and material models used to characterize the behavior of reinforced concrete components is investigated in the context of developing collapse fragilities of a typical reinforced concrete moment frame building subjected to seismic loading. Incremental Dynamic Analyses are carried out using 30 site-specific ground motions to generate demand-intensity curves. The maximum inter-story drift ratio is selected as the critical seismic demand parameter and two intensity measures were used. Findings from the study indicate that modeling choices do have a significant impact on the predicted collapse probabilities.

Results

Dispersion of IMs for 2 models ullet

Methodology & modeling

- Incremental Dynamic Analysis (IDA) was used to generate demandintensity curves which in turn were used to develop collapse fragilities • Two intensity measures were considered:
 - $S_a(T_1)$ and $S_{agm}(T_1, 1.5T_1, 2.5T_1)$, where $S_{agm}(T_i) = [\prod_{i=1}^n S_a(T_i)]^{\overline{n}}$
- A peak inter-story drift of 6% was chosen as the limit state for collapse
- OpenSees computational platform was used in all simulations
- Force-based nonlinear beam-column elements were used for all members in Model A, with four and five integration points along beam and column elements, respectively.
- All members modeled as elastic elements with concentrated plastic hinges at each end in Model B.

Findings

- Modeling choices have an impact in seismic collapse assessment
- Definition of collapse should be carefully evaluated
- Has a collapse mechanism formed?
- Non-convergence is not necessarily collapse
- Improved intensity measures can reduce dispersion in the estimated demands
- <u>Future work</u>: Examine relationships between IMs and dynamic properties of system; Use high fidelity models to calibrate simpler models; Extend study to range of building types; Investigate different ground motion selection methods.

