PEER Seminar Series, May 19, 2017: Structural Health Monitoring of Composite Structures: Application to Aeronautic Nacelles

Nacelle of an A380

Nacelle of an A380

Date: Friday, May 19, 2017
Time: 11am (sharp) – noon
Location: 502 Davis Hall, UC Berkeley

Watch the video of this presentation.

The ability to monitor autonomously the health of complex structures such as aeronautic or civil engineering structures in real-time is becoming increasingly important. This process, referred to as structural health monitoring (SHM), relies on onboard platforms comprising sensors, actuators, computational units, and communication resources. The SHM process is typically divided into four steps: damage detection, damage localization, damage classification and damage quantification.

This talk will focus on Structural Health Monitoring (SHM) systems for complex composite structures with an application to elements of aeronautical nacelles. The main parts of the nacelle concerned with the proposed approach are the fan cowl (composite monolithic) and the inner fixed structure (IFS, sandwich structure with honeycomb core) of the thrust reverser. These structures made from composite materials are subjected to many types of damage which can reduce the useful life of a nacelle (fiber breaking, delamination, crack, etc.). Furthermore, these structures are exposed to many environmental constraints such as changing thermal variations (from -55°C to +120°C). The challenge addressed in this talk is to develop and validate a SHM system able to detect and localize these damages before the degradation of the whole structure occurs, and independently of the ambient temperature.